
Corporate Open Source Governance of
Software Supply Chains

Open Source Governance der Software-Lieferketten in Firmen

Der Technischen Fakultät
der Friedrich-Alexander-Universität

Erlangen-Nürnberg
zur

Erlangung des Doktorgrades

Doktor-Ingenieur (Dr.-Ing.)

vorgelegt von

Nikolay Harutyunyan

Als Dissertation genehmigt
von der Technischen Fakultät
der Friedrich-Alexander-Universität Erlangen-Nürnberg

Tag der mündlichen Prüfung: 30. September 2019
Vorsitzender des Promotionsorgans: Prof. Dr.-Ing. Reinhard Lerch
Gutachter: Prof. Dr. Dirk Riehle

Prof. Dr. Björn Lundell

©2019 – Nikolay Harutyunyan
all rights reserved.

Abstract
Today most software products incorporate free/libre and open source software (FLOSS)
components. FLOSS components are used in development infrastructures, generic and non-differen-
tiating features and functionalities, web browsers, databases, and operating systems. Some software
products are built on top of FLOSS frameworks. Open source software usage often ensures lower
cost, higher quality, and quick availability, especially when using generic software components and
libraries.

Using open source software in products comes with legal, business, and technical risks, however.
A major challenge for companies is understanding and complying with licenses and regulations
related to the FLOSS components they use in their products. On a deeper level, these issues go be-
yond the in-house software development, including complete software supply chains and FLOSS
components used within them. The potential risks of using open source components can result in
litigation due to open source license non-compliance, copyright infringement, or loss of intellec-
tual property. There are several ongoing court cases in Germany, in China, and in the USA, which
highlight the significance of the above-mentioned risks.

Companies can address the risks of FLOSS use by establishing corporate open source governance –
a set of processes, best practices, and tools employed by companies to govern the use of FLOSS com-
ponents as parts of their commercial products while minimizing their risks and maximizing their
benefit from such use. Corporate open source governance covers topics of open source component
selection and approval, ensuring open source license compliance through code scans and audits, as
well as bill of materials management focused on open source component and their metadata, etc.

The goal of our research project was to build a methodological framework for corporate open
source governance in companies with software-intensive products. In the scope of this dissertation,
we researched the state of the art regarding the corporate open source governance in the literature,
built a theory of industry best practices for corporate open source governance based on expert inter-
views and other primary materials, and evaluated the proposed theory through a multiple-case case
study at German companies operating internationally.

In the first stage, we studied the state of the art in academic research through a literature review
of 87 publications on the topic. We conducted a qualitative data analysis of the papers, deriving the
core concepts of corporate open source governance from the literature – risks of the ungoverned
FLOSS use, getting started with FLOSS governance, inbound governance, supply chain manage-
ment, outbound governance, and general governance. We then mapped the reviewed papers to the

iv

identified core concepts and presented highlights on each concept, which were later com-pared with
the insights from the proposed theory.

In the second stage, we asked the overarching research question of how companies using open
source components in their products should govern this use based on the industry best practices.
Taking a practice-based approach, we conducted a qualitative survey that included 20 primary mate-
rials (published governance guidelines, white papers, slides) and 21 expert interviews at 15 companies
with an advanced understanding of open source governance. Based on the findings from the qual-
itative survey, we built a theory of industry best practices for corporate open source governance,
with a particular focus on supply chain management. Our theory proposes industry best practices
on the core topics of FLOSS governance in companies – getting started with corporate open source
governance, inbound governance, outbound governance, general governance, and the focal topic
of the study – supply chain management in the context of open source governance. Going beyond
the textual presentation of the theory, we also presented our findings in an actionable and industry-
friendly format of interconnected best practice patterns that formed a handbook for corporate open
source governance. We attached excerpts from our governance handbook in the appendix of this
dissertation.

In the third stage, we evaluated the proposed theory through a multiple-case case study with a
holistic design at two case studies in production-level projects at two large German companies that
used open source software in their products, but lacked open source governance. Case Study A was
a 2.5-year longitudinal study into a company that was just getting started with open source gover-
nance. This enabled us to evaluate the getting started and inbound governance aspects of our the-
ory. The length of the study enabled us to thoroughly analyze the current use of open source soft-
ware and its informal governance in the various divisions of the company, followed by the guided
implementation of the industry best practices from our theory. We then observed how the best
practices were applied in a real-life production environment. Case Study B was a one-year longi-
tudinal study into a company that already has the fundamental framework for open source gov-
ernance, but lacks processes and practices for governing the use of open source software from its
supply chain. Using the initial situation assessment as a baseline, we implemented the industry best
practices on supply chain management from our theory. We then observed the effectiveness of the
proposed practices in improving FLOSS governance and the drawbacks of these practices. In both
case studies, we evaluated our theory using the quality criteria of completeness, variability, structure,
comprehension, understandability, applicability, relevance, significance, and usefulness.

We conclude the dissertation by discussing the key results highlighting the value of our contribu-
tion to both academia and industry. On one hand, our research publications enrich the academic
research on open source governance. On the other hand, practitioners can follow the suggested best
practices applying the governance handbook we developed. We also discussed limitations of this dis-
sertation to both theory building and theory evaluation. We then suggested directions for further
research that could enrich the topic of corporate open source governance, for example industry best
practices for open source license compliance and its automation, setting up and managing an open
source program office, open source component search and selection, and release management.

v

Zusammenfassung
Heutzutage enthalten die meisten Softwareprodukte Free/Libre- und Open-Source-
Software (FLOSS)-Komponenten. FLOSS-Komponenten werden in Entwicklungsinfrastruk-
turen, generischen und nicht-differenzierenden Features und Funktionalitäten, Webbrowsern,
Datenbanken und Betriebssystemen eingesetzt. Einige Softwareprodukte basieren auf FLOSS-
Frameworks. Die Nutzung von Open-Source-Software gewährleistet oft niedrigere Kosten, höhere
Qualität und schnelle Einsatzfähigkeit, insbesondere bei der Verwendung generischer Softwarekom-
ponenten und Bibliotheken.

Der Einsatz von Open-Source-Software in Produkten birgt jedoch rechtliche, wirtschaftliche
und technische Risiken. Ein großes Problem für Unternehmen ist das Verständnis und die Ein-
haltung von Lizenzen und Regularien im Zusammenhang mit den FLOSS Komponenten, die sie
in ihren Produkten verwenden. Auf einer tieferen Ebene gehen diese Fragen über die eigene Soft-
wareentwicklung hinaus, einschließlich kompletter Software-Lieferketten und der darin verwen-
deten FLOSS-Komponenten. Die potenziellen Risiken bei der Verwendung von Open-Source-
Komponenten können zu Rechtsstreitigkeiten aufgrund von Verstößen gegen die Open-Source-
Lizenz, Urheberrechtsverletzungen oder dem Verlust geistigen Eigentums führen. In Deutschland,
China und den USA gibt es mehrere laufende Gerichtsverfahren, die die Bedeutung der oben genan-
nten Risiken verdeutlichen.

Unternehmen können die Risiken der Nutzung von FLOSS adressieren, indem sie eine Reihe
von Prozessen, Erfolgsmethoden und Tools einführen, um FLOSS-Komponenten als Teil ihrer
kommerziellen Produkte zu verwenden, während sie ihre Risiken minimieren und ihren Nutzen aus
einer solchen Nutzung maximieren. Corporate Open Source Governance umfasst Themen wie die
Auswahl und Genehmigung von Open Source-Komponenten, die Sicherstellung der Einhaltung
von Open Source-Lizenzen durch Code-Scans und Audits, die Stücklistenverwaltung mit Schwer-
punkt auf Open Source-Komponenten und deren Metadaten, etc.

Ziel unseres Forschungsprojektes war es, einen methodischen Rahmen für Corporate Open
Source Governance in Unternehmen mit softwareintensiven Produkten zu schaffen. Im Rahmen
dieser Dissertation haben wir den Stand der Technik der Corporate Open Source Governance Liter-
atur gründlich untersucht, eine Theorie der branchenspezifischen Erfolgsmethoden für Corporate
Open Source Governance auf der Grundlage von Experteninterviews und anderen Primärmate-
rialien erstellt und die vorgeschlagene Theorie durch eine mehrteilige Fallstudie bei international
tätigen deutschen Unternehmen bewertet.

vi

In der ersten Phase haben wir den Stand der Technik in der Forschung durch eine Literatur-
recherche von 87 Publikationen zu diesem Thema untersucht. Wir führten eine qualitative Date-
nanalyse der Papiere durch und leiteten die Kernkonzepte der Corporate Open Source Governance
aus der Literatur ab – Risiken der unkontrollierten Nutzung von FLOSS, Einstieg in die FLOSS
Governance, Inbound Governance, Lieferketten Management, Outbound Governance und General
Governance. Wir haben dann die überprüften Papiere den identifizierten Kernkonzepten zugeord-
net und Highlights zu jedem Konzept präsentiert, die wir mit den Erkenntnissen aus der vorgeschla-
genen Theorie vergleichen.

In der zweiten Phase stellten wir die übergreifende Forschungsfrage, wie Unternehmen, die
Open-Source-Komponenten in ihren Produkten verwenden, diese Nutzung auf der Grundlage
der Erfolgsmethoden der Branche regeln sollten. Mit einem praxisorientierten Ansatz führten wir
eine qualitative Studie durch, die 20 Primärmaterialien (veröffentlichte Governance-Richtlinien,
Whitepaper, Folien) und 21 Experteninterviews bei 15 ausgewählten Unternehmen mit einem fort-
geschrittenen Verständnis von Open Source Governance umfasste. Basierend auf den Ergebnissen
der qualitativen Studie haben wir eine Theorie der branchenspezifischen Erfolgsmethoden für Cor-
porate Open Source Governance mit besonderem Fokus auf Lieferketten Management entwick-
elt. Unsere Theorie schlug branchenspezifische Erfolgsmethoden zu den Kernthemen von FLOSS
Governance in Unternehmen vor - den Einstieg in Corporate Open Source Governance, Inbound
Governance, Outbound Governance, General Governance und das Schwerpunktthema der Studie
- Lieferketten Management im Kontext von Open Source Governance. Über die textuelle Darstel-
lung der Theorie hinaus präsentierten wir unsere Ergebnisse auch in einem umsetzbaren und indus-
triefreundlichen Format von vernetzten Erfolgsmethoden-Mustern, die ein Handbuch für Corpo-
rate Open Source Governance bildeten. Auszüge aus unserem Governance-Handbuch haben wir im
Anhang dieser Dissertation beigefügt.

In der dritten Phase bewerteten wir die vorgeschlagene Theorie durch eine mehrteilige Fallstudie
mit einem ganzheitlichen Design in zwei Fallstudien in Projekten auf Produktionsniveau bei zwei
großen deutschen Unternehmen, die Open-Source-Software in ihren Produkten verwendeten,
aber keine Open-Source-Governance hatten. Fallstudie A war eine 2,5-jährige Längsschnittstudie
über ein Unternehmen, das gerade erst mit Open Source Governance begann. Dies ermöglichte
es uns, die Aspekte des Getting Started und der Inbound-Governance unserer Theorie zu bew-
erten. Die Länge der Studie ermöglichte es uns, den aktuellen Einsatz von Open-Source-Software
und deren informelle Governance in den verschiedenen Bereichen des Unternehmens gründlich zu
analysieren, gefolgt von der gezielten Umsetzung der branchenspezifischen Erfolgsmethoden aus
unserer Theorie. Anschließend beobachteten wir, wie die Erfolgsmethoden in einer realen Produk-
tionsumgebung angewendet wurden. Fallstudie B war eine einjährige Längsschnittstudie über ein
Unternehmen, das bereits über den grundlegenden Rahmen für Open Source Governance verfügt,
aber keine Prozesse und Praktiken für die Regelung der Nutzung von Open Source Software aus
seiner Lieferkette hat. Ausgehend von der Ausgangssituation als Grundlage haben wir die branchen-
spezifischen Erfolgsmethoden für das Lieferketten Management aus unserer Theorie implementiert.
Anschließend beobachteten wir die Wirksamkeit der vorgeschlagenen Praktiken zur Verbesserung
der FLOSS Governance und die Nachteile dieser Praktiken. In beiden Fallstudien haben wir un-
sere Theorie anhand der Qualitätskriterien Vollständigkeit, Variabilität, Struktur, Verständnis, Ver-
ständlichkeit, Anwendbarkeit, Relevanz, Bedeutung, und Nützlichkeit bewertet.

vii

Abschließend diskutieren wir die wichtigsten Ergebnisse, die den Wert unseres Beitrags für Wis-
senschaft und Industrie verdeutlichen. Zum einen bereichern unsere Forschungspublikationen die
wissenschaftliche Forschung zur Open Source Governance. Auf der anderen Seite können Praktiker
den vorgeschlagenen Erfolgsmethoden folgen und das von uns entwickelte Gover-nance-Handbuch
anwenden. Wir diskutierten auch die Grenzen dieser Dissertation sowohl für den Theorieaufbau als
auch für die Theoriebewertung. Dann schlugen wir Richtungen für weitere Forschungen vor, die
das Thema Corporate Open Source Governance bereichern könnten, z.B. branchenspezifische Er-
folgsmethoden für Open Source Lizenzkonformität und deren Automatisierung, Einrichtung und
Verwaltung eines Open Source Programmbüros, Open Source Komponentensuche und -auswahl
sowie Release-Management.

viii

Contents

1 Introduction 1
1.1 Publications . 8
1.2 Dissertation Structure . 11

2 State of The Art 15
2.1 Overview . 16
2.2 Research Question . 22
2.3 Research Method . 22
2.4 Risks of Open Source Use in Companies . 26
2.5 Open Source Governance in Companies . 27

2.5.1 Getting Started . 28
2.5.2 Inbound Governance . 31
2.5.3 Supply Chain Management . 33
2.5.4 Outbound Governance . 35
2.5.5 General Governance . 36

3 Theory of Industry Best Practices for Open Source Governance 39
3.1 Overview . 40
3.2 Research Question . 44
3.3 Research Method . 45

3.3.1 Sampling . 46
3.3.2 Data Gathering . 56
3.3.3 Data Analysis . 61
3.3.4 Theory Presentation . 64

3.4 Industry Best Practices for Corporate Open Source Governance 67
3.4.1 Getting Started . 70
3.4.2 Inbound Governance . 87
3.4.3 Supply Chain Management . 103
3.4.4 Outbound Governance . 125
3.4.5 General Governance . 131

ix

4 Theory Evaluation 135
4.1 Overview . 136
4.2 Research Question . 138
4.3 Research Method . 139

4.3.1 Sampling . 143
4.3.2 Data Gathering . 153
4.3.3 Data Analysis . 160

4.4 Case Study A . 164
4.4.1 Initial Situation Assessment . 166
4.4.2 Evaluation of Getting Started . 184
4.4.3 Evaluation of Inbound Governance . 200

4.5 Case Study B . 213
4.5.1 Initial Situation Assessment . 214
4.5.2 Evaluation of Supply Chain Management 223

4.6 Case Study C . 240
4.6.1 Initial Situation Assessment . 241
4.6.2 Failed Evaluation . 256

5 Conclusion 263
5.1 Discussion . 264
5.2 Limitations . 268

5.2.1 Limitations for Theory Building . 268
5.2.2 Limitations for Theory Evaluation . 269

Appendix A Selected Practices for Getting Started 273
A.1 Transition Organization . 274
A.2 Transition Policy . 284
A.3 Product Analysis . 288
A.4 IP-at-Risk Analysis . 296
A.5 Communication and Capabilities . 304

Appendix B Selected Practices for Supply Chain Management 309
B.1 Supply Chain Management Policy . 311
B.2 Supply Chain Management Process . 318
B.3 Preventive Governance . 328
B.4 Corrective Governance . 333

Appendix C Data Gathering – Interview Questions 343
C.1 Interview Questions – Expert Interviews for Theory Building 344
C.2 Interview Questions – Situation Assessment for Theory Evaluation 348
C.3 Interview Questions – Theory Evaluation after Handbook Implementation 355

x

Appendix D Qualitative Data Analysis – Code Systems 363
D.1 QDA Code System – Literature Review . 364
D.2 QDA Code System – Theory Building . 368

Appendix E Evaluation Case Study Protocol 375
E.1 Protocol Summary . 376
E.2 Case Study Overview . 376
E.3 Data Collection Procedures . 382
E.4 Data Collection Questions . 383
E.5 Case Study Reporting . 384

Appendix F Handbook Implementation Artifacts 387
F.1 Case Study A – Overview of FLOSS Governance Processes 388
F.2 Case Study A – FOSSology Report Excerpt from Division A.1 394
F.3 Case Study B – Supplier Questionnaire on FLOSS Governance Maturity 398
F.4 Case Study B – SPDX Requirements for Suppliers 401
F.5 Case Study B – Continuous Compliance Process 404
F.6 Case Study C – Tooling for FLOSS Governance and Compliance 408

References 411

xi

xii

List of Figures

2.1 Corporate Open Source Governance Concepts from Literature 28

3.1 Corporate Open Source Governance Best Practices from Proposed Theory 43
3.2 Theory Building – Excerpt from Theoretical Sampling 49
3.3 Theory Building – Map of Interviewee Countries 58
3.4 Theory Presentation – Best Practice Pattern . 66
3.5 Example Process Template – Product Analysis 75
3.6 Example Process Template – Transition Organization 81
3.7 Example Process Template 1 – Component Approval 95
3.8 Example Process Template 2 – Component Approval 95
3.9 Example Process Template 1 – Component Reuse 101
3.10 Example Process Template 2 – Component Reuse 101
3.11 Example Process Template 1 – Supply Chain Management 105
3.12 Example Process Template 2 – Supply Chain Management 106

4.1 Theory Evaluation – Map of Interviewee Countries 155
4.2 Case Study A – Matrix of Open Source Use at Division A.1 176
4.3 Case Study A – FOSSology Report Excerpt from Division A.1 187
4.4 Case Study A – Handbook Screenshot on Editive Collaboration Platform 191
4.5 Case Study A – Overview of Getting Started Processes 204
4.6 Case Study A – Overview of Component Approval Processes 205
4.7 Case Study B – First Page of Supplier Questionnaire on Governance Maturity . . . 226
4.8 Case Study B – Last Page of Supplier Questionnaire on Governance Maturity . . . 227
4.9 Case Study B – Excerpt from SPDX Requirements Specification 229
4.10 Case Study B – Proposed Continuous Compliance Process 232
4.11 Case Study C – Tooling for FLOSS Governance and Compliance 259
4.12 Case Study C – Tool Requirements for License Compliance 260

A.1 Transition Organization Process Template 1 . 274
A.2 Transition Organization Process Template 2 . 274
A.3 Transition Policy Process Template . 284
A.4 Product Analysis Process Template 1 . 288
A.5 Product Analysis Process Template 2 . 288

xiii

B.1 Supply Chain Management Process Template 1 310
B.2 Supply Chain Management Process Template 2 310

F.1 Implementation Artifact at Case Study A – Getting Started 389
F.2 Implementation Artifact at Case Study A – General Governance 390
F.3 Implementation Artifact at Case Study A – Component Approval 390
F.4 Implementation Artifact at Case Study A – Component Reuse 391
F.5 Implementation Artifact at Case Study A – Supply Chain Management 392
F.6 Implementation Artifact at Case Study A – Outbound Governance 393
F.7 Implementation Artifact at Case Study B – Continuous Compliance Process V1 . . 405
F.8 Implementation Artifact at Case Study B – Continuous Compliance Process V2 . . 406
F.9 Implementation Artifact at Case Study B – Continuous Compliance Process V3 . . 406
F.10 Implementation Artifact at Case Study B – Continuous Compliance Process V4 . 407
F.11 Implementation Artifact at Case Study B – Continuous Compliance Process V5 . . 407
F.12 Implementation Artifact at Case Study C – Requirements for Tracking and Reuse 409
F.13 Implementation Artifact at Case Study C – Requirements for License Compliance 410

xiv

List of Tables

2.1 Literature Survey – Papers on Corporate Open Source Governance 21

3.1 Theory Building – Sampled Companies . 52
3.2 Theory Building Data Sources – Expert Interviews 59
3.3 Theory Building Data Sources – Primary Materials 61
3.4 BP – Establish a process of continuous reporting and assessment 73
3.5 BP – Establish FLOSS governance policy for the transition period 77
3.6 BP – Establish the transition process . 80
3.7 BP – Create license-use case pairs . 83
3.8 BP – Design employee training . 86
3.9 BP – Define the component approval process 93
3.10 BP – Make a component approval decision . 94
3.11 BP – Establish component reuse process . 100
3.12 BP – Establish supply chain management policy 111
3.13 BP – Implement supply chain management process 115
3.14 BP – Design supplier contracts with open source governance aspects in mind . . . 118
3.15 BP – Do not run your supplier out of business 120
3.16 BP – Use machine readable and standard format for BOM upon software supply . 122
3.17 BP – Review license obligations in the context of supply chain management 124
3.18 BP – Ensure license compliance . 130
3.19 BP – Establish an open source program office 133

4.1 Theory Evaluation Data Sources – Case Studies 157

D.1 QDA Code System – Literature Review . 368
D.2 QDA Code System – Theory Building . 374

xv

xvi

Acronyms and Abbreviations

AGPL GNU Affero General Public License

B2B business-to-business

B2C business-to-consumer

BoM bill of materials

BP (proposed) best practice

BRR Business Readiness Review

BSD Berkeley Software Distribution (license)

BU business unit

FAU Friedrich-Alexander-University Erlangen-Nuremberg

FLOSS free/libre open source software

GCC GNU Compiler Collection

GENGOV general governance

GETSTA getting started (with corporate open source governance)

GPL GNU General Public License

GT governance tool providers

ICSE International Conference on Software Engineering

IDE integrated development environment

IFOSSLR International Free and Open Source Software Law Review

INBGOV inbound governance

IoT internet of things

IP intellectual property

IT information technology (department)

LGPL GNU Lesser General Public License

MC management consulting

MIS Management Information Systems

xvii

OEM original equipment manufacturer

OP other products incorporating software

OpenGL Open Graphics Library

OS open source

OSADL Open Source Automation Development Lab eG

OSCT Open Source Compliance Team

OSF open source foundation

OSGOV (corporate) open source governance

OSPO Open Source Program Office

OSS open source software

OSSCO Open Source Software Compliance Officer

OUTGOV outbound governance

PROANA product analysis

PT process template

QDA qualitative data analysis

RQ-TE research question – theory evaluation

RQ research question

SaaS software as a service

SCM supply chain management

SDS software development service

SP-CS software product vendor for closed source software

SP-OS software product vendor for open source software

SPDX Software Package Data Exchange

SUCHMA supply chain management

SWOT strengths, weaknesses, opportunities, threats

TPP third-party program

UI user interface

WP work package

xviii

xix

Dedicated to Nikolay Smbatovich, Armen, Hasmik, Viktor and Shushan

xx

Acknowledgments

I am grateful to my academic mentors, colleagues, and industry partners for the support, aca-

demic contributions, and fun memories in the course of my doctoral studies.

I thank my professor Dirk Riehle for the invaluable guidance from the very beginning of my

project and for the freedom to work on the dissertation, as well as for putting together a research

group that was a pleasure to work with.

I thank my colleagues at the Open Source Research Group – Ann Barcomb, Andreas Bauer,

Fariba Bensing, Maximilian Capraro, Hannes Dohrn, Michael Dorner, Andreas Kaufmann, Daniel

Knogl, and Georg Schwarz. Thank you each for the support, advice, feedback, constructive criti-

cism, interesting conversations, and lifelong memories with and without 30-year-old port. Ann and

Andi, thank you for the research collaboration and your contributions to my thesis. Andreas, thank

you for being a great office mate and cheerleader. Max, Hannes, Michi, thank you for the numerous

discussions on research methods and ideas. I also thank Annika Donhauser for her diligence and

contribution to my research project as a working student.

I thank my research partners from the industry for their contributions to my research, funding,

and data that made this research project possible. I thank Christian, Martin, Ralf, Richard, Rolf, To-

bias, and Ursula from the case study companies. Among others, I also thank Alan, Alexios, David,

xxi

Lukas, and Mark for the insightful expert interviews. I thank BMBF’s (Federal Ministry of Educa-

tion and Research) Software Campus 2.0 project for the partial funding of my research. I also thank

the researchers and industry experts I met at numerous conferences and events, including Bitkom,

CROSS, EuroPLoP, HICSS, OODACH, OpenSym, and OSS.

Last but not least, I thank Shushan for her support and inspiration. Among others, I also thank

my friends Arshak, Basti, Ben, Bettina, Ernst, Henrik, Hovo, Jake, and Katha.

xxii

1
Introduction

Companies have been using open source tools for software development for a long time [40]

[46] [126] [125] [88], but in recent years more and more companies have been introducing open

source components into their products with an estimate of above 90% of all commercial software

including open source software [47]. While beneficial, this carries certain risks if a company has no

rules or guidelines for such use of open source components.

The ungoverned open source use can be problematic to companies, if there is no defined pro-

1

cess for checking and documenting the components and their metadata before use. One common

problem is non-compliance with open source licenses. Often software developers use open source

components freely available on the web (e.g. on GitHub.com) without checking the licenses of

the source code. While open source software is free, it does come with usage rules, that is licenses.

Certain open source licenses require component users to open source (publish and use appropriate

license) the software created using the components licensed under these licenses (e.g. GNU Gen-

eral Public License (GPL)). This concept is called copy-left effect and such licenses are referred to as

copy-left licenses. Not complying with copy-left licenses can get the user sued, which has happened

in the past with court decisions in favor of the open source license enforcers.

A recent example in the aerospace industry was the case of CoKinetic Systems Corporation1.

One of the allegations was that Panasonic willfully violated GPL v2 open source license require-

ments. This comes to show that even market leaders like Panasonic, with about 70% share of the

embedded in-flight entertainment hardware market, need to consider threats of open source license

non-compliance and establish open source governance processes. The costs of being threatened with

lawsuits include legal costs, reputation loss, and wasted management attention. If a lawsuit is filed,

the company could be forced to reveal undesired information about its products and know-how. It

can also be forced to recall its products that violate certain open source license requirements [129]

[131]. The threats can translate into actual costs and losses for a company, including:

• Legal costs (litigation-related costs, lawyer fees, etc.)

• Compliance costs (costs of establishing compliance under time pressure)

• Financial costs (license and other fees, potential punitive damages)

• Production costs (cease and desist, product recall, etc.)

• Reputation loss / damage

• Undesired revealing of information (source code of the core product)

1From Web Archive – CoKinetic Systems, Corp. files Monopolization Claim Against Panasonic Avionics
Corporation; Seeks Damages In Excess of $100 Million

2

https://web.archive.org/web/20170312130807/http://www.cokinetic.com/2017/03/01/cokinetic-systems-corp-files-monopolization-claim-against-panasonic-avionics-corporation-seeks-damages-in-excess-of-100-million/
https://web.archive.org/web/20170312130807/http://www.cokinetic.com/2017/03/01/cokinetic-systems-corp-files-monopolization-claim-against-panasonic-avionics-corporation-seeks-damages-in-excess-of-100-million/

• Increased risk of more lawsuits, and other risks.

We suggest corporate open source governance as a measure to mitigate and prevent the above-

mentioned threats and risks. To mitigate these risks companies must govern their use of open source

software thought FLOSS governance processes and guidelines.

We define FLOSS governance as the set of processes, best practices, and tools employed by com-

panies to govern the use of FLOSS components as parts of their commercial products while mini-

mizing their risks and maximizing their benefit from such use [68]. In the context of this disserta-

tion, the definition of FLOSS governance should not be confused with other definitions that cover

the governance of open source communities or projects, such as the definition by Markus [107]:

“[Open source governance is defined as] the means of achieving the direction, control, and coordi-

nation of wholly or partially autonomous individuals and organizations on behalf of an open source

software (OSS) development project to which they jointly contribute”.

FLOSS governance can apply to the commercial use, contribution or leadership of open source

projects. However, we limited the scope of this dissertation to the corporate use of open source

components only, intentionally excluding governance considerations of companies contributing to

or leading open source communities or projects. This focus enabled us to build and present a de-

tailed theory covering multiple aspects of getting started with open source governance in companies,

a topic of the highest practical relevance to most companies today and novel to FLOSS research [72].

Depending on the maturity of a company’s open source governance, it can cover topics such as

governance management, open source program office, license compliance, component search, com-

ponent selection, component approval, component integration, component repository and reuse,

software product model, supply chain management, communication, capabilities and more. In this

project, we touched on several best practice categories of FLOSS governance, while maintaining our

focus on supply chain management. We choose these topics as they are both novel in the research

community and of high industry significance. The topics we considered are based on our review

of the related literature, presented in detail in Chapter 2, and from the initial analysis of the expert

3

interviews, we conducted as part of theory building, presented in detail in Chapter 3. Some of the

FLOSS governance topics and subtopics we identified include:

• Getting Started with Open Source Governance (transition to governance and risk analysis)

• Inbound Governance (component search and component approval)

• Supplier Management (bill of materials management and supplier audit)

• Outbound Governance (license compliance and release management)

• General Governance (open source program office and governance strategy).

Given the breadth of the topic of FLOSS governance, we limited the scope of this three-year re-

search project to cover a mix of basic, intermediary and advanced subtopics. We focused our study

on:

• Getting Started with Open Source Governance

• Inbound Governance

– Component Approval

– Component Repository

• Supply Chain Management

• Outbound Governance

• General Governance.

To cover the whole space of the issues on corporate open source governance emerging from the

state-of-the-art review, we formulated the following research questions:

• RQ-TB1: How should companiॽ using open source components in their products get started

with open source governance based on existent industry best practicॽ?

• RQ-TB2: How should companiॽ using open source components in their products govern the

inbound aspects of the FLOSS use?

4

• RQ-TB3: How should companiॽ using open source components in their products govern their

software supply chains?

• RQ-TB4: How should companiॽ using open source components in their products govern the

outbound aspects of the FLOSS use?

To answer the research questions, we employed the research method of qualitative survey [77].

This dissertation presents a qualitative survey exploring the open source governance experiences

of the 21 experts we interviewed from the 15 companies that use open source components in their

products and have an advanced understanding of open source governance processes and practices,

as well as other primary materials (e.g. FLOSS governance guidelines, white papers). We performed

data gathering and analysis using formal semi-structured interviews, researcher notes, and materials

review. We interviewed FLOSS governance experts from 15 diverse companies chosen through a

theoretical sampling of more than 140 companies in our network.

The contribution of the dissertation is a theory of industry best practices for corporate open

source governance, presented in full detail in Chapter 3. The theory proposes a number of best prac-

tices we identified in the following thematic areas:

• Getting Started with Open Source Governance

– Product Analysis (OSGOV-GETSTA-PROANA) - 8 best practices

– Transition Organization (OSGOV-GETSTA-TRAORG) - 8 best practices

– Transition Policy (OSGOV-GETSTA-TRAPOL) - 3 best practices

– IP-at-Risk Analysis (OSGOV-GETSTA-IPRISK) - 9 best practices

– Communication and Capabilities (OSGOV-GETSTA-COMCAP) - 5 best practices

• Inbound Governance

– Component Approval (OSGOV-INBGOV-COMAPP) - 13 best practices

– Component Reuse (OSGOV-INBGOV-COMREU) - 19 best practices

• Supply Chain Management

5

– Supply Chain Management Policy (OSGOV-SUCHMA-SCMPOL) - 3 best practices

– Supply Chain Management Process (OSGOV-SUCHMA-SCMPRO) - 5 best practices

– Preventive Governance (OSGOV-SUCHMA-PREGOV) - 4 best practices

– Corrective Governance (OSGOV-SUCHMA-CORGOV) - 4 best practices

– Bill of Materials Management (OSGOV-SUCHMA-BOMMAN) - 4 best practices

– License Compliance for Supply Chain (OSGOV-SUCHMA-LICCOM) - 2 best prac-

tices

• Outbound Governance

• General Governance.

Each of these themes covers a subset of industry best practices from our theory. We cast the in-

dividual best practices in the format of context-problem-solution patterns that, when combined,

form a practical handbook of getting started with FLOSS governance in companies. The handbook

section on getting started with FLOSS governance is presented in Appendix A, while that on supply

chain management is presented in Appendix B. This format is well structured allowing for intercon-

nection of best practices within and across the thematic subsections. At the same time, this format

is actionable and highly practice-relevant, as it enables the industry to apply the findings of our re-

search by adapting and applying the best practices we identified in their companies. The latter was a

priority of ours, as we wanted to increase the potential impact of our work.

The proposed theory covers multiple aspects of corporate open source governance based on the

qualitative data analysis of the expert interviews conducted over the course of three years. Beyond

proposing a theory for corporate open source governance, we went on to evaluate it through case

studies, presented in detail in Chapter 4. As the theory building was an iterative process, so was

the theory evaluation. The early focus of our theory building was on RQ-TB1: How should com-

paniॽ using open source components in their products get started with open source governance based

on existent industry best practicॽ?. We answered RQ-TB1 through the part of our theory address-

ing industry best practices for getting started with corporate open source governance, described in

6

detail in Section 3.4.1 of Chapter 3. We then cast our theory as a set of best practice patterns, which

became the first section of our open source governance handbook. See this handbook section in Ap-

pendix A. To evaluate the getting started part of our theory, we conducted a case study following

Yin [157]. We chose a large German company operating internationally in four software-intensive

industries, and using open source software in its products, as the subject of this case study. The

company asked to be anonymous, so in this dissertation, we call it Company A that was the sub-

ject of Case Study A. First, we assessed the current use of open source at Company A and its state

of FLOSS governance. We then guided the implementation of our FLOSS governance handbook’s

section on getting started, which enabled us to evaluate our proposed theory in a real-life environ-

ment at a company using open source components in its products. Case Study A continued for 2.5

years and enabled us to implement and evaluate further parts of our theory, namely focused on the

inbound aspects of corporate FLOSS governance, such as component approval and component

reuse.

In parallel to evaluating the getting started part of our proposed theory within Case Study A, we

continued the theory building process addressing RQ-TB2 (on inbound aspects of FLOSS gover-

nance), RQ-TB4 (on outbound aspects of FLOSS governance). Once we completed our analysis

of the inbound aspects of FLOSS governance, we extended our handbook with the industry best

practices on open source component approval and component reuse. We then guided the imple-

mentation of a subset of best practices on inbound governance at Company A, which constituted

the second phase of Case Study A. We concluded our theory building by answering RQ-TB3 (on

software supply chain aspects of FLOSS governance), which is a more advanced aspect of corpo-

rate open source governance, as it deals with open source-related issues caused by different actors

in software supply chains often beyond the control of the company on the end of a given supply

chain. Best practices on this topic cover preventive and corrective measures of supply chain gover-

nance, license compliance within supply chains, and management of bills of materials. As Company

A was just getting started with FLOSS governance, we chose another company – Company B – for

7

our second case study – Case Study B. We guided the implementation of supply chain management

best practices at Company B to evaluate the core part of our theory. Case Study B went on for one

year and enabled us to test the part of the proposed FLOSS governance theory on software supply

chains. As a result of our theory evaluation, we found out that some parts of the proposed theory

are lacking comprehension, completeness, and applicability. We reported these findings for each case

study in Chapter 4.

Future research can both further extend the scope of the proposed open source governance the-

ory and further evaluate the current theory.

1.1 Publications

In the course of our three-year research project on corporate open source governance, we published

partial results of the study. In 2017, we outlined in a book chapter the state of the art of open source

license clearance in software product governance, as an aspect of FLOSS governance of high industry

[128]. We proposed some questions companies should ask when dealing with FLOSS governance

in software product lines. We published another paper discussing the industry requirements for

FLOSS governance tools, which is another key aspect of the corporate open source governance, as

the use of open source cannot be efficiently governed without appropriate tools in accordance to

the needs of the companies using open source software in their products [68] [69]. We wrote papers

presenting parts of our proposed theory on open source governance, namely on getting started with

FLOSS governance in companies [70], as well as on component reuse and its governance implica-

tions [71] in two different outlets. These papers are currently in review.

We plan to continue publishing further results of our study. We are planning to further publish

our extensive literature review on corporate open source governance, whose highlights we presented

in Chapter 2 in this dissertation. We will publish another paper with the extensions of the theory of

industry best practices for FLOSS governance, whose highlights we presented in Chapter 3 in this

dissertation. Finally, we will publish our complete theory evaluation based on the conducted case

8

studies, whose highlights we presented in Chapter 4 in this dissertation.

1.1.1 License Clearance in Software Product Governance

In 2017, we published a book chapter with our initial take on FLOSS governance and supply chain

management [128]. While most software products include OSS components, the obligations that

open source licenses put on their users can be difficult or undesirable to comply with for companies.

Therefore, software vendors and related companies need to govern the process by which open source

components are included in their products, which includes open source license clearance – how a

company decides whether a particular component’s license is acceptable for use in its products or

not. In this article, we discussed this process, reviewed its challenges to companies, and provided

unanswered research questions.

1.1.2 Understanding Industry Requirements for FLOSS Governance Tools

In 2018, we published a conference paper at the 14th International Conference on Open Source Sys-

tems with our theory on industry requirements for FLOSS governance tools [68]. As companies

govern their FLOSS use to avoid potential risks to their intellectual property resulting from the use

of FLOSS components. A particular challenge is license compliance. We found that to manage the

complexity of license compliance, companies should use tools and well-defined processes to perform

these tasks time and cost efficiently. This paper investigated and presented common industry re-

quirements for FLOSS governance tools, followed by an evaluation of the suggested requirements

by matching them with the features of existing tools. The research method we employed was the

QDAcity-RE method for structural domain modeling using qualitative data analysis [81].

9

1.1.3 Industry Requirements for FLOSS Governance Tools to Facilitate the

Use of FLOSS Components in Commercial Products

In 2019, we submitted a journal paper with an extended theory industry requirements for FLOSS

governance tools to the Journal of Systems and Software [69]. This was our follow-up to the con-

ference paperUnderstanding Industry Requirements for FLOSS Governance Tools. This paper in-

vestigated and presented a more complete list of industry requirements for FLOSS governance tools

including tool requirements for searching OSS components, selecting the most appropriate ones,

detecting and preventing security vulnerabilities in OSS components, documenting and commu-

nicating a company’s FLOSS governance strategy, checking for export restrictions, and other re-

quirements. We also extended our theory evaluation to increase the rigor of our study. The research

method we employed was the QDAcity-RE method [81].

1.1.4 Getting Started with FLOSS Governance and Compliance: A Theory of

Industry Best Practices

In 2019, we submitted a conference paper to the 15th International Symposium on Open Collabora-

tion with the first part of our theory on industry best practices for open source governance, focused

on how companies should get started with corporate FLOSS governance. The paper was accepted

and will be published in August 2019 [70]. As the commercial use of OSS is on the rise many com-

panies lack FLOSS governance processes and are open to the risks of the ungoverned use of open

source in their products, including legal, financial, intellectual property, and other risks. To miti-

gate these risks, companies are looking at getting started with governance. We interviewed industry

experts to identify the state-of-the-art best practices on how to start governing the OSS use in a com-

pany. We also studied practitioner reports on existing practices for introducing FLOSS governance

processes. We presented our findings in the actionable format of best practices patterns covering the

transition to governance, we well as product and risk analysis. The research method we employed

10

was the qualitative survey research by Jansen [77].

1.1.5 Industry Best Practices for FLOSS Governance and Component Reuse

In 2019, we submitted a conference paper to the 23rd European Conference on Pattern Languages

of Programs with another part of our theory on industry best practices for open source governance,

focused on how companies should reuse the open source components they have previously used,

as well as the governance practices and processes related to OSS component reuse and repositories.

The paper was accepted and will be published in July 2019 [71]. Based on our expert interview, we

identified that the industry best practices on the topic included the definition of a component reuse

policy, operationalization of the component reuse policy in a component reuse process, creation and

maintenance of a searchable component repository with a single well-defined location, guidelines for

auditing and using the component repository, and integration of component reuse processes with

other aspects of open source governance. The research method we employed was the qualitative

survey research by Jansen [77].

1.2 Dissertation Structure

Chapter 2 presents the state of the art of open source governance research in the academic literature.

We present the literature review of 87 publications on the topic of open source in general and on

its specific aspects. We conduct the literature review following the method by Webster and Watson

[149] and employing qualitative data analysis techniques and tools. We present the overview of the

studied papers in Table 2.1. We present the code system for the qualitative data analysis conducted

during literature review in Section D.1 in Appendix D.

Chapter 3 presents the theory of industry best practices for open source governance we developed

following the qualitative survey method by Jansen [77]. This chapter covers the main contribution

of the dissertation consisting of industry best practices on open source governance in general and

11

on its specific aspects presented in the subsections of the chapter. Subsection 3.4.1 covers industry

best practices for getting started with open source governance in companies. Subsection 3.4.5 covers

industry best practices for general governance. Subsection 3.4.2 covers industry best practices for

inbound open source governance. Subsection 3.4.4 covers industry best practices for outbound

open source governance. Finally, as the focal aspect of the inbound governance, subsection 3.4.3

covers industry best practices for supply chain management in terms of open source governance.

While this chapter covers the proposed theory of industry best practices for open source governance,

we also developed a practical handbook for open source governance that includes the derived best

practices from the theory cast as a collection of interconnected patterns. Appendix A presents the

subset of best practice patterns for getting started with FLOSS governance. Appendix B presents

the subset of best practice patterns for supply chain management. Additionally, we present the code

system for the qualitative data analysis conducted during the theory building qualitative survey in

Section D.2 in Appendix D.

Chapter 4 presents the theory evaluation we conducted following multiple-case case study research

method by Yin [157]. Taking parts of the proposed theory from Chapter 3, we selected three case

study companies for the guided implementation and evaluation of the proposed industry best prac-

tices in the production setting. The companies, anonymized per their request, correspond to Case

Study A, Case Study B, and Case Study C. Case Study A was a 2.5-year study into a large German

company operating internationally in four software-intensive industries, and using open source

software in its products. Company A had limited understanding of FLOSS governance, just get-

ting started with governance, which made it a good fit for us to evaluate our theory’s part on get-

ting started with open source governance, as well as a subset of industry best practices on inbound

governance. Case Study B was a one-year study into another large German company operating in-

ternationally in the enterprise software industry, and extensively using open source software in its

products. Company B had an advanced understanding of the basics of FLOSS governance, and in-

ternal institutional support for governance processes. However, the company lacks open source

12

governance practices and processes for managing its software supply chains, which made it a good

fit for us to evaluate our theory’s part on supply chain management in terms of open source gover-

nance. In both cases, we followed a case study protocol we developed following Yin [157], which is

presented in Appendix E. In both case studies, we started by assessing the current situation in re-

gards to corporate open source governance conducting more than 20 situation assessment interviews

with the employees in different divisions of Companies A and B. Subsection 4.4.1 presents the ini-

tial situation assessment at Company A. Subsection 4.5.1 presents the initial situation assessment

at Company B. We then guided the implementation of the selected parts of our open source gover-

nance handbook in Companies A and B, followed by the observation and evaluation of companies’

use of the proposed industry best practices from our theory in production-level projects. Finally, we

present our evaluation for Case Study A in Subsection 4.4.2, Subsection 4.4.3, and our evaluation

for Case Study B in Subsection 4.5.2.

Chapter 5 concludes the dissertation by reassessing the main contributions of our work, including

the state of the art, the proposed theory, and its evaluation, as well as the potential directions for

further research on open source governance. We also discuss the limitations of our study both in

terms of methods employed, and data collected.

13

14

2
State of The Art

This chapter covers the current academic literature on corporate open source gover-

nance. We report on the literature survey we have conducted analyzing 87 academic papers on the

topic. First, we cover the potential risks of open source use in products. Addressing these risks, we

then focus on corporate open source governance broadly. Finally, we discuss the state of the art of

the specific aspects of governance, including that of our focal topic – supply chain management.

We compare and contrast the analyzed state of the art literature with the insights and industry best

15

practices from our theory.

2.1 Overview

Open source software and open source development have been extensively researched [34] [79], but

only little research focused on the topic of corporate open source governance in particular (unlike

open source community governance [118] [117] [95], for example). After an initial literature search

and familiarization with the topic, we undertook a systematic review of the related work to discover

the key concepts of corporate open source governance previously studied by peer researchers.

In the course of the literature survey, we started by analyzing the main motivation for corporate

open source governance – the potential risks of open source use in products. In Section 2.4, we pre-

sented the state of the art findings on the latter, while referencing the industry best practices from

our theory.

Analyzing the collected papers employing a qualitative data analysis (QDA) tool called MAXQDA1,

we then identified the core topics of corporate open source governance in the state of the art litera-

ture:

• Getting Started –GT

• Inbound Governance – IG

• Outbound Governance –OG

• General Governance –GG.

The literature onGetting Started with Open Source Governance focused on the transition from

ungoverned use of open source in companies to institutionalized governance, as well as building a

product architecture mapping the previously used open source software.

The literature on Inbound Governance focused on managing how open source software would

get into the company (and its products). Inbound governance addressed engineering management,

1MAXQDA – Qualitative Data Analysis Tool – https://www.maxqda.com/

16

https://www.maxqda.com/

open source component selection, approval, and integration, as well as supply chain management –

SCM. The latter was such a large subtopic on its own that we split it from the overarching inbound

governance topic. SCM addressed the governance issues of BOM management, quality management

of the supplied code, supplier certification and standards.

The literature onOutbound Governance focused on the external aspects of corporate open source

governance, such as license compliance for the shipped products that included open source software,

and product release.

The literature onGeneral Governance focused on the aspects of corporate open source gover-

nance that did not fit into one of the above-mentioned categories. This topic included a variety of

concepts that affect all the other aspects of open source governance. General governance addressed

open source program office, governance related education and communication, and governance

management.

To review the state of the art in the research community on corporate open source governance,

we undertook a systematic and comprehensive approach by conducting a literature survey. We fol-

lowed the literature review methodology by Webster and Watson [149] identifying and studying

87 papers. These papers include 44 peer-reviewed journal papers, 30 peer-reviewed conference pa-

pers, seven peer-reviewed workshop papers, as well as six technical reports. We conducted a qualita-

tive data analysis of these papers, which resulted in a code system of key governance concepts from

the literature. We mapped the papers and the top-level governance topics presented above, whose

overview you can see in Table 2.1 (papers ordered by the year of publication). See Section D.1 in Ap-

pendix D for the full code system of the concepts emerging from the QDA.

ID Year Type Publication Outlet GS GG IG OG SCM

[96] 2019 Journal International Free and Open Source

Software Law Review (IFOSSL Review)

X

[32] 2018 Journal IFOSSL Review X X X

[51] 2018 Conference Supporting Groupwork X

17

ID Year Type Publication Outlet GS GG IG OG SCM

[151] 2018 Conference European Conference on Pattern Lan-

guages of Programs (EuroPLoP)

X X

[50] 2017 Conference International Symposium on Open

Collaboration (OpenSym)

X X X

[136] 2017 Conference OpenSym X X X

[44] 2016 Conference Computer Software and Applications X X X

[49] 2016 Conference IFIP International Conference on Open

Source Systems (OSS)

X

[100] 2015 Journal Data and Knowledge Engineering X X

[135] 2015 Conference Computer Law Review International X X X

[142] 2015 Conference Practice of Enterprise Modeling X

[129] 2014 Report FAU University Erlangen–Nürnberg X X X X

[33] 2013 Conference OpenSym X X

[47] 2013 Conference Software Technologies X

[101] 2013 Journal IFOSSL Review X X

[102] 2013 Conference OSS X

[5] 2012 Journal Information Management X X

[53] 2012 Journal IEEE Software X X X X

[55] 2012 Workshop IT Project Management X X X

[8] 2011 Journal IEEE Software X

[60] 2011 Conference Artificial Intelligence and Law X X

[84] 2011 Journal IFOSSL Review X X X X

[144] 2011 Journal Association for Information Systems X

[6] 2010 Conference Software Business X X

[25] 2010 Conference E-Business Engineering X X

18

ID Year Type Publication Outlet GS GG IG OG SCM

[31] 2010 Journal IFOSSL Review X X X X X

[39] 2010 Workshop Emerging Trends FLOSS Research and

Development (FLOSS)

X

[63] 2010 Conference Academic MindTrek X

[72] 2010 Journal Information and Software Technology X X

[92] 2010 Workshop Free/Libre Open Source X X

[98] 2010 Journal EuroPLoP X

[104] 2010 Journal Information Systems X

[113] 2010 Journal Advances in Information Systems X X

[134] 2010 Journal Open Source Software and Processes X X X

[140] 2010 Journal IFOSSL Review X X

[141] 2010 Workshop FLOSS X

[155] 2010 Journal IFOSSL Review X X X

[4] 2009 Workshop FLOSS X X X X

[43] 2009 Journal R&D Management X

[54] 2009 Conference International Conference on Software

Engineering (ICSE)

X X X

[78] 2009 Conference ICSE X X X

[82] 2009 Journal IFOSSL Review X X X X X

[91] 2009 Journal Management Science X

[115] 2009 Conference South African Institute of CS and IT X

[137] 2009 Conference Americas Conference on Information

Systems

X X X

[139] 2009 Journal Research Policy X

[143] 2009 Journal IEEE Internet Computing X

19

ID Year Type Publication Outlet GS GG IG OG SCM

[10] 2008 Journal Operations and Supply Chain Manage-

ment

X X

[15] 2008 Conference Information Systems for Crisis Response

and Management

X X X

[40] 2008 Conference OSS X

[58] 2008 Conference Mining Software Repositories X X X

[73] 2008 Conference OSS X X

[108] 2008 Journal Information Economics and Policy X

[14] 2007 Journal Comparative Economics X

[90] 2007 Journal Transactions on Software Engineering X

[107] 2007 Journal Management and Governance X X X

[117] 2007 Journal Management and Governance X X

[118] 2007 Journal Academy of Management X

[125] 2007 Journal IEEE Computer X

[87] 2007 Journal Strategic Information Systems X X

[153] 2007 Report Cambridge University X

[158] 2007 Journal Law, Commerce, and Technology X

[159] 2007 Journal Cyber Law X X X

[17] 2006 Journal Management Science X

[46] 2006 Journal MIS Quarterly X X X X

[103] 2006 Conference OSS X

[106] 2006 Conference Automated Software Engineering X

[21] 2005 Journal IBM Systems X X X

[35] 2005 Journal Research Policy X

20

ID Year Type Publication Outlet GS GG IG OG SCM

[57] 2005 Conference International Symposium Empirical

Software Engineering

X X

[93] 2005 Journal Economic Perspectives X X

[16] 2004 Report University of Lincoln X

[37] 2004 Conference Hawaii International Conference on

System Sciences

X X

[131] 2004 Journal IEEE Software X X X X

[154] 2004 Report San Jose State College of Business X X

[18] 2003 Journal Research Policy X

[36] 2003 Workshop Standard Making X

[75] 2003 Journal Organization Science X

[152] 2003 Journal Research Policy X

[19] 2002 Conference Software Reuse X X X X

[28] 2002 Report Carnegie Mellon University X X

[89] 2002 Report Stanford Institute for Economic Policy

Research

X X

[116] 2002 Workshop Principles of Software Evolution X

[12] 2001 Conference Computer Documentation X X X

[83] 2001 Journal Oxford Review of Economic Policy X X X X

[120] 2000 Journal Computer Law and Security Review X X

[124] 2000 Conference Application of Intelligent Agents X X

Table 2.1: Literature Survey – Papers on Corporate Open Source Governance

21

2.2 Research Question

To define the scope of the state of the art review of corporate open source governance, we asked the

following overarching research question (Research Question – State of the Art):

RQ-SA: How do companiॽ conduct open source governance to address the potential risks of using

open source software in their products?

We broke down the research question into the following components:

• potential risks of using open source software in their products

• corporate open source governance as a way to address the risks

• central aspects of corporate open source governance

• recommended best practices from the literature.

Our goal at this stage was to conduct a comprehensive literature review identifying the key moti-

vation for companies establishing FLOSS governance – the legal, technical, and business risks caused

by the ungoverned use of open source in products. Our next goal was to study the state of the art lit-

erature on the potential solutions to such risks. Our preliminary literature review indicated that cor-

porate open source governance could be such a solution. Reviewing the related literature we aimed

at identifying the central aspects of FLOSS governance, which would inform our theory building

giving a frame of comparison and an academic basis for our theory. Finally, we aimed at identifying

any recommended best practices by the research community for the corporate open source gover-

nance. We planned to compare and contrast the best practices from our theory to those from the

literature review.

