
Friedrich-Alexander-Universität Erlangen-Nürnberg

Technische Fakultät, Department Informatik

MATTHIAS SCHÖPE

MASTER THESIS

QDACITY QUALITY METRICS

Submitted on August 22, 2017

Supervisors: Andreas Kaufmann, M. Sc.
Prof. Dr. Dirk Riehle, M.B.A.

Professur für Open-Source-Software
Department Informatik, Technische Fakultät
Friedrich-Alexander-Universität Erlangen-Nürnberg

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen,
die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, August 22, 2017

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, August 22, 2017

i

https://creativecommons.org/licenses/by/4.0/

Abstract

The cloud-based QDAcity platform allows to conduct collaborative research
projects applying Qualitative Data Analysis methods and research validation
through crowdsourcing. When using Qualitative Data Analysis as a research
method, expressive measurements of the quality and maturity of the results are
essential to prove the validity of the research findings. Common measures for va-
lidity of ratings are inter-coder agreement metrics, and for measuring the maturity
of a qualitative research project, a prevalent approach is to calculate saturation.
However, with a high number of raters, inter-coder agreement metrics become
inconvenient to evaluate and the calculation of saturation requires a clean doc-
umentation of many project variables. The cloud environment of QDAcity can
solve both of these problems, because it can effciently store all ratings and project
variables, and thus integrate both metrics more conveniently for the researcher.
This thesis presents the implementation of the two inter-coder agreement metrics
Krippendorff’s Alpha and Fleiss’ Kappa in QDAcity and a new approach with
its implementation of theoretical saturation.

ii

Contents

1 Introduction 1
1.1 QDAcity . 1
1.2 QDAcity Use Cases . 2

2 Problem Definition 3
2.1 Inter-coder Agreement Metrics . 3
2.2 Saturation Metrics . 4
2.3 Requirements . 4

3 Technologies 6
3.1 Google App Engine . 6

3.1.1 Architecture of GAE applications 6
3.1.2 DataStore for persistence 7
3.1.3 Memcache . 7
3.1.4 TaskQueues for scalability 8

4 QDAcity 9
4.1 Projects . 9
4.2 Code Systems . 10
4.3 Textdocuments . 11
4.4 Validation Reports . 12

5 Quality Metrics 13
5.1 Related Work . 13
5.2 Approach for Implementing Inter-coder Agreements Statistics in

QDAcity . 14
5.2.1 General Process . 14
5.2.2 Report Data Structures 16
5.2.3 Extraction of Input Data for Quality Metrics 17

5.3 Krippendorff’s Alpha Coefficient 18
5.3.1 Interpretation of Krippendorff’s Alpha results 19
5.3.2 Implementation Details . 19

iii

5.3.3 Discussion of Krippendorff’s Alpha implementation 21
5.4 Fleiss’ Kappa . 22

5.4.1 Interpretation of Fleiss’ Kappa 23
5.4.2 Implementation Details . 24
5.4.3 Discussion of Fleiss’ Kappa implementation 24

6 Saturation 25
6.1 Related Work . 25
6.2 Definition of Saturation in QDAcity 25
6.3 Technical approach . 27

6.3.1 Logging of Changes . 27
6.3.2 Calculation of Saturation 28
6.3.3 Saturation Parameterization 30
6.3.4 Implementation Details . 32
6.3.5 Discussion of saturation feature 36

7 Evaluation 38
7.1 Requirements . 38
7.2 Correctness of Quality Metrics . 39

7.2.1 JUnit Tests for Krippendorff’s Alpha 39
7.2.2 JUnit Test for Fleiss’ Kappa 40

7.3 User’s benefit . 40

8 Conclusion 41
8.1 Future Work . 41

Glossary 42

Acronyms 43

References 44

iv

List of Figures

3.1 Basic architecture of Web Applications on Google App Engine . . 7

4.1 Simplified UML Class Diagram of Project and related classes in
QDAcity . 9

4.2 Example for a Coding System from a real QDAcity project 10
4.3 Simplified UML Class Diagram of Code class in QDAcity 11
4.4 Example for a coded paragraph in a textdocument and its HTML

representation . 11

5.1 General process of inter-coder agreement report generation in QDAc-
ity . 14

5.2 Simplified UML Class Diagram of ValidationReport and Valida-
tionResult . 16

5.3 Textdocuments - Units and their codings by different raters 17
5.4 Simplified UML Class Diagram of AlgorithmInputGenerator and

classes . 20
5.5 Simplified UML Class Diagram of KrippendorffsAlphaCoefficient

and related classes . 20

6.1 Outline of general working process in a QDAcity project 26
6.2 Simplified UML class diagram of SaturationCalculator and related

classes . 32
6.3 Process of calculating a new SaturationResult in QDAcity 33
6.4 Comparison of latency of update code calls with deferred and direct

change logging on F1 instance . 35
6.5 Comparison of cumulative latency of update code calls with de-

ferred and direct change logging on F1 instance 35
6.6 Comparison of latency of update code calls with deferred and direct

change logging on F4 instance . 35
6.7 Comparison of cumulative latency of update code calls with de-

ferred and direct change logging on F4 instance 36

v

List of Tables

1.1 Overview of typical QDAcity use cases 2

3.1 Push Queues and Pull Queues in Google App Engine 8
3.2 Push Queues and Pull Queues in Google App Engine 8

5.1 Popular inter-coder agreement metrics and their characteristics . . 13
5.2 Reliability Data as input for Krippendorff’s Alpha 18
5.3 Coincidence Matrix for Krippendorff’s Alpha 18
5.4 Interpretaion of Krippendorff’s Alpha results 19
5.5 General form of input data for Fleiss’ Kappa 23
5.6 Interpretaion of Fleiss’ Kappa results 23

6.1 Forms of saturation . 26
6.2 Tracked Change Objects and their possible Change Types in QDAc-

ity . 29
6.3 Default weighting of change categories in QDAcity 30
6.4 Default maximum saturations of change categories in QDAcity . . 31

vi

1 Introduction

With the wide distribution of cloud computing and the emerging of related tech-
nologies software applications can be taken to a new scale. Especially for collab-
oration within teams, a cloud application has several advantages, such as failure
safety, enhanced global availability and scalability along with the number of users.

QDAcity is a Qualitative Data Analysis (QDA) tool which is accessible through
a web browser1 running on Google App Engine (GAE).

1.1 QDAcity

QDAcity is a cloud-based software tool for computer-assisted qualitative data
analysis. It provides an environment for researches conducting qualitative re-
search and supports the theory building process. This includes commonly known
concepts from qualitative research such as a code system consisting of the researcher-
generated codes. These are used to attribute data and to provide an interpreta-
tion or meaning of this data for the theory developement (Saldaña, 2015, p.4f).

A QDAcity project contains textdocuments which need to be analyzed. For
analysis of these textdocuments, a code system is used, consisting of the relevant
codes of the project’s domain. The code system can be defined and redefined
by the users of the project. A number of users act as raters, which means that
they individually apply the codes to specific text segments of the documents in a
project. This process is called coding. In the end of a project, users can write a
theory about the coded textdocuments, which is the result of the theory building
research.

1https://www.qdacity.com/

1

https://www.qdacity.com/

Table 1.1: Overview of typical QDAcity use cases

Name Use Case Project Leaders Raters Code System

UC1
University
courses

1 (usually course
leader)

around 10
to 300 stu-
dents

A: only defined by
raters
B: Predefined by
project leaders
C: Students only
write theory about
coded data

UC2 Research
groups

1 or 2 2-3 defined by project
leaders, optimized by
raters

UC3 Students
writing
thesis

1 (student writing a
thesis)

usually 1 defined and optimized
by project leader

1.2 QDAcity Use Cases

There are three typical use cases for QDAcity as shown in Table 1.1. The first
use case (UC1) comprises university courses about qualitative research methods
using exercises with defined educational objectives. In this use case, there is
usually one person responsible for the project, and a number of students code
the documents of the project. Depending on the course’s educational objectives
the students who act as raters can either define a code system by themselves
(UC1 A) or get a predefined code system (UC1 B) or even get complete coded
data only for writing a theory about it (UC1 C).

The second use case as shown in Table 1.1 (UC2) comprises of research groups
who are in need of a qualitative data anaysis tool and were using competing
products like MaxQDA2. In research groups, there are typically one or two people
responsible for a project. Because the coding process requires a lot of time and
domain knowledge by the raters, there are usually 2-3 raters in a research group.

The third use case (UC3) as presented in Table 1.1 is a student from social
sciences or educational science who needs a qualitative data analysis tool for his
or her thesis. In this case, one person is responsible for the project and also codes
the data. In UC3, the student, who writes the thesis, defines and optimizes the
code system.

2http://www.maxqda.com/

2

http://www.maxqda.com/

2 Problem Definition

In QDAcity, large number of raters can annotate the textdocuments of a project
with codes. Over time new documents and codes for annotation are added to
the project, or codes get changed and users complete their ratings by annotating
the textdocuments, until the number of new discoveries through the gathering
of additional data decreases. An essential question is how the quality of such a
QDA project can be assessed in QDAcity.

This thesis focuses on two aspects of this question:

(a) How can inter-rater reliability methods be integrated as a valida-
tion method for quality of the analysis?

(b) How can the stopping criterion of the iterative process of data
gathering and analysis be defined and used as an assessment of
the progress and the quality of the project’s state?

