Friedrich-Alexander-Universitat Erlangen-Nurnberg
Technische Fakultat, Department Informatik

EUGEN ANANIN
MASTER THESIS

A Quality Metric of QDA-Derived
Theories Using Object-Oriented
Modeling

Submitted on February 2" 2015

Supervisor: Prof. Dr. Dirk Riehle, M.B.A.
Andreas Kaufmann, M.Sc.
Professur flir Open-Source-Software
Department Informatik, Technische Fakultét
Friedrich-Alexander University Erlangen-Nurnberg

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der
angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder &hnlicher Form noch
keiner anderen Prifungsbehdrde vorgelegen hat und von dieser als Teil einer Prifungsleistung
angenommen wurde. Alle Ausfiihrungen, die wortlich oder sinngemafR Gbernommen wurden,
sind als solche gekennzeichnet.

Erlangen, February 2" 2015

License

This work is licensed under the Creative Commons Attribute 3.0 Unported license (CC-BY 3.0
Unported), see http://creativecommons.org/licenses/by/3.0/deed.en_US

Erlangen, February 2" 2015

http://creativecommons.org/licenses/by/3.0/deed.en_US

Abstract

Qualitative data analysis is widely accepted as valid approach for inductively developing
theories. The in-depth analysis of individual experience often results in novel findings,
potentially explaining less common phenomena. However, to achieve valuable results, the
discovery must be compliant to various implications and prescribed processes. Grounded theory
is a qualitative methodology constituted by very specific procedures, which in turn are supposed
to foster scientific rigor. However, there is no definite framework or evaluation strategy,
defining which criteria constitute good theory. By building upon principles of qualitative
analysis and object-oriented programming, this research suggest an approach to quality
assessment for emergent theories. Results demonstrate that a semi-formal memo annotation
enables evaluation of code-systems, while providing traceability and follow-up data processing.

Zusammenfassung

Qualitative Datenanalyse ist ein anerkannter Ansatz fir die induktive Entwicklung von
Theorien. Die tiefgrindige Untersuchung individueller Erfahrungswerte fihrt haufig zu
neuartigen Erkenntnissen und kann potentiell weniger bekannte Phanomene erklaren. Um
allerdings brauchbare Ergebnisse zu liefern, mussen verschiedene Implikationen und Prozesse
bedacht werden. Grounded Theory als qualitative Methodik, ist durch sehr spezifische
Verfahren gekennzeichnet, welche die wissenschaftliche Sorgfalt gewéhrleisten sollen.
Allerdings gibt es in diesem Kontext kein Rahmenwerk oder definitiv festgelegte Strategien zur
Bewertung von Theorien. Aufbauend auf Prinzipien aus der qualitativen Forschung, sowie der
objektorientierten Programmierung entwickelt diese Forschungsarbeit ein Konzept fir die
Qualitatsbewertung von neuartigen Theorien. Ergebnisse dieses Projektes zeigen, wie durch
semi-formales Annotieren Code-Systeme bewertet werden koénnen, wahrend gleichzeitig
Rickverfolgbarkeit und Weiterverarbeitung gewahrleistet werden kann.

Contents

1

2

5

IMEFOUUCTION ...t bbbt bbbt b e bbbt e b bbbt b b bttt nb e e 1
11 Syntax Errors vS QUalItY MEASUIESc.coeiuirieieiiiieiieieeste sttt sttt sre s 1
RESEAICH CRAPLE ...ttt bbb bbbt b e bt et b e s b e nesbesbe b neas 2
2.1 INEFOTUCTION ..t bbb b bbb bbbt b e bbb e 2
2.2 REIALEA LITEIATUIE ...ttt b ettt sbenn e 2
2.2.1 QUAlITALIVE RESBAICN.......eciicie et be e st e e s be e s be e ste e sbeesbeesteesreens 2
F A A €] (o101 1o (1o B I 4 <o OO OO RUURSURPR 3
2.2.3 Qualitative Theory - Validity and REIEVANCE..........ccccvriiirieiriie e 6
2.3 RESEAICH QUESTION ...ttt b ettt st bbb sb e e enesbe b nbeneas 7
2.4 Lol 2N o] o] 0 Ut o P 7
2.4.1 ANNOLALION FOMMAL... ..ottt bbb b bbb e s 9
A O 1Nt 111 1Y, 1= 1 ot 11
2.4.3 USEA DALA SOUICES.c.veueetitirieietieteste sttt sttt ettt bbbttt b e b e bt sb e sb e b st ekt s be b nnebe st sbe b e 12
2.5 RESEAICH RESUILS.......veiiie et b ettt bbb ae e 13
2.5.1 Metrics for Original Code SYSEM.........coiiiiiririeieire e 13
2.5.2 Refinement 0f COUE SYSIEMcviiiiiieiee bbb 16
2.6 RESUILS DISCUSSIONevieviiieite ettt ettt te ettt st e e se et e besbeese et e s besbe e e e sbesbesneenee e e 18
2.7 Contributions to Qualitative RESEAICN..........c.ciiiiii e e e 18
Elaboration of RESEArCh Chapler.........cocveiiiiieee et neas 20
3.1 GT — Dispute about the Coding Paradigm...........ccoeiriiiiinieise e 20
3.2 BUilding THheories frOM CaSESoveiieriirieieesie ettt sttt sre e 20
3.3 General INAUCTIVE APPIOBCKoviieiieieie ettt bbb e 21
3.4 Decisions for Code System RefiNEMENT.........ccocieiiiiiiieiee e 22
A o] 01 0 | TPRSN 24
4.1 Code SYSIEM TreE-IMOUELciieieie ettt sre e e saenre s 24
4.2 C00ES WIth IMIBIMIOS ...ttt ettt et b e e e b e st e st e e e et e st e ebe et e sbesbeennesbesrea 29
4.3 Example Output Paradigm ANAIYSIScorveiiiirieieree et 38
4.4 Calculated Code SYSIEM IMELICS......c.viuiirieiriee ettt bbb 41
RETEIENCES ...ttt bbbt bt b e bt bbb et ekt b e bbbt bbb ne bbb 44

List of Figures

Figure 1: Coding Paradigm (Corbin & Strauss, 1990)ccccurirrririeririeieese et
Figure 2: MaxQDA Coding Meta-IMOUELccuoiiiieieiie et nns
FIQUIE 32 RESEAICH PIOCESS. ... vitiiieteiteite ettt bttt b ettt b bbbt sb e b e e e b e be b b e nesbesbenbeneas

Figure 4: ANNOTATION FOMMAL.......cc.oiiiieie ettt ste e sbesbeene e aestesteeneeneennes

Vi

List of Tables

Table 1: Defined QUAaITEY MELIICSccviiiiieiieiiee e nne s 12
Table 2: Metric Calculation - Original Code System (before)cccccevvvieiieiiiic e, 13
Table 3: Abstract Codes without Defined INSTANCES..........cocviveiiiiereir e 13
Table 4: Codes With LOW MELIiC VAIUESooviiiiiiiiiiiesee e 14
Table 5: Codes With GOOd MELIIC VAIUES...........cceiiiiiiieiieeece e 14
Table 6: Code Entwicklungsprozess/Development ProCESS........ccccveivereiieeieerieeieseesie e 15
Table 7: Metric Calculation - Original Code System (after)ccccoovveviiiiiieie e, 17
Table 8: Metric Calculation Conceptual IMProvemMents.............cocevveieeieiieiieese e 17
Table 9: CodeS WIth IMEMIOScviiiiiieiie bbb 38
Table 10: Calculated Code SYStem METIICSceiveiriiiiie i 43

vii

file:///C:/Users/Eugen/Desktop/Eugen_Ananin_21337880_Final.odt%23_Toc410650340

List of Abbreviations

CAQDAS - Computer assisted qualitative analysis software (CAQDAS)
GT — Grounded Theory

0SS — Open Source Software

QDA - Qualitative Data Analysis

viii

1 Introduction

Qualitative data analysis (QDA) is a common research approach for inductive theory
development with ability to incorporate unique insights (Hoda, Noble, & Marshall, 2010). Its
growing popularity resulted in more and more fields of application (Yin, 2011). However, this
variety of research areas and the different goals of analyses ended in methodological pluralism,
which in turn is complicating quality assessment (Easterby-Smith, Golden-Biddle, & Locke,
2007). Further it can be stated, that the challenge is related to the lack of straightforward
procedures (Bryman & Burgess, 1994).

Grounded theory (GT) provides a set of processes aiming at establishing scientific rigor and
valid results (Glaser & Strauss, 1967). However, the findings of such analysis, just like any
emerging qualitative theory, cannot be evaluated in a standardized way (Lincoln & Guba, 1986).
In this context the utilization of computer assisted qualitative data analysis software (CAQDAS)
bears potential for comparability and follow-up data processing of theories (Rodon & Pastor,
2007).

This thesis developed and applied software metrics derived from the GT coding paradigm
(Corbin & Strauss, 1990) and object-oriented principles, to a prior developed code system in
order to evaluate its quality. Thereby a semi-formal method for annotating memos is proposed.
As aresult, quality evaluation becomes possible and eventually bridges the gap from qualitative
to quantitative analysis (Baxter & Eyles, 2015).

Applying the action-oriented coding paradigm, supports the creation of well-structured theory
(Kelle, 2005) and likewise contributes to subsequent quantification (Salinger, Plonka, &
Prechelt, 2008). The results of this evaluation provide evidence, that GT can produce findings,
which then can be translated into a domain model. Consequently, the suggested process for
quality assessment can be considered as attempt to establish a generic method of evaluation. In
addition it is aiming for a canonical data format suited for theory export, extension and reuse
(Mahlmeyer-Mentzel, 2011).

1.1 Syntax Errors vs Quality Measures

Initially the research objective was to develop a quality metric by deriving concept types, based
on conceptual relationships evident in a code-system and consequently counting syntax errors
of such model. However, the analyzed data did not provide appropriate information to
systematically elaborate concept-types for quality assessment. In turn, evidence from literature
supported the augmentation of this data, in particular analyzing and adding concept-attributes
based on the coding paradigm (Strauss & Corbin, 1994). This allowed for elaboration of a
formal annotation method and subsequent computer assisted processing. Eventually, the
abstraction and conceptualization of the code system could be evaluated and instead of errors
quality aspects were counted, resulting in multiple software metrics.

2 Research Chapter

2.1 Introduction

Qualitative Research is a common approach in social sciences and increasingly popular in any
kind of research constituted by analyzing human interaction (Bryman & Burgess, 1994). Such
research design permits the analyst to get close to the data and to become familiar with the
involved participants and their experiences (Mintzberg, 1979). Consequently, qualitative
methods have been accepted in organizational research (Avison, Lau, Myers, & Nielsen, 1999;
Buchanan & Bryman, 2007) or fields of high importance but scarce existing knowledge like for
example information systems research (Walsham, 1995). (Walter Daniel Fernandez, 2003;
Lehmann, 2001)

Often in such context interview analysis is conducted for generating novel but valid theories
based on empirical evidence (Eisenhardt, 1989). These cases can be understood as instances of
richly described phenomena, highly related to the context in which they occur (Robert K Yin,
2014). With focus on elaborating constructs, measures and testable theoretical propositions the
opportunity is created to bridge from rich qualitative evidence to mainstream deductive research
(Eisenhardt & Graebner, 2014). However, in concurrent literature such processes are vividly
discussed in terms of rigor and high quality results. (Benbasat & Zmud, 1999; Walter D
Fernandez, Lehmann, & Underwood, 2002; Gray, 2001)

Defining concrete methods and analytic strategies supports transparency of analysis and
traceability of results (Thomas, 2006). In this context GT is seen as highly systematic approach
constituted by rigorous processes of data abstraction and conceptualization (Glaser & Strauss,
1967). The ability to incorporate unique insights makes it increasingly popular in the evaluation
of human aspects (Carver, 2004; Hoda et al., 2010; Orlikowski, 1993).

CAQDAS can support rigorous research and the handling of empirical evidence, however lacks
the possibility of analyzing resulting theory are interchangeable data formats (Kepper, 1996;
Puebla & Davidson, 2012; Reiter, Stewart, & Bruce, 2011). Canonical formats can help to
overcome this challenge and bear great potential for developing frameworks, thesauruses and
dictionaries (Fiat & Sanders, 2009; Glaser & Strauss, 1998; Liu, 2009). Yet, there is no common
method or quality criteria to be utilized in this context. (Matavire & Brown, 2008)

2.2 Related Literature

2.2.1 Qualitative Research

Qualitative research is a broad term for various approaches, characterized by detection of novel
findings in the context of human interaction (Bryman & Burgess, 1994). Such research is
constituted by three elements. First comes the data collection for specific phenomena or topics.
It is followed by coding, which is an analytic or interpretive process, where the data is
conceptualized, named and mapped to its source (Strauss, 1995). The researcher performs a
critical analysis of the provided data, while trying to recognize and avoid his own preferences
and tendencies. It is particularly important to facilitate abstract thinking so that valid and
reliable findings can achieved. Finally a report is composed and the research can be considered
complete. (Yin, 2011)

It is widely accepted, that this kind of research is focused on creating rich descriptions und
understandings of social interactions. Thereby its advantages are isolation of causal conditions,
operationalizing theoretical relations, potentials for quantifying phenomena, aiding research
designs for generalizing findings and finally developing general laws and theories. However,
this method is related to various problems, too. The selection of adequate data sources is a
critical point to analysis and the relevance of the results is often complicated by limited existing
knowledge. (Flick, 2009)

Another challenge of such analysis can be seen in the management of huge amounts of empirical
data, which are often coded in texts and possibly have multiple meanings on individual and
social levels. Consequently, the importance for data reduction, data display and verification,
can be derived (Miles & Huberman, 1994). QDA aims at fracturing and managing the data
gathered into themes or essences. The elaborated results can potentially be fed into descriptions,
models or theories. (Walker & Myrick, 2006)

2.2.2 Grounded Theory

The development of GT as research methodology was introduced by Glaser and Strauss (1967),
resulting from their experiences in the domain of qualitative research with the focus for
increasing rigor of analysis processes and validity of the findings. Several elements can be
considered as core. First, the inquiry is shaped by the aim to discover social and social-
psychological processes (Stribing, 2008). Further, the phases of data-collection and data-
analysis happen simultaneously. The inductive analytical process prompts theory discovery and
development, rather than verification of existing knowledge. Also theoretical sampling, which
is purposeful selection of additional evidence, refines elaborates and exhausts conceptual
categories. Finally it can be said, that systematic application of GT-analytic methods will lead
to more abstract levels of information (Charmaz, 1997).