2.3 Research Method

To answer the research question RQ-SA, we followed the literature review method by Webster and

Watson [149], gathering 87 papers on the topic of open source governance in companies. We then

22

analyzed these papers through a qualitative data analysis (QDA) process assisted by a QDA tool –

MAXQDA. In the course of the QDA, we identified the common concepts across the papers, doc-

umented and defined them in a QDA code system, which we used in our iterative analysis. During

the iterations, we added new papers, applied the defined codes, and modified the codes to best cap-

ture the common themes in the state-of-the-art review. Finally, we split the codes that were encom-

passing multiple subthemes, merged the ones that could be better defined as single unified codes,

and removed some of the initially identified but not often used codes. The final code system and the

overview of the coded segments are presented in Appendix D.1.

Following the literature review method by Webster and Watson [149], we took the following

steps:

• Step 1. General Literature Search

• Step 2. Focused Literature Search

• Step 3. Backward and Forward Literature Search

• Step 4. Literature Summarization

• Step 5. Defining Unit of Analysis

• Step 6. Qualitative Data Analysis of Literature

• Step 7. Reporting State of the Art for Core Concepts.

Steps 1, 2, and 3 focused on searching and collecting the relevant literature on the risks of un-

governed OSS use and on corporate open source governance. In this early stage, we used different

keywords to search scientific databases and search engines to identify the potential papers for our

analysis. Some of the keywords we used were:

• open source software, OSS, open source components

• open source use, open source usage, OSS use, FLOSS use, best practices for open source

• governance risks, open source governance risks, open source license compliance risks, open

source legal risks, open source supply chain risks

23

• open source governance in companies, corporate open source governance, best practices for

open source use risks, open source usage risks, corporate risks of open source use, best prac-

tices for open source governance.

We also used the keywords in different combination (e.g. open source use risks, open source use

governance, open source program office best practices, etc.).

The main platforms / libraries we searched included:

• Google Scholar

• Web of Science

• Scopus

• ACM Digital Library

• EBSCO

• ScienceDirect.

After the first round of general literature search, we conducted a focused search on the corporate

open source governance topics that emerged from the preliminary analysis of the identified general

papers. Some of the keywords we used in this focused search included:

• transition to open source governance, open source component search

• open source review, open source license scanning

• open source program office, open source in bill of materials

• open source governance methods, open source governance standards, etc.

Following Webster and Watson [149], we also conducted forward and backward search using the

references included in the identified literature, and those of the identified papers in other literature.

We collected the PDFs of all the papers and organized them per preliminary topic.

In Step 4. we summarized the collected literature writing 2-3-paragraph-long summaries for each

paper. These summaries were used for the preliminary analysis of the papers that helped us prepare

24

for the comprehensive analysis using a QDA tool. We used these early summaries to outline the key

topics in our QDA code system.

In Step 5. we defined the unit of analysis of our literature review. In our case, the key unit of anal-

ysis were the top-level topics of corporate open source governance, such as Getting Started, Inbound

Governance, Supply Chain Management, etc. The more detailed units of analysis were the recom-

mended best practices in each of these topical categories. In this step we deviated from the units of

analysis recommended by Webster and Watson [149], rather focusing on the concepts of the topic

and not the different views on them (e.g. organizational, group, individual view).

In Step 6. we added all the collected papers into the QDA tool – MAXQDA, which we used to

create a code system of concepts traced to the text segments from the studied papers. During the

QDA process, we started by open coding – deriving the codes and adding them to the code system,

which was followed by axial coding – structuring the open codes into a hierarchy of concepts. We

finished the QDA process by conducting selective coding – applying the structured codes in the

final version of the code system to support the central concepts with further data traces. See the final

version of the code system, the specific codes, and the number of codings for each code in Section

D.1 in Appendix D.

In Step 7. used the findings from the qualitative data analysis to report the literature review result

per top-level concept category. We presented highlights from select papers, their insights (e.g. rec-

ommended governance best practices from literature), and their comparison to our proposed theory

and specific industry best practices.

In Section 2.4 we present our literature findings on the risks of open source use in companies.

In Section 2.5.2 we present our literature findings on inbound open source governance. In Section

2.5.3 we present our literature findings on supply chain management governance. In Section 2.5.4 we

present our literature findings on outbound governance. In Section 2.5.5 we present our literature

findings on general aspects of corporate open source governance.

25

2.4 Risks of Open Source Use in Companies

Corporate use of open source software in products has a number of benefits to companies, such as

OSS being quickly available, of high quality, and low cost, as well as the fact that open source com-

ponents and standards are universally accepted, widely tested, highly secure and well maintained by

professional communities. However, in out literature review, we found that there were a number of

risks of the ungoverned use of open source software in products. Some risks and challenges of open

source use in companies were covered in the related work by Ruffin and Ebert [131], Franch et al.

[47], Stol and Ali Babar [141], Popp [123], Helmreich [74], and others. Some of the key challenges

included dependency on the community of an open source project [27] [29] [86] [1], complex li-

censing [111] [76] [105], and low quality documentation [2] [7] [105] [1]. We also identified that

the various issues and risks of using open source software commercially could be mitigated through

open source governance processes and practices. Open source governance addresses, among other

issues, license compliance management [52], and related tooling [68] [80].

Li et al. [94] conducted an empirical study to show that, among other issues, developers in com-

panies often underestimated the integration efforts related to the use and governance of open source

software. While using FLOSS component commercially can seem free of charge at the first glance, a

deeper assessment of the corporate OSS use uncovers a set of indirect costs related to OSS compo-

nent review, compliance, integration, and maintenance. In each of these steps companies need to

understand the associated risks of open source use, must asses these risks and must govern their use

accordingly. Our theory discovered that the industry experts we interviewed recognize these risks

and actively work on preventing or mitigating them. Our best practices covered the risk assessment

of using open source component, both on its own and in comparison to the alternatives, such as

in-house developing and outsourcing. The best practice A.4.5 (OSGOV-GETSTA-IPRISK-2. An-

alyze risk exposure of using an open source component) suggested how companies should analyze

the potential risks of the corporate use of open source software. We also derived how companies

should mitigate such risks in the best practice B.4.2 (OSGOV-GETSTA-IPRISK-3. Mitigate risk

26

to intellectual property) and the detailed best practices it encompasses, including A.4.7 (OSGOV-

GETSTA-IPRISK-3.1. Replace problematic components), A.4.8 (OSGOV-GETSTA-IPRISK-3.2. De-

couple problematic components), A.4.9 (OSGOV-GETSTA-IPRISK-3.3. Require bill of materials for

supplied code by 3rd party post-factum), and A.4.10 (OSGOV-GETSTA-IPRISK-3.4. Run random

audits to identify previously undetected or missed open source components and their metadata).

Ruffin and Ebert [131] talk about possible risks and benefits of using open source software. Be-

sides advantages like saving time and improving security, they point out that companies should be

vigilant about the open source components used in their products, preventing possible copyright in-

fringement of third parties and their intellectual property rights. They also talk about several actions

that can be undertaken to mitigate legal exposure, such as governing the use of open source compo-

nents through well-documented processes. Once the company’s developers go through this process,

they can reuse the once used components and check them into a component repository. We con-

firmed their findings and identified best practices that help avoid potential risks of the ungoverned

use of open source components, as well as develop efficiently through component reuse. Namely,

the best practice A.4.5 (OSGOV-GETSTA-IPRISK-2 Analyze risk exposure of using an open source

component) covers the potential risks of using open source components and suggests how compa-

nies analyze and prevent such risks. Moreover, the best practicesOSGOV-INBGOV-COMREU-11.

Audit component repository,OSGOV-INBGOV-COMREU-18. Add security check information to

component repository confirm these findings from related literature.

2.5 Open Source Governance in Companies

We found that, as a solution to the potential risks of the ungoverned use of open source software,

companies need to establish and follow formal open source governance, which included the core

concepts of getting started with FLOSS governance, inbound governance, outbound governance,

and general governance. One specific topic within inbound governance was large and extensive on

its own – supply chain management governance. In Figure 2.1 we present an overview of some of the

27

key concepts resulting from our literature review. In the subsections of this section, we go into the

details of each of these categories.

Figure 2.1: Main Concepts from Literature – Corporate Open Source Governance

2.5.1 Getting Started

Researchers have recognized many benefits of open source software adoption by companies includ-

ing better interoperability, interconnectivity, trialability, transparency due to the availability of the

source code [17] [26] [37] [46] [122] [125]. While some literature exists on FLOSS adoption in in-

dustry and on FLOSS governance in general [3] [18] [22] [57] [72] [123] [148] we found little re-

28

search particularly about industry best practices for getting started with open source governance in

private companies. Therefore, we also reviewed general FLOSS governance research literature, and

compared and contrasted it with our findings on the getting started aspects of the phenomenon.

Bonaccorsi & Rossi [18] discuss three key economic problems that arise with the emergence

of the commercial use of open source: motivation, coordination, and diffusion. As they explain

the different types of open source users, they introduce coordination as a basic alternative to open

source governance including having a centralized leadership structure and a clear hierarchical orga-

nization or having technical support systems within a company to deal with the use of open source

components. They discuss the diffusion of open source in companies. We do not discover industry

best practices for a clear hierarchical organization when dealing with open source adoption. Instead,

we find that the transition towards open source governance should involve stakeholders from all

hierarchical levels in a company, guided by a transition policy outlined in A.2.1 (OSGOV-GETSTA-

TRAPOL-1 Establish FLOSS governance policy for the transition period). This best practice also

confirms findings by Lerner & Tirole [93] who highlight open source governance policies and inter-

nal legal systems as a way to prevent potential risks of ungoverned FLOSS use.

Kemp [82] talks about the operational aspects of the transition towards open source governance

in companies. Analyzing the management perspective on the transition, he indicates that the goal

for the management undertaking the transition is to install integrated processes across all relevant

business functions to manage the effective use of FLOSS throughout the organization. He ar-

gues that in order to get there, an organization should consider disassembling the various pieces

into their building block components and threading them together by start point (achievements to

date), people (stakeholders) and the strategic, policy and process aspects. We find industry best prac-

tices matching Kemp’s findings. Namely, the best practice A.3.9 (OSGOV-GETSTA-PROANA-3.1

Run open source use analysॾ in products) ensures that the management is aware of the various open

source components that are currently used in the company, which leads to the best practice A.3.10

(OSGOV-GETSTA-PROANA-3.2 Document current open source use). As to the governance tran-

29

sition process, we identified the practice A.1.6 (OSGOV-GETSTA-TRAORG-6 Establish the transi-

tion process) that covers the operational aspects of setting up the process.

Fendt et al. [44] discuss some critical risks that can arise from the ungoverned use of open source

software in products, such as compliance issues when dealing with open source software licenses.

They go on to describe a suggested governance process and framework that aim to allow only appro-

priate FLOSS components into products, to protect internally developed code from potential risks

of license non-compliance, and to assure the fulfillment of all license requirements. Furthermore,

they state that the process automation and other factors have to be considered when implementing a

FLOSS governance process. Our theory touches on some of these issues discovering, for example, an

industry best practice for using tools to automate parts of the getting started process in companies –

A.3.4 (OSGOV-GETSTA-PROANA-1.3 Select and use governance tools for automation).

Fitzgerald [46] talks about the specifics of product analysis as he describes the transformation

from open source software development to an emerging commercially viable form of open source he

calls OSS 2.0. He talks about the commercial use of open source software and the challenges of this

transition. Our theory addresses some of these challenges providing industry best practices for the

initial product analysis in particular. The best practices A.3.1 (OSGOV-GETSTA-PROANA-1 Use

a combination of methods for product analysॾ) covers the methods a company can use for the initial

product analysis to identify the previously used yet ungoverned open source components.

The topic of open source governance introduction in companies is of high practical relevance to

the industry. Practitioners like Peters [122] analyzed some getting started aspect of open source gov-

ernance. He highlighted the importance of open source governance policies during the transition to

FLOSS usage in companies. He provided a guide intended to support the creation of a company’s

open source governance policy. He presented tips and best practices of writing such a policy, in-

tended to regulate the use of open source in corporate environments. These best practices focused

on identifying stakeholders, choosing a strategy, and setting the scope. Our theory confirms some

of the best practices he identified. Namely, the best practice A.1.1 (OSGOV-GETSTA-TRAORG-1

30

Establish a board of stakeholders to organize the transition) sums up the need to identify the stake-

holders interesting in the introduction of open source governance processes in the company, and

presents the specifics of organizing these stakeholders. Another best practice in our theory A.1.4

(OSGOV-GETSTA-TRAORG-4 Start small, then replicate - define the scope of the transition pro-

cess) deals with the scope of the transition towards open source governance.

Bonaccorsi et al. [17] talk about companies that use open source software in their products as

part of their business strategy. They discuss how using open source influences a company’s business

model choice. They state that many companies choose to adopt a hybrid business model that com-

prises proprietary as well as open source products and services. Besides, they also talk about a com-

pany’s motivation to use open source software in their products and about the factors that influence

a company’s openness towards using open source. Considering the scope of our paper, we did not

investigate the influence of using open source on a company’s business model, but rather focused

on the reasons and techniques companies follow when getting started with FLOSS use in products.

In line with Bonaccorsi’s findings, our theory recognizes communication and capability building as

central topics of industry best practices for open source governance. Namely, we identified a subset

of industry practices on the issues including A.5.1 (OSGOV-GETSTA-COMCAP-1 Establish com-

munication channels for open source governance handbook) to A.5.5 (OSGOV-GETSTA-COMCAP-5

Provide employee training), which talk about setting up internal communication channels, develop-

ing and providing employee training.

2.5.2 Inbound Governance

Researchers have studied different aspects of inbound open source governance, such as engineering

management and software development [12] [131] [46] [72], open source component search [100]

[53], open source component selection [6] [44], open source component approval [84] [57], open

source component reuse [19] [53] and other subtopics of inbound governance. We present some

highlights from our literature review on inbound governance in this subsection.

31

With the growing availability of high-quality FLOSS components, software developers increas-

ingly use FLOSS components in commercial products, which among other things enables faster

development and lower costs as illustrated in the BOOTSTRAP pattern by Weiss [150]. FLOSS

governance policies in many companies require developers to track and document such FLOSS use

[74] [123]. This enables the well-structured management and reuse of FLOSS components that

have been added into product software. Umarji et al. [147] suggest using FLOSS governance tools

to create and maintain repositories of reusable FLOSS components. Our findings confirm this in

the best practice patternsOSGOV-INBGOV-COMREU-8. Create component repository,OSGOV-

INBGOV-COMREU-9. Update component repository,OSGOV-INBGOV-COMREU-10. Main-

tain component repository,OSGOV-INBGOV-COMREU-12. Use tools to create, update and main-

tain component repository. Other studies focused on the risks of bill of materials management [51]

[32] [101] [140], and maintenance of FLOSS component metadata [68]. Our theory confirmed and

captured industry practices that addressed these risks.

Copenhaver [31] analyzed open source policies and processes focused on inbound governance.

The author reported that companies set up a Business Readiness Review (BRR) process, in part, for

open source component approval – originally proposed and developed by Carnegie Mellon West,

O’Reilly CodeZoo, SpikeSource, and the Intel Corporation. In line with the BRR process, Copen-

haver suggested the following criteria for open source component approval:

• functionality (how the software meets user requirements)

• usability (how intuitive, easy to install, easy to configure, and easy to maintain the software

is)

• scalability (can the software cope with high-volume use)

• support (how many sources of support are available)

• documentation (is there good quality documentation)

• adoption (has the software been adopted by the community, the market, and the industry)

• community (is the community for the software active and lively)

32

• quality, security, etc.

Many of the above-mentioned criteria were confirmed by our theory of industry best practices

for corporate open source governance, and its subtopic on open source component approval in

particular. Namely, the best practiceOSGOV-INBGOV-COMAPP-4. Define transparent rulॽ

for open source component approval addressed the criteria of functionality, adoption, community,

support, etc.

2.5.3 Supply Chain Management

The reviewed literature addressed different aspects of corporate open source governance in software

supply chains, such as the supply chain management policy and process [82] [4] [47] [15], BOM

management [140] [101] [84] [55], supplier standards [153] [33], etc.

Germonprez et al. [55] presented the protection and compliance in open source supply chains in

the context of FLOSS governance risk mitigation. The authors discussed potential governance and

compliance risks companies could face because of the lacking governance of their software supply

chains. As a recommended solution, the authors recommended proposed using open source com-

ponent and license scanning tools (e.g. FOSSology) integrated with the bills of materials requested

from the suppliers. The BOMs need to have a structured and standard format for the efficient sup-

ply chain management. The proposed format for BOM management is the software package data

exchange (SPDX)2 – a standard format for communicating the components, licenses, and copyright

metadata associated with open source software packages. The SPDX standard could help facilitate

compliance with free and open source software licenses by standardizing the way license information

was shared across the software supply chain. In our theory, we confirm this insight, as most gover-

nance experts also highlighted the importance of managing BOMs in the context of SCM, as well as

using BOM documentation and communication standards such as SPDX. In our proposed indus-

try best practice B.4.10 (OSGOV-SUCHMA-BOMMAN-4. Use machine-readable and standard
2SPDX (software package data exchange) – https://spdx.org/

33

https://spdx.org/

format for BOM upon software supply) we confirmed that companies should use a machine-readable

format for its suppliers’ bills of materials.

Kemp [82] discussed operational compliance of open source use in companies, focusing in partic-

ular on supply chain management policy. The author proposed that a SCM policy for open source

governance should address:

• suppliers’ open source compliance training

• automated code scanning to facilitate discovery and recognition of OSS in the supplied prod-

ucts

• procedure to prepare an open source bill of materials.

Kemp also recommended using The Linux Foundation’s Self-Assessment Checklist to effectively

assess supplier compliance practices and to engage suppliers in a discussion about compliance. Our

theory’s best practice B.3.2 (OSGOV-SUCHMA-PREGOV-1.1. Assess open source governance and

compliance awareness and maturity) confirmed this recommendation proposing the assessment of

FLOSS governance maturity of the suppliers.

Blecken and Hellingrath [15] studied the software supply chain of the tools in the domain of

humanitarian operation. They defined supply chain management as the integrated process-oriented

planning and control of material, information and financial flows along the entire value chain from

the customer to the raw material producer. Applying this definition to software development, open

source components are similar to raw materials used in producing products. The authors suggested

that the general objective of SCM should be to reduce supply chain inventory and order lead time

and improve responsiveness and service levels. In the context of open source governance, our theory

confirmed that the SCM policy should address similar issues. Namely, our theory’s best practice

B.1.1 (OSGOV-SUCHMA-SCMPOL-1. Establish supply chain management policy) proposed that a

company would need to establish a supply chain management policy with the objective of reducing

supply chain complexity by using open source governance standards for suppliers.

34

2.5.4 Outbound Governance

Some researchers studied outbound open source governance and its focal topics, such as ensuring

the open source license compliance of the shipped products [96] [31] [135] [136], release review [100]

[82] [155], patents and contributions [120] [50] [158], etc.

Researchers considered open source license non-compliance as one of the most critical risks of the

ungoverned use of open source in products. A company could get exposed to such a risk if a product

incorporating open source components were to be released without ensuring the open source license

compliance first. Though, there are legal uncertainties around the enforcement of certain open

source licenses, for example, the enforceability of the GPL (GNU General Public License) license

in China discussed by Lin and Shen [96], we found that license compliance was the key topic of

FLOSS governance within outbound governance. Copenhaver [31] reported several recommended

practices for ensuring license compliance before product distribution. The first such practice fo-

cused on the main employee role dealing with this aspect of FLOSS governance – the Open Source

Software Compliance Officer (OSSCO). The OSSCO in a large organization, for example, would

perform tasks of an open source ombudsman maintaining some degree of a separation between the

day-to-day business processes for outbound governance, being available to discuss concerns from

individual employees concerned about the company’s fulfillment of open source license obligations.

On the other hand, in smaller organizations, the tasks of an OSSCO would focus on dealing with

the day-to-day license compliance and release review. In our theory, we did not find an industry best

practice focusing on the role of a compliance officer in particular, but rather captured a best prac-

tice for the Open Source Program Office to perform tasks of outbound governance. For example,

our best practice 3.18 (OSGOV-OUTGOV-LICCOM-1. Ensure license compliance) presented the

multitude of outbound governance tasks to be performed by the Open Source Program Office.

35

2.5.5 General Governance

Covering the crosscut and general topic of open source governance, researchers studied governance

management [72] [21], governance strategy and policy [142] [104] [134] [115] [44] [118], open source

program office [155] [137] [55] [25], etc.

One of the essential topics of general governance included corporate governance policies that

cover the company’s principles when using open source components, as well as working with open

source communities and other companies on governance-relate issues. Lundell et al. [104], when

discussing the open source use in Swedish companies, brought up one aspect of company policy for

FLOSS governance – the alignment between open source communities and commercial software

development organizations. The recommended policy suggested that such an alignment could pro-

moter the change of perceptions, development processes, and business models in companies using

open source components. Among other governance-related tasks, this would be the task of an open

source program office (OSPO) at a given company. Another specific OSPO task in this context

would include promoting open source development practices within companies, called inner source

[23]. Though we did not find governance industry best practices on inner source, in particular, we

did outline other tasks of an open source program office (OSPO), such as defining and implement-

ing an open source governance policy across the company. Our theory’s best practice 3.19 (OSGOV-

GENGOV-GOVMAN-3. Establish an open source program office) addressed the establishment of an

OSPO and its key tasks.

Koltun [84] suggested some other governance-related goals and responsibilities of the OSPO

(he called it Open Source Review Board), such as reviewing OSS use in product context – as part of

an product architectural diagram that would show how the software components (including OSS)

interfaced and interacted with the rest of the product’s software. The OSRB would also examine

licensing implications of the architecture, compatibility of components from a licensing perspec-

tive, and resultant license obligations. Koltun concluded that an OSRB would need to incorporate

the expertise of skilled software architects and licensing experts with direct insight into company

36

product development plans and history. Confirming this insight, the industry best practice 3.19

(OSGOV-GENGOV-GOVMAN-3. Establish an open source program office) suggested the following

tasks an OSPO would need to perform:

• Define roles, responsibilities, and policies

• Provide roles, responsibilities, and policies in written form

• Match policies to actual risks

• Collaborate with legal counsel on license interpretation

• Track industry best practices and standards

• Network to learn from others

• Engage with the community, etc.

37

38

3
Theory of Industry Best Practices for

Corporate Open Source Governance

This chapter covers the theory of industry best practices for corporate open source

governance – the main contribution of this research project and of the dissertation. With the litera-

ture review as our basis, we set out to investigate how companies using open source in their products

govern this use. We asked research questions on how companies get started with governance, how

39

they deal with the inbound and outbound aspects of governance, as well as on how they manage

their software supply chains. To answer these questions, we conducted a qualitative survey based on

the practice-based data we collected during the first two years of this study. In five sampling itera-

tions, we chose 15 companies with an advanced understanding and experience in FLOSS governance.

We then interviewed 21 governance experts at these companies. Our theory of industry best practices

was based on the qualitative data analysis of these interviews and of the primary materials. As a re-

sult of our research project, we identified the major parts of the theory, and discussed them in detail.

We also developed a handbook of corporate open source governance based on our findings casting

them in the actionable format of best practice patterns. In this chapter, we presented examples of

these state-of-the-art practices and their data traces to our analysis.

3.1 Overview

In this dissertation, we propose a theory of industry best practices for corporate open source gover-

nance consists of the following focal parts:

• Getting Started

• Inbound Governance

• Supply Chain Management

• Outbound Governance

• General Governance.

Getting Started is the first major part of our theory, which focuses on the industry best practices

for getting started with FLOSS governance. Mainly targeting at software companies with little or

no governance in place, this part of our theory reports our findings on how expert companies got

started with FLOSS governance, including but not limited to the specifics of the transition process

from ungoverned use of open source to initial governance, the review of the existing products and

40

the open source components used in these products, the subsequent risk analysis and mitigation.

We present our theory’s detailed take on Getting Started in Section 3.4.1.

Inbound Governance is another major part of our theory, which focuses on the industry best

practices for the inbound aspects of FLOSS governance. Inbound governance covers the best prac-

tices for dealing with the open source components coming from outside of the company, covering

OSS component search, component selection, component approval, and component integration.

Other practices and processes in the scope of inbound governance include open source component

reuse and repository, and component monitoring. In the scope of this dissertation, we cover two

subtopics of inbound governance in full detail – Component Approval and Component Reuse. We

present our theory’s detailed take on Inbound Governance in Section 3.4.2.

Supply Chain Management (SCM) is the focal part of our theory, which focuses on the industry

best practices for the supply chain management aspects of FLOSS governance. SCM governance

covers the best practices for dealing with the suppliers who deliver software that includes open

source components ensuring license compliance, BOM management and other supplier-related gov-

ernance aspects (supplier contracts, supplier audits, etc.). Supply Chain Management includes best

practices for both preventive governance and for corrective governance. The former addresses sup-

plier selection, supplier certification, and contracts. The latter addresses supplier audits, risk assess-

ment associated with the supplied code, and risk mitigation. As a special topic of SCM governance

highlighted by the industry experts, we detail the best practices for bill of materials management,

including tracking and identifying the supplied open source components and their metadata, as

well as using machine-readable formats and standards. Finally, SCM governance also covers license

compliance within software supply chains. We present our theory’s detailed take on Supply Chain

Management in Section 3.4.3.

Outbound Governance is another major part of our theory, which focuses on the industry best

practices for the outbound aspects of FLOSS governance. Outbound governance covers the best

practices for dealing with open source license compliance and release of the products that use open

41

source software. Outbound governance includes practices and processes for checking and ensuring

FLOSS compliance before products are shipped to the customers. Outbound governance also ad-

dresses the management of employee contributions to open source communities, as well as other

governance issues in relation to external parties (customers, certification bodies, regulators, etc.). We

present our theory’s detailed take on Outbound Governance in Section 3.4.4.

General Governance is a major part of our theory, which focuses on the industry best practices for

the general aspects of FLOSS governance, not focusing on any of the other focal topics presented

above. General governance covers the proposed best practices for the establishment and operation

of an Open Source Program Office – a body within a company managing the day-to-day issues of

open source governance and compliance. General governance also covers the top management tasks

of ensuring the strategic (company-wide) governance. General governance addresses other general

issues such as FLOSS governance capability assessment and building among employees. We present

our theory’s detailed take on General Governance in Section 3.4.5.

In this dissertation, we also present excerpts from the governance handbook section on Getting

Started in Appendix A and on Supply Chain Management in Appendix B. See our previously pub-

lished work with an excerpt from the governance handbook subsection on Component Reuse (as

part of Inbound Governance) [71].

Taking the FLOSS governance concepts from the literature survey presented in Chapter 2 as our

basis, we conducted a qualitative survey [77] employing qualitative data analysis (QDA), which

resulted in the above-mentioned five topics of FLOSS governance and their subcategories that were

captured in our qualitative code system. Our work builds upon and extends the state-of-the-art

FLOSS governance concepts, whose overview was presented in Figure 2.1.

Figure 3.1 illustrates an overview of the main concepts from our theory on the industry best prac-

tices for corporate open source governance. We go into detail on each of these concepts in this chap-

ter, presenting specific best practices and their links that constitute the proposed theory.

42

Industry Best Practices
for Corporate Open
Source Governance

Getting Started

Transition Policy

Transition Organization

Product Analysis

IP-at-Risk Analysis

Communication and Capabilities

General Governance

Governance Management

Open Source Program Office

License Interpretation

Capabilities

Inbound Governance

Component Search

Component Selection

Component Approval

Approval Process

Approval Rules

Approval Templates

Component Integration

Component Reuse

Reuse Policy

Reuse Process

Component Repository

Component Monitoring

Communication

Education

Outbound Governance

License Compliance

Release Management

Contribution Management

Supply Chain Management

SCM Policy

SCM Process

Preventive Governance

Supplier Selection

Supplier Certification

Supplier Contracts

Corrective Governance

Supplier Audit

Risk Assessment

Risk Mitigation

Bill of Materials Management

Metadata

Tracking

Standard Format

License Compliance for SCM

License Review

License Obligations

Tools

Figure 3.1: Industry Best Pracধces from Proposed Theory – Corporate Open Source Governance

43

3.2 Research Question

We started our theory building by asking broad, yet clear, focused, concise, complex, and arguable

research questions. The questions we asked were based on our preliminary view of the potential

scope of the theory that emerged from our state-of-the-art review. In asking the research questions

we had two target audiences – academia and industry. We aimed at building a practice-based and

practically applicable theory. Thus, we formulated exploratory and prescriptive research questions,

which also affected our research method. To cover the whole space of the issues on corporate open

source governance emerging from the state-of-the-art review, we formulated the following research

questions:

• RQ-TB1: How should companiॽ using open source components in their products get started

with open source governance based on existent industry best practicॽ?

• RQ-TB2: How should companiॽ using open source components in their products govern the

inbound aspects of the FLOSS use?

• RQ-TB3: How should companiॽ using open source components in their products govern their

software supply chains?

• RQ-TB4: How should companiॽ using open source components in their products govern the

outbound aspects of the FLOSS use?

Each of the above-mentioned four research questions was addressed during theory building and

in our resulting theory. Beyond answering the four initial research questions, we found that some

industry best practices emerging from our data did not directly answer any of the asked research

questions. Such best practices were grouped together and presented as industry best practices for

general governance.

While in the state-of-the-art review, we found supply chain management to be part of the in-

bound governance as the supplied code was one of the ways open source software would enter the

company and become part of the company’s products. However, as the topic of the most interest to

44

us and that with the highest perceived novelty and applicability, we dedicated an individual research

question and section in the theory results for SCM governance.

3.3 Research Method

To answer our exploratory research questions we conducted a qualitative survey [77] [45] based

on the data from open source governance expert interviews and primary materials on industry best

practices for corporate open source governance. Methodologically, qualitative surveys resemble

multiple-case case studies [77] [132] [157], in that they both are systems for collecting information

from or about people to describe, compare, or explain their knowledge, attitudes, and behavior

about a studied phenomenon in a real-life setting [45]. However, while case study research design

enables an in-depth analysis of particular cases (usually a limited number of cases or a single case),

the qualitative survey focuses on a less specific, yet more comprehensive and all-around perspective

of the subject (usually from many data sources). As our goal was achieving the latter we used a quali-

tative survey to answer our research questions. Furthermore, the qualitative survey research method

can be used to answer exploratory questions on emerging topics [77], which was the case in our

study.

First, we set objectives to design and plan the qualitative survey, conduct a theoretical sampling

in several iterations, choose expert interviews as our main source of data, collect data from expert

interviews and primary materials, and analyze the collected data to build a theory of industry best

practices for corporate open source governance. After defining our knowledge aims based on the

state-of-the-art review and our research questions, we prepared the interview questions that covered

different the predefined aspects and topics of open source governance emerging from our knowledge

aims. We presented the details of the semi-structured interviews and interview questions in Section

3.3.2.

In parallel to conducting iterations of theoretical sampling, choosing expert companies, and in-

terviewing experts from these companies, we also searched for primary materials on corporate open

45

source governance, including but not limited to company guidelines and policies for FLOSS gover-

nance, industry standards for FLOSS governance, recommended governance patterns by practition-

ers, white papers, slides, and on corporate open source governance.

We then transcribed and processed the interviews to prepare for data analysis. To analyze sur-

vey data from both the interviews and primary materials, we employed qualitative data analysis

(QDA) aided by MaxQDA1 (a QDA tool) in order to ensure the systematic analysis of the data and

the traceability of our theory to the data. Following Jansen’s method [77], we conducted an open

(inductive) survey, in which the relevant topics of FLOSS governance, its dimensions and categories

were identified through the interpretation of raw data – expert interview transcripts and primary

materials. This approach was in contrast to the other type of qualitative surveys – the prestructured

survey, in which some main topics, dimensions, and categories were defined before the study (e.g.

industry best practices were already identified). In such surveys, the researchers would aim at find-

ing these predefined phenomena in the research units, guided by a structured protocol for ques-

tioning or observation. The result of such a survey would not be an exploratory theory (which was

our goal), but a descriptive analysis that would only show which of the predefined characteristics

matched the empirical observations among the study participants [77].

Finally, we reported our findings as a theory of industry best practices in this dissertation. A best

practice is a method reflecting the state-of-the-art as applicable in a particular context [127]. We fur-

ther discussed this format of the theory presentation in Section 3.3.4 of this chapter.

3.3.1 Sampling

A qualitative sample should represent the diversity of the studied phenomenon (different topics of

FLOSS governance) in the context of the target population (FLOSS governance experts in our case)

[77] [45]. According to Jansen, researchers should purposely select a diverse sample with the aim

to cover all existing relevant varieties of the phenomenon that would lead to theoretical saturation

1MAXQDA – Qualitative Data Analysis Tool – https://www.maxqda.com/

46

https://www.maxqda.com/

[77].

To build a theory of industry best practices for corporate open source governance, we took a

practice-based approach looking for companies with an advanced understanding and experience in

corporate open source governance. For the population of our qualitative survey, we searched for

companies that used open source software in their products or when providing services. Follow-

ing our method of a qualitative survey [77], we aimed at collecting deep insights from each of the

companies. Therefore, our research relied on theoretical sampling with a small, purposive, and non-

probabilistic sample of companies we had direct access to. We aimed at choosing a small sample,

with which we could work on a deep and detailed level and conduct multiple semi-structured inter-

views with open source governance experts in each of these companies. We did recognize the limi-

tations of a small sample, but decided that for an exploratory study on such a novel topic we would

benefit more from depth rather than breadth in our sampling. We also recognized that in such a

sample, a single observation was sufficient for inclusion in the QDA coding system [112] [130].

We started by defining a set of sampling criteria we would use to categorize the companies in

our research group’s industry network of about 140. We defined the following criteria or sampling

dimensions:

• By type of business model

• By type of customer

• By market position

• By size

• By maturity.

The type of business model dimension categorized companies by how they made money, in

terms of the products they sold or services provided. The type of customer dimension categorized

companies by their customers and markets. The market position dimension categorized companies

by their market share. The size dimension categorized companies by their number of employees or

market capitalization. The maturity dimension categorized companies by their growth.

47

We then defined different assessment options for each of the criteria to apply to our network of

companies:

• By type of business model

– Software product companies

* Closed/ proprietary

* Open source business model (single-vendor or distributor)

* Other products incorporating software

– Services firms

* Software development services

* Governance tool providers

* Management consulting

– Non-profits

* Open source foundations

* Standards bodies

• By type of customer

– Enterprise customers

– Retail customers

– Government

• By market position

– Monopolist

– Leader

– Also running

– Laggard

• By size

48

– Monopolist

– Leader

– Also running

– Laggard

• By maturity

– Mature

– Growth

– Startup.

We went through all the companies in our network, assessing them using the above-mentioned

dimensions. This resulted in a table of companies, dimensions, and their sampling assessment. For

an excerpt from the full theoretical sampling, see Figure 3.2.

By type of organization (what they make their money off)
By type of customer By market position By size (employees) / market capitalization By maturityDimensions Software product companies Services firms Non-profits

Companies Editor
Closed/
proprietary

Open source
business model
(single-vendor
or distributor)

Other products
incorporating
software

Software
development
services

Governance
tool providers

Management
consulting

Open source
foundations

Standards
bodies

Enterprise
customers

Retail
customers Government Monopolist Leader Also running Laggard Large Medium Small Mature Growth Startup

ABB DR x x x x x x x
Actano DR x x x x x
Alfresco DR x x x x x
Andrena DR x x x x x x
Apache Software Foundation NH x x x x x x
BG Phoenics DR x x x x x x
Bund - Umweltbundesamt DR x x x x x
Bund - Wasser DR x x x x x
Bundesdruckerei DR x x x x x x
Canoo DR x x x x x
Ciber DR x x x x x
Cosmocode DR x x x x x x
Credativ DR x x x x x x
DB Systel DR x x x x x x x
DLZ IT DR x x x x x x x
Docufy (DE) DR x x x x x
Eclipse Foundation NH x x x x x x
Evidanza DR x x x x x
Exasol DR x x x x x
HIS DR x x x x x x x x
IT-Agile DR x x x x
IVU DR x x x x x
KDAB DR x x x x x x
Kisters DR x x x x x
Knowis DR x x x x x
Linux Foundation NH x x x x x x x
Main Donau Netz DR x x x x x x x
Mathema DR x x x x x
Mayflower DR x x x x x
MicroDoc DR x x x x x x
Mister Spex DR x x x x x x
Moviepilot DR x x x x x x x x
New Store DR x x x x x x x
PSI DR x x x x x
QAware DR x x x x x x
Quinscape DR x x x x x
Schema DR x x x x x
Sebamed DR x x x x x x
sepp.med GmbH DR x x x x x x
Sernet DR x x x x x x x
Silbury DR x x x x x x
Solyp DR x x x x x x
SysEleven DR x x x x x x x x
Tavendo DR x x x x x x x
Accenture NH x x x x x x x x x
Adidas NH x x x x x x
AGT International NH x x x x x x
Akamai NH x x x x x x x x x
Alcatel-Lucent (aquired by
Nokia in 2015) NH x x x x x x
Amazon NH x x x x x x x x x x x
Astrum IT NH x x x x x x x
Audi NH x x x x x x
AVL DiTEST NH x x x x x x x
BearingPoint NH x x x x x x x
Black Duck Software NH x x x x x x x
BMW Car IT NH x x x x x x x
Bosch NH! x x x x x x x
Brightone NH x x x x x x
Brose NH x x x x x
BSHG NH x x x x x
BVG NH x x x x x x x
Capgemini NH x x x x x x x x x
Clear IT NH x x x x x x
Consorsbank NH x x x x x
DATEV NH x x x x x x x x x
Deutsche Bahn NH x x x x x x
Develop-Group NH x x x x x x x
Dräger NH x x x x x x

Figure 3.2: Theory Building – Excerpt from Theoreধcal Sampling

49

In our first sampling iteration, we chose and contacted nine companies in a way to ensure a polar

(diverse as proposed by Jansen [77]) theoretical sample – companies with different combinations

of sampling criteria assessments covering a broad set of companies with the common denominator

being their use of open source and experience in corporate open source governance. As a result, we

selected companies with profiles such as:

• A large American semiconductor and telecommunications equipment company operating

internationally in several hardware and software domains, with a business model of selling

products incorporating software (including open source) to business customers, with a lead-

ing position and large market share, and having reached its maturity.

• A medium-sized German company operating in Europe in the enterprise software domain,

with a business model of being a software product vendor for open source software, with an

also runner market position, and still growing.

• A small Canadian organization operating internationally as an open source foundation, with

a business model of being a non-profit foundation creating, maintaining, and guiding open

source projects and communities, with a leading position among similar foundations, and

having reached its maturity.

After contacting the first nine companies chosen in the first sampling iteration, we got replies

from some and scheduled the first expert interviews. Overall, we interviewed five experts at four

companies as a result of the first sampling iteration. We then selected more companies from our

sampling spreadsheet to further ensure that our sampling covered a broad set of companies with ex-

perience in FLOSS governance. This led us to the second sampling iteration, during which we sent

reminders to the idle companies from the first iteration, while also selecting and contacting seven

new companies with similar profiles to the latter. As a result of the second sampling iteration, we in-

terviewed six experts from four companies. After the first two iterations we already started analyzing

the data, during which we identified what aspects of corporate open source governance were covered

in a lesser detail (for example legal aspects of governance in terms of license compliance in outbound

50

compliance and legal aspects of supply chain management governance), which shaped our next sam-

pling iteration. In the third sampling iteration, we contacted four more companies, which resulted

in two more expert interviews at two companies. In the last, fourth sampling iteration we contacted

nine more companies to fill in any final gaps our theory would potentially have (based on our ongo-

ing data analysis). This resulted in eight final expert interviews at five new companies.

We started the theoretical sampling iterations in November 2016 (with the first interviews taking

place in February 2017) and conducted the last iteration in September 2018 (with the last interviews

taking place in October 2018). As a result, overall we chose 15 companies (interviewing 21 experts)

sampled from our industry network of about 140 companies with advanced FLOSS governance

practices. We conducted polar theoretical sampling to cover a diverse and representative set of com-

panies, which resulted in a sample with highly varying characteristics [45] [77]. The list of com-

panies and some of their sampling characteristics are presented in Table 3.1. Company names were

anonymized per their request.

After a company was selected and contacted, we identified the potential experts of open source

governance within the company with access to important information. When possible, we aimed

at interviewing more than one expert from a company for data triangulation (as a theoretical in-

strument to increase the internal validity of our study). We aimed to have a wide range of types of

interviewees who have experienced the circumstances relevant to our research topic [109]. In partic-

ular, when possible, we talked to open source program officers (coordinators), managers involved in

corporate open source governance, and software developers using open source software components

and tools.

51

Company Company Domain By Size By Type of
Customer

By Business
Model

Company 1 Enterprise Software Medium Enterprise,
Retail

SP-OS, MC,
GT

Company 2 Automotive Medium Enterprise SDS
Company 3 Consulting Medium Enterprise SP-OS, SDS
Company 4 FLOSS Foundation Small Enterprise,

Retail
OSF

Company 5 Enterprise Software Medium Enterprise,
Retail

SP-OS

Company 6 Automotive Medium Enterprise SDS
Company 7 Enterprise Software Medium Enterprise,

Retail
SP-CS

Company 8 Hardware and Software Large Enterprise,
Retail,
Government

SP-OS,
SP-CS, OP,
GT

Company 9 Legal Large Enterprise,
Government

MC

Company 10 Hardware and Software Large Enterprise OP
Company 11 Enterprise Software Medium Enterprise SP-OS
Company 12 Consulting, Enterprise

Software
Large Enterprise MC, SDS

Company 13 Enterprise Software Small Enterprise SP-CS, SDS,
GT

Company 14 Enterprise Software Medium Enterprise SDS
Company 15 Enterprise Software Large Enterprise,

Retail
SP-OS,
SP-CS, MC,
GT

Table Legend: SDS = Software development service, SP-OS = Software product vendor for open source soft-
ware, SP-CS = Software product vendor for closed source software, GT = Governance tool providers, MC =
Management consulting, OSF = Open source foundation, OP = Other products incorporating software.

Table 3.1: Theory Building – Sampled Companies

Company 1 was a German company operating internationally in the enterprise software domain.

It was a medium-sized company selling software in both B2B and B2C markets (though the main

52

focus was on enterprise customers). It had an open source business model being a distributor of a

widely used open source software, which explained the company’s deep understanding and expertise

in corporate open source governance. The company was also a governance tool provider and pro-

vided consulting services. It was not the market leader, but had a sizable market share. The company

reached its maturity and was not growing anymore.

Company 2was a Polish company operating mainly in Europe in the automotive domain. It was

a medium-sized company providing software development services to enterprise customers. It used

open source tools and libraries in proprietary software development, which explained the company’s

expertise in corporate open source governance. The company was not the market leader, but had a

sizable market share. It did not reach its maturity and was still growing (being recently acquired by a

larger company).

Company 3was a German company operating internationally in the consulting domain. It was

a medium-sized company providing open source consulting services and tools to enterprise cus-

tomers. It had an open source business model providing open source specific consulting, distribut-

ing open source software, and providing software development services (also using open source).

The company was heavily focused on open source software and support, which explained the com-

pany’s expertise in corporate open source governance. The company was a market leader and had a

sizable market share. It did not reach its maturity and was still growing.

Company 4was a Canadian foundation operating internationally as an open source foundation.

It was a small-sized foundation creating, maintaining, and guiding open source projects and com-

munities, which explained the organization’s expertise in corporate open source governance. It

worked with both individual developers, and with partner companies. It one of the leading and

mature open source foundations worldwide.

Company 5was an Italian company operating internationally in the enterprise software domain.

It was a medium-sized company with a business model of a software product vendor for open source

software, which explained the company’s expertise in corporate open source governance. It operated

53

in both B2B and B2C markets (though the main focus was on enterprise customers). The company

was a market leader and had a sizable market share. It did not reach its maturity and was still grow-

ing.

Company 6 was a medium-sized subsidiary of a large German company operating internationally

in the automotive domain. Its business model as a subsidiary was in being an internal software sup-

plier and providing software development services to the main (owner) company. It was an active

user of open source software and was involved in a number of open source initiatives (some started

and cosponsored by the company), which explained the company’s deep understanding and exper-

tise in corporate open source governance. As a subsidiary of another company, it competed with

other suppliers to the same company, among which it was one of the main suppliers. The company

reached its maturity and was not growing anymore.

Company 7was a German company operating in Europe in the enterprise software domain. It

was a medium-sized company selling software in both B2B and B2C markets. It had an open source

business model being a software product vendor for open source software, which explained the com-

pany’s deep understanding and expertise in corporate open source governance. The company was a

market leader with a large market share. The company did not reach its maturity and was still grow-

ing.

Company 8 was an American multinational corporation and technology company operating in-

ternationally in several hardware and software domains. It was a large company selling products in

both B2B and B2C markets, as well as to government customers. In its different parts, it had differ-

ent business models, including being a software product vendor for open source software and for

closed source software, providing governance tooling, and selling other (hardware) products incor-

porating software. It was a leading company in terms of open source use, contribution, and corpo-

rate open sourcing, which explained the company’s deep understanding and expertise in corporate

open source governance. The company was a market leader with a large market share in several mar-

kets. The company reached its maturity and was not growing anymore.

54

Company 9was an American multinational law company operating internationally in several legal

domains. It provided legal services and management consulting to business customers and govern-

ment customers on various legal issues related to software. The company had experts specialized in

the legal aspects of open source software, which explained the company’s deep understanding and

expertise in corporate open source governance. It was a market leader with a large market share. The

company reached its maturity and was not growing anymore.

Company 10was an American multinational semiconductor and telecommunications equipment

company operating internationally in several hardware and software domains (though mostly fo-

cused on hardware). It was a large company selling products in B2B markets. The business model

was based on hardware products incorporating software, including open source software and being

a leader in a number of open source initiatives and communities, which explained the company’s

deep understanding and expertise in corporate open source governance. The company was a market

leader with a large market share in several markets. The company reached its maturity and was not

growing anymore.

Company 11 was a German company operating in Europe in the enterprise software domain. It

was a medium-sized company with a business model of a software product vendor for open source

software, which explained the company’s expertise in corporate open source governance. It operated

in a B2B market. The company was not the market leader, but had a sizable market share. It did not

reach its maturity and was still growing.

Company 12was a German company operating internationally in the enterprise software and

consulting domains. It had a business model based on providing software development services and

management consulting to business customers. Among other topics, it consulted companies on

open source use, governance, and compliance, which explained the company’s deep understanding

and expertise in corporate open source governance. The company was not the market leader, but

had a sizable market share. It did not reach its maturity and was still growing.

Company 13was a German company operating in Europe in the enterprise software domain. It

55

was a small company with business models of being a software product vendor for closed source

software, providing software development services and governance tools. It operated in a B2B mar-

ket. The company was using open source software in its products, which explained the company’s

deep understanding and expertise in corporate open source governance. The company had a lag-

gard position in the market only with a small market share. It did not reach its maturity and was still

growing.

Company 14was a German company operating in Europe in the enterprise software domain. It

was a medium-sized company with a business model of providing software development services

to business customers. The company was using open source tools in software development, which

explained the company’s deep understanding and expertise in corporate open source governance.

The company was not the market leader, but had a sizable market share. It did not reach its maturity

and was still growing.

Company 15was a German company operating internationally in the enterprise software domain.

It was one of the largest companies in its domain. The company followed business models of selling

closed source software products and governance tool, as well as providing management consulting.

It operated in both B2B and B2C markets (though the main focus was on enterprise customers). It

was a heavy user of open source tools and components with experience in open source compliance

(engaging in working groups and initiatives around open source use and compliance), which ex-

plained the company’s deep understanding and expertise in corporate open source governance. The

company was a market leader with a large market share in several markets. The company reached its

maturity and was not growing anymore.

3.3.2 Data Gathering

To collect data for our qualitative survey, we conducted semi-structured interviews with open source

governance experts working at the companies in our sample. Our primary contacts at each of the

companies introduced us FLOSS governance experts within their companies. Such experts had dif-

56

ferent roles, including but not limited to:

• Engineering Manager

• Project Manager

• Lawyer

• Head Business Structure, Systems and IT

• Open Source Compliance Manager, etc.

Expert employees covered different aspects of corporate open source governance. A diverse set of

experts enabled us to answer our broad set of research questions. As presented in the section on the-

oretical sampling, we went through four round of sampling iteration. After each iteration, analyzing

the gathered data we identified the potential gaps in our theory. In every subsequent sampling iter-

ation, we looked for expert interviewees that could provide data on the lacking aspects (gaps) of the

corporate open source governance. For example, after the first two sampling iterations and prelim-

inary data analysis, we recognized that we had limited data on the legal aspects of open source gov-

ernance (e.g. license compliance, license interpretation, etc.), which prompted our search of experts

that could address the issue in the third sampling iteration. As a result, we interviewed a lawyer from

Company 9 (Interview CX9.1 in Table 3.2) and the vice president and legal counsel from Company

10 (Interview CX10.1 in Table 3.2).

Figure 3.3 illustrates the geographic distribution of the experts we interviewed for theory building

with most experts comping from Germany – 14 experts, and the rest from the USA, Canada, France,

Italy and Poland. The countries interviewees were based in are color-coded based on the number of

interviewees per country.

57

11 14

Number of interviewed experts by country

Figure 3.3: Theory Building – Map of Interviewee Countries

Using semi-structured interviews as our main survey instrument, we conducted the interviews

in an iterative manner adjusting the questions after each iteration, yet keeping the core topics of the

questions intact. Find the last iteration of the interview questions for theory building in Section C.1

in Appendix C.

In addition to the expert interviews (our main data source), we also collected primary materials

on corporate open source governance, including:

• white papers

• company guidelines

• slides and practitioner reports.

For example, we studied Google’s company-internal documentation / guideline on FLOSS use

governance2, which was publicly released in March 2017. Table 3.2 presents the full overview of the

main data sources we used in theory building – the expert interviews at the sampled companies we

conducted and used in the qualitative survey.
2Google’s Guideline on FLOSS Use Governance – https://opensource.google.com/docs/using/

58

https://opensource.google.com/docs/using/

Inter-
viewee

Company Interviewee Role Interview
Date

Sampling
Iteration

CX1.1 Company 1 CTO, Director of Open
Source

2017-02-24 First

CX2.1 Company 2 Engineering Manager,
Project Manager

2017-03-02 First

CX2.2 Company 2 Engineering Manager,
Project Manager

2017-03-02 First

CX3.1 Company 3 CEO 2017-03-08 First
CX4.1 Company 4 Director of Open Source

Projects
2017-07-07 First

CX5.1 Company 5 Head of Policy and Innova-
tion

2017-03-30 Second

CX6.1 Company 6 Open Source Compliance
Manager

2017-04-12 Second

CX7.1 Company 7 Engineering Manager 2017-07-21 Second
CX7.2 Company 7 Engineering Manager 2017-07-21 Second
CX7.3 Company 7 Head Business Structure

Systems and IT
2017-07-21 Second

CX8.1 Company 8 Senior Open Source Com-
pliance Engineer

2018-02-16 Second

CX9.1 Company 9 Lawyer 2017-07-17 Third
CX10.1 Company 10 Vice President, Legal

Counsel
2017-07-18 Third

CX11.1 Company 11 VP Strategy 2018-01-24 Fourth
CX12.1 Company 12 IT Consultant 2018-01-24 Fourth
CX13.1 Company 13 Head of Service and Sup-

port
2018-02-28 Fourth

CX14.1 Company 14 Engineering Manager 2018-04-12 Fourth
CX14.2 Company 14 Senior Legal Counsel 2018-04-12 Fourth
CX14.3 Company 14 Legal Compliance Reviewer 2018-04-12 Fourth
CX15.1 Company 15 Director of Open Source 2018-10-28 Fourth
CX15.2 Company 15 Open Source Compliance

and Audit Manager
2018-10-28 Fourth

Table 3.2: Theory Building Data Sources – Expert Interviews

59

Table 3.3 presents the rest of the data sources we used in theory building – the primary materials

from companies with an advanced understanding of open source governance including their white

papers, slides, and guidelines.