2.1 Inter-coder Agreement Metrics

Measuring the quality of the results of QDA in an objective manner is a diffi-
cult proposition, since the process of QDA (Miles & Huberman, 1994, p. 8f) is
inherently interpretative and subjective (Kolbe & Burnett, 1991, p. 246f). The
demonstration of the quality in qualitative research projects often rests solely in
the rigorous following and documentation of codified methods. However, meth-
ods for an evaluative validation exist, such as comparing codings of the same data
by different researchers through inter-coder agreement ((Krippendorff, 2004) and
(Kolbe & Burnett, 1991, p. 249)). To this end, QDAcity currently supports the
F-Measure ((Ricardo Baeza-Yates, 1999, p. 75f) and (Powers, 2011)).

A goal of this thesis is to enhance the usefulness of inter-coder agreement as
a validation technique by adding an alpha coefficient and a kappa statistic as
recommended statistics for inter-rater reliability ((Krippendorff, 2012, p. 267f)
and (Viera & Garrett, 2005)).

3

2.2 Saturation Metrics

A QDAcity project can be considered as finished, when further activity would not
have a significant effect on the project results. For the users of QDAcity, a metric
providing an indicator of this case would help to estimate the proceeding of the
project. When this state is reached, the project has reached saturation (Guest,
Bunce, & Johnson, 2006). As QDAcity projects can be from various domains,
different users have a different notion of progress made so far within a project.
Therefore, a flexible metric with a useful default configuration for most use cases
would provide a significant improvement for users to get information about their
project progress.

Users are mostly interested in the historical developement of the saturation in
their project in order to see the progress made in the project.

Currently QDAcity does not have a measure for the saturation of a project. In
this thesis, a new approach for measuring the progress in a project is implemented.

2.3 Requirements

Derived from the above sections, we define the following requirements for the
quality metrics and saturation feature for QDAcity:

1. The results of inter-coder agreement metrics shall contain the following
presentations:

1. a) A single value representing the average

1. b) Agreement by code

1. c) Agreement by rater

2. The architecture for inter-coder agreement metrics should be extensible and
provide a generic environment so that any feasible inter-coder agreement
metric can be implemented. Storage and representation of the agreement
shall be abstracted from the used algortihms.

3. A saturation metric should provide an average single-valued result with con-
figurable weighting and maxima. The result of a saturation metric should
also allow to view the single values of the components of the average satu-
ration.

4. The saturation feature shall show the historical developement of saturation.

5. The saturation metric shall be configurable in the following parameters:

4

the weight of a single component in the average saturation

the maximum needed by a single component to reach saturation

6. A reasonable preset for most use cases shall be provided for the saturation
metric.

7. Vendor lock-in to GAE should be avoided.

5

3 Technologies

In this chapter, the technology stack with relevant technical details for the QDAc-
ity project are presented.

3.1 Google App Engine

QDAcity is developed and hosted in the GAE cloud computing platform. GAE1

is a platform-as-a-service for web-applications provided by Google Inc (Google
Inc., 2008).

3.1.1 Architecture of GAE applications

The basic architecture of GAE applications shown in Figure 3.1 is a client-server
model oriented towards the well-known Model View Controller (MVC) (Erich
Gamma & Vlissides, 1994) software architecture pattern.

The backend is written in Java 7 and provides Endpoints(Google Inc., 2017j) for
communicating to the outside world through a Representational State Transfer
(REST) interface using HyperText Transfer Protocol Secure (HTTPS) as com-
munication protocol and JavaScript Object Notation (JSON) as data exchange
format. The backend of a GAE application corresponds with the Controller in
the MVC pattern. The backend includes the App Engine Application and the
Task of the Task Queues as shown in Figure 3.1.

The frontend is written in JavaScript and Hypertext Markup Language (HTML)
and communicates with the backend through the endpoints described above. The
frontend is running on a client using a web-browser. The frontend of a GAE
application corresponds to the View in the MVC pattern.

1https://cloud.google.com/appengine/

6

https://cloud.google.com/appengine/

Figure 3.1: Basic architecture of Web Applications on Google App Engine

Based on: (Google Inc., 2017c)

3.1.2 DataStore for persistence

The DataStore(Google Inc., 2017d) as shown in Figure 3.1 of the GAE platform
is a No Structured Query Language (NoSQL) document database. In the Data-
Store, GAE applications can store objects from their model, which corresponds
with the Model of the MVC pattern. The model is defined through Java Data
Objects (JDO), and a JDO implementation can be used to access the datastore
as well as a low level datastore API (Google Inc., 2017e). QDAcity relies mostly
on JDO but uses the low level API where appropriate to improve performance.

3.1.3 Memcache

The Memcache (Google Inc., 2017f) as shown in Figure 3.1 is a memory cache
service which allows to temporarily store values or even complete data objects
with a maximum to 1 MiB. The Memcache is significantly faster than the DataS-
tore. However, values can expire from the Memcache any time, and therefore the
Memcache cannot be used for persistence. There is no guarantee that a stored
value in the Memcache can be read again out of the Memcache. The Memcache
is intended to speed up operations where multiple accesses to the same objects
in the DataStore are expected.

7

Table 3.1: Push Queues and Pull Queues in Google App Engine

Name Description
Push Queue Tasks can be defined and pushed into the queue.
(Google Inc., 2017g) Push queues automatically consume tasks, scale and clean up.
Pull Queue Allows to design the process of consuming app engine tasks.
(Google Inc., 2017i) Scaling needs to be done manually, tasks explicitely deleted.

Table 3.2: Push Queues and Pull Queues in Google App Engine

Name Description
Manual Scaling Need to initialize explicitely, rely on memory state over time
Basic Scaling Instance is created when request received.

Turn down instanc on idle. Ideal for user driven activity.
Automatic Scaling Request rate, response latence and other application

metrics influence automatic scaling.
(adopted and abridged from (Google Inc., 2017a))

3.1.4 TaskQueues for scalability

Task Queues (Google Inc., 2017h) as shown in Figure 3.1 are used to asyn-
chronously schedule work outside of user requests. Tasks are added to a Task
Queue and executed later by scalable GAE worker services. There are two types
of Task Queues, which are push queues and pull queues as outlined in Table 3.1.
The Task Queues are configurable in the queue.xml file of the GAE project. In
this thesis, only push queues (Google Inc., 2017g) are used.

A GAE instance can be used with three different scaling types as detailly ex-
plained in (Google Inc., 2017a). These are manual scaling, basic scaling and
automatic scaling as outlined in Table 3.2. In this thesis, only auto scaling is
used.

Push queues on an auto scaling instance impose a strict deadline of 10 minutes
for each request (see (Google Inc., 2017g)). If a task becomes too big to be
finished within 10 minutes, a strategy could be to split the task in smaller tasks
and make use of the auto scaling feature, which starts new worker threads for
parallel execution of tasks.

In case of failure, a task will be automatically restarted in a push queue. This
behavior can be prevented, by setting the task-retry-limit of the queue in the
queue.xml configuration file to 0.

8

4 QDAcity

In this chapter, relevant aspects of QDAcity, its functions, features and imple-
mentation details are presented. In addition a rough overview of the relevant
classes using Unified Modeling Language (UML) class diagrams is given. Follow-
ing chapters are refering to this chapter, when describing implementation details.

4.1 Projects

Figure 4.1: Simplified UML Class Diagram of Project and related classes in
QDAcity

9

As outlined in Figure 4.1, the classes Project as well as ProjectRevision in-
herit from AbstractProject. Project revisions are intended to mark milestones
in projects and develop them over time. Validation projects are necessary for the
multiple raters of the textdocuments of the project respectively project revision.
Raters have their own ValidationProject instance with their own copies of the
textdocuments, so that they can only see their own codings.

A QDAcity project its revisions and validation projects contain textdocuments
and a code system, which are presented in the next two sections.

4.2 Code Systems

Figure 4.2: Example for a Coding System from a real QDAcity project

The structure of a Code System is shown in the example in Figure 4.2. Code
Systems in QDAcity are hierarchical and always have a root code named Code
System. In Figure 4.2 two attributes of codes are visible - the code name and its
color, indicated left of the code name. Written on the right side is the number

10

Figure 4.3: Simplified UML Class Diagram of Code class in QDAcity

of times a code has been applied. Further attributes of codes are outlined in the
UML class diagram in Figure 4.3. Every code has a number of flat attributes,
but also a reference to a CodeBookEntry with further attributes. Additionally a
code can have several relations as shown in Figure 4.3 which allow code relations
not only between parent and child codes, but with any code in the code system.
A Code instance always has an id and a codeID as shown in Figure 4.3. The id
is used for having a unique reference in the DataStore. The codeId is used as a
unique identifier within the code system. Different Code instances may have the
same value for codeId, but then they can not be part of the same code system.
Unlike the other attributes codeId and id never get changed.

4.3 Textdocuments

Figure 4.4: Example for a coded paragraph in a textdocument and its HTML
representation

11

A textdocument in QDAcity contains the text which users can code in their val-
idation projects. A textdocument contains its text in HTML with additional
self-defined tags. It can be split into textual units, such as paragraphs or sen-
tences. In their validation projects users have a copy of the original textdocument,
so that users only see their own codings and can individually code. The applied
codes are directly saved into the textdocument’s HTML structure. Therefore, the
applied codes of a unit can be programatically accessed by parsing the textdoc-
ument using e.g. the JSOUP open-source Java library1 and accessing the coding
tag of the unit and look for the code id attribute. An example is presented in Fig-
ure 4.4, where a coded paragraph and the corresponding HTML representation
is shown.

