
Challenges of Tracking and Documenting Open
Source Dependencies in Products: A Case Study

Andreas Bauer, Nikolay Harutyunyan, Dirk Riehle, and Georg-Daniel Schwarz

Friedrich-Alexander University Erlangen-Nuernberg, 91058 Erlangen, Germany
andi.bauer@fau.de, nikolay.harutyunyan@fau.de, dirk@riehle.org

georg.schwarz@fau.de

Abstract. Software vendors need to manage the dependencies of the
open source components used in their products. Without this manage-
ment, license compliance would be impossible, export restrictions could
not be maintained, and security vulnerabilities would remain unknown
to the vendor.
The management of these dependencies has grown in an ad-hoc fashion
in most companies. As such, vendors find it hard to learn from each other
and improve practices.
To address this problem, we performed exploratory single-case study
research at one large established software vendor. We gathered and an-
alyzed the key challenges of tracking and documenting open source de-
pendencies in products. We wanted to understand whether these ad-hoc
solutions could be based on a single unified conceptual model for man-
aging dependencies.
Our study suggests that underlying the various point solutions that we
found at this vendor lies a conceptual model that we tentatively call
the product (architecture) model. In future cross-vendor work, we will
investigate whether this conceptual model can be expanded to become a
unifying model for all open source dependency management.

Keywords: Open Source Software · FLOSS · FOSS · Open Source Gov-
ernance.

1 Introduction

The growth of free/libre, and open source software (FLOSS) leads the software
industry to new opportunities but also challenges. FLOSS promise significant
shortcuts by reusing existing software components in commercial products [15,
16, 13, 4, 1, 7]. However, to avoid legal and other risks of using FLOSS in commer-
cial products, such as license noncompliance, software vendors need to manage
their FLOSS dependencies. Furthermore, this allows to track known security
vulnerabilities introduced by such dependencies, as well as export restrictions
and other important metadata.

The management of FLOSS dependencies has grown in an ad-hoc fashion
in most companies. The architectural models used for this are often designed



2 A. Bauer et al.

to satisfy a managerial perspective and neglect more fine-grained issues such as
compliance information of bill of materials (BOM) details. As a consequence,
there is a mismatch between an architectural model that supports the manage-
ment of FLOSS dependencies and the models we found in industry. This leads
to costly integration operations to ensure license compliance. Many companies
develop own tooling to merge documented license information and generate more
comprehensive reports about the use of FLOSS in their products. The lack of
consistent concepts in the underlining models also causes manual intervention
in the dependency management and license compliance processes, which slows
down production. The vast, and still increasing, amount of the commercially
used open source components additionally complicates the process of license
compliance.

To address this industry-relevant yet underresearched issue, we performed
exploratory single-case study research at one large established software vendor.
We wanted to identify the challenges companies face regarding software depen-
dency documentation in the context of FLOSS license compliance and tracking.
We also studied the ad-hoc solutions to these challenges in the context of the
studied company. The main contribution of our paper is a systematic analysis of
the challenges related to the tracking and documentation of open source com-
ponents and dependencies in companies. As a result of our study, the following
categories of challenges coupled with their point solutions emerged:

– Data Gathering for the Compliance Process
– Usage of FLOSS in Products
– Custom Reports
– SPDX Support
– A Central System to Manage Products.

For each category, we report the current issues discovered in the course of the
case study, as well as the solutions found at the studied company supported by
the analyzed qualitative data through interview quotes and observatory descrip-
tions. We suggest that the identified challenges and solutions can fit together into
a conceptual model that we tentatively call the product (architecture) model,
which we will investigate and evaluate in further research aiming for broader
generalizability beyond this single-case case study.

2 Related Work

In previous work, we reported our findings on industry requirements for FLOSS
governance tools [10]. We found a hierarchical list of requirements that indicated
the following four key categories: Tracking and reuse of FLOSS components,
License compliance of FLOSS components, Search and selection of FLOSS com-
ponents, and Other requirements (security, education, etc.). We then extended
our findings in a subsequent journal article [11] with a new round of qualitative
data analysis using five additional interviews, which added the fifth category to
the proposed theory focusing on the architecture model for software products.