ID Primary Material Type Organization Date

PM1.1 Best Practices in Open Source

Governance

White

Paper

Hewlett-Packard 2007-09-26

PM2.1 Linux Foundation Compliance

Program: Generic FOSS Policy

Guideline The Linux

Foundation

2012-04-22

PM2.2 License Scanning and Compliance

Programs for FOSS Projects

Guideline The Linux

Foundation

2018-02-26

PM3.1 Open Source Software and Patents:

How the GPLv3 Affects Patent

Portfolios

White

Paper

Osborne Clarke 2013-02-05

PM4.1 A Smart Way to Manage OSS

Compliance with Yocto+SPDX

Slides Fujitsu 2016-07-13

PM5.1 The Corporate Counsel’s Guide to

OSS Policy Implementation

Guideline Black Duck

Software

2016-09-08

PM5.2 Open Source Software Risk Matu-

rity Model

White

Paper

Black Duck

Software

2016-11-30

PM5.3 2017 Open Source Security and Risk

Analysis

White

Paper

Black Duck

Software

2017-04-18

PM6.1 Internal Documentation on Open

Source Use Governance

Guideline Google 2017-03-29

PM6.2 Open Source Casebook: Author-

ship in Open Source

Guideline Google 2017-03-29

60

PM6.3 Open Source Casebook: Contract

and Copyright Remedies

Guideline Google 2017-03-29

PM6.4 Open Source Casebook: Trade-

marks in Open Source

Guideline Google 2017-03-29

PM6.5 Internal Documentation on Open

Source Governance Tools

Guideline Google 2017-03-29

PM7.1 Using Open Source Code Guideline TODO Group 2017-09-12

PM8.1 Implementing and Managing Open

Source Compliance Programs

Slides Samsung 2017-11-17

PM9.1 Reuse Best Practices Guideline Free Software

Foundation

Europe

2017-12-14

PM10.1 Open Source at Scale Slides Microsoft 2018-12-07

PM11.1 Report of Studies into Business

Workflows and Defined Roles for

Software Development

White

Paper

OpenChain

Project

2018-12-12

PM11.2 The OpenChain Open Source

Policy Template Draft

Guideline OpenChain

Project

2018-12-14

PM12.1 The Tidelift Guide to Managing

Open Source

Guideline Tidelift 2019-01-28

Table 3.3: Theory Building Data Sources – Primary Materials

3.3.3 Data Analysis

We analyzed the gathered qualitative data from expert interviews and primary materials following

the qualitative survey research method [77]. The analysis of the primary materials helped us increase

61

the internal validity of our survey through data triangulation. Data analysis was split into three lev-

els / phases:

• 1st-level analysis – unidimensional description

• 2nd-level analysis – multidimensional description

• 3rd-level analysis – explanation.

In the first phase, we conducted open coding. We created a basic set of labels for the core concepts

of corporate open source governance that emerged from the initial analysis of the gathered data.

We documented these codes. We created an unsorted list of labels (codes) and assigned each label

to one or more text segments (codings). As to the coding granularity, we coded both sentences and

paragraphs. This resulted in the preliminary codebook – a spreadsheet with the key concepts of

FLOSS governance that came up repeatedly during the interview and primary materials analysis.

Open codes were direct annotations of the interviews and primary materials, ensuring the early links

of the emerging theory to the data traces.

In the second phase, we conducted axial coding. We used the codes and codings from the first

phase of data analysis to build a hierarchical structure of the developed codes from the codebook.

We grouped them into categories to form a map of concepts supported by the analyzed data. Each

category represented a core aspect of corporate open source governance. Each broad category (e.g.

inbound governance, supply chain management) became a top-level code category, which other

lower-level codes in the hierarchy that would detail the concepts of governance. The lowest level

codes in each code hierarchy corresponded to specific industry best practices identified during the

data analysis of the expert interviews and primary materials. We used these codes not only to capture

the proposed best practices (solutions) to given problems from one or more data sources, but also to

address the problem and the context related to the proposed solution. We also defined the types of

relationships between different best practices (e.g. sequential, hierarchical) that translated into the

proposed process templates in our theory. As a result of this phase, we modified the codes as needed

62

to eliminate the unused codes, merging the codes that addressed similar concepts, splitting concepts

that encompassed too many subtopics (e.g. multiple best practices), and modified codes when they

were unclear or imprecise. We ended up with a codebook and a code system that captured the key

concepts of corporate open source governance, which became the backbone of our theory.

In the third phase, we conducted selective coding. In this phase, the codebook did not change

anymore, but we extended the code system by adding new coded segments (coding) from the gath-

ered data. No more high-level codes were used, but the low-level codes were applied once again to

all the relevant text segments from our qualitative data. These codings supported the outlined con-

cepts of open source governance providing specific best practices and examples. We then used the

resulting qualitative data analysis to answer the research questions we had asked. We used the data

to present the broad categories of FLOSS governance, their subtopics, and specific best practices. We

explained each of the proposed best practices presenting their contexts, problems, and solutions, as

well as their relationships to other best practices.

During data analysis, we iteratively extended and modified the code system to include all the

key concepts of corporate open source governance emerging from the data. We iteratively went

through each of the above-mentioned phases. After each QDA iteration, we assessed if more in-

terviews are needed to further analyze and understand the identified concepts, or if there is a poten-

tial to find not yet identified ones, which was followed by a new round of sampling. See Table 3.2

for the overview of the expert interviews we conducted in each sampling iteration. After the fourth

sampling iteration and the subsequent data analysis, we could only identify a few minor subtopics

(subcodes) of open source governance, the code system was not significantly modified. Therefore,

we considered achieving theoretical saturation, which indicated that we had enough data for com-

prehensive theory building as no more interviews were needed to identify new concepts or to better

understand the ones that were already captured in the code system [62] [48] [119].

See the resulting code system with the number of codings per code in Section D.2 in Appendix

D.

63

3.3.4 Theory Presentation

To present our theory in a structured, understandable, and applicable manner, we opted for de-

veloping a handbook of corporate open source governance that consisted of industry best practice

patterns and their interconnections as proposed process templates / workflows.

Patterns and pattern languages have been used in the past to present different concepts of open

source use, development, and governance. Among others, Hannebauer and Gruhn [64] presented

an overview of the current state of research on OSS patterns, including 40 published patterns, their

key topics, and relationships between them. Some of these patterns focused on open source devel-

opment [65] [66] and contributions to OSS communities [156] [67], while some focused on the

commercial use of open source (broadly related to our research) [98] [150] [151].

In our theory patterns corresponded to individual best practices. Each best practice used the same

structure, including:

• ID

• Name

• Actor

• Context

• Problem

• Solution.

At their core, these best practices are Context-Problem-Solution triplets. Topically related best

practice patterns – mirroring the qualitative data analysis – formed the subsections and sections

focused on different aspects of corporate open source governance. The top-level sections corre-

sponded to the core best practice categories, such as inbound governance, outbound governance,

and supply chain management. Each answered one research question we had asked. Together these

top-level sections, their subsections, and individual best practices made up the handbook of corpo-

rate open source governance.

64

The best practices within subsections were linked to each other through in-text references of

other best practice patterns. Such links resulted from our data analysis and could be of different

types depending on the relationship a link described. For example if sequential links denoted that

a given best practice would come after or before another one. Hierarchical links showed top-level

best practices referring to more specific patterns. Alternative links showed two or more best prac-

tices that could be applied in a certain situation / context. In our handbook we used italic font and

cross-references for the inter-BP links. An example cross-reference link would be ”→ establishing a

board of stakeholders to organize the transition” from the best practice A.1.2 (OSGOV-GETSTA-

TRAORG-2. Designate the transition manager) presented in its context below:

”After → establishing a board of stakeholders to organize the transition towards regulated FLOSS

governance at the company, you need to delegate the management of the transition process to a

responsible person.”

Each section had a descriptive name that captured the domain of best practices it collected. The

section hierarchy represented a hierarchical breakdown of the overall domain of FLOSS governance.

The lowest-level (leaf) nodes corresponded to best practice descriptions. A single best practice pat-

tern abstracted from a single example, representing a general proposition that could be widely appli-

cable within its context.

The subsections of the handbook also presented optional workflows that linked different best

practices within the subsection. These workflows or governance process templates emerged from

our data analysis and would be relevant to the practitioners using our handbook as they could mod-

ify and apply the workflows at their companies.

Figure 3.4 illustrates the common pattern structure we used to present our theory.

65

Figure 3.4: Theory Presentaধon – Best Pracধce Paħern

See an example of a best practice (BP) pattern in Table A.1.1 in Appendix A. See an example of

a process template (PT) or workflow in Figure A.1 in Appendix A. See an example of a top-level

handbook category with a hierarchy of governance concepts and interconnected best practices in

Appendix A.

66

3.4 Industry Best Practices for Corporate Open Source Governance

In this dissertation we propose a theory of industry best practices for corporate open source gov-

ernance based on our qualitative survey of industry experts and primary materials. Our theory

answered our four research questions and addressed each of them. Addressing each of the broad

research questions and given the breadth of the topic of FLOSS governance, we limited the scope of

this three-year research project to cover a mix of basic, intermediary and advanced subtopics, includ-

ing:

• Getting Started with Open Source Governance

– Product Analysis

– Transition Organization

– Transition Policy

– IP-at-Risk Analysis

– Communication and Capabilities

• Inbound Governance

– Component Search

– Component Selection

– Component Approval

– Component Repository and Reuse

– Component Monitoring

– Engineering Management

– Communication

– Education

• Supplier Management

– Supply Chain Management Policy

67

– Supply Chain Management Process

– Preventive Governance

– Corrective Governance

– Bill of Materials Management

– License Compliance for Supply Chain

• Outbound Governance

– License compliance

– Distribution Preparation

– Product Distribution

– Release Management

• General Governance

– Governance Management

– Open Source Program Office

– License Interpretation

– Capabilities.

The above-mentioned concepts of corporate open source governance emerged from our quali-

tative survey and constituted the core topics our theory addressed. We developed and presented a

number of proposed industry best practices in full detail in the following categories of the theory:

• Getting Started with Open Source Governance

– Product Analysis (OSGOV-GETSTA-PROANA) - 8 best practices

– Transition Organization (OSGOV-GETSTA-TRAORG) - 8 best practices

– Transition Policy (OSGOV-GETSTA-TRAPOL) - 3 best practices

– IP-at-Risk Analysis (OSGOV-GETSTA-IPRISK) - 9 best practices

– Communication and Capabilities (OSGOV-GETSTA-COMCAP) - 5 best practices

• Inbound Governance (OSGOV-INBGOV)

68

– Component Approval (OSGOV-INBGOV-COMAPP) - 13 best practices

– Component Reuse (OSGOV-INBGOV-COMREU) - 19 best practices

• Supply Chain Management (OSGOV-SUCHMA)

– Supply Chain Management Policy (OSGOV-SUCHMA-SCMPOL) - 3 best practices

– Supply Chain Management Process (OSGOV-SUCHMA-SCMPRO) - 5 best practices

– Preventive Governance (OSGOV-SUCHMA-PREGOV) - 4 best practices

– Corrective Governance (OSGOV-SUCHMA-CORGOV) - 4 best practices

– Bill of Materials Management (OSGOV-SUCHMA-BOMMAN) - 4 best practices

– License Compliance for Supply Chain (OSGOV-SUCHMA-LICCOM) - 2 best prac-

tices

• Outbound Governance (OSGOV-OUTGOV)

• General Governance (OSGOV-GENGOV).

We also identified and presented industry best practices on General Governance and Outbound

Governance, but did not present them in the Context-Problem-Solution pattern format. We had

to prioritize and choose parts of our theory that we could present in this actionable format that

required significant time to apply to the proposed theory.

We present our theory’s take on getting started with open source governance in Section 3.4.1.

We present our theory’s take on inbound open source governance in Section 3.4.2. We present our

theory’s take on supply chain management governance in Section 3.4.3. We present our theory’s take

on outbound open source governance in Section 3.4.4. We present our theory’s take on general open

source governance in Section 3.4.5.

69

3.4.1 Getting Started

Key Theory Topic Overview – Getting Started

• Product Analysis (OSGOV-GETSTA-PROANA) - 8 best practices

• Transition Organization (OSGOV-GETSTA-TRAORG) - 8 best practices

• Transition Policy (OSGOV-GETSTA-TRAPOL) - 3 best practices

• IP-at-Risk Analysis (OSGOV-GETSTA-IPRISK) - 9 best practices

• Communication and Capabilities (OSGOV-GETSTA-COMCAP) - 5 best practices

Answering the research question RQ-TB1, we found that companies getting started with open

source governance should start with a transition organization guided by a transition policy. The

transition policy helps a company define its principles in regard to open source use and governance.

The transition organization then operationalizes the principles defined in the policy, turning them

into a process that involves different stakeholders that have been or would be using open source

components in products, or making decisions regarding open source governance. The transition or-

ganization starts with establishing a board of stakeholders that oversees and organizes the transition

that includes defining the transition timeline and scope, as well as implements the transition process.

In this section, we discuss the subtopics and specific best practices for getting started with open

source governance. The subsection on Product Analysis presents the insights on the product anal-

ysis subtopic from our theory’s take on getting started with corporate open source governance.

The subsection on Transition Policy presents the insights on the transition policy aspect when get-

ting started with corporate open source governance. The subsection on Transition Organization

presents the insights on the transition organization aspect when getting started with corporate open

source governance. The subsection on IP-at-Risk Analysis presents the insights on the IP-at-risk

analysis aspect when getting started with corporate open source governance. The subsection on

Communication and Capabilities presents the insights on the communication and capabilities as-

pect when getting started with corporate open source governance.

70

Product Analysis

Our theory summarizes a number of industry best practices on the scanning of the software product

code for license compliance, creating a product architecture model including open source compo-

nents and their metadata, and running and documenting open source use analysis in products. Best

practices in this category include:

• OSGOV-GETSTA-PROANA-1. Use a combination of methods for product analysis

– OSGOV-GETSTA-PROANA-1.1. Use one mandatory survey for initial assessment

– OSGOV-GETSTA-PROANA-1.2. Establish a process of continuous reporting and

assessment

– OSGOV-GETSTA-PROANA-1.3. Select and use governance tools for automation

• OSGOV-GETSTA-PROANA-2. Establish and use a product architecture model

– OSGOV-GETSTA-PROANA-2.1. Create product architecture model

– OSGOV-GETSTA-PROANA-2.2. Maintain product architecture model

• OSGOV-GETSTA-PROANA-3. Run use analysis

– OSGOV-GETSTA-PROANA-3.1. Run open source use analysis in products

– OSGOV-GETSTA-PROANA-3.2. Document current open source use.

Product analysis is a critical part of getting started with open source software. Before setting up

open source governance processes, a company must identify and analyze the current use of open

source components that have been used but not approved or documented before. Proposed best

practices in this category describe methods for analyzing the current use of open source including a

mandatory survey for initial situation assessment, and ways to document the identified open source

component and their metadata. After the initial assessment, companies should establish a process

of continuous reporting and assessment for the open source components used from that point on,

which is described in detail in an example best practice from our theory in Table 3.4.

71

Another industry best practice is the creation of a product architecture model to set up and main-

tain a structured and formalized view of software components used. Companies should define open

source component-specific properties within the model to allow collection, tracking, maintenance,

and monitoring of metadata including open source license information, export restrictions, known

security vulnerabilities, and software dependencies. If possible, the product architecture model

should be integrated into the build process or continuous development process to ensure higher

automation.

Here is an example of a best practice from this subsection:

Name OSGOV-PROANA-1.2. Establish a process of continuous reporting and assessment

Actor Transition manager and / or Project architect

Context You already → used one mandatory survey for initial assessment. Now you need a

process for continuous reporting and assessment of any open source usage during the

transition.

Problem The transition needs to prepare the company for fully structured FLOSS governance.

However, during the transition how should the process of continuous reporting and

assessment look like?

Solution Establish a process of continuous reporting and assessment that involves defined and

easy to follow steps for developers when using new open source components during

the transition. This can be achieved using a product architecture model (a meta-model

for all governance related information such as license information, copyright noticed,

export restrictions, etc.), bill of materials documentation, questionnaires or forms, etc.

72

The process should help:

• continuously report new use of open source components during transition

• automate this reporting as much as possible, by → selecting and using gover-

nance tools for automation

• continuously assess new use of open source components during transition

– assess licence compliance

– assess copyright notices

– assess export restrictions

– assess software supply chains

• document the assessment findings

• share the reported use of open source and documented assessment findings.

Table 3.4: Best Pracধce OSGOV-PROANA-1.2. Establish a process of conধnuous reporধng and assessment

The industry best practices of our theory can be traced to the data from the qualitative survey we

performed. Here is an example of such a trace from Company 14’s legal counsel responsible for open

source compliance talking about the specifics of establishing a process of continuous reporting and

assessment of open source components:

“When our developers are reporting the open source via [our internal tool], there ॾ

always the main file which ॾ also mentioned in the license file which ॾ also computed

by GitHub or by the community behind. And with thॾ scan tooling, we cross-check

the whole software, so we definitely see, okay, that’s not only the MIT license which ॾ

mentioned in the license file but also other licensॽ, so the GPL filॽ. And, then, we’re

talking to our developer which ॾ reporting the open source. In most casॽ, the developer

says, no to the GPL filॽ, we don’t use it, we only use the MIT file. And, so, they need

73

to cross check what filॽ they use, and what licensॽ are used by them.” —CX14.2

Here is another example of such a trace from Company 6’s open source compliance manager:

“We ask the developers to report those kinds of components that have thॾ kind of li-

censॽ, and then the license checks the components and the rough context ॾ documented

and the system goॽ to a board, company-wide board where we have software developers,

the compliance managers, the lawyers and a patent lawyer, a copyright lawyer. A group

sits together and then discussॽ that and makॽ decisions on the license terms.” —CX6.1

The industry best practices in our theory are interconnected forming workflows or process tem-

plates that practitioners can use to apply our handbook for corporate open source governance. We

present an example process template from this subsection in Figure 3.5. This process template con-

nects a subset of product analysis best practices. According to our theory, companies should start by

using a combination of methods for product analysis including:

• mandatory survey for initial assessment of the previously used open source components

• automated ongoing assessment of the previously used and new added (during the transition)

open source components.

At the same time, industry experts recommend establishing a process of continuous reporting

and assessment of the newly added open source components during the transition process. After the

transition is over, companies should establish long-term inbound governance processes for contin-

uous governance. Next, companies need to analyze the identified open source software in products

and document the current FLOSS use.

74

GETSTA-PROANA-1.
Use a combination of
methods for product

analysis

GETSTA-PROANA-1.1.
Use one mandatory

survey for initial
assessment

GETSTA-PROANA-1.2.
Establish a process of

continuous reporting and
assessment

GETSTA-PROANA-1.3.
Select and use

governance tools for
automation

GETSTA-PROANA-3.
Run use analysis

PROANA-3.1. Run open
source use analysis in

products

GETSTA-PROANA-3.2.
Document current open

source use

Figure 3.5: Example Process Template – Product Analysis

See Section A.3 in Appendix A for the process templates and for the complete handbook subsec-

tion with detailed best practices on product analysis.

75

Transition Policy

We found that most companies establish guidelines for getting started with open source governance.

We call these guidelines a transition policy, which must be established, communicated, and con-

tinuously adjusted and improved. The transition policy outlines the principles for the transition,

but does not cover any operational aspects of the transition, which is done through the transition

organization. Transition policy related practices include:

• OSGOV-GETSTA-TRAPOL-1. Establish FLOSS governance policy for the transition pe-

riod

• OSGOV-GETSTA-TRAPOL-2. Communicate FLOSS governance policy for the transition

period

• OSGOV-GETSTA-TRAPOL-3. Adjust and improve FLOSS governance policy for the tran-

sition period

FLOSS governance policy for the transition period covers all the critical issues around the use

of open source components in products, such as license compliance, bill of materials management,

documentation, and communication. The policy can be stored as a single document or divided into

two separate documents, as described in Table 3.5.

Here is an example of a best practice from this subsection:

Name OSGOV-GETSTA-TRAPOL-1. Establish FLOSS governance policy for the transition

period

Actor Transition manager, Transition board

Context Developers have been using open source components without any governance guide-

lines in the past. In parallel to introducing FLOSS governance at the company, you

need to define and communicate the new rules for using open source components for

the transition period, before → implementing the transition process.

76

Problem How should you manage FLOSS governance during the transition period, before you

have established a comprehensive FLOSS governance strategy?

Solution In parallel to → establishing the transition process, establish FLOSS governance policy

for the transition period that covers all the critical issues around the use of open source

components in products, such as license compliance, bill of materials management,

documentation, communication, etc.

The governance policy can be stored as a single document or divided into two separate

documents:

• The second establishes a set of standards and tasks for the employees to follow

to ensure compliance with FLOSS governance processes. This way, the policy

can be implemented across the whole company under identical conditions.

Also at larger companies, each division or department can adopt the policy with

certain differences.

• The second establishes a set of standards and tasks for the employees to follow

to ensure compliance with FLOSS governance processes. This way, the policy

can be implemented across the whole company under identical conditions.

Also at larger companies, each division or department can adopt the policy with

certain differences.

It is necessary to → communicate FLOSS governance policy for the transition period

and to → adjust and improve FLOSS governance policy for the transition period.

Table 3.5: Best Pracধce OSGOV-GETSTA-TRAPOL-1. Establish FLOSS governance policy for the transiধon period

See Section A.2 in Appendix A for the process template and for the complete handbook subsec-

tion with detailed best practices on transition policy.

77

Transition Organization

We identified that a common pattern for organizing the transition to governance follows these in-

dustry best practices:

• OSGOV-GETSTA-TRAORG-1. Establish a board of stakeholders to organize the transition

• OSGOV-GETSTA-TRAORG-2. Designate the transition manager

• OSGOV-GETSTA-TRAORG-3. Define the responsibilities and tasks of the transition man-

ager

• OSGOV-GETSTA-TRAORG-4. Start small, then replicate - define the scope of the transi-

tion process

• OSGOV-GETSTA-TRAORG-5. Define the transition timeline

• OSGOV-GETSTA-TRAORG-6. Establish the transition process

• OSGOV-GETSTA-TRAORG-7. Communicate the transition process

• OSGOV-GETSTA-TRAORG-8. Implement the transition process

We found that establishing a board of stakeholders to organize the transition is a starting point

for getting started with open source governance. These stakeholders include the everyday users and

decision makers in regard of open source, including but not limited to senior developers (known

internally for their open source use and competency), engineering managers (usually de facto deci-

sion makers on FLOSS matters), lawyer (responsible for FLOSS license clearance and related issues),

business/product managers, software architect, software procurement officer.

As to the transition process, we found that common aspects of such a process include:

• outlining the motivation behind FLOSS governance

• clarifying the roles of the employees during the transition

• communicating the timeline and scope of the transition

78

• communicating the steps of the transition (product analysis and risk mitigation) and ex-

pected outcomes

• setting up new and structured procedures for decision making related to governance.

We present the full best practice on establishing a transition process in Table 3.6.

Here is an example of a best practice from this subsection:

Name OSGOV-GETSTA-TRAORG-6. Establish the transition process

Actor Transition manager, Transition board

Context After → defining the scope of the transition process and → defining the transition time-

line, the transition manager and the board must establish the transition process that is

first implemented at a pilot project in the company, then replicated in other parts of

the company.

Problem The transition process is often the determinant of the transition’s success. The specifics

of the transition process depend on the company, on its use cases in terms of FLOSS

use and on the capabilities of the employees. What are some common principles for

establishing a smooth transition process?

Solution The transition process outlines the company’s shift from unstructured, ad-hoc FLOSS

governance to the structured and well-defined one. This handbook section covers how

the company should get started with FLOSS governance. However, before the actual

governance process, the pilot project and its team (and other projects consequently)

must be exposed to the transition setup to prepare for the upcoming changes. Such a

transition also ensures that the new governance approach and its motivation is clear to

all the employees. During the transition, the transition manager and board are estab-

lished and introduced to the employees, which is the basis for the implementation of

all the other best practices.

79

The transition process should follow these principles:

• be clearly defined

• be easy to follow without constant guidance by the board

• be scalable and replicable

• be assisted with tools that automate and/or ensure compliance with the process.

The transition process should include:

• outlining the motivation behind FLOSS governance

• clarifying the roles of the employees during the transition

• communicating the timeline and scope of the transition

• communicating the steps of the transition (product analysis and risk mitigation

best practices) and their expected outcomes

• setting up new and structured procedures for decision making related to gover-

nance.

Table 3.6: Best Pracধce OSGOV-GETSTA-TRAORG-6. Establish the transiধon process

The industry best practices in our theory are interconnected forming workflows or process tem-

plates that practitioners can use to apply our handbook for corporate open source governance. We

present an example process template from this subsection in Figure 3.6. This process template starts

by establishing a board of stakeholders to organize the transition and by defining responsibilities

and tasks of the transition manager who coordinates the board. The board and the transition man-

ager then establish the transition process, where they outlines the specific steps different employees

need to undertake during the transition to FLOSS governance. Often companies do not transition

to governance at once, but take an incremental approach. To achieve this, companies should follow

80

the best practice of starting small (e.g. from a pilot project), then replicating the small-scale transi-

tion in other parts of the company. Before establishing the transition process, companies also need

to define the transition timeline taking into account the gradual nature of the transition and the

specifics of the company at hand (e.g. how centralized the company is, where software development

is concentrated). Once the transition process is defined, the transition board needs to communicate

and implement the steps outlined in the process of transition.

GETSTA-TRAORG-1.
Establish a board of

stakeholders to organize
the transition

GETSTA-TRAORG-2.
Designate the transition

manager

GETSTA-TRAORG-3.
Define responsibilities

and tasks of the transition
manager

GETSTA-TRAORG-6.
Establish the transition

process

GETSTA-TRAORG-7.
Communicate the
transition process

GETSTA-TRAORG-8.
Implement the transition

process

GETSTA-TRAORG-4.
Start small, then replicate
- define the scope of the

transition process

GETSTA-TRAORG-5.
Define the transition

timeline

Figure 3.6: Example Process Template – Transiধon Organizaধon

See Section A.1 in Appendix A for more process templates and for the complete handbook sub-

section with detailed best practices on transition organization.

81

IP-at-Risk Analysis

We identified industry best practices on analyzing potential risks of the ungoverned use of open

source and ways to mitigate these risks. An overview of these practices includes:

• OSGOV-GETSTA-IPRISK-1. Run license compliance analysis

– OSGOV-GETSTA-IPRISK-1.1. Develop standard license interpretation

– OSGOV-GETSTA-IPRISK-1.2. Use standard license interpretation

– OSGOV-GETSTA-IPRISK-1.3. Create license-use case pairs

• OSGOV-GETSTA-IPRISK-2. Analyze risk exposure of using an open source component

• OSGOV-GETSTA-IPRISK-3. Mitigate risk to intellectual property

– OSGOV-GETSTA-IPRISK-3.1. Replace problematic components

– OSGOV-GETSTA-IPRISK-3.2. Decouple problematic components

– OSGOV-GETSTA-IPRISK-3.3. Require bill of materials for supplied code by 3rd

party post-factum

– OSGOV-GETSTA-IPRISK-3.4. Run random audits to identify previously undetected

or missed open source components and their metadata

• OSGOV-GETSTA-IPRISK-4. Analyze the security risk of using an open source component

Potential risks of the ungoverned FLOSS use include open source license non-compliance, se-

curity risks and other risks to a company’s intellectual property. Once the risks are identified and

analyzed, companies need to mitigate them by replacing or decoupling the problematic components

depending on the use case and on the license of the component used. Other mitigation practices

suggest requiring detailed bill of materials for the supplied code by third parties after the delivery,

as well as running random audits to identify the metadata of the previously undetected or missed

open source components. Table 3.7 presents one of the best practices on the topic of IP-at-risk when

getting started with open source governance.

Here is an example of a best practice from this subsection:

82

Name OSGOV-GETSTA-IPRISK-1.3. Create license-use case pairs

Actor Transition manager

Context Your company → developed standard license interpretation and you are → using stan-

dard license interpretation. Developers are also consulting company’s → established

FLOSS governance policy for the transition period, and are contacting the transition

board or the transition manager for case by case review of special cases of FLOSS use.

Problem What’s the best way to document the case by case decisions on special cases of FLOSS

use, reviewed by the transition board or the transition manager?

Solution In one centrally available document, create license/use case pairs to document the case

by case decisions on special cases of FLOSS use. This document should include all

the major licenses and company’s detailed approach to their use in different business

contexts or use cases. For example, it can be acceptable to use a copyleft license for

certain (non-differentiating) products, while it might be unacceptable in other cases

such as for company’s main products (with competitive advantage). Such license/use

case pairs should be well structured and documented. In case of a new decision on a

special license/use case pair by the transition board, this document must be updated

by the transition manager. Developers must consult the document before contacting

the transition board or the transition manager with a new review request, because they

might be able to find their answer for a specific license/use case pair in the document.

Having such a document improves performance and reduces unnecessary redundancy.

Table 3.7: Best Pracধce OSGOV-GETSTA-IPRISK-1.3. Create license-use case pairs

The industry best practices of our theory can be traced to the data from the qualitative survey we

performed. Here is an example of such a trace from the interview with Company 6’s open source

compliance manager talking about the specifics of open source license-use case pairs:

83

“[Our] open source handbook doesn’t really present rulॽ in a concrete setup, but what it

explains all the interpretations of the licensॽ that we have [used]. We assess licensॽ

with lawyers, with our internal lawyers, and from these license assessments, we de-

termine certain [company] rulॽ for its usage, modification, and contribution. And

these rulॽ for the individual licensॽ are explained in that document [ॼ license-use case

pairs].” —CX6.1

Here is another example of a data trace for this best practice by a legal expert from Company 9:

“The first thing to recognize ॾ that one size [of license compliance] doॽ not fit all, there

are sort of what I view ॼ a couple of different use casॽ, the first most important use

case ॾ anything that gets the delivered outside the company, something that gets dis-

tributed. Why ॾ that? Because all the copyleft licensॽ except the AGPL v3 depend on

distribution, which ॾ a transfer of copy to triঃer the obligation. If you have a total

SaaS infrastructure, you probably have a lot less risk then in a standalone application,

particularly with GPL v2, ॼ it’s not a distribution. You need to match use casॽ with

open source license interpretations.” —CX9.1

See Section A.4 in Appendix A for the complete handbook subsection with detailed best prac-

tices on IP-at-risk analysis.

84

Communication and Capabilities

We identified some meta-level best practices that enable a smooth transition towards open source

governance. We group these practices under the category of communication and capabilities of our

theory, including:

• OSGOV-GETSTA-COMCAP-1. Establish communication channels for open source gover-

nance issues

• OSGOV-GETSTA-COMCAP-2. Assess open source governance capabilities among devel-

opers and engineering manager

• OSGOV-GETSTA-COMCAP-3. Develop FLOSS governance and compliance capabilities at

the central legal department

• OSGOV-GETSTA-COMCAP-4. Design employee training

• OSGOV-GETSTA-COMCAP-5. Provide employee training

This category of best practices covers the communication channels a company should use when

getting started with FLOSS governance, as well as practices on assessing and building open source

governance capabilities among developers, managers and support function employees. Building

such capabilities includes employee training, as well as learning from academic literature, governance

experts and organizations such as Linux Foundation3, TODO Group4, OpenChain5 and SPDX6

working groups and so on. As an example, see the best practice on designing employee training

when getting started with FLOSS governance, presented in Table 3.8.

Here is an example of a best practice from this subsection:

3Linux Foundation – https://www.linuxfoundation.org/
4TODO Group (talk openly, develop openly) – https://todogroup.org/
5OpenChain Project – https://www.openchainproject.org/
6SPDX (software package data exchange) – https://spdx.org/

85

https://www.linuxfoundation.org/
https://todogroup.org/
https://www.openchainproject.org/
https://spdx.org/

Name OSGOV-GETSTA-COMCAP-4. Design employee training

Actor Transition manager

Context Employee training is intended to increase the awareness of the commercial use of open

source and of FLOSS governance in a company. Also, training gives a common un-

derstanding of strategic and technical implications, and a common mindset on FLOSS

governance.

Problem How does one build a common understanding of FLOSS governance issues and risks?

How to increase the awareness of FLOSS compliance and governance among develop-

ers and others?

Solution Employee groups who will be involved in the training program should be initially

identified (e.g. developers and architects, or team managers as well as legal team, supply

chain team, etc.). All the training materials including necessary forms and documen-

tation should be designed with the target audience in mind. For example, developers

and architects receive web-based training and attend company-wide talks focused

specifically on open source governance and compliance. However, company executives

receive only brief information about the FLOSS governance policy. Design easy to

understand but useful training. Consider repeating the key information for better

retainment. After designing it, → provide employee training to the selected target

groups.

Table 3.8: Best Pracধce OSGOV-GETSTA-COMCAP-4. Design employee training

See Section A.5 in Appendix A for the complete handbook subsection with detailed best practices

on communication and capabilities during transition towards open source governance.

86

3.4.2 Inbound Governance

Key Theory Topic Overview – Inbound Governance

• Component Approval (OSGOV-INBGOV-COMAPP) - 13 best practices

• Component Reuse (OSGOV-INBGOV-COMREU) - 19 best practices

Answering the research question RQ-TB2, we found that after a company got started with corpo-

rate open source governance and finished the initial transition to governance, the company needs to

ensure long-term inbound governance that includes processes and practices for:

• Component Search

• Component Selection

• Component Approval

• Component Repository

• Component Monitoring

• Communication

• Education.

When addressing a product development requirement, developers have an option to search for

open source components to fully or partially fulfill the requirement. We found that open source

software can often be cheaper than purchasing a third-party component or developing own so-

lutions in-house. Though using open source comes with its own costs and requirements, such as

complying with open source licenses, fixing bugs, and updating OSS software. Our theory’s take

on inbound governance deals with all these issues providing industry best practices on the above-

mentioned subtopics.

We found industry best practices for searching open source components, including:

• Define component search requirements

• Check component repository before search

87

• Develop search recommendations

• Update search recommendations

• Follow search recommendations

• Document search channels and practices

• Search multiple channels.

After searching for open source components, companies should select the ones that match their

open source governance policy and product requirements best. In a similar logic to component

search, the best practices in this subsection include:

• Define component selection requirements

• Define component selection criteria for open source projects

• Define component selection criteria for open source communities

• Define component selection criteria for open source code

• Develop selection recommendations

• Update selection recommendations

• Follow selection recommendations.

Companies then need to follow open source governance processes when approving the use of a

selected open source component, which includes best practices, such as:

• Define the component approval process

• File a component approval request

• Review a component approval request

• Define transparent rules for open source component approval

• Communicate open source component approval rules

• Make a component approval decision

88

• Appeal a component approval decision.

After an open source component is approved and used in a company product, developers need

to document this use in a centralized database to ensure future reuse of the same component (under

the same approved license, the same version, etc.) in the company. To reuse open source compo-

nents companies need to follow proposed industry best practices, such as:

• Establish component reuse policy

• Designate a role of responsibility for the component repository, in multiple places in the

company

• Establish component reuse process

• Create component repository

• Update component repository

• Provide component repository a single well-defined location

• Search component repository for reusable components.

To ensure the quality and the reliability of the open source components in company’s products

and in the component repository (for potential reuse), companies need to follow industry best prac-

tices for component monitoring, such as:

• Monitor and maintain components

• Monitor components for updates

• Monitor components for license changes

• Monitor component for vulnerabilities

• Monitor project for community health.

As to some of the meta-tasks of inbound governance, companies need to ensure company-wide

communication around FLOSS governance processes and topics. This builds on top of the estab-

lished communication during the getting started phase. Communication best practices include:

89

• Establish communication channels for open source governance

• Regularly use communication channels for open source governance

• Communicate goals of open source use

• Communicate risks of open source use

• Communicate governance processes

• Communicate component requirements

• Communicate trustworthy component sources.

Finally, companies aiming at establishing continuous inbound governance embedding in soft-

ware development need to educate their employees (developers, managers, lawyers, etc.) on the top-

ics and processes of inbound governance used. The following industry best practices can be used to

address the issue of governance education:

• Educate new developers

• Provide employee training on strategic governance topics

• Provide employee training on specialized governance topics

• Repeat education at regular intervals.

In our study of inbound open source governance, we chose two topics of high industry rele-

vance and academic interest to address in full detail, presenting example best practices and process

template in the following subsections of the dissertation. We focused on Component Approval

subtopic, which we present in Section 3.4.2. We also focused on Component Reuse subtopic, which

we present in Section 3.4.2.

90

Component Approval

Within the scope of the inbound open source governance, one of the key aspects of our theory cov-

ered the approval of the open source components selected for the use in products. We identified

a set of industry best practices for component approval. Collectively they covered the key aspects

of governing component approval, including the process of approval, the rules for approval, the

guidelines for decision making and escalation. The identified industry best practices on component

approval include:

• OSGOV-INBGOV-COMAPP-1. Define the component approval process

• OSGOV-INBGOV-COMAPP-2. File a component approval request

• OSGOV-INBGOV-COMAPP-3. Review a component approval request

• OSGOV-INBGOV-COMAPP-4. Define transparent rules for open source component ap-

proval

• OSGOV-INBGOV-COMAPP-5. Communicate open source component approval rules

• OSGOV-INBGOV-COMAPP-6. Make a component approval decision

• OSGOV-INBGOV-COMAPP-7. Appeal a component approval decision

• OSGOV-INBGOV-COMAPP-8. Communicate component approval process

• OSGOV-INBGOV-COMAPP-9. Implement component approval process

• OSGOV-INBGOV-COMAPP-10. Provide approval request templates

• OSGOV-INBGOV-COMAPP-11. Analyze code for license compliance

• OSGOV-INBGOV-COMAPP-12. Review use in the context of product architecture

• OSGOV-INBGOV-COMAPP-13. Add decision to component repository.

Component approval is an essential part of inbound governance. Companies can prevent risks re-

lated to FLOSS use in products, if they carefully review the components selected for use in products.

To ensure the consistent and transparent component approval, companies establish a well-defined

91

process and clear rules that employees need to follow to make component approval or rejection de-

cisions. One of the best practices from our theory addressed the establishment of an overall process

for component approval, presented in Table 3.9.

Another identified best practice covered the component approval decision making in accor-

dance with the predefined rules of component approval companies need to establish first. Table

3.10 presents the practice on approval decision making. It also points to further practices on appeal-

ing approval decisions, as well as on reviewing the use of a component in the context of product

architecture during component approval.

Here is an example of a best practice from this subsection:

Name OSGOV-INBGOV-COMAPP-1. Define the component approval process

Actor OSPO (Open Source Program Office)

Context One of the key aspects of open source governance is components approval. Software

developers routinely go through a process of searching, selecting, approving and inte-

grating software components into the company’s products. The same processes apply

for open source components.

Problem Using open source components has its unique complexities, such as considering open

source licenses, their obligations, and interdependencies. What should an open source

component approval process include to address all these considerations?

Solution Companies using open source components in their products need to establish compo-

nents approval processes that follow → component search and → component selection.

OSPO must define a streamlined component approval process that does not hinder the

production, but reliably ensures that the selected open source component can be used

in the product without any negative side effects.

92

The component approval process consists of:

• filing a request

• reviewing a request

• making a decision

• appealing a decision.

The component approval process can be assisted by tools as part of the production

toolchain, in order to automate the request and decision submission, and communica-

tion.

Table 3.9: Best Pracধce OSGOV-INBGOV-COMAPP-1. Define the component approval process

Here is another example of a best practice from this subsection:

Name OSGOV-INBGOV-COMAPP-6. Make a component approval decision

Actor OSPO (Open Source Program Office)

Context Software developers → file component approval requests to OSPO. OSPO → reviews

component approval requests. Now OSPO needs to make a decision whether to approve

or reject the use of the given open source component in the product.

Problem How should OSPO make a decision about component approval requests?

Solution OSPO must first double check if the component can be automatically approved or

rejected. This applies only to the previously used license/use case pairs, meaning the

requested open source license has already been used in the requested use case. OSPO

refers to its → defined rulॽ for open source component approval and its previous →

decisions added to component repository.

93

The following decisions are taken:

• if open source licenses contradict the company’s open source governance policy

for all use cases, then the component is automatically rejected

• if open source licenses/use case pairs contradict company’s open source gover-

nance policy, then the component is automatically rejected

• if open source licenses/use case pairs correspond to the company’s open source

governance policy, then the component is automatically approved.

For situations where the open source license and/or the use case are new to the com-

pany, OSPO needs to → analyze code for license compliance, while assessing its use

case. After this OSPO (supported by the legal department) must decide if the new

license/use case pair corresponds to the company’s open source governance policy. To

decide OSPO hears the assessment of its legal and business decision maker members.

OSPO also → reviews open source component use in the context of product architecture.

Once an approval or rejection decision has been made, OSPO → adds thॾ decision to

component repository.

The developer who submitted the component approval request can → appeal a compo-

nent approval decision to the Open Source Program Officer.

Table 3.10: Best Pracধce OSGOV-INBGOV-COMAPP-6. Make a component approval decision

The industry best practices in our theory are interconnected forming workflows or process tem-

plates that practitioners can use to apply our handbook for corporate open source governance. We

present an example process template from this subsection in Figure 3.7. According to this work-

flow from our theory, companies need to start by defining a component approval process and trans-

parent rules for open source component approval. The defined rules will then be used across the

company in the component approval process to review component usage requests by developers to

94

the open source program office (or equivalent body dealing with inbound governance within the

company). After reviewing a request, the OSPO then decides whether the open source component

is approved or rejected for use in the given company product. If the request is rejected, developers

search for an alternative way of addressing the product requirement (e.g. searching for another OSS

component, purchasing a third-party component, or developing in-house). Developers also need to

be able to appeal a component approval decision that would ensure a second (more detailed) round

of review. If OSPO decides to approve the use of the requested OSS component, the developer can

proceed and use it, while also adding the decision and the component (with its metadata) into the

company’s open source component repository.

INBGOV-COMAPP-7.
Appeal a component

approval decision

INBGOV-COMAPP-4.
Define transparent rules

for open source
component approval

INBGOV-COMAPP-3.
Review a component

approval request

INBGOV-COMAPP-13.
Add decision to

component repository

INBGOV-COMAPP-1.
Define component
approval process

INBGOV-COMAPP-2.
File a component
approval request

INBGOV-COMAPP-6.
Make a component
approval decision

Figure 3.7: Example Process Template 1 – Component Approval

Figure 3.8 illustrates another process template from the handbook subsection on component ap-

proval. This workflow proposes another process template that companies following our governance

handbook can use.

INBGOV-COMAPP-11.
Analyze code for license

compliance

INBGOV-COMAPP-12.
Review use in context of

product architecture

INBGOV-COMAPP-3.
Review a component

approval request

INBGOV-COMAPP-13.
Add decision to

component repository

INBGOV-COMAPP-4.
Define transparent rules

for open source
component approval

Figure 3.8: Example Process Template 2 – Component Approval

95

Component Reuse

After covering the component approval subtopic of inbound governance, we present our theory’s

take on component reuse and related governance issues, including:

• definition of a component reuse policy

• operationalization of the component reuse policy in a component reuse process

• creation and maintenance of a searchable component repository with a single well-defined

location

• guidelines for auditing and using the component repository

• integration of component reuse processes with other aspects of open source governance.

For companies that are just getting started with open source governance and compliance the main

problem is that developers use open source components in an uncontrolled manner, without corpo-

rate oversight or rules. This is the first problem companies need to address when getting started with

open source governance, which we addressed in Subsection 3.4.1. In this subsection, we go beyond

that early stage and focus on component reuse. At this stage, we assume that developers are aware

of their company’s approach to open source governance and are using open source components in

compliance with the company’s policy. The main problem at this stage is narrower; it concerns the

lack of component reuse specifically. Though developers are using open source components indi-

vidually, they do not share any information about their use centrally, which hinders any open source

component reuse. Our best practices address this issue in detail:

• OSGOV-INBGOV-COMREU-1. Establish component reuse policy

• OSGOV-INBGOV-COMREU-2. Communicate component reuse policy

• OSGOV-INBGOV-COMREU-3. Adjust and improve component reuse policy

• OSGOV-INBGOV-COMREU-4. Designate a role of responsibility for the component

repository, in multiple places in the company

96

• OSGOV-INBGOV-COMREU-5. Establish component reuse process

• OSGOV-INBGOV-COMREU-6. Communicate component reuse process

• OSGOV-INBGOV-COMREU-7. Implement component reuse process

• OSGOV-INBGOV-COMREU-8. Create component repository

• OSGOV-INBGOV-COMREU-9. Update component repository

• OSGOV-INBGOV-COMREU-10. Maintain component repository

• OSGOV-INBGOV-COMREU-11. Audit component repository

• OSGOV-INBGOV-COMREU-12. Use tools to create, update and maintain component

repository

• OSGOV-INBGOV-COMREU-13. Provide component repository a single well-defined loca-

tion

• OSGOV-INBGOV-COMREU-14. Track prior approval data for reuse

• OSGOV-INBGOV-COMREU-15. Provide all relevant metadata for component

• OSGOV-INBGOV-COMREU-16. Search component repository for reusable components

• OSGOV-INBGOV-COMREU-17. Contact OSPO for details on a repository entry

• OSGOV-INBGOV-COMREU-18. Add security check information to component repository

• OSGOV-INBGOV-COMREU-19. Link BOM and component repository

Table 3.11 presents one of the best practices on the topic of component reuse within inbound

open source governance.

Here is an example of a best practice from this subsection:

Name OSGOV-INBGOV-COMREU-5. Establish component reuse process

Actor OSPO (Open Source Program Office)

97

Context After → establishing a component reuse policy in accordance with the company’s →

defined goals of governance, you must now define how exactly should the employees

reuse open source components in the company’s products.

Problem You → established a component reuse policy and → communicated a component reuse

policy. However, the reuse policy is too broad to apply operationally. It focuses on the

company’s principles for reusing open source components, but leaves out the opera-

tional aspects of component reuse. How should you operationalize the component

reuse policy, while making sure it is widely accepted and used?

Solution Specify the company’s approach to reusing open source components that have already

been approved by the Open Source Program Office. As open source component reuse

is virtually inevitable and necessary for efficient development, a process will ensure

that the current local solutions or workarounds for component reuse are replaced by a

centrally defined and unified process.

Such a process has a number of benefits including, but not limited to:

• point of reference for new developers or managers who need to reuse an open

source component

• a centralized database or component repository with all the used open source

component across the organization

• consistent and up-to-date metadata for the used open source components

• an easy search of the open source components in use and metadata of this use,

including component approval decisions, information on where these compo-

nents have been used, and information on previous component owners.

98

The component reuse process should follow these principles:

• be clearly defined

• be easy to follow without constant guidance by the OSPO (OSPO should

handle the exceptions on a case by case basis)

• be scalable and replicable

• be assisted with tools that automate and/or ensure compliance with the process.

First, you need to establish preparatory steps for component reuse process. For this,

you need to:

⇒ Establish a component reuse policy

⇒ Communicate the component reuse policy

⇒ Adjust and improve the component reuse policy

⇒ Designate a role of responsibility for the component repository, in multiple placॽ

in the company.

Second, you need to establish a process for the main artefact of component reuse - the

component repository, which is the company-internal database with all the used open

source components, their component approval decisions and details, their metadata,

and reuse information. For this, you need to:

⇒ Create a component repository

⇒ Update the component repository

⇒ Maintain the component repository

⇒ Audit the component repository.

99

Third, you need to establish the essential process for the component reuse. For this,

you need to:

⇒ Track prior approval data for reuse

⇒ Provide all relevant metadata for a component

⇒ Search the component repository for reusable components

⇒ Contact the OSPO for details on a repository entry.

Depending on your specific needs you should modify the essential process to include

more steps that would guide the employees in reusing open source components.

Table 3.11: Best Pracধce OSGOV-INBGOV-COMREU-5. Establish component reuse process

The industry best practices in our theory are interconnected forming workflows or process tem-

plates that practitioners can use to apply our handbook for corporate open source governance. We

present an example process template from this subsection in Figure 3.9. This process template gives

a comprehensive overview of component reuse at companies, starting with reuse policy, the desig-

nation of the responsible employee roles, and the establishment of a component repository for the

previously used OSS components and their metadata relevant for future reuse. The component

repository needs to be maintained and audited by the OSPO to ensure that the included compo-

nents are up-to-date and have the correct metadata, such as open source license for the given version

of the used component, relevant copyright, and export restriction information, etc. Finally, the

workflow results in the operationalization of the component reuse policy in the form of the compo-

nent reuse process that is communicated to the stakeholder employees, and implemented across the

company.

100

INBGOV-COMREU-1.
Establish component

reuse policy

INBGOV-COMREU-4.
Designate a role of
responsibility for the

component repository, in
multiple places in the

company

INBGOV-COMREU-2.
Communicate component

reuse policy

INBGOV-COMREU-3.
Adjust and improve

component reuse policy

INBGOV-COMREU-5.
Establish component

reuse process

INBGOV-COMREU-8.
Create component

repository

INBGOV-COMREU-9.
Update component

repository

INBGOV-COMREU-10.
Maintain component

repository

INBGOV-COMREU-6.
Communicate component

reuse process

INBGOV-COMREU-7.
Implement component

reuse process

INBGOV-COMREU-11.
Audit component

repository

Figure 3.9: Example Process Template 1 – Component Reuse

INBGOV-COMREU-3.
Adjust and improve

component reuse policy

INBGOV-COMREU-17.
Contact OSPO for details

on a repository entry

INBGOV-COMREU-14.
Track prior approval data

for reuse

INBGOV-COMREU-4.
Designate a role of
responsibility for the

component repository, in
multiple places in the

company

INBGOV-COMREU-7.
Implement component

reuse process

INBGOV-COMREU-15.
Provide all relevant

metadata for component

INBGOV-COMREU-16.
Search component

repository for reusable
components

Figure 3.10: Example Process Template 2 – Component Reuse

We present another example of a component reuse process template in Figure 3.10. This work-

flow focuses on the specifics of component reuse with the support of the component repository.

When following the component reuse process, employees should, among other tasks, track the

101

prior approval data, provide all relevant metadata for components, search component repository for

reusable component, and contact the OSPO for details on a specific repository entry. For example,

if the component had been approved for a license / use-case pair that differs from the intended reuse

use-case, the developer needs to resubmit a component approval request instead of simply reusing

the component approved for another use-case and added into the component repository.

See our previous work for more patterns on industry best practices for component reuse as part

of inbound governance [71].

102

3.4.3 Supply Chain Management

Key Theory Topic Overview – Supply Chain Management

• Supply Chain Management Policy (OSGOV-SUCHMA-SCMPOL) - 3 best practices

• Supply Chain Management Process (OSGOV-SUCHMA-SCMPRO) - 5 best prac-

tices

• Preventive Governance (OSGOV-SUCHMA-PREGOV) - 4 best practices

• Corrective Governance (OSGOV-SUCHMA-CORGOV) - 4 best practices

• Bill of Materials Management (OSGOV-SUCHMA-BOMMAN) - 4 best practices

• License Compliance for Supply Chain (OSGOV-SUCHMA-LICCOM) - 2 best

practices

Answering the research question RQ-TB3, we found that an essential part of open source gover-

nance is focused on supply chain management. Most open source components end up in company

products through software supply chains. For example, if a third-party software component is pur-

chased to be used in a company product, it is rarely checked for open source license compliance.

Instead, companies often rely on supplier contracts for any potential intellectual property issues or

license non-compliance of the sold company products caused by the supplied code. However, open

source governance on the topics of SCM goes beyond supplier contracts and compliance checks. Be-

ing the focal topic of our theory, we go into detail of the following aspects of SCM-related FLOSS

governance:

• Supply Chain Management Policy

• Supply Chain Management Process

• Preventive Governance

• Corrective Governance

• Bill of Materials Management

103

• License Compliance for Supply Chain.

The subsection on Supply Chain Management Policy proposes industry best practices for defin-

ing company-wide guidelines and high-level rules for managing software supply chains in line with

the company’s open source governance policy.

The subsection on Supply Chain Management Process operationalizes the SCM policy setting up

an overall process that the company employees follow in their day-to-day tasks related to SCM open

source governance.

The subsection on Preventive Governance proposes industry best practices that help companies

prevent potential governance risks resulting from open source use by suppliers and the supplied

code used in company products.

The subsection on Corrective Governance covers industry best practices that solve issues caused by

supplier code that has open source license compliance issues or other governance issues by providing

actionable advice on identifying and addressing such issues within software supply chains.

The subsection on Bill of Materials Management focuses on a key SCM issue of BOM manage-

ment – a governance instrument that companies can use to document, track, and manage the open

source components supplied to the company, as well as their metadata.

The subsection on License Compliance for Supply Chain covers industry best practices of open

source license compliance in the context of software supply chains. An essential part of the SCM

process, this subsection addressing the review of the open source license obligations caused by the

supplied OSS components, as well as the fulfillment of these obligations.

In this section, we discuss the subtopics and specific best practices for supply chain management

in the context of corporate open source governance. Subsection 3.4.3 on Supply Chain Management

Policy presents the insights on the SCM policy. Subsection 3.4.3 on Supply Chain Management Pro-

cess presents the insights on the SCM process. Subsection 3.4.3 on Preventive Governance covers

the best practices for preventing governance issues caused by the software supply chains. Subsection

3.4.3 on Corrective Governance presents the insights on the corrective measures for the SCM-caused

104

issues that were not prevented. Subsection 3.4.3 on Bill of Materials Management presents the best

practices on dealing with BOMs provided by the suppliers. Subsection 3.4.3 on License Compliance

for Supply Chain covers the best practices for reviewing and ensuring open source license compli-

ance in the context of software supply chains.