4.4 Validation Reports

A validation report in QDAcity is a report triggered by a user on the frontend to
calculate the agreement between coders based on the coded textdocuments of the
project’s revision. Due to the complexity of its calculation a validation report is
processed in several tasks in a TaskQueue (subsection 3.1.4). After the report is
finished its components are stored in the DataStore subsection 3.1.2, which are
the validation report itself and the attached results. The user can then access the
validation report through the dashboard of the project on the frontend. More
details about validation reports and the process are explained in subsection 5.2.1
and subsection 5.2.2.

1JSOUP open-source Java library https://jsoup.org/

12

https://jsoup.org/

5 Quality Metrics

In this chapter, the approach and the implementation to question (a) of chap-
ter 2 is presented and discussed. First there is an overview of related work and
then details of the two implemented quality metrics in QDAcity are highlighted
including relevant implementation details.

5.1 Related Work

The use of inter-coder agreement metrics is a commonly known approach in com-
putational linguistics, specifically Natural Language Processing (NLP) (Artstein
& Poesio, 2008, p. 1f), (Bruce & Wiebe, 1998) and (Joyce, 2013). As discussed in
(Artstein & Poesio, 2008, p. 2f), several approaches exist for calculating an inter-
coder agreement metric, such as κ (Kappa) Statistics e.g. (Cohen, 1960),(Fleiss,
1971) or others like Krippendorff’s α (Alpha) in its original version from (Krip-
pendorff, 1970) and later version (Krippendorff, 2007) refined in the context of
computing.

The characteristics of popular inter-coder agreement metrics are compared in
Table 5.1. An important property of a metric is the number of raters (#Raters

Table 5.1: Popular inter-coder agreement metrics and their characteristics

Name #Raters Data Rating type
Krippendorff’s Alpha binary, nominal, ordinal,
(Krippendorff, 1970) ≥2 interval, ratio, polar, circular categorical

Scott’s pi
(Scott, 1955) 2 binary or nominal categorical

Cohen’s Kappa
(Cohen, 1960) 2 binary or nominal categorical
Fleiss’ Kappa
(Fleiss, 1971) ≥2 binary or nominal categorical

13

in Table 5.1) the metric can be applied on. It is important to note, that Scott’s pi
and Cohen’s Kappa are only applicable between two raters. Furthermore all the
presented metrics imply that the coders use a categorical rating, which means,
that no unit can be coded with different categories at the same time by the same
rater as they are mutually exclusive.

5.2 Approach for Implementing Inter-coder Agree-

ments Statistics in QDAcity

This section focuses on the general architecture of the framework around the inter-
coder agreement metrics, which I implemented in this thesis. The general process
and its generic reusable components as well as the persisted data structures are
discussed in detail.

5.2.1 General Process

Figure 5.1: General process of inter-coder agreement report generation in
QDAcity

(See also Figure 3.1 for basic GAE architecture)

As discussed in the previous section, several metrics for implementation exist.
The approach implemented in this thesis allows to use different metrics by defin-

14

ing a generic process in QDAcity for calculating any feasible inter-coder agreement
metric as illustrated in Figure 5.1. Case A outlines the creation of a new report
triggered by the user. Case B shows the process of viewing a persisted report by
the user.

In step A-0 from Figure 5.1 the user selects the textdocuments to be analyzed,
chooses the inter-coder agreement metric and provides a name for the report.
The user clicks a start button and the users request is send via HTTPS to the
ValidationEndpoint of the QDAcity instance running on the GAE. The Valida-
tionEndpoint handles the users request (step A-1) and starts a new Task in a
TaskQueue (see subsection 3.1.4). The ValidationEndpoint replies to the user’s
request with a HyperText Transfer Protocol (HTTP) 204 ”No Content” 1.
The user can continue to work, while the report gets generated asynchronously,
starting form step A-2. In this step the ValidationReport is built, but doesn’t
contain any results yet. This is necessary to have an unique identifier to refer to
by the ValidationResults generated later. Also in A-2 all the required textdoc-
uments are loaded and put into the Memcache (see subsection 3.1.3) for later
use. During this process meta information about the textdocuments, like the
amount of textdocument or number of units can be extracted if needed for the
ValidationReport. Then A-2 starts multiple tasks wich perform steps A-3 and
A-4.

In step A-3 multiple tasks extract the information about the coded units from
the textdocuments (explained in subsection 5.2.3) and prepare the input data for
the selected inter-coder agreement metric in step A-4. Step A-4 runs the actual
algorithm of the metric with the input data and produces a ValidationResult,
which gets stored to the DataStore. Steps A-3 and A-4 try to fetch the textdocu-
ments they need from the Memcache, but access the DataStore if a textdocument
already expired from the Memcache.

The steps A-3 and A-4 from Figure 5.1 can be implemented for any feasible inter-
coder agreement metric. Furthermore this process reduces the vendor lock-in to
the GAE cloud platform as the underlying program logic for the metric from step
A-3 and A-4 can be run in any other environment, because of its independency
from environmental services such as the DataStore.

In the optional step A-5 an average can be calculated over all the Validation-
Results that are part of a ValidationReport. The process waits for all tasks to
finish and write their results to the DataStore, before calculating the average.
Step A-5 is independent from the used inter-coder agreement metric and sim-
ply calculates the average from the generic data structure ValidationResult into
ValidationReport wich are explained in subsection 5.2.2.

1HTTP/1.1 Status code definitions https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.
html

15

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Case B of Figure 5.1 shows accessing a report by the user. In this case the
users request can be handled directly by the ValidationEndpoint and the Valida-
tionReport including the ValidationResults is sent to the user directly and gets
presented by the frontend.

5.2.2 Report Data Structures

Figure 5.2: Simplified UML Class Diagram of ValidationReport and Valida-
tionResult

Figure 5.2 shows the ValidationReport and ValidationResult class. In Case A
from Figure 5.1 one ValidationReport gets saved to the DataStore (Step A-3)
and several ValidationResults can be created by the started tasks (Step A-4)
in the TaskQueue. The implemented structures are kept generic in order to be
able to save different kinds of results efficiently in the DataStore. The attributes
averageAgreementHeaderCsvString and averageAgreementCsvString of the Val-
idationReport class (see Figure 5.2) are set and persisted, if an average of all
ValidationResult instances for one report is calculated (Step A-5 of Figure 5.1).
As the variable names already suggest, the results are saved as Comma Sep-
arated Value (CSV) Strings. This allows to persist reports with an arbitrary
number of individual results as Strings, which does not restrict the data type
for the result. There is also no restriction for the amount of ValidationResult
instances that belong to a ValidationReport. Also the reportRow attribute in the
ValidationResult class gets saved as CSV String and the detaildAgreementHead-
erCsvString attribute from ValidationReport gives the meta-information on how
to interpret the ValidationResult instances. On the QDAcity frontend a tabular
view is generated out of the persisted ValidationReport and its ValidationResult
instances.

16

5.2.3 Extraction of Input Data for Quality Metrics

The input data for both implemented inter-coder agreement metrics in this thesis
is based on coded units of text by different raters. In QDAcity the information
about the coded units is stored in the textdocuments directly as explained in
section 4.3.

Figure 5.3: Textdocuments - Units and their codings by different raters

Rater 1 Rater 2 ... Rater n

Unit 1 [1] [1] ... [1]

Unit 2 [1,3] [2,3] ... [2,3]

Unit 3 [1,3] [3,7] ... [3,7]

...

Unit n [47, 11] [47,11] ... [42, 11]

Same TextDocument from different
Raters

Matrix containing the applied Code-
IDs per unit per rater.

Parse units & extract CodeIDs

TextDocument from Rater 1

TextDocument from Rater 2

TextDocument from Rater n

Figure 5.3 illustrates the general strategy for aggregating the applied codes per
unit by rater. After parsing the textdocument and extracting the applied code-
IDs from the units (see section 4.3) they get transformed to a three dimensional
datastructure, as shown in Figure 5.3 in the table on the right side. For every
unit and rater the list of applied codes is saved.

The process from Figure 5.3 is implemented by the TextDocumentAnalyzer class.
It expects a List of textdocuments, containing the same textdocument, but with
the ratings from different raters and the evaluation unit, in order to split the
textdocument in the proper units. The output is a three dimensional datastruc-
ture, which is the representation for the table on the right in Figure 5.3.

This generic data structure is then used to generate the input data for the al-
gorithms as explained in the implementation details subsections of the next two
sections.

17

Table 5.2: Reliability Data as input for Krippendorff’s Alpha

Units u: 1 2 ... N
Observers: 1 c11 c12 ... c1N

2 c21 c22 ... c2N
...
m cm1 cm2 ... cmN

observers valuing u: m1 m2 ... mN

∑
umu

(Adopted from (Krippendorff, 2011, p. 6))

Table 5.3: Coincidence Matrix for Krippendorff’s Alpha

Values 1 ... k ...
1 o11 ... o1k ... n1

...
c oc1 ... ock ... nc =

∑
k ock

...
n1 ... nk ... n =

∑
c

∑
k nck

(Adopted from (Krippendorff, 2011, p. 6))

5.3 Krippendorff’s Alpha Coefficient

The Krippendorff’s Alpha Coefficient (Krippendorff, 2011) is a statistical measure
for inter-coder agreement. Agreement is measured among raters which categorize
units.