The iterative process of evaluating empirical data in order to develop concepts is called coding
by Glaser and Strauss. In the context of QDA the goal is to create access to findings, based on
interpretation of the data. The method of Constant Comparison between the data collection and
its analysis is the driving idea. Glaser & Strauss (1967) argue, that constantly comparing the
findings will lead to the generation of theoretical properties for a category. Thereby category
means a theoretical construct with structural characteristics emerging from analytical
comparison. This process is constituted by three phases of coding, namely open coding, axial

coding and selective coding (Strauss, Corbin, et al., 1996), which are accompanied by

theoretical sampling of data, systematic dimensionalizing of concepts and theoretical saturation
of the elaborated concepts. (Struibing, 2008)

2.2.2.1 Open Coding

Open Coding is the procedure for developing categories by examining the data source for salient
categories. Analytically extracting phenomena and their properties helps breaking-up the data
and supports categorizing, which means grouping concepts that seem to be related. Beginning
with microscopic analysis, theoretical information from literature or the informant’s terms (in-
vivo) aids development of concepts (Rodon & Pastor, 2007). These are understood as abstract
representations of events, objects or actions, which the evaluator identifies as significant to the
data (Glaser & Strauss, 1998). Consequently the researcher names such concepts and applies

3

the code to the corresponding part of the data source, which is called the labelling phenomena
(Glaser, 1992).

When assigning names or properties, a mere description should be avoided and instead a more
abstract conceptualization should be preferred. The grounded theory approach makes use of
constant comparison, resulting in a close connection between categories and the data (Corbin
& Strauss, 2008). Further theoretical sampling is performed, which according to Glaser and
Strauss means gathering data with the goal of generating a theory. While gathering this data the
researcher simultaneously codes and analyses the data and decides which data is to be collected
next and where it can be found. The process is controlled by the material or formal theory,
emerging during research. (Glaser & Strauss, 2005)

It is important to know the general properties of a category in order to examine its occurrence
in the data. In dimensionalizing specifics of an occurrence are described as a sum of
characteristic attributes, which are developed during systematic and constant comparison. In
detail that means analysing if the occurrence is specific for a certain perspective or a rather
general one, therefore may be suited for grouping into a concept. Using similar or equally
important characteristics or dimensions in order to consolidate different concepts into a
category, it is essential for the process of elaborating types. These attributes also prompt
collection of additional data or the enrichment of the existing data in regard of theoretical
sampling. This is fundamental for the connection of data-collection, data-analysis and theory
elaboration. Further it will lead to theoretical density and sufficient differentiated concepts
eventually. (Striibing, 2008)

2.2.2.2 Axial Coding and Coding Paradigm

The process of interconnecting categories, hence elaborating a phenomena-based relationship-
model, is called axial coding. Corbin & Strauss (1990) argue, that axial coding is focused on
possible relations between one category and different other concepts and categories, while the
researcher has to decide upon criteria of relevance. He has to choose the phenomena, which,
corresponding to the current state of analysis, will probably contribute to the clarification of the
research question. Consequently, a number of vague hypotheses is constructed and afterward
those are declared as core categories, which are responsible for the most useful results.

Categories are dimensionalized and also have properties, which are presented on a continuum.
That means one can have multiple perspectives of the category. The dimensional analysis is an
attempt to make the different perspectives explicit and systematic. It aims at creating analytical
diversity, while decreasing the complexity by assigning findings to theoretical expressions. In
regard of elaborating perspectives the researcher should consider the specific contexts,
conditions, actions, processes and their consequences. (Corbin & Strauss, 2008)

Enhancing his work on Grounded Theory, Strauss introduced the Coding Paradigm. This
concept is a suggestion for axial coding and aims at increasing the systematization of that
process (Stribing, 2008). The paradigm suggests that during analysis of relations in the axial
coding phase the researcher should evaluate findings by considering (1) the examined central
phenomena, (2) context conditions related to the phenomena, (3) intervening or structural
conditions, (4) causal conditions, (5) actions and strategies in regard of the phenomena and
finally (6) consequences of the actions or strategies. This way, the prior isolated phenomena
can be associated in a structural context. (Corbin & Strauss, 1990)

4

In contrast to the selective coding it is important to mention, that the paradigm is focused on
single empiric occurrences and their abstractions. Instead of answering the research question
its purpose is to explain the realization and the consequences of an incident or a certain kind of
incidents (Striibing, 2004). Following graphic visualizes the meta-model of the paradigm
concepts.

Causal Contextual
Condition Condition
Phenomenon
Intervening/
structural :
Condition ACt1°n§/
strategies
Consequences

Figure 1: Coding Paradigm (Corbin & Strauss, 1990)

2.2.2.3 Selective Coding

The procedure for integrating previously developed theoretical concepts into the final theory is
called selective coding. Corbin and Strauss define the process as selecting core categories,
systematically relating core- to other categories, validating the relationships and filling of
categories needing further refinement and elaboration. This means that a part of the data is re-
coded, so that relations between data-based concepts and core categories can be examined, and
eventually will lead to theoretical closure or saturation. This occurs when continued systematic
data-collection supports previous findings and does not yield any new insights. Reaching this
point the sampling strategy changes and the researcher tries to compare concepts that probably
have differing characteristics.

Due to the nature of Grounded Theory with its iterative and cyclic elaboration process, the
selection of incidents and data cannot be planned in advance or made dependent on generic
rules. Instead the selection is based on the analytic questions, derived from elaborated
theoretical concepts at the current state of the research (Striibing, 2008). Therefore instead of
generating hypotheses from samples, rather questions and perspectives for subsequent data
gathering and analysis are deducted. The sources which will be added and used for further study,
is selected in such way, that it supports the finding of new properties and dimensions of the
current concepts or maybe even help to develop new categories. The changes arising from this
process are not understood as corrections of wrong codings, but can be seen as adjustment of
the analytic perspective for increased consistency. A consistent analysis-perspective and
successive development of the research question will often result in one or few core concepts
that answer the examination question.

2.2.2.4 Memos

Writing code-memos potentially leads to the best relational model provided for integrating
substantial codes into theoretical concepts (Holton, 2005; Dominguez-Cherit et al., 2009). Field
notes are the basis for memos, while memos are the basis for theory development (Montgomery
& Bailey, 2007). Such information can be seen as conceptual meaning combined with ideas for
the theory recorded at the moment of occurrence (Glaser & Strauss, 1998). Advanced field
notes contribute to staying focused, result in higher conceptualization and help to avoid
drowning in details. Due to creativity and coding freedom no standardized memo format was
defined (Martin & Gynnild, 2011). However, the grounding of findings can be improved, when
detailed descriptions of categories are linked to the evidence in text and improve traceability in
consequence (Thomas, 2006).

Memos can be considered as recordings of analysis, thoughts, interpretations, questions and
directions for further data collection (Glaser & Strauss, 1998). To establish the advantages of
memos, it is suggested that analysts develop their own style of memoing (Corbin & Strauss,
1990). Supporting the abstraction process, these annotations are considered relevant for driving
creativity, thus discovery and definition of concepts (Rodon & Pastor, 2007).

2.2.3 Qualitative Theory - Validity and Relevance

Evaluating quality of theory as result of QDA is difficult in many ways. The various approaches
considered qualitative analysis do not only differ in processes, but also are characterized by
different goals. Adding to that the findings are highly related to context and derived from
limited amounts of sources. This makes it particularly difficult to apply the measures of validity
and relevance, typically used for quantitative analysis (Eastwood & Sheldon, 1996). Even
though certain scholars state validity and relevance to be universal criteria (Atkinson &
Hammersley, 1994), differences in philosophical and theoretical orientations prohibit
application of standardized measures (Patton, 1990).

Scholars across the field have tried to define what good qualitative research is but could not
establish consensus upon such criteria (Sandelowski & Barroso, 2008; Morse et al., 2002).
Indeed it has been argued, that the vast amount of publications defining quality has in fact
obfuscated this topic (Field & Morse, 1985). The problems relate to a wide range of aspects,
beginning with philosophical stance and role of evaluators, spanning over data collection,
sampling and methods of inquiry and reaching up to applicability of results (Meyrick, 2006).
The methodological pluralism complicates quality assessment (Easterby-Smith et al., 2007) and
the different goals obstruct comparability. (Yin, 2014; Thomas, 2006).

Common criteria assessing trustworthiness are credibility, transferability, dependability and
confirmability (Guba, Lincoln, & others, 1994). Credibility of research can be established,
following methodological procedures and adhering to the evidence in the data (Yin, 2011,
Eisenhart, 2006). Multiple analysts, statistical testing and confirmatory studies support
transferability of results (Belk, 2007; Fournier, 1998). Closely related to reliability,
dependability is considered as stability of findings (Bitsch, 2005; Rolfe, 2006). Finally,
confirmability is achieved by accessible presentation of findings (Lincoln & Guba, 1986;
Wholey, Hatry, & Newcomer, 2010). Ellis, Strauss, & Corbin (1992) state that quality can be
assessed by considering three additional aspects. First the theory itself should be evaluated in
terms of fitting the substantive area. Further, it should be understandable and relevant to
6

participants, while provide enough abstraction for generalization. Finally, quality is
characterized by how much control can be achieved, applying the theory to reality. However,
this might be limited to the social context and conditions (B6hm, 1994).

Summing up, in order to evaluate analyses claiming to produce good theory, four problem
domains need to be considered. These are suited data sources, the credibility and value of the
theory, the correct application of methods and finally, the empirical grounding of the results
(Corbin & Strauss, 1990).

2.3 Research Question

Based on the lack of standardized measures for evaluating qualitative research, the need for a
formal methodology can be derived. Focusing on GT and suggested processes, which produce
findings potentially suited for testing (Glaser, 1993), this research project transformed a given
code system into an object-oriented domain model. Therefore it was necessary to develop,
apply, and prove criteria which indicate quality. This lead to the question if GT can be efficiently
used for domain modelling and if so, which metrics can assess the quality of such analysis.

2.4 Research Approach

The goal was to develop measures for evaluating the quality of a code system derived from
qualitative analysis. The provided data was elaborated using MaxQDA (MaxQDA, 2015). It is
one of many computer tools supporting qualitative analysis (Mey, Mruck, & Glaser, 2011).
Despite its benefits to traceability and rigour of analysis processes, such software is limited in
regard of evaluation, further characterized by specific data formats, prohibiting data interchange
and follow-up processing (Franzosi, Doyle, McClelland, Putnam Rankin, & Vicari, 2013). The
following graphic provides the meta-model of codings and their attributes.

‘ Ej Code codes[¥]

[=] Name : EAtiribute [1]
&1 Color : EAttribute [0..1] l

& Mapping |
=] Date : EDataType [1]
[=] Comment : Wikdcard [0..1]

3 codes[1]

authors[1..¥]

'ccamgsj‘] =] Weight : EAttribute [0..1]
] Codesystem H Coding
=] Author l
codesystems(1] codings[*] " codingsf] authors] | =) Name : EAttribute [1] ’
codings(*]
| = Document I
[=] Name : EAttribute [1] A .
[=] Interview Perspective : EAttribute [1] | = Asslgnment |

§ documentsi] _ _ | = Coveragennterval : Eattribute [1] ’

=] CoveragePercent - EAttribute [1]

|, paragraphs[*]
|] Paragraph |
‘H Paragraphid - EAttribute [1] | logicalSections[1..*]
£l LogicalSection |

! paragraphsi] |

[=] beginningLine : EAftribute [1]
& endLine : EAttribute [1]

textlines(*]
‘ £ TextLine ‘ logicalSections(1..*]

‘ =] Lineld : EAttribute [1]

textlines[1..¥]

Figure 2: MaxQDA Coding Meta-Model

MaxQDA allowed for XML export and a JAVA algorithm was developed for transforming the
code system into a formal model, in turn creating possibility for application of quality measures.
In this context measurement can be understood as mapping from empirical evidence to a formal
model, whereby a single measure is a number assigned to an entity by this mapping function in
order to describe an attribute (Fenton & Pfleeger, 1998). The IEEE Standard 1061 states that an
attribute is a measurable property of an entity and a quality factor is a type of management-
oriented attribute of software contributing to its quality. Therefore a metric is a measurement
function whose inputs are software data and its output is a numerical value that can be
interpreted as degree, to which analyzed software possesses a given attribute affecting its
quality (IEEE Computer Society, 2009).

In general a metric can be calculated by counting, matching, comparing and timing, respectively
(Kaner, Member, & Bond, 2004). However, no quantitative data or weights could be extracted.
Some color coding was applied to the code system, but it was not exhaustive enough for
evaluation. In addition only five of 277 codes were annotated with additional information and
only name and position in the code system could be used for analysis. Because such software
metrics partially build upon object oriented concepts and information necessary for
transforming the code system was not explicit, additional meta-information was necessary.
Consequently the development of a memo format seemed feasible, to be exported along with
the code system.

To develop a set of metrics, quality factors had to be defined (Kaner et al., 2004). In this context
the GT coding paradigm provided aspects of high quality theory, which could be formulated
into attributes. To prove the value of this annotation format, the evaluation was performed and
its outcome was used to restructure the code system.

| Completeness ‘

Annotation: |
—> Paradigm -
Categories |

Instances ‘

Deepness ‘

| Width

Restructure

Coded
Interviews

|:\’> | Average ‘ ::> Code System
Anhotation: | Relative Strength ‘
L
Categories | Standard Deviation ‘
Data Preprocessing I Undefined Abstract I

Figure 3: Research Process

2.4.1 Annotation Format

According to (Corbin & Strauss, 2008) the coding paradigm is an analytical tool focused on
supporting the emerging theory by integrating structure — that is the conditional context in
which a phenomenon occurs. Describing the relations among concepts, its dimensions were
applicable to externalize information. The suggested conceptual categories were added to
individual codes as paradigm variable. In regard of object oriented implementation the codes
were annotated with the basic concepts of classes and attributes for entity types. Further, to
support domain modelling additional information was added to the codes in form of a model
attribute. The model variable in combination with domain=class, was used to describes the
class-entity as abstract or as instance. If codes were annotated with domain=attribute, the
model attribute could be used to specify single properties or multiple characteristics of an
object. Likewise the combination domain=class and model=set/model=setitem was used to
describe containers.