The industry best practices in our theory are interconnected forming workflows or process tem-

plates that practitioners can use to apply our handbook for corporate open source governance. We

present an example process template for supply chain management in Figure 3.11. This process tem-

plate presents a workflow focused on SCM policy and process. First, companies should establish

the SCM policy based on their overall governance strategy, which is then followed by designating

responsible employees in different parts of the company who would operationalize the policy by fol-

lowing the SCM process. The stakeholder employees should use tools to automate the management

of software supply chains, and of the supplied code. Tools should be used for both the preventive

and the corrective governance in the SCM context.

SUCHMA-SCMPRO-4.
Implement supply chain
management process

SUCHMA-SCMPRO-2.
Establish supply chain
management process

SUCHMA-SCMPRO-5.
Use tools to automate
supplier management

SUCHMA-SCMPOL-1.
Establish supply chain

management policy

SUCHMA-SCMPRO-1.
Designate a role of

responsibility for supply
chain management, in

multiple places in
company

SUCHMA-SCMPRO-3.
Communicate supply
chain management

process

SUCHMA-CORGOV.
Corrective Governance

SUCHMA-PREGOV.
Preventive Governance

Figure 3.11: Example Process Template 1 – Supply Chain Management

We present another example process template for supply chain management in Figure 3.12. This

workflow focuses on BOM management and license compliance. Companies start by identifying

OSS components from the supplied software together with its metadata (e.g. open source license

105

data, component version, copyright information, etc.). Next, companies need to track, document,

and update BOMs in a consistent and complete manner. Companies then should follow indus-

try best practices to create a backup of open source components (hosted by the company), use a

machine-readable format for BOMs, the best practices for license compliance in the SCM context.

SUCHMA-BOMMAN-4.
Use machine readable
and standard format for

BOM upon software
supplySUCHMA-BOMMAN-2.

Track, document and
update BOM in a

consistent and complete
manner

SUCHMA-LICCOM-1.
Review identified open

source components and
metadata for license

compliance

SUCHMA-BOMMAN-1.
Identify open source

components and
metadata from the supply

chain

SUCHMA-BOMMAN-3.
Have a backup of open

source components
hosted by yourself

SUCHMA-LICCOM-2.
Review license

obligations in the context
of supply chain
management

Figure 3.12: Example Process Template 2 – Supply Chain Management

106

Supply Chain Management Policy

We propose industry best practices for establishing, communicating, and implementing a company-

wide policy or set of guidelines for managing software supply chains in terms of open source gover-

nance. The policy helps a company define its principles in regard to open source use and governance

in the context of software supply chains. The policy addresses the SCM governance aspects, such as

company goals for supplier management, metrics for efficient supplier management, principles for

managing open source components in the supplied code, recommendations for automating sup-

plier management through tools, rules for suppliers that use open source components, guidelines for

managing supplied open source components, etc.

Best practices in this category include:

• OSGOV-SUCHMA-SCMPOL-1. Establish supply chain management policy

• OSGOV-SUCHMA-SCMPOL-2. Communicate supply chain management policy

• OSGOV-SUCHMA-SCMPOL-3. Adjust and improve supply chain management policy

Here is an example of a best practice from this subsection:

Name OSGOV-SUCHMA-SCMPOL-1. Establish supply chain management policy

Actor OSPO (Open Source Program Office)

Context After → defining goals of governance and → establishing an open source program, you

defined roles, responsibilities, and policies to address various aspects of open source

governance in an abstract manner. Now you need to define the specific policy for man-

aging software suppliers and open source software that you get through them either

directly or indirectly. Having such a policy will help mitigate license non-compliance

risks associated with the use of open source components supplied to you.

107

Problem Without such a supply chain management (SCM) policy you do not have a system-

atic way of addressing open source governance and compliance within your software

supply chains. Unlike the open source components introduced by a company’s own

developers, supplied code can have unidentified open source components that could

pose compliance risks. One of the reasons is that most software suppliers supply only

a binary and not the source code. While the source code can be easily scanned for its

open source components and their metadata such as licenses, binaries are harder to scan

reliably and require specialized tools. Identifying open source components that have

been used by the suppliers of your supplier on the next tiers of the supply chain are

even harder and imprecise. Different suppliers have different levels of understanding

and awareness in regards to open source licenses, compliance, and governance. This re-

sults in different compliance risk levels associated with different suppliers. The critical

dependence on certain suppliers increases the complexity of such an ungoverned use of

open source components supplied as part of purchased software components for used

in your final products. How can you ensure open source governance and compliance

while managing the complexities of software supply changes?

Solution In parallel to → establishing the supply chain management process, establish supply

chain management policy that the company’s approach to managing open source

components acquired through software suppliers and not through the internal →

component approval process supported by the Open Source Program Office. The sup-

plier management policy presents a set of principles that guide a company through the

FLOSS governance in its supply chain to help identify all the open source components

used in the supplied code on all tiers of the supply chain and their metadata.

108

The policy often has two logical parts: the intention of the policy explaining the Open

Source Program Office’s motivation for having this policy, and guidelines and best

practices that are later operationalized through the → established the supply chain

management process.

In particular, the aspects covered by the policy include but are not limited to:

• company goals for supplier management

• metrics for efficient supplier management

• principles for managing open source components in the supplied code

• recommendations for automating supplier management through tools

• rules for suppliers that use open source components

• guidelines for managing supplied open source components

• supplier management integration with other aspects of open source governance,

including component approval, component tracking, and license compliance

• recommended best practices for managing supplied open source components.

Select industry best practices for supplier management are presented in this handbook,

such as:

⇒ Assess open source governance and compliance awareness and maturity

⇒ Request supplier certification or self-certification

⇒ Design supplier contracts with open source governance aspects in mind

⇒ Audit your supply chain

⇒ Don’t run your supplier out of business

109

⇒ Get the source code (before changing the supplier)

⇒ Identify Open Source Components and Metadata from the Supply Chain

⇒ Have a Backup of Open Source Components Hosted by Yourself

⇒ Use Machine Readable Bill of Materials (BOM) upon Software Supply

⇒ Use Standard Format for BOM upon Software Supply

⇒ Review License Obligations in the Context of SCM

⇒ Use tools to automate supplier management.

The supplier management policy helps the Open Source Program Office define a con-

sistent approach to the issue that can be systematically documented, implemented and

communicated across the organization. It should evolve and can be modified by the

Open Source Program. It should be easy to read and to the point with appropriate ref-

erences to other parts of this handbook. The policy should be created in collaboration

with the engineers. If the lawyers create it, it will be comprehensive and well written,

but few people will ever read or follow it, because of its complexity and language. The

policy should be related directly to the day to day tasks of software development and

solve problems that engineers and managers face in their work.

The policy should address the principles and company approach to the key topics of

supplier management:

• Supply chain management process

• Preventive supply chain management governance

110

• Corrective supply chain management governance

• Bill of materials management

• License compliance for supply chain.

The specific guidelines and best practices for these topics are presented in the other

parts of this section. The policy is operationalized through the → supply chain man-

agement process that defines the steps that developers and other roles need to follow in

order to efficiently manage a company’s supply chain and the related open source com-

ponent in their products or projects. Once the policy is established, it is necessary to

→ communicate supply chain management policy and to → adjust and improve supply

chain management policy.

Table 3.12: Best Pracধce OSGOV-SUCHMA-SCMPOL-1. Establish supply chain management policy

The industry best practices of our theory can be traced to the data from the qualitative survey we

performed. Here is an example of such a trace from Company 9’s lawyer responsible for open source

compliance talking about the specifics of establishing a SCM policy:

“So what you need to think about ॾ, returning to supply chain, I think you need to

manage it [in terms of open source governance], that means you need to have a policy

that needs to cover [guidelinॽ for] when you get software from third partiॽ – a com-

pany [that] ॾ providing you code for your product, or hardware, which hॼ code on it.

Take a look at iPhone or Apple or Android phone, the amount of code that’s in there

from the actual company that solvॽ that problem [ॾ] very small. ... many products

have code from 3, 4, 5, 15 suppliers in it, right? So [ॼ a company, you] have to make

sure you have intake procedure. You [should] talk about the decision [making rulॽ]

with your programmers ॼ well.” —CX9.1

111

Here is another example of a data trace from the primary material with an open source policy

template draft by OpenChain:

“[We recommend that] a written open source policy exists that governs open source li-

cense compliance of the Supplied Software distribution. The policy must be internally

communicated.” —PM11.2

See Section B.1 in Appendix B for the complete handbook subsection with detailed best practices

on SCM policy.

112

Supply Chain Management Process

We propose industry best practices that operationalize the supply chain management policy by

suggesting a step-by-step process embedded in the company’s software development and software

procurement processes. The SCM process guides employees, such as (software) project managers,

(software) product managers, technical product managers, senior developers, and IT manager for in-

ternal tasks related to SCM. It also guides procurement managers and IT managers for external tasks

related to SCM (e.g. sending supplier requests, answering supplier requests, etc.). The SCM pro-

cess covers different best practices in the handbook section on SCM, such as assessing open source

governance and compliance awareness and maturity of a supplier, requesting supplier certification,

auditing the supply chain, etc.

• OSGOV-SUCHMA-SCMPRO-1. Designate a role of responsibility for supply chain man-

agement, in multiple places in the company

• OSGOV-SUCHMA-SCMPRO-2. Establish a supply chain management process

• OSGOV-SUCHMA-SCMPRO-3. Communicate supply chain management process

• OSGOV-SUCHMA-SCMPRO-4. Implement supply chain management process

• OSGOV-SUCHMA-SCMPRO-5. Use tools to automate supplier management

Here is an example of a best practice from this subsection:

Name OSGOV-SUCHMA-SCMPRO-4. Implement supply chain management process

Actor OSPO (Open Source Program Office), Supply chain management responsibles

Context After → establishing a supply chain management process and → communicating it, you

must implement the process across the company.

Problem Implementing a large-scale process across the company has its challenges. How should

you implement an efficient process?

113

Solution Gradually implement the supplier management process. Start by introducing pre-

ventive governance measures. Preventive governance ensures that potential suppliers

have a high degree of open source governance and compliance awareness, and thus are

unlikely to supply non-compliant code. Preventive governance includes the following

best practices:

⇒ Choose the right supplier

⇒ Assess open source governance and compliance awareness and maturity

⇒ Request supplier certification or self-certification

⇒ Design supplier contracts with open source governance aspects in mind.

Corrective governance ensures that after the code supply any governance and com-

pliance issues are identified are corrected and addresses, mitigating the risks caused by

suppliers. Even after preventive governance, there is a potential risk in terms of FLOSS

governance and compliance, so the following best practices should be applied:

⇒ Audit your supply chain

• Enable regular audits

• Enable surprise audits

⇒ Mitigate identified risks

• Assess risks in accordance with the supply chain management policy

• Triঃer supplier contract clausॽ and get the supplier to take care of the issue

• Don’t run your supplier out of business.

In parallel to preventive and corrective governance measures, focus on bill of materials

management and on license compliance for the supply chain.

114

For bill of materials management, follow the best practices of the handbook to:

⇒ Identify open source components and metadata from the supply chain

⇒ Track, document, and update BOM in a consistent and complete manner

⇒ Have a backup of open source components hosted by yourself

⇒ Use machine readable and standard format for BOM upon software supply.

For license compliance for supply chain, follow the best practices of the handbook to:

⇒ Review identified open source components and metadata

⇒ Review license obligations in the context of SCM

⇒ Review copyright noticॽ in the context of SCM

⇒ Review security vulnerabilitiॽ in the context of SCM

Depending on your specific needs you should modify the essential process to include

more steps that would guide the employees in reusing open source components. Fi-

nally, the OSPO should handle the exceptions that deviate from the implemented

process on a case by case basis, while considering process optimization and continuous

improvement.

Table 3.13: Best Pracধce OSGOV-SUCHMA-SCMPRO-4. Implement supply chain management process

See Section B.2 in Appendix B for the complete handbook subsection with detailed best practices

on SCM process.

115

Preventive Governance

We propose industry best practices for preventing potential governance and compliance issues

caused by open source use in software supply chains. Companies can take a number of steps in pre-

venting FLOSS governance issues in the context of SCM. The first preventive measure takes place

when choosing suppliers. We propose a best practice for choose the right supplier taking into ac-

count the supplier’s open source governance and compliance awareness and maturity. To assess the

latter companies should design supplier contracts with open source governance aspects in mind, as

well as consider requesting supplier certification or self-certification. Such certifications can be con-

ducted by the company or using existing standard certification frameworks for FLOSS governance

in supply chains. One example is the framework developed by the OpenChain Project7.

• OSGOV-SUCHMA-PREGOV-1. Choose the right supplier

• OSGOV-SUCHMA-PREGOV-1.1. Assess open source governance and compliance aware-

ness and maturity

• OSGOV-SUCHMA-PREGOV-1.2. Request supplier certification or self-certification

• OSGOV-SUCHMA-PREGOV-2. Design supplier contracts with open source governance

aspects in mind

Here is an example of a best practice from this subsection:

Name OSGOV-SUCHMA-PREGOV-2. Design supplier contracts with open source gover-

nance aspects in mind

Actor Supply chain management responsibles, Lawyer / legal counsel, Procurement depart-

ment

Context You are → assessing open source governance and compliance awareness and maturity of

the potential suppliers and → request supplier certification or self-certification.
7OpenChain Project – https://www.openchainproject.org/

116

https://www.openchainproject.org/

Problem How can you use supplier contracts to address open source governance and compli-

ance?

Solution Companies build their supplier relationships using supplier contracts with clear terms

for the functionality, quality, and availability of the supplied software. However,

contracts do not address aspects of legal compliance specific to open source software

components, which can cause potential governance and compliance problems, as the

responsibility for the final software product that uses supplied code remains with the

client and not the suppliers. Even if some contracts have clauses for putting partial

responsibility for legal compliance caused by suppliers, this is not enough to ensure no

risk caused by ungoverned use of open source in products.

In case of potential litigation, putting the blame solely on a supplier and potentially

→ running a supplier out of business ॾ not a good strateং, as you will be left with no

supplier, no source code in most cases and a remaining legal issue of license compliance

in your product. Therefore, address this issue early on and prevent risks of open source

compliance and governance by adding clauses on the issue in the supplier contract as

early as possible. The contract should inform the supplier of all the obligations around

open source license compliance and other aspects of FLOSS governance. Design con-

tracts that outline a supplier’s responsibility in case of license non-compliance, and

outline preventive measures, such as → performing certification or self-certification,

which can be optional or mandatory. Supplier contracts can also include stricter pro-

visions, such as specific templates that a supplier must fill before any anticipated use

of open source components in software development and send these templates to the

client for approval. You can then use the open source component information in the

provided template to → run through your component approval process before allowing

or rejecting the use of the component in the software that will eventually be supplied to

you.

117

Though more cost and labor intensive this approach makes sense for companies that

have critical suppliers and a large number of products that will have the supplied com-

ponent. In such cases, the potential risk of non-compliance is too high to only rely on

contracts and subsequent → supply chain audit.

Table 3.14: Best Pracধce OSGOV-SUCHMA-PREGOV-2. Design supplier contracts with open source governance
aspects in mind

See Section B.3 in Appendix B for the complete handbook subsection with detailed best practices

on preventive SCM governance.

118

Corrective Governance

We propose industry best practices for addressing any identified issues of FLOSS governance or

compliance caused by open source use in software supply chains. Though preventive governance

best practices mitigate the potential governance issues caused by lacking SCM, companies should be

ready to address and correct any cases of non-compliance or other governance issues caused by sup-

pliers. Companies should conduct regular and surprise audits of their software supply chains to find

any potential issues, similar to the IP-at-risk analysis in the smaller scale during getting started with

governance. Companies then need to mitigate the identified risks by assessing them in accordance

to the company’s supply chain management policy, triggering supplier contract clauses, and getting

the supplier to take care of the issue. Industry experts recommend not running the company suppli-

ers out of business when conducting corrective governance, as the potential losses and issues could

increase in volume and complexity in case of the bankruptcy of a small supplier.

• OSGOV-SUCHMA-CORGOV-1. Audit your supply chain

• OSGOV-SUCHMA-CORGOV-2. Mitigate identified risks

• OSGOV-SUCHMA-CORGOV-2.1. Assess risks in accordance to the supply chain manage-

ment policy

• OSGOV-SUCHMA-CORGOV-2.2. Trigger supplier contract clauses and get the supplier to

take care of the issue

• OSGOV-SUCHMA-CORGOV-2.3. Do not run your supplier out of business

Here is an example of a best practice from this subsection:

Name OSGOV-SUCHMA-CORGOV-2.3. Do not run your supplier out of business

Actor OSPO (Open Source Program Office), Lawyer / legal counsel

119

Context You have identified compliance and governance risks in your supply chain and → as-

sessed these risks in accordance with the supply chain management policy. For certain

critical risks you → triঃered supplier contract clausॽ to take care of the issue.

Problem What actions should you not take when addressing the identified risks of non-

compliance by a supplier?

Solution Most companies have suppliers that are smaller than themselves, thus giving them

higher negotiation power over the suppliers. This means that in case of non-

compliance with open source licenses in the supplied code, you can easily force your

supplier to fix the risk causing software non-compliance. You can even sue your sup-

plier and get compensation. However, you should be careful not to endanger the

operation of the supplier company.

If you run your supplier out of business by pressuring them with lawsuits or finan-

cial pressure, you can end up with a binary instead of a source code and no ability to

maintain or update the software that was causing the non-compliance issue in the first

place. Most software is not supplied as source code, but rather as a binary in order to

protect the intellectual property of the supplier that makes money by selling a different

version of the product that uses its know-how in the form of source code. If a company

goes bankrupt, you might have to look for another supplier, which is costly and time

consuming. In a nutshell, do not run your supplier out of business, when possible.

Alternatively, make sure to get the source code in case of the supplier bankruptcy or

before changing the supplier to avoid the above mentioned risk.

Table 3.15: Best Pracধce OSGOV-SUCHMA-CORGOV-2.3. Do not run your supplier out of business

See Section B.4 in Appendix B for the complete handbook subsection with detailed best practices

on corrective SCM governance.

120

Bill of Materials Management

We propose industry best practices on the key SCM issue of BOM management. BOMs are the

main instrument companies can use when managing their use of open source in the supplied code

that ends up in company products. BOM for the supplied software includes the list of open source

components used in the supplied product, together with the relevant metadata mapped to them.

Metadata includes open source license data and version, copyright information, information on ex-

port restrictions, etc. Each company should define and communicate the metadata they expect to see

in the BOMs provided by the suppliers. Companies should require and use a machine-readable for-

mat and industry standards for BOMs. This enables managing multiple BOMs at once using SCM

governance tools. Such tools should be also used to identify open source components and metadata

from the supply chain even if a BOM has been provided, in order to ensure its correctness. Another

best practices in this subsection recommends creating a backup of open source components hosted

by the company, which can be useful if the supplier goes out of business, but the company continue

selling a product using open source components that came from a supplier.

• OSGOV-SUCHMA-BOMMAN-1. Identify open source components and metadata from

the supply chain

• OSGOV-SUCHMA-BOMMAN-2. Track, document and update BOM in a consistent and

complete manner

• OSGOV-SUCHMA-BOMMAN-3. Have a backup of open source components hosted by

yourself

• OSGOV-SUCHMA-BOMMAN-4. Use machine readable and standard format for BOM

upon software supply

Here is an example of a best practice from this subsection:

121

Name OSGOV-SUCHMA-BOMMAN-4. Use machine readable and standard format for

BOM upon software supply

Actor OSPO (Open Source Program Office), Supply chain management responsibles

Context You have used the bill of materials and code scanning of the supplied code to → iden-

tify open source components and metadata from the supply chain. You have → tracked,

documented and updated BOM in a consistent and complete manner.

Problem What can you improve the performance of managing your BOMs?

Solution Software supply chains are complex and cannot be handled manually. You need to →

use tools to improve the performance of BOM management. Most importantly you

need to establish a machine readable and standard format for BOMs. An example of

such a format is called Software Package Data Exchange (SPDX). It enables the docu-

mentation and exchange of data and metadata for open source components and BOMs

made of such components.

Table 3.16: Best Pracধce OSGOV-SUCHMA-BOMMAN-4. Use machine readable and standard format for BOM upon
sođware supply

See Section B.4.6 in Appendix B for the complete handbook subsection with detailed best prac-

tices on BOM management.

122

License Compliance for Supply Chain

We propose industry best practices for open source license compliance in the SCM context. While

component approval process from inbound governance focuses on license compliance of the open

source components that are added into company products directly by developers during in-house

developers, the supplied code does not go through such an approval process. To address the issues

that were not identified during the review of the BOMs provided with the supplied software, com-

panies should also review the identified open source components in the supplied products, as well as

their metadata for license compliance. Companies should also review the specific license obligations

resulting from the used open source components by the suppliers and fulfill any such obligations.

• OSGOV-SUCHMA-LICCOM-1. Review identified open source components and metadata

for license compliance

• OSGOV-SUCHMA-LICCOM-2. Review license obligations in the context of supply chain

management

Here is an example of a best practice from this subsection:

Name OSGOV-SUCHMA-LICCOM-2. Review license obligations in the context of supply

chain management

Actor OSPO (Open Source Program Office), Supply chain management responsibles

Context You have used the bill of materials and code scanning of the supplied code to → iden-

tify open source components and metadata from the supply chain. You have → reviewed

identified open source components and metadata for license compliance.

Problem What do you need to do to comply with open source licenses of the components from

the supply chain?

123

Solution You need to review the obligations of the identified open source licenses in order to

comply with them. Different licenses have different obligations, which all have to be

documented and checked with the use cases in which the components are used. Multi-

ple licenses in one component need to be considered, as they can result in incompatible

license mixtures. Use the reviewed license obligations to → ensure license compliance.

Table 3.17: Best Pracধce OSGOV-SUCHMA-LICCOM-2. Review license obligaধons in the context of supply chain
management

See Section B.4.11 in Appendix B for the complete handbook subsection with detailed best prac-

tices on license compliance for supply chain.

124

3.4.4 Outbound Governance

Answering the research question RQ-TB4, we found that another essential part of corporate open

source governance is outbound governance. Unlike the inbound governance that focuses on how

open source software gets into the company products, outbound aspects of FLOSS governance

address how the company’s products that incorporate open source components are released and dis-

tributed. The key subtopic of outbound governance our theory identified focused on ensuring the

open source license compliance for the products the company sells. While the inbound governance

and supply chain management best practices help ensure open source license compliance of the re-

sulting products, they do not eliminate the need for a license compliance check after the software

development process is over and the product is ready to be released. We found industry best prac-

tices recommending companies to take over the open source license compliance artifacts (e.g. license

scan reports, BOMs, etc.) from the inbound governance and SCM processes and run further license

compliance checks. In a nutshell, outbound governance includes best practices for checking and en-

suring FLOSS compliance before products are shipped to the customers. Outbound governance

also addresses the management of employee contributions to open source communities, as well as

other governance issues in relation to external parties (customers, certification bodies, regulators,

etc.).

Our theory’s take on outbound governance focuses on the following subtopics:

• License compliance

• Distribution Preparation

• Product Distribution

• Release Management

• Contribution Management.

Given our theory’s limited focus on outbound governance, we present one encompassing best

practice on the topic, in Table 3.18.

125

Here is an example of a best practice from this subsection:

Name OSGOV-OUTGOV-LICCOM-1. Ensure license compliance

Actor OSPO (Open Source Program Office), Lawyer / legal counsel

Context In many parts of this handbook, we cover topics of open source license compliance

and its integration in different processes of open source governance, namely in getting

started with open source governance, component approval, component integration

and reuse, and supply chain management. Open source licenses have a certain right

to using the software, but they also have obligations and limitations that must be

observed. For example, a copyleft license like GPL version 3 allows companies to use

the open source software under this license, but enforces an obligation, such as open

sourcing any derived work, that is any software created using the GPL-licensed code.

For a company, this would mean sharing openly their home-developed software, which

often is its intellectual property and differentiating competitive advantage. Continuing

the example, if a company uses a GPL-licensed code in a product, but fails to comply

with the GPL obligation of sharing the product’s source code, the company would

be non-compliant with the open source license. As a result, if legally challenged the

company might end up paying significant penalties in court (as has happened before)

or might be forced to cease and desist the distribution of the non-compliant product.

Understandably, the risk of non-compliance will have a more significant effect on a

company that uses non-compliant software in multiple hardware products of its own

or of its client.

This software includes both home developed or supply-chain acquired compo-

nents that need to be compliant. Even if a supplier supplies non-compliant code

that makes it to your product, it’s still the client company that is liable for any license

non-compliance.

126

Problem How should companies ensure open source license compliance?

Solution Open source license compliance is a complex topic that deals with a matrix of nu-

merous open source licenses (about 20 prominent ones) and various use cases such as

use for software development only, use as part of a standalone or integrated software

product, use as part of a SaaS product, etc. Each of the license/use case pairs needs to

be interpreted by a company lawyer or by the OSPO, and followed by managers and

software developers.

When → getting started with open source governance, companies deal with license

compliance by:

⇒ Establishing a board of stakeholders to organize the transition and → designating

the transition manager who are tasked with ensuring open source compliance in

the transition towards open source governance. This task is then shifted to the

→ open source program office (OSPO).

When → getting started with open source governance, companies deal with license

compliance by:

⇒ Establishing FLOSS governance policy for the transition period and → establish-

ing the transition process that define the principles and operational aspects of

open source license compliance during the transition phase.

⇒ Establishing a process of continuoॿ reporting and assessment that ensures the day

to day license compliance for the newly added open source components that

includes assessing licenses, copyright notices, export restrictions, and software

supply chains.

127

⇒ Developing standard license interpretation, → using standard license interpre-

tation and → creating license/use case pairs which all directly ensure license

compliance during the transition towards governance.

In the section on → component approval, companies deal with license compliance by:

⇒ Defining the component approval process and → defining transparent rulॽ for

open source component approval that include instructions on dealing with open

source licenses and use cases, as well as license compliance during the compo-

nent approval phase.

⇒ Providing approval request templatॽ that include license information for open

source components such as the license name, copyright information, use case,

and whether multiple licenses are mixed.

⇒ Analyzing code for license compliance that directly addresses license compliance

during component approval.

In the section on → component reuse, companies deal with license compliance by:

⇒ Establishing component reuse policy and → establish component reuse process that

address principles and specific tasks of license compliance during component

integration and reuse.

⇒ Designating a role of responsibility for component repository, in multiple placॽ in

company tasking some employees with ensuring compliance when integrating or

reusing components.

⇒ Creating component repository and → updating component repositorywith the →

provided relevant metadata for components that include license metadata.

128

In the section on → supply chain management, companies deal with license compli-

ance by:

⇒ Establishing supply chain management policy and → establishing supply chain

management process defining the principles and the operationalization of license

compliance in supply chains.

⇒ Designating a role of responsibility for supply chain management, in multiple

placॽ in company tasking some employees to deal with supplier management

responsibilities including license compliance.

⇒ Designing supplier contracts with open source governance aspects in mind that

addresses license compliance as part of supplier contracts.

⇒ Reviewing identified open source components and metadata, → reviewing license

obligations in the context of SCM, and → reviewing copyright noticॽ in the

context of SCM that are the best practices directly addressing license compliance

in the context of supply chain management.

As these open source license compliance ensuring steps are taken, companies need to

identify the measures necessary to comply with various license obligations in different

use cases.

These obligations defer based on different open source licenses and must be inter-

preted by company lawyers, then documented and shared internally. Software develop-

ers and managers must develop compliance checklists for different license/use case pairs

and follow them. Such checklists will include:

• distributing copyright notices and open source license with released products

• defining compliance artifacts

129

• generating compliance artifacts from product architecture model

• providing compliance artifacts

• open sourcing, distributing and hosting own software, if required.

Table 3.18: Best Pracধce OSGOV-OUTGOV-LICCOM-1. Ensure license compliance

Some other best practices of outbound governance include:

• establishing a compliance policy

• establishing a compliance process

• disclosing all licenses used

• defining required license artifacts

• distribution preparation

• conducting source code inspections before product release

• defining product shipment checklist

• establishing a contribution policy

• establishing a contribution process

• double checking the contributions, etc.

130

3.4.5 General Governance

After answering the research questions RQ-TB1, RQ-TB2, RQ-TB3, and RQ-TB4, we found that

some industry best practices go beyond any specific question and touch on the cross-cut and more

general topics of open source governance, such as establishing an overall company policy for corpo-

rate open source governance, building up an open source program office, developing open source

license interpretations, etc. The general aspects of open source governance in our theory addressed

the following subtopics:

• Governance Management

• Open Source Program Office

• License Interpretation

• Capabilities

Governance management focuses on the general managerial aspects of corporate open source

governance, such as defining the company’s goals of governance, establishing an open source pro-

gram that would further detail the broadly defined goals, establishing an open source program office

that would then put the program into action across the company, etc. The best practices on gover-

nance management include:

• Define goals of governance

• Establish an open source program

• Establish an open source program office

• Define the role of legal counsel

• Give legal counsel veto right

• Give arbitration committee decision right

• Integrate program office in product development

• Integrate program office in mergers and acquisitions.

131

An example of a best practice from the Governance Management subsection is presented in Table

3.19.

Here is an example best practice from this subsection:

OSGOV-GENGOV-GOVMAN-3. ESTABLISH AN OPEN SOURCE PROGRAM OFFICE

Name Establish an open source program office (OSPO)

Actor Top management

Context Your company went through a transition from ungoverned use of open source soft-

ware in products to FLOSS governance. You already → got started with governance

following this handbook.

Problem Now you need to institutionalize the newly established FLOSS governance process that

you outlined by → defining goals of governance and by → establishing an open source

program. Which institution will execute the open source program?

Solution To execute the defined goals of governance and your company’s open source program,

you need to establish an open source program office. It is based and built upon the

already → established board of stakeholders to organize the transition. However, the

open source program office is a permanent and company-wide body that will have a

larger scope than the transition board. As a first step, create the new team/unit that

will be responsible for all open source governance-related questions including license

compliance checks, governance policy execution, supplier management in terms of

open source governance, etc.

Second, establish the organizational structure of the program office. This depends

on your company size, geography, and products. In general, consider the following

employees as potential members of the program office:

• members of the transition board

132

• senior developers from different production units (can be shifting)

• engineering managers from different production units (can be shifting)

• lawyer from the central organization of the company (e.g. corporate man-

agement) with knowledge and experience in open source compliance and

governance

• software architect (overlooking several production units)

• business/product managers

• software procurement officer.

The OSPO should be inclusive and transparent. The board will be taking impor-

tant business, technical and legal decisions, which need to be widely communicated

and enforced. The board does not have to require the full-time engagement of all

the members (depends on the company). However, it is important to → define rolॽ,

responsibilitiॽ, and policiॽ and to follow other best practices for the operation of →

Open Source Program Office.

Table 3.19: Best Pracধce OSGOV-GENGOV-GOVMAN-3. Establish an open source program office

Open Source Program Office has a subsection of its own that focuses on the largest topic of gen-

eral governance, which covers how the OSPO should function, who the involved employees should

be, what processes should it coordinate, etc. The OSPO-specific best practices include:

• Define roles, responsibilities, and policies

• Provide roles, responsibilities, and policies in written form

• Match policies to actual risks

• Provide a contact for internal inquiries

133

• Provide a channel for whistle-blowing

• Provide a contact for external inquiries

• Collaborate with legal counsel on license interpretation

• Track industry best practices and standards

• Network to learn from others

• Engage with the community.

Another subsection of general governance – License Interpretation included the following best

practices:

• Use standard license interpretation

• Develop standard license interpretation

• Use standard license compatibility matrix

• Develop standard license compatibility matrix

• Automate license identification and interpretation.

The Capabilities subsection includes the following best practices:

• Assess open source governance capabilities

• Create educational resources for capabilities building.

134

4
Theory Evaluation

This chapter covers the evaluation of our theory of industry best practices for corpo-

rate open source governance. Going beyond theory building, we set out to evaluate parts of our the-

ory through a multiple-case case study at three companies. We conducted a guided implementation

of parts of our FLOSS governance handbook at production-level projects at these companies. Our

goal was to evaluate how our theory performs in the real-life setting of companies using open source

software and following our recommendations for governance. We evaluated parts of our theory on

135

getting started with open source governance and on the inbound governance at Company A – our

longest-running case study of two and a half years at a company with no processes or practices for

FLOSS governance. We evaluated our theory on supply chain management governance at Company

B – a company with understanding and processes of FLOSS governance basics, but lacking the more

advanced processes and practices, such as those related to SCM. We attempted to evaluate parts of

the inbound, outbound, and supply chain management governance at Company C, but failed to

fulfill the evaluation, details of which we also report in this chapter.

4.1 Overview

In Chapter 3 we proposed a theory of industry best practices for corporate open source governance

that was based on the qualitative data analysis of the expert interviews conducted over the course of

three years. To strengthen the proposed theory we evaluated it through a multiple case case study,

where we tested how our theory applies to companies with little or no open source governance in

place. We presented the research process and findings of our theory evaluation in this chapter.

To evaluate our proposed theory we studied its trustworthiness to ascertain the quality of our

research and findings. We followed Guba [61] [97] identifying the criteria for trustworthiness of

qualitative studies, as such criteria can differ for quantitative research [59]. This resulted in the fol-

lowing criteria:

• Credibility

• Dependability

• Confirmability

• Transferability.

Credibility. Credibility is the degree to which we can establish confidence in the truth of our

findings in the context of the inquiry. To ensure credibility, we performed two rounds of peer de-

briefing, together with three colleagues we reviewed this study and incorporated the feedback from

136

our colleagues from within our research group. Furthermore, during data collection we conducted

our interviews iteratively, adjusting our semi-structured interview questions based on the company

context and on our experience with earlier interviews. The latest version of the interview questions

is presented in Appendix C.

Dependability. Dependability is the degree of consistency of the findings and traceability from

the data to the results. We ensured dependability by collecting and saving raw interview data, doc-

umenting our qualitative data analysis in different stages of the coding and by documenting our

analysis in a manner that allowed tracing each requirement in our theory to its origin in our col-

lected data. We included numerous direct references to the expert interviews in the presentation of

our research findings in Chapter 3.

Confirmability. Confirmability is the degree to which the authors are neutral towards the inquiry

and their potential bias effect on the findings. Qualitative data research realized by one researcher

has inherent subjectivity and bias. Even though we followed the research method constructs care-

fully, there was bias associated with method interpretation and application to our specific context.

To address this limitation, we had a second coder analyze our data and improve our original QDA

coding based on input from the second coder [99]. One second coder worked parts of the QDA

re-coding on the topic of getting started with corporate open source governance. Another second

coder worked parts of the QDA re-coding on the topic of supply chain management within corpo-

rate open source governance.

Credibility, dependability, and confirmability dealt with the internal aspects of the trustworthi-

ness of our study – based on our research design and process, which resulted in our theory. How-

ever, we were not able to evaluate the transferability of our theory in the same way. Transferability is

the degree to which the findings of our study hold validity in other contexts. To evaluate the trans-

ferability, we had to look at the external validity of our results – how our theory can be generalized

and applied at companies with no or little corporate open source governance in place. Such an eval-

uation strategy has been recommended by researchers studying the trustworthiness in qualitative

137

research projects [138] [114]. This chapter of the dissertation focused on evaluating the transfer-

ability of our theory through the multiple-case case study we had conducted and whose results we

presented here.

4.2 Research Question

As the evaluation focus was on assessing our theory’s external validity, we asked the following overar-

ching research question (Research Question – Theory Evaluation):

RQ-TE: How transferable wॼ the proposed theory of industry best practicॽ for corporate open

source governance in the context of companiॽ with no or little governance in place?

Our theory was developed based on the expert knowledge on the topic at the companies with an

advanced understanding of open source governance. In theory evaluation we aimed at assessing how

generalizable such a theory would be to companies that were not FLOSS governance experts.

The overarching research question RQ-TE was then operationalized with specific quality criteria.

We chose several criteria by looking at academic research from various disciplines, where qualitative

theories were evaluated. Namely, the applicability, relevance, understandability, and usefulness of a

theory could be used to critically appraise the transferability of qualitative research [133] [11]. Bitsch

[13] added another evaluation criteria – the comprehension of the theory. Other evaluation criteria

included the structure, completeness, and variability of qualitative theories [114] [85].

We used the following criteria to assess transferability:

• Completeness

• Variability

• Structure

• Comprehension

• Understandability

• Applicability

138

• Relevance

• Significance

• Usefulness.

When defining the research question and the evaluation criteria, we considered looking at some

of the aspects in further detail. For example, assessing different specific aspects of significance (e.g.

savings of potential costs related to open source governance and compliance risks) or understand-

ability (e.g. increased level of open source governance awareness among employees). However,

given the scope of the evaluation case studies, we only expected that the case study companies would

start implementing and using our governance handbook in pilot projects and that the full roll-out

of company-wide governance processes would take several years (as is the case for most company-

wide policies or guidelines). Therefore, we did not expect to have access to significant quantitative

or qualitative data that would enable us to evaluate further specifics of the proposed theory. In-

stead, we focused on evaluating the transferability of the proposed theory by looking at the above-

mentioned quality criteria that can be assessed at the early phase of handbook implementation and

use in the production setting at case study companies.

We included further details on the research question in our case study protocol in Appendix E

and in the detailed interview questionnaire we used during theory evaluation presented in Section

C.3 of Appendix C.

4.3 Research Method

Once we specified the research question for theory evaluation, we designed a research approach to

answer this question. The clear scope of our evaluation was on the transferability of our proposed

theory. We could evaluate the internal qualities (those related to internal validity) of our theory

during theory building including its credibility, dependability, and confirmability. We also aimed

at addressing the external quality (that related to external validity) of transferability during theory

139

building by presenting thorough descriptions of the research context and our underlying assump-

tions [146]. Namely, for each of our proposed industry best practice for open source governance we

presented the context (one of the components of a best practice pattern we used to present our the-

ory) in which we described in detail under which conditions and assumptions a given best practice

would apply.

However, as we aimed at developing a practical and applicable theory, we went on to further eval-

uate its transferability by studying how generalizable our findings were. We searched for companies

with little or no open source governance processes and practices in place, which would be willing

to implement parts of our handbook (a practical representation of the proposed theory) and let us

study and evaluate this implementation. To best realize this we chose case study research as our re-

search method. As Yin [157] suggests case study research (in comparison to other strategies such as

experiments, surveys, archival analysis, or history) is a fitting research strategy for situations that:

• ask research questions in the form of how or why

• do not require control over behavioural events

• focus on contemporary events.

Our theory evaluation question did ask a how question, that was on how transferable the pro-

posed theory was in the context of companies with no or little governance. Our theory evaluation

did not require control over behavioural events, nor was such a controlled study possible for a the-

ory so complex and multi-layered (in terms of having an organization-wide impact and hierarchies

of stakeholders), which could not realistically be confined to a controllable environment. Finally,

our theory focused on the contemporary phenomenon of corporate open source governance, as the

topic has been emerging only recently, which we already discussed in Chapter 2 on the state-of-the-

art of academic literature on FLOSS governance.

We used the case study research method to test a theory (theory evaluation), which corresponded

to one of the research purposes a case study could have, as suggested by case study methodology

140

scholars [157] [24] [42]. As outlined in the case study protocol presented in Appendix E, our case

study was both descriptive and explanatory. It was descriptive in resulting in detailed reports of

what the initial state of open source governance at the studied companies was, as well as how com-

panies followed and implemented the proposed industry best practices from the proposed theory.

It was explanatory in presenting the reasons why certain parts of the theory were more or less com-

plete, understandable, applicable, useful, etc., which resulted from analyzing the proposed and the

actual implementation patterns of corporate open source governance at the studied companies.

Another characteristic of our research method was it being a multiple-case case study with a holis-

tic design. We studied the implementation and use of the proposed theory at pilot project teams

in each of the case study companies. The employees of these teams were our main source of data

during theory evaluation. Finally, we need to report that the case study companies partially funded

our research through contracts with our university. We presented the details of this funding in the

following Section 4.3.1 on sampling.

When designing our research strategy for theory evaluation, we looked at potential industry part-

ners in the professional network of our research group to find companies with no or little open

source governance in place that would also be interested in cooperating with us on the topic by al-

lowing a guided implementation of our handbook in some their production projects. We would like

to highlight that our intention was to guide the implementation of our theory, and not to conduct

the implementation on our own. We observed how employees at the selected companies were using

parts of our handbook, but we did not directly influence them. This ensured a less biased theory

evaluation, and was in line with our case study research method by Yin [157]. This explicit choice

of research design also meant that we could not follow another research method – action research

for which we would have to be directly involved in the implementation, rather than being only ob-

servers [9] [121].

As a result of our sampling, we chose three companies for the guided implementation of our

handbook, each with different level of open source governance maturity to best enable the evalua-

141

tion of our theory. One of the companies (Company A) had no governance processes or practices in

place, which would enable us to implement the industry best practices for the basics of open source

governance. Another company we selected (Company B) already covered the basics of corporate

open source governance, which would enable us to implement the more advanced industry best

practices, such as those focused on supply chain management in terms of open source governance.

Finally, we chose Company C to be more mature than Company A, but less mature than Company

B in terms of open source governance, so we could attempt to implement implement some of the

other best practices from our theory, such as some aspects of general governance, outbound gover-

nance, as well as some aspects of inbound governance (namely on component reuse). We described

the details of our sampling in Section 4.3.1.

In our evaluation design we decided to conduct theory building and theory evaluation in parallel.

While we were conducting and analyzing expert interviews to develop our theory, we started assess-

ing the situation of open source governance at the sampled companies for theory evaluation. Once

a major part of our theory was complete, we would take it to the evaluation companies for guided

implementation. We planned to present the state of open source governance before our intervention

(guided implementation) to use it as a benchmark of how our theory affected the governance at the

studied companies. We presented the results of these initial situation assessments at Companies A,

B, and C in the subsequent sections of this chapter. While the partial implementation was running,

we were extending our theory to cover further aspects of open source governance. For example, we

started our theory building in October 2016 with the development of the theory for getting started

with corporate open source governance. At the same time (in October 2016) we started assessing the

initial situation of open source governance at Company A. In 2017 we started the guided implemen-

tation of the getting started best practices at Company A, which continued in 2018 and early 2019.

In parallel, we were developing our theory’s take on general governance, inbound governance, out-

bound governance, and supply chain management, which were later implemented at Companies A,

B, and C. We presented the details of the guided implementation and our theory evaluation in the

142

subsequent sections on each of the case studies. Each case study focused on the respective company.

For the actual theory evaluation within each case study, we conducted 55 interviews with the

stakeholders responsible for the implementation of the governance handbook at the three com-

panies we studied. In addition to interviews, we also collected feedback from employee stakeholders,

reviewed the documentation and artifacts created during handbook implementation, as well as fur-

ther notes and communication records. We described the details of data gathering in Section 4.3.2.

We analyzed the data from our evaluation interviews, as well as the evidence collected through

direct observation, document and artifact reviews, in order to identify how the implementation of

our theory helped the case study companies establish and improve their corporate open source gov-

ernance in comparison to their initial situation. We described the changes, presented the created

artifacts, discussed the successful and failed experiences for different aspects of FLOSS governance

in companies. A key technique we employed in theory evaluation was called pattern matching [145]

[157], which allowed us to compare the proposed open source governance patterns (industry best

practices) from our theory with the patterns of their actual implementation at at the case study com-

panies. As a result of our theory evaluation, we demonstrated how our theory developed based on

the expert knowledge at companies with an advanced understanding of FLOSS governance can be

transferred (generalized) to companies with no or limited understanding of open source governance.

We also reported what the challenges to transferability could be resulting from the analysis of the

pattern matching on different parts of our theory. We described the details of data analysis in Sec-

tion 4.3.3, and its results in the subsequent sections.

4.3.1 Sampling

Following the defined research method, we set out to select companies for our multiple-case case

study. As our goal was conducting guided implementations of different parts of the governance

handbook at different case study companies, we aimed at selecting companies with different levels

of open source governance maturity. While the goal was to choose companies with no or little un-

143

derstanding of open source governance, we did not want to have three companies with absolutely

no governance awareness. If the latter were the case we would only be able to implement and eval-

uate the getting started part of our proposed theory – represented as only one (first) section of the

governance handbook. Our goal, therefore, was to have one company with no governance in place,

coupled with further companies with basic, though limited, open source governance processes and

practices in place.

We recognized that it would be challenging to assess the maturity level of open source governance

at companies that were not governance experts (the opposite was less problematic, as expert com-

panies were usually involved in various governance and compliance initiatives, so their governance

maturity was publicly visible). To overcome this challenge, we tapped into the professional network

of our research group (as we had done in the sampling phase for theory building), looking for com-

panies with little or no FLOSS governance understanding and willingness to collaborate with us on

this research.

Company A. Company A was the first company that demonstrated an interest in early discus-

sions with FAU (our group representing the university). It was a large German company operating

internationally in four software-intensive industries (aerospace, internet of things, metering, elec-

tronic assemblies), and using open source software in its products (aerospace systems, IoT devices,

etc.). It met our sampling criteria of having no formal FLOSS governance in place. However, some

employees at Company A understood the importance of corporate open source governance raising

the issue internally, eventually escalating it to a cross-organizational group of high-level managers.

The latter agreed that the company needs further to take action to address the issue, which led to the

discussions with our research group and the subsequent project. In 2016, Company A agreed to take

part in our research on corporate open source governance and decided to fund one researcher po-

sition at FAU to work on the project. This funding had its benefits, such as giving us the resources

necessary (travel costs, equipment, services such as transcription, etc.) to conduct this study and

ensure that the case study company will likely go through the whole research process without inter-

144

ruptions and delays. However, we also took the precautions necessary to ensure that the company’s

funding to the university wouldn’t affect our study negatively (such as introducing a bias or distort-

ing the findings of the study). Namely, we wrote a detailed statement of work (as an attachment

to the contract between the company and the university), which detailed the terms of cooperation,

ensuring that the company could not limit the publication of the research findings and could not

affect the research process. The initial agreement was for one year (Oct. 2016 – Sep. 2017), with a

potential follow-up of two more years. This first phase focused on one of the five divisions of Com-

pany A that operated in the aerospace industry – Division A.1. In this first phase of the project with

Company A, the statement of work between Company A and FAU included the following major

work packages including:

• WP1. Analysis of the state of the art

• WP2. Assessment of the current governance situation at Company A (mainly Division A.1)

• WP3. Identification of the scope of industry expertise.

WP1 focused on the analysis of the existing literature (both academic and practitioner articles

and books) on FLOSS governance in companies using open source software in its products. This

work package was in line with our research process, as we planned to start by reading, gathering,

and analyzing the related literature on the topic, which would later feed into the Chapter 2 on the

state of the art of this dissertation. We also shared the identified literature with our colleagues at

Company A, which helped them improve their understanding of open source governance. Another

outcome of this work package included the core concepts and categories of open source governance

in the literature, which we used in the next steps of our study.

WP2 focused on the initial situation assessment of open source governance processes at Company

A. This was the first step of the theory evaluation at each of our case study companies. Before intro-

ducing our theory of corporate open source governance in the form of a handbook with industry

best practices, we reviewed the current situation of governance at a given company to confirm that

there was little or no governance in place, and to analyze the extent of the company’s governance

145

awareness and understanding. Company A, being our first, largest, and longest running case study

company, underwent the most comprehensive initial situation assessment, which started during the

first phase in 2016-2017 and included 18 employee interviews at Division A.1 of Company A. This

work package resulted in a detailed analysis of open source governance awareness (mostly informal

and very limited, confined to one team) at Division A.1, which we used as our benchmark before

our theory was introduced and evaluated at the company. A summary of this analysis is presented

in Section 4.4.1 of this chapter. As a result of this work package, the deliverable to Company A was a

comprehensive report on the initial situation of open source governance at Divisions A.1.

WP3 focused on the identification of the scope for industry best practices of corporate open

source governance. This work package was also in line with our research process, as it helped us set

up the foundations for our theory building, enabling us to conduct early expert interviews at com-

panies with an advanced understanding of open source governance. As a result of these early expert

interviews, we identified the key best practice categories and topics that would become the back-

bone of our theory presented in Chapter 3. This theory outline represented the scope of industry

expertise on open source governance corresponding to the outline of our FLOSS governance hand-

book, which was the deliverable to Company A. The delivery of the handbook outline at Company

A in September 2019 (end of the first phase of our project with Company A) started the handbook

implementation, thus the theory evaluation phase at Company A.

The first phase of our project at Company A ended in a workshop for the employees in a special,

cross-organizational interest group on open source governance at Company A, and some employees

from Division A.1 (the main stakeholder of the first phase). We used this workshop to present our

intermediate results, to prepare Company A (and especially Division A.1) for the upcoming hand-

book implementation and evaluation, and to collect additional data for the study. After the comple-

tion of the first phase of the open source governance research project at Company A, we proposed

a statement of work for a follow-up project that would focus on the extension of our theory and on

the full evaluation of the open source governance handbook. Company A agreed to continue the co-

146

operation with us for one and a half years from October 2017 to May 2019 (initially planned for two

years, but shortened per Company A’s request). This constituted the second phase of the FLOSS

governance project at Company A, which included the following work packages (numbering for

work packages continued from the first phase of the project at Company A):

• WP4. Continued assessment of the current governance situation at Company A

• WP5. Theory building and handbook development for getting started with corporate open

source governance in companies

• WP6. Guided implementation and evaluation of the handbook section on getting started

with corporate open source governance at a pilot project at Company A

• WP7. Theory building and handbook development for inbound governance

• WP8. Guided implementation and evaluation of the handbook sections on inbound gover-

nance at Company A (possibly beyond the pilot project).

WP4 was similar to WP2 presented earlier. The only difference for the larger scope that encom-

passed Divisions A.2, A.3, A.4, A.5 of Company A going beyond Division A.1, which was the main

stakeholder in the first phase of our cooperation with Company A.

WP5 continued our work from WP3. While in WP3 we identified the core concepts of corporate

open source governance (that corresponded to the handbook outline) from the first expert inter-

views (first to third sampling iterations for expert interviews during theory building, see Table 3.2),

WP5 focused on deriving specific best practices in the identified categories. These best practices were

the core of our proposed theory, and made part of our handbook for corporate open source gover-

nance. In WP5 we focused on the evaluation of one subtopic of our theory (corresponding to the

respective handbook section) – getting started with open source governance, which we presented in

detail in Section 3.4.1 in Chapter 3.

WP6 was our first major work package in theory evaluation, during which we guided the im-

plementation of our handbook’s section on getting started with open source governance at a pilot

147

project at Company A. The implementation took place at Division A.1 (aerospace) of the company

and was conducted at a small team that read the handbook section at hand and started implement-

ing it with our guidance. We observed this implementation and analyzed it, presenting the results of

this analysis in Section 4.4.2 of this chapter.

WP7 was similar to WP5, but extended our theory building and handbook development to in-

clude various aspects (but not all) of the inbound open source governance in companies.

WP8 was similar to WP6, but focused on the implementation and evaluation of inbound open

source governance topic of our theory (and their respective handbook sections).

To summarize the first company in our sample, Company A was a large German company oper-

ating internationally in four software-intensive industries. We interviewed Company A employees

from Germany (Hessen, Bavaria, Baden-Württemberg), China, Mexico, Poland. We aimed at includ-

ing regions outside of Germany to ensure a more representative sampling (though German compa-

nies were more accessible to us due to our university being located in Germany, and our network

included more German companies). Company A had no formal open source governance in place.

Case Study A at Company A was our largest and longest running study with a duration of 2.5 years

in total. We evaluated the following parts of our proposed theory at Company A:

• Getting Started

• Inbound Governance.

Company B. Company B was the second company we chose for our theory evaluation case study.

After the first sampling iteration (that led to choosing Company A), we recognized that the eval-

uation of more advanced governance topics (such as our focal topic – supply chain management)

would be limited as Company A had no experience with corporate open source governance, which

meant we would have to start with the very basics of governance there. Therefore, to choose the

second company, during our sampling we aimed at finding a company that already had the basics

of open source governance covered, but was lacking governance processes and practices for supply

148

chain management (a more advanced topic of governance in comparison to getting started, for ex-

ample). To find such a company we were looking for a company that demonstrated an interest in

the topic of supply chain management governance and collaboration with a university on the topic.