The input for the Krippendorff’s Alpha coefficient is the so called reliability data,
sketched in Table 5.2. cmN is the value c coder m has set to unit N . Note that
a coder can only set one value to a unit, as the ratings must be categorical (see
section 5.1).

Out of the reliability data the so called coincidence matrix has to be calculated.
The coincidence matrix is outlined in Table 5.3. With c, k ∈ set of categories,
the coincidence matrix is always square. The calculation for a matrix entry ock
is the following:

ock =
∑
u

pairs(u)

mu − 1
(5.1)

Where pairs(u) is the number of c-k pairs in unit u, equals to the number of
raters having set category c unit u.

As of (Krippendorff, 2011, p. 1f) the general form of α is the following:

α = 1− Do

De

(5.2)

18

Table 5.4: Interpretaion of Krippendorff’s Alpha results

Krippendorff’s Alpha value Reliability
α = 1 Perfect reliability

0 < α < 1 Percentage reliability
α = 0 No reliability (assinged values to

units are statistically unrelated)
α < 0 systematic disagreement Do ex-

ceeding disagreement expected by
chance De.

with DO as the observed disagreement of the given ratings and De as the dis-
agreement expected by chance. They are defined as:

Do =
1

n

∑
c

∑
k

ock metricδ
2
ck (5.3)

De =
1

n(n− 1)

∑
c

∑
k

nc × nk metricδ
2
ck (5.4)

Where metricδ is the used difference function depending on the data. As stated in
Table 5.1 Krippendorff’s Alpha supports binary, nominal, ordinal, interal, ratio,
polar and circular data. The data which is coming from coded units of texts
in QDAcity is nominal and therefore, in this thesis, only the nominal difference
function of the following form is needed (Krippendorff, 2011, p. 5):

nominalδ
2
ck =

{
0 iff c = k
1 iff c 6= k

(5.5)

5.3.1 Interpretation of Krippendorff’s Alpha results

With the basic definition of Krippendorff’s Alpha from Equation 5.2, the results
can be interpreted as listed in Table 5.4. This interpretation is universally adopt-
able as it is based on the mathematical definition. However, for the percentage
reliability of α no universal interpretation guideline can be given. In QDAcity
users can freely define their own interpretation for percentage reliability.

5.3.2 Implementation Details

As mentioned above, Krippendorff’s Alpha Coefficient is for measuring the agree-
ment for a categorical rating. However, in QDAcity, more than one code can be
applied to a textual unit by one rater at the same time. Therefore, the coding of

19

Figure 5.4: Simplified UML Class Diagram of AlgorithmInputGenerator and
classes

Figure 5.5: Simplified UML Class Diagram of KrippendorffsAlphaCoefficient
and related classes

20

a textual unit in QDAcity is not categorical. In order to apply the Krippendorff’s
Alpha Coefficient to a coded textdocument (section 4.3) every code of the code
system needs to be examined separately. Thus two new categories for every code,
which are ”Code is set” and ”Code is not set” were introduced. An analysis by
code now becomes categorical and therefore, the Krippendorff’s Alpha Coefficient
can be applied. Because of that Krippendorff’s Alpha in QDAcity has to be cal-
culated for every single code in the code system for the selected textdocuments.
Therefore, a task for every textdocument to be analyzed is run in the TaskQueue.
Every task produces one ValidationResult containing the name of the analyzed
textdocument and the results of Krippendorff’s alpha for every code of the code
system. The reliability data for the Krippendorff’s Alpha calculations therefore
is generated for every code using only two categories.

Figure 5.5 shows the class diagram of the KrippendorffsAlphaCoefficient class,
which implements the Krippendorff’s Alpha coefficient using the nominal dif-
ference function. The input is a ReliabilityData instance and the number of
available codes. The reliability data matches the form as shown in Table 5.2 and
gets transferred to the form outlined in Table 5.3 using the ReliabilityDataToCo-
incidenceMatrixConverter class listed in Figure 5.5.

The ReliabilityData instance is generated by extracting the information from the
textdocuments using the ReliabilityDataGenerator class as shown in Figure 5.4.
It implements the process explained in subsection 5.2.3.

A ValidationReport with Krippendorff’s Alpha in QDAcity also contains an av-
erage of all ValidationResults as step A-5 of Figure 5.1 is executed.

5.3.3 Discussion of Krippendorff’s Alpha implementation

The approach of using artificial categories as described above also resolves another
issue of inter-coder agreement metrics, which is incomplete or missing data. In
QDAcity an understanding of incomplete or missing data could be for example,
a coder who did not work on the textdocuments yet, at the time when the inter-
coder agreement metric is applied. In this case all codes just fall in the category
”Code is not set” for this coder.

Another benefit for the user of this implementation is, that a ValidationReport
which was calculated with the Krippendorff’s Alpha metric contains detailed in-
formation about the agreement for every single code. The codes which need
further clarification or need to be redefined can be identified using that informa-
tion.

21

5.4 Fleiss’ Kappa

The first idea for providing users a Kappa statistics in QDActiy was to imple-
ment Cohen’s Kappa (Cohen, 1960). However, the process of mapping the coded
textdocuments (section 4.3) to input data for Cohen’s Kappa would alter the
data in such way the result is very hard to understand for users of QDAcity.
This problem is also discussed in (Powers, 2012). Furthermore Cohen’s Kappa
only allows to measure the agreement between two raters, which does not match
the common use cases of QDAcity (see section 1.2). Therefore, I chose to imple-
ment Fleiss’ Kappa (Fleiss, 1971) to QDAcity, which is a generalization of Scott’s
Pi (Scott, 1955), a related statistic to Cohen’s Kappa. Fleiss’ Kappa allows to
calculate the agreement between many raters which assign categorical ratings.

As defined in (Fleiss, 1971, p. 378f) the general form of Fleiss’ Kappa is:

κ =
P − P e

1− P e

(5.6)

Where the divident P −P e is the degree of agreement achieved above chance and
the divisor 1− P e is the degree of agreement potentially possible above chance.

P and Pe are defined as:

P =
1

N

N∑
i=1

Pi Pe =
k∑

j=1

p2j (5.7)

With N as the total number of subjects and k as the number of categories.

Define n as the number of ratings per subject, i = 1, ...N as subject index and
j = 1, ...k as category index. Then nij becomes the number of raters for subject
i in category j. With that Pi and pj from Equation 5.7 can be defined:

pj =
1

Nn

N∑
i=1

nij note:
k∑

j=1

pj = 1 (5.8)

Pi =
1

n(n− 1)

k∑
j=1

nij(nij − 1) (5.9)

The general structure of the input data for Fleiss’ Kappa is shown in Table 5.5
using the definitions from the equations above.

22

Table 5.5: General form of input data for Fleiss’ Kappa

1 2 ... k
1 n11 n12 ... n1k P1

2 n21 n22 ... n2k P2

...
N nN1 nN2 ... nNk PN∑ ∑N

i=1 ni1

∑N
i=1 ni2 ...

∑N
i=1 nik

p1 p2 ... pk

Table 5.6: Interpretaion of Fleiss’ Kappa results

Fleiss’ Kappa value Strength of Agreement
<0.00 Poor

0.00-0.20 Slight
0.21-0.40 Fair
0.41-0.60 Moderate
0.61-0.80 Substantial
0.81-1.00 Almost Perfect

(Adopted from (Landis & Koch, 1977, p. 165))

5.4.1 Interpretation of Fleiss’ Kappa

As suggested in (Landis & Koch, 1977, p. 165) the result of Fleiss’ Kappa could
be interpreted as listed in Table 5.6.

However, the suggested interpretation can not be universally applied to every
context. Therefore, this interpretation is not adopted to QDAcity in order to
allow users to freely define their own interpretation for the raw Fleiss’ Kappa
result.

From a mathematical point of view, only the values κ = 1 as complete agreement
and κ ≤ 0 as no agreement beyond the agreement by chance can be defined in a
general sense.

For interpreting the result of Fleiss’ Kappa also other qualitites of the input data
have to be taken into account as discussed in (Sim & Wright, 2005) in detail. The
number of categories has influence on the likelyhood the result of Fleiss’ Kappa
is higher or lower. More categories can potentially lead to more disagreement,
therefore fewer categories result in a higher κ (details see (Sim & Wright, 2005,
p. 264)).

23

5.4.2 Implementation Details

As for Krippendorff’s Alpha Coefficient also for Fleiss’ Kappa agreement only for
categorical ratings can be calculated. The same strategy as for Krippendorff’s
Alpha Coefficient applies here to break down the code-system based ratings to
categories, by looking at the codes one by one and introducing ”Code is set” and
”Code is not set” as categories.

For computing the Fleiss κ only an array of Integer and the number of raters as
input is needed. Because of breaking down the categories of codes as explained
above, the only information needed to calculate Fleiss’ Kappa is the number of
raters who applied the code in a unit and the number of raters.
The array of Integer is generated by the FleissKappaInputDataGenerator class
as shown in Figure 5.4, which uses the process from Figure 5.3 and transforms it
to the form outlined in Table 5.5.