Challenges of Tracking and Documenting OS Dependencies in Products 3

Among other requirements for tooling, it showed that companies develop their
own tools to incorporate FLOSS governance relevant information with archi-
tectural information to manage software products. In this paper, we follow up
on the topic of software dependency documentation in the context of FLOSS
compliance, and focus on the challenges companies face in doing this. We did
not identify any literature focusing on this specific topic, but found literature on
FLOSS governance and compliance more broadly.

Hammouda et al. [8] introduced open source legality patterns, which help
with architectural design decisions motivated by legal concerns associated with
FLOSS licenses. They focus on how the interaction between different compo-
nents can be managed so that the overall product contains no license violations.
The patterns are grouped in the following categories: Interaction legality pat-
terns, Isolation legality patterns, and Licensing legality patterns. An example of
an Interaction legality pattern is to switch from static to dynamic linking if a
proprietary component depends on a strong copyleft licensed component.

Fendt et al. [3, 2] conducted practitioner-driven research on FLOSS gover-
nance, compliance, and policy. In 2016 [3], the authors suggested processes for
the successful management of FLOSS use in companies that want to avoid the re-
lated legal risks. The proposed processes were designed to serve as best practices
and a basis for corporate governance, strategy, policy, and process implementa-
tion. In 2019 [2], Fendt et al. followed up with an experience report on their
use of open source tools and services for open source license compliance. They
used several well-known tools such as SW3601 and Fossology2, integrated in a
complete compliance toolchain.

From a model perspective, the Software Package Data Exchange (SPDXTM)
specification is the de-facto standard to exchange the bill-of-materials of a prod-
uct. The goal of the SPDX specification is to enable companies and other orga-
nizations to share license and component metadata for a software package. This
specification was the result of a shared effort from different organizations to ad-
dress the needs of various participants in software supply chains [17]. The SPDX
License List is a key factor for the adoption of the SPDX standard in compa-
nies [5]. This curated list contains the commonly used open source licenses and
enables open source license identification through a unique identifier.

German et al. [6] described a method to model dependencies that are required
to build and execute a program. The classification criteria for dependencies in
this model contain information about a dependency’s type (explicit or abstract),
if it is optional, in which stage it is required (build-time, run-time, etc.), and
the usage method (stand alone, library, and more). The packages in this model
are also aware of licenses. Additionally, they suggested a method to visualize the
dependency graph of a software package based on their model. It also allowed
showing inconsistencies, such as license conflicts between packages. For their
analysis, they used packages of a FLOSS distribution (Debian 4.0) and demon-
strated how the model could help provide insights into the FLOSS ecosystem.

1 https://projects.eclipse.org/proposals/sw360
2 https://www.fossology.org



4 A. Bauer et al.

3 Research Methods

Given the unexplored nature and the practical relevance of the research topic,
we conducted a single-case case study informed by Yin [18] to study the software
dependency documentation in terms of FLOSS license compliance and tracking.
We chose the case study methodology over alternatives (e.g. grounded theory,
experiments) because of its suitability for the emerging and complex phenomena
that can be best studied in their practical contexts [18]. Given the complexities
of the corporate FLOSS use, governance, and compliance in general [9] and of
the software dependency documentation issues in particular [11], we chose a
case study company that actively uses open source components in products,
while encountering issues in tracking and documenting this use as part of the
complete product architecture.

We chose a large multinational enterprise software company with mature
FLOSS awareness and use. The company provides services to retail and enter-
prise customers, and distribute open source and closed source software to them
as well. In our search for the appropriate case study company, we leveraged
our professional network and a German industry-academia collaboration project
that two of the co-authors were part of Software Campus3. This enabled us to
find a company that is a heavy open source software user at a certain FLOSS
governance maturity level where the basics are covered but more advanced as-
pects of such governance are in flux. The latter included our focal research topic
– software dependency documentation in terms of FLOSS license compliance
and tracking. The company and the interview data are anonymized as per the
company’s request.