= paradigm = { causal; core; context; structural; action/strategy;
consequence}

= domain = { class; attribute }

= model = { abstract; instance; set; set-item}

Figure 4: Annotation Format

The complete code system tree is provided in chapter 4.1 and the additional memo information
can be found in chapter 4.2. Yet, to increase understanding of the annotations used, two
examples are provided in the following pictures.

class, set-item, causal

Face to public

class, set, causal

class, set-item, context

class, set, context Social Competences

Areas of HR-Dew.

class, set-item, context

Motivation] Professional Comp.
Position at for HR-Dev. Ca X class, instance, context
- ' ”8'31 xet Trendsin HR-Dev.
important OS core o
project Human-Ressource class, instance, context
class, set-item, causal Development o Future Requirements Fi. g
g
('0 class, abstract, core (‘Z:I‘o
class, instance, structural (},Q ‘7/\9
. (\5 class, set-item, actstr t‘,.
Problems with employees X Zd
9 Measure 0 & class, set, actstr
class, instance, structural A
- class, set-item, actstr IVIeasureS Of HR-DeV. ‘
Requirements HR management
Measure 1
class, instance, structural class, set-item, actstr
e . consequence
‘ Difficulties HR management Measure ... 9
Developmentof
Open-Source-Status
class, instance, consequence
0 S
Future context ¥

requirements
for ma nagers * Actually this code was child to Difficulties in HR Management.
But obviously, itis related to future requirements, thus considered a

contextual description. Still its position remains; the meaning is adapted.

H

Conceptualization of evidence results in abstraction and ideally incidents of a phenomenon are
related in the context of a core category (Glaser, 1993). However, the code system contained
no declared core concept or phenomenon. Supported by the fact that eight top-level codes
accounted for 94.17% of total mappings, these concepts were considered as core phenomenon,
related to the paradigmatic instances of the subsequent codes. Afterwards the provided
empirical evidence was analyzed to define the paradigm attribute of the child codes. In case an
if-then-relationship was encountered the value causal was used. On the other hand influencing
conditions were annotated with structural. The variable context described information
characterized by time, location or distinct occurrence. Generally the paradigm attribute is
handed on from parent to child. However, it can change when items are obviously related to
another concepts as depicted above.

class, instance, context

x_e.*t Amount of Open
core ot Source Work

attribute, instance, context

Organizational
Structure

Age of
Employees

Teamwork

class, instance, actstr

attribute, instance, structural

Involvingemployees
into corporate
development

Openness

attribute, instance, structural

class, instance, actstrl

consequence

Feedback-loop
with employees

class, instance, conseguence

10

In regard of the object-oriented implications a core concept is supposed to be abstract and
sufficiently conceptualized. Therefore the core codes were declared as domain=class and
model=abstract. The annotation domain=attribute was used, when properties of the parent
code were described. The attribute model was defined as instance when on the same level no
similar information could be found. On the other hand set was used to mark items that can be
seen as attribute lists or containers for objects, respectively. Accordingly the children of such
codes were defined as set-item.

2.4.2 Quality Metrics

A theory can be considered of high quality when it is complete in terms of conceptualization,
and elaborated concepts are highly related (Evans & John, 2013). Consequently, the code
system was evaluated using the paradigm model similar to balanced scorecard, a performance
measure in management science. By evaluating multiple values it is able to assess a well-
rounded set of attributes (Kaplan & Norton, 1992). In this context paradigm instances were
counted, for the entire model and for each core code individually, by traversing through its
children.

The conceptual elaboration was considered complete, if all paradigm categories were
encountered. Consequently, the metric completeness indicated that perspectives from all
possible dimensions were taken into account during analysis. Further, the absolute amounts of
paradigm instances served as additional criteria for model evaluation. These numbers revealed
the sophistication of elaboration and further, how equally dimensions were considered when
the concept was developed. Accordingly, for each core phenomenon the deepness was
evaluated. The quality was considered higher in terms of abstraction, if a category had multiple
levels defined in its subsequent hierarchy. In regard of understandability the width metric
indicated how much information was provided by the children describing the phenomena.

Besides the ratios of declared paradigm instances were measured. The average of declared
instances was calculated, for the entire model and for separated phenomena, respectively. To
evaluate tendencies towards frequent declaration of single dimensions, the relative strength was
calculated. This can be interpreted as influence of individual categories onto the core concept.
In regard of a balanced model, equal distribution of categories was considered favorable and
the standard deviation among paradigm instances was evaluated. At this point the object-
oriented annotation came into play. To avoid adversely affecting quality, set-items of according
types were grouped when comparing ratios among the entire code system. This was important
when multiple similar types were encountered, because several properties or classes are actually
beneficial to understanding. Finally, codes defined abstract demand for non-abstract instances
in regard of correct domain model implementation. Consequently the amount of abstract codes
without defined instances was counted. The following table provides overview over the quality
metrics.

11

Metric Value Meaning
completeness Percent (0% - 100%) Considered dimensional perspectives
instances Integer (0 - *) Amount of defined paradigm instances
deepness Integer (0 - *) Levels of hierarchy for core categories
width Integer (0 - *) Range of describing information
average Double (@ - *) Average of instances declared
relative Double (0 - 1) Influence of individual dimension
strength
standard Double (0 - *) Distribution among paradigm instances
deviation
abstract Integer (0 - *) Amount of abstract objects 1lacking

instances

Table 1: Defined Quality Metrics
2.4.3 Used Data Sources

The data used for this research project was a code system inductively developed by other
analysts by coding three practitioner interviews. Such method is particularly useful for
generating novel findings of high importance in specific contexts (Eisenhardt, 1989). The
motivation for conducting the analysis was accessing experience of different stakeholders
(Donzelli & Bresciani, 2004), more precisely a developer, project manager and human resource
manager in the context of Open Source Software (OSS). The interviews were conducted by
Prof. Riehle, a practitioner of OSS and Prof. Kimmelmann from the field of Human Resource
Management. The exploratory interviews were transcribed and subsequently coded.

The interview-based case analysis resulted in 278 categories mapped to 446 text segments. Two
codes marked introductory sections and were ignored for quality evaluation in this project. The
preceding analysis was performed with MaxQDA and the data provided in corresponding
format. Accordingly, the code system was a tree-model with 18 concepts located on the top-
level. Further the interview-transcripts were conducted in German language as were the
developed concepts. Moreover, the code system was provided together with the three
interviews.

12

2.5 Research Results

2.5.1 Metrics for Original Code System

The annotation of the code system resulted in 18 core codes and 258 related concepts. The prior
qualitative study was rated with 100% completeness. Paradigm instances and their influence
after normalization are listed in the table below.

Caus | Struct | Cons | Act/Str Context Total Comnpelseste- Average
in-
stance 38 75 23 75 47 258 100% 51.60
Code S
System standard
(before) rel. 0.29 1 0 1 0.46 dgv1a—
str. tion =
2.87
Code inst. 15 39 15 30 14 113 100% 22.60
?Zizim standard
: rel. devia-
set-item) str 0.04 1 0.04 0.2 0.00 tion =
(before) ’ 0.46

Table 2: Metric Calculation - Original Code System (before)

Comparing the instances revealed that structural conditions and concepts related to
action/strategy were particularly high, while less causal conditions or consequences were found.
However, the average of instances declared was quite good, with 51.6 declarations per category,
taking into account that 258 instances were declared for five categories. Applying set-item
reduction was able to increase the influence of the dimensions consequence and context, while
decreasing the oversized strength of action/strategy. Further, the distribution prior accounting
for 2.87 standard deviation was improved to 0.46. Yet, the importance of causal conditions was
reduced and contextual aspects lost influence.

With regard to individual concepts and the defined memo format, codes declared as
paradigm=core were annotated as domain=class and model=abstract, respectively. Seven of
these had no concrete instances defined, what is considered inadequate for domain modelling.
Adding to that a concept without provided description is more difficult to understand and has
unsatisfying relation to the model. According to GT contextual relation and abstract
conceptualization is key to high quality models (Glaser, 2002). As results, the codes lacking
instances were definite candidates for refinement.

e 0SS

e Uberprifung Verhalten in Mailinglisten (english: Checking behaviour
in mailing lists)

e Nach Vorstellung der Kollegen/des Teams (english: According to
colleagues/team)

e Passung ins Team (english: Fitting the team)
e Branchenkenntnisse (english: Industry Knowledge)
e Produktinnovation (english: Product Innovation)

e Produkte (english: Products)

Table 3: Abstract Codes without Defined Instances

Another six codes had instances defined, yet the low amount of dimensional categories resulted
in poor quality metrics. Therefore, these codes were also candidates for refinement. Table below
provides overview over these codes with their corresponding calculated metrics.

Con- Act/str

Causal Struct Context Total Complete Average
seq. at.
in- o,
Motivation zu stances 0 0 0 3 0 3 20% 0.60
Open Source relative standard
(before) strength 0.00 (%) (%) 1 0.00 deviation deep=2 width=2
= 0.63
in- o,
Bedeutung Open-Source stances o 0 1 1 9 2 40% 0.40
fiir das Unternehmen relative standard
(before) strength 0.00 (%) 1 1 0.00 deviation deep=1 width=2
= 0.39
Kompetenzentwicklung in-)) 1)) 1 20% 0.20
durch Open Source stances Tandard -
Tatigkeit relative | 5 99 | @ 1 0 | 0.00 | devistion | deeps1 | width-1
(before) strength = 0.31
in- o,
Projektzuweisung von stances ! ° ° ! ° 2 ao% ©.49
Mitarbeitern (before) relative standard
1tarpeite erore 1.00 (%) (%) 1 0.00 deviation deep=1 width=2
strength - 0.38
in- o,
Mitarbeitermerkmale stances 2 6 ! 3 ! 13 100% 2.60
(before) relative standard
0.2 1 (%) 0.4 0.00 | deviation deep=3 width=9
strength - .88
in- o,
Organisationsstruktur stances 0 2 ! 2 ! 6 8o% 1.20
bef relative SR
(before) 0.00 1 7)) 1 0.00 | deviation deep=2 width=5
strength - 9.37

Table 4: Codes with Low Metric Values

The remaining top-level concepts were well elaborated and the paradigm analysis did not
provide sufficient reason for remodeling codes. In most cases, all possible dimensions were
considered and populated by enough instances so that the core concept could be understood.
Motivation had no activities or strategies defined, but the concept itself can be interpreted as
element to such. Further, the Development Process had no causal conditions defined. Based on
multiple iterations through the interviews, the reason was found to be the concept analysis being
more focused on correlated aspects and characteristics of the process than why such occurs, or
what consequences might appear. Following graphics provide the counted paradigm instances
and the derived strength of the individual dimensions, for the rather strong concepts.

Causal Struct. (S:Z:_ S:E;(Context Total Complete Average
instances 3 6 2 21 17 49 100% 9.80
Personalentwicklung SR e
(before) = (after) giizﬁé‘t’ﬁ 9.05 | 9.21) 1 0.79 | deviation | deep=16 | width=19
= 3.79
instances 27 16 4 18 14 79 100% 15.80
Einstellungsprozess SR
(before) = (after) ttronetn | 1.00 | ©.52 | © | ©.61 | ©.43 | deviation | deep=19 | width-13
=1.10
instances 2 15 10 13 10 50 100% 10.00
Entwicklerkarriere 0.6 e
(before) = (after) Ziiiﬁ“e 0.00 1 : 0.85 | ©.62 | deviation deep=12 | width=12
gth 2 - 0.63
instances 3 2 1 0 1 7 80% 1.40
Motivation SR
(before) = (after) Zil{zﬁé‘t’ﬁ 1.00 | 0.5)) 0.00 | deviation deep=1 | width=7
= 0.48

Table 5: Codes with Good Metric Values

14

Though, one exception must be noted. The code Entwicklungsprozess (english: Development
process), despite being well elaborated, has been subject to change. Due to another code being
attached to it, the metrics before and after refinement differ. For the purpose of integrity, the
values are provided below.

Causal

Struct.

Con-
seq.

Act/
Strat.

Con-
text

Total

Complete

Average

Entwicklungsprozess
(before)

instances

(4]

28

2

13

3

46

80%

9.20

relative
strength

0.00

1

0

0.42

0.0
4

standard
deviation
= 3.19

deep=14

width=14

Table 6: Code Entwicklungsprozess/Development Process

In conclusion, the quality evaluation provided good perspective on the concepts and their
conceptualization. Missing dimensions or unsatisfying metric-values indicated reason for

change.

15

2.5.2 Refinement of Code System

Isolated codes without instances were relocated for more meaningful relationships and in order
to enhance the explanatory strength of the model. Likewise, when relocating codes, the
particular week concepts were taken into consideration. While the detailed explanations are
provided in chapter 3.4 brief summaries are described in the following.

Bedeutung Open-Source fur das Unternehmen (english: Importance of OSS for the company),
Motivation for OSS and Kompetenzentwicklung durch Open Source Tatigkeit (english: Skill
development by OSS) were evidently related to the concept OSS and added to the concept as
instances.

According to the team was found an instance of Fitting the team. Inspecting the interviews
revealed a similar code Passung ins Team nach Vorstellung des Managers (english: Fitting the
team according to the manager) in the model, child to a good described concept called
Einstellungskriterien (english: Criteria for Hiring). The poorly described codes were added to
the latter one.

Checking behaviour in mailing lists was added to Projektzuweisung von Mitarbeitern (english:
Project-Assessment of employees).

Industry Knowledge was found to be an attribute to software developers and added to
Mitarbeitermerkmale (english: Employee Characteristics).

Products was added as consequence to Product Innovation, while that was attached to
Organistationsstruktur (english: Organizational structure).