Due to the artificially introduced categories for codes they have to be analyzed
separately, similar to the Krippendorff’s Alpha implementation as described in
subsection 5.3.2. Therefore, for every textdocument to be analyzed a task is
put into the task queue, performing step A-3 and step A-4 of Figure 5.1. The
FleissKappaInputDataGenerator class from Figure 5.4 extracts a Integer array
for every code of the code system from the same textdocuments from different
rates for this task as described above. The FleissKappa class calculates the κ
for every code and when all results have been calculated they are written into a
ValidationResult (see Figure 5.2).

In addition, the implementation for Fleiss’ Kappa performs step A-5 of Figure 5.1
and calculates the average for every code from all ValidationResults of the report.

5.4.3 Discussion of Fleiss’ Kappa implementation

The benefit for the user of this implementation is the possibility to check all the
codes one by one, which allows to identify codes, which need more clarification
or need to be redefined.

However, as explained in subsection 5.4.1, fewer categories in the Fleiss’ Kappa
statistic lead to a higher agreement. Therefore, the results calculated in QDAc-
ity should be interpreted taking into account, that they are only based on two
categories per code.

24

6 Saturation

In this chapter, the approach and the implementation to question (b) of chapter 2
is presented and discussed. First, an overview of related work is given, and then
a definition of saturation in the context of QDAcity is given, and at last the
relevant details of its implementation are highlighted.

6.1 Related Work

As shown in Table 6.1, three different forms of saturation exist. These are based
on two different approaches, which are the grounded theory ((Corbin & Strauss,
1990), (Glaser, Strauss, & Strutzel, 1968)) and the idea that the results evolve
when new data is added ((Fusch & Ness, 2015), (Kerr, Nixon, & Wild, 2010)).
Nevertheless these three forms of saturation are closely related and mostly differ
in the way saturation is measured as listed in Table 6.1.

An example for data and thematic saturation is presented and discussed in (Guest
et al., 2006). Using an example project the authors outline when data saturation
is reached. The authors address both data and thematic saturation, but only use
the term data saturation for their saturation result. An example for theoretical
saturation explained and discussed in (Bowen, 2008) in detail.

However, literature review revealed that most of the authors define saturation
in vague natural language and do not provide a transparent formula or specific
criteria which show the details of their saturation calculation. This issue is also
discussed in (O’Reilly & Parker, 2013) and (Bowen, 2008).

6.2 Definition of Saturation in QDAcity

The idea for saturation in QDAcity projects is that the activity on the code
system (Figure 4.2) decreases over time, until it is stable enough to form a theory
on it. This notion of saturation is based on the recommended working process

25

Table 6.1: Forms of saturation

Name & Citations Based on the idea ... Measure
Theoretical Saturation ... of a grounded the-

ory.
Decrease of activity
on code system.

(Guest, Bunce, & Johnson,
2006)
(MacQueen, McLellan,
Kay, & Milstein, 1998)

”Stability of code
system”

Data Saturation ... that results are
based on the data.

Decrease of new
insights from new
data.

(Francis et al., 2010)
Thematic Saturation ... that results are

based on the data.
Decrease of new
topic exploration
with new data.

(Guest, Bunce, & Johnson,
2006)

Figure 6.1: Outline of general working process in a QDAcity project

26

for QDAcity projects outlined in Figure 6.1. After the project start in step I
usually the project owner can set up a first inital code system which is just an
outline, to get a first idea or could even be empty for free coding. Furthermore,
the first textdocuments have to be added to be able to start coding. Step II and
III usually take place at the same time as only through the process of coding the
coding system can be improved.

After step II of Figure 6.1 the code system could either be stable enough to
finish the project and develop a theory (step VI), or if the code system is not
finished, the project continues. In this case, it is recommended to create a new
ProjectRevision (see Figure 4.1) and then add new textdocuments if necessary
(or existent) to repeat the process from step II.

Derived from the working process of Figure 6.1 the implemented saturation fea-
ture in this thesis can be categorized as theoretical saturation, because it is
based on a grounded theory and measures the activity on the code system (see
Table 6.1). The key question to answer by the saturation feature is: When is the
code system stable enough to consider the project as finished?

6.3 Technical approach

In this section, the relevant technical details of the implemented saturation fea-
ture in QDAcity are illustrated.

6.3.1 Logging of Changes

In order to be able to apply a theoretical saturation metric, there needs to be a
mechanism to access all changes on the code system from a time period. There-
fore, the changes need to be logged and persisted to the DataStore (subsec-
tion 3.1.2). Table 6.2 shows the Change Objects and the Change Types which
are persisted. The combination of Change Object and Change Type and changed
attribute is the category c of a persisted Change. Additionally change groups are
defined, which are defined by combination of Change Object and Change Type.
The change group of a change category c is noted down as ĉ. All categories form
the set of change categories K.
The potential change combinations derive from the changeable attributes of
codes, codebook entries and code relations as described in Figure 4.2 and the
way applied codes are stored in textdocuments as explained in section 4.3.

Furthermore C is defined as the set of all persisted changes. As in one change
operation multiple attributes of a Change Object can be changed (see Table 6.2,

27

CODE and CODEBOOK ENTRY) a change can be from multiple categories,
but only from one change group.

6.3.2 Calculation of Saturation

As discussed in section 6.1 no formula for the calculation of saturation can be
adopted from previous work. Therefore, in this thesis a completely new formula
for calculating the saturation S has been developed following the notion of the-
oretical saturation from previous work (section 6.1). In the following instead of
the term theoretical saturation the term saturation is used.

Saturation is always calculated over a specific time period. Define t1 > 0 as the
starting point and t2 ≥ t1 as the end point of the saturation’s period. Further-
more saturation is calculated for a specific Category C of Changes.
In general saturation of a category C in the time period t1 to t2 is defined as:

SC
t1,t2 = 1− AC

t1,t2 (6.1)

Where AC
t1,t2 is the activity in the category C in the time period t1 to t2 and is

defined as
AC

t1,t2 = |CC
t1,t2|/|CĈ

0,t1| (6.2)

where CC
t1,t2 is the set of changes in the time period t1 to t2 in the category C.

Note that in the divisor of Equation 6.3.2 all changes from the change group Ĉ
(see subsection 6.3.1) of the category C are counted from 0 until t1.

6.3.2.1 Weighted Average of Saturation

As shown in the section before, SC
t1,t2 needs to be calculated for every possible

change type which - in QDAcity - results in 16 single saturation values. How-
ever, question (b) from chapter 2 and section 2.3 indicate that a single-valued
and configurable measure for the project proceeding is a great benefit of the
user. Therefore, the weighted average of the saturation S∗t1,t2 was introduced in
QDAcity and is defined as

S∗t1,t2 =
∑
c∈K

Sc
t1,t2 ∗

(
Wc/

∑
c2∈K

Wc2

)
(6.3)

where K is the set of categories1 of changes as described in subsection 6.3.1.
0 ≤ Wc ≤ 1 is the weight of the category of changes. The weighting can be freely

1In this thesis, changes with the change object DOCUMENT as listed in Table 6.2 are
logged, but not part of the saturation calculation as it does not affect the code system and
therefore is not part of theoretical saturation.

28

Table 6.2: Tracked Change Objects and their possible Change Types in QDAcity

Change Object Change Type Used when ...
CODE CREATED a new Code is created in the

CodeSystem.
MODIFIED one or more of the following

Code’s attributes are changed:
author
color
memo
name
subCodeIDs

RELOCATE a Code gets moved and there-
fore has a new parent.

DELETED a Code gets deleted from the
CodeSystem.

CODEBOOK ENTRY MODIFIED a Code’s CodeBookEntry is
modified. The following at-
tirubtes can be changed:

definition
example
shortDefinition
whenNotToUse
whenToUse

CODE RELATIONSHIP CREATED a new relation between codes
is introduced.

DELETED a relation between codes gets
removed.

DOCUMENT CREATED a textdocument gets created.
APPLY a Code gets applied in the

textdocument.

29

Table 6.3: Default weighting of change categories in QDAcity

Name Weight
Code Changes

insertCodeChangeWeight 1.0
updateCodeAuthorChangeWeight 0.0
updateCodeColorChangeWeight 0.0
updateCodeMemoChangeWeight 0.5
updateCodeNameChangeWeight 1.0
relocateCodeChangeWeight 1.0
deleteCodeChangeWeight 1.0

Code Relations
insertCodeRelationShipChangeWeight 0.75
deleteCodeRelationShipChangeWeight 0.75

CodeBookEntry Changes
updateCodeBookEntryDefinitionChangeWeight 1.0
updateCodeBookEntryExampleChangeWeight 0.75
updateCodeBookEntryShortDefinitionChangeWeight 1.0
updateCodeBookEntryWhenNotToUseChangeWeight 0.75
updateCodeBookEntryWhenToUseChangeWeight 0.75

defined by the user. In QDAcity a preset of weightings is implemented as shown
in Table 6.3. Further parameters, which also influence the weighted average of
saturation are described in the next section.

6.3.3 Saturation Parameterization

In order to meet common markers of quality in qualitative research (see (Spencer,
Ritchie, Lewis, & Dillon, 2003)), the calculation of saturation in QDAcity is user
configurable and therefore more transparent for the user. Beside the weighting of
the single categories from the section above, the user can configure two additional
aspects of the saturation calculation.