Unlike with Company A, in this case we did not initiate the cooperation directly using our research

group’s professional network. Instead, in March 2017 we applied to an industry-university collabo-

ration program called Software Campus1 funded partially by the Germany industry and partially by

the German Federal Ministry of Education and Research (BMBF)2. We submitted a project proposal

that focused on the theory evaluation of supply chain management governance aspects from our

proposed theory. Going through a lengthy selection process, our project was selected for funding

and matched with an industry partner – a company that showed interest in the proposed collabora-

tion, which entailed their participation in our theory evaluation case study. After an initial contact

and discussion with the company, we confirmed that Company B met our sampling criteria for the

second case study. It had basic corporate open source governance in place, but lacked governance in

supply chain management, which was the focal topic we wanted to evaluate at the second case study

company after having covered the more basic (getting started) aspects at Company A. The Software

Campus project helped us partially fund our research, while also ensuring the commitment of the

company to take part in our case study in the course of the project. The study was scheduled to run

for one year in June 2018 – May 2019 (with some reporting and publishing activities going on until

September 2019). During the project we defined and completed the following work packages:

• WP1. Analysis of the state of the art

• WP2. Assessment of the current governance situation at Company B (in terms of overall

corporate governance, supply chain management in particular, and related tooling)

• WP3. Theory building and handbook extension for supply chain management within corpo-

rate open source governance

1Software Campus – https://softwarecampus.de/
2Federal Ministry of Education and Research (BMBF) – https://www.bmbf.de/

149

https://softwarecampus.de/
https://www.bmbf.de/

• WP4. Guided implementation and evaluation of the handbook section on supply chain

management and related tooling within corporate open source governance at a production

project at Company B.

The work packages were similar to those for the project at Company A presented earlier, but

shifted the focus of our theory building (handbook extension) and evaluation to the topic of supply

chain management as part of corporate open source governance. As a result, in WP1 we reviewed

more literature to identify the key topics of governance for software supply chains, which helped us

extend our understanding of the state of the art. In WP2 we assessed the governance processes and

practices at Company B before our intervention (introduction of the industry best practices hand-

book). In WP3 we continued our theory building conducting more expert interviews with a focus

on the governance for software supply chains, which were analyzed in parallel. As a result, we iden-

tified and documented industry best practices for supply chain management within corporate open

source governance. We then added these best practices to our handbook, which was introduced to

Company B in WP 4. In this last phase, we observed how the supply chain management section

of our handbook was used at Company B in a production environment, which best practices were

used and how. As at Company A, we guided the implementation but did not drive it allowing an

unbiased implementation of our theory, which would lead to an impartial theory evaluation. Three

months after the handbook implementation, we returned to the company to conduct follow-up

interviews that we used in analyzing and reporting the theory evaluation at Company B.

To summarize the second company in our sample, Company B was a large German company

operating internationally in enterprise software industry, and extensively using open source software

in its products. We interviewed Company B employees from Germany (Hessen). Unlike Company

A, Company B had a centralized team dealing with open source governance and compliance that

worked with us in the scope of this project. Therefore, we did not study the individual divisions

of the company directly like we did at Company A, which did not have any centralized governance

structure. Company B already had a process of basic open source governance in place, which met

150

our sampling criteria for the second case study. It enabled us to evaluate a more advanced part of our

theory. Case Study B at Company B had a duration of one year (plus several months for follow up

and reporting). We evaluated the following parts of our proposed theory at Company B:

• Supply Chain Management.

Company C. Company C was the third company we chose for our theory evaluation case study.

After two sampling iterations (that led to choosing Company A and B), we recognized that parts of

our theory have not yet been evaluated. Namely, general governance, outbound governance, and

some parts of inbound governance (focused on component reuse and repository) lacked evaluation.

We, therefore, aimed at finding a third company to become our Case Study C, where we would im-

plement and evaluate the above-mentioned parts of the proposed theory of industry best practices

for corporate open source governance. After consulting the list of companies in our professional

network, in late 2017 we contacted several companies that had expressed in potential collaboration

on the topic. We prepared and sent statements of work with predefined work packages to two com-

panies. One of the companies (our research group had previously collaborated with) reacted posi-

tively, so we had several introductory meetings to evaluate their state of open source governance and

their fit in our sampling. We were looking for an internationally operating company that had some

understanding of open source governance (putting it at a more mature level than Company A),

while not having formally institutionalized company-wide governance (putting it at a less mature

level than Company B). We found such a match at Company C, which had some ongoing initiatives

around basic open source governance in individual divisions and teams, but was struggling to move

forward towards company-wide governance (a focal topic of general governance from our theory).

Going through a lengthy negotiation and setup process, we came to an agreement with Company C,

which would fund half a researcher position at FAU to work on the project and become a case study

in our evaluation study. The study was scheduled to run for nine months in April 2018 – December

2018 (with a planned extension of several months in early 2019). During the project we defined the

following work packages:

151

• WP1. Analysis of the state of the art

• WP2. Assessment of the current governance situation at Company C (in terms of overall

corporate governance, general governance, inbound governance, and outbound governance

in particular)

• WP3. Theory building and handbook extension for general governance, inbound gover-

nance, and outbound governance

• WP4. Guided implementation and evaluation of the handbook sections on general gover-

nance, inbound governance, and outbound governance at production projects at Company

C.

The work packages were similar to those for the projects at Company A and B presented earlier,

but focused on other aspects of the theory building (handbook extension) and evaluation, including

general governance, inbound governance (component reuse in particular), and outbound gover-

nance. As a result, in WP1 we reviewed further literature to identify the key topics of general gov-

ernance, inbound governance (component reuse in particular), and outbound governance, which

helped us extend our understanding of the state of the art. In WP2 we assessed the governance pro-

cesses and practices at Company C before our intervention (introduction of the industry best prac-

tices handbook). In WP3 we continued our theory building conducting more expert interviews

with a focus on the governance for general governance, inbound governance (component reuse in

particular), and outbound governance, which were analyzed in parallel. As a result, we identified

and documented more industry best practices for corporate open source governance on the above-

mentioned topic. We then added these best practices to our handbook, which we presented to our

partner team at Company C in WP 4. In this last phase, we planned to guide the implementation

of the select handbook sections and best practices, observing and evaluating the application of our

theory as part of Case Study C. However, unlike Case Study A and B, we encountered a problem at

Company C, which led to a failed implementation and evaluation of our theory. One of the reasons

was the mismatch in expectations of what a corporate open source governance handbook should

152

look like and be used at the company. Another reason was the pushback from the company internal

team working on the issues of open source governance, as well as a pushback from company man-

agement. We discuss further details of this failed evaluation in Section 4.6.2 in this chapter. As a

result, our project ended in December 2018, and we were not able to fully evaluate how our theory

was used at Company C. We present the partial results from Case Study C in Section 4.6.

To summarize the third company in our sample, Company C was a large German company op-

erating internationally in the automotive industry, and using open source software in its products.

We interviewed Company C employees from Germany (Bavaria), France, USA. Unlike Company A,

Company C had some understanding of open source governance, but lacked a company-wide cen-

tralized team dealing with open source governance and compliance in comparison to Company B.

Such characteristics matched our sampling criteria in the scope of this project. Similar to Company

A, we studied individual divisions of the company directly to assess their governance situation be-

fore in the early phase of our study. We aimed at evaluating some parts of our theory that were not

studied as part the other case studies. Case Study C at Company C had a duration of nine months.

We evaluated the following parts of our proposed theory at Company C:

• General Governance

• Inbound Governance (Component Reuse in particular)

• Outbound Governance.

4.3.2 Data Gathering

In the course of our multiple-case case study, we collected data from multiple sources at three case

study companies, which included systematic interviews with employees in different roles (e.g. soft-

ware developers, managers, lawyers), documentation, communication records, and implementation

artifacts. Within each case study, we conducted semi-structured interviews with the stakeholders

responsible for the implementation of the governance handbook, and with the employees using the

153

handbook. An overview of the conducted interviews is presented in Table 4.1. Beyond the system-

atic interviews, we used the following techniques (recommended by Yin [157]) for data gathering:

• conducting company-internal workshops to present the handbook to stakeholders employ-

ees, gathering their feedback and common questions

• observing directly the handbook implementation process (covering actions in real time)

• observing participants of the handbook implementation process

• reviewing company-internal documents created during handbook implementation

• reviewing the communication (emails, meeting minutes, notes) records we had with the

stakeholder employees during the guided implementation of the handbook

• reviewing artifacts created by following the best practices from our handbook.

First, we conducted situation assessment interviews, analyzed them, and guided the implemen-

tation of parts of our handbook on corporate open source governance – our theory presented in

the form of best practice patterns. Upon the handbook implementation, we conducted follow-up

evaluation interviews to assess whether and how our theory did in a real-life setting in the case study

companies. Table 4.1 gives an overview of the interviews we used for theory evaluation, including the

roles of the employees we interviewed.

Figure 4.1 illustrates the case study companies we selected in our sampling – Company A in blue,

Company B in red, and Company C in dark yellow; the countries of the interviewees color-coded

based on the number of interviews per country; and the individual interviewees in different loca-

tions of the three companies with larger circles of a relative size to the number of interviewees at a

given location.

154

11 43

Number of interviewed employees by country

Interviewees at Company A location

Interviewees at Company B location

Interviewees at Company C location
(circle size relative to number of
interviewees at company location)

Figure 4.1: Theory Evaluaধon – Map of Interviewee Countries

Table 4.1 presents the overview of the main data sources we used in theory evaluation – the em-

ployee interviews at the case study companies A, B, and C.

ID Company Division Employee Role Date

CA1.1 Company A Divisions A.1 Project Manager 2017-03-13

CA1.2 Company A Divisions A.1 Project Manager 2017-03-13

CA1.3 Company A Divisions A.1 Technical Manager 2017-03-14

CA1.4 Company A Divisions A.1 Technical Manager 2017-03-14

CA1.5 Company A Divisions A.1 Product Tester 2017-04-10

CA1.6 Company A Divisions A.1 R&D Developer 2017-04-10

CA1.7 Company A Divisions A.1 Tool Developer 2017-04-11

CA1.8 Company A Divisions A.1 R&D Developer 2017-04-11

CA1.9 Company A Divisions A.1 Product Developer 2017-03-16

CA1.10 Company A Divisions A.1 Product Developer 2017-03-16

155

ID Company Division Employee Role Date

CA1.11 Company A Divisions A.1 Product Tester 2017-03-23

CA1.12 Company A Divisions A.1 Project Manager 2017-03-29

CA1.13 Company A Divisions A.1 R&D Manager 2019-05-23

CA1.14 Company A Divisions A.1 Project Manager 2019-05-23

CA1.15 Company A Divisions A.1 R&D Developer 2019-05-23

CA2.1 Company A Divisions A.2 Technical Manager 2017-06-28

CA2.2 Company A Divisions A.2 Product Developer 2017-06-28

CA2.3 Company A Divisions A.2 Division CEO 2017-06-29

CA2.4 Company A Divisions A.2 Product Developer 2017-06-29

CA2.5 Company A Divisions A.2 Product Developer 2017-06-29

CA2.6 Company A Divisions A.2 Tool Developer 2017-07-06

CA2.7 Company A Divisions A.2 Tool Developer 2017-07-06

CA3.1 Company A Divisions A.3 Technical Top Manager 2017-09-06

CA3.2 Company A Divisions A.3 Product Developer 2017-09-06

CA3.3 Company A Divisions A.3 Product Architect 2017-09-06

CA3.4 Company A Divisions A.3 Technical Top Manager 2017-09-06

CA3.5 Company A Divisions A.3 Project Manager 2017-09-07

CA3.6 Company A Divisions A.3 IT Manager 2017-09-07

CA3.7 Company A Divisions A.3 IT Officer 2017-09-07

CA4.1 Company A Divisions A.4 Product Developer 2017-10-19

CA4.2 Company A Divisions A.4 Technical Manager 2017-10-19

CA4.3 Company A Divisions A.4 R&D Developer 2017-10-19

CA4.4 Company A Divisions A.4 IT Officer 2017-10-20

CA4.5 Company A Divisions A.4 Product Manager 2017-10-20

CA4.6 Company A Divisions A.4 Technical Top Manager 2017-10-20

156

ID Company Division Employee Role Date

CA4.7 Company A Divisions A.4 Technical Top Manager 2017-10-20

CA5.1 Company A Divisions A.5 Legal Counsel 2018-04-05

CA5.2 Company A Divisions A.5 Division CEO 2018-04-19

CB1.1 Company B Divisions B.1 Tool Developer 2018-10-28

CB1.2 Company B Divisions B.1 Program Manager 2018-10-28

CB1.3 Company B Divisions B.1 Product Manager 2018-10-28

CB1.4 Company B Divisions B.1 Technical Top Manager 2019-02-22

CB1.5 Company B Divisions B.1 Procurement Officer 2019-02-22

CB1.6 Company B Divisions B.1 Compliance Manager 2019-02-22

CB1.7 Company B Divisions B.1 Compliance Officer 2019-02-22

CB1.8 Company B Divisions B.1 Procurement Officer 2019-05-29

CB1.9 Company B Divisions B.1 Compliance Manager 2019-05-29

CB1.10 Company B Divisions B.1 Compliance Officer 2019-05-29

CC1.1 Company C Divisions C.1 OSS Release Manager 2018-09-05

CC1.2 Company C Divisions C.1 Compliance Manager 2018-09-06

CC1.3 Company C Divisions C.1 Product Developer 2018-09-12

CC1.4 Company C Divisions C.1 Open Source Manager 2018-08-14

CC1.5 Company C Divisions C.1 Legal Counsel 2018-09-14

CC1.6 Company C Divisions C.1 IP Counsel 2018-09-18

CC1.7 Company C Divisions C.1 Technical Manager 2018-10-24

CC2.1 Company C Divisions C.2 Technical Manager 2018-09-25

Table 4.1: Theory Evaluaধon Data Sources – Case Studies

During data gathering, we followed the predefined case study protocol presented in Appendix E.

For the theory evaluation interviews, we created and iteratively improved two interview question-

157

naires – one for the initial situation assessment of open source governance at companies, another

one for the theory evaluation at case study companies after the open source governance handbook

implementation. For the final versions of these two questionnaires, see Section C.2 of Appendix C.

In the initial situation assessment phase we asked the following types of questions (building upon

Yin’s recommendations for case study protocol questions [157]):

• Level 1: questions on specific interviewees and their context – on the interviewee roles, their

involvement with open source use and governance (with different sets of questions for the

employees in management teams and those in engineering teams)

• Level 2: questions about case study companies (individual cases) – on the current state of

open source use at individual case study companies, main use cases and challenges of open

source use

• Level 3: questions about patterns of findings across multiple case studies – on the current

ways of dealing with different aspects of open source governance (e.g. current practices for

inbound open source governance, for supply chain management) in the context of how other

companies are addressing similar issues

• Level 4: questions about the entire case study – on the state-of-the-art practices of open

source governance from the literature, the potential applicability of such practices as part

of the case study

• Level 5: questions about policy recommendations and conclusions – on the views of the in-

terviewees on potential company policies and solutions to different issues of open source

governance based on their experience, current workaround, and general governance aware-

ness.

In the theory evaluation phase after the open source governance handbook implementation we

asked the following the same types of questions, but with a different focus to address the goal of

assessing the implications of implementing and using our theory (and not the focus on the initial

situation assessment):

158

• Level 1: questions on specific interviewees and their context – on the interviewee roles, their

involvement with the implementation and use of the open source governance handbook (a

representation of our theory of industry best practices for open source governance)

• Level 2: questions about case study companies (individual cases) – on the specifics of the

handbook implementation as a whole at individual case study companies

• Level 3: questions about patterns of findings across multiple case studies – on the patterns of

how companies implemented select handbook sections and best practices in the context of

how other companies addressed handbook implementation

• Level 4: questions about the entire case study – on the proposed handbook and best prac-

tices for open source governance, benefits and problems with their applicability as part of the

case study

• Level 5: questions about policy recommendations and conclusions – on the views of the

interviewees on the recommended open source governance practices and processes, their im-

plementation and its impact on case study companies, lacking aspects and overall handbook

evaluation (not covered with the questions of other types).

Beyond the interviews, some of the other data sources included our notes and meeting minutes

gathered during our communication (e.g. telcos, in-person meetings, emails) with each of the case

study companies, as well as the artifacts that were developed in the course of our case studies – ar-

tifacts created and used when implementing best practice recommendations from our theory. For

select examples of such artifacts for each of the case studies, see Appendix F.

We followed Yin’s recommendations for data collection [157], such as using multiple sources of

evidence for the concepts we were studying (this enabled data triangulation during data analysis),

and creating a case study database (this enabled keeping track of multiple data sources and artifacts).

159

4.3.3 Data Analysis

In the course of our multiple-case case study, we started by outlining an analytical strategy, which

we summarized in the case study protocol developed before the case studies began, presented in

Appendix E. This strategy guided us through the data analysis at all the stages of the case study. As

our case study was used for theory evaluation, we based our analytical strategy on our proposed

theory of industry best practices for open source governance. This approach is in line with one of

the common analytical strategies recommended by Yin [157] – relying on theoretical propositions.

This strategy follows theoretical propositions that led to the case study. In our case, the theoretical

propositions from our theory corresponded to the specific industry best practices from our the-

ory for open source governance (and the proposition that applying our theory can help companies

establish and improve their FLOSS governance). The objective to evaluate our theory in real-life

setting at companies with no or little open source governance led to this case study (and its design).

This, in turn, reflected on the research question we asked, the data we collected, and the analysis we

conducted.

We analyzed the collected data iteratively. We started by analyzing each case study individually,

before conducting the cross-case analysis. At each of the case studies we split the analysis into two

phases (in line with data gathering presented in Section 4.3.2:

• Phase 1: initial situation assessment of open source governance

• Phase 2: theory evaluation after the open source governance handbook implementation.

In the first phase, we used the data collected at each case study company before we introduced

the handbook. We analyzed the collected semi-structure interviews, notes, and other data to find

out the strengths, weaknesses, opportunities, and threats of the use of open source at each company.

We then analyzed the initial governance situation at each case study company. We outlined the key

findings of this phase in a comparable format, using bullet point lists with the similar concepts of

FLOSS governance across the case studies.

160

In the second phase, we used the data collected at each case study company after we introduced

the handbook and guided its implementation. We analyzed the collected semi-structure interviews,

notes, and other data (from participant observation, direct observation, artifacts, etc.) to derive the

patterns of open source governance employed at each studied team at the case study companies. To

identify and to codify these patterns touching various aspects of the proposed theory, we analyzed

the implementation of the select sections of the corporate open source governance handbook, as

well as on the select best practices from these sections. Discussing the handbook sections and in-

dividual best practices that were applied and used at case study companies, we assessed how they

improved the state of governance at each case study company compared to the respective initial gov-

ernance situations.

Following our analytical strategy, our analysis priorities were based on the theory propositions we

set our to evaluate. Namely, we aimed at analyzing how generalizable our theory would be assessing

different criteria of its transferability as mentioned in the research method in Section 4.3. To do so,

we looked at how:

• the handbook as a whole (a practical representation of our proposed theory) can be applied

at companies with no or little open source governance

• the select sections of the handbook on different core topics of open source governance (e.g.

getting started, inbound governance, supply chain management) can be applied at companies

with no or little open source governance

• the select best practices from different core topics of open source governance (e.g. best prac-

tice for getting started A.3.9 Run open source use analysis in products) can be applied at

companies with no or little open source governance.

When analyzing the above-mentioned parts of our theory evaluation, we derived patterns of

how our theory was applied at the case study companies. This was done following an analytical

technique called pattern matching [145] [157]. In a nutshell, this technique matches the proposed

161

patterns (based on a predefined theory) with those that emerge during the case study. For our the-

ory evaluation, the proposed patterns were based on our theory’s propositions for industry best

practices for corporate open source governance, which were matched with the patterns of how em-

ployees actually applied our theory at their companies. We found such patterns for the handbook as

a whole at Companies A and B, patterns for the getting started and inbound governance sections of

the handbook at Company A, and patterns for the supply chain management at Company B. The

evaluation at Company C failed, which we discuss in Section 4.6.2. We then derived theory imple-

mentation patterns for select best practices from our theory such as:

• best practices for getting started A.3.9 (Run open source use analysis in products) and A.3.4

(Select and use governance tools for automation) at Company A

• best practices for supply chain management B.3.2 (Assess open source governance and com-

pliance awareness and maturity) and B.3.3 (Request supplier certification or self-certification)

at Company B.

To report the results of the data analysis, we presented the evaluation of the select parts of the

proposed theory in respective subsections in each case study report talking about the guided im-

plementation, created company-internal artifacts, and proposed industry best practices (from our

theory) used at each company. We shared handbook implementation artifacts illustrating how our

theory was applied in real-life projects. We then discussed the implementation patterns in detail. We

then showed the results of our data analysis using the theoretical instrument pattern matching, pre-

senting our observations in how case study companies were using our handbook (as a whole and in

parts), identifying the patterns that emerged at companies, and comparing them with the best prac-

tice patterns we proposed initially in our theory. As a result we studied and reported the deviations

between these patterns, discussing such deviations.

Furthermore, we present the results of our analysis of the predefined quality criteria for our the-

ory evaluation. We discussed these evaluation criteria for the implemented and studied sections of

the handbook (representing parts of the proposed theory) and specific best practices in each of these

162

sections. We first reported our analysis for the case studies individually in Chapter 4, then discussing

them side by side, presenting the common findings and differences across the cases in Chapter 5. We

also discussed the effects and the shortcoming of using our theory, aiming at a critical theory evalua-

tion as a result.

163

4.4 Case Study A

Case Study Profile – Company A

Summary: Large German company operating internationally in four software-intensive

industries (aerospace, internet of things, metering, electronic assemblies), and

using open source software in its products (aerospace systems, IoT devices, etc.)

Duration: 2.5 years (October 2016 – May 2019)

Location: Germany (Hessen, Bavaria, Baden-Württemberg), China, Mexico, Poland

Maturity: No formal open source governance in place

Evaluation: Industry best practices for open source governance in Getting Started, Inbound

Governance

In Case Study A, we studied the following Divisions of Company A, presented with their respec-

tive industry domains:

• Division A.1 – Aerospace

• Division A.2 – Internet of Things

• Division A.3 – Metering

• Division A.4 – Electronic Assemblies

• Division A.5 – Information Technology

From October 2016 – May 2019, we extensively studied the open source use and governance

across Company A. Our first and major focus was Division A.1 that served as a pilot project in

Case Study A. We conducted 12 two-hour interviews with managers, software developers and other

stakeholders at Division A.1 (in different locations in the German federal states of Hessen, Baden-

Württemberg, and Bavaria) using the questionnaire attached in Section C.2 in Appendix C.

Using Division A.1 as a benchmark, we went on to assess open source use and governance situa-

tion in other Divisions of Company A, namely in Division A.2 (based in Baden-Württemberg and

164

Bavaria), Division A.3 (based in Bavaria), Division A.4 (based in Baden-Württemberg), and in Divi-

sion A.5 (based in Bavaria). For situation assessment, we interviewed:

• 12 employees from Division A.1

• 7 employees from Division A.2

• 7 employees from Division A.3

• 7 employees from Division A.4

• 2 employees from Division A.5

Note that Divisions A.5 was an internal IT-service provider with no external customers, therefore

it was the smallest of all the studied divisions. It collaborated with the IT departments in the other

divisions, while providing centralized support and guidance. As we had interviewed employees with

IT roles in Divisions A.1, A.2, A.3, and A.4, we decided to interview only two employees at Divisions

A.5 – the Legal Counsel and the Division CEO. See Table 4.1 for more details on the interviews.

At the same time we analyzed the relevant documents provided by our partners at the Divisions

of Company A. We summarized our initial situation assessment for Company A as a whole in Sec-

tion 4.4.1, followed by subsections on the situation assessment in individual divisions of Company

A. We conducted an in-depth analysis for Division A.1, which was more extensive as that for the

other Divisions. We presented the results of our analysis for Divisions A.1, followed by shorter sum-

maries of the situation assessments for the other divisions.

We evaluated two parts of our proposed theory at Company A (mainly at Division A.1) – indus-

try best practices for open source governance focused on getting started with governance and on

inbound open source governance. We guided the implementation of our open source governance

handbook at Company A, which was followed by the theory evaluation of the handbook sections

on getting started and inbound governance, as well as select best practices from these sections. We

report on our theory evaluation focused on getting started with corporate open source governance

in Section 4.4.2 of this chapter. We report on our theory evaluation focused on inbound governance

in Section 4.4.3 of this chapter.

165

4.4.1 Initial Situation Assessment

Confirming our sampling criteria for Company A, we found that the company and its divisions had

no open source governance in place. Some informal governance existed as a way to address key issues

of open source use, such as informal processes of clarifying open source license compliance when us-

ing open source components or libraries. Some employees took on the informal role of open source

program office or compliance officers across the company providing support to their colleagues in

their teams, divisions, and beyond. Reporting the initial situation assessment at Company A, we

presented the details of the strengths, weaknesses, opportunities, and threats of using open source

in Company A’s products. We presented further results of our initial analysis focused on different

aspects of open source governance. We then presented our initial situation at Division A.1 (our pilot

project), followed by that at Divisions A.2, A.3, A.4, and A.5 in their respective subsections.

Strengths, Weaknesses, and Opportunities of Open Source Use in Products

Use of open source components in products has a number of strengths, weaknesses, opportunities,

and threats (SWOT) at Company A. Before getting into the detailed threat analysis, we will high-

light the three former components of the SWOT analysis, namely:

• Strengths

– Open source software is quickly available, high quality and low cost software

– Change in companies’ software needs and culture moves industries towards more open

source use in order to increase reuse of non-differentiating software, when possible

– Major open source components and standards are universally accepted, widely tested,

highly secure and well maintained by professional communities

– Software developers in companies are interested in using more open source software

in products, as they often have background and competency in open source (from

university, past employers or personal projects)

166

– No company resources need to be leveraged for external open source communities to

use their software, except for resources to ensure compliance

– There is a handful of commonly used open source licenses, which makes legal interpre-

tation easier compared to different proprietary licenses for each commercial software

– Source code for open source software is freely available, thus independent from open

source community activity, companies using such software can access the source code

directly, make changes and updates, unlike commercial software access to which de-

pends on the company selling such software (especially problematic when a company

goes out of business, but its software is still used in products).

• Weaknesses

– General

* OSS governance processes are not defined and documented

* Rough transition from R&D to production due to OSS used

– License Compliance

* Legal department does not provide guidelines/checklists to developers

* License identification and compliance check are done manually

* License compliance decisions are not shared internally

– Component Search

* No defined value-effort estimation is realized, but a rule of thumb decision

* There is no centralized internal repository to search for used OSS components

– Component Selection

* Technical manager decides which component to use without formalized value-

effort estimation

* There is no universal / standard template for OSS component presentation

– Component Reuse

* No centralized repository with OSS components and license data

167

– OSS Capabilities

* Lacking OSS competency at legal department (bottleneck for production)

* Lacking OSS competency and support at IT department (limited development

tools available)

* OSS capabilities are concentrated around several developers

– OSS Contribution

* Redundant versioning (repatches to new versions of OSS components)

* Less functional OSS use (without updates).

• Opportunities

– Using more OSS can further decrease software development / procurement costs (espe-

cially in software-intensive products of Division A.2 and Division A.3)

– Open source components can be reused within the company decreasing in-house de-

velopment costs, ensuring software consistency and compatibility

– Open source software can be a platform of interaction and collaboration between

product teams within and across Company A Divisions, resulting in knowledge and

resource sharing

– Potential cooperation with OSS consortia (e.g. OSADL) working on certifying OSS

components (e.g. Linux) for the aerospace industry

– Contributing to OSS communities can improve development efficiency and quality of

used OSS components (for generic / non-differentiating components).

Threats of Ungoverned Open Source Use in Products

After analyzing the strengths, weaknesses, and opportunities of open source use in products, we

went on to analyze the threats of such use without corporate open source governance. The latter

was the case at all the Divisions of Company A.

168

In our initial situation assessment, we found that Company A extensively used open source com-

ponents in its products across all of its Divisions we studied. Some Company A Divisions also con-

tributed to open source communities. Both open source use and contribution are beneficial, when

they are properly governed and regulated. However, the initial situation analysis at Company A in-

dicated that FLOSS use is not properly governed or regulated. This unregulated FLOSS use and

contribution carried significant threats to the company, including financial risks caused by non-

compliance to open source licenses and other risks we described in this subsection.

The potential threats included:

• financial costs, such as

– paying penalties to the copyright holder of the non-compliant open source software

– paying royalties, license or other fees

– revenue loss due to product recall / sales stop, etc.

• compliance costs, such as

– delay of product releases due to unregulated compliance process

– removing certain open source components from products

– replacing open source components with commercial or in-house ones

– hiring lawyers for license audit, etc.

• technical costs, such as

– disclosing open source components used in products, including information on poten-

tial security vulnerabilities

– ensuring no security vulnerabilities can be used to harm company’s products or cus-

tomers

• other losses, such as

– loss of intellectual property (e.g. if a company is forced to publish the source code of its

own products that use copy-left licensed open source components)

169

– loss of reputation with customers and open source communities (thus increased risk of

more lawsuits).

As a result of the initial situation assessment of corporate open source governance at Company A,

we identified some key characteristics common across all the divisions on the following topics:

• Open Source Use Analysis

• Open Source Contribution Analysis

• General Governance and Inbound Governance

• Outbound Governance

• Supply Chain Management.

We presented the summarized results for each of the above-mentioned topics of corporate open

source governance in the following subsections.

Open Source Use Analysis

• FLOSS use

– In Products – Growing use

– In Development – Extensive and critical use

– In R&D – Extensive use

• Forces for more FLOSS use

– Developers

* Familiar tools and components

* Source code availability, less bugs

* Strong FLOSS capabilities

– Some middle managers

* Easier to meet customer requirements

170

* Cheaper than commercial software and less effort than in-house development

– Legal department

* Limited number of common FLOSS licenses

* Simpler licenses compared to proprietary software licenses

• Forces against FLOSS use

– Top management

* Conservative risk-averse approach, but changing

* Little awareness of FLOSS benefits (focus on risks)

– IT departments at Company divisions

* Traditional preference of commercial enterprise software (e.g. Windows, SAP,

etc.)

* No resources for FLOSS maintenance, updates, etc.

* Problematic communication and collaboration with product development teams

– Some middle managers and developers

* Unclear processes and regulation of FLOSS use

* Unwanted responsibility for checking FLOSS licenses and deciding on use

* No warranty and little support for FLOSS

* Limited FLOSS capabilities and no training

* No economic evaluation model for FLOSS vs. Buy vs. Make

Open Source Contribution Analysis

• FLOSS contributions

– Minor bug fixes

– Undifferentiated new functionality additions

– No know-how / intellectual property loss

• Forces for more FLOSS contribution

171

– Developers

* Familiar with benefits and risks of contribution to FLOSS projects

* Didn’t want to repatch bug fixes, changes with new releases of FLOSS compo-

nents

* Wanted to publicly contribute to FLOSS communities (implied motivation –

building reputation as good developers)

– Some middle managers

* Saved development resources

* Wanted to give back to the community and increase company’s reputation

• Forces against FLOSS contribution

– Top management

* Conservative risk-averse approach, strictly against FLOSS contribution

* Little awareness of FLOSS contribution benefits (aware of risks)

– Legal department

* Unclear rules / strategy of FLOSS contribution

* Fears potential loss of intellectual property

– IT departments at Company divisions

* Unwanted responsibility for maintenance of company’s FLOSS projects and

contributions

– Some middle managers and developers

* Unclear processes and regulation of FLOSS contribution

* Unwanted responsibility

* Limited FLOSS capabilities and no training

* No economic evaluation or rationale for FLOSS contribution.

172

General Governance and Inbound Governance

• Processes and regulations

– No defined processes for inbound FLOSS governance in production including compo-

nent selection, component approval, and component integration

– Contradictory rules on inbound FLOSS use from different managers, departments

– No central documentation or repository of FLOSS use, reuse, and related metadata

(licenses, versions, etc.)

– No company strategy, policies or guidelines on FLOSS use

• Roles and responsibilities

– Unclear, changing, and not unified roles in FLOSS governance

– Extensive responsibilities put on developers (license checks, understanding of legal

consequences, audit and code scans for supplied code, IT work, etc.)

– No clear decision making body for FLOSS governance

– No responsible bodies for decision escalation

– Little division-internal knowledge of FLOSS license compliance (mostly outsourced

across Division A.5)

• Component reuse and knowledge sharing

– FLOSS component and license repositories available only inside individual develop-

ment teams; not shared with other teams or divisions

– Knowledge shared within development teams in single locations (mainly through

word of mouth)

– No centralized FLOSS component repository

– No white/black lists of FLOSS licenses available centrally

• Knowledge about FLOSS governance

173

– Developers – High Awareness

– Legal department – Medium-High Awareness

– Middle management – Low-Medium Awareness

– IT department – Low-Medium Awareness

– Top management – Low Awareness

• FLOSS governance education

– No trainings / education offered on FLOSS use, governance or compliance

Outbound Governance

• Roles and responsibilities

– Developers – main role of responsibility for FLOSS license compliance (for familiar

licenses)

– Technical / project managers – follow developers’ recommendations

– Central legal department – rarely involved on division level, on company level – in-

volved in case of license complications (main contact – Legal Counsel in Division A.5)

– IT department – rarely involved, but had untapped capability of license checking dur-

ing outbound compliance

– Top management – involved by setting strategic approach

• Tools

– License identification and compliance checks were done manually for outbound gover-

nance

– No tools used to scan code or identify FLOSS licenses

– Few tools to collect and track FLOSS component architecture or license information

• Currently used licenses

– Permissive licenses (e.g. MIT license) - Yes

174

– Semi-permissive licenses (e.g. LGPL) - Yes

– Copyleft licenses (e.g. GPL) – Very rarely, but happened

Supply Chain Management

• Supply chain (software)

– Commercial software

– Open source software

– Software support and consulting

• Supply chain management

– Supplier contracts (mainly)

* No / rare mention of FLOSS license compliance in contracts

* No requirement for FLOSS bill of materials supplied (no use of SPDX format or

other machine readable formats)

– Supplier audit

* Developers checked supplied software for functionality requirements only

* If supplied code went into products, developers checked FLOSS licenses attached,

but didn’t look into bills of materials

* Mainly manual checks, limited tooling involved (e.g Maven plug-in for licenses)

* No surprise audits for supplied code in terms of FLOSS compliance and gover-

nance

Initial Situation at Division A.1 – Pilot Project

We chose Division A.1 as our pilot study for theory evaluation, because one of its projects struggled

with several issues related to the use of open source components in 2015-2017. After this project, Di-

vision A.1 decided to move towards more software intensive markets, thus anticipating open source

175

use becoming a recurring practice, which needed to be regulated and defined by open source gov-

ernance processes. In the first phase of our project we assessed the initial situation of open source

governance at Division A.1 to identify the governance needs of the division and by extension some

of the needs of Company A.

We found that Division A.1 was already using some open source software in products, in software

development, and in research and development (R&D). These were distinct use cases in terms of

corporate open source governance. Figure 4.2 illustrates a matrix of two major use cases and user

groups of FLOSS adoption at Division A.1 we identified during the initial assessment of open source

use and governance at Company A.

III. Prototype
Development

(Qt Creator, Python)

II. Products
(WebKit, OpenGL)

I. Prototypes
(OpenSSL, Linux)

IV. Product
Development

(Eclipse, SVN)

R&D Production

User Group

D
ev

el
o

p
m

en
t

to
o

ls
P

ro
d

u
ct

c

o
m

p
o

n
en

ts

U
se

 C
as

e

Figure 4.2: Case Study A – Situaধon Assessment at Division A.1 of Company A: Matrix of Open Source Use

The R&D department was the earliest user of open source software at Division A.1, especially for

176

development tooling. Some of the open source software used at Division A.1 includes Qt Creator3,

Eclipse4, Linux5, Yocto6, and GCC Compiler7.

Using open source tools and components for their prototypes, developers were able to demon-

strate functional mock-ups to their potential clients without the otherwise high initial investment,

such as buying the commercial parts instead of using open source ones. Open source software was

deemed more advantageous for the following reasons:

• Commonplace and efficient software for R&D

• Quickly available, transparent and modifiable tools

• Low cost and high quality for tools

• R&D team with existing competences in open source tooling

• No need for rigorous license compliance check for non-commercial / demo use

• OSS communities for support.

One weakness we identified in using open source for R&D was the lack of structured processes

for open source knowledge and competence transfer to other teams in Divisions A.1. This resulted

in the rough transition from R&D to production due to the limited open source use in production

(while R&D prototypes were mainly built using open source components), as well as the initially

little attention to open source licenses in prototyping.

The newest use of open source software at Division A.1 was in products that were becoming more

software intensive and less specialized over time. Previously the software components were very

specialized for the aerospace industry, which meant that product development teams couldn’t find

suitable open source components to use.

3Qt Project – https://www.qt.io
4Eclipse IDE – https://www.eclipse.org/ide/
5Linux Foundation – https://www.linuxfoundation.org/
6Yocto Project – https://www.yoctoproject.org/
7GCC, the GNU Compiler Collection – https://gcc.gnu.org/

177

https://www.qt.io
https://www.eclipse.org/ide/
https://www.linuxfoundation.org/
https://www.yoctoproject.org/
https://gcc.gnu.org/

However, as Division A.1 was entering into new markets that required products with less special-

ized software, the product development teams had to use more and more open source components

(such as web browsers or audio encoders). Developing such components in-house would not be fea-

sible. Instead, the alternative solutions would be either using open source software or commercial

software from third-party suppliers. The former was often deemed preferable for the development

of non-differentiating features of Divisions A.1’s products.

The pioneer project we studied was a software system for managing a plane cabin. In this project,

open source components were used for complex and generic functionalities (e.g. browser, audio/video

drivers, players, and codecs). Some of the open source software used included WebKit, OpenGL,

and Fluendo. Such use had the following advantages:

• Resource saving (generic components were not developed in-house, nor purchased from

commercial suppliers)

• Mature open source projects and communities, thus few bugs and easier maintenance

• Customer requirements were met (functionally impossible without open source components

for the studied project)

Some of the disadvantages were:

• No structured compliance process (e.g. legal review, license scanning) and associated risks

• Need for in-house preparation of OSS components for special industry certification (e.g.

designing requirements for the existing open source components, ensuring requirement-

source code traceability) and associated costs

The open source became a priority for Division A.1 after the aforementioned project, which

started in 2015 and was ongoing when we were conducting our initial situation assessment as part

of Case Study A. Before that, Divisions A.1 had used open source tools only, but only very limited

open source software in products. This was partially due to the little need for such use, and partially

178

due to company policy generally not allowing the use of third-party components (without further

definitions or regulations), as well as the overall conservative culture on the issue (especially in the

legal department and in the management). Before 2015 most products were highly safety critical and

had very specialized software that was not replaceable by open source software. However, after 2015

open source started to become necessary for use in products due to the company’s shifting focus

on new markets, namely that of software systems outside of the plane cockpit (one the most safety

critical areas of a plane). While lacking open source governance, software developers had to include

certain open source components in the project that started in 2015. The main reason was its neces-

sity in order to meet the functional requirements the customer had, which among others included

integration with Linux-based systems on the customer’s end.

We summarized the key characteristics of the initial situation assessment at Division A.1 – Aerospace

of Company A below:

• Company

– Independent division with own functional departments (IT, Legal, etc.)

• Market

– B2B market with large enterprise customers

– Market were strictly regulated through standards and certification

• Products

– Main products were airplane parts and systems with long life spans

– Products traditionally had little software (built in-house)

– Market demanded more software as part of products

• FLOSS Use

– FLOSS use in products (new and limited; no GPL-licensed software) and in develop-

ment

179

– No FLOSS contribution to open source projects

– Notable FLOSS components used included WebKit, OpenGL (in products)

– FLOSS capabilities were concentrated in the development team of one specific project

Initial Situation at Division A.2

We summarized the key characteristics of the initial situation assessment at Division A.2 – Internet

of Things of Company A below:

• Company

– Recently separated from Division A.4 (still sharing some business functions, e.g. IT)

• Market

– B2B market with a multitude of medium-sized enterprise customers

– Market was not strictly regulated

• Products

– Main products were smart home and IoT devices, systems, and solutions (middleware)

– Products highly depended on and included software (FLOSS, commercial, built in-

house)

– Market demanded more software solutions

• FLOSS Use

– FLOSS use in products (extensive and critical use; also GPL-licensed software) and in

development

– FLOSS contributions happened though rarely (by developers), but were not regulated

with formal governance

– Notable used FLOSS components included Linux (in products)

– FLOSS capabilities were in a development team with management awareness

180

Initial Situation at Division A.3

We summarized the key characteristics of the initial situation assessment at Division A.3 – Metering

of Company A below:

• Company

– Independent division with own functional departments (IT, Legal, etc.)

• Market

– B2B and B2C markets with a multitude of (small and medium size) customers

– Market was regulated to some extent (depending on country markets)

• Products

– Main products were water, heat, gas meters, metering systems, and solutions

– Products traditionally had little software (built in-house), but started including more

and more complex software components

– Market demanded more software solutions, especially focused on IoT and big data

• FLOSS Use

– FLOSS use in products (extensive and critical; no GPL-licensed software) and in devel-

opment

– FLOSS contributions happened rarely (by developers), but were not regulated with

formal governance

– Notable used FLOSS components included Java libraries (in products)

– FLOSS capabilities were concentrated in the development team, and in the manage-

ment; IT was somewhat aware of FLOSS governance

181

Initial Situation at Division A.4

We summarized the key characteristics of the initial situation assessment at Division A.4 – Electronic

Assemblies of Company A below:

• Company

– Independent division with own functional departments (IT, Legal, etc.)

• Market

– B2B market with a multitude of medium and large-sized customers

– Market was regulated to some extent (depending on country markets)

• Products

– Main products were electronic assemblies and system components for washing ma-

chines, tumble dryers, dishwashers, stoves, ovens, and refrigerators.

– Products traditionally had little software (built in-house), but started including more

software (e.g. touchscreen user interface (UI) with complex functionalities)

– Market demanded more software solutions, especially focused on automation and IoT

• FLOSS Use

– FLOSS use in products (extensive and critical; no GPL-licensed software) and in devel-

opment

– No FLOSS contribution to open source projects

– Notable used FLOSS components included open source UI components (in products)

– FLOSS capabilities were concentrated in the development team; and in the manage-

ment; IT was somewhat aware of FLOSS governance

182

Initial Situation at Division A.5

We summarized the key characteristics of the initial situation assessment at Division A.5 – Informa-

tion Technology of Company A below:

• Company

– Internal division providing IT services and development tools to other divisions

– Collaborated with smaller IT departments in each division

– Was going through organizational restructuring (towards more centralization from

division-specific IT departments to Division A.5)

• Market

– Internal supplier, no external markets

– Diverse internal users in all divisions

• Products

– Development tools for production in all divisions

– Supporting systems and IT infrastructure (e.g. network, storage) for internal commu-

nication

• FLOSS Use

– Traditionally used little FLOSS, instead procured third-party software components

and systems

– Internal users demanded more FLOSS components and tools

– Provided all divisions with significant centralized support in FLOSS governance, espe-

cially legal support

– No FLOSS contribution to open source projects

– FLOSS capabilities were concentrated in the legal team; management was somewhat

aware of FLOSS governance.

183

4.4.2 Evaluation of Getting Started

We started the guided implementation of the getting started section of our handbook at the pilot

project at Division A.1 of Company A. This section captured the industry best practices we had

identified by analyzing the expert interviews at companies with an advanced understanding of cor-

porate open source governance. The topic of getting started with FLOSS governance was one of the

major subtopics of our proposed theory. To test this part of our theory we guided the implementa-

tion of the respective handbook section at a production level project (pilot project at Division A.1) at

a company with no governance in place (Company A).

After assessing the initial situation of open source governance at Company A and after having

developed the getting started part of our theory, we organized a workshop at Company A with our

primary contact employees and their colleagues from the pilot project at Division A.1 chosen for the

theory evaluation due to its accessibility and urgent need of open source governance practices. The

latter was based on the division’s recent experience of struggling with the lacking open source gover-

nance, as one of the customers had requested a mandatory use of certain open source components

(for compatibility reasons). During this workshop we presented the developed handbook section

to the stakeholder employees, going into the details of select best practices and workflows that in-

terconnected several practices. We called such workflows process templates, as a company using the

handbook would need to adjust and modify the proposed process workflows or create new ones that

would fit the company-specific processes and guidelines.

Together with our partners from Company A, we then selected the pilot project and the team

that would carry out the implementation of the handbook’s getting started section. After the in-

troductory workshop, we met with the pilot project team that consisted of two software developers

(from production), an R&D software developer and an R&D manager. During the guided imple-

mentation the product software developers focused on applying and using the getting started best

practices, while the R&D developer and manager dealt with the overall introduction of the hand-

book including the application of the inbound governance section we discussed in Section 4.4.3.

184

The two software developers working on a Division A.1 product and tasked with the implemen-

tation of the getting started section of the handbook started by reading the section and asking any

questions they would have to us. For example, one of the questions that was raised concerning best

practices A.3.9 (OSGOV-GETSTA-PROANA-3.1. Run open source use analysॾ in products) and

A.3.10 (OSGOV-GETSTA-PROANA-3.2. Document current open source use) was about the specific

metadata of the used open source components that needed to be documented. Before following

the handbook best practices in running open source use analysis in products and documenting the

identified open source components in use, the pilot project team wanted to clarify and document

the specific metadata for each open source component. Their initial suggestion after reading the

handbook was to use the following metadata:

• license name

• license version

• use case (internal tool, customer application software, delivered operating system, etc.)

• restrictions (modifiability, source code publication, etc.).

This question indicated to us that this part of our theory was not detailed enough, therefore

lacking applicability, which corresponded to one of the theory evaluation criteria we had outlined

before in the case study protocol, see Appendix E. To address this, we presented further metadata

they could consider based on our theory:

• Component ID

• Component name

• Component address / location

• Product / Project ID

• Product version

• Product / Project name

185

• Multiple licenses (y/n)

• Copyright holder(s)

• Linkage type to the rest of the (software) product (e.g. dynamic or static)

• Has the component (with its unchanged license and version) been used in the company be-

fore (can be automatically identified); if already used (a reference to the previous use).

The pilot project team added the above-mentioned metadata to their initial suggestion of iden-

tifying the use case and the usage restrictions of an open source component. They then requested

the defined metadata from the developers involved in the pilot project, following the handbook best

practice A.3.2 (OSGOV-GETSTA-PROANA-1.1. Use one mandatory survey for initial assessment).

Following the best practices A.3.1 (OSGOV-GETSTA-PROANA-1. Use a combination of methods

for product analysॾ) and A.3.3 (OSGOV-GETSTA-PROANA-1.2. Establish a process of continuoॿ

reporting and assessment), the pilot project team went on to analyze more of the used open source

components by scanning several products and starting the establishment of a process of continu-

ous reporting and assessment for future open source component additions. This resulted in the

first automated scan at Company A using an open source tool for FLOSS governance, called FOS-

Sology8 [58], following the best practice A.3.4 (OSGOV-GETSTA-PROANA-1.3. Select and use

governance tools for automation). The tools were chosen temporarily for the getting started process,

as it did not require a lengthy procurement process necessary for the proprietary tooling alternative.

However, the pilot project team was explicit that further tool comparisons would have to be per-

formed before choosing the right long-term tooling of open source governance and compliance used

across the company. Running an initial FOSSology scan was aimed at identifying the used but un-

documented open source components in the current products at Division A.1 of Company A, their

licenses, copyright notices, and other metadata. As a result, the first handbook implementation arti-

fact was created – the FOSSology report with the identified open source components, their licenses,

and other metadata. One of the employees (a manager from the R&D department at Division A.1)

8FLOSS Governance and Compliance tool FOSSology – https://www.fossology.org/

186

https://www.fossology.org/

tasked with implementing the getting started section of our handbook created this artifact, analyzed

the results and started the manual review of the identified open source components in the existing

product under review. The company-sensitive data has been anonymized. Some of the identified

components and their licenses were masked. See the first page of this report in Figure 4.3. See the

rest of the report in Section F.2 in Appendix F.

FOSSology

Your Organization Gen Date: 2018/12/18 10:27:21 UTC FOSSology Ver:#4d6334-2018/12/07 12:20 UTC Page 1 of 7

OSS Component Clearing Report [Excerpt] at Division A.1, Company A

Clearing
Information

 Department FOSSology Generation

 Prepared by Employee X (employee_x)

 Reviewed by (opt.) NA

 Report release date 2018/12/18

Component
Information

 Community NA

 Component NA

 Version NA

Component hash (SHA-
1)

D2D346D1B90E4E1E0F7DB22CD92B6649DA7EF1C2

Release date NA

 Main license(s) Main License(s) Not selected.

 Other license(s) License(s) Not Identified.

 Fossology
Upload/Package Link

http://nas02fra:8081/repo/?mod=showjobs&upload=5

 SW360 Portal Link NA

 Result of License Scan 0BSD, AFL-2.0, AFL-2.1, XXXXXXXXXXX, AMD, ATT,
Apache, Apache-1.0, Apache-2.0, Artistic-1.0, Artistic-1.0-
Perl, Artistic-2.0, Autoconf-exception, BSD, BSD-2-
Clause, BSD-2-Clause-FreeBSD, BSD-2-Clause-NetBSD,
BSD-3-Clause, BSD-4-Clause, BSD-4-Clause-UC, BSD-
possibility, BSD-style, BSL-1.0, Bison-exception, Bison-
exception-2.2, CC-BY-NC-SA-3.0, CC-BY-ND-2.0, CC-
BY-SA, CC-BY-SA-3.0, CC0-1.0, CMU, CNRI-Python,
ClArtistic, Cryptogams, DOC, Dual-license, FSF, FTL,
Freeware, XXXXXXXXXXXXXXXX XXXXXXXXXXXX
XXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX
ZZZZXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXX

1. Assessment Summary

Figure 4.3: Case Study A – First Page of FOSSology Report Excerpt from Division A.1

187

The FOSSology report illustrated the large number of the previously unidentified open source

components that were already part of Company A products. More than 10000 open source compo-

nents (with different copyright notices) were identified in this first small scale scan. FOSSology also

identified about 100 open source licenses (each license version and variation was counted as a dif-

ferent license as is the industry best practice captured in our theory). Such numbers after the small

scale scan at Division A.1 came as a surprise to the pilot project team, but also confirmed the high

relevance of our theory (and open source governance in general) for the company.

The pilot project team then started the manual review of the open source components and their

metadata identified in the scan, adding the cleared components and their metadata into a repository

that was created to track the use of open source at Company A. At this early stage, this repository

was a spreadsheet with all the components, their locations, licenses, and other metadata, which fell

short from the industry best practice A.3.6 (OSGOV-GETSTA-PROANA-2.1. Create product ar-

chitecture model) from our theory. However, this was a common practice (observed during theory

building) of starting with a spreadsheet and transitioning into a more complex product architec-

ture model over time. Running a product analysis and setting up an early component repository,

the pilot project team addressed one of the issues we identified in the initial situation assessment at

Company A as a whole, and at Division A.1 in particular – open source components were used, but

such use was not documented or governed, which carried compliance risks for the company. Hav-

ing identified the used open source, the pilot project started the compliance checking process for the

components that were already in use. As ways to mitigate the identified risks related to the use of

open source, our colleagues expected to follow some of the best practices from the getting started

section of our handbook, namely practices A.4.7 (OSGOV-GETSTA-IPRISK-3.1. Replace problem-

atic components) and A.4.8 (OSGOV-GETSTA-IPRISK-3.2. Decouple problematic components).

After observing the guided implementation of the getting started section of the governance hand-

book based on our theory, we went on to evaluate the transferability of the proposed theory’s part

on getting started with corporate open source governance. We used the following evaluation criteria

188

defined in the evaluation case study protocol, which we presented in Appendix E:

• Completeness

• Variability

• Structure

• Comprehension

• Understandability

• Applicability

• Relevance

• Significance

• Usefulness.

As planned, we evaluated the implementation of the getting started section of the open source

handbook as a proxy for the evaluation of the getting started part of the proposed theory. Our the-

ory evaluation was based on matching the patterns that emerged from the handbook implemen-

tation with the patterns proposed in the getting started part of our theory. We analyzed how the

actual handbook implementation differed from the proposed theory, reporting the results in the

context of each of the evaluation criteria.