We outlined in the case study protocol [18] that our case study was both
descriptive and explanatory. It was descriptive in detailing reports of what the
current state of open source governance at the studied company was when it came
to the software dependency documentation focused on FLOSS license compliance
and tracking. It was explanatory in presenting some reasons why certain issues in
product architecture and open source software dependency documentation arise.
When addressing the descriptive side of our study the main co-author visited
the case study company for direct observation of the current practices in their
real-life context. As for the explanatory aspect, we conducted interviews with
five employees at the case study company to cover the breadth of issues faced
by the people in different roles responsible for product architecture and FLOSS
tracking and documentation. We interviewed employees with different views on
the usage of FLOSS within the company. The first two were FLOSS compliance
managers. The third person was a product owner and covered the role of a user
of open source. The next person was a product manager. The last person was a
developer and in his role responsible for the company’s architecture model which
was used for FLOSS compliance.

To analyze the conducted interviews, we employed computer-assisted qualita-
tive data analysis (QDA) software (CAQDAS) to ensure the systematic analysis

3 https://softwarecampus.de/



Challenges of Tracking and Documenting OS Dependencies in Products 5

of the data and the traceability of our theory to the data. Informed by Jansen’s
logic of qualitative survey research [12], we conducted an open (inductive) sur-
vey, in which the relevant topics of product architecture and FLOSS tracking
were identified through the interpretation of raw data – employee interview tran-
scripts. This approach was in contrast to the other type of qualitative surveys –
the pre-structured survey, in which some main topics, dimensions, and categories
would be defined before the study, which was not suitable for our exploratory
study on this emerging domain.

4 Results

In this section, we present our results on the challenges of tracking and docu-
menting open source dependencies in products.

As Fendt and Jäger [2] show, the required process to be compliant is more
complex than just running a license scanner tool on the codebase. Instead, it
should be embedded into a bigger process of FLOSS management. Even a com-
pany with mature FLOSS awareness and use does not always have a good solu-
tion in place to overcome all the challenges of FLOSS dependency management.
This leads to workarounds which often force a manual treatment.

In the following, we describe our findings and discuss their implications on
the whole FLOSS license compliance process. The main challenges we found are:

– Data Gathering for the Compliance Process
– Usage of FLOSS in Products
– Custom Reports
– SPDX Support
– A Central System to Manage Products.

Data Gathering for the Compliance Process If a developer wants to use
a FLOSS component it needs to be approved by the company’s open source
software office. FLOSS compliance processes are in place to manage the approval
of a FLOSS component use. Fendt et al. [3] describe that a FLOSS management
process inside their company consists of several phases. The first phase is the
Request Phase, in which development teams initiate an approval request for a
new FLOSS component they would like to use. The FLOSS compliance process
of our case study company matches this first phase by requesting the use of
a FLOSS component. The usage of only approved FLOSS components helps
avoid legal compliance risks introduced by unknown components. In our previous
studies about industry requirements on FLOSS governance and compliance tools,
we found that companies want to have an automated process of adding new
FLOSS components and their metadata into a common architectural model [11],
captured in the following requirement:

“The tool should allow automated adding of FLOSS components and their
metadata into the repository using the product architecture model” – Require-
ment 5.b. [11]



6 A. Bauer et al.

But in reality, users of FLOSS components often have to provide information
about a component by hand. This manual step of collecting information is time-
consuming and can slow down the whole approval process. The typical required
information for an approval decision includes:

– Licenses and copyright information
– Project references, like the homepage URL
– Uploaded source code and binaries, or provide location to download them
– Clarification if component include cryptographic functionalities
– Export Control Classification Number (ECCN)4

– Does the component require a specific runtime, like Java Runtime Environ-
ment (JRE).

As a key challenge at the studied company, we find that if a developer is
uncertain whether the component in a specific version is already approved, he
has to use a similar process by entering all the information about the component
into the system used for the approval process. This is time-consuming, according
to an interviewee from the case study company:

“It’s very time-consuming to collect all the necessary information to provide
the [FLOSS approval] request” – Product owner (user of open source)

Usage of FLOSS in Products Whether a FLOSS component and its license
are suitable for a company’s product also depends on how the product is to be
used. At our studied company they distinguish between the following four usage
types: 1) on-premise installation on a client’s machine; 2) providing services as
a cloud solution, aka. software-as-a-service (SaaS); 3) used as a library to be
integrated into other products; 4) internal use only. These usage types are not
exclusive and can be combined, e.g. the product is provided as a cloud service
and is only available for internal use, which increases the complexity of the
underlining architectural model.