An idea of the saturation feature in QDAcity is to compute saturation regularly
and see its historical developement over time. Therefore, the period of the satu-
ration calculation can be parameterized as follows: In QDAcity t2 as used in the
equations above is always set to the time of execution of a saturation calculation.
In order to get a gapless historical developement of the saturation, t1 always gets
set to the end time t′2 of an historical saturation calculation result. This does
not necessarily need to be the latest saturation calculation, but could also be the
second or third last saturation result. The user can set this freely between latest

30

Table 6.4: Default maximum saturations of change categories in QDAcity

Category Default Maximum Saturation
Code Changes

Insert Code 1.0
Update Code Author 0.1
Udate Code Color 0.1
Update Code Memo 0.9
Update Code Name 1.0
Relocate Code 1.0
Delete Code 1.0

Code Relations
Insert Code Relationship 0.95
Delete Code Relationship 0.95

CodeBookEntry Changes
Update CodeBookEntry Definition 1.0
Update CodeBookEntry Example 0.9
Update CodeBookEntry Short Definition 1.0
Update CodeBookEntry When Not To Use 0.9
Update CodeBookEntry When To Use 0.9

or 20th last saturation result2. If no previous or nth last saturation calculation
exist, t1 is set to beginning of Unix time3, which is always before any change
could have persisted in a QDAcity project.

The second aspect to be parameterized affects the interpretation of a saturation
result. 100% of saturation means complete saturation. However, in reality this
value is hard to achieve and therefore users might have an understanding, that
a percentage value below 100% is already complete saturation in their context.
Thus users are able to set the maximum in each change category which is their
sufficient saturation. The saturation result then gets normalized using the con-
figured maximum of each category using the following formula:

|SC
t1,t2| = min

(
1,
SC
t1,t2

mC

)
(6.4)

Where mC is the configured maximum saturation in the category C with 0 <
mC ≤ 1. min(x, y) is the minimum function, resulting in x if x ≤ y and y
otherwise.

2The limit was set to maximum 20 last saturation result in order to avoid excessive com-
puting time consumption for results with small expressiveness. The default setting is 3.

3using java.util.date with new Date(0) resulting in 1st January 1970 00:00:00

31

With the equation above also the weighted average of saturation is normalized
as follows:

|S∗t1,t2| =
∑
c∈K

|Sc
t1,t2| ∗

(
Wc/

∑
c2∈K

Wc2

)
=
∑
c∈K

min

(
1,
Sc
t1,t2

mc

)
∗

(
Wc/

∑
c2∈K

Wc2

)
(6.5)

QDAcity comes with a preset maximum saturation for all categories as shown in
Table 6.4.

6.3.4 Implementation Details

Figure 6.2: Simplified UML class diagram of SaturationCalculator and related
classes

Figure 6.2 shows the SaturationCalculator class, which calculates a SaturationRe-
sult, containing all 16 single saturation values from the different categories. For
the calculation the SaturationCalculator needs the projectId in order to access
all the persisted changes from the project and the epochStart, which matches t1
from the equations in subsection 6.3.2.

The calculateSaturation method expects an instance of PersistenceManager, which
is used for accessing the DataStore. It is necessary, that the caller of Satura-
tionCalculator.calculateSaturation(...) is using the same instance of Persistence-
Manager, because the SaturationCalculator needs to persist the SaturationResult
before calculation in order to be able to add the used SaturationParameters as
child element and the caller is responsible for persisting the complete result again.
This is only possible with the same PersistenceManager instance as another in-
stance would generate another id for the SaturationResult in the DataStore.

32

The SaturationParameters class as shown in Figure 6.2 contains the configu-
ration for the saturation calculation as explained in subsubsection 6.3.2.1 and
subsection 6.3.3. The DefaultSaturationParameters contains the preset listed in
Table 6.3 and Table 6.4 as well as the default configuration for setting t1, which is
t′2 of the 3rd last saturation calculation. By checking the existing SaturationRe-
sults in the DataStore for the project, the value for t1 is determined by the caller
of SaturationCalculator.calculateSaturation(...) and set for epochStart.

Figure 6.3: Process of calculating a new SaturationResult in QDAcity

The overall process of calculating a new SaturationResult in QDAcity is shown
in Figure 6.3. In step S1 a new saturation calculation is triggered on the fron-
tend. There are different types of triggers as explained in subsubsection 6.3.4.1.
The frontend sends a request to the SaturationEndpoint (step S2) which asyn-
chronously pushes a new task to a TaskQueue for calculating the saturation and
then immediately replies with a HTTP 204 ”No Content”. In the started task
steps S3 to S6 are performed. First, the latest saturation parameters have to be
loaded from the DataStore (step S3) in order to get the configuration from which
nth latest SaturationResult t1 can be set (step S4). After that the actual satu-
ration is calculated for every change category in step S5, accessing the persisted
changes form the DataStore. At last the SaturationResult has to be persisted in
the DataStore in step S6.

6.3.4.1 Triggering Saturation Calculations

Derived from the recommended working process in QDAcity as shown in Fig-
ure 6.1 and detailly described in section 6.2, two kinds of triggers for calculating
a new saturation have been implemented for QDAcity in this thesis.

33

The first trigger is linked to the creation of a new ProjectRevision (step VI in
Figure 6.1). When a user creates a new ProjectRevision it automatically triggers
the process from Figure 6.3 and a new SaturationResult is generated.

The second trigger is linked to steps IV and V of Figure 6.1. While users
code the textdocuments they are also redefining the code system. Consequently
DOCUMENT-APPLY-Changes as listed in Table 6.2 come along more changes
from the other categories. Therefore, these changes can be used as a trigger for
a new saturation calculation. In QDAcity after every 10 changes of the group
DOCUMENT-APPLY a new saturation calculation as outlined in Figure 6.3 is
triggered.

6.3.4.2 Latency Optimization

Creating a deferred task for TaskQueues (subsection 3.1.4) for work which could
have a negative impact on user experience in terms of latency is a common strat-
egy on GAE. Therefore, it is particularily interesting from which point on, the
creation of a new task is faster than doing the work directly.

As explained in subsection 6.3.1, logging of changes is essential for the calculation
of saturation. However, as every change on the codesystem, which is triggered
by a user action needs to be logged the time needed for logging4 should not have
a negative impact on the user experience regarding reaction time.

In this thesis, two alternative methods for change logging have been implemented
and tested. The first method is logging the changes directly within the users
request. The user only gets a response after the change has been logged. The
second method creates a deferred task for logging the change and the change gets
persisted into the DataStore asynchronously. The user gets a response after the
task for logging the change has been created.

In an automated test, which sent an update code request every 600ms to one
QDAcity instance5 the two implementations were compared. The test was per-
formed on an F1 instance (see (Google Inc., 2017b) and (Google Inc., 2017a)).
In a first run only the direct logging was used and in a timely separated second
run only the deferred logging was used. Figure 6.4 shows how many percent of
update code calls had which latency. Latency in this figure is defined by the
time passed from recieving the user’s request to sending the response. The blue
line shows the percentages for the method with direct logging, the orange line

4The time needed for logging includes (1) creation of the change as Java object (2) Putting
the change into the DataStore

5In a manual test an updateCode call lasted around 500-600ms. By timely separating the
requests, I avoided side effects of scheduling, which affect the latency.

34

Figure 6.4: Comparison of latency of update code calls with deferred and direct
change logging on F1 instance

Figure 6.5: Comparison of cumulative latency of update code calls with deferred
and direct change logging on F1 instance

Figure 6.6: Comparison of latency of update code calls with deferred and direct
change logging on F4 instance

35

Figure 6.7: Comparison of cumulative latency of update code calls with deferred
and direct change logging on F4 instance

for deferred logging. In Figure 6.5 the accumulated percentage for the latency is
shown based on the same data and using the same colors.

Derived from the graphs in Figure 6.4 and Figure 6.5 the implementation using
deferred change logging is faster as most of the requests have a latency less than
900ms. Furthermore, when using direct logging there is a higher percentage of
requests which need more than 5000ms, which has a direct and negative impact
on the user experience.

The test was repeated on a F4 GAE instance (see (Google Inc., 2017b) and
(Google Inc., 2017a)). Figure 6.6 and Figure 6.7 show the latencies as explained
for Figure 6.4 and Figure 6.5 using the same colors. Also on a F4 instance the
deferred change logging leads to a shorter latency which is better for the user’s
experience.

Derived from the performed tests above, I selected the implementation using
deferred change logging to achieve shorter latency for changes on the code system.

6.3.5 Discussion of saturation feature

The presented saturation feature uses change categories as explained in subsub-
section 6.3.2.1. However, the mathematical formula for calculating the saturation
is not dependend on the specific categories, types and attributes shown in Ta-
ble 6.3 and thereforethe presented saturation feature is not restricted to the use
case of QDAcity.

The weighting and the maximum for the single categories of saturation are freely
user configurable as described in subsubsection 6.3.2.1 and subsection 6.3.3.
Therefore, users can set parameters which fit their use case. However, I do

36

not provide a guideline on how to properly set the parameters and there are no
restrictions for users to also set bogus parameter combinations.