Completeness was assessed for the getting started section as a whole, as it evaluated whether the

section had an adequate beginning, middle, and end, as well as whether it lacked any practices the

company needed when applying the handbook. The employees tasked with the implementation

of the getting started part of our theory reported in our follow-up interviews that the handbook

section on the topic had an adequate level of completeness without any significant gaps or unan-

swered questions they encountered. However, during our direct observation, we noted that the

pilot project faced some completeness related issues, which mainly related to Division A.1 specific

processes. For example, the development process at the division provided checklists for software de-

velopers to fulfill before moving into the next cycle of the development process. Our theory did not

189

take into account this specific need of Company A (as our theory was developed based on indus-

try best practices at expert companies who did not use such checklists). To complete this gap, the

R&D developer tasked with the handbook adoption at Company A planned to add some practices

to the getting started section before the company-wide roll-out. We observed another challenge as-

sociated with such an extension – the lack of the handbook versioning for future extensions. This

challenge was caused by the Word and PDF formats of the handbook (required by the Company A

– FAU contract we had to conform to). Versioning of the handbook extensions at Divisions A.1 and

possibly in other divisions would create a significant effort of syncing and merging all the changes

ensuring that there was one authoritative version of the handbook at all times, which would, in

turn, ensure the consistency of open source governance processes. Having thought about this issue

in advance (during theory building), we had collaborated with a local start-up – Editive (previously

Sweble)9 to offer a collaborative tool that would help with managing multiple versions of the gover-

nance handbook, as well as their syncing and merging. Editive’s software as a service (SaaS) solution,

based on the research by Dohrn and Riehle [41], would enable its users (in this case Company A em-

ployees) to maintain one up-to-date version of the handbook, while allowing individual divisions to

modify it with division-specific practices or changes. Additionally, the tool would enable the respon-

sible employees (e.g. the to be established Open Source Program Office) to merge the modifications

from the division versions (if such changes could benefit others, too). Furthermore, Editive would

enable an easy distribution and notification about any updates or additions to the corporate open

source governance handbook at scale. We had presented this solution at Company A during our case

study creating several illustrative examples, see the Editive screenshot in Figure 4.4.

9Editive Start-up (previously Sweble) – https://editive.com/

190

https://editive.com/

Figure 4.4: Case Study A – Screenshot of an Excerpt from the Geষng Started Secধon of the Governance Handbook
– Ediধve Collaboraধon PlaĤorm

However, though such a tool would have eliminated the completeness and versioning related

limitations of the Word or PDF formats, this solution was not adopted by Company A during Case

Study A as the negotiations between Company A and Editive were still ongoing.

Variabilitywas also assessed for the getting started section as a whole (similar to completeness),

as it evaluated whether the section had a balanced mixture of concepts for getting started with cor-

191

porate open source governance and not overly focused on a single concept. During Case Study A,

we observed that the balanced design of this part of the proposed theory translated into an equal

coverage of different getting started concepts, such as transition management, product analysis, and

IP-at-risk analysis. This observation was also confirmed by the employees implementing the hand-

book at Company A, who highlighted that no concept was singled out and presented in more detail

than others. Such an assessment led us to the positive evaluation of the variability criteria of this part

of the tested theory.

Structure was assessed for both the getting started section and for the individual industry best

practices from the proposed theory, as we evaluated how well-structured both the section and the

individual practices were. For the section as a whole, we evaluated whether its different parts were

structured in a logical and interconnected manner. The pilot project employees who were imple-

menting the handbook at Company A appreciated the interconnecting links between individual

best practices within the getting started section (this was also the case for the sections), as such links

created workflows that could be made into company processes and were already ingrained into the

theory, therefore, making it easier to apply at the company. Using such links between the practices

for the section, the R&D developer created a structured overview of the getting started part of our

theory presented together with the inbound governance overview in Figure 4.5 of Section 4.4.3. We

did observe an issue with the links between the best practices in an early deliverable of the handbook

section to Company A. However, this was a technical issue and was fixed once the pilot project team

informed us about the broken links issue in the PDF version of the handbook. As to the structure

of the individual best practices, all of the employees involved in handbook implementation at Com-

pany A noted the value of using the structured presentation format for the industry best practices

from our theory – the Context-Problem-Solution pattern format that made the practices more di-

gestible.

Comprehensionwas assessed for both the getting started section and for the individual industry

best practices from the proposed theory, as we evaluated how well the theory answered the problems

192

companies with little to no governance would have, as well as whether the proposed best practices

went into enough detail on their respective issues. Evaluating the section as a whole, we found that

some of the workflows or process templates made of several best practices were confusing to the

users of the handbook in the pilot project team. Moreover, we identified that some of the work-

flows that were giving an overview of the getting started section (among other aspects of the the-

ory) did not comprehensively capture all the interlinked best practices in the section. To address

this (together with the above-mentioned issue related to the structure of the section) Company A

put together a comprehensive overview of the section to be used in the company-wide implemen-

tation of the handbook after the pilot project, which we presented in Figure 4.5 of Section 4.4.3.

The same technique was later applied to all the sections of the handbook by the R&D developer of

Company A. See all the handbook implementation artifacts with such overviews in Section F.1 of

Appendix F. Furthermore, several employees noted that the handbook section was too general and

not customized enough for Company A, therefore lacking essential details for the immediate imple-

mentation at the company. We recognized this issue during our direct observation, too. However,

this was a natural limitation of our theory, as it was built based on the data from expert companies,

which was not specific to Company A. Moreover, our goal in theory building was not creating a

theory that would apply perfectly to one or two companies of our choice, but rather abstract from

industry best practices creating a theory that can be applied widely. In other words, we aimed at

transferability, whose evaluation we presented in this chapter. As to the evaluation of the specific

best practices, some lacked detail and were not comprehensive according to the pilot project team.

For example, they mentioned that the best practices A.1.4 (OSGOV-GETSTA-TRAORG-4. Start

small, then replicate) required more details before it could be implemented. Namely, it was unclear

what was meant by ”replicate” in this context. We guided the team in explaining that in this context

it meant transitioning towards open source governance in a select project at a company, then scaling

up this transition to other teams across the company. After this clarification, the issue with the com-

prehension of this practice was resolved, though some of the employees asked for further details on

193

the specifics of choosing the right scope for getting started with open source governance.

Understandabilitywas assessed for both the getting started section and for the individual indus-

try best practices from the proposed theory, as we evaluated how understandable the theory and its

representation in the handbook format were to the employees implementing and using the hand-

book. We focused on assessing the understandability of both the intentions and the specifics of the

proposed theory. Evaluating the section as a whole, we found that the pilot project employees had

to read the section carefully, attentively, and completely to ensure the full understanding of the

section. This costed a significant amount of time (in average two months per employee) given that

implementing the governance handbook was not a full time task for the pilot project employees

the Company A. The pilot project team recognized that the users of the handbook (e.g. developers,

middle managers) would not read the getting started section in full, which could potentially lead to

understandability challenges. To prevent such issues, the pilot project team set out to integrate the

getting started section of the handbook into the existing software development process at the com-

pany. The R&D employees (a developer and a manager) tasked with the adoption and roll-out of

the handbook at the company mentioned the potential understandability issues as one of the moti-

vations for creating a company-internal guideline that would spell out the highlights of open source

governance and how they fit Company A’s existing processes. Our handbook would be attached to

this guideline to increase the understandability of the specific best practices for the stakeholder em-

ployees, while not forcing all the employees to read the handbook in full. The latter was deemed un-

realistic at Company A, which constituted a key finding of our theory evaluation. Furthermore, the

pilot project team planned to create employee training (for new hires and old employees), e-books,

and other educational materials covering the highlights from the getting started section of the hand-

book in an easily digestible and understandable way. As to the select best practices, their evaluation

demonstrated that some of the handbook users had understandability issues caused by the language

used to present the theory. For example, the best practice A.3.2 (OSGOV-GETSTA-PROANA-1.1.

Use one mandatory survey for initial assessment) had an unclear definition of what was meant by

194

”survey” in this context, which was clarified during the guided implementation. The implementa-

tion pattern (affected by the initial understandability issue) showed that the pilot project confused

the survey for an initial assessment with the continuous reporting from the proposed handbook pat-

tern – the best practice A.3.3. We cleared this confusion by addressing the potential overlap between

the two industry best practices. We highlighted that the pattern suggested by our theory proposed

the parallel application of these practices when getting started with governance. Another example

of the understandability issues caused by the language was observed in the implementation of the

best practice A.1.4, namely about the unclear meaning of what ”replicate” meant here. We already

reported this issue in detail in the discussion of the comprehension criteria of our theory evaluation.

Applicabilitywas assessed for both the getting started section and for the individual industry

best practices from the proposed theory, as we evaluated how well our theory could be applied to

a company with a different context from that at the expert companies involved in theory building.

We evaluated how generalizable the getting started part of the theory was, as well as how much the

evaluated best practices needed to be adjusted to become applicable at Company A. Evaluating the

section as a whole, we found that the biggest challenge for the applicability was the lack of a cus-

tomized process (for Company A) of the getting started with corporate open source governance at

Company A in particular. By design, our theory presented only general industry best practices on

the topic, not customizing them for a ready implementation at one specific company. This led to an

initial mismatch of the expectations between the researchers from FAU (the author of this disserta-

tion and colleagues supporting the project) and the pilot project team at Company A (from Division

A.1). After referring our colleagues from Division A.1 to the statement of work signed between FAU

and Company A, the misunderstanding was cleared, but the applicability issues remained. To ad-

dress them, the pilot project team tasked the R&D employees (a developer and a manager) to create

a Company A specific customized set of processes and practices for open source governance based

on our provided handbook. Observing such application of the handbook, we recognized that it

helped Company A apply the key concepts from our theory to their context through this interface.

195

The pilot project defined a company-internal guideline that was used to integrate and apply the

proposed industry best practices at Company A in a predictable and manageable manner. One of

the techniques used in this guideline was the definition of software development checklists (com-

monly used at Company A) based on the getting started best practices, such as best practices A.3.9

(OSGOV-GETSTA-PROANA-3.1. Run open source use analysॾ in products) and A.4.9 (OSGOV-

GETSTA-IPRISK-3.3. Require bill of materials for supplied code by 3rd party post-factum). Such

checklists would eventually become mandatory parts of the software development process, and their

complement would allow the developers to pass through development process gates (commonly

used at Company A). Furthermore, evaluating the applicability of individual best practices at Com-

pany A, we observed that some practices did not apply at Company A, being out of scope for the

planned getting started process there, such as the best practice A.4.11 (OSGOV-GETSTA-IPRISK-4.

Analyze the security risk of using an open source component). This best practice was out of scope for

the pilot project as security-related issues were handled mainly by the IT departments at Company

A, and were not involved in the governance pilot project, though their involvement into governance

efforts at the company was planned for the future company-wide roll-out (of corporate open source

governance processes).

Relevance was assessed for both the getting started section and for the individual industry best

practices from the proposed theory, as we evaluated how relevant the theory was to Company A

(and, by proxy, to its employees) in terms of addressed the company’s needs of getting started with

the corporate open source governance. Evaluating the section as a whole, we found that the em-

ployees in the middle management of Division A.1 clearly recognized their needs for getting started

with governance, which was addressed by the proposed handbook section. Further confirming the

relevance of the proposed theory we observed that company lawyers, developers, and technical man-

agers found that the handbook section answered their questions around open source governance,

clarifying the key concepts and providing actionable advice of dealing with challenges of getting

started with governance. The getting started section was of special interest to Company A, as it

196

did not have any formal open source governance in place at the time of the handbook introduc-

tion. This meant that the pilot project needed guidance with introductory best practices – a need,

which was addressed in the handbook section under evaluation. Company A employees also re-

ferred to the potential risks of the ungoverned open source use (also captured and presented in the

initial situation assessment earlier in this chapter) matching these risks to the relevant solutions from

our theory. For example, one observation from the initial situation assessment was on the lack of

open source license interpretation across Company A. Having and using such license interpretation

would be of high relevance for any company getting started with FLOSS governance. This was also

the case for Company A, whose employees in the pilot project followed our theory’s best practices

A.4.2 (OSGOV-GETSTA-IPRISK-1.1. Develop standard license interpretation) and A.4.3 (OSGOV-

GETSTA-IPRISK-1.2. Use standard license interpretation).

Significance was assessed for both the getting started section and for the individual industry best

practices from the proposed theory, as we evaluated the level of impact our theory had on Com-

pany A. Evaluating the section as a whole, we could not fully assess how significant the impact of

our proposed theory would be to Company A after the full roll-out across the whole company. As

to the pilot project, we recognized that the previous efforts at the company could not address all the

needs for governance, while getting started section of our handbook provided significant guidance

and support for the transition towards governance in the scope of the pilot project. In this limited

evaluation of the theory significance, we observed some challenges, such as the lack of examples in

the section. The getting started section did not include examples as we aimed at abstracting from

individual examples we had studied from expert companies during theory building. However, we

did recognize that adding such examples could be useful in assessing the significance of individual

best practices when implementing and using the handbook. Such examples could also help demon-

strate the effects (and their significance) of the proposed best practices on the company using the

handbook. Though we could not evaluate the significance of the complete getting started part of

our theory, we noted that the most significant aspect of our theory to the pilot project employees

197

was that they could use our handbook as a strong argument in front of the top management of the

company demonstrating the significance of corporate open source governance at Company A.

Usefulness was assessed for both the getting started section and for the individual industry best

practices from the proposed theory, as we evaluated how much value it added to Company A in

solving the key issues of getting started with FLOSS governance, as well as whether it enhanced the

employee knowledge on these issues and their solutions. Similar to the evaluation criteria of signif-

icance, we could not assess the usefulness of our theory to the whole company during Case Study

A, as the handbook was implemented in the scope of the pilot project and the full roll-out was still

pending. Evaluating the usefulness of the getting started section as a whole in the scope of the pilot

project, we found that the main issue making the handbook less usefulness was its abstract nature.

As a result (as already mentioned), Company A had to customize the proposed processes from the

handbook section to fit their own internal processes. Not having a ”plug and play” handbook was

perceived as a not useful without such customization. We agreed with this observation, but high-

lighted that the handbook was abstract by design, which had been confirmed with Company A in

the statement of work between FAU and the company. Nonetheless, we considered this as a limita-

tion to the usefulness of our theory for the companies unwilling to perform the required customiza-

tion of the handbook. As to the evaluation of the individual best practices, we found that some best

practices were not usefulness to Company A, as they were too complex for the use cases of the com-

pany. An example was the best practice A.1.1 (OSGOV-GETSTA-TRAORG-1. Establish a board

of stakeholders to organize the transition), which proposed setting up a board that would include

several employees (e.g. developers, lawyers, managers) tasked with overseeing and coordinating the

transition towards FLOSS governance. However, given the small size of the pilot project, at the early

stage of handbook implementation, Company A considered this practice not to be useful for their

context. Instead, the implementation pattern merged the above-mentioned best practice with an-

other one – A.1.2 (OSGOV-GETSTA-TRAORG-2. Designate the transition manager) as a more

useful solution.

198

This concluded the evaluation of the getting started part of our theory at Company A, which

was the most comprehensive and long-term evaluation study at Case Study A and among all the

case studies. However, we went on to evaluate another part of our theory at Company A – Inbound

Governance, whose evaluation we reported in the following subsection.

199

4.4.3 Evaluation of Inbound Governance

In parallel to the implementation and evaluation of the getting started part of our theory at Com-

pany A, we started the delivered the inbound governance section of the handbook to the pilot

project team at Division A.1. This section captured the industry best practices for the inbound

open source governance we had identified by analyzing the expert interviews at companies with

an advanced understanding of corporate open source governance. The topic of inbound gover-

nance was one of the major subtopics of our proposed theory, and of special interest to Company

A, which had started using (on the small scale of the pilot project) the handbook section on getting

started, but lacked the next steps that would help establish the processes for the day to day use of

open source software in products. To test this part of our theory we guided the implementation

of the respective handbook section at a production level project (pilot project at Division A.1) at a

company with no governance in place, in the same setup as was the case with the evaluation of the

getting started part of the theory.

While the evaluation of the getting started section was ongoing, we delivered the inbound gov-

ernance section of the handbook to the pilot project team and organized a meeting to go over the

details and kick off the guided implementation. The focal topics of inbound governance for Com-

pany A were:

• Open Source Component Approval

• Open Source Component Repository and Reuse.

During this meeting we presented the developed handbook section to the stakeholder employees,

going into the details of select best practices and workflows that interconnected several practices.

We answered the early questions on the content of the section, as well as on its implementation. We

then left the pilot project team alone giving them a chance to carefully read the section and start the

implementation. In contrast to the implementation of the getting started section that was led by

the R&D developer from the pilot project, the implementation of the inbound governance section

200

was mainly conducted by the R&D manager who was in contact with production teams at Division

A.1 who would be the main users of the inbound governance processes at the company. During

this implementation, the R&D manager was supported by the R&D developer, and product team

developers from the pilot project team.

R&D manager and the developers started by reading the section and identifying the best prac-

tices and workflows consisting of several best practices that were of the most relevance and highest

priority for the company. Such practices were implemented early on, thus influencing our evalua-

tion of the inbound governance part of the proposed theory. For example, the pilot project team

decided that setting up a component repository would be one of the first things to implement fol-

lowing the handbook best practice 3.11 (OSGOV-INBGOV-COMREU-5. Establish component reuse

process), and best practiceOSGOV-INBGOV-COMREU-8. Create component repository10. The

open source components in the repository would also store the governance relevant metadata using

the same (metadata) properties identified during the implementation of the getting started section,

including:

• Component ID

• Component name

• Component address / location

• Product / Project ID

• Product version

• Product / Project name

• Multiple licenses (y/n)

• Copyright holder(s)

• Linkage type to the rest of the (software) product (e.g. dynamic or static)

10Note: We did not include the full handbook section on Inbound Governance in the Appendix of this
dissertation due to space constraints unlike the excerpts from the sections on Getting Started (presented in
Appendix A) and that on Supply Chain Management (presented in Appendix B). Refer to our publication
on component reuse for this specific best practice [71].

201

• Has the component (with its unchanged license and version) been used in the company be-

fore (can be automatically identified); if already used (a reference to the previous use).

However, Company A’s implementation pattern for the component repository deviated from the

proposed industry best practices. Namely, while our theory recommended setting up the repository

in a single central location in the company in the best practiceOSGOV-INBGOV-COMREU-13.

Provide component repository a single well-defined location, the pilot project started by a local imple-

mentation of the repository with a plan to scale up the repository in the future. Following another

best practice from our theory –OSGOV-INBGOV-COMREU-12. Use tools to create, update and

maintain component repository, the pilot project team reviewed several tooling options and chose

the open source software SW360, which could be easily integrated with another tool selected during

the implementation of the getting started section – FOSSology. SW360 provided both a web ap-

plication and a repository to collect, organize and make available information about software com-

ponents (including open source ones). According to the Eclipse project’s official website11, SW360

established a central hub for software components in an organization, allowing for:

• tracking components used by a project/product

• assessing security vulnerabilities

• maintaining license obligations

• enforcing policies

• generating legal documents

• integrating with other governance tools.

At the time of our evaluation, the pilot project was in the process of establishing and using the

component repository locally. They were also collaborating with the IT department for the support

with tooling installation at a larger scale.

11Component Management Tool Eclipse SW360 – https://projects.eclipse.org/proposals/sw360

202

https://projects.eclipse.org/proposals/sw360

Another implementation pattern that did not match the proposed theory was from another sub-

section of the inbound governance section of the handbook – Component Approval. While our

theory recommended defining clear rules for component approval in the best practiceOSGOV-

INBGOV-COMAPP-4. Define transparent rulॽ for open source component approval, the pilot

project team decided to review the open source component requests on a case by case basis early

on, which would allow them to create and document precedents to be used by the developers in

the future. One of the reasons for this decision was the lacking legal competence at Company A, as

the main responsibility was put on one legal counsel at Division A.5, who had recently changed his

position in the company and was phasing out his open source related responsibilities.

In addition to implementing the specific best practices proposed in our theory, Company A also

tasked one pilot project employee with creating a company-internal guideline for rolling out the

open source governance handbook as a whole at Company A, which was mentioned in the getting

started evaluation. In the course of his preparation for this roll-out, the employee used our hand-

book to create overview workflows that connected all the proposed industry best practices from our

theory. This resulted in another implementation artifact with the goal of visually illustrating and

communicating all the processes of corporate open source governance with the stakeholder employ-

ees. After reading the handbook, the R&D employee created such an overview workflow and sug-

gested potential ways of implementing the proposed best practices and processes at Division A.1 at

first, and then at the whole Company A. He created this artifact going beyond the original content

of the handbook, expanding the suggested processes by adding company-specific IDs, color coding,

and links between the best practices. Figure 4.5 covered the company processes for getting started

with open source governance. Figure 4.6 covered the company processes for inbound governance

(focused on component approval). We presented the rest of the Company A’s diagrams for the cor-

porate FLOSS governance processes (including on component reuse as part of inbound governance

in Section F.1 of Appendix F.

203

3
.1

.1
 E

st
a

b
li

sh
 a

 b
o

a
rd

 o
f

st
a

k
e

h
o

ld
e

rs
 t

o
 o

rg
a

n
iz

e
 t

h
e

 t
ra

n
si

ti
o

n

3
.1

.5
 D

e
fi

n
e

 t
h

e
 t

ra
n

si
ti

o
n

 t
im

e
li

n
e

3
.1

.8
 I

m
p

le
m

e
n

t
th

e
 t

ra
n

si
ti

o
n

 p
ro

ce
ss

3
.1

.6
 E

st
a

b
li

sh
 t

h
e

 t
ra

n
si

ti
o

n
 p

ro
ce

ss

3
.1

.7
 C

o
m

m
u

n
ic

a
te

 t
h

e
 t

ra
n

si
ti

o
n

 p
ro

ce
ss

3
.2

.1
 E

st
a

b
li

sh
 F

LO
S

S
 g

o
v

e
rn

a
n

ce
 p

o
li

cy
 f

o
r

th
e

 t
ra

n
si

ti
o

n
 p

e
ri

o
d

3
.2

.2
 C

o
m

m
u

n
ic

a
te

 F
LO

S
S

 g
o

v
e

rn
a

n
ce

 p
o

li
cy

 f
o

r
th

e
 t

ra
n

si
ti

o
n

 p
e

ri
o

d

3
.2

.3
 A

d
ju

st
 a

n
d

 i
m

p
ro

v
e

 F
LO

S
S

 g
o

v
e

rn
a

n
ce

 p
o

li
cy

 f
o

r
th

e
 t

ra
n

si
ti

o
n

 p
e

ri
o

d

3
.1

.3
 D

e
fi

n
e
 r

es
p

o
n

si
b

il
it

ie
s

a
n

d
 t

a
sk

s
o

f
th

e
tr

a
n

si
ti

o
n

 m
a

n
a

g
er

3
.1

.2
 D

e
si

g
n

a
te

 t
h

e
 t

ra
n

si
ti

o
n

 m
a

n
a

g
e

r

3
.1

.4
 S

ta
rt

 s
m

a
ll

,
th

e
n

 r
e

p
li

ca
te

 -
d

e
fi

n
e

 t
h

e
 s

co
p

e
 o

f
th

e
 t

ra
n

si
ti

o
n

 p
ro

ce
ss

3
.3

.1
 U

se
 a

 c
o

m
b

in
a

ti
o

n
 o

f
m

e
th

o
d

s
fo

r
p

ro
d

u
ct

 a
n

a
ly

si
s

3
.3

.1
.1

 U
se

 o
n

e
 m

a
n

d
a

to
ry

 s
u

rv
e

y
 f

o
r

in
it

ia
l

a
ss

e
ss

m
e

n
t

3
.3

.1
.2

 E
st

a
b

li
sh

 a
 p

ro
ce

ss
 o

f
co

n
ti

n
u

o
u

s
re

p
o

rt
in

g
 a

n
d

 a
ss

e
ss

m
e

n
t

3
.3

.1
.3

 S
e

le
ct

 a
n

d
 u

se
 g

o
v

e
rn

a
n

ce
 t

o
o

ls
 f

o
r

a
u

to
m

a
ti

o
n

3
.3

.3
 U

se
 A

n
a

ly
si

s

3
.3

.3
.1

 R
u

n
 o

p
e

n
 s

o
u

rc
e

 u
se

 a
n

a
ly

si
s

in
 p

ro
d

u
ct

s
3

.3
.3

.2
 D

o
cu

m
e

n
t

cu
rr

e
n

t
o

p
e

n
 s

o
u

rc
e

 u
se

3
.3

.2
 P

ro
d

u
ct

 a
rc

h
it

e
ct

u
re

 m
o

d
e

l

3
.3

.2
.1

 C
re

a
te

 p
ro

d
u

ct
 a

rc
h

it
e

ct
u

re
 m

o
d

e
l

3
.3

.2
.2

 M
a

in
ta

in
 p

ro
d

u
ct

 a
rc

h
it

e
ct

u
re

 m
o

d
e

l

3
.4

.1
 L

ic
e

n
se

 C
o

m
p

li
a

n
ce

 A
n

a
ly

si
s

3
.4

.2
 R

is
k

 E
x

p
o

su
re

 A
n

la
y

si
s

3
.4

.4
 S

e
cu

ri
ty

 R
is

k
 A

n
a

ly
si

s

3
.5

.2
 A

ss
e

ss
 o

p
e

n
 s

o
u

rc
e

 g
o

v
e

rn
a

n
ce

 c
a

p
a

b
il

it
ie

s

a
m

o
n

g
 d

e
v

e
lo

p
e

rs
 a

n
d

e
n

g
in

e
e

ri
n

g
 m

a
n

a
g

e
r

3
.4

.3
 I

P
 R

is
k

 M
it

ig
a

ti
o

n

3
.5

.3
 P

ro
v

id
e

 e
m

p
lo

y
e

e
 t

ra
in

in
g

3
.5

.1
 E

st
a

b
li

sh
 c

o
m

m
u

n
ic

a
ti

o
n

 c
h

a
n

n
e

ls
 f

o
r

o
p

e
n

so
u

rc
e

 g
o

v
e

rn
a

n
ce

h
a

n
d

b
o

o
k

3
.4

.1
.1

 U
se

 s
ta

n
d

a
rd

 l
ic

e
n

se
 i

n
te

rp
re

ta
ti

o
n

3
.4

.1
.2

 C
re

a
te

 l
ic

e
n

se
/u

se
 c

a
se

 p
a

ir
s

3
.4

.3
.1

 R
e

p
la

ce
 p

ro
b

le
m

a
ti

c
co

m
p

o
n

e
n

ts

3
.4

.3
.2

 D
e

co
u

p
le

 p
ro

b
le

m
a

ti
c

co
m

p
o

n
e

n
ts

3
.4

.3
.3

 R
e

q
u

ir
e

 b
il

l-
o

f-
m

a
te

ri
a

ls
 f

o
r

su
p

p
li

e
d

 c
o

d
e

 b
y

 3
rd

 p
a

rt
y

 p
o

st
-f

a
ct

u
m

3
.4

.3
.4

 R
u

n
 r

a
n

d
o

m
 a

u
d

it
s

to
 i

d
e

n
ti

fy
 p

re
v

io
u

sl
y

 u
n

d
e

te
ct

e
d

 o
r

m
is

se
d

 o
p

e
n

 s
o

u
rc

e
co

m
p

o
n

e
n

ts
 a

n
d

 t
h

e
ir

 m
e

ta
d

a
ta

Figure 4.5: Case Study A – Overview of FLOSS Governance Processes on Geষng Started

204

5.1.1 Search for open source components

5.2.1 Select open source components

5.3 Component Approval

5.3.1 Define component approval process

5.3.2 File a component approval request

5.3.3 Review a component approval request
5.3.4 Define transparent rules for open

source component approval
5.3.6 Make a component approval decision

5.3.7 Appeal a component approval decision

5.3.5 Communicate open source

component approval rules

5.3.8 Communicate component approval

process

5.3.9 Implement component approval process 5.3.10 Provide approval request templates

5.3.11 Analyze code for license compliance

5.3.12 Review use in context of

product architecture

5.3.13 Add decision to component repository

5.4 Component Integration and Reuse

(Repository)

5.7 Communication5.5 Supplier Management 5.8 Education

5.8.1 Establish internal education for open

source governance

5.7.1 Establish internal communication for

open source governance

5.7.2 Establish a knowledge exchange procedure

5.6 Component Monitoring

5.6.1 Monitor open source components

(5.6.2) Monitor components for updates

(5.6.3) Monitor components for license changes

(5.6.4) Monitor component for vulnerabilities

Figure 4.6: Case Study A – Overview of FLOSS Governance Processes on Inbound Governance, focused on Compo-
nent Approval

After observing the guided implementation of the inbound governance section of the handbook

based on our theory, we went on to evaluate the transferability of the proposed theory’s part on

inbound open source governance. We used the same evaluation criteria as for the getting started evalu-

ation, defined in the evaluation case study protocol, which we presented in Appendix E.

Completeness was assessed for the inbound governance section as a whole, as it evaluated whether

the section had an adequate beginning, middle, and end, as well as whether it lacked any practices

the company needed when applying the handbook. Similar to the getting started evaluation, the

employees tasked with the implementation of the inbound governance part of our theory reported

in our follow-up interviews that the handbook section’s coverage of the component approval and

205

component repository aspects of inbound governance had an adequate level of completeness with-

out any significant gaps or unanswered questions they encountered. The pilot project team had

completeness issues with other subsections of the section, namely that on the component search and

component integration. These topics of open source governance were identified and presented as

part of our theory, however, we did not present detailed best practices for the topics in contrast to

the complete subsections on component approval and component repository. The reason for this

was the limited data from the expert interviews one these specific topics. We did recognize this to be

a limitation of our theory, however, with a limited scope of this dissertation project, we did not ex-

pect to fully cover all the aspects of open source governance. Instead, we had focused on several focal

topics, which we presented in the resulting theory in Chapter 3.

Variabilitywas also assessed for the inbound governance section as a whole, as it evaluated whether

the section had a balanced mixture of concepts for inbound governance with corporate open source

governance and not overly focused on a single concept. We observed that this part of the proposed

theory covered most of the key aspects of inbound governance, including:

• Component Search

• Component Selection

• Component Approval

• Component Repository and Reuse

• Component Integration

• Component Monitoring

• Communication

• Education.

After reading the handbook section, the pilot project employees agreed that the above-mentioned

list of subsections ensured the coverage of all the key aspects of inbound governance. However, a

206

limitation to variability was within the subsections. As discussed in the evaluation of the complete-

ness and in Chapter 3 with the proposed theory, we went into full details for two of these subtopics

of inbound governance, namely Component Approval and Component Repository and Reuse. As

a result, we had higher variability within the subsections on component approval and component

repository, while lacking variability within the other subsections that were out of the scope of our

research during theory building.

Structure was assessed for both the inbound governance section and for the individual industry

best practices from the proposed theory, as we evaluated how well-structured both the section and

the individual practices were. For the section as a whole, we evaluated whether its different parts

were structured in a logical and interconnected manner. The pilot project employees who were

implementing the handbook at Company A appreciated the interconnecting links between indi-

vidual best practices within and across the subsections on inbound governance. Such links created

workflows that could be made into company processes and were already ingrained into the theory,

therefore, making it easier to apply at the company. Using such links between the practices for the

section, the R&D developer created a structured overview of the inbound governance part of our

theory in Figure 4.6. We observed, for example, that the pilot project team followed the link be-

tween the best practices (from two different subsections)OSGOV-INBGOV-COMAPP-13. Add

decision to component repository,OSGOV-INBGOV-COMREU-8. Create component repository,

andOSGOV-INBGOV-COMREU-14. Track prior approval data for reuse. The employees imple-

menting the handbook found the structure of these best practice links logical and integrated them

into the company-internal guidelines that would enable the company-wide open source governance.

As to the critical aspects of the evaluation, similar to the links between the best practices in the get-

ting started section, we did observe an issue with the broken cross-links in an early deliverable of

the handbook section to Company A, which was fixed upon request by the pilot project. As to the

structure of the individual best practices, similar to the getting started evaluation, Company A em-

ployees involved in handbook implementation noted the value of using the structured presentation

207

format for the industry best practices from our theory – the Context-Problem-Solution pattern

format that made the practices more digestible.

Comprehensionwas assessed for both the inbound governance section and for the individual in-

dustry best practices from the proposed theory, as we evaluated how well the theory answered the

problems companies with little to no governance would have, as well as whether the proposed best

practices went into enough detail on their respective issues. Evaluating the section as a whole, we

found that some of the workflows or process templates did not include all the best practices from all

the subsections of inbound governance handbook section. The pilot project team considered this

to be a limitation to the comprehension of the section. During the implementation, we explained

that no process template included all the best practices as was the design of our theory. Such process

templates aimed to aid the customization and the implementation of the handbook at companies,

but did not provide comprehensive overviews of all the practices. As a result, the pilot project team

developed their own overview of all the workflows for inbound governance. An example focused on

component approval was presented in Figure 4.6.

As to the evaluation of the specific best practices, some lacked detail and were not comprehensive

according to the pilot project team, confirming a similar finding we had during the getting started

evaluation). For example, they mentioned that the best practiceOSGOV-INBGOV-COMREU-16.

Search component repository for reusable components did not comprehensively present how to set up

the search mechanism for the component repository. To address this, the pilot project looked into

potential tools and the search mechanism available in them.

Understandabilitywas assessed for both the inbound governance section and for the individual

industry best practices from the proposed theory, as we evaluated how understandable the theory

and its representation in the handbook format were to the employees implementing and using the

handbook. We focused on assessing the understandability of both the intentions and the specifics

of the proposed theory. Similar to the getting started section evaluation, evaluating the section as a

whole, we found that the pilot project employees had to read the section carefully, attentively, and

208

completely to ensure the full understanding of the section. This took a significant amount of work

time. The pilot project team recognized that the users of the handbook would not read the inbound

governance section in full, which could potentially lead to understandability challenges. To pre-

vent such issues, the pilot project team set out to integrate the component approval and component

reuse processes from the inbound governance section into the existing software development process

at the company. At the time of the evaluation at Company A, these processes were not yet applied

company-wide. Therefore, we couldn’t yet evaluate if the adoption of the inbound governance pro-

cesses would be understandable to the employees. However, to prevent such issues the pilot project

team attached our handbook in full to the company-internal process guideline for open source gov-

ernance. As to the select best practices, they were clear to the pilot project team and did not have

any language related issues. Unlike in this section, in the getting started section there were several

language issues.

Applicabilitywas assessed for both the inbound governance section and for the individual indus-

try best practices from the proposed theory, as we evaluated how well our theory could be applied

to a company with a different context from that at the expert companies involved in theory build-

ing. We evaluated how generalizable the inbound governance part of the theory was, as well as how

much the evaluated best practices needed to be adjusted to become applicable at Company A. Eval-

uating the section as a whole, we found that the biggest challenge for the applicability was the lack

of customized processes for inbound governance at Company A. However, similar to the evaluation

of the getting started section, this was by design of our theory presentation. To address the issue,

the pilot project team created a Company A specific customized set of processes and practices for

inbound open source governance, mainly focused on component approval and reuse, based on the

handbook we provided. Observing such application of the handbook, we recognized that it helped

Company A apply the key concepts from our theory to their context through this interface. As to

the evaluation of the specific best practices, we found that some industry best practices cannot be

applied at Company A. For example, the practiceOSGOV-INBGOV-COMREU-4. Designate a

209

role of responsibility for the component repository, in multiple placॽ in the company could not be ap-

plied at the company due to the lack of human resources and the perceived lack of need for such a

role. Instead, Company A decided to potentially task some employees in each division to take care

of all the issues around open source governance (and not specific aspects of FLOSS governance, as

was proposed by our theory). Another issue of applicability at Company A was focused on Divi-

sion A.1 that had specific software development needs compared to the other divisions, ad Division

A.1 had products (in the aerospace industry) with a high level of criticality. Such products required

conformance to certain standards and regulations, which influenced some of the aspects of inbound

open source governance, namely open source component reuse. As an example, before reusing a

component from another product, the developer would have to reverse engineer software develop-

ment requirements for the used open source component, if the project s/he was working on had

a higher level of criticality than that at the project the open source component had been used first.

Such issues could not be solved by our theory, but would have to be addressed by the Company

A employees who could extend the handbook modifying the proposed best practices to take into

account industry-specific issues.

Relevance was assessed for both the inbound governance section and for the individual indus-

try best practices from the proposed theory, as we evaluated how relevant the theory was to Com-

pany A in terms of addressed the company’s needs of inbound governance. Evaluating the section

as a whole, we found that some senior software developers already had informal solutions for open

source component approval and reuse. However, as presented in the initial situation assessment,

such informal practices were local and differed based on a developer’s experience and understanding

of open source governance. The pilot project team considered that using the part of our theory for

inbound governance. This was considered to be highly relevant to the top management of Com-

pany A, which aimed at establishing an efficient and consistent inbound open source governance

processes instead of the current local workarounds. Evaluating the best practices from the section,

we observed that one of the most relevant best practices to the pilot project wasOSGOV-INBGOV-

210

COMAPP-1. Define the component approval process, which would guide all software developers in

the company in their open source component use eliminating the risks of non-compliance (caused

by the current workarounds and lack of governance awareness). Another highly relevant best prac-

tice was considered to beOSGOV-INBGOV-COMREU-5. Establish component reuse process, which

would enable the reuse of the previously used open source components.

Significance was assessed for both the inbound governance section and for the individual indus-

try best practices from the proposed theory, as we evaluated the level of impact our theory had on

Company A. Similar to the getting started section, evaluating the section as a whole, we could not

fully assess how significant the impact of our proposed theory would be to Company A after the full

roll-out across the whole company. Unlike the getting started section that was already used by the

pilot project, which enabled the evaluation of the theory significance, the inbound governance prac-

tices were still being implemented at Company A, which did not allow us to evaluate the significance

based on the actual use of the section as a whole across the company. Though we could not evalu-

ate the significance of the complete section, we recognized that for both the pilot project team, the

software developers and the legal counsel, one of the most significant aspects of inbound governance

focused on the component repository (its establishment, maintenance, and use) that would enable

an efficient open source component reuse at Company A.

Usefulness was assessed for both the inbound governance section and for the individual industry

best practices from the proposed theory, as we evaluated how much value it added to Company A

in solving the issues of inbound governance, as well as whether it enhanced the employee knowledge

on these issues and their solutions. Similar to the evaluation criteria of significance, we could not

assess the usefulness of our theory to the whole company during Case Study A, as the handbook was

still being implemented. However, we found that the main issue to the usefulness of the inbound

governance section was its lack of detail for some aspects of inbound governance, such as compo-

nent integration, which was one of the subsections out of scope in our study, but that would be

highly useful to Company A, according to the pilot project team. Another issue to the usefulness

211

of the inbound governance section was the difficulty of setting up tools with the support of the IT

department (responsible for tool installations). For example, it would take several months for the IT

department to approve and install open source governance tools, which forced the pilot project team

to find workarounds for an early evaluation of the handbook best practices. A potential solution

to this issue could be involving the IT department more in open source governance at Company A,

giving them clear responsibilities. As to the evaluation of the individual best practices, we found that

some best practices were not usefulness to Company A, such as the best practiceOSGOV-INBGOV-

COMREU-4. Designate a role of responsibility for the component repository, in multiple placॽ in the

companywe had discussed earlier.

This concluded the evaluation of the inbound governance part of our theory at Company A, as

well as our report on Case Study A. To presented the theory evaluation of the supply chain manage-

ment governance at Company B in Section 4.5.2.

212

4.5 Case Study B

Case Study Profile – Company B

Summary: Large German company operating internationally in enterprise software indus-

try, and extensively using open source software in its products

Duration: 1 year (June 2018 - May 2019)

Location: Germany (Hessen)

Maturity: Basic open source governance in place, but no governance of suppliers

Evaluation: Industry best practices for open source governance in Supply Chain Manage-

ment

From June 2018 - May 2019, we extensively studied the open source use and governance at Com-

pany B. We focused our study on the centralized team, which we conditionally call Division B.1

though it is not a company division in the same sense as at Company A or Company B. This team

worked company-wide on the issues of open source compliance, which was a sign of FLOSS gov-

ernance maturity at Company B in comparison with Company A and Company B (as was planned

during case study sampling). We conducted ten one- to two-hour interviews with managers, devel-

opers, Procurement, and compliance officers (in different locations in the German federal state of

Hessen) using the questionnaire attached in Section C.2 in Appendix C.

We aimed at deeply evaluating the core part of our theory focused on open source governance in

supply chain management (including preventive and corrective governance, as well as managing bills

of materials). Given Company B’s initial governance maturity, we were able to evaluate this more

advanced part of open source governance. We aimed at guiding the implementation of our open

source governance handbook at Company B, which would be followed by the theory evaluation of

the selected handbook section, as well as select best practices from this section. We present the initial

assessment of the open source governance situation at Company B in Section 4.5.1, followed by the

213

evaluation results of the proposed industry best practices for supply chain management governance

in Section 4.5.2.

4.5.1 Initial Situation Assessment

Confirming our sampling criteria for Company B, we found that the company had basic open

source governance in place, especially focused on inbound and outbound governance. Company

B was the most mature in terms of open source governance among our three case study companies.

The company had some formal governance concentrated at a central business unit called Technical

Compliance Department. This department was tightly connected to the R&D department, legal

counsel, procurement office, as well as production teams. At the time of the study, it was going

through a rebranding as part of an overall reorganization of the company after a change in the top

management. The department had existed for about 20 years dealing with various aspects of tech-

nical compliance related to software (not only open source software), dealing with open source and

proprietary (commercial) software licenses, compliance process and automation, as well as other

aspects of inbound and outbound governance. Technical Compliance Department created and

maintained several centralized processes, such as the open source license clearance process for the

components used by Company B’s developers.

Reporting the initial situation assessment at Company C, we presented the details of the strengths,

weaknesses, opportunities, and threats of using open source in Company B’s products in the follow-

ing subsection.

Strengths, Weaknesses, and Opportunities of Open Source Use in Products

Similar to the initial situation assessment of open source governance at Company A, we conducted

ten interviews with Company B employees (for interview details see Table 4.1 – in its central orga-

nizational unit dealing with open source governance and compliance. As a result of these situation

assessment interviews, we identified a number of strengths, weaknesses, opportunities, and threats

214

of open source governance at Company C, presented as follows:

• Strengths

– Company B had a well-established, institutionalized, centralized, and company-wide

department dealing with the basics of corporate open source governance and compli-

ance – Technical Compliance Department

– Company B had consistent processes in place for open source software usage including

* inbound compliance review

* outbound product review

– Company B recognized open source governance and compliance as important issues to

deal with company-wide

– Company B was aware that the current open source governance process was covering

only the basics, which left out the assessment of open source use resulting from the

supplied code (including open source software that would come into the company

from software purchased from third-party suppliers)

– Technical Compliance Department did not assume that open source software use was

correctly reported, tracked, or audited

– Technical Compliance Department automated knowledge management and other as-

pects of open source governance using company-internal tools (wikis, license scanning

tools, component management tools, etc.)

– Technical Compliance Department provided answers to frequently asked questions

around open source compliance to the stakeholder employees across the company

– Technical Compliance Department provided limited education on the risks of un-

governed open source software use, as well as the existing guidelines Company B had

for such use

– A single point of contact was provided for outbound governance and external contacts

(with suppliers and customers) for open source compliance questions.

215

• Weaknesses

– There were unaddressed issues of open source governance and compliance

– Technical Compliance Department’s process for open source compliance (as part of

inbound governance) were not well enforced, which led to possible workarounds by

the developers under time pressure or unaware of the inbound governance process

– Knowledge penetration of existing processes was not comprehensive

– Most code from third-party suppliers was not reviewed

– Inbound governance did not apply on the third-party supplied code as Company B

only relied on contractual safeguards for potential open source compliance issues

– Responsibilities in the governance process were not always clear, especially in the pro-

duction teams, procurement department, and IT department

– Company B made minimal contributions to open source software, and was not en-

gaged in open source community leadership activities

– Some tooling was lacking and inefficient, especially when dealing with the supplied

code

– There was no required or recommended format for bills of materials provided by sup-

pliers (suppliers often submitted no BOMs or simple PDF documents with lists of

open source components), which created compatibility issues hindered the efficient

management of BOMs at Company B

– No tooling or machine readable format was used for bill of materials (including open

source components) of the supplied software.

• Opportunities

– Technical Compliance Department and top management recognized the need for a

more comprehensive open source governance process, especially focused on supply

chain management

216

– Technical Compliance Department recognized the limited open source governance and

compliance without employing more advanced tooling and was planning to look into

tools for supply chain management

– Company B was getting invited to industry working groups dealing with open source

governance, compliance, and security

– Technical Compliance Department had resources for student helpers who could help

with license scanning and compliance review

– Introduction of the open source governance handbook could help improve and create

new structured processes, rules and guidelines

– Company B was a large company with high negotiation power in comparison to most

of its software suppliers, therefore they could enforce efficient governance among sup-

pliers with little pushback

– Company B had the possibility to contribute to open source software communities to

access the benefits of engagement

– Developing a process for the review of the supplied code could mitigate the risk of

non-compliance with open source licenses (previously unidentified but being part of

Company B’s products)

– Open source components from the supplied code could be tracked and reused within

the company without an additional compliance clearance process (after being cleared

once), which would decrease in-house development costs, ensuring software consis-

tency, and compatibility.

• Threats

– Supplied code which was accepted as a ”black box” with only contractual safeguards

against open source license non-compliance and other risks of the ungoverned open

source software use

217

– Even when the supplied code came with a bill of materials detailing the used open

source components, Company B did not verify the correctness of the reported BOMs,

which left room for incomplete and incorrect BOMs

– Gray areas of responsibility for initiating a compliance review (in the case of supplier

code) created a risk of open source software non-compliance

– Customers were becoming more aware of open source non-compliance risks asking for

assurances of corporate open source governance

– Limited resources from management to the Technical Compliance Department could

limit the efficient open source governance, especially for the supplied software

– Opportunity costs of the ungoverned open source use could be underestimated lead-

ing to the potential neglect of open source governance needs

– Lack of an evaluation process for the quality of the open source components coming

through suppliers could put Company B at risk of exposure to vulnerabilities (e.g.

security vulnerabilities)

– Unclear policy about open source software contributions in personal time created a

risk of intellectual property loss

– Slow and burdensome governance process increased the likelihood that people would

bypass it or refuse to adopt it

– No defined value-effort estimation was formalized, possibly leading to sub-optimal

decisions about open source software use.

Initial Situation at Division B.1 – Technical Compliance Department

Division B.1 corresponded to Company B’s Technical Compliance Department, which coordinated

and oversaw the company-wide open source governance and compliance processes. Technical Com-

pliance Department had one team tasked specifically with open source governance and compliance.

This team included employees in the following roles: technical top manager, compliance manager,

compliance officers, license reviewers, procurement officer / liaison.

218

We interviewed some of these employees to assess the initial situation of open source governance

at Division B.1, and by extension at Company B. In addition, we also interviewed employees from

outside of this core team to see the perspective of program and product managers, as well as software

developers who were using open source software in their day to day work.

Analyzing our data (interviews, internal documentation, etc.) from Company B, we confirmed

that the company had some formalized governance in place, especially focusing on the basic aspects

like license compliance and inbound governance, but clearly lacked governance of the software sup-

ply chains. In this section, we summarized the highlights of the existing open source governance at

Company B (mainly at Division B.1).

Technical Compliance Department had developed some company-wide rules and guidelines for

open source use and governance, which ensured the consistency and knowledge sharing in all parts

of the company (both in Germany and in other countries where Company B operated). However,

these rules fell short of becoming an overarching open source governance policy that would cover

all aspects of corporate open source governance. One of the reasons for this was the lacking struc-

ture for the existing guidelines, which is a prerequisite of a governance policy. The guidelines also

excluded key aspects of governance, such as IP-at-risk analysis, component integration, or supply

chain management. Discussing the guidelines for open source use and governance, the interviewed

compliance manager recognized their lack of an official overarching open source policy. The guide-

lines were integrated into Company B’s knowledge management system (set of wiki pages), which

was available to all the employees at the company. Developers, managers, lawyers and other employ-

ees referred to these rules in their day to day product development, while the Technical Compliance

Department maintained and updated these rules based on the new requests and precedent decisions.

Some of the key processes of open source governance in place before we introduced our hand-

book included:

• Open Source Component Approval and Compliance Process

• Open Source License Interpretation Process

219

• Open Source License-Use Case Pair Documentation Process

• Compliance Automation Process

• Component Reuse Process

• Hiring Process with Focॿ on Open Source Competenciॽ.

Open Source Component Approval and Compliance Process provided a step by step process for

developers to follow when requesting the approval of an open source component use in Company

B products. The process is highly focused on open source license compliance. Developers used tools

integrated into the product development environment to file open source component requests.

The responsible team at Technical Compliance Department reviewed such requests referring to

the guidelines and documented precedent decisions. The team would use compliance and license

checking tools to approve or reject the use of the requested component. If approved, the developer

would then refer to company guidelines for the required steps to fulfill license compliance for the

to be used component. This workflow also checked other metadata of an open source component,

including but not limited to the copyright information and use case. The process was being contin-

uously optimized over the last 20 years, which shortened the component approval and compliance

process from several months in the part to two weeks at the time of our assessment (though peak

times of product delivery could cause minor delays). Reflecting industry best practices from our the-

ory, the compliance review was not left to the end of the product development cycle (right before

product release), but was integrated into the development process.

Open Source License Interpretation Process focused on the legal and technical interpretations of

the commonly used open source licenses. Company B lawyers worked together with the Technical

Compliance Department to interpret the consequences of using open source software under certain

open source licenses. Such interpretation included both legal requirements that needed to be ful-

filled in case of using the code under a given license, as well as the optimal technical requirements

following from the latter. While the key licenses had been interpreted over time, new (to the com-

pany) licenses would be reviewed and interpreted when required by a developer or product man-

220

ager. License interpretation would first answer if the license could be used at all at the company, as

some licenses would not be allowed in certain use cases (e.g. AGPL-licensed code in most products).

The interpretation would then give a checklist of the mandatory technical requirements to fulfill

for the compliant open source use. Updates were added to the company-internal wikis on the topic,

which were regularly (in weekly meetings of the Technical Compliance Department, R&D depart-

ment, product and project teams) shared with product development teams and other stakeholder

employees.

Open Source License-Use Case Pair Documentation Process enabled Company B to create and

maintain matrices of open source licenses and the use cases, for which these licenses are approved.

License interpretation and license-use case pair documentation helped Company B to maintain lists

of white-listed and black-listed license for given use cases (e.g. AGPL use not allowed in most prod-

ucts, but allowed for certain internally used tools). Such pairs are confirmed in the license review

board (an inter-organizational team hosted at Technical Compliance Department), documented in

centralized wikis and shared across the company. This matrix is currently documented in an Excel

sheet, however Company B aimed at further automation and at direct integration in the develop-

ment process.

Compliance Automation Process guided Company B efforts towards open source governance and

compliance automation. This process helped Technical Compliance Department capture and prior-

itize automation needs at the company, collect and assess tooling options that would meet different

requirements, evaluate several tools, plan the required budget and write the business case for pur-

chasing the selected tools. Currently, Technical Compliance Department was assessing tools and

automation options for the basic compliance review of the supplied code from third-party suppliers.

The automation efforts at Company B started about 10 years ago and scaled up ever since.

Component Reuse Process provided software developers across the company with a database of the

approved, previously used, and tracked open source components in all the products of Company

B. The process would guide a developer in checking if an open source component he wanted to use

221

has already been used somewhere else at the company, which would mean it had gone through the

open source component approval and compliance process. One of the essential checks the develop-

ers needed to perform was checking the version of the open source component to make sure they

reused the exact component that was already cleared in the past. Component reuse process was also

linked to the Excel sheet resulting from the open source license-use case pair documentation process.

Company B also maintained a master data management system, where a developer could look up the

specific products where a given open source component was already used.

Hiring Process with Focॿ on Open Source ensured that the Technical Compliance Department

could get involved in the open source governance related competence evaluation of the potential

software developer hires. For example, this process would enable one of the compliance officers to

participate in the hiring process of a software developer. The compliance officer would evaluate the

open source governance and compliance awareness of the applicant, which would affect the overall

applicant evaluation.

Beyond the above-mentioned formalized processes, open source governance was also somewhat

integrated into the software procurement process. Technical Compliance Department would help

the procurement teams in selecting software vendors with open source compliance in mind. Com-

pany B developed several templates for software vendors evaluation in terms of their use of open

source and its governance. Technical Compliance Department would also work with the procure-

ment officers / liaison and lawyers to define open source related clauses in supplier contracts. Such

clauses would define the responsibilities of the suppliers in case of any detected open source license

non-compliance. These clauses would serve as limited safeguards against potential non-compliance

caused by the supplied code used in Company B products. Such safeguards were limited as shifting

risks of non-compliance to the suppliers could not be realistic in case of smaller suppliers. However,

this contract review process was not a regular process, nor did it include any audits of the actual code

supplied to Company B. Most contracts also did not require suppliers to provide bills of materials

of the open source components for the supplied software. Some suppliers would provide BOMs in

222

Word or PDF formats, but their completeness or correctness was not checked. At the same time, few

customers of Company B, in turn, asked for open source component BOMs for the sold software

products. However, recently such requests by the customers were becoming more frequent, which

was one of the motivations for Company B to collaborate with us and implement our governance

handbook section on supply chain management. We presented the evaluation of the latter in the

following Section 4.5.2.