One interviewee explained that, once a FLOSS component is listed in the
catalog of approved components, every developer can use these components in
the limits of the usage type. For example, the Microsoft SQL Server (with an
on-premises license purchased without software assurance and mobility right)5

can be bundled and shipped with a product, but you’re not allowed to use it in
a product that is a cloud service (SaaS).

For a different usage type, FLOSS components used in a product that is only
for internal use do not have to go through a costly clarification process. This
comes with the fact that internally used software is not distributed and as such,
there is no need to ensure license compliance.

”You can download everything, but once it goes into the product that’s de-
livered to customer, you have to ask: Can you use it?” – FLOSS compliance
manager

4 https://www.bis.doc.gov/index.php/licensing/commerce-control-list-
classification/export-control-classification-number-eccn

5 https://www.microsoft.com/en-us/licensing/news/updated-licensing-rights-for-
dedicated-cloud



Challenges of Tracking and Documenting OS Dependencies in Products 7

Custom Reports We found that at our case study company the management
demanded reports for their products which included information about the in-
corporated FLOSS components. This helped track FLOSS assets and assisted in
FLOSS risk management.

To provide reports of FLOSS usage in products, license information has to
be combined with the architectural documentation of a product. For that, com-
panies develop their own tools which combine all the necessary information from
different sources.

One particular challenge here is to keep reliable references between a FLOSS
component, their artifacts, and related data. Inconsistencies in these references
lead to manual data clean up work. For example, a scan for FLOSS components
would identify multiple already known components but couldn’t match them
with data from a central FLOSS management system.

“This [specific] report tries to figure out where in our vault is the third part
component and it matches with my product. Quite often it happens that it doesn’t
match even if I have provided the very similar and identical source and binaries.”
– Product owner (user of open source)

A combined model could help simplify the creation of reports and avoid
mismatches of components by inconsistent references.

SPDX Support SPDX is the defacto standard to exchange license compliance
information. This is especially useful within software supply chains, where sup-
pliers are often expected to provide SPDX documents [9] alongside the delivered
software. Many license compliance tools support SPDX as an exchange format
for license compliance information and other metadata. Therefore, companies
develop custom tools to be able to consume and produce SPDX documents.

At the case study company, we see the benefits of SPDX and integrated
support in their toolchain for it. While SPDX standardizes the exchange of
license information, a valid SPDX document can lack information and thus not
ensure a complete BOM representation. When the studied company required
the BOM from a supplier both parties had to agree on how certain information
would be stored in the SPDX document.

“But we learnt that SPDX has no clear prescription, what is required, and
what’s not, to give you, you can do this and that, and we ended up adding a
few own fields for those information we think we need.” – FLOSS compliance
manager

A Central System to Manage Products One interview partner reported
that they used a central system to manage their products in which they could
incorporate all the information needed for reports and license compliance arti-
facts. While our interview partner saw high value in having a central system, it
did not circumvent all the challenges of license compliance. For example, they
reported that relationships between components of a product were represented
only as simple dependencies. This simplification produced a high-level view on



8 A. Bauer et al.

the composition of a product, which was not enough to generate precise reports
on the full product architecture.

“[A central system] is for me not enough [. . . ] we have all the data but the
relations between things [are insufficient]” – Product manager

As described before, data gathering from different tools and systems to feed
the central system tends to be error-prone. A central system to manage products
often grew over time from a system that was not designed to ensure license
compliance in the first place. Therefore, some aspects of license compliance result
in costly operations, which constitutes another major challenge we discovered
during our case study.

5 Discussion

The previous section presents five major challenges the analyzed company has
regarding their FLOSS component management processes. In the following para-
graphs we present the implications of our findings.

Coping with Amount of FLOSS Dependencies One factor that makes
the described challenges even more difficult is the sheer quantity of FLOSS de-
pendencies. FLOSS itself is often built on top of other FLOSS, which results
in a snowball effect of dependencies. According to a report [14] from 2016, the
average commercial product 80% of the code comes from FLOSS. Our inter-
view partners also described that the sheer amount of FLOSS in their products
leads to a time-consuming FLOSS license compliance process. To cope with the
increasing amount of FLOSS dependencies, the aim is to automate the license
compliance process as much as possible.