37

7 Evaluation

In this chapter, it is checked whether the requirements defined in section 2.3 are
met. Secondly, the tests performed to prove the correctness and usefulness of the
implemented features are presented.

7.1 Requirements

The requirements listed in section 2.3 from the problem definition are fulfilled by
the presented implementation in this thesis as listed below:

1. The results of inter-coder agreement metrics contain a single value repre-
senting the average, the agreement by code and agreement by rater.

2. As described in subsection 5.2.1 the architecture for inter-coder agreement
metrics is extensible and provides a generic environment so that any feasible
inter-coder agreement metric can be implemented. Storage and representa-
tion of the agreement are abstracted from the used algortihms as explained
in subsection 5.2.2.

3. The saturation metric shows the single-valued weighted average on the
project’s dashboard on the frontend of QDAcity and allows to view the
detailed values for every component in a tabular view.

4. The saturation feature shows the historical developement of saturation in
a line diagram via the project’s dashboard on the frontend.

5. The saturation metric allows the user to configure the weights of the single
components in the average saturation and the maximum needed by a single
component to reach saturation.

6. A preset for the weighting (Table 6.3) and the saturation maxima (Ta-
ble 6.4) is provided.

7. The architecture for inter-coder agreement metrics and the saturation met-
ric implements the actual algorithms in separate classes, which can be used

38

in any other environment as they have no dependencies to GAE.

7.2 Correctness of Quality Metrics

As described in chapter 5, two inter-coder agreement metrics have been adopted
and implemented. In order to prove that specific steps of these metrics are correct
four JUnit tests have been set up.

7.2.1 JUnit Tests for Krippendorff’s Alpha

There are three JUnit tests implemented for Krippendorff’s Alpha.

The first JUnit test tests the correctness of the KrippendorffsAlphaCoefficient
class, which is calculating the Krippendorff’s α out of a given reliability data.
The result is compared to a manual calculation of the α value for the given
reliability data using Java assertions1.

The second JUnit test proves the correctness of the implemented process for
converting the reliability data (see Table 5.2) to the coincidence matrix (see
Table 5.3).

The third JUnit test checks if the result of extracting the reliability data out
of the textdocuments (see subsection 5.2.3). A mockup for two TextDocument
instances containing codings from different raters has been implemented to use
it with this JUnit test. The expected reliability data has been implemented as
mockup as well by manually conducting the process from subsection 5.2.3 on
the two TextDocument instances. Via the equals() function on a ReliabilityData
instance, it is possible to compare it with another ReliabilityData instance as the
equals() method has been overridden in order to compare every single value in the
reliability data. Using Java assertions the JUnit test proves that the generated
reliability data is equal to the manually created.

All three JUnit tests implemented for Krippendorff’s Alpha run without any er-
rors or warnings.

1Using Assertions in Java Technology http://www.oracle.com/us/technologies/java/
assertions-139853.html

39

http://www.oracle.com/us/technologies/java/assertions-139853.html
http://www.oracle.com/us/technologies/java/assertions-139853.html

7.2.2 JUnit Test for Fleiss’ Kappa

The JUnit test for Fleiss’ Kappa tests the FleissKappa class, which calculates
the κ value out of the given input data outlined in Table 5.5 and the number of
raters.

The κ value for the example in the JUnit test has been manually calculated and
gets compared with the value calculated by the FleissKappa class using Java
assertions.

The implemented JUnit test for Fleiss’ Kappa passes without any errors or warn-
ings.

7.3 User’s benefit

In order to integrate the new inter-coder agreement feature to QDAcity the
given implementation accessing the F-Measure through the QDAcity frontend
was adopted and expanded to the new inter-coder agreement metrics. The new
inter-coder agreement metrics have been tested manually using the QDAcity fron-
tend on mock-up projects covering the QDAcity use cases (section 1.2). The
mock-up projects contained large textdocuments and up to four coders. Addi-
tionally, large coding systems with up to 25 codes were used during the tests, in
order to verify the readability of the result tables of the inter-coder agreement
metric. The tests were conducted in projects containing codings with good agree-
ment and complete disagreement from chaotic data to verify the behaviour of the
implemented inter-coder agreement metrics in these cases.

The mock-up projects described above were set up using the process outlined in
Figure 6.1. Therefore, the implemented saturation feature was tested in these
mock-up projects as well showing a realistic developement of saturation and also
covering cases with unrealistic developement of saturation.

40

8 Conclusion

In this thesis, the two inter-coder agreement metrics, Krippendorff’s Alpha and
Fleiss’ Kappa have been implemented to QDAcity. They were embedded in
a generic architecture, which allows the implementation of further inter-coder
agreement metrics and supports the generation of generic reports to view the re-
sults of the different metrics in flexible tables. Furthermore, a new approach for
calculation of theoretical saturation is presented in detail including the mathe-
matical description of the formulas used for the calculation of saturation and the
implementation details in QDAcity. The correctness of the implementations in
this thesis was tested using unit tests. The user’s benefit was verified by conduct-
ing manual tests using the QDAcity frontend using mock-up projects covering the
QDAcity use cases and also containing chaotic data.

8.1 Future Work

This thesis can be used as a basis for further research or further implementations.

Regarding inter-coder agreement metrics, further metrics can be implemented to
QDAcity, as the process of generating reports with these metrics supports any
feasible inter-coder agreement metric as discussed in section 5.2. Having several
metrics in QDAcity enables the possibility to run different metrics on the same
data and contrast their benefits in the context of QDA.

The implemented approach for inter-coder agreement metrics also supports the
use of different units of coding. However, only the coding unit paragraph was
implemented and could be extended for example with the coding unit sentences.

Additionally, performance optimization on GAE brings up further questions like
how to improve scalability by using different instance types in combination with
different type of TaskQueues (see subsection 3.1.4) or the optimal granularity of
tasks in the TaskQueues.

41

Glossary

JUnit Unit testing framework for the Java programming language. iv, 39, 40

MaxQDA Software to support Qualitative Data Analysis. 2

42

Acronyms

CSV Comma Separated Value. 16

GAE Google App Engine. 1, 5, 6, 7, 8, 14, 15, 34, 36, 38, 41

HTML Hypertext Markup Language. 6, 11

HTTP HyperText Transfer Protocol. 15, 33

HTTPS HyperText Transfer Protocol Secure. 6, 15

JDO Java Data Objects. 6

JSON JavaScript Object Notation. 6

MVC Model View Controller. 6

NLP Natural Language Processing. 13

NoSQL No Structured Query Language. 6

QDA Qualitative Data Analysis. 1, 3, 41

REST Representational State Transfer. 6

UML Unified Modeling Language. 9, 10

43

References

Artstein, R. & Poesio, M. (2008). Inter-coder agreement for computational lin-
guistics. Computational Linguistics, 34 (4), 555–596.

Bowen, G. A. (2008). Naturalistic inquiry and the saturation concept: a research
note. Qualitative Research, 8 (1), 137–152. doi:10.1177/1468794107085301.
eprint: http://dx.doi.org/10.1177/1468794107085301

Bruce, R. F., Wiebe, J. et al. (1998). Word-sense distinguishability and inter-
coder agreement. In Emnlp (pp. 53–60).

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and
Psychological Measurement, 20 (1), 37–46. doi:10.1177/001316446002000104.
eprint: http://dx.doi.org/10.1177/001316446002000104

Corbin, J. & Strauss, A. (1990). Grounded theory research: procedures, canons
and evaluative criteria. Zeitschrift für Soziologie, 19 (6), 418–427.

Erich Gamma, R. J., Richard Helm & Vlissides, J. (1994). Design patterns: ele-
ments of reusable object-oriented software. Addison-Wesley.

Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters.
Psychological bulletin, 76 (5), 378–382.

Francis, J. J., Johnston, M., Robertson, C., Glidewell, L., Entwistle, V., Eccles,
M. P., & Grimshaw, J. M. (2010). What is an adequate sample size? oper-
ationalising data saturation for theory-based interview studies. Psychology
and Health, 25 (10), 1229–1245.

Fusch, P. I. & Ness, L. R. (2015). Are we there yet? data saturation in qualitative
research. The Qualitative Report, 20 (9), 1408.

Glaser, B. G., Strauss, A. L., & Strutzel, E. (1968). The discovery of grounded
theory; strategies for qualitative research. Nursing research, 17 (4), 364.

Google Inc. (2008). Google App Engine Blog: Introducing Google App Engine +
our new blog. https://googleappengine.blogspot.de/2008/04/introducing-
google-app-engine-our-new.html. [Online; accessed 13.06.2017].

Google Inc. (2017a). An Overview of App Engine — App Engine standard en-
vironment for Java — Google Cloud Platform. https : / / cloud . google .
com / appengine / docs / standard / java / an - overview - of - app - engine #
scaling types and instance classes. [Online; accessed 25.07.2017].

44

https://dx.doi.org/10.1177/1468794107085301
http://dx.doi.org/10.1177/1468794107085301
https://dx.doi.org/10.1177/001316446002000104
http://dx.doi.org/10.1177/001316446002000104
https://googleappengine.blogspot.de/2008/04/introducing-google-app-engine-our-new.html
https://googleappengine.blogspot.de/2008/04/introducing-google-app-engine-our-new.html
https://cloud.google.com/appengine/docs/standard/java/an-overview-of-app-engine#scaling_types_and_instance_classes
https://cloud.google.com/appengine/docs/standard/java/an-overview-of-app-engine#scaling_types_and_instance_classes
https://cloud.google.com/appengine/docs/standard/java/an-overview-of-app-engine#scaling_types_and_instance_classes

Google Inc. (2017b). appengine-web.xml Reference — App Engine standard en-
vironment for Java — Google Cloud Platform. https : / / cloud . google .
com / appengine / docs / standard / java / config / appref. [Online; accessed
18.08.2017].