4.5.2 Evaluation of Supply Chain Management

We conducted the guided implementation of the supply chain management section of our hand-

book at the pilot project at Division B.1 (Technical Compliance Department) of Company B. This

section captured the industry best practices we had identified by analyzing the expert interviews at

companies with an advanced understanding of corporate open source governance. The topic of sup-

ply chain management in the context of FLOSS governance was the focal subtopics of our proposed

theory. To test this part of our theory we guided the implementation of the respective handbook

section at a production level project (pilot project at Division B.1) at a company that already had

basic governance in place, but lacked in its the more advanced aspects as was supplier management.

Similar to Case Study A, after assessing the initial situation of open source governance at Com-

pany B and after having developed the supply chain management part of our theory, we organized

a workshop at Company B with our primary contact employees and their colleagues from the pilot

project at the Technical Compliance Department chosen for the theory evaluation due to its estab-

lished role at the company as the central hub for all open source governance and compliance issues.

Another reason for the handbook evaluation at the Technical Compliance Department was their

identified need for formal open source governance in managing the suppliers and the supplied soft-

ware. At the time of the handbook introduction at Company B, one of the compliance managers

was looking for potential tools that could be used for checking open source license compliance of

the supplied code. At the same time, Division B.1 was working on a company acquisition, whose

223

software assets would also need to be checked for compliance, which would need a process similar

to the FLOSS governance one for suppliers. As was the case with Case Study A, during this work-

shop we presented the developed handbook section to the stakeholder employees, going into the

details of select best practices and workflows that interconnected several practices. We called such

workflows process templates, as a company using the handbook would need to adjust and modify

the proposed process workflows or create new ones that would fit the company-specific processes

and guidelines. For example, Company B considered extending the supplier management processes

to also cover company acquisition. It’s important to note that the latter was addressed in a different

pattern by our theory, which did not match the handbook implementation pattern by Company B.

We used such pattern matching in theory evaluation.

After we provided the handbook section on supply chain management to the Technical Compli-

ance Department, together with our partners from Company B, we then selected the pilot project

and the team that would carry out the implementation of the handbook. After the introductory

workshop, we met with the pilot project team that consisted of the technical top manager, a com-

pliance manager, a compliance officer, and a procurement officer. During the guided implementa-

tion the technical top manager oversaw the work of the pilot project team and provided strategic

input. The compliance manager and the compliance officer dealt with the operational side of the

handbook section implementation, as well as its integration into the existing processes at Company

B. The procurement officer worked directly with the existing and future suppliers following the

handbook best practices on ensuring the open source governance in the software supply chains. In a

follow-up workshop with the compliance manager, the compliance officer, and the procurement of-

ficer, we identified the specific best practices for implementation from the supply chain management

handbook section. The pilot project team prioritized the proposed industry best practices based on

their needs, as well as on their estimated applicability in the scope of our case study.

In the preparatory stage of the handbook implementation, the pilot project asked us clarification

question about select best practices. Among other questions, we discussed the best practice B.2.5

224

(OSGOV-SUCHMA-SCMPRO-5. Use tools to automate supplier management) and the further de-

tails and guidance on choosing the right tooling. We also discussed the best practice B.3.1 (OSGOV-

SUCHMA-PREGOV-1. Choose the right supplier) and the pilot project team’s need to deviate from

it, while applying it not only to the suppliers, but also applying it to the Company B’s recently ac-

quired company. After clarifying the questions of the pilot project team, we observed the specific

best practices that the pilot project team had selected for implementation. Some of these practices

included:

• OSGOV-SUCHMA-PREGOV-1. Choose the right supplier (see B.3.1 in Appendix B)

• OSGOV-SUCHMA-PREGOV-1.1. Assess open source governance and compliance awareness

and maturity (see B.3.2 in Appendix B)

• OSGOV-SUCHMA-PREGOV-1.2. Request supplier certification or self-certification (see B.3.3

in Appendix B)

• OSGOV-SUCHMA-CORGOV-1. Audit your supply chain (see B.4.1 in Appendix B)

• OSGOV-SUCHMA-BOMMAN-1. Identify open source components and metadata from the

supply chain (see B.4.7 in Appendix B)

• OSGOV-SUCHMA-BOMMAN-2. Track, document and update BOM in a consistent and

complete manner (see B.4.8 in Appendix B)

• OSGOV-SUCHMA-BOMMAN-3. Have a backup of open source components hosted by

yourself (see B.4.9 in Appendix B)

• OSGOV-SUCHMA-BOMMAN-4. Use machine readable and standard format for BOM

upon software supply (see B.4.10 in Appendix B).

The pilot project started with the implementation of some of the above-mentioned best prac-

tices right away, while some others were postponed. For example, the best practices B.3.2 (OSGOV-

SUCHMA-PREGOV-1.1. Assess open source governance and compliance awareness and maturity)

and B.3.3 (OSGOV-SUCHMA-PREGOV-1.2. Request supplier certification or self-certification) were

225

applied first. The pilot project team followed these best practices to create a supplier questionnaire,

which they sent to several of their suppliers to assess their current level of open source governance

and compliance awareness and maturity. See two excerpts (the first and the last pages) from the ar-

tifact with this supplier questionnaire in Figure 4.9 (the first page) and in Figure 4.8 (the last page).

See the full artifact in Section F.3 in Appendix F.

Figure 4.7: Case Study B – Excerpt from Supplier Quesধonnaire on FLOSS Governance and Compliance Awareness
and Maturity – First Page

226

Figure 4.8: Case Study B – An Excerpt from the supplier quesধonnaire on open source governance and compliance
awareness and maturity – Last Page

Looking at the last page of the supplier questionnaire on open source governance and compli-

ance awareness and maturity in Figure 4.8, the pilot project team outlined three levels of maturity a

supplier could attain:

• minimum level

227

• standard level

• best level.

Accordingly, the pilot project team defined three formats of providing the information on what

open source components had been used in the supplied code. The three formats corresponded to

the three different requirements to the suppliers (called licensors within Company B):

• PDF document as the minimum requirement

• Machine readable debian/copyright file as the standard requirement

• Company-specific SPDX document as the best / recommended requirement.

Though our theory proposed assessing the suppliers’ governance and compliance awareness be-

fore they are selected (see the best practice B.3.1OSGOV-SUCHMA-PREGOV-1. Choose the right

supplier), the pilot project team at Company B deviated from the proposed pattern and used the

developer supplier questionnaire to assess the governance and compliance awareness of the existing

suppliers first (planning to take action if the suppliers lacked governance and compliance awareness).

To look at another implementation pattern at Company B, the best practices B.4.7 (OSGOV-

SUCHMA-BOMMAN-1. Identify open source components and metadata from the supply chain)

and B.4.10 (OSGOV-SUCHMA-BOMMAN-4. Use machine readable and standard format for

BOM upon software supply) were implemented early on. To identify the open source components

and their metadata supplied to Company B, the pilot project team designed a list of open source

component reporting requirements for the suppliers using the machine readable SPDX12 format.

See an excerpt from the artifact capturing this in Figure 4.9. See the full artifact in Section F.4 in

Appendix F.

12Software Package Data Exchange (SPDX) – https://spdx.org/

228

https://spdx.org/

Figure 4.9: Case Study B – Excerpt from SPDX Requirements Specificaধon for Suppliers

229

At the time of the evaluation at Case Study B, we received early feedback from the suppliers to

the sent questionnaires. The large suppliers were familiar with open source governance, thus they

did not find it difficult to fill in the governance awareness questionnaires. They also were famil-

iar with the SPDX format, though most did not use it for the supplied code to Company B. They

started considering switching to the SPDX format for bills of materials of the supplied software. On

the contrary, the small suppliers were puzzled by the open source governance questionnaire, in some

cases escalating the Company B request to their CEOs. After the clarification by the pilot project,

the smaller suppliers understood the request, but opted for meeting the minimum requirement of

submitting a PDF document with the bill of materials of the used open source components. At the

time of the evaluation, the pilot project was still waiting for more responses from the suppliers.

There were some best practices from the supply chain management section of the handbook

that the pilot project decided to implement later. For example, the best practice B.4.9 (OSGOV-

SUCHMA-BOMMAN-3. Have a backup of open source components hosted by yourself) would

be implemented only after the suppliers provided their complete bills of materials including open

source components and their metadata.

Another artifact the pilot project team created during the handbook implementation outlined

a proposed compliance process was for Company B following our theory’s best practices B.4.12

(OSGOV-SUCHMA-LICCOM-1. Review identified open source components and metadata for li-

cense compliance), B.4.13 (OSGOV-SUCHMA-LICCOM-2. Review license obligations in the con-

text of supply chain management), and other practices from the handbook, includingOSGOV-

INBGOV-COMAPP-1. Define the component approval process, presented in Table 3.9, andOSGOV-

OUTGOV-LICCOM-1. Ensure license compliance, presented in Table 3.18.

This resulted in an artifact that illustrated a proposed compliance process, developed by a com-

pliance officer at Company B following the above-mentioned best practices from our theory, and

extending them aspiring to achieve continuous compliance. Our theory did not find this to be an

industry best practice, as many of the interviewed experts during theory building deemed it to be

230

unrealistic given the currently available compliance tools. Though we did find that companies want

to have tools to meet a requirement of continuous compliance, as presented in our paper on indus-

try requirements for FLOSS governance tools [68].

Figure 4.10 presented the final version of the proposed continuous compliance process at Com-

pany B. The incremental versions that led to this final version are presented in Section F.5 in Ap-

pendix F.

The legend for the figure included:

• iData – a Master Data Management system, which was used to manage Company B’s prod-

uct catalogue. The catalogue contained technical dependencies between different products

and their third-party products (TPP – third-party components including open source soft-

ware).

• PCI Scanner, which identified requested (known) TPPs and gave as output the scanning

results to be used to manage the BOM stored in iData repository.

• TP Vault – a Repository that contained requested TPPs (sources and binaries).

• TPP Fetcher – an internally developed tool that collected TPP metadata (component names,

versions, licenses, copyrights, etc.) from different sources within the built environment.

Sources could be dependency managers/declarations or source code scans. It fetched TPP

files (source code and binaries) that belonged to a TPP via package managers. It uploaded

TPP metadata and TPP files to the TPP Interface.

• TPP Interface – an internally developed tool that took TPP metadata to create requests and

uploaded TPP files to TP Vault, which triggered the TPP review process.

231

Figure 4.10: Case Study B – Proposed Conধnuous Compliance Process at Company B

232

After observing the guided implementation of the supply chain management section of the gov-

ernance handbook based on our theory, we went on to evaluate the transferability of the proposed

theory’s part on supply chain management. Similar to Case Study A, we used the same evaluation

criteria defined in the evaluation case study protocol, which we presented in Appendix E, including

Completeness, Variability, Structure, etc.

Completeness was assessed for the supply chain management section as a whole, as it evaluated

whether the section had an adequate beginning, middle, and end, as well as whether it lacked any

practices the company needed when applying the handbook. The employees tasked with the imple-

mentation of the supply chain management part of our theory reported in our follow-up interviews

that the handbook section on the topic did not have any gaps and matched their expectations in

terms of covering all the key aspects of the supply chain management in the context of FLOSS gov-

ernance. One exception was the security aspects of supply chain management. The pilot project

team expected to see industry best practices for security-related aspects of open source use. How-

ever, as this was out of the scope of our study, we provided pointers for other materials that cover

the issue, while taking note that this issue to the section completeness also came up during theory

evaluation at Company A.

Variabilitywas also assessed for the supply chain management section as a whole (similar to com-

pleteness), as it evaluated whether the section had a balanced mixture of concepts for the topic and

not overly focused on a single concept. During Case Study B, we observed that the balanced design

of this part of the proposed theory translated into an equal coverage of different supply chain man-

agement concepts, such as SCM policy, SCM process, preventive governance, corrective governance,

and BOM management. The variability of the section enabled Company B to prioritize the best

practices from the subsections. The implementation pattern illustrated that Company B did not

focus on the subsection on SCM policy at first, as they were first trying the specific best practices

on preventive governance, corrective governance, and BOM management. The pilot project team

decided to revisit the topic of SCM policy in the later stages of handbook implementation, which

233

deviated from the proposed pattern from our theory suggesting to start with the policy. The pilot

project team noted that no concept was singled out and presented in more detail than others. Such

an assessment led us to the positive evaluation of the variability criteria of this part of the tested the-

ory.

Structure was assessed for both the supply chain management section and for the individual in-

dustry best practices from the proposed theory, as we evaluated how well-structured both the sec-

tion and the individual practices were. For the section as a whole, we evaluated whether its different

parts were structured in a logical and interconnected manner. Similar to the evaluation at Company

A, the pilot project employees who were implementing the handbook at Company B appreciated

the interconnecting links between individual best practices within the supply chain management

section, as such links created natural workflows that could be made into company processes and

were already ingrained into the theory, therefore, making it easier to apply at the company. How-

ever, a major structure-related issue with the links the compliance manager from the pilot manager

noticed was about the lacking mechanism of going back to a best practice after one had followed

a link. It was hard to find the original best practice after clicking away from it. We recognized this

issue, and while it was not directly caused by our theory, but rather its presentation in the PDF for-

mat, we did consider this as a structural issue that negatively impacted our theory evaluation. This

navigation issue was not special to the supply chain management section. It impacted the whole

handbook, but we could not find a solution to the issue using the PDF format. Instead, we recom-

mended using a specialized tool for the governance handbook, such as the one by Editive we had

presented in Section 4.4.2 on the getting started evaluation. As to the structure of the individual

best practices, Company B employees involved in handbook implementation saw the value of using

the structured presentation format for the industry best practices from our theory – the Context-

Problem-Solution pattern format that made the practices more digestible. This was a similar assess-

ment to that observed in Case Study A.

Comprehensionwas assessed for both the supply chain management section and for the individ-

234

ual industry best practices from the proposed theory, as we evaluated how well the theory answered

the problems companies with only basic governance would have, as well as whether the proposed

best practices went into enough detail on their respective issues. Evaluating the section as a whole,

we found that some best practices were too complex for the pilot project team at Company B. The

main issue was that in order to ensure governance for software supply chains, the company would

have to follow the handbook section in full, but the pilot project team wanted to implement select

best practices only at first. To address this, the pilot project team wanted to know which best prac-

tices are the most essential ones, and which ones are only optional. As our theory did not make such

distinction between best practices, we could not provide a list of best practices whose implemen-

tation would ensure the minimal, yet comprehensive solution to open source governance related

issues for Company B’s software supply chains. Instead, the pilot project went on to choosing the

combination of best practices that they considered to be addressing all their early governance needs

in a comprehensive manner. Unlike the evaluation at Case Study A, Company B employees did

not see an issue in the handbook section being too general, abstract, or not customized enough for

Company B. They recognized that, as we had intended, they would need to adjust and customize

the handbook to their needs in order to build a comprehensive supply chain management process at

their company. This was the case for the best practices that were implemented at Company B, such

as the best practices B.4.7 (OSGOV-SUCHMA-BOMMAN-1. Identify open source components

and metadata from the supply chain) and B.4.10 (OSGOV-SUCHMA-BOMMAN-4. Use machine

readable and standard format for BOM upon software supply) that were customized for Company B.

Their implementation resulted in the Company B specification with SPDX requirements for sup-

pliers that needed to report their use of open source components and their metadata supplied to

Company B.

Understandabilitywas assessed for both the supply chain management section and for the indi-

vidual industry best practices from the proposed theory, as we evaluated how understandable the

theory and its representation in the handbook format were to the employees implementing and us-

235

ing the handbook. We focused on assessing the understandability of both the intentions and the

specifics of the proposed theory. Evaluating the section as a whole, we found that the pilot project

employees did not have any issues with reading and understanding the handbook, neither in terms

of the language nor in terms of the content. This observation was different from that at Case Study

A, where some employees had understandability issues. This could be explained to the existing basic

open source governance at Company B with a heavy focus on compliance. Having some governance

expertise helped the pilot project team in understanding the content and the intention of the pro-

posed industry best practices for the supply chain management. However, one issue was raised by

the compliance officer, who suggested adding a glossary of the best practices and their key concepts

at the beginning of the section. We recognized that such a glossary could improve the understand-

ability of the section, especially to the occasional user of the handbook. (e.g. developers, lawyers).

No understandability issued were voiced about individual best practices.

Applicabilitywas assessed for both the supply chain management section and for the individ-

ual industry best practices from the proposed theory, as we evaluated how well our theory could

be applied to a company with a different context from that at the expert companies involved in

theory building. We evaluated how generalizable the supply chain management part of the theory

was, as well as how much the evaluated best practices needed to be adjusted to become applicable

at Company B. Evaluating the section as a whole, we found that the biggest challenge for the appli-

cability was the limited number of proposed workflows / process templates that combined the best

practices in the section. The pilot project team used the two proposed process templates, but had

to design more processes to guide different users of the handbook through supply chain manage-

ment, as was intended by our theory. We did not aim at covering all possible uses and workflows

of the best practices in a given section, leaving this to the customization and extension by the com-

panies using the handbook. One of such workflows developed by the pilot project went over the

proposed best practices and integrated the governance process into the company-internal develop-

ment process. This resulted in a proposed workflow of continuous compliance, whose final version

236

was presented in Figure 4.10. This artifact was created by building on top of the best practices B.4.12

(OSGOV-SUCHMA-LICCOM-1. Review identified open source components and metadata for li-

cense compliance), B.4.13 (OSGOV-SUCHMA-LICCOM-2. Review license obligations in the context

of supply chain management), and other practices from the handbook. Similar to the evaluation at

Company A, some best practices were out of the scope for Company B at this early stage of supply

chain management. An example of such a practice was the best practice B.4.9 (OSGOV-SUCHMA-

BOMMAN-3. Have a backup of open source components hosted by yourself), which was postponed

to the later stages of ensuring supply chain management governance at the company.

Relevance was assessed for both the supply chain management section and for the individual

industry best practices from the proposed theory, as we evaluated how relevant the theory was to

Company B (and, by proxy, to its employees) in terms of addressed the company’s needs of sup-

ply chain management governance. Evaluating the section as a whole, we found that the employees

in the pilot project and in the Technical Compliance Department as a whole recognized the rele-

vance of supply chain management in the context of open source governance. As a matter of fact,

the compliance officer from the pilot project team had already considered several issues of supply

chain management, such as using bills of materials for open source governance and related tooling,

before our guided implementation of the handbook at Company B. The best practices in the sub-

section of BOM management was, therefore, of special relevance to the pilot project team. Similar

to our evaluation at Case Study A, Company B also planned to leverage our handbook and research

project with our university as a way of demonstrating the high relevance of the governance topic in

the industry to their higher management, hoping for more resources, which the department lacked

as presented in the initial situation assessment.

Significance was assessed for both the supply chain management section and for the individual

industry best practices from the proposed theory, as we evaluated the level of impact our theory

had on Company B. Evaluating the section as a whole, we could not fully assess how significant

the full impact of our proposed theory would be to Company B (after the handbook section was

237

implemented as a whole). Evaluating the implementation of the select best practices (small scale

implementation), we recognized that the handbook significantly strengthened Company B’s ef-

forts towards FLOSS governance of their software supply chains. The highest impact was achieved

through the implementation of the subsection on BOM management as part SCM. The compliance

manager and the compliance officer reported that during the whole 2017 they were looking at ways

of addressing the lack of the SCM governance at Company B. However, they needed to develop a

governance framework following industry best practices, which was possible only to a limited ex-

tent given Company B’s resources. The pilot project team highlighted the high significance of our

handbook (and its SCM section) for Company B, as a reference to an academic theory of industry

best practices. As a result of using our handbook, Company B did not need to find the industry best

practices anew, but rather focused on developing their own SCM framework based on our theory.

Usefulness was assessed for both the supply chain management section and for the individual

industry best practices from the proposed theory, as we evaluated how much value it added to Com-

pany B in solving the key issues of SCM governance, as well as whether it enhanced the employee

knowledge on these issues and their solutions. Similar to the evaluation criteria of significance, we

could not assess the usefulness of our theory as a whole due to the implementation of the select

practices at Company A in the early stage (during our evaluation). However, we did evaluate how

useful the chosen best practices were to the company during Case Study B. When choosing the best

practices with the highest priority for early implementation, the pilot project team implicitly evalu-

ated the perceived usefulness of these practices. The subsections on the preventive governance and

on the BOM management were considered to be the most useful to Company B. The pilot project

team, therefore, implemented multiple best practices from these subsections, including the BP B.3.2

(OSGOV-SUCHMA-PREGOV-1.1. Assess open source governance and compliance awareness and

maturity) from the preventive governance subsection, and the BP B.4.7 (OSGOV-SUCHMA-

BOMMAN-1. Identify open source components and metadata from the supply chain) from the

BOM management subsection. At the early stage of handbook implementation, Company B saw

238

more value in preventing future issues with supply chain management by following the preventive

governance best practices, while sorting out the already supplied code using the BOM management

best practices. In the later stages, the pilot project team planned to implement the rest of the SCM

subsections, including that on the corrective governance, as well as on the SCM policy and process,

whose usefulness we could not evaluate during Case Study B.

This concluded the evaluation of the supply chain management part of our theory at Company

B, which was the focal topic of our theory.

239

4.6 Case Study C

Case Study Profile – Company C

Summary: Large German company operating internationally in the automotive industry,

and using open source software in its products

Duration: 9 months (April 2018 - December 2018)

Location: Germany (Bavaria), France, USA

Maturity: Basic open source governance in place, but limited inbound and outbound

governance, and no governance of suppliers

Evaluation: Industry best practices for General Governance, Inbound Open Source Gover-

nance, and Outbound Governance (failed evaluation)

From April 2018 - December 2018, we extensively studied the open source use and governance

at Company C. Our first and major focus was Division C.1 (Interior). Using the Division C.1 as a

benchmark, we went on to assess open source use and governance situation in other areas, namely

Division C.2 (Safety). With the help of a colleague, we conducted eight one- to two-hour interviews

with managers, lawyers, software developers, and other stakeholders (in different locations in the

German federal state of Bavaria, in France, and in the USA) using the questionnaire attached in

Section C.2 in Appendix C.

We aimed at evaluating three parts of our proposed theory at Company C covering the parts of

our theory untested in Case Study A or Case Study B – industry best practices for open source gov-

ernance focused on general governance, inbound open source governance (focused on component

reuse), and outbound governance. We aimed at guiding the implementation of our open source

governance handbook at Company C, which would be followed by the theory evaluation of the

selected handbook sections, as well as select best practices from these sections. However, unlike

Case Study A and B, we encountered a problem at Company C, which led to a failed evaluation

240

of our theory. One of the reasons was the mismatch in expectations of what a corporate open source

governance handbook should look like and be used at the company. Another reason was company

politics and the pushback from the company internal team working on the issues of open source

governance. We discussed the details of the failed evaluation in Section 4.6.2. As a result, our project

ended in December 2018, and we were not able to fully evaluate how our theory was used at Com-

pany C.

4.6.1 Initial Situation Assessment

Confirming our sampling criteria for Company C, we found that the company and its divisions

had little open source governance in place (more mature governance than at Company A, but less

mature than at Company B). Some informal governance existed at parts of the company, but none

centralized or company-wide. The only two formalized groups working locally on open source gov-

ernance and compliance were:

• Open Source Compliance Team (OSCT) – responsible only for the license compliance issues

of open source software

• Processॽ and Tools Team – responsible for the inbound review of open source components

and tools, as well as in charge of the OneCompanyC process that involved both software

quality and legal topics related to FLOSS governance.

In addition to the above-mentioned local teams, there was one cross-organizational group work-

ing towards company-wide open source policy –Global Experts Team. We observed division-specific

political tensions in this group, which was partially responsible for the failed evaluation of our open

source governance handbook. We discuss the latter in Section 4.6.2.

Reporting the initial situation assessment at Company C, we presented the details of the strengths,

weaknesses, opportunities, and threats of using open source in Company C’s products. We then pre-

sented our initial situation at Division C.1 and that at Division C.2.

241

Strengths, Weaknesses, and Opportunities of Open Source Use in Products

Similar to the initial situation assessment of open source governance at Company A and Company

B, we conducted eight interviews at Company C (for interview details see Table 4.1 – in its divisions

C.1 and C.2. As a result of these situation assessment interviews, we identified a number of strengths,

weaknesses, opportunities, and threats of open source governance at Company C, presented as fol-

lows:

• Strengths

– Company C had a consistent process in place for open source software usage (inbound

review)

– Company C had a consistent process for compliance checking in place (outbound

review)

– Company C did not make the assumption that open source software use would always

be correctly reported and employed a code scan

– The Open Source Compliance Team and Legal Department made an effort to educate

people on the risks of ungoverned open source software use

– The Open Source Compliance Team offered training on their processes

– A single point of contact was provided for external open source software compliance

questions

– Review processes were designed to be business-unit-agnostic.

• Weaknesses

– There was no clear mandate from top management to prioritize open source software

governance, and therefore the policy was largely determined at the division or business

unit level

– Knowledge penetration of existing processes was extremely limited

242

– Knowledge penetration of the risks associated with ungoverned open source software

use was unknown and probably limited

– Knowledge retention of processes was minimal among parts of the organization which

were not regularly interacting with the Open Source Compliance Team

– Most code was probably not reviewed

– Compliance was largely treated as a reactive, one-time event, rather than a proactive,

iterative activity

– Institutional knowledge was not shared between groups

– Responsibilities in the governance process were not always clear

– Company C made minimal contributions to open source software and was not en-

gaged in leadership activities

– The open sourcing process was too difficult, leading to lost opportunities

– The inbound review process was too complex for non-distributed use cases

– There was a lack of guidance on contributing to open source software.

• Opportunities

– Cross-BU open source software group showed awareness of threats; implementation of

investigated solutions would address several issues

– Introduction of open source software governance and compliance handbook could

help establish structured processes, rules, and guidelines where they did not exist

– Company C developed software which had the potential to become a de-facto standard

among OEMs, given timely open sourcing

– Company C had the possibility to contribute to open source software communities to

access the benefits of engagement

– Developing a process for participating in bug- or feature-bounties could allow the

development of important components at a reduced cost

– Greater participation in appropriate consortia would give Company C a more leading

role in the direction of development

243

– Participation in open source software development could lead to Company C’s exper-

tise being recognized within the industry

– Participation in open source software development could help attract and retain qual-

ity developers

– Contributing to open source software communities could improve development ef-

ficiency and quality of used open source software components (for generic / non-

differentiating components)

– Open source components could be reused within the company decreasing in-house

development costs, ensuring software consistency and compatibility

– Open source software could be a platform of interaction and collaboration between

product teams within and across Company C divisions, resulting in knowledge and

resource sharing.

• Threats

– Supplier code which was accepted ”as is” created a risk of open source software non-

compliance

– Gray areas of responsibility for initiating a compliance review (in the case of sup-

plier code or mergers and acquisitions) created a risk of open source software non-

compliance

– Decisions made at the product team level creates the risk of open source software non-

compliance and loss of intellectual property when teams did not understand the risks

associated with non-compliance

– Decisions made at the product team level led to inconsistent decisions, reducing oppor-

tunities for reuse

– The lack of a process to maintain data on open source software component use, to

compare this list against new vulnerability information, and to investigate the impact

of vulnerabilities on existing products put Company C at risk of exposure to vulnera-

bilities

244

– The lack of a process to evaluate the quality of open source software components put

Company C at risk of exposure to vulnerabilities

– Unclear policy about open source software contributions in personal time created a

risk to Company C intellectual property

– Slow and burdensome governance process increased the likelihood that people would

bypass it or refuse to adopt it

– No defined value-effort estimation was formalized, possibly leading to sub-optimal

decisions about open source software use

– The lack of a centralized repository with open source software components and license

data limited component reuse

– Open source software capabilities were concentrated around a few developers, which

created the risk of the process being interrupted if one of these developers was unavail-

able for an extended period of time.

Initial Situation at Division C.1

We found that Division C.1 (Interior) had the most developed governance process within Company

C. The Open Source Compliance Team (OSCT) was formed within a business unit in Division C.1,

before transitioning in 2014 to a service organization at the divisional level. The governance pro-

cess was first formalized in 2009 and has since been adapted to respond to changing requirements.

In addition to this, there were initiatives in place to improve FLOSS governance, for instance, the

company process OneCompanyC (process title changed to hide company’s identity) which involved

both quality and legal topics and touched on FLOSS governance topics as well.

Open Source Compliance Team at Division C.1

The Open Source Compliance Team was a service organization located within Division C.1 but with

a mandate to serve all division and business units. It occupied a position between the engineering

and legal departments, and was tasked with:

245

• Inbound review

• Outbound review.

OSCT tried to make its presence known across Company C, for instance, at an internal software

development conference. However, knowledge of the team was not widespread throughout the

company. Some business units have adopted training materials provided by OSCT to assist in com-

pliance but this was not uniform across Company C. Nonetheless, there had been increased demand

for their services as FLOSS usage was spreading in new countries (where Company C started operat-

ing), technology areas, and business units. The questions the team would receive started addressing

more situations than before, and there were more questions.

Inbound Review at Division C.1

The inbound review concerned all code which was brought in to Company C from external sources.

In practice, the inbound review was primarily applied to open source software components which

were to be incorporated into Company C products. Changes in the use case or updating to a new

version of the software should trigger a new inbound review.

The process was initiated with a review request by the team wishing to use the external code. It

was submitted as a ticket to the Open Source Compliance Team, which then identified the most

restrictive applicable license and delivered a report of the implications of the use of the software and

advice for addressing the concerns.

By design, the final decision on how to respond to the concerns was devolved to the team which

had submitted the request, except in cases where the license was rejected outright for legal reasons.

An example of this might be the GPLv3 license as a linked component in a commercial product, as

opposed to a GPLv3-licensed software used as a tool (e.g., GCC).

The strengths of the process included:

• A consistent process was available for all inbound open source software usage

• Training was available on the process

246

• Delegation of decision allowed the business needs to be considered.

However, there were also weaknesses with the process:

• Architects did not have knowledge of inbound reviews conducted for other teams, which:

– Limited opportunities for reuse

– Prevented early avoidance of components which were known to be problematic

– Resulted in an increased effort for the Open Source Compliance Team

• There was no assurance that the decision process would be consistent, or conducted in any

systematic way

• Use of the process was voluntary, which meant that in all probability not all open source

software was evaluated

• Open source software components were not scanned for quality (e.g., with Clockwork)

• There was no centralized database with records of component use, which not only hindered

reuse but also limited the response to vulnerabilities discovered in components after the re-

lease of the product

• Lack of a process to re-evaluate already used components limits vulnerability response

• Open source components in supplier code were not documented in a standard format, and

compliance largely depended on the supplier.

Outbound Review at Division C.1

The outbound review concerned all of Company C products which would be released. Internal

projects and demonstrations (demos by R&D) were not necessarily reviewed. Ideally, the process

should be applied at intervals, but in practice, it was applied right before release, though before the

code had been frozen for release.

247

The process was initiated by a request for review initiated by the product team. The request was

made as a ticket to the Open Source Compliance Team. OSCT used a change control board to ana-

lyze the ticket for data completeness. If the data was complete, it was assigned to a reviewer. If it was

not complete, OSCT requested additional information.

The reviewer performed a license compliance review on all known open source software compo-

nents and scanned the product using a compliance tool to identify any undeclared copied code. The

product team was supplied with a report listing the risks and proposing solutions. The decision was,

as in the case of the inbound review, left to the product team.

The strengths of this process were identical to those of the inbound review, while the disadvan-

tages of the process were:

• No institutional knowledge of previous scans was used: knowledge of previous scans rested

with the Open Source Compliance Team, and the response of product teams was not cap-

tured in a reusable way. This was problematic because:

– Code scans often identify canonical solutions which can look like copying (false posi-

tives) and these patterns will be reported each time, resulting in an increased effort for

development teams to resolve known problems

– Each version of a product must be fully re-analyzed, instead of undergoing a delta re-

view, which is time-consuming. Because of the effort involved:

* Not all releases would be reviewed

* As software updates became more rapid and common, the process would be ap-

plied to a decreasing proportion of releases

* The final product would not be reviewed immediately before release, but while

development was still ongoing

• There was no assurance that the decision process would be consistent, or conducted in any

systematic way

248

• Use of the process was voluntary, which meant that in all probability not all open source

software was evaluated

• There was no link between the review process and the creation of the bill of materials, leading

to duplication of effort

• Product teams were dissatisfied with the process:

– The process was seen as time-consuming and complicated

– Product teams would have liked issues to be prioritized according to risk to enable

business decisions

• The quality of material submitted for outbound review was often poor, either missing im-

portant information or containing irrelevant data, which delayed the work of the Open

Source Compliance Team.

Open Source Software Usage – Component Use in Products at Division C.1

Open source software was being used in products. Product teams initiated both inbound and out-

bound reviews from the Open Source Compliance Team. Compliance was intended to be an ongo-

ing, iterative process, but as described in Section 4.6.1 (detailing the outbound review process), time

constraints rarely allowed teams to go through this process as expected.

The strengths of the process included:

• There was a clear understanding, in principle, that compliance was more effectively obtained

by design rather than as an afterthought.

The weaknesses included:

• Compliance was not treated as an iterative process but is often postponed until near release:

– Compliance was treated as a low importance activity due to high pressure

249

– Teams were often reactive, driven by customer requirements or ’ticking a box’ rather

than viewing FLOSS compliance as part of the development lifecycle

• Outbound review was often not conducted directly before release, but often at 60-80% com-

pletion

• Developers found reports difficult to interpret, due to the lack of prioritization of risks, lack

of institutional knowledge of previous decisions, and insufficient business knowledge to

interpret the risks in the context

• Management lacked an overview of priorities and risks.

Open Source Software Usage – Component Use in Platform at Division C.1

Open source software was being used in platform development (different from product develop-

ment). Platform teams initiated inbound review but did not make use of outbound review because

the platform was considered an incomplete product. Not all parts of the platform would necessarily

be used in a particular product, and linking might change. Therefore product teams had respon-

sibility for outbound reviews, which might include parts of the platform in addition to their own

work.

The advantage of this approach included:

• Product-focused outbound reviews allow the use case and context to be understood by the

team requesting the review, and the decisions to be made by the team with the business un-

derstanding of the situation.

The concerns which stem from this process included:

• Scanning the code only at the product phase meant that it was possible for non-compliant

code in the platform to escape notice until near product release, when addressing the issue

would create a bottleneck

250

• Product teams found it difficult to acquire an overview of all the FLOSS included in the

platform, resulting in:

– Difficulties creating the final bill of materials

– Inefficiencies in reuse, as product architects could not default to using FLOSS compo-

nents which were already used in the platform.

Open Source Software Usage – Component Use in R&D, Demos at Division C.1

Open source software was widely used in R&D and demos. Both open source tools and compo-

nents were used. In this context, the inbound review was rarely conducted and the outbound review

was not conducted. This was based on the belief that the current governance process was designed

primarily for product development and was unsuited to the style of development used in R&D and

demonstrations. The particular concerns with the formal process were:

• The PDF reports were not considered useful because they were lengthy due to every issue

being listed (including relatively unimportant ones such as missing license headers), without

prioritization

• The reports took too long to be delivered

• Developers would prefer to automate the process and identify and resolve simple issues (such

as missing headers) themselves

• The process was unsuited to the ongoing and rapid development found in R&D and demos,

because it operated on a single, fixed (release) version of a product.

Open source software usage decisions were made by developers, who had received some training

on different licenses. The policy was for crucial technology and joint technology to be kept separate

from the main code, and to use only basic functionality from open source software components. A

matrix of use cases and licenses had been requested to aid in this decision, but had not yet been pro-

vided. An open source software component list was maintained (open source components, versions,

251

licenses) and this information was provided with the software when the project was handed over to

another part of the company.

The strengths of the process included:

• Developers appeared to have a good awareness of the need for open source governance, even

in the use case of internal use

• Developers had some understanding of licenses and particular risks associated with linking

• This use case had a lower risk than products in the case of non-compliance.

The weaknesses of the process included:

• Developers were making decisions without a systematic process or the guidance of use cases

• Developers might not be completely aware of the effects of tool licenses on outputs

• No architectural model displaying open source software components was supplied to other

parts of the business, which might hinder the transfer of knowledge

• No standard format was used to convey information about open source software compo-

nents which were used.

Open Source Software Usage – Tool Use at Division C.1

Company C made use of a number of FLOSS tools such as the GCC compiler, the Linux kernel,

and Eclipse IDE. Depending on which part of the organization was involved, tool review could be

done as an inbound review by the Open Source Compliance Team or by the Global Experts Team (a

cross-division internal team of experts working with open source). However, it seemed that neither

team did significant tool review, leading to the conclusion that FLOSS tool use might be largely

ungoverned. Furthermore, although there were localized attempts to encourage reuse. For instance,

in Division C.1 the Processes and Tools Team created mirrors of FLOSS repositories. However, there

was no systematic approach which would be readily searchable across Company C.

252

Initial Situation at Division C.2

Going beyond Division C.1 (Interior), we studied the initial situation of open source governance at

Division C.2 (Safety), which focused on safety-related products of Company C that included FLOSS

components. Open source software was being used in Division C.2, in the creation of demo prod-

ucts and in R&D. Prototypes were provided to other teams, who rewrote the software following

ISO specifications, thus open source compliance had been dealt with in a relatively simple manner.

Currently, there is no outbound review, although this might change as the size of projects and the

need for speed might mean that it would become impractical to completely rewrite software (when

going from R&D to production). The latter was also observed in our initial situation assessment at

Division A.1 of Company A.

Use of open source software was preferred over building or buying, largely because the compli-

cated functionality contained in components could rarely be improved upon by independent ef-

forts. Mature projects were preferred. However, in situations where the only open source solution

was under a restrictive license (with a copyleft effect), a supplier might be hired to write an alterna-

tive. The handling of suppliers was left to external support working on software solutions, so it was

unknown what open source governance processes were in place for incoming supplier software.

There was no formal training for new developers on FLOSS usage or governance, although there

was an annual presentation about licenses and obligations delivered by the legal department. New

developers were generally given projects which did not require the use of new (previously unused at

Company C) libraries.

When a new library was selected, it was sent to the Processes and Tools Team for an inbound

review. The team checked the library against an internal traffic light system (manually) – a system

with certain white-listed and black-listed licenses. If the library was approved, it was compiled and

made available on the server. A matrix was maintained with the division projects and the open

source components used by them. This matrix was also linked to the licenses of the used FLOSS

components. The licenses were rechecked when new versions of the software were acquired. This

253

system had the following benefits:

• It was easy to use and could be used by employees with an understanding of the development

environment

• Only libraries which were marked ”green” were used, reducing the risk caused by ”yellow”

libraries in the wrong context

• Developers couldn’t add libraries on their own so the vetting process had to be used for in-

bound FLOSS components

• A matrix of projects and used libraries was systematically maintained and updated

• Component reuse was encouraged by the use of a centralized collection (a division-wide

database with limited properties)

• There was good communication between developers and thus informal knowledge sharing

about FLOSS components in use.

However, there were also some disadvantages to the system:

• Header files were not systematically checked, only the license text, which meant that open

source components with a mix of licenses (which is a very common case) might not be cor-

rectly identified

• No code quality checks for open source components was performed

• Evaluation of governance and compliance tools was handled by the IT team

• No outbound review was applied.

Open source software contributions were one area of governance which was of particular con-

cern. Contributions were not being made by Company C employees, except for bug reports (that

was also rare). Even in cases where the code had been fixed internally, the fix would not be given

back to the community. This appeared to be due to a lack of clear direction about how developers

could seek approval to contribute. Some disadvantages of the situation were:

254

• When fixes were only applied internally, patches had to be reapplied with new releases of the

same open source component

• There was an increased risk of development proceeding in a direction which made the soft-

ware less useful to Company C

• Company C was perceived as isolated, rather than as part of the community.

The first disadvantage was also perceived as such by some developers at Company A (especially in

Division A.2).

Division C.2 also did limited corporate open sourcing (when a company shares its in-house devel-

oped software as open source). They developed some components which would be useful to their

customers, and which would aid in cooperation with their partners, if open sourced. However, open

sourcing had been stalling for two years despite management approval (though not fully governed

overall). This was because the open sourcing process was seen as complex and unclear to developers,

especially when there had been no previous engagement with the Open Source Compliance Team.

The specific problems included:

• The Open Source Compliance Team was only found through recommendations by word of

mouth among developers

• Interactions with the Open Source Compliance Team were viewed as unproductive, with

each question resulting in additional questions which required a level of licensing expertise

that developers lacked

• The legal department couldn’t answer questions because they couldn’t book hours for this

project.

The first two points resulted from the lacking open source governance at Division C.2 in contrast

to that in Division C.1, which hosted the Open Source Compliance Team and was more mature in

terms of FLOSS governance overall.

255

In addition to the concerns with contributions and open sourcing which were described, we also

identified some other potential gaps in corporate FLOSS governance:

• Knowledge about FLOSS components in use was not formalized or documented in a public

way (within the company), and depended on personal relationships

• It was unknown if inbound supplier components were scrutinized for FLOSS compliance

(we didn’t find indications that it was)

• Quality of FLOSS components was not examined

• Vulnerabilities of FLOSS components were not tracked

• The unclear policy about open source software contributions in personal time created the

risk of developers sharing Company C’s intellectual property (caused by the lack of gover-

nance processes)

• In-house code developed was not scanned for compliance

• It was assumed that developers were aware of open source compliance (though no training

was provided).

4.6.2 Failed Evaluation

Similar to Case Study A and Case Study B, after assessing the initial situation of open source gov-

ernance at Company C, we were planning to guide the implementation and then to evaluate parts

of our theory in the format of the governance handbook sections. Company C was chosen to be

more mature (in terms of FLOSS governance) than Company A, but less mature than Company B,

which would enable us to evaluate the parts of our theory on general governance, inbound gover-

nance (focused on component reuse), and outbound governance. In parallel to the initial situation

assessment at Company C, which was being conducted with the support of a research colleague, we

developed and extended these parts of our theory, presenting them in the handbook format used in

the other two case study companies. We then delivered the handbook (with the relevant sections) to

256

our primary contacts at Company C – a project manager and a manager of processes and tools, who

we planned. Following our statement of work, we expected that our primary contacts would intro-

duce the handbook at a pilot project within Company C, and connect us to the pilot project team

for the evaluation.

Following the situation assessment, we considered Division C.1 (Interior) to be the place to find

a potential pilot project for the handbook implementation and evaluation. Division C.1 has some

of the most advanced FLOSS governance within Company C. The Open Source Compliance Team

had created a process by which both inbound and outbound reviews could be performed, though

only locally within the division. There were several positive points about the process, most notably

that decisions took business needs into consideration, code scans were performed to identify hidden

compliance violations, and the entire process was meticulously documented through a ticketing

system. There were, however, several key weaknesses with the current approach, including:

• open source component reuse and knowledge sharing

• lack of universal governance processes and process avoidance

• limitations of existing local governance across the company.

One concern related to the lack of shared knowledge and component reuse within the organiza-

tion. Because of the lack of a consistent format (such as SPDX) for conveying open source compo-

nent usage, product teams struggled to understand OSS use in the platform and OSS use in supplier

components, and to produce bills of materials. Component reuse was hindered by the lack of a com-

mon database of decisions and components. Open Source Compliance Team reports were difficult

to interpret because they contained repetitive, minor issues which could be excluded if the resolu-

tions were communicated, and because project teams lacked the knowledge to prioritize issues. To

date, the emphasis had been largely on inbound review for license compliance, with some outbound

license compliance review, and awareness of other governance issues appears to be limited to a few

people.

257

Another concern focused on the ways in which the governance processes were bypassed or avoided

due to confusion or because it was perceived as burdensome. Moreover, the processes which had

been described in the initial situation assessment related largely to Division C.1, and were not widely

employed across the company. Even within Division C.1, it did not appear that tool review was rou-

tinely done, and products were not being reviewed in the release state. It was also unknown to what

extent the process was followed for code which entered Company C through mergers and acqui-

sitions. The existing processed were largely designed for products with set releases, and were not

suitable for the more rapid development cycles used by the R&D department for demonstrations,

for example. While the outbound review process was described as difficult and time-consuming by

some employees, the process for open sourcing was described as all but impossible, requiring years of

effort.

The third concern addressed the gaps in the existing open source governance. Inbound suppliers

were trusted to declare OSS components, without the assurance of either a code scan or a certifi-

cation (e.g. OpenChain self-certification). OSS components were not systematically scanned for

vulnerabilities by all teams, and there did not appear to be a procedure in place to re-evaluated prod-

ucts after release in response to any newly discovered OSS component vulnerabilities. Furthermore,

the decision-making process regarding OSS component use did not appear to be subjected to a for-

malized value-effort estimation.

During our handbook implementation, we planned to address the above-mentioned concerns,

which would allow us to evaluate parts of the proposed theory.

Before delivering the handbook, we also provided some initial guidance and pointers for our pri-

mary contacts at Company C to consider in preparing for the handbook implementation. Company

C was looking at purchasing tools for open source governance, which our primary contacts hoped

could help introduce company-wide governance processes in an efficient manner. In support of

this effort, we provided an overview of tools for FLOSS governance and compliance that Company

C could consider in preparation for the handbook implementation. In line with our theory’s best

258

practices A.3.4 (OSGOV-GETSTA-PROANA-1.3. Select and use governance tools for automation)

andOSGOV-INBGOV-COMREU-12. Use tools to create, update and maintain component reposi-

tory (for tools focused on component reuse), we provided the tooling overview developed by a research

colleague, which is presented in Figure 4.11.

Fossology	

Fossology	is	one	of	the	popular	tools	for	OSS	compliance	and	focuses	on	detection	of	licenses,	copyrights,	or	export	controls	information.	The
basic	workflow	using	Fossology	is	dividable	in	the	following	steps:	

License	scanning	

To	detect	licenses,	copyrights,	or	export	controls	Fossology	using	different	pattern	recognition	methods.	

License	review/clearing	

One	of	the	key	features	of	FOSSology	is	the	user	interface	to	review	license	findings	in	order	to	determine	the	exact	licensing	of	a	file.	A	review	of
the	findings	is	necessary	because	the	unequivocal	detection	of	a	license	is	not	trivial.	For	instance,	the	license	text	can	be	modified	or	a	complete
unknown	license	is	detected.	The	review/clearing	results	are	stored	in	a	database	and	can	be	reused	for	other	scans.	

Report	generation	

In	the	last	step,	a	report	with	all	detected	components	with	their	licenses,	copyright,	and	export	restriction	information	can	be	created.	This	list	is
called	bill-of-materials	(BOM).	The	usual	representation	of	a	BOM	is	in	the	form	of	the	machine-readable	SPDX	standard.	

SW360	

SW360	on	the	other	hand,	helping	users	by	establishing	a	central	hub	for	software	components	in	an	organization.	SW360	allows	for	

tracking	components	used	by	a	project/product,
assessing	security	vulnerabilities,
maintaining	license	obligations,
enforcing	policies,	and
generating	legal	documents.
Integration	with	other	tools	and	data	sources	(e.g.	license	scanner,	static	code	analysis,	build	infrastructure,	etc.)	

SW360	doesn’t	provide	necessary	functionalities	for	license	clearing	by	itself;	instead,	it	can	trigger	a	clearing	process	in	FOSSology	and	import	the
resulting	clearing	reporting.	

The	is	another	example	where	different	compliance	tools	can	be	used	together,	or	depend	on	each	other,	e.g.,	OSS	Review	Toolkit	(ORT)	and
ScanCode.	

ScanCode	from	NexB	

ScanCode	is	another	popular	exemplar	of	a	license	scanner	like	Fossology,	with	similar	functionalities.	No	further	explanation	here	because	it’s
very	similar	to	Fossology.	

OSS	Review	Toolkit	
The	goal	of	the	OSS	Review	Toolkit	(ORT)	is	to	verify	Free	and	Open	Source	Software	license	compliance	by	checking	project	source	code	and
dependencies.	ORT	analyzing	the	source	code	for	dependencies,	downloading	the	source	code	of	the	dependencies,	scanning	all	source	code	for
license	information,	and	summarizing	the	results.	It	uses	data	from	a	projects	build	system	(Maven,	Gradle,	etc.)	to	determen	all	components	and
it’s	dependencies	and	for	the	actual	license	check	it	triggers	one	of	four	supported	license	scanner.	ScanCode	is	here	the	recommended	option.
ORT	also	using	SPDX	as	a	format	to	exchange	results	with	other	tools.	

ClearlyDefined	

Different	companies/people	perform	license	clearing	process	on	widely	used	components,	like	parts	from	the	Linux	kernel	or	open	source
frameworks.	To	eliminate	redundant	work,	initiatives	like	ClearlyDefined	provide	a	platform	to	share	clearing	results	beyond	company	borders.	At
the	moment	it’s	not	clear	how	many	companies	will	trust	someone	elses	results	and	provide	own	results	to	share	it	on	a	global	platform.

Figure 4.11: Case Study C – Tooling for FLOSS Governance and Compliance

259

In addition to the tooling overview, we also provided a list of the common industry requirements

(not specific to Company C) for FLOSS governance and compliance tools based on our previous

research [68], which our primary contacts at Company C could use in choosing the right tooling

for the company-wide governance and compliance. See an excerpt from this list of requirements in

Figure 4.12.

1. The tool should help users interpret open source licenses.
a. The tool should allow user to document open source license interpretations using a formal language or notation

supported by the tool.
b. The tool should provide automated standard interpretation of the most common FLOSS licenses in company’s license

repository or license handbook.
c. The tool should allow users to modify license interpretation of the most common FLOSS licenses in company’s

license repository or license handbook.
d. The tool should allow users to add license interpretation of the FLOSS licenses of the used FLOSS components to

company’s license repository or license handbook.
e. The tool should allow users to change license interpretation in the license repository or license handbook.
f. The tool should allow developers to request license interpretation of a FLOSS license of an FLOSS component s/he

wants to use in a product.
g. The tool should allow open source program office to discuss license interpretation requests.
h. The tool should allow open source program office to fulfill license interpretation requests.

2. The tool should help users document the identified licenses of the used FLOSS components in the company’s open
source license repository or license handbook.
a. The tool should allow creating an open source license repository.
b. The tool should allow developers, lawyers and managers to read the open source license repository.
c. The tool should allow automated inventorying of known open source licenses from the product architecture model.
d. The tool should allow users to add new open source licenses into the open source license repository.
e. The tool should allow users to remove obsolete open source licenses from the open source license repository.
f. The tool should support the commonly accepted data exchange standards (such as SPDX).
g. The tool should allow users to search open source license information in the open source license.

3. The tool should help users find and document the unidentified licenses of the used FLOSS components in com-
pany’s open source license repository or license handbook.

a. The tool should allow software package scanning to find the open source licenses unidentified previously through
product architecture model.

b. The tool should allow source code scanning for the internally developed code to find the origin of used, but uniden-
tified open source code and its license.

c. The tool should allow source code scanning for the FLOSS components taken from FLOSS projects to find the origin
of used, but unidentified open source code and its license.

d. The tool should allow binary scanning for the FLOSS components that are part of the supplied proprietary software
components to find the origin of used, but unidentified open source code and its license.

e. The tool should allow automated inventorying of the open source licenses identified because of binary and source
code scanning.

f. The tool should allow manual changing the automatically identified open source licenses.
g. The tool should allow removing the automatically identified open source licenses.
h. The tool should support binary and source code scanning integration into the build process and/or continuous inte-

gration process.
i. The tool should allow finding and documenting copyright notices, export restriction information and other compli-

ance-related metadata for FLOSS components used in a product.

4. The tool should help users approve the use of a FLOSS component in a product based on FLOSS license compli-
ance guidelines.
a. The tool should allow creating white lists of company-approved FLOSS licenses according to company policy.
b. The tool should allow creating black lists of company-blocked FLOSS licenses according to company policy.
c. The tool should allow updating white and black lists of FLOSS licenses.
d. The tool should allow creating license interpretation-based rules for automated recommendation on component use

approval according to company policy.
e. The tool should allow developers to request approval of FLOSS components with previously unassessed licenses.
f. The tool should allow lawyers to approve or block use of FLOSS components due to license incompatibility with

company policy.
g. The tool should allow automated recording of FLOSS license approval decisions in company’s open source license

repository.

5. The tool should help users distribute a product that is compliant with the FLOSS licenses of the FLOSS compo-
nents used in that product.
a. The tool should allow automated generating of FLOSS license obligations for each product using product architecture

model and open source license repository.
b. The tool should allow automated assignment of tasks that will ensure compliance with FLOSS license obligations.
c. The tool should allow automated audit of product’s bill of materials before distribution.
d. The tool should allow manual audit of product’s bill of materials before distribution.
e. The tool should allow adjusting product’s bill of materials before distribution.