Considering Product Shipping Information Because the architecture doc-
umentation was initially not designed with compliance information in mind, it
is difficult to deal with FLOSS in products. As described, costly operations are
required to collect and maintain license compliance information. Another effect
is that the documentation of a product does not represent the actual
shipped product. An example of such a divergence is when a product’s feature
depends on the purchased product key, like a home vs a professional version of a
product. While the product is still the same, the shipped version of the product
differs in accessible components. More detailed documentation on how a product
is used could allow deriving a BOM which only covers all necessary components
of the actual shipped product.

Describing Inter-Dependency Relationships We found that products and
their dependencies on FLOSS components and infrastructure are represented
in a simplified manner. Besides issues on representing a product in its shipped
version, FLOSS licenses may have different obligations dependent on how the
component is incorporated in a product. For example, the LGPL license family



Challenges of Tracking and Documenting OS Dependencies in Products 9

distinguishes between static and dynamic linking for applying the viral copyleft
effect. Information about required runtime environments, which also may intro-
duce additional dependencies, are hard to represent next to architectural and
license relevant information. Nevertheless, the studied company relies on this
information and has to put additional effort into developing and maintaining
custom tools to generate accurate reports and artifacts like the BOM.

Existence of an Underlying Conceptual Model Regarding an architectural
model, FLOSS license information must be incorporated in an unambiguous fash-
ion. For example, using unique SPDX license identifier instead of unstructured
text to describe the declared license. Our previous studies cover the requirements
for automation of the FLOSS compliance process, but those requirements are
not fulfilled by tools to the extent which is required [10, 11]. An elaborate rep-
resentation of inter-dependency relationships should be an inherent part of the
architectural model. Also, information for shipping the product as mentioned
above should be included in this model. The need for automation and the re-
sulting interoperability of tools suggests there is a need for a general underlying
conceptual model representing the product. The consensus on such a concep-
tual model may also help to avoid the development of company-specific tooling
solutions.

6 Limitations

Since we investigated the challenges of FLOSS dependency documentation and
tracking in the context of only one company, we do not claim generalizability
for the findings. Acknowledging this common limitation of single-case case stud-
ies, we were nonetheless able to deeply investigate this emerging research topic
identifying five advanced subtopics that went beyond the previous research on
FLOSS license compliance and dependencies. Moreover, to mitigate the antici-
pated limitation, we were careful to choose a representative company with some
familiarity of using open source components in products, but limited awareness
when it came specifically to FLOSS component tracking and documentation.

7 Conclusion

To study the emerging issue of tracking FLOSS components and dependencies in
software product architectures, we performed a case study in a multinational en-
terprise software company as part of an industry-academia collaboration project.
In this exploratory study, we conducted and analyzed five interviews with key
stakeholders of FLOSS component tracking and documentation in the studied
company.

We identified the core challenges of managing FLOSS dependencies and their
integration with existing product architecture infrastructures within a company
context. We discussed in detail the challenges related to the data gathering



10 A. Bauer et al.

for the compliance process, FLOSS usage in products, custom reports, SPDX
support, and to the centralized system for managing products.

Our study suggests that underlying the various point solutions that we found
at this vendor lies a conceptual model that we tentatively call the product (ar-
chitecture) model. In future cross-vendor work, we will investigate whether this
conceptual model can be expanded to become a unifying model for all open
source dependency management.

Acknowledgements We thank Sebastian Schmid for his generous feedback
that helped us improve the paper significantly. We also thank our industry part-
ners that provided their valuable time and expertise for this research project.
This research was funded by BMBFs (Federal Ministry of Education and Re-
search) Software Campus 2.0 project (OSGOV, 01IS17045).