Google Inc. (2017c). Architecture: Web Application on Google App Engine — Ar-
chitectures — Google Cloud Platform. https://cloud.google.com/solutions/
architecture/webapp. [Online; accessed 13.06.2017].

Google Inc. (2017d). Cloud Datastore Overview — App Engine standard envi-
ronment for Java — Google Cloud Platform. https://cloud.google.com/
appengine/docs/standard/java/datastore/. [Online; accessed 11.06.2017].

Google Inc. (2017e). Java Datastore API — App Engine standard environment
for Java — Google Cloud Platform. https://cloud.google.com/appengine/
docs/standard/java/datastore/api-overview. [Online; accessed 18.06.2017].

Google Inc. (2017f). Memcache Overview — App Engine standard environment
for Java — Google Cloud Platform. https://cloud.google.com/appengine/
docs/standard/java/memcache/. [Online; accessed 13.06.2017].

Google Inc. (2017g). Push Queues in Java — App Engine standard environment
for Java — Google Cloud Platform. https://cloud.google.com/appengine/
docs/standard/java/taskqueue/push/. [Online; accessed 24.07.2017].

Google Inc. (2017h). Task Queue Overview — App Engine standard environment
for Java — Google Cloud Platform. https://cloud.google.com/appengine/
docs/standard/java/taskqueue/. [Online; accessed 11.06.2017].

Google Inc. (2017i). Using Pull Queues in Java — App Engine standard envi-
ronment for Java — Google Cloud Platform. https://cloud.google.com/
appengine/docs/standard/java/taskqueue/overview-pull. [Online; accessed
24.07.2017].

Google Inc. (2017j). Writing and Annotating the Code — Cloud Endpoints —
Google Cloud Platform. https : / / cloud . google . com / endpoints / docs /
frameworks/java/annotate-code. [Online; accessed 13.06.2017].

Guest, G., Bunce, A., & Johnson, L. (2006). How many interviews are enough?
an experiment with data saturation and variability. Field methods, 18 (1),
59–82.

Joyce, M. (2013). Picking the best intercoder reliability statistic for your digital
activism content analysis. In Digital activism research project: investigat-
ing the global impact of comment forum speech as a mirror of mainstream
discourse (Vol. 243).

Kerr, C., Nixon, A., & Wild, D. (2010). Assessing and demonstrating data satura-
tion in qualitative inquiry supporting patient-reported outcomes research.
Expert review of pharmacoeconomics & outcomes research, 10 (3), 269–281.

Kolbe, R. H. & Burnett, M. S. (1991). Content-analysis research: an examination
of applications with directives for improving research reliability and ob-
jectivity. Journal of Consumer Research, 18 (2), 243. doi:10.1086/209256.

45

https://cloud.google.com/appengine/docs/standard/java/config/appref
https://cloud.google.com/appengine/docs/standard/java/config/appref
https://cloud.google.com/solutions/architecture/webapp
https://cloud.google.com/solutions/architecture/webapp
https://cloud.google.com/appengine/docs/standard/java/datastore/
https://cloud.google.com/appengine/docs/standard/java/datastore/
https://cloud.google.com/appengine/docs/standard/java/datastore/api-overview
https://cloud.google.com/appengine/docs/standard/java/datastore/api-overview
https://cloud.google.com/appengine/docs/standard/java/memcache/
https://cloud.google.com/appengine/docs/standard/java/memcache/
https://cloud.google.com/appengine/docs/standard/java/taskqueue/push/
https://cloud.google.com/appengine/docs/standard/java/taskqueue/push/
https://cloud.google.com/appengine/docs/standard/java/taskqueue/
https://cloud.google.com/appengine/docs/standard/java/taskqueue/
https://cloud.google.com/appengine/docs/standard/java/taskqueue/overview-pull
https://cloud.google.com/appengine/docs/standard/java/taskqueue/overview-pull
https://cloud.google.com/endpoints/docs/frameworks/java/annotate-code
https://cloud.google.com/endpoints/docs/frameworks/java/annotate-code
https://dx.doi.org/10.1086/209256

REFERENCES

eprint: /oup/backfile/content public/journal/jcr/18/2/10.1086/209256/2/
18-2-243.pdf

Krippendorff, K. (1970). Estimating the reliability, systematic error and random
error of interval data. Educational and Psychological Measurement, 30 (1),
61–70.

Krippendorff, K. (2004). Reliability in content analysis. Human communication
research, 30 (3), 411–433.

Krippendorff, K. (2007). Computing krippendorff’s alpha reliability. Departmen-
tal papers (ASC), 43.

Krippendorff, K. (2011). Agreement and information in the reliability of coding.
Communication Methods and Measures, 5 (2), 93–112.

Krippendorff, K. (2012). Content analysis: an introduction to its methodology.
Sage Publications.

Landis, J. R. & Koch, G. G. (1977). The measurement of observer agreement for
categorical data. biometrics, 159–174.

MacQueen, K. M., McLellan, E., Kay, K., & Milstein, B. (1998). Codebook de-
velopment for team-based qualitative analysis. CAM Journal, 10 (2), 31–
36.

Miles, M. B. & Huberman, A. M. (1994). Qualitative data analysis: an expanded
sourcebook. Sage Publications.

O’Reilly, M. & Parker, N. (2013). ‘unsatisfactory saturation’: a critical explo-
ration of the notion of saturated sample sizes in qualitative research. Qual-
itative Research, 13 (2), 190–197. doi:10 .1177/1468794112446106. eprint:
http://dx.doi.org/10.1177/1468794112446106

Powers, D. M. (2011). Evaluation: from precision, recall and f-measure to roc,
informedness, markedness and correlation.

Powers, D. M. (2012). The problem with kappa. In Proceedings of the 13th confer-
ence of the european chapter of the association for computational linguistics
(pp. 345–355). Association for Computational Linguistics.

Ricardo Baeza-Yates, B. R.-N. (1999). Modern information retrieval. ACM Press
books. ACM Press. Retrieved from https://books.google.de/books?id=
usHuAAAAMAAJ

Saldaña, J. (2015). The coding manual for qualitative researchers. Sage.
Scott, W. A. (1955). Reliability of content analysis:the case of nominal scale

coding. Public Opinion Quarterly, 19 (3), 321. doi:10.1086/266577. eprint:
/oup/backfile/content public/journal/poq/19/3/10.1086/266577/2/19-3-
321.pdf

Sim, J. & Wright, C. C. (2005). The kappa statistic in reliability studies: use,
interpretation, and sample size requirements. Physical therapy, 85 (3), 257–
268.

Spencer, L., Ritchie, J., Lewis, J., & Dillon, L. (2003). Quality in qualitative
evaluation: a framework for assessing research evidence.

46

/oup/backfile/content_public/journal/jcr/18/2/10.1086/209256/2/18-2-243.pdf
/oup/backfile/content_public/journal/jcr/18/2/10.1086/209256/2/18-2-243.pdf
https://dx.doi.org/10.1177/1468794112446106
http://dx.doi.org/10.1177/1468794112446106
https://books.google.de/books?id=usHuAAAAMAAJ
https://books.google.de/books?id=usHuAAAAMAAJ
https://dx.doi.org/10.1086/266577
/oup/backfile/content_public/journal/poq/19/3/10.1086/266577/2/19-3-321.pdf
/oup/backfile/content_public/journal/poq/19/3/10.1086/266577/2/19-3-321.pdf

Viera, A. J., Garrett, J. M. et al. (2005). Understanding interobserver agreement:
the kappa statistic. Fam Med, 37 (5), 360–363.

47

	Introduction
	QDAcity
	QDAcity Use Cases

	Problem Definition
	Inter-coder Agreement Metrics
	Saturation Metrics
	Requirements

	Technologies
	Google App Engine
	Architecture of GAE applications
	DataStore for persistence
	Memcache
	TaskQueues for scalability

	QDAcity
	Projects
	Code Systems
	Textdocuments
	Validation Reports

	Quality Metrics
	Related Work
	Approach for Implementing Inter-coder Agreements Statistics in QDAcity
	General Process
	Report Data Structures
	Extraction of Input Data for Quality Metrics

	Krippendorff's Alpha Coefficient
	Interpretation of Krippendorff's Alpha results
	Implementation Details
	Discussion of Krippendorff's Alpha implementation

	Fleiss' Kappa
	Interpretation of Fleiss' Kappa
	Implementation Details
	Discussion of Fleiss' Kappa implementation

	Saturation
	Related Work
	Definition of Saturation in QDAcity
	Technical approach
	Logging of Changes
	Calculation of Saturation
	Saturation Parameterization
	Implementation Details
	Discussion of saturation feature

	Evaluation
	Requirements
	Correctness of Quality Metrics
	junit Tests for Krippendorff's Alpha
	junit Test for Fleiss' Kappa

	User's benefit

	Conclusion
	Future Work

	Glossary
	Acronyms
	References