To prove this analysis potentially provides increased quality to the model, another paradigmatic
evaluation was performed, after rearranging the code system. Repeating the paradigm analysis
then resulted in 268 instances, since ten concepts prior defined as core, were now used as
categories. In general this led to three more causal and contextual conditions, while increasing
the count of structural influences and consequences by two instances. Accordingly the relative
influence of causal and context dimension was improved. The average declaration improved
from 51.6 to 53.6, but on the other hand standard deviation increased from 2.87 to 3.73. Relative
strength for causal increased to 0.79 and context influence improved to 0.9. Reducing the model
by set-items, revealed that influence of causal and consequential criteria both increased to 0.11
and the action/strategy dimension improved from 0.2 to 0.7037, respectively. However, the
increase in standard deviation, from 0.46 to 5.3 was also significant.

16

Causal Struct. 22:_ Sﬁ:é Context Total Complete Average
Code System instances 38 75 23 75 47 t25(18 : 100% | 51.60
(before) ttrenetr | ©.29 1 0 1 0.46 | deviation
Code System instances 41 77 25 78 47 268 100% | 53.60
q standard
eviation
(after) e | 0279 1) 1 0.90 | devist:
Code System instances 15 39 15 30 14 113 100% | 22.60
(eXCl. set- relative standard
item) (before) | swrengen |[©.04| 1 |@.04| 0.2 0.00 | deviation
Code System instances 17 41 17 33 14 122 100% | 24.40
(EXCl. set- relative standard
item) (after) | sregn |©-11| 1 [0.11| 0.7037 | ©.00 | ceviation

Table 7: Metric Calculation - Original Code System (after)

Be refining the model, several improvements could be achieved. Compared to the changes in
the entire code system, the increased quality of the individual concepts is more evident. OSS
became an understandable concept with 80% completeness and five levels of abstraction. Em-
ployee Characteristics was added a causal concept, increasing the influence of this dimension.
Organizational structure gained improvement in regard of structural (before: 1, after 0.5) and
consequential (before: 0, after 0.5) influence. Finally Development Process was augmented by
one causal criteria, however, the strength three categories increased. These were consequence
(before: 0, after: 0.04), action/strategy (before: 0.42, after: 0.56) and finally context (before:
0.04, after: 0.07).

Causal Struct. Conseq. Sﬁf‘;/: Context Total Complete Average
instances 0 (%] 0 0 0 0 0% 0.00
0SS (before . tandard ;
() relative | g 00 | @ 0 © | .00 | dvistin | deepo | "GN
instances 1 1 3 4 0 9 8@% 1 . 80
0SS (a'Fter‘) i standard P
Crengin | ©.00 | ©.00 | ©.67 | 1.00 | ©.00 | deviation | deep=s | “UT"
Mitarbeiter- instances 2 6 1 3 1 13 100% 2.60
merkmale - standard A
(before) Serngth 0.2 1 e 0.4 0.00 | deviation | deep=3 W1d9th_
Mitarbeiter- instances 2 7 1 3 1 14 100% | 2.00
merkmale relative Standard widthe
(after) h— 0.17 1.00 | 6.00 | 0.33 0.00 de_vieatgi;n deep=3 10
Organisations- | instances 0 2 1 2 1 6 80% 1.20
struktur . standard . _
(before) Strengtn | ©.00 1 0 1 0.00 | deviation | deep-2 e
Organisations- | instances 0 2 2 3 1 8 80% 1.60
struktur relative standard width=
(after) strength 0.00 0.50 | ©.50 | 1.00 0.00 deviation deep=3 :
Entwicklungs- instances (%] 28 2 13 3 46 8@% 9.20
prozess - iv stacgaid] =
(before) e | e.e0 | 1 0 | 0.42 | 0.04 | o | deepuaa | WP
3.19
Entwicklungs- instances 1 28 2 16 3 50 100% 190' 0
prozess - standard 5
(after) Crengen | ©.00 | 1.00 | 0.04 | ©.56 | ©.07 | devistion | deep=1s widen=

Table 8: Metric Calculation Conceptual Improvements
17

The conceptual quality of the code system could be increased by augmenting concepts with
further categories or relating codes in a more meaningful way.

2.6 Results Discussion

Multiple quality metrics had been successfully derived and applied for evaluating a code model
resulting from inductive analysis. Annotating additional attributes to codes allowed for
externalizing meta-information, which in turn could be utilized for object-oriented domain
modelling. As shown above, the conceptual strength of the theory could be measured and
suggestions for refinement derived.

However, the actual implementation of the JAVA code for metric calculation, revealed that not
all attributes were particularly useful. While first, aspects of and differences in domain=class
and domain=attributes were evaluated, it turned out that such definitions are highly subjective
to the researchers liking. Also the high abstraction of concepts led to vast amounts of
possibilities for object-orientation implementation, prohibiting a meaningful measurement.

Further, in earlier iterations of program-code development, for each class the attribute instances
were counted in order to assess explanatory strength of each object. However, most codes were
found to be classes, thus leaving only unsufficient amounts of attributes left to be assigned. Yet,
considerations about such potentials for providing understanding led to the metrics width and
deep. These were found to be useful for the same reason indeed.

In regard of evaluating ratios, the relative strength and the related metric standard deviation at
first seemed to be without practical use. But when code system refinement was performed, the
more populated a concept became, the more meaning could be derived. The provided examples
partially depict this effect, but still after just one step of refinement the practical value is
considered low. Nevertheless, multiple iterations of refinement combined with more instances
will certainly result in relevant metric values.

Consequently, the paradigm attribute was the most significant metric. Its dimensions were
beneficial to access the information in the code system. Another important aspect was the
potential for counting individual concept instances. The correlated completeness measure
highlighted missing dimensions of core codes and, combined with the absolute number of
instances, code system refinement became particularly easy and efficient.

Summing up, the memo-annotation and application of the suggested metrics could improve the
quality of the model. The refinement increased the conceptualization and supported
understanding of several concepts. Moreover the quality metrics provided guidance for
developing a balanced theory.

2.7 Contributions to Qualitative Research

The result of this thesis contributes to the field of qualitative research on multiple ways.
Proposed criteria for assessing good theory are data sources, credible and valuable theory,
correct application of methods and finally the grounding in the data (Lincoln & Guba, 1986).

In general using CAQDAS already positively influences the handling of complex empirical
data (Miles & Huberman, 1994). Supplementary, applying a formal or semi-formal memo

18

annotation increases comparability among different data sources and helps the researcher to
decide upon its adequacy.

Considering the theory itself, results presented in a canonical format allow to bridge the gap
from qualitative to quantitative studies (Eisenhardt & Graebner, 2014). Applying metrics for
conceptual evaluation will indicate sophisticated abstraction and consequently make the theory
measurable (Glaser, 1993).

The proposed method of quality assessment makes the analysis process more transparent.
Further, developing good styles for annotating memos is considered key to high quality GT
(Elliott & Course, 2005). In addition literature states that memoing should be performed from
the very beginning of the analysis (Dick, 2005). The results of this research project provided
evidence, that memoing can support the development of categories and improvement of
theories.

Finally, the grounding of findings in empirical data characterizes good theory (Goldkuhl &
Cronholm, 2010). The proposed method positively contributes to that. At any time during the
analysis process, full traceability from data to elaborated concepts can be provided. On top of
this, refinements or changes to the model can be performed, without losing the link to empirical
evidence.

Summing up, the suggested evaluation method supports the four common criteria for assessing
quality of QDA. It improves the process of data selection, increases comparability among
results, makes the analysis more transparent and rigorous and finally provides full traceability
at any point during analysis.

19

3 Elaboration of Research Chapter

3.1 GT - Dispute about the Coding Paradigm

The popularity of GT has resulted in various approaches and different kinds of processes.
However, for this research two of many methods are most significant, both proposed by the
original founders. Despite the fact that Glaser and Strauss introduced grounded theory together
in 1967, their approaches dispersed over time. The main reason for dispute was the suggestion
of the coding paradigm by Corbin and Strauss (1990).

In response Glaser (1992) harshly criticized the paradigm, to be an distortion of the original GT
goal, resulting in forcing of categories, rather than allowing for emergence, what was confirmed
by several authors (Kendall, 1999; Urquhart, 2000; Walker & Myrick, 2006). Ironically, Glaser
himself suggested coding families which actually include the dimensions of the coding
paradigm (Glaser, 2008). Defending their recommendation, Corbin and Strauss argue, that the
vague framework should rather be considered as guidance for incorporating a holistic view onto
the examined phenomenon what on the other hand is equally supported by several scholars
(Allen, 2011; Bitsch, 2005; Evans & John, 2013; Striibing, 2008).

When comparing the Glaser and Strauss approach, still both methods are characterized by the
same characteristics. These are parallel processes of systematic data gathering, its reflection
and the theory emerging from data evidence. In the end both ways are compatible to each other
and focus on the same aspects of the GT, thus integrating benefits of quantitative methods with
qualitative interpretations. (Mey et al., 2011)

3.2 Building Theories from Cases

Analysing evidence from instances of a phenomenon with focus on creating theoretical
constructs or mid-range theories is called building theories from cases. Compared to
mainstream qualitative research, which is highly descriptive and emphasizes the social
construction of reality, this approach differs in terms of activities, goals and epistemology. It is
characterized by a rather positivist stance and further can be considered more objective. Instead
of isolating the phenomenon from its occurrence, case studies focus on the rich, real-world
context where the incident can be observed. (Eisenhardt & Graebner, 2014)

The central notion is to use case evidence to inductively develop a theory, being emergent due
to its grounding in the data. Elaboration processes are characterized by pattern recognition
among constructs evident within data. Key to this method is the replication logic and theoretical
sampling of evidence. While single cases are independent and distinct experiments used for
inductive theory development, multiple sources are discrete experiments, in turn serving as
replications, contrasts and extensions to the emerging theory. (Yin, 2014)

Another aspect of this approach is the use of terminology describing the individual process and
its implications. However, various terms and labels can create confusion and consequently
demand for precise language and description, making the inductive process transparent and
understandable. Another challenge is that findings are constituted by rich qualitative details and
cannot be tightly summarized. Since there are no accepted standard templates for writing or

20

presenting the theory, the analyst has to develop skills of presenting his findings in according
ways. Further, interpreter bias or retrospective sense making pose a risk to the validity of results.

To support the quality of such analysis and its results, it is important to ensure that the emerging
theory fully exploits all available evidence, while the process should be characterized by
sophisticated research design. Rich and understandable presentations of evidence, thoughtful
justification of theory building, theoretical sampling of cases and choosing sources, which limit
informant bias ultimately constitute a valuable analysis. This analytical approach is
characterized by replication logic and supports the evaluation of resulting theories by bridging
the gap between qualitative and quantitative research. The use of interview data in combination
with theoretical sampling provides great potential to detailed findings of human interactions in
specific contexts. In conclusion, in the context of this research project the provided code system
was considered a valuable data source.

3.3 General Inductive Approach

Subsequently, findings can be justified and defended by the underlying research goal. By
developing a framework based on the underlying structures or processes evident in the data,
reliability and validity can be established. While being consistent with the implications of
qualitative research, this approach provides a more detailed set of processes for analyzing and
reporting qualitative data. Key to this method is the establishment of clear links between the
evaluation of research objectives and summaries of such raw data, ensuring transparency of the
results.

Knowledge in regard of efficient and defendable procedures for analyzing qualitative data is
less common, thus motivates this extension to qualitative research (Thomas, 2006). With regard
to clarifying the implications of data reduction this method describes detailed processes of
creating meaning in complex data. Key is the development of summary themes or categories
from raw data.

Several analytical strategies guide the process. First, data analysis is guided by evaluation
objects providing a focus or domain of relevance, instead of a-priori expectations about specific
results. Consequently the inductive component is characterized by multiple readings and
interpretations allowing the findings to emerge directly from the raw data. Further, the primary
mode of analysis is coding, where the evaluator constructs key concepts and elaborates
categories from empirical evidence, which are combined into a theory or framework. Since
findings are the result of multiple interpretations, inevitably they are shaped by assumptions
and experiences of the analyst and his decisions about what is important for the theory (Thomas,
2006).

Elaborated categories have certain features. They contain labels, a term used to refer to the
category and possibly reflecting specific properties of such. The description of a category can
be attached including key charts, scope and limitation. Another aspect is the associated data or
mapped text section, explanatory illustrating meaning, relations or perspectives for the category.
Thereby concepts might be linked by hierarchical tree diagrams, or be interrelated based on
commonalities in meaning as well as assumed causal relationships. In the end category system
are implemented into a theory or model.

21

The general inductive approach is quite similar to grounded theory, however it does not separate
the processes of open and axial coding. Further, while grounded theory aims at discovering
theories eventually presented as description, including themes or categories, this methodology
is concerned with the analysis of core meanings in text, relevant to evaluation or the research
objective. Therefore the result are categories presented with descriptions for the most important
themes. In conclusion the general inductive approach builds upon implications of qualitative
analysis and provides additional processes for the analysis. By defining concrete methods and
analytic strategies for developing categories meaning can be derived from complex data and
process transparency can result in good traceability of the findings. Finally trustworthiness of
such results can be assessed using techniques related to qualitative research. (Lincoln & Guba,
1990)

3.4 Decisions for Code System Refinement

In this chapter detailed considerations and supporting evidence derived from the interviews
are described, which lead to the refinements conducted in the code system.

The code OSS was mapped to two interview sections related to OSS development. Relocating
this code into other categories seemed quite difficult, because it had no attributes or meanings
declared, which in turn could increase the conceptualization. However, on the top level three
other core concepts were found, obviously related to the OSS domain. These were Bedeutung
Open-Source fur das Unternehmen (english: Importance of OS for the company), Motivation
zu Open Source (english: Motivation for OSS) and Kompetenzentwicklung durch Open Source
Tatigkeit (english: Skill-Development by OSS activity). These codes had paradigm concepts
defined, however the dimensions were poorly populated and prohibited deep understanding,
thus were considered as codes of lower quality.