References

1. Deshpande, A., Riehle, D.: The total growth of open source. In: IFIP International
Federation for Information Processing, vol. 275, pp. 197–209. Springer US, Boston,
MA (2008). https://doi.org/10.1007/978-0-387-09684-1 16

2. Fendt, O., Jaeger, M.: Open source for open source license compliance.
In: Bordeleau, F., Sillitti, A., Meirelles, P., Lenarduzzi, V. (eds.) Open
Source Systems. pp. 133–138. Springer International Publishing, Cham (2019).
https://doi.org/10.1007/978-3-030-20883-7 12

3. Fendt, O., Jaeger, M., Serrano, R.J.: Industrial Experience with Open
Source Software Process Management. Proceedings - International
Computer Software and Applications Conference 2, 180–185 (2016).
https://doi.org/10.1109/COMPSAC.2016.138

4. Fitzgerald: The Transformation of Open Source Software. MIS
Quarterly 30(3), 587 (2006). https://doi.org/10.2307/25148740,
http://www.jstor.org/stable/10.2307/25148740

5. Gandhi, R., Germonprez, M., Link, G.J.: Open data standards for open source
software risk management routines: An examination of SPDX. Proceedings of the
International ACM SIGGROUP Conference on Supporting Group Work pp. 219–
229 (2018). https://doi.org/10.1145/3148330.3148333

6. German, D.M., González-Barahona, J.M., Robles, G.: A model to under-
stand the building and running inter-dependencies of software. Proceedings
- Working Conference on Reverse Engineering, WCRE pp. 140–149 (2007).
https://doi.org/10.1109/WCRE.2007.5

7. Hammond, J., Santinelli, P., Billings, J.J., Ledingham, B.: The tenth annual future
of open source survey. Black Duck Software (2016)

8. Hammouda, I., Mikkonen, T., Oksanen, V., Jaaksi, A.: Open source le-
gality patterns: Architectural design decisions motivated by legal concerns.
Proceedings of the 14th International Academic MindTrek Conference: En-
visioning Future Media Environments, MindTrek 2010 pp. 207–214 (2010).
https://doi.org/10.1145/1930488.1930533

9. Harutyunyan, N.: Corporate Open Source Governance of Software Supply Chains.
doctoralthesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) (2019)



Challenges of Tracking and Documenting OS Dependencies in Products 11

10. Harutyunyan, N., Bauer, A., Riehle, D.: Understanding industry re-
quirements for FLOSS governance tools. In: IFIP Advances in In-
formation and Communication Technology. vol. 525, pp. 151–167.
Springer, Cham (jun 2018). https://doi.org/10.1007/978-3-319-92375-8 13,
http://link.springer.com/10.1007/978-3-319-92375-8 13

11. Harutyunyan, N., Bauer, A., Riehle, D.: Industry requirements for FLOSS
governance tools to facilitate the use of open source software in com-
mercial products. Journal of Systems and Software 158, 110390 (2019).
https://doi.org/10.1016/j.jss.2019.08.001

12. Jansen, H.: The logic of qualitative survey research and its position in the field of
social research methods. In: Forum Qualitative Sozialforschung/Forum: Qualitative
Social Research. vol. 11 (2010)

13. von Krogh, G., von Hippel, E.: The Promise of Re-
search on Open Source Software. Management Science 52(7),
975–983 (jul 2006). https://doi.org/10.1287/mnsc.1060.0560,
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.1060.0560

14. Pittenger, M.: Open source security analysis: The state of open source security in
commercial applications. Black Duck Software, Tech. Rep (2016)

15. Riehle, D.: The economic motivation of open source software: Stakeholder perspec-
tives. Computer 40(4), 25–32 (apr 2007). https://doi.org/10.1109/MC.2007.147,
http://ieeexplore.ieee.org/document/4160218/

16. Riehle, D.: The commercial open source business model. In: Lec-
ture Notes in Business Information Processing. vol. 36 LNBIP,
pp. 18–30 (2009). https://doi.org/10.1007/978-3-642-03132-8 2,
http://link.springer.com/10.1007/978-3-642-03132-8 2

17. Stewart, K., Odence, P., Rockett, E.: Software Package Data Exchange (SPDXTM)
Specification. International Free and Open Source Software Law Review 2(2), 191–
196 (2012). https://doi.org/10.5033/ifosslr.v4i1.45, https://spdx.org/

18. Yin, R.K.: Case study research and applications: Design and methods. Sage pub-
lications (2017)