Motivation for OSS was characterized by three codes describing strategic aspects of OSS.
Importance of OSS for the company had two dimensions defined, each describing one
consequence and one action/strategy. Further, Skill-Development by OSS had only one
consequential aspect defined - obviously because it was a direct consequence of OSS.
Accordingly, those codes were relocated and attached to OSS. As a result these prior isolated
concepts were then related to each other. So, the annotation domain=class, model=abstract,
paradigm=core had to be changed accordingly. Motivation for OSS was found a causal
condition because its existence is supposed to result in the respective phenomena and hence it
was defined as domain=class, model=instance, paradigm=causal. On the other hand Skill-
Development by OSS activity had a child Interkulturelle Kompetenz (english: Intercultural
competence) and was conceptualized as consequence of OSS, therefore declared domain=class,
model=instance, paradigm=consequence. Finally, Importance of OSS for the company
described structural circumstances of the core concept, eventually resulting in the annotation
domain=class, model=instance, paradigm=structural.

The code Fitting the team had no further specified characteristics. Further, Nach Vorstellung
der Kollegen/des Teams (english: According to colleagues/the team) was a characteristic of such
condition, also having no paradigmatic dimensions defined. The analysis of the mapped
interview sections provided strong evidence that team-fit was positively correlated to the hiring

22

of developers and both codes heavily related. Contributing to that, there was a similar code
called Fitting the team according to the manager. Based on these findings, matching a group
from team- or management-perspective can be seen as attribute necessary for employment. Also
both provide more details for the rather abstract concept of suiting a team of developers. As
result, Fitting the team was attached to Criteria for hiring with the annotation
domain=attribute, model=set, paradigm=causal. The other two codes were repositioned as
children to Fitting the team both defined as domain=attribute, model=setitem,
paradigm=causal.

The top-level code Uberpriifung von Verhalten in Mailinglisten (english: Checking behavior in
mailing lists) was neither related to any concept, nor was it further described by attributes or
theoretical implications. The provided transcript revealed that this was an activity for assessing
employees to appropriate projects, therefore being a strategic consideration. The code was
annotated with domain=class, model=instance, paradigm=actstr and repositioned. It was
defined as child and attached to Projektzuweisung von Mitarbeitern (english: Project-
Assessment of employees), which indeed was poorly described, providing understanding from
two dimensions only. Further, Project-Assessment was attached to Developnent Process
domain=class, model=instance, paradigm=actstr,

The code Industry Knowledge was another isolated concept, but evidence strongly suggested
this conception to be an attribute for describing single developers. Since it was neither a
premising condition for hiring nor did it result in specifically mentioned employee properties,
it was considered a structural criteria influencing various aspects of developers and therefore
defined as domain=attribute, model=instance, paradigm=structural while being added as child
to Employee Characteristics.

Analyzing the transcript section mapped to the code Product Innovation, various aspects
surrounding product development were found. However, despite mentioning activities or
processes, the mapped section provided more focus on organizational aspects including
management, teams and departments. Similar, Products could be seen as consequence of
product innovation, supported by a text segment containing multiple aspects of correlating
organization and product development. Consequently, Product Innovation was defined as
domain=class, model=instance, paradigm=actstr and related to Organisational Structure,
while Product was redefined domain=class, model=instance, paradigm=consequence as child
to Product Innovation.

23

4 Appendix

4.1 Code System Tree-Model

__ 279 0SS
__ 236 Uberprifung Verhalten in Mailinglisten
___ 235 Nach Vorstellung der Kollegen/des Teams
___ 234 Passung ins Team
228 Bedeutung Open-Source fiir das Unternehmen
229 Einfluss auf Produkte nehmen
_____ 224 Open-Source-Engagement fiihrt zu (gesteigertem) Kundenvertrauen
___ 172 Branchenkenntnisse
__ 106 Kompetenzentwicklung durch Open Source Tatigkeit
____ 107 Interkulturelle Kompetenz
18 Mitarbeitermerkmale
218 Unterschiedliche Charaktere

220 Umgang mit Publizititat

36 Angst vor Publizitat
219 Extrovertierte Fachexperten

24 Nach kultureller Diversitat
217 Intrinsische Motivation fiir 0S-Arbeit
187 Unmotivierte Entwickler leisten keine gute Arbeit
182 Angst vor Inkompetenz bei Minimierung der Entwicklertatigkeit
166 Geringe Fluktuation
165 Verhalten in Loyalitatskonflikten
105 Langsames Warmwerden mit Menschen
102 Mitarbeiterloyalitat zum Unternehmen
101 Flexibilitatswunsch
__ 62 Personalentwicklung
169 Anforderungen an die Personalverwaltung
113 Bereiche der Personalentwicklung
248 Soziale Kompetenzen
114 Technische Kompetenzen
112 Schwierigkeiten der Personalentwicklung
170 Zukiinftige Anforderungen an Manager
109 MaBnahmen der Personalentwicklung
263 Probleme explizit machen als Projektleader
227 Austausch mit anderen Kollegen
226 Sprachkurse
160 Malnahmen gegen Burnout
156 Gesprache bei gemeldeten Problemen
155 Moglichkeit zum Ausprobieren eigener Projekte
145 Beobachtung der Arbeitsleistung
99 Anreize zur Mitarbeitermotivation
116 Mitarbeitergesprach
115 Selbststudium
111 Individuelle MalRnahmen
110 Interkulturelle Trainings
108 Kein 0S-spezifisches Programm
63 Mentoring
64 Pair Programming
65 Regelmdssiges Feedback
66 Schulung
74 Organisation von SUSE Konferenz
73 Entsenden auf Konferenzen

24

84 Trend in der Personalentwicklung
249 Kommunikationsbarrieren abbauen durch personliche Treffen
85 China holt auf
77 Zukiinftige Anforderungen
256 Fortfihrung technischer Kompetenz
245 Gesteigerte Sozialkompetenzen
257 Einfihlungsvermogen
253 Kommunikationskompetenzen
255 Englische Sprachkompetenzen
254 Feedback konstruktiv formulieren
246 Erhohter Wirkungskreis
247 Zielgruppenorientierte Kommunikationskompetenz
171 Web Development
88 Hart-im-Nehmen-Sein
87 Bereitschaft zu Sichtbarkeit
86 Open-Source-Erfahrung
90 Demonstrierte technische Kompetenz
89 Als Contributor
75 Motivation zur Personalentwicklung
78 Gesicht nach Draussen
76 Positionierung in wichtigem Open-Source-Projekt
72 Entwicklung von Open-Source-Status
67 Probleme mit Mitarbeitern
___ 25 Motivation zu Open Source
223 politische Motivationen
221 Sendungsbewusstsein
222 Idee der demokratischen Software
23 Einstellungsprozess
242 Einstellungsgriinde
241 Unternehmensmarketing durch Einstellung von Personen
240 Strategische Einflussnahme durch Einstellung
33 Bewerber-Assessment
258 Personliches Treffen zur Feststellung der Kompatibilitat
173 Stellenschaffung fir Rockstars
146 Probleme des Assessments
61 Entscheidungsfindung im Assessment
147 Vorbesprechungen zwischen Personen die einstellen
143 Referenzen
142 Fachartikel
141 Offentliches Portfolio begutachten
135 Rollenspiele
134 Fachliche Arbeitsprobe
92 Teambasierte Entscheidungsfindung
60 Aufwand fir Assessment
59 Kommunikationsfahgikeit
31 Dokumentierte Open-Source-Erfahrung
30 Einstellungskriterien
237 Personliche Kontakte im Vorfeld (Vitamin B)
238 Einfluss in der Community
243 Commit-Rechte
140 Passung ins Team nach Vorstellung des Managers
138 Interkulturelle Kompetenzen
131 Personale Kompetenzen
136 Bereitschaft in virtuellen Teams zu arbeiten
133 Menschliche Kompatibilitat
132 Anpassungsfahigkeit

25

45 Technische Kompetenzen
52 Umsetzung von Feedback
48 Architekturkompetenz
46 Programmierfahigkeit
44 Soziale Kompetenzen
53 Kommunikationsfahigkeit
233 Einhaltung sozialer Kommunikationsregeln (Kein Arschloch)
208 Umgang mit unterschiedlichen Kommunikationsstilen
209 Dolmetscher-Rolle
54 Schriftliche Kommunikationsfahigkeit
56 Bugtracker
55 E-Mailverkehr
51 Kritikfahigkeit
50 Hilfsbereitschaft
40 Teamfahigkeit
49 Umgang mit Problemen
47 Bereitschaft sich auf Vorgaben einzulassen
43 Vorhandene Projekte
41 Englische Sprachfahigkeiten
39 wie sie an Aufgaben rangehen
38 Offenheit fiur Neues
37 Lernfahigkeit
32 Open-Source-Erfahrung
35 Durch passive Teilnahme am Open Source
34 Durch aktive Teilnahme an Open Source
58 Involvierung in firmenfremde Projekte
57 Involvierung in Firmeneigene Projekte
29 Entwicklerrekrutierung
176 Hohe Vorqualifikation im 0S
122 Probleme der Rekrutierung
277 Unterschiedliche Probleme international
276 Begrenztes Budget
130 Schnelligkeit notwendig
82 Mangel an qualifizierten Bewerbern
273 Griinde fir Mangel an Bewerbern
275 Personliche Motivation notwendig
274 Hoher Leistungsdruck durch Vergleichbarkeit
83 Frauenmangel
91 Eingeschrankte Bewertungfahigkeiten
121 Rekrutierungsprozess
239 Uber Konferenzen
175 liber Ausbildungsplatze
129 Uber die Uni
128 Uber Headhunter
127 Uber eigene Website
126 Uber Jobsuchmaschinen
125 Uber Social Networks
124 Uber 0S-Konferenzen
123 Werkstudenten
96 Quereinsteiger
120 Uber 0S-Community
15 Entwickler-Karriere
188 Open-Source-Karriere
201 Reputationsaufbau
266 Projekteinstieg
192 Open-Source-Karriere-Status

26

189 Committer-Status

190 Maintainer

193 Foundation-Mitglied

194 Projektmanagement-Komitee-Mitglied
144 Unterstitzung Open Source Karriere

150 Finanzielle Unterstitzung

151 Zeitliche Unterstiitzung

152 Interessen-Aufgaben-Matching bei Zuteilung auf 0S-Projekte
70 Bedeutung von Open-Source-Status

244 Auswirkungen auf Gehalt

162 Erhohte Unabhangigkeit der Selbstbestatigung vom Arbeitgeber

161 0S-Schlisselposition fiihrt zu hoherem Gehalt

71 Bedeutung von Open-Source-Rockstars

178 Unternehmensinterne Karrierepfade

271 Nominierungsbasierte Positionsvergabe
268 Gleichberechtigung von Fach- und Managementkarriere
270 Wertschatzung der Facharbeit
93 Motivation sich weiterzuentwickeln
16 Verharren in der Fachkarriere
20 Interner Stellenwechsel
80 Neue Rollen durch Open Source
79 Gesicht nach Draussen
103 Flexible Wege in der Karriere
119 Hocharbeiten im eigenen Level
174 Ausbildung
184 Management-Karriere
267 Wechsel in Fachkarriere
185 Fachliche Kompetenzaufrechterhaltung
183 Ergebnisbetrachtung durch Debugging
17 Wechsel in Management-Karriere
69 Fachkarriere
269 Ausdifferenzierte Stufen in Fachkarriere
81 Zuarbeiter zu Gesicht-nach-Draussen
177 Beratung-Produktentwicklung-Projektmanagement

118 Einflussfaktoren

272 Doktorgrad
265 Eigeninteresse folgen
251 Soziale Kompetenzen
252 Uberzeugungskompetenz gegeniiber Maintainer
200 Konferenzvortrage
179 Reine Open-Source-Erfahrung
153 Neugierde
154 unternehmerisches Denken
149 Technische Kompetenzen
148 Sichtbarkeit nach auBen
117 Anforderungskataloge

__ 12 Motivation
278 Internationale Unterschiede

= O

203 Spass an Internationalitat
26 Chance zu Open-Source-Arbeit
202 Spass an Open-Source-Arbeit
100 Flexible Arbeit

14 Konstante Teams

13 Interesse an der Arbeit
Produktinnovation

Einstieg

27

___ 10 Projektzuweisung von Mitarbeitern
19 Nach benotigten Kompetenzen
11 Mehrfachzuweisung auf Projekte

N
N

231

Entwicklungsprozess
232 Portfolio-Planung des 0S-Engagements
230 Erfolgskriterien 0S-Engagement

Timing des Engagements

197 Open-Source-Projektorganisation

199
198

Teamorientierte Projektorganisation
Hierarchische Projektorganisation

22 Arbeitsmerkmale

225
207
181
180
159
158
104

Hohe Mitspracherechte der Kunden/Aktive Mitsprache der Kunden
Hoher Kommunikationsbedarf

Sozial-Projektkoordination

Kombination Management und Produktentwicklung

Selbst gewahlte hohe Arbeitsbelastung

Mitarbeiter reprdsentieren die Firma

Familiengefuhl

97 Flexibilitat
42 Verteilte Teams
137 Wandel in der internen Arbeitsorganisation
27 Selbstorganisation
28 Hackweek
8 Teamarbeit
6 Home Office
5 Internationalitat
210 Probleme Feedback zu geben/anzunehmen
139 Probleme Vertrauen aufzubauen
21 Open-Source-Arbeit
260 Sexismus
259 Unbeabsichtigte Diskriminierung durch Kommunikationsstile
250 Verbessertes Projektmanagement durch persdnliche Treffen
211 Open-Source-Demographics

214 Aktueller Stand
213 Hoher mannlicher Anteil

212 Hoher westlicher Anteil

215 Wandel
264 Gesteigertes Problembewusstsein fir Diskriminierung

261 Verringerte technische Zugangsschranken

216 Steigender Anteil Frauen

206 Steuermechanismen

262 Soziales Fiihren von Projektmitgliedern
205 Projektaufspaltung
204 Einflussgewinnung

196 Community-Management

195 Patch-Einreichung

186 Arbeitsauswahl nach eigener Motivation/Lust
157 Probleme in der 0S-Arbeit

163 Konfliktumgang im 0S-Projekt
164 Unterstiitzung in Problemsituationen

__ 3 Produkte
2 Organisationsstruktur

168

167 Einbindung der Mitarbeiter in Organisationsentwicklung

Feedbackschleife mit den Mitarbeitern

98 Belegschaftsalter
95 Anteil Open-Source-Arbeit

28

94 Offenheit
7 Teamarbeit

4.2 Codes with Memos

Titel Memotext

Uberprifung Verhalten in domain=class, model=abstract, paradigm=core,
Mailinglisten

Nach benotigten domain=class, model=instance, paradigm=causal,
Kompetenzen

Mehrfachzuweisung auf
Projekte

domain=class, model=instance,

paradigm=actstr,

Projektzuweisung von

domain=class, model=abstract,

paradigm=core,

Mitarbeitern
Produktinnovation domain=class, model=abstract, paradigm=core,
Produkte domain=class, model=abstract, paradigm=core,

Web Development

domain=class, model=setitem, paradigm=context,

Demonstrierte technische
Kompetenz

domain=attribute,
paradigm=context,

model=instance,

Als Contributor

domain=attribute,
paradigm=context,

model=instance,

Open-Source-Erfahrung

domain=class, model=setitem,

paradigm=context,

Hart-im-Nehmen-Sein

domain=class, model=setitenm,

paradigm=context,

Zielgruppenorientierte
Kommunikationskompetenz

domain=attribute,
paradigm=context,

model=setitem,

Feedback konstruktiv
formulieren

domain=attribute, model=set,

paradigm=context,

Englische
Sprachkompetenzen

domain=attribute, model=set,

paradigm=context,

Kommunikationskompetenzen

domain=attribute, model=set,

paradigm=context,

Erhohter Wirkungskreis

domain=attribute, model=setitem,

paradigm=context,

Einfihlungsvermogen domain=attribute, model=setitem,
paradigm=context,

Gesteigerte domain=class, model=setitem, paradigm=context,

Sozialkompetenzen

Fortfihrung technischer
Kompetenz

domain=class, model=setitem, paradigm=context,

Bereitschaft zu
Sichtbarkeit

domain=class, model=setitem, paradigm=context,

Zukiinftige Anforderungen

domain=class, model=set, paradigm=context,

Kommunikationsbarrieren
abbauen durch personliche
Treffen

domain=class, model=setitem, paradigm=actstr,

29

China holt auf

domain=class, model=setitem, paradigm=structural,

Trend in der
Personalentwicklung

domain=class, model=set, paradigm=context,

Zukiinftige Anforderungen
an Manager

domain=class, model=instance, paradigm=context,

Schwierigkeiten der
Personalentwicklung

domain=class,

paradigm=structural,

model=instance,

Probleme mit Mitarbeitern

domain=class,

paradigm=structural,

model=instance,

Positionierung in
wichtigem Open-Source-
Projekt

domain=class,

model=setitem,

paradigm=causal,

Gesicht nach Draussen

domain=class,

model=setitem,

paradigm=causal,

Motivation zur
Personalentwicklung

domain=class,

model=set, paradigm=causal,

Sprachkurse

domain=class,

model=setitem,

paradigm=actstr,

Selbststudium

domain=class,

model=setitem,

paradigm=actstr,

Schulung

domain=class,

model=setitem,

paradigm=actstr,

Regelmassiges Feedback

domain=class,

model=setitem,

paradigm=actstr,

Probleme explizit machen
als Projektleader

domain=class,

model=setitem,

paradigm=actstr,

Pair Programming

domain=class,

model=setitem,

paradigm=actstr,

Organisation von SUSE
Konferenz

domain=class,

model=setitem,

paradigm=actstr,

Moglichkeit zum
Ausprobieren eigener
Projekte

domain=class,

model=setitem,

paradigm=actstr,

Mitarbeitergesprach

domain=class,

model=setitem,

paradigm=actstr,

Mentoring

domain=class,

model=setitem,

paradigm=actstr,

MaBnahmen gegen Burnout

domain=class,

model=setitem,

paradigm=actstr,

Kein 0S-spezifisches
Programm

domain=class,

model=setitem,

paradigm=actstr,

Interkulturelle Trainings

domain=class,

model=setitem,

paradigm=actstr,

Individuelle MafRnahmen

domain=class,

model=setitem,

paradigm=actstr,

Gesprache bei gemeldeten
Problemen

domain=class,

model=setitem,

paradigm=actstr,

Entsenden auf Konferenzen

domain=class,

model=setitem,

paradigm=actstr,

Beobachtung der
Arbeitsleistung

domain=class,

model=setitem,

paradigm=actstr,

Austausch mit anderen
Kollegen

domain=class,

model=setitem,

paradigm=actstr,

Anreize zur
Mitarbeitermotivation

domain=class,

model=setitem,

paradigm=actstr,

MaBnahmen der
Personalentwicklung

domain=class,

model=set, paradigm=actstr,

Entwicklung von Open-
Source-Status

domain=class,

paradigm=consequence,

model=instance,

Technische Kompetenzen

domain=class, model=setitem, paradigm=context,

Soziale Kompetenzen

domain=class, model=setitem, paradigm=context,

30

Bereiche der

domain=class, model=set, paradigm=context,

Personalentwicklung

Anforderungen an die domain=class, model=instance,
Personalverwaltung paradigm=structural,

Personalentwicklung domain=class, model=abstract, paradigm=core,
Passung ins Team domain=class, model=abstract, paradigm=core,

0SS domain=class, model=abstract, paradigm=core,
Teamarbeit domain=class, model=instance, paradigm=actstr,
Offenheit domain=attribute, model=instance,

paradigm=structural,

Feedbackschleife mit den
Mitarbeitern

domain=class,
paradigm=consequence,

model=instance,

Einbindung der
Mitarbeiter in
Organisationsentwicklung

domain=class, model=instance,

paradigm=actstr,

Belegschaftsalter

domain=attribute,
paradigm=structural,

model=instance,

Anteil Open-Source-Arbeit

domain=attribute,
paradigm=context,

model=instance,

Organisationsstruktur

domain=class, model=abstract,

paradigm=core,

Nach Vorstellung der
Kollegen/des Teams

domain=class, model=abstract,

paradigm=core,

Spass an Open-Source-
Arbeit

domain=class, model=instance,

paradigm=causal,

Spass an
Internationalitat

domain=class, model=instance,

paradigm=causal,

Konstante Teams

domain=class,
paradigm=structural,

model=instance,

Internationale
Unterschiede

domain=class, model=instance,

paradigm=context,

Interesse an der Arbeit

domain=class, model=instance,

paradigm=causal,

Flexible Arbeit

domain=class,
paradigm=structural,

model=instance,

Chance zu Open-Source-
Arbeit

domain=class,
paradigm=consequence,

model=instance,

Sendungsbewusstsein

domain=class, model=setitem,

paradigm=actstr,

Idee der demokratischen
Software

domain=class, model=setitenm,

paradigm=actstr,

politische Motivationen

domain=class,

model=set, paradigm=actstr,

Motivation zu Open Source

domain=class, model=abstract,

paradigm=core,

Motivation domain=class, model=abstract, paradigm=core,
Verhalten in domain=class, model=instance, paradigm=actstr,
Loyalitatskonflikten

Extrovertierte domain=attribute, model=instance,
Fachexperten paradigm=structural,

Angst vor Publizitat

domain=attribute,
paradigm=causal,

model=instance,

Umgang mit Publizititat

domain=attribute,
paradigm=actstr,

model=instance,

Nach kultureller
Diversitat

domain=attribute,
paradigm=context,

model=setitem,

31

Unterschiedliche
Charaktere

domain=attribute,
paradigm=causal,

model=instance,

Unmotivierte Entwickler
leisten keine gute Arbeit

domain=class,
paradigm=consequence,

model=instance,

Mitarbeiterloyalitat zum
Unternehmen

domain=attribute,
paradigm=structural,

model=instance,

Langsames Warmwerden mit
Menschen

domain=class,
paradigm=structural,

model=instance,

Intrinsische Motivation
fiir 0S-Arbeit

domain=attribute,
paradigm=structural,

model=instance,

Geringe Fluktuation

domain=class,
paradigm=structural,

model=instance,

Flexibilitatswunsch

domain=attribute,
paradigm=structural,

model=instance,

Angst vor Inkompetenz bei
Minimierung der
Entwicklertatigkeit

domain=attribute,
paradigm=actstr,

model=instance,

Mitarbeitermerkmale

domain=class, model=abstract, paradigm=core,
Hier missen wir noch in einem zweiten Durchgang
slektiren, welche Merkmale sich auf Mitarbeiter
allgemein, Entwickler und Open-Source-Entwickler

beziehen bzw. wo Uberschneidungen vorliegen

Interkulturelle Kompetenz

domain=class, model=instance,
paradigm=consequence,

Kompetenzentwicklung domain=class, model=abstract, paradigm=core,
durch Open Source

Tatigkeit

Portfolio-Planung des 0S- | domain=class, model=instance, paradigm=actstr,
Engagements

Teamorientierte domain=attribute, model=instance,
Projektorganisation paradigm=structural,

Hierarchische domain=attribute, model=instance,
Projektorganisation paradigm=structural,

Open-Source- domain=class, model=instance, paradigm=actstr,
Projektorganisation

Timing des Engagements

domain=class, model=setitem, paradigm=actstr,

Erfolgskriterien 0S-

domain=class, model=set, paradigm=structural,

Engagement
Wandel in der internen domain=class, model=instance,
Arbeitsorganisation paradigm=structural,

Verteilte Teams

domain=attribute,
paradigm=structural,

model=setitem,

Teamarbeit domain=attribute, model=setitem,
paradigm=structural,
Sozial- domain=attribute, model=setitem,
Projektkoordination paradigm=structural,
Hier ist zu klaren, mit welchen Attributen
dieser soziale Aspekt versehen wird. Sozialkram?
Hackweek domain=class, model=instance, paradigm=actstr,
Selbstorganisation domain=attribute, model=setitem,

paradigm=structural,

Selbst gewahlte hohe
Arbeitsbelastung

domain=attribute,
paradigm=structural,

model=setitem,

32

Verbessertes
Projektmanagement durch
personliche Treffen

domain=class, model=instance, paradigm=actstr,

Unbeabsichtigte domain=class, model=instance,
Diskriminierung durch paradigm=consequence,

Kommunikationsstile

Soziales Fiihren von domain=class, model=setitem, paradigm=actstr,
Projektmitgliedern

Projektaufspaltung domain=class, model=setitem, paradigm=actstr,
Einflussgewinnung domain=class, model=setitem, paradigm=actstr,
Steuermechanismen domain=class, model=set, paradigm=actstr,
Sexismus domain=attribute, model=instance,

paradigm=structural,

Unterstiitzung in

domain=class, model=instance,

Problemsituationen paradigm=consequence,
Konfliktumgang im OS- domain=class, model=instance, paradigm=actstr,
Projekt

Probleme in der 0S-Arbeit

domain=class, model=instance,

paradigm=structural,

Patch-Einreichung

domain=class, model=instance, paradigm=actstr,

Verringerte technische
Zugangsschranken

domain=attribute, model=instance,
paradigm=structural,

Steigender Anteil Frauen

domain=attribute,
paradigm=structural,

model=instance,

Gesteigertes domain=attribute, model=instance,
Problembewusstsein fiir paradigm=structural,

Diskriminierung

Wandel domain=attribute, model=setitem,

paradigm=context,

Hoher westlicher Anteil

domain=attribute,
paradigm=structural,

model=instance,

Hoher mannlicher Anteil

domain=attribute,
paradigm=structural,

model=instance,

Aktueller Stand

domain=attribute,
paradigm=context,

model=setitem,

Open-Source-Demographics

domain=attribute, model=set, paradigm=structural,

Community-Management

domain=class, model=instance, paradigm=actstr,

Arbeitsauswahl nach
eigener Motivation/Lust

domain=attribute, model=setitem,
paradigm=structural,

Open-Source-Arbeit

domain=class, model=instance, paradigm=context,

Mitarbeiter
reprasentieren die Firma

domain=attribute, model=setitem,
paradigm=structural,

Kombination Management
und Produktentwicklung

domain=attribute,
paradigm=structural,

model=setitem,

Probleme Vertrauen

domain=class, model=instance,

aufzubauen paradigm=structural,
Probleme Feedback zu domain=class, model=instance,
geben/anzunehmen paradigm=structural,
Internationalitat domain=attribute, model=setitem,

paradigm=structural,

Home Office

domain=attribute,
paradigm=structural,

model=setitem,

Hoher
Kommunikationsbedarf

domain=attribute,
paradigm=structural,

model=setitem,

33

Hohe Mitspracherechte der
Kunden/Aktive Mitsprache
der Kunden

domain=attribute,
paradigm=structural,

model=setitem,

Flexibilitat domain=attribute, model=setitem,
paradigm=structural,

Familiengefiihl domain=attribute, model=setitem,
paradigm=structural,

Arbeitsmerkmale domain=attribute, model=set, paradigm=structural,

Entwicklungsprozess domain=class, model=abstract, paradigm=core,

Hypothese: Unterteilen in (a) Open-source-
Prozess (b) Unternehmensinterner
Entwicklungsprozess (c) Kriterien beiden gemein

Verharren in der
Fachkarriere

domain=class, model=instance, paradigm=actstr,

Nominierungsbasierte
Positionsvergabe

domain=class, model=setitem, paradigm=context,

Gesicht nach Draussen

domain=class,
paradigm=consequence,

model=instance,

Neue Rollen durch Open
Source

domain=class,
paradigm=structural,

model=instance,

Motivation sich
weiterzuentwickeln

domain=class, model=setitem, paradigm=context,

Wechsel in Management-
Karriere

domain=class, model=instance, paradigm=actstr,

Wechsel in Fachkarriere

domain=class, model=instance, paradigm=actstr,

Fachliche
Kompetenzaufrechterhaltun

g

domain=class, model=instance, paradigm=actstr,

Ergebnisbetrachtung durch
Debugging

domain=class, model=instance, paradigm=actstr,

Management-Karriere

domain=class, model=setitem, paradigm=context,

Interner Stellenwechsel

domain=class, model=setitem, paradigm=context,

Hocharbeiten im eigenen
Level

domain=class, model=setitem, paradigm=context,

Wertschatzung der
Facharbeit

domain=attribute,
paradigm=causal,

model=instance,

Gleichberechtigung von
Fach- und
Managementkarriere

domain=attribute,
paradigm=structural,

model=instance,

Flexible Wege in der
Karriere

domain=class,
paradigm=structural,

model=instance,

Zuarbeiter zu Gesicht-
nach-Draussen

domain=class, model=instance, paradigm=actstr,

Ausdifferenzierte Stufen
in Fachkarriere

domain=attribute,
paradigm=structural,

model=instance,

Fachkarriere domain=class, model=setitem, paradigm=context,
Beratung- domain=class, model=setitem, paradigm=context,
Produktentwicklung-

Projektmanagement

Ausbildung domain=class, model=setitem, paradigm=context,
Unternehmensinterne domain=class, model=set, paradigm=context,
Karrierepfade

Zeitliche Unterstiitzung

domain=class, model=setitem, paradigm=actstr,

Interessen-Aufgaben-
Matching bei Zuteilung
auf 0S-Projekte

domain=class, model=setitem, paradigm=actstr,

34

Finanzielle Unterstitzung

domain=class, model=setitem, paradigm=actstr,

Unterstitzung Open Source
Karriere

domain=class, model=set, paradigm=actstr,

Reputationsaufbau domain=class, model=instance,
paradigm=consequence,

Projekteinstieg domain=class, model=instance, paradigm=actstr,

Projektmanagement- domain=attribute, model=instance,

Komitee-Mitglied paradigm=actstr,

Maintainer domain=attribute, model=setitem,

paradigm=consequence,

Foundation-Mitglied

domain=attribute,
paradigm=consequence,

model=setitem,

Committer-Status

domain=attribute,
paradigm=consequence,

model=setitem,

Open-Source-Karriere-
Status

domain=attribute, model=set, paradigm=causal,

0S-Schlisselposition
fuhrt zu hoherem Gehalt

domain=class,
paradigm=consequence,

model=setitem,

Erhohte Unabhangigkeit
der Selbstbestatigung vom
Arbeitgeber

domain=class,
paradigm=consequence,

model=setitem,

Bedeutung von Open-
Source-Rockstars

domain=class,
paradigm=consequence,

model=setitem,

Auswirkungen auf Gehalt

domain=class,
paradigm=consequence,

model=setitem,

Bedeutung von Open-
Source-Status

domain=class, model=set, paradigm=consequence,

Status meint Position im Projekt.

Wir missen hier Ulberlegen, ob es eine eigene
Kategorie zum Thema "Unternehmensziel" geben

sollte

Open-Source-Karriere

domain=class, model=instance, paradigm=context,

unternehmerisches Denken

domain=attribute,
paradigm=structural,

model=setitem,

Technische Kompetenzen

domain=attribute,
paradigm=structural,

model=setitem,

Uberzeugungskompetenz
gegeniber Maintainer

domain=attribute,
paradigm=structural,

model=instance,

Soziale Kompetenzen

domain=attribute,
paradigm=structural,

model=setitem,

Sichtbarkeit nach auBen

domain=attribute,
paradigm=structural,

model=setitem,

Reine Open-Source-

domain=attribute,

model=setitem,

Erfahrung paradigm=structural,

Neugierde domain=attribute, model=setitem,
paradigm=structural,

Konferenzvortrage domain=class, model=setitem, paradigm=structural,

Eigeninteresse folgen

domain=class, model=setitem,

paradigm=actstr,

Doktorgrad

domain=class, model=setitem, paradigm=structural,

Anforderungskataloge

domain=class, model=setitem, paradigm=structural,

Einflussfaktoren

domain=class, model=set, paradigm=structural,

Entwickler-Karriere

domain=class, model=abstract, paradigm=core,

Uber Social Networks

domain=class, model=setitem, paradigm=context,

Uber 0S-Konferenzen

domain=class, model=setitem, paradigm=context,

Uber 0S-Community

domain=class, model=setitem, paradigm=context,

35

Uber Konferenzen domain=class, model=setitem, paradigm=context,
Uber Jobsuchmaschinen domain=class, model=setitem, paradigm=context,
Uber Headhunter domain=class, model=setitem, paradigm=context,
Uber eigene Website domain=class, model=setitem, paradigm=context,
Uber die Uni domain=class, model=setitem, paradigm=context,
Uiber Ausbildungsplatze domain=class, model=setitem, paradigm=context,
Werkstudenten domain=class, model=setitem, paradigm=context,
Quereinsteiger domain=class, model=setitem, paradigm=context,
Rekrutierungsprozess domain=class, model=set, paradigm=actstr,
Unterschiedliche Probleme | domain=class, model=setitem, paradigm=context,
international

Schnelligkeit notwendig

domain=class,

model=setitem,

paradigm=causal,

Personliche Motivation
notwendig

domain=class,

model=setitem, paradigm=structural,

Hoher Leistungsdruck
durch Vergleichbarkeit

domain=class,

model=setitem, paradigm=structural,

Grinde fur Mangel an
Bewerbern

domain=class,

model=set, paradigm=structural,

Mangel an qualifizierten
Bewerbern

domain=class,

model=setitem, paradigm=structural,

Frauenmangel

domain=class,

model=setitem, paradigm=structural,

Eingeschrankte
Bewertungfahigkeiten

domain=class,

model=setitem, paradigm=structural,

Begrenztes Budget

domain=class,

model=setitem, paradigm=structural,

Probleme der Rekrutierung

domain=class,

model=set, paradigm=structural,

Hohe Vorqualifikation im
0S

domain=attribute,
paradigm=causal,

model=instance,

Entwicklerrekrutierung

domain=class,

paradigm=consequence,

model=instance,

wie sie an Aufgaben
rangehen

domain=attribute, model=setitem, paradigm=causal,

Vorhandene Projekte

domain=attribute,

model=setitem, paradigm=causal,

Umsetzung von Feedback

domain=attribute,
paradigm=causal,

model=instance,

Programmierfahigkeit

domain=attribute,
paradigm=causal,

model=instance,

Architekturkompetenz

domain=attribute,
paradigm=causal,

model=instance,

Technische Kompetenzen

domain=attribute,

model=setitem, paradigm=causal,

Umgang mit Problemen

domain=attribute,
paradigm=causal,

model=instance,

Teamfahigkeit domain=attribute, model=instance,
paradigm=causal,
Kritikfahigkeit domain=attribute, model=instance,

paradigm=causal,

Dolmetscher-Rolle

domain=class,

paradigm=consequence,

model=instance,

Umgang mit
unterschiedlichen
Kommunikationsstilen

domain=class, model=instance, paradigm=actstr,

E-Mailverkehr

domain=class, model=instance, paradigm=actstr,

Bugtracker

domain=class, model=instance, paradigm=actstr,

Schriftliche
Kommunikationsfahigkeit

domain=attribute,
paradigm=causal,

model=instance,

36

Einhaltung sozialer
Kommunikationsregeln
(Kein Arschloch)

domain=class, model=instance, paradigm=actstr,

Kommunikationsfahigkeit

domain=attribute,
paradigm=causal,

model=instance,

Hilfsbereitschaft

domain=attribute, model=instance,

paradigm=causal,

Bereitschaft sich auf
Vorgaben einzulassen

domain=attribute,
paradigm=causal,

model=instance,

Soziale Kompetenzen

domain=attribute, model=setitem, paradigm=causal,

Personliche Kontakte im
Vorfeld (Vitamin B)

domain=attribute, model=setitem, paradigm=causal,

Menschliche
Kompatibilitat

domain=attribute, model=instance,

paradigm=causal,

Bereitschaft in
virtuellen Teams zu
arbeiten

domain=attribute,
paradigm=causal,

model=instance,

Anpassungsfahigkeit

domain=attribute,
paradigm=causal,

model=instance,

Personale Kompetenzen

domain=attribute, model=setitem, paradigm=causal,

Passung ins Team nach
Vorstellung des Managers

domain=attribute, model=setitem, paradigm=causal,

Durch passive Teilnahme
am Open Source

domain=class, model=instance, paradigm=actstr,

Involvierung in domain=class, model=instance, paradigm=context,
firmenfremde Projekte
Involvierung in domain=class, model=instance, paradigm=context,
Firmeneigene Projekte

Durch aktive

Teilnahme an

domain=class,

model=instance, paradigm=actstr,

Open Source

Open-Source-Erfahrung

domain=attribute, model=setitem, paradigm=causal,

Offenheit fiir Neues

domain=attribute, model=setitem, paradigm=causal,

Lernfahigkeit domain=attribute, model=setitem, paradigm=causal,
Interkulturelle domain=attribute, model=setitem, paradigm=causal,
Kompetenzen

Englische domain=attribute, model=setitem, paradigm=causal,
Sprachfahigkeiten

Commit-Rechte

domain=class,
paradigm=consequence,

model=instance,

Einfluss in der Community

domain=attribute, model=setitem, paradigm=causal,

Einstellungskriterien

domain=attribute, model=set, paradigm=causal,

Unternehmensmarketing
durch Einstellung von
Personen

domain=class, model=setitem, paradigm=actstr,

Strategische domain=class, model=setitem, paradigm=actstr,
Einflussnahme durch

Einstellung

Einstellungsgriinde domain=class, model=set, paradigm=actstr,

Stellenschaffung fir
Rockstars

domain=class, model=instance, paradigm=actstr,

Probleme des Assessments

domain=class,
paradigm=structural,

model=instance,

37

Personliches Treffen zur
Feststellung der
Kompatibilitat

domain=class, model=instance, paradigm=actstr,

Kommunikationsfahgikeit

domain=class,
paradigm=structural,

model=instance,

Offentliches Portfolio
begutachten

domain=class, model=setitem,

paradigm=actstr,

Vorbesprechungen zwischen
Personen die einstellen

domain=class, model=setitem,

paradigm=actstr,

paradigm=structural,

Teambasierte domain=class, model=setitem, paradigm=actstr,
Entscheidungsfindung

Rollenspiele domain=class, model=setitem, paradigm=actstr,
Referenzen domain=attribute, model=instance,

Fachliche Arbeitsprobe

domain=attribute,
paradigm=structural,

model=instance,

Fachartikel

domain=attribute,
paradigm=structural,

model=instance,

Entscheidungsfindung im
Assessment

domain=class, model=set, paradigm=actstr,

Dokumentierte Open-
Source-Erfahrung

domain=class,
paradigm=structural,

model=instance,

Aufwand fiir Assessment

domain=class,
paradigm=consequence,

model=instance,

Bewerber-Assessment

domain=class, model=instance,

paradigm=actstr,

Einstellungsprozess

domain=class, model=abstract,

paradigm=core,

Branchenkenntnisse

domain=class, model=abstract,

paradigm=core,

Open-Source-Engagement
fiihrt zu (gesteigertem)
Kundenvertrauen

domain=class,
paradigm=consequence,

model=instance,

Einfluss auf Produkte
nehmen

domain=class, model=instance,

paradigm=actstr,

Bedeutung Open-Source fir
das Unternehmen

domain=class, model=abstract,

paradigm=core,

Table 9: Codes with Memos

4.3 Example Output Paradigm Analysis

The
The
had
The
had
The
The
The

The

abstract concept:
abstract concept:
no instances.
abstract concept:
no instances.

abstract concept:
concept:
concept:
concept:

abstract
abstract
abstract

[0SS] had no instances.
[Uberpriifung Verhalten in Mailinglisten]

model had (7) undefined abstract classes.

[Nach Vorstellung der Kollegen/des Teams]

[Passung ins Team] had no instances.
[Branchenkenntnisse] had no instances.
[Produktinnovation] had no instances.
[Produkte] had no instances.

The paradigmatic analysis of the concept [0SS, id:279] found [9] concepts de-
clared:

causal[1], structural[1l], consequence[3], action/strategy[4], context[O].

deep: 5 width: 3

Of [5] possible dimensions [4] were considered, resulting in [80%] dimensional
completeness.

If dimensions have been examined, than on average [1.8] instances were defined for
this phenomenon/core category.

To compare the number of dimensional instances, amounts have been normalized and
the strength could be measured on a scale [0 - 1] .

causal [0.0], structural [0.0], consequence [0.67], action/strategy [1.0], context
[e.0],

The standard deviation is: 1.0507935617461448

The paradigmatic analysis of the concept [Mitarbeitermerkmale, id:18] found [14]
concepts declared:

causal[2], structural[7], consequence[1l], action/strategy[3], context[1].

deep: 3 width: 10

Of [5] possible dimensions [5] were considered, resulting in [100%] dimensional
completeness.

If dimensions have been examined, than on average [2.8] instances were defined for
this phenomenon/core category.

To compare the number of dimensional instances, amounts have been normalized and
the strength could be measured on a scale [0 - 1] .

causal [0.17], structural [1.0], consequence [0.0], action/strategy [©.33], con-
text [0.0],

The standard deviation is: ©0.9730443842776415

The paradigmatic analysis of the concept [Personalentwicklung, id:62] found [49]
concepts declared:

causal[3], structural[6], consequence[2], action/strategy[21], context[17].
deep: 10 width: 19

Of [5] possible dimensions [5] were considered, resulting in [100%] dimensional
completeness.

If dimensions have been examined, than on average [9.8] instances were defined for
this phenomenon/core category.

To compare the number of dimensional instances, amounts have been normalized and
the strength could be measured on a scale [0 - 1] .

causal [0.05], structural [0.21], consequence [0.0], action/strategy [1.0], con-
text [0.79],

The standard deviation is: 3.792356204027733

The paradigmatic analysis of the concept [Einstellungsprozess, id:23] found [81]
concepts declared:

causal[29], structural[16], consequence[4], action/strategy[18], context[14].
deep: 20 width: 13

Of [5] possible dimensions [5] were considered, resulting in [100%] dimensional
completeness.

If dimensions have been examined, than on average [16.2] instances were defined
for this phenomenon/core category.

To compare the number of dimensional instances, amounts have been normalized and
the strength could be measured on a scale [0 - 1]

39

causal [1.0], structural [0.48], consequence [0.0], action/strategy [©.56], con-
text [0.4],
The standard deviation is: 1.261961930383953

The paradigmatic analysis of the concept [Entwickler-Karriere, id:15] found [50]
concepts declared:

causal[2], structural[15], consequence[10], action/strategy[13], context[10].
deep: 12 width: 12

Of [5] possible dimensions [5] were considered, resulting in [100%] dimensional
completeness.

If dimensions have been examined, than on average [10.0] instances were defined
for this phenomenon/core category.

To compare the number of dimensional instances, amounts have been normalized and
the strength could be measured on a scale [0 - 1] .

causal [0.0], structural [1.0], consequence [0.62], action/strategy [0.85], con-
text [0.62],

The standard deviation is: 0.6258754311103978

The paradigmatic analysis of the concept [Motivation, id:12] found [7] concepts
declared:

causal[3], structural[2], consequence[1l], action/strategy[@], context[1].

deep: 1 width: 7

Of [5] possible dimensions [4] were considered, resulting in [80%] dimensional
completeness.

If dimensions have been examined, than on average [1.4] instances were defined for
this phenomenon/core category.

To compare the number of dimensional instances, amounts have been normalized and
the strength could be measured on a scale [0 - 1] .

causal [1.0], structural [0.5], consequence [0.0], action/strategy [0.0], context
[e.0],

The standard deviation is: ©.4824468517397738

The paradigmatic analysis of the concept [Entwicklungsprozess, id:4] found [50]
concepts declared:

causal[1l], structural[28], consequence[2], action/strategy[16], context[3].
deep: 15 width: 14

Of [5] possible dimensions [5] were considered, resulting in [100%] dimensional
completeness.

If dimensions have been examined, than on average [10.0] instances were defined
for this phenomenon/core category.

To compare the number of dimensional instances, amounts have been normalized and
the strength could be measured on a scale [0 - 1] .

causal [0.0], structural [1.0], consequence [0.04], action/strategy [0.56], con-
text [0.07],

The standard deviation is: 3.6115468653063756

The paradigmatic analysis of the concept [Organisationsstruktur, id:2] found [8]
concepts declared:
causal[@], structural[2], consequence[2], action/strategy[3], context[1].

40

deep: 3 width: 6

Of [5] possible dimensions [4] were considered, resulting in [80%] dimensional
completeness.

If dimensions have been examined, than on average [1.6] instances were defined for
this phenomenon/core category.

To compare the number of dimensional instances, amounts have been normalized and
the strength could be measured on a scale [0 - 1]

causal [0.0], structural [@0.5], consequence [0.5], action/strategy [1.0], context
[e.0],

The standard deviation is: 0.5311816639690516

The paradigmatic analysis of complete code system resulted in total declared para-
digm concepts: [268]. Of which:

causal[41], structural[77], consequence[25], action/strategy[78], context[47].
Mean for all intances: 53.6

Standard deviation for all instances: 3.738538641560413

The paradigmatic analysis of complete code system resulted in total declared para-
digm concepts: [122]. Of which:

causal[17], structural[41], consequence[17], action/strategy[33], context[14].
Mean for all intances: 24.4

Standard deviation for all instances: 5.305043888353444

4.4 Calculated Code System Metrics

Causal | Struct. Conseq. Act/ Context Total Complete- Aver-
Str. ness age
instances 38 75 23 75 47 258 100% 51.6
‘ D(dbee 1“Soyr‘set)e " rel standard
str‘en.th 0.29 1 0 1 0.46 deviation
g = 2.87
instances 41 77 25 78 47 268 100% 53.6
CO?:{iZ:')Cem rel SZ IR
str‘en'th 0.79 1.00 0.00 1.00 0.90 deviation
g = 3.73
instances 15 39 15 30 14 113 100% 22.6
Code System
(excl. set- rel standard
item) (before) str‘en.th 0.04 1 0.04 0.2 0.00 deviation
g = 0.46
instances 17 41 17 33 14 122 100% 24.4
Code System
(excl. set- rel standard
item) (after) str‘en'th 0.11 1.00 0.11 0.70 0.00 deviation
g = 5.30
instances 2] (2] (2] 7]] 0 0% 0.0
0SS (before) standard . _
st::i'th 0.00))) 0.00 deviation deep=0 Wli;h‘
g = 0.0
instances 1 1 3 4 0 9 80% 1.8
0SS (after) standard c
St:gi'th 0.00 .00 0.67 1.00 .00 deviation deep=5 Wlifh‘
g = 1.5
instances 2] (2] (2] 3 2] 3 20% 0.6

41

Motivation zu rel standard width=
Open Source . 0.00 2] 2] 1 0.00 deviation deep=2

(before)

strength - 0.63

Bedeutung Open- | instances 0 e 1 1] 2 40% 0.4
Source fir das
standard .
U"tbe’;c"eh'“e" st:zi th 0.00) 1 1 0.00 deviation deep=1 "”dzth'
(before) g 30

Kompetenz-ent- instances 2] 2] 1 2] 2] 1 20% 0.2

wicklung durch

Open Source Ta- standard C e
tigkeit st::i.th 0.00 0 1 0 0.00 deviation deep=1 W1€fh'
(before) g = 09.31

instances 2] 2] 2] 2] 2] 2] 0% 0.0
Passung ins
standard .
Team (before) rel. 0.00))) 0.00 deviation deep-o | Width=
strength - 0.0 2}

Nach Vorstel- instances (2] 2] 2] %] 0 %) 0% 0.0
lung der Kolle-
standard .
ge”/bdefs Teams st::i h 0.00)) o 0.00 deviation deep=0 "”deth'
(before) g s oo

Projekt-zuwei- instances 1] 2] 1] 2 40% 0.4
sung von Mitar-
. standard R
beitern (be- rel. 1.00)) 1 0.00 deviation deep=1 | Width=
fore) strength - 0.38 2

o - instances 2]]] 2]] (] 0% 0.0
Uberpriifung
Verhalten in
14 : standard s
Mailinglisten rel. .00)) o 0.00 deviation deep=0 width=
(before) strength s o0 0

Mitarbeiter- instances 2 6 1 3 1 13 100% 2.6
merkmale standard .
rel. P width=
(before) strength 0.2 1 2] 0.4 0.00 dﬁyz;i;fn deep=3 9

instances 2] 2] 2] [2) 2] 2] 0% 0.0
Branchen-
kenntisse standard
rel. P width=
(before) strength 0.00 2] 2] 2] 0.00 dezlgt;on deep=0 o

42

Branchen- instances
kennnisse i (relocated)
{airier) strength
. . instances 0 2 1 2 1 6 80% 1.2
Organisations-
struktur standard R
(before) rel. 0.00 1 0 1 0.00 deviation deep=2 | Width=
strength 5
= 0.37
. . instances (2] 2 2 3 1 8 80% 1.6
Organisations-
struktur standard P
after eviation eep= 3
f rel. 0.00 0.50 0.50 1.00 0.00 deviati deep=3 width
strength 6
= 0.53
Produkt- instances 2] (2] (2] 0 2] 0 0% 0.0
innovation rel standard widthe
(before) . 0.00 0 0 0 0.00 deviation deep=0 -
strength - 0.0 0
Produkt- instances
innovation il (relocated)
(after) strength
instances 0 2] 2] 0 0 0 0% 0.0
Produkte
standard .
(before) rel. 0.00 0 0 ° 0.00 deviation deep=e | Width=
strength 0
= 0.0
PredilkEe instances
(after) rel. (relocated)
strength
Personal- instances 3 6 2 21 17 49 100% 9.8
entwicklung
standard .
(before) = rel. 0.05 .21) 1 0.79 deviation deep=10 | Wdth=
(after) strength - 3.79 19
Einstellungs- instances 27 16 4 18 14 79 100% 15.8
prozess
standard .
(before) = rel. 1.00 0.52) 0.61 0.43 deviation deep=19 | Width=
p
(after) strength - 1.10 13
Entwickler- instances 2 15 10 13 10 50 100% 10.0
Karriere
standard .
(before) = rel. 0.00 1 0.62 0.85 0.62 deviation deep=12 | Width=
(after) strength 12
= 0.63
instances 3 2 1 2] 1 7 80% 1.4
Motivation
standard .
(before) rel. 1.00 0.5 0] 0.00 deviation deep=1 width=
strength 7
= 0.48
Motivation "
(after) el (relocated)
strength
Entwicklungs- instances 0 28 2 13 3 46 80% 9.2
prozess rel. standard width=
(before) strength 0.00 1 0 0.42 0.04 deviation deep=14 14
= 3.19
instances 1 28 2 16 3 50 100% 10.0
Entwicklungs-
prozess (after) rel. Staﬁdﬁrd width=
0.00 1.00 0.04 0.56 0.07 deviation deep=15
strength - 3.61 14

Table 10: Calculated Code System Metrics

43

5 References

Avison, D. E., Lau, F., Myers, M. D., & Nielsen, P. A. (1999). Action research.
Communications of the ACM, 42(1), 94-97.

Benbasat, I., & Zmud, R. W. (1999). Empirical research in information systems: the practice
of relevance. MIS Quarterly, 3-16.

Bryman, A., & Burgess, R. G. (1994). Analyzing qualitative data. (A. Bryman & R. G.
Burgess, Eds.). Abingdon, UK: Taylor & Francis. doi:10.4324/9780203413081

Buchanan, D., & Bryman, A. (2007). Contextualizing methods choice in organizational
research. Organizational Research Methods, 10(3), 483-501.
doi:10.1177/1094428106295046

Carver, J. (2004). The impact of background and experience on software inspections.
Empirical Software Engineering, 9(3), 259-262.

Charmaz, K. (1997). Grounded Theory Method, 397-412.

Corbin, J. M., & Strauss, A. (1990). Grounded theory research: Procedures, canons, and
evaluative criteria. Qualitative Sociology, 13, 3-21. doi:10.1007/BF00988593

Crabtree, C. A., Seaman, C. B., & Norcio, A. F. (2009). Exploring language in software
process elicitation: A grounded theory approach. In Proceedings of the 2009 3rd
international symposium on empirical software engineering and measurement (pp. 324—
335).

Eisenhardt, K. M. (1989). Building Theories from Case Study Research. The Academy of
Management Review, 14(4), 532-550. d0i:10.2307/258557

Eisenhardt, K. M., & Graebner, M. E. (2014). THEORY BUILDING FROM CASES :
OPPORTUNITIES AND CHALLENGES diverse. Academy of Management Journal,
50(1), 25-32.

Fernandez, W. D. (2003). Metateams in Major Information Technology Projects. School of
Information Systems, Queensland University of Technology.

Fernandez, W. D., Lehmann, H., & Underwood, A. (2002). RIGOUR AND RELEVANCE IN
STUDIES OF IS INNOVATION: A GROUNDED THEORY METHODOLOGY
APPROACH Walter. European Conference on Information Systems, 110-1109.

Flick, U. (2009). An Introduction to Qualitative Research.

Glaser, B. G. (1992). Emergence vs forcing: Basics of grounded theory analysis. Sociology
Press.

Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory. International
Journal of Qualitative Methods, 5, 1-10. doi:10.2307/588533

Glaser, B. G., & Strauss, A. L. (1998). Grounded theory. Strategien Qualitativer Forschung.
Bern, 53-84.

Glaser, B., & Strauss, A. (2005). Grounded Theory Methods and Qualitative Family
Research, 67(November), 837-857.

Gray, P. (2001). Introduction to the special volume on relevance. Communications of the AlS,
6(1), 1-12.

Hoda, R., Noble, J., & Marshall, S. (2011). Developing a grounded theory to explain the
practices of self-organizing Agile teams. Empirical Software Engineering, 17(6), 609—
639. d0i:10.1007/s10664-011-9161-0

44

Kock, N., Gray, P., Hoving, R., Klein, H., Myers, M. D., & Rockart, J. (2002). IS research
relevance revisited: Subtle accomplishment, unfulfilled promise, or serial hypocrisy?
Communications of the Association for Information Systems, 8(1), 23.

Lehmann, H. (2001). A grounded theory of international information systems.
ResearchSpace@ Auckland.

Lincoln, Y. S., & Guba, E. G. (1986). But is it rigorous? Trustworthiness and authenticity in
naturalistic evaluation. New Directions for Program Evaluation, 1986(30), 73-84.
doi:10.1002/ev.1427

Lincoln, Y. S., & Guba, E. G. (1990). Judging the quality of case study reports. International
Journal of Qualitative Studies in Education, 3(1), 53-59.
d0i:10.1080/0951839900030105

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded
sourcebook. Sage.

Mintzberg, H. (1979). The structuring of organizations: A synthesis of the research.
University of Illinois at Urbana-Champaign’s Academy for Entrepreneurial Leadership
Historical Research Reference in Entrepreneurship.

Orlikowski, W. J. (1993). CASE tools as organizational change: Investigating incremental and
radical changes in systems development. MIS Quarterly, 309-340.

Robey, D., Boudreau, M.-C., & Rose, G. M. (2000). Information technology and
organizational learning: a review and assessment of research. Accounting Management
and Information Technologies, 10(2), 125-155. doi:10.1016/S0959-8022(99)00017-X

Rodon, J., & Pastor, J. A. (2007). Applying Grounded Theory to Study the Implementation of
an Inter-Organizational Information System, 5(2), 71-82.

Strauss, A. (1995, March 1). Notes on the Nature and Development of General Theories.
Qualitative Inquiry. doi:10.1177/107780049500100102

Strauss, A., & Corbin, J. (1994). Handbook of qualitative research. ... Qualitative Research.
Retrieved from
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:No+Title#0

Stribing, J. (2008). Grounded Theory (2nd ed.). Wiesbaden: VS Verlag.

Thomas, D. R. (2006). A General Inductive Approach for Analyzing Qualitative Evaluation
Data. American Journal of Evaluation, 27(2), 237-246. doi:10.1177/1098214005283748

Walker, D., & Myrick, F. (2006). Grounded theory: An exploration of process and procedure.
Qualitative Health Research, 16(4), 547-59. d0i:10.1177/1049732305285972

Walsham, G. (1995). Interpretive case studies in IS research: nature and method. European
Journal of Information Systems, 4(2), 74-81.

Whitworth, E., & Biddle, R. (2007). The social nature of agile teams. In Agile conference
(AGILE), 2007 (pp. 26—-36).

Yin, R. K. (2011). Qualitative research from start to finish. Retrieved from
http://books.google.com/books?hl=en&Ir=&id=_XP8iOtMKaoC&oi=fnd&pg=PP1&dq=
QUALITATIVE+RESEARCH+FROM+START+TO+FINISH&0ts=QkqCGQ6UGK &si
g=x2tVmI9bfjnKkTfgmo-le_nrcZw

Yin, R. K. (2014). Case Study Design and Methods (p. 265). Sage publications.
d0i:10.1097/FCH.0b013e31822dda%e

45