Figure 4.12: Case Study C – Tool Requirements for License Compliance of FLOSS Components for Company C

However, after the handbook delivery, handbook implementation and evaluation issues arised.

Our primary contacts from Company C were not satisfied with the handbook and did not want to

260

proceed with its implementation. To discuss the issues, we organized a workshop with the case study

colleagues to go over the handbook and their concerns. Analyzing this meeting we identified the

following key issues that might have potentially caused the failed implementation and evaluation at

Company C:

• expectations from the handbook were not met, as the open source governance handbook was

not customized for Company C

• internal politics at Company C created tensions between two groups working internally on

open source governance.

The first issue was in the mismatch of the expectations of what a corporate open source gover-

nance handbook should look like. Our statement of work with Company C clearly outlined that we

would develop a theory on industry best practices based on the data gathered from industry experts,

which abstracted from individual companies and resulted in a general handbook of open source

governance. However, our industry partners at Company C voiced a different expectation after the

handbook was delivered. They expected a customized handbook that could be readily applied at

Company C, which was not the case as we provided different versions of the abstract handbook to

all three case study companies. Each company would then customize the handbook during the im-

plementation phase fitting it to their needs and processes. Unwilling to customize the handbook on

their own, our partners at Company C limited our theory evaluation in Case Study C.

The other challenge to the handbook implementation and theory evaluation was caused by com-

pany politics and tensions between Division C.1 and Division C.2, each of which had teams working

on open source governance that could apply to the whole company. We had observed these tensions

and related conflicts of interest during the initial situation assessment, but did not expect them to

affect our work that would aid the company as a whole in establishing company-wide FLOSS gover-

nance. However, after our handbook delivery and before we could start the guided implementation,

the company-internal issues around governance efforts blocked our project from accessing a pilot

project at Company C for theory evaluation.

261

To conclude, with the limited access to the company-internal information, we could not claim

that our observations were the only reasons for the failed evaluation, but rather the ones that we

were aware of.

262

5
Conclusion

This chapter concludes the dissertation with a discussion of the implications of our find-

ings to both the academic community and to practitioners. We discuss the future research questions

can be explored by peer researchers on open source governance, and on the use of open source in

companies more broadly. We also address the limitations of this study, both during theory building

and during theory evaluation. We discuss the issues related to the internal validity and to the exter-

nal validity of our work.

263

5.1 Discussion

Our research goal was to build and evaluate a theory of industry best practices for corporate open

source governance. In the course of this study, we started by assessing the state of the art in the lit-

erature, which helped us understand the landscape of the domain and its key subtopics. We then

conducted a qualitative survey of the industry expert knowledge and derived industry best practices

for FLOSS governance. The identified governance framework and industry best practices consti-

tuted the proposed theory. We presented our theory in the actionable format of a pattern hand-

book. Finally, we evaluated our theory through a multiple-case case study at two companies, where

we guided the implementation of different parts of our handbook and evaluated the respective parts

of the proposed theory. The evaluation resulted in identifying some issues to the completeness,

variability, structure, comprehension, understandability, applicability, relevance, significance, and

usefulness of select best practices from our theory.

Assessing the state of the art literature, we reviewed 87 papers on the topic of governance, which

identified insights and practices on the following core issues of corporate open source governance:

• Getting Started

• Inbound Governance

• Outbound Governance

• General Governance.

As a large subtopic within Inbound Governance, we considered Supply Chain Management as a

separate topic of FLOSS governance.

Taking the state of the art review as our basis, we developed a theory of industry best practices for

corporate open source governance, which partially confirmed the findings from the literature, while

partially rejecting some findings and extending the current understanding of FLOSS governance

in companies. We contributed to both the academia and industry by applying scientific methods,

such as qualitative survey and qualitative data analysis, to address our core research question on

264

how companies should govern the use of open source software in their products. A novel topic, this

specific subject was little researched as its own domain. Previously, researchers focused mostly on

the topics of either open source community governance, open source license compliance as part of

corporate open source governance. In our theory, we built upon the research on open source license

compliance, but also covered some rarely studied aspects of FLOSS governance. Our theory covered

the following topics, subtopics, and industry best practices of corporate open source governance in

detail:

• Getting Started with Open Source Governance

• Inbound Governance

– Component Approval

– Component Repository

• Supply Chain Management

• Outbound Governance

• General Governance.

Our theory provides industry best practices for companies with no governance in place that want

to introduce open source governance after recognizing the risks of the ungoverned use of open

source software in their products. We then suggest best practices for inbound governance dealing

with how OSS components get into the company. We present in detail two key topics of inbound

governance – component approval that focuses on the process software developers need to follow

when adding open source components in their products, and component repository that focuses

on the reuse of the previously used open source components. We then present the focal topic of our

study – Supply Chain Management that focuses on dealing with software suppliers and open source

software in the supplied code, as well as topics of the bill of materials management, and license com-

pliance in the context of software supply chains. We further cover outbound governance dealing

with the outward-facing issues of FLOSS governance, such as license compliance of the shipped

265

products, contribution management, etc. Finally, our theory presents industry best practices on the

general and crosscut topics of open source governance, such as the establishment and operation of

an open source program office.

Some of the proposed industry best practices in our theory confirm the findings from the liter-

ature. For example, the best practiceOSGOV-GETSTA-TRAPOL-1 Establish FLOSS governance

policy for the transition period confirms findings by Lerner & Tirole [93], while the best practice

OSGOV-SUCHMA-PREGOV-1.1. Assess open source governance and compliance awareness and

maturity confirm the recommendations by [82].

Other proposed industry best practices in our theory reject some findings from the literature or

propose previously unknown ones. For example, while Copenhaver [31] suggested having an em-

ployee role specifically for ensuring license compliance – the Open Source Software Compliance Of-

ficer (OSSCO), our theory proposes delegating this task to the open source program office (OSPO)

– a group of employees that are able to cover not only the legal aspects of open source compliance,

but also its business and technical aspects. The best practiceOSGOV-GENGOV-GOVMAN-3.

Establish an open source program office presents the specifics of establishing an OSPO. One expla-

nation for this difference between our approach and that of Copenhaver could be explained by

Copenhaver’s strong focus on the open source license compliance compared to our broader focus

on corporate open source governance as a whole, where compliance is only one of many tasks the

OSPO needs to manage.

After building the theory of industry best practices for corporate open source governance, we

presented it in the actionable format of interconnected patterns that formed a handbook of FLOSS

governance. We presented excerpts from two major parts of the handbook in the appendix of this

dissertation – that on Getting Started in Appendix A and that on Supply Chain Management in

Appendix B. We hope that such a practitioner-friendly presentation format will make our theory

more applicable at companies, which will increase the impact and the relevance of our research con-

tributions.

266

To evaluate the proposed theory, we guided the implementation of the Getting Started and

Inbound Governance best practices from our theory at Case Study A, where we found that most

practices were well-structured, comprehensive, and applicable. However, we found that some best

practices, such asOSGOV-GETSTA-TRAORG-4. Start small, then replicate - define the scope of

the transition process lacked understandability, while some others lacked usefulness in the context

of Company A, such asOSGOV-GETSTA-TRAORG-1. Establish a board of stakeholders to orga-

nize the transition. Instead of the latter, Company A opted for another best practice –OSGOV-

GETSTA-TRAORG-2. Designate the transition manager, extending which the transition manager

would assume the responsibilities of the board of stakeholders in the early phase of the transition

towards FLOSS governance. We then guided the implementation of the Supply Chain Management

best practices from our theory at Case Study B and evaluated our theory using the same quality crite-

ria as at Company A.

To conclude, future research on the topic of corporate open source governance can further ex-

tend the scope of the proposed theory, especially focusing on the topics of outbound governance

and general governance. Other studies can be conducted to further evaluate the current theory,

either using the case parts of the governance handbook (to replicate our findings) or using the cur-

rently unevaluated parts of the handbook. Furthermore, FLOSS governance can be studied directly

in the context of software supply chains, without the involvement of an OEM company at the end

of the supply chain, whose perspective we took in our study. FLOSS governance automation and

product models are also topics of high relevance to the industry, but not extensively researched – a

gap that future researchers can address. Finally, going beyond the corporate use of open source soft-

ware, researchers can study why and how companies contribute to open source communities, as well

as why and how companies create and lead open source projects.

267

5.2 Limitations

5.2.1 Limitations for Theory Building

Our study faces several limitations. For theory building, we follow Guba [61] in assessing the trust-

worthiness of our research through the following quality criteria:

• Credibility

• Dependability

• Confirmability

• Transferability.

Credibility is the degree to which we can establish confidence in the truth of our findings in the

context of the inquiry. In our case, some potential sources for credibility limitations include the

reliability on our research group’s professional network for the sample of companies with an ad-

vanced understanding of open source governance, and the main mode of data collection being semi-

structured interviews. To address these issues, we performed two rounds of peer debriefing, asked

three colleagues to review the study design, and incorporated the feedback from our colleagues from

within our research group. We also conducted data triangulation relying not only on expert inter-

views, but also on other primary materials (e.g. company guidelines for FLOSS governance).

Dependability is the degree of consistency of the findings and traceability from the data to the re-

sults. The usual limitations related to dependability include the lacking documentation of research

protocols, research artifacts, and process documentation, as well as the limited traceability from data

to the built theory. We addressed these issues by saving the raw interviews, their transcriptions, and

metadata in the course of the study. We also documented our qualitative data analysis using QDA

tools that enable fine-grained traceability from the primary materials to the resulting theory and its

concepts.

268

Confirmability is the degree to which the authors are neutral towards the inquiry and their po-

tential bias effect on the findings. Some of the limitations related to confirmability include the po-

tential researcher bias, the bias introduced by the research funding, and the researcher assumptions

formed prior to the study. We addressed these issues by following the research method constructs

carefully, not trying to interpret the methods in a biased way. We also had a second coder analyze

parts of our data, for example on the topic of getting started, which improved our original QDA

coding based on input from the second coder [99].

Transferability is the degree to which the findings of our study hold validity in other contexts.

Some of the limitations related to transferability include the over-reliance on examples from the data

that could limit the generalizability of the theory, and the over-generalization based on the small

sample. To address the issues of transferability we conducted a multiple-case case study to evaluate

how generalizable our proposed industry best practices would be to companies with no governance

in place and their different contexts.

5.2.2 Limitations for Theory Evaluation

Our theory evaluation also has its limitations both related to the method used and to the research

process. Method related limitations include the typical issues associated with case study research,

such as the limited of generalizability of the results outside of the studied cases, and the limited repli-

cability in case of the poor research process documentation.

For theory evaluation, we follow Gibbert, Ruigrok & Wicki [56] in assessing the rigor of our case

study research informed by Yin [157] through the following validity and reliability criteria:

• Construct validity

• Internal validity

• External validity

• Reliability.

269

Construct validity of a procedure refers to the quality of the conceptualization or operationaliza-

tion of the relevant concepts emerging from the data. Potential limitations related to the construct

validity of case study research include an ambiguously defined or implemented research process

that could lead to poorly defined or measured concepts, limitations in data collection, as well as

the researcher bias and subjectivity in case of the lacking research documentation. We addressed

these issues by following a well-established and widely used case study method by Yin [157]. Before

starting the case study, we created a detailed case study protocol that would guide us through the

research process and reduce the researcher bias associated with sudden changes to research design in

the course of the study.

Internal validity or logical validity [30] refers to the causal relationships between variables and

results. Internal validity is essential for explanatory case studies, not for the descriptive ones [157].

For the explanatory part of the study (ours was a hybrid of a descriptive and explanatory design),

potential limitation issues include whether the researcher provides a plausible causal argument, log-

ical reasoning that is powerful and compelling enough to defend the research conclusions, and the

issues related to data analysis instruments. We addressed these issues by following the data analysis

construct of pattern matching proposed by Yin [157], which helped us evaluate the best practices

from our theory with their implementation patterns at case study companies [38] [42]. Given our

research goal of theory evaluation, by design, we focused on establishing logical reasoning behind for

the assessment of the predefined quality criteria of the proposed theory.

External validity refers to the generalizability of the proposed theory in settings different from

those in the research leading to the given theory [20] [110]. The key limitation related to the external

validity of case study research is that case studies do not allow for statistical generalization. However,

case studies are not devoid of generalization, instead, they provide analytical generalization, which

refers to the generalization from empirical observations to theory, rather than a population [157]. In

our study, we do not claim that our theory evaluation results can be generalized to a population

of companies establishing open source governance, but we do suggest that in the context of the

270

studied companies, we observed and reporting how the proposed industry best practices could be

implemented and used. To address this limitation, we also provided a clear rationale for the case

study sampling and reported the case study context of Company A, B, and C in detail, which would

allow the reader to understand our sampling choices [30].

Reliability refers to the absence of random error, enabling other researchers to arrive at the same

insights when conducting a new study along the same steps [38]. The key limitation related to the

reliability of case study research is the lacking transparency of the case study design and process,

which can hinder future replication studies. To address this limitation, we provided a detailed case

study protocol we had developed before conducting the case studies and using in the course of the

study. We attached the case study protocol in Appendix E. We also archived the data we had col-

lected in the course of our case study.

271

272

A
FLOSS Governance Handbook –

Selected Practices for Getting Started

Appendix A presents an excerpt from the open source governance handbook’s section on

getting started with FLOSS governance. The handbook presents the findings of our research cast

as a collection of interconnected patterns. This presentation format enables higher applicability of

the research results. This appendix also includes process templates – example workflows connecting

273

various best practices on getting started, which further improves the practical applicability of our

results. See Figures A.1, A.2, A.3, A.4 and A.5 for process templates.

A.1 Transition Organization

GETSTA-TRAORG-1.
Establish a board of

stakeholders to organize
the transition

GETSTA-TRAORG-2.
Designate the transition

manager

GETSTA-TRAORG-3.
Define responsibilities

and tasks of the transition
manager

GETSTA-TRAORG-6.
Establish the transition

process

GETSTA-TRAORG-7.
Communicate the
transition process

GETSTA-TRAORG-8.
Implement the transition

process

GETSTA-TRAORG-4.
Start small, then replicate
- define the scope of the

transition process

GETSTA-TRAORG-5.
Define the transition

timeline

Figure A.1: Transiধon Organizaধon Process Template 1

GETSTA-TRAORG-4.
Start small, then replicate
- define the scope of the

transition process

GETSTA-TRAORG-6.
Establish the transition

process

GETSTA-TRAORG-7.
Communicate the
transition process

GETSTA-TRAORG-8.
Implement the transition

process

GETSTA-TRAORG-5.
Define the transition

timeline

Figure A.2: Transiধon Organizaধon Process Template 2

274

A.1.1 Establish a board of stakeholders to organize the transition

Name Establish a board of stakeholders to organize the transition

Actor Top management

Context Your company came to recognize the importance of FLOSS governance. You decided

to regulate your use of open source software in products using FLOSS governance best

practices.

Problem Before rolling out an overarching FLOSS governance process, you need to review all

the existing products that include open source software components. Where and how

do you start?

Solution To start reviewing your existing products and their software components, you need to

follow best practices on getting started with FLOSS governance. As a first step, estab-

lish a board of stakeholders to organize the transition from ungoverned FLOSS use to

structured FLOSS governance. Your transition board should include the current users

of open source in the company, decision makers regarding FLOSS use and those to be

responsible for FLOSS governance in the future. For the transition board, consider the

following employees:

• senior developers (known internally for their open source use and competency)

• engineering managers (usually de facto decision makers on FLOSS matters)

• lawyer (responsible for FLOSS license clearance and related issues)

• business/product managers

• software architect

• software procurement officer.

275

The transition board should be inclusive and transparent, open for any interested

stakeholder to join. The board should not require full-time engagement of all the

members. However, it’s important to → designate the transition manager - a responsi-

ble role and person for the transition, and to → define responsibilitiॽ and tasks of the

transition manager.

A.1.2 Designate the transition manager

Name Designate the transition manager

Actor Top management

Context After → establishing a board of stakeholders to organize the transition towards regu-

lated FLOSS governance at the company, you need to delegate the management of the

transition process to a responsible person.

Problem It can be hard to find the right person to oversee the transition, because of organization

complexity, lack of FLOSS competency, limited human resources etc. However, it’s

essential to start the transition with a designated transition manager in charge to en-

sure smooth and timely transition. What’s the best practice of choosing the transition

manager?

Solution The transition manager must already be involved with FLOSS use (and preferably

decision making) in the company. It is preferable to choose a mid-management or

senior development role to manage the transition, because of their understanding of

the whole product or product line that uses open source components.

276

A junior developer might be more knowledgeable with open source, but not as com-

petent in understanding and managing the overall transition process for the whole

pilot project. A high level manager might lack clear and detailed understanding of open

source use in products. During the transition, it’s recommended to allocate 30-50%

of the designated employee’s time for transition management tasks. The transition

manager coordinates transition board meetings and performs other → defined responsi-

bilitiॽ and tasks of the transition manager.

A.1.3 Define responsibilities and tasks of the transition manager

Name Define responsibilities and tasks of the transition manager

Actor Top management

Context In parallel to → establishing a board of stakeholders to organize the transition and →

designating the transition manager, you must ensure the operation of the transition

board and its manager.

Problem As transition happens at a pilot project in the company, employees need clear guid-

ance in transition related tasks and responsibilities to avoid wasting time and to ensure

smooth and timely transition. How should the transition board and its manager

operate?

Solution Define clear responsibilities and tasks of the transition manager. The main task is to

coordinate the transition process at the pilot project, while includes tasks and responsi-

bilities to:

⇒ define the scope of the transition process

⇒ define the transition timeline

277

⇒ establish the transition process

⇒ communicate the transition process

⇒ implement the transition process, while ensuring the efficient and timely imple-

mentation of the transition process

⇒ serve ॼ central point in transition for any questions from the affected employeॽ

⇒ manage the transition board in the process.

A.1.4 Start small, then replicate - define the scope of the transition process

Name Start small, then replicate - define the scope of the transition process

Actor Transition manager

Context Before → establishing and → communicating the transition process, the transition

manager needs to define the scope of the transition process.

Problem Depending on the company, the scope of the transition differs. Is there a common

approach to defining a transition scope?

Solution Chose a pilot project within the company with a product that uses open source soft-

ware. For the pilot do not choose a project based on its complexity, but rather on its

criticality and level of FLOSS use. If the project is critical and uses significant open

source components (and preferably is B2C / customer facing), you have a good candi-

date. The transition manager identifies two candidates for pilot projects and chooses

the one with higher FLOSS competency among the employees.

278

This ensures easier knowledge transfer in the future. Once the scope of the pilot

project is set, the transition manager goes on → establishing and → communicating the

transition process. After the process is completed, the same process replicates in other

parts of the company and in other projects.

A.1.5 Define the transition timeline

Name Define the transition timeline

Actor Transition manager

Context After → defining the scope of the transition process, the transition manager needs to

define the transition timeline.

Problem Transition is time bound. How should its timeline be best defined?

Solution The transition manager must define a detailed timeline for the transition process. It

should include the pilot project and the follow-up replication processes of the pilot

project across the company. The timeline should be discussed with the affected projects

and be approved by the transition board, where all the board members must come to a

consensus over the defined timeline. When defining the timeline, consider:

• time to establish the transition process

• time to implement the transition process at the pilot project

• time to replicate the process at other projects

• time for the follow-up evaluation (optional).

279

A.1.6 Establish the transition process

Name Establish the transition process

Actor Transition manager, Transition board

Context After → defining the scope of the transition process and → defining the transition time-

line, the transition manager and the board must establish the transition process that is

first implemented at a pilot project in the company, then replicated in other parts of

the company.

Problem The transition process is often the determinant of the transition’s success. The specifics

of the transition process depend on the company, on its use cases in terms of FLOSS

use and on the capabilities of the employees. What are some common principles for

establishing a smooth transition process?

Solution The transition process outlines company’s shift from unstructured, ad-hoc FLOSS

governance to the structured and well-defined one. This handbook section covers how

the company should get started with FLOSS governance. However, before the actual

governance process, the pilot project and its team (and other projects consequently)

must be exposed to the transition setup to prepare for the upcoming changes. Such a

transition also ensures that the new governance approach and its motivation is clear to

all the employees. During the transition the transition manager and board are estab-

lished and introduced to the employees, which is the basis for implementation of all

the other best practices.

The transition process should follow these principles:

• be clearly defined

• be easy to follow without constant guidance by the board

280

• be scalable and replicable

• be assisted with tools that automate and/or ensure compliance with the process.

The transition process should include:

• outlining the motivation behind FLOSS governance

• clarifying the roles of the employees during the transition

• communicating the timeline and scope of the transition

• communicating the steps of the transition (product analysis and risk mitigation

best practices) and their expected outcomes

• setting up new and structured procedures for decision making related to gover-

nance.

A.1.7 Communicate the transition process

Name Communicate the transition process

Actor Transition manager

Context After → establishing the transition process, you must communicate it clearly first with

the pilot project and then with the rest of the company. This must be done before

→ implementing the transition process to allow the affected teams to prepare for the

transition.

Problem Communicating the transition to FLOSS governance can be tricky, as the process is

often complex for every single employee. How should it be communicated not be

become too complicated for the employees?

281

Solution Best practice patterns of the handbook ensure easy communication of the transition

process. The transition manager should present an overview of the transition to the

employees, and point each employee group to the best practice patterns relevant only

to them, while guiding them and serving as a central hub for discussions about the

overarching issues. t’s recommended that the transition manager meets the affected

team (pilot project or other projects) at least three times during the transition:

• before the transition begins (to explain the motivation of the transition)

• mid-transition (to discuss the issues of various employee groups might have)

• after the transition (to document unresolved issues and to evaluate the process).

A.1.8 Implement the transition process

Name Implement the transition process

Actor Transition manager, Transition board

Context After → establishing and → communicating the transition process, you must implement

the transition process at a pilot project or in the rest of the company.

Problem Implementing the transition process must be done gradually. How can this gradual

implementation work in practice?

Solution You implement the established process that covers the essentials of the transition. For

undefined questions, make case by case decisions and document them. The transition

manager implements the process gradually, first introducing the overall process to

the affected team, then demonstrating an example of identifying, documenting and

clearing an open source component in a product.

282

Along the way, Q&A sessions and discussions between the affected team and the

transition board ensure a smooth transition. The end goal of the transition process

implementation is to ensure the affected team understands the changes introduced by

this handbook, as well as the motivation behind these changes.

283

A.2 Transition Policy

GETSTA-TRAPOL-1.
Establish FLOSS

governance policy for the
transition period

GETSTA-TRAPOL-2.
Communicate FLOSS

governance policy for the
transition period

GETSTA-TRAPOL-3.
Adjust and improve
FLOSS governance

policy for the transition
period

Figure A.3: Transiধon Policy Process Template

A.2.1 Establish FLOSS governance policy for the transition period

Name Implement the transition process

Actor Transition manager, Transition board

Context Developers have been using open source components without any governance guide-

lines in the past. In parallel to introducing FLOSS governance at the company, you

need to define and communicate the new rules for using open source components for

the transition period, before → implementing the transition process.

Problem How should you manage FLOSS governance during the transition period, before you

have established a comprehensive FLOSS governance strategy?

Solution In parallel to → establishing the transition process, establish FLOSS governance policy

for the transition period that covers all the critical issues around the use of open source

components in products, such as license compliance, bill of materials management,

documentation, communication, etc.

284

The governance policy can be stored as a single document or divided into two separate

documents:

• The first explains the intention of FLOSS use, defines the principles of using

FLOSS in products. It outlines what kind of licenses, including their legal as-

sessments and packages, are acceptable for use in commercial products, and

pairs legal assessments with business use cases for each license.

• The second establishes a set of standards and tasks for the employees to follow

to ensure compliance with FLOSS governance processes. This way, the policy

can be implemented across the whole company under identical conditions.

Also at larger companies, each division or department can adopt the policy with

certain differences.

It is necessary to → communicate FLOSS governance policy for the transition period

and to → adjust and improve FLOSS governance policy for the transition period.

A.2.2 Communicate FLOSS governance policy for the transition period

Name Communicate FLOSS governance policy for the transition period

Actor Transition manager

Context After → establishing FLOSS governance policy for the transition period, it is neces-

sary to make the policy accessible to the employees, so they can follow it before the

introduction of a comprehensive FLOSS governance strategy.

Problem What are the best channels to communicate the FLOSS governance policy for the

transition period?

285

Solution Communicate FLOSS governance policy for the transition period using a variety of

channels:

• the same channels that are currently used for the informal open source gov-

ernance, such as mailing lists managed by key employees dealing with open

source

• multi-purpose internal communication channels, such as intranet, wikis, fo-

rums, etc.

• internal video recordings and streaming channels, such as the introduction

of the policy by a representative of the top management or by the transition

manager

It is also recommended to communicate the details of the policy through employee

trainings that include other topics around open source governance and the transition.

To do this, consider the governance policy when → designing employee trainings. This

ensures that your staff understands the significance and the principles of FLOSS gov-

ernance and that the employees have a chance to ask clarifying questions about the

policy.

The latter can be used to → adjust and improve FLOSS governance policy for the

transition period.

A.2.3 Adjust and improve FLOSS governance policy for the transition period

Name Adjust and improve FLOSS governance policy for the transition period

Actor Transition manager, Transition board

286

Context You → established and → communicated FLOSS governance policy for the transition

period. You are getting clarification requests and questions from the employees.

Problem What’s the best way to address employee questions and clarification requests regarding

FLOSS governance policy?

Solution Iteratively collect and analyze the questions and requests you are getting. Identify the

common misunderstandings and use them to adjust and improve FLOSS governance

policy. Regularly post updates, clarifications, and FAQs to the affected employees via

internal communication channels used to → communicated FLOSS governance policy

for the transition period. It’s important to update and maintain the policy by receiving

feedback from the development teams to improve the processes. It is also essential to

record violations to understand why certain development teams violate the process to

minimize the issues in the future.

287

A.3 Product Analysis

GETSTA-PROANA-1.
Use a combination of
methods for product

analysis

GETSTA-PROANA-1.1.
Use one mandatory

survey for initial
assessment

GETSTA-PROANA-1.2.
Establish a process of

continuous reporting and
assessment

GETSTA-PROANA-1.3.
Select and use

governance tools for
automation

GETSTA-PROANA-3.
Run use analysis

PROANA-3.1. Run open
source use analysis in

products

GETSTA-PROANA-3.2.
Document current open

source use

Figure A.4: Product Analysis Process Template 1

GETSTA-PROANA-1.1.
Use one mandatory

survey for initial
assessment

GETSTA-PROANA-2.1.
Create product

architecture model

GETSTA-PROANA-2.2.
Maintain product

architecture model

GETSTA-PROANA-3.1.
Run open source use
analysis in products

GETSTA-PROANA-3.2.
Document current open

source use

Figure A.5: Product Analysis Process Template 2

288

A.3.1 Use a combination of methods for product analysis

Name Use a combination of methods for product analysis

Actor Transition manager and / or Project architect

Context After → implementing the transition process, you must review your current FLOSS use

in products. You have been using open source in your products without defined or

regulated governance processes or rules.

Problem You must review your existing products and their open source components to → en-

sure their license compliance and to →mitigate other risks. What methods should you

use for product analysis?

Solution You should use a combination of different methods, including:

⇒ using one mandatory survey for initial assessment

⇒ establish a process of continuoॿ reporting and assessment

⇒ selecting and using the governance tools for automation.

A.3.2 Use one mandatory survey for initial assessment

Name Use one mandatory survey for initial assessment

Actor Transition manager and / or Project architect

Context You must collect all relevant information on previous FLOSS use in products. While

some data can be found directly in the source code, there is some tacit understanding

of FLOSS governance and implicit rules around it. You are considering to → use a

combination of methods for product analysॾ.

289

Problem The tacit understanding of FLOSS governance, the implicit rules around FLOSS gov-

ernance and any data on current use of FLOSS components must be elicited. How

should you do this?

Solution Design and run one mandatory survey for initial assessment of FLOSS use in products.

This qualitative survey (questionnaire) has the goal of identifying any previously un-

documented use of open source in company’s products. It also sets out to understand

the current perception of the developers and managers on open source governance

related decisions they have made in the past. The target of the survey are project’s devel-

opers and (engineering) management, as well as other employees who made decisions

on use of open source in products (e.g. lawyer responsible for open source, IT depart-

ment, procurement office etc.). The survey should not be overwhelming. It must be

well structured. The results should enable easy documentation of initial assessment

findings.

A.3.3 Establish a process of continuous reporting and assessment

Name Establish a process of continuous reporting and assessment

Actor Transition manager and / or Project architect

Context You already → used one mandatory survey for initial assessment. Now you need a

process for continuous reporting and assessment of any open source use during the

transition.

Problem The transition needs to prepare the company for fully structured FLOSS governance.

However, during the transition how should the process of continuous reporting and

assessment look like?

290

Solution Establish a process of continuous reporting and assessment that involves defined and

easy to follow steps for developers when using a new open source components during

the transition. This can be achieved using a product architecture model (a meta-model

for all governance related information such as license information, copyright noticed,

export restrictions, etc.), bill of materials documentation, questionnaires or forms etc.

The process should help:

• continuously report new use of open source components during transition

• automate this reporting as much as possible, by → selecting and using gover-

nance tools for automation

• continuously assess new use of open source components during transition

– assess licence compliance

– assess copyright notices

– assess export restrictions

– assess software supply chains

• document the assessment findings

• share the reported use of open source and documented assessment findings.

A.3.4 Select and use governance tools for automation

Name Select and use governance tools for automation

Actor Project architect

291

Context In parallel to → establishing a process of continuoॿ reporting and assessment, you

should try to automate as much of the reporting and assessment as possible. This

ensures higher efficiency and minimal distraction for developers.

Problem Which aspects of open source governance during the transition should be automated

and how does one select the right tools?

Solution The main focus of automation during transition should be reviewing the source code

of the existing products. This includes scanning company’s software for open source

licenses to be used for license compliance clearance. This also includes scanning for

copyright notices, export restrictions and security vulnerabilities. The selected tools

must provide an easy integration with the development environment, provide ade-

quate documentation, and enable further functionality, such as support for bill of

materials management automation, supply chain management, etc. To select the right

tools, study your company’s use cases, FLOSS governance needs, and scale of open

source usage.

You should consider both open source tools and proprietary tools for open source

governance. If one tool is already used in the company, you should consider extending

its use to ensure the centralization FLOSS governance across the whole company.

A.3.5 Product architecture model

A.3.6 Create product architecture model

Name Create product architecture model

Actor Transition manager and / or Project architect

292

Context You already → used one mandatory survey for initial assessment of FLOSS components

in your products, → established a process of continuoॿ reporting and assessment, and →

selected the governance tools for automation. You are now ready to set up a structured

and integrated product architecture model.

Problem Products keep changing, new open source components are being added and modified.

You need to keep track of the ongoing changes in product architecture and to maintain

structured metadata (e.g. license information, reuse information, export restrictions

etc.) on open source components.

Solution Create product architecture model to set up and maintain a structured and formalized

view of software components used in your products. Define open source component-

specific properties within the model to allow collection, tracking, maintenance, and

monitoring of metadata including open source license information, export restrictions,

known security vulnerabilities, software dependencies, etc.

If possible, create a product architecture model integrated into the build process or

continuous development process to ensure higher automation.

A.3.7 Maintain product architecture model

Name Maintain product architecture model

Actor Project architect

Context You previously → created a product architecture model. Short delivery cycles, includ-

ing continuous deployment, require that you can generate (and provide) compliance

artifacts (among other things) at any time.

Problem Creating a product architecture model from scratch takes longer than may be accept-

able with short delivery cycles. How to make sure you can provide compliance artifacts

on demand?

293

Solution Whenever you make a change to the component architecture of the product, update

the product architecture model. Do not forget to version the product architecture

model. This way, the model will always be up to date.

A.3.8 Use Analysis

A.3.9 Run open source use analysis in products

Name Run open source use analysis in products

Actor Product architect, Developers

Context Before → creating a product architecture model, you need to analyze what open source

software is in current use in your company’s products.

Problem To have a structured view of open source components used in the company’s products,

there is a need for an initial review of current open source use. This initial review can-

not be totally automated as different products have different architectures, and there is

no common method of denoting open source components and their dependencies in

products. How can the initial analysis be conducted?

Solution To run open source use analysis in products, you must → use a combination of methods

for product analysॾ. Talk to different product development teams and identify their

current practice or conventions of denoting open source use. If there is an enforced

formal or informal convention, use it to automate the initial product analysis. If not,

use software project management and comprehension tools or software component

management tools to automate as much of the initial product review as possible. Af-

terwards, survey technical managers or team leads to gather information on the open

source components used by developers in their respective teams. The results open

source use analysis in products will be used to → document current open source use.

294

A.3.10 Document current open source use

Name Document current open source use

Actor Product architect

Context After → running open source use analysॾ in products, you need to document the results

of your analysis in a structured format, which will then be used to → create product

architecture model and to document the current use there.

Problem The initial analysis of open source use in products results in semi-structured informa-

tion on current open source use. How can you transfer this semi-structured informa-

tion into structured information while identifying the key properties of them to be

created product architecture model?

Solution Based on the semi-structured information gathered while → running open source use

analysॾ in products you need to standardize the open source use related information

using an established data exchange format (for example SPDX format). When doc-

umenting your current use, keep in mind that this documentation should be easily

transferable into the product architecture model, where it will be placed and →main-

tained.

295

A.4 IP-at-Risk Analysis

A.4.1 License Compliance Analysis

A.4.2 Develop standard license interpretation

Name Develop standard license interpretation

Actor Lawyer / Legal counsel

Context Software developers need legal advice on open source licenses before using given com-

ponents in company’s products in order to ensure legally compliant use of open source

software. There are about 20 prominent and widely used open source licenses with

strong communities using them. These standard licenses are approved by the Open

Source Initiative.

Problem Software developers keep asking the legal council about open source license inter-

pretation for each software component with a new license. This is redundant and

time-consuming work for both lawyers and software developers.

Solution Legal counsel needs to develop standard open source license interpretation agreed

upon internally, taking into account existing ambiguities and potential risks of each

open source license. The interpretations for 20 most prominent and popular open

source licenses need to be documented and communicated clearly with software de-

velopers and technical managers working in product development. Once the standard

interpretation of licenses is developed company employees must → use standard license

interpretation, when possible.

296

A.4.3 Use standard license interpretation

Name Use standard license interpretation

Actor Developers

Context Software developers need legal advice on open source licenses before using given com-

ponents in company’s products in order to ensure legally compliant use of open source

software. Your company’s lawyer → developed standard license interpretation and

shared them with developers across the company.

Problem Who should use the standard license interpretations and how?

Solution Developers must use and follow company’s standard license interpretations when

adding open source components into company’s products.

Developers should be introduced to the standard license interpretation of the major

licenses (GPLv2, GPLv3, LGPL, AGPL, MIT, BSD, Modified BSD, etc.) during the →

provided employee training. When using open source code (either directly from FLOSS

communities or as part of supplied software), developers should consider the license in-

terpretation in a given business case (e.g. using GPLv3 can be acceptable in one use case

and not acceptable in another) generally outlined in company’s → established FLOSS

governance policy for the transition period. For the special cases that are not described in

the governance policy, developers must consult the transition board or the transition

manager, who then review and document their case by case decisions as part of the →

implemented transition process. The transition manager must use this documentation

to → create license/use case pairs.

297

A.4.4 Create license/use case pairs

Name Create license/use case pairs

Actor Transition manager

Context Your company → developed standard license interpretation and you are → using stan-

dard license interpretation. Developers are also consulting company’s → established

FLOSS governance policy for the transition period, and are contacting the transition

board or the transition manager for case by case review of special cases of FLOSS use.

Problem What’s the best way to document the case by case decisions on special cases of FLOSS

use, reviewed by the transition board or the transition manager?

Solution In one centrally available document, create license/use case pairs to document the case

by case decisions on special cases of FLOSS use. This document should include all

the major licenses and company’s detailed approach to their use in different business

contexts or use cases. For example, it can be acceptable to use a copyleft license for cer-

tain (non-differentiating) products, while it might be unacceptable in other cases such

as for company’s main products (with competitive advantage). Such license/use case

pairs should be well structured and documented. In case of a new decision on a special

license/use case pair by the transition board, this document must be updated by the

transition manager.

Developers must consult the document before contacting the transition board or the

transition manager with a new review request, because they might be able to find their

answer for a specific license/use case pair in the document. Having such a document

improves performance and reduces unnecessary redundancy.

298

A.4.5 Analyze risk exposure of using an open source component

Name Analyze risk exposure of using an open source component

Actor Engineering manager and / or Product architect

Context After you completed →Use Analysॾ and → License Compliance Analysॾ, you are

analysing the found inconsistencies and / or compliance issues. You need to analyze

risk exposure before deciding what to do about the identified issues.

Problem What’s the best way to analyze risk exposure of using an open source component?

Solution Analyze risk exposure of using open source components by employing tools and by

creating and using risk assessment matrix. Aim to automate risk analysis for the iden-

tified FLOSS use by → selecting and using the governance tools for automation. At the

same time follow the → established FLOSS governance policy for the transition period

for general principles on FLOSS use related risk analysis. For detailed risk assessment,

establish a matrix of risk levels and their criticality to the company. Use and update this

matrix over time, sharing it with the developers and other stakeholders in the company.

To assess risk exposure (and its level in the matrix) consider where the observed open

source component is used:

• in a consumer-facing product

• in a B2B product

• for a demo product (not for sale)

• internally as development tools

• internally as part of R&D

299

Define your company’s level for “minor” or “acceptable” risks upon consultation with

the transition board. Document and share these levels in the → adjusted and improved

FLOSS governance policy for the transition period. If the risk exposure is high, inform

developers about the need to take steps towards → IP Risk Mitigation.

A.4.6 IP Risk Mitigation

A.4.7 Replace problematic components

Name Replace problematic components

Actor Developers and / or Product architect

Context The transition manager has completed →Use Analysॾ, → License Compliance Analy-

sॾ and → Risk Exposure Analysॾ. The transition manager assesses the risk exposure of

using some open source components to be high.

Problem What can be done to mitigate the IP risk, if there is no workaround?

Solution If the observed open source component has a license/use case pair that is not acceptable

for the company and if there is no workaround (e.g. contacting the original copyright

owner and considering dual licensing for copyleft licenses), you must replace problem-

atic components as soon as the risk exposure has been discovered. Before replacing the

component, you must identify a viable and functional alternative that will not affect

the product. You must consult with the engineering manager about the costs associated

with the replacement. If you cannot replace the component, you must inform the

transition manager, who will document this as an existing risk and investigate other

action plans.

300

A.4.8 Decouple problematic components

Name Decouple problematic components

Actor Developers and / or Product architect

Context The transition manager has completed →Use Analysॾ, → License Compliance Analy-

sॾ and → Risk Exposure Analysॾ. The transition manager assesses the risk exposure of

using some open source components to be high.

Problem What can be done to mitigate the IP risk, if there is a workaround?

Solution If the observed open source component has a license/use case pair that is not acceptable

for the company, but if there is a workaround (e.g. by linking the component the to

main product code or by changing the type of code linking), decouple problematic

open source components by ensuring license compliance and as a result by complying

with company’s accepted license/use case pair.

A.4.9 Require bill of materials for supplied code by third-party post-factum

Name Require bill of materials for supplied code by third-party post-factum

Actor Product architect and / or Procurement office

Context The transition manager has completed →Use Analysॾ, → License Compliance Analy-

sॾ and → Risk Exposure Analysॾ. The transition manager detects high risk exposure of

using some open source components that came through supplied code by a third-party,

but were not detected earlier.

Problem What can be done to mitigate the IP risk caused by non-compliant code supplied by a

third-party?

301

Solution Post-factum require bill of materials for supplied code by a third-party to check if your

risk analysis was correct and if the component in question is actually non-compliant

(e.g. with open source component’s license).

If possible, require the bill of materials in SPDX format that can be easily read by most

governance tools, as well as component management tools. If the supplier supplied

non-compliant code, request a replacement or decoupling of the component and / or

financial reimbursement, if legally possible.

A.4.10 Run random audits to identify previously undetected or missed open

source components and their metadata

Name Run random audits to identify previously undetected or missed open source compo-

nents and their metadata

Actor Transition manager and / or Quality engineer

Context Companies must ensure that their commercial products are not subject to intellectual

property risks because of the open source software used.

Problem After → using one mandatory survey for initial assessment, how should you check your

use of open source?

Solution After → using one mandatory survey for initial assessment, run irregular audits to

identify previously undetected or missed open source components and their meta-

data. It is necessary to have randomly scheduled audits for projects or products. The

audits should be conducted by quality engineers and / or transition manager. During

the audits, it is necessary to check what was presented, reviewed and approved in the

documented product architecture model, and what wasn’t.

302

After the audit, the newly identified open source components must be documented in

the product architecture model and go through → Risk Exposure Analysॾ.

A.4.11 Analyze security risk of using an open source component

Name Analyze security risk of using an open source component

Actor Security manager and /or IT officer and / or Product architect

Context In parallel to finding inconsistencies and / or compliance issues, you want to check

your open source component for potential security risks.

Problem What’s the best way to analyze the security risk of using an open source component?

Solution In parallel to conducting →Use Analysॾ and → License Compliance Analysॾ, you can

analyze security risk of using an open source component. You should automate this

process by using tools that support for open source governance and security manage-

ment. Before the analysis you can consult with:

• security officer

• lawyer / legal counsel

• engineering manager

• IT department.

You can consider including security-related questions in the → one mandatory survey

for initial assessment.

303

A.5 Communication and Capabilities

A.5.1 Establish communication channels for open source governance hand-

book

Name Establish communication channels for open source governance handbook

Actor Transition manager

Context For any communication related to open source governance and this handbook, you

need to establish communication channels that will be the information bridge between

the transition board and the affected employees.

Problem How should communication about open source governance be organized?

Solution Communicate FLOSS governance policy for the transition period using a variety of

channels:

• the same channels that are currently used for the informal open source gov-

ernance, such as mailing lists managed by key employees dealing with open

source

• multi-purpose internal communication channels, such as intranet, wikis, fo-

rums, etc.

• internal video recordings and streaming channels, such as the introduction

of the policy by a representative of the top management or by the transition

manager.

It is also recommended to communicate the details of the policy through employee

trainings that include other topics around open source governance and the transition.

To do this → design employee trainings and → provide employee trainings.

304

Use these principles to → communicate the transition process and to → communicate

FLOSS governance policy for the transition period.

A.5.2 Assess open source governance capabilities among developers and en-

gineering manager

Name Assess open source governance capabilities among developers and engineering manager

Actor Transition manager

Context For the transition phase, you need to identify the employees who already have a good

understanding of open source governance based on their education or previous experi-

ences, in order to use these capabilities for transition tasks.

Problem How can you find out who are the employees with a good understanding of open

source software?

Solution Assess open source governance capabilities among developers and engineering manager

by adding capability assessment questions in the → one mandatory survey for initial

assessment. Engage the employees with good open source governance capabilities in

transition tasks in their teams / divisions.

Reward them for their contributions. Enable them to share their knowledge with their

fellow employees.

A.5.3 Develop FLOSS governance and compliance capabilities at the central

legal department

Name Develop FLOSS governance and compliance capabilities at the central legal department

305

Actor Transition manager and Lawyer / Legal counsel

Context The legal department is of high importance to FLOSS governance, but very few have

experts on open source.

Problem How should you address the issue lacking FLOSS capabilities at the legal department?

Solution Develop FLOSS governance and compliance capabilities at the central legal department

in order to have one point of contact for legal issues related to open source. If you can,

hire a lawyer who is already competent in dealing with the commercial use of open

source. Alternatively, build FLOSS related legal capabilities in house by sending your

lawyer to conferences and workshops and by encouraging their development in this

field.

A.5.4 Design employee training

Name Design employee training

Actor Transition manager

Context Employee training is intended to increase the awareness of the commercial use of open

source and of FLOSS governance in a company. Also, training gives a common un-

derstanding of strategic and technical implications, and a common mindset on FLOSS

governance.

Problem How does one build a common understanding of FLOSS governance issues and risks?

How to increase the awareness of FLOSS compliance and governance among develop-

ers and others?

Solution Employee groups who will be involved in the training program should be initially

identified (e.g. developers and architects, or team managers as well as legal team, supply

chain team etc.).

306

All the training materials including necessary forms and documentation should be

designed with the target audience in mind. For example, developers and architects

receive a web-based training and attend company-wide talks focused specifically on

open source governance and compliance. However, company executives receive only

brief information about the FLOSS governance policy. Design easy to understand but

useful training. Consider repeating the key information for better retainment. After

designing it, → provide employee training to the selected target groups.

A.5.5 Provide employee training

Name Provide employee training

Actor Transition manager

Context Employee training is intended to increase the awareness of the commercial use of open

source and of FLOSS governance in a company. Most employees need training during

the transition to understand and to follow the best practices of this handbook.

Problem How should you provide employee training?

Solution After → designing employee training, provide it to the selected target groups. Provide

regular trainings once or twice a year (more frequently, if needed) to team managers

and developers. Provide trainings on request in the early phase of the transition for

discussions and Q&A sessions. Make sure that training materials that can be easily

accessible at any time and that they are manageable and can be comfortably navigated.

307

308

B
FLOSS Governance Handbook – Selected

Practices for Supply Chain Management

Appendix B presents an excerpt from the open source governance handbook’s section on

supply chain management. The handbook presents the findings of our research cast as a collection

of interconnected patterns. This presentation format enables higher applicability of the research

results. This appendix also includes process templates – example workflows connecting various best

309

practices on supply chain management, which further improves the practical applicability of our

results. See Figure B.1 and Figure B.2 for process templates.

SUCHMA-SCMPRO-4.
Implement supply chain
management process

SUCHMA-SCMPRO-2.
Establish supply chain
management process

SUCHMA-SCMPRO-5.
Use tools to automate
supplier management

SUCHMA-SCMPOL-1.
Establish supply chain

management policy

SUCHMA-SCMPRO-1.
Designate a role of

responsibility for supply
chain management, in

multiple places in
company

SUCHMA-SCMPRO-3.
Communicate supply
chain management

process

SUCHMA-CORGOV.
Corrective Governance

SUCHMA-PREGOV.
Preventive Governance

Figure B.1: Supply Chain Management Process Template 1

SUCHMA-BOMMAN-4.
Use machine readable
and standard format for

BOM upon software
supplySUCHMA-BOMMAN-2.

Track, document and
update BOM in a

consistent and complete
manner

SUCHMA-LICCOM-1.
Review identified open

source components and
metadata for license

compliance

SUCHMA-BOMMAN-1.
Identify open source

components and
metadata from the supply

chain

SUCHMA-BOMMAN-3.
Have a backup of open

source components
hosted by yourself

SUCHMA-LICCOM-2.
Review license

obligations in the context
of supply chain
management

Figure B.2: Supply Chain Management Process Template 2

310

B.1 Supply Chain Management Policy

B.1.1 Establish supply chain management policy

Name Establish supply chain management policy

Actor OSPO (Open Source Program Office)

Context After → defining goals of governance and → establishing an open source program, you

defined roles, responsibilities, and policies to address various aspects of open source

governance in an abstract manner. Now you need to define the specific policy for man-

aging software suppliers and open source software that you get through them either

directly or indirectly. Having such a policy will help mitigate license non-compliance

risks associated with the use of open source components supplied to you.

Problem Without such a supply chain management (SCM) policy you do not have a system-

atic way of addressing open source governance and compliance within your software

supply chains. Unlike the open source components introduced by a company’s own

developers, supplied code can have unidentified open source components that could

pose compliance risks. One of the reasons is that most software suppliers supply only

a binary and not the source code. While the source code can be easily scanned for its

open source components and their metadata such as licenses, binaries are harder to scan

reliably and require specialized tools. Identifying open source components that have

been used by the suppliers of your supplier on the next tiers of the supply chain are

even harder and imprecise. Different suppliers have different levels of understanding

and awareness in regards to open source licenses, compliance, and governance. This

results in different compliance risk levels associated with different suppliers.

311

The critical dependence on certain suppliers increases the complexity of such an un-

governed use of open source components supplied as part of purchased software com-

ponents for used in your final products. How can you ensure open source governance

and compliance while managing the complexities of software supply changes?

Solution In parallel to → establishing the supply chain management process, establish supply

chain management policy that the company’s approach to managing open source

components acquired through software suppliers and not through the internal →

component approval process supported by the Open Source Program Office. The sup-

plier management policy presents a set of principles that guide a company through the

FLOSS governance in its supply chain to help identify all the open source components

used in the supplied code on all tiers of the supply chain and their metadata. The pol-

icy often has two logical parts: the intention of the policy explaining the Open Source

Program Office’s motivation for having this policy, and guidelines and best practices

that are later operationalized through the → established the supply chain management

process. In particular, the aspects covered by the policy include but are not limited to:

• company goals for supplier management

• metrics for efficient supplier management

• principles for managing open source components in the supplied code

• recommendations for automating supplier management through tools

• rules for suppliers that use open source components

• guidelines for managing supplied open source components

• supplier management integration with other aspects of open source governance,

including component approval, component tracking, and license compliance

• recommended best practices for managing supplied open source components.

312

Select industry best practices for supplier management are presented in this handbook,

such as:

⇒ Assess open source governance and compliance awareness and maturity

⇒ Request supplier certification or self-certification

⇒ Design supplier contracts with open source governance aspects in mind

⇒ Audit your supply chain

⇒ Don’t run your supplier out of business

⇒ Get the source code (before changing the supplier)

⇒ Identify Open Source Components and Metadata from the Supply Chain

⇒ Have a Backup of Open Source Components Hosted by Yourself

⇒ Use Machine-readable Bill of Materials (BOM) upon Software Supply

⇒ Use Standard Format for BOM upon Software Supply

⇒ Review License Obligations in the Context of SCM

⇒ Use tools to automate supplier management.

The supplier management policy helps the Open Source Program Office define a con-

sistent approach to the issue that can be systematically documented, implemented and

communicated across the organization. It should evolve and can be modified by the

Open Source Program. It should be easy to read and to the point with appropriate ref-

erences to other parts of this handbook. The policy should be created in collaboration

with the engineers.

313

If the lawyers create it, it will be comprehensive and well written, but few people will

ever read or follow it, because of its complexity and language. The policy should be

related directly to the day to day tasks of software development and solve problems that

engineers and managers face in their work.

The policy should address the principles and company approach to the key topics of

supplier management:

• Supply chain management process

• Preventive supply chain management governance

• Corrective supply chain management governance

• Bill of materials management

• License compliance for supply chain

The specific guidelines and best practices for these topics are presented in the other

parts of this section. The policy is operationalized through the → supply chain man-

agement process that defines the steps that developers and other roles need to follow in

order to efficiently manage a company’s supply chain and the related open source com-

ponent in their products or projects. Once the policy is established, it is necessary to

→ communicate supply chain management policy and to → adjust and improve supply

chain management policy.

B.1.2 Communicate supply chain management policy

Name Communicate supply chain management policy

Actor OSPO (Open Source Program Office)

314

Context After → establishing supply chain management policy, it is necessary to make the policy

accessible to the employees, so they can follow it and ask clarification questions to the

OSPO.

Problem How should you communicate the supply chain management policy?

Solution Once the policy is written, you need to simplify it highlighting the key aspects for dif-

ferent roles in the company (engineers, management, lawyers, procurement etc.) and

share with all the affected stakeholders in the company and among suppliers. Supplier

management policy has the following recipient stakeholders:

• internal

– designated role of responsibility for supply chain management

– software developers

– technical management

– business management

– lawyers

– procurement department

– IT department

• external

– tier 1 suppliers

– tier 2 and other suppliers

– supplier associations

The internal stakeholders should follow the policy in their day to day tasks, alongside

with the → supply chain management process.

315

Developers follow the policy to document and update the bill of materials, techni-

cal and business managers ensure that the supplied code corresponds to company’s

requirements, lawyers and procurement department design and manage supplier con-

tracts with the governance related issues in mind, IT department install and maintains

the supplied tools and components. In all these tasks employees should follow the

policy for questions not explicitly defined in the → supply chain management process.

They need to provide their questions and feedback to the OSPO to → adjust and

improve supply chain management policy.

The external stakeholders should follow the policy to meet a company’s governance

and compliance requirements for software suppliers and to ensure strategic alignment

across the supply chain. It is more efficient to communicate open source governance

and compliance issues in the beginning of the supplier relationship (before and dur-

ing contract negotiation) than after the delivery of the supplied code. In case of poor

governance and compliance by certain suppliers, the supplied code can affect the

whole product where it is integrated and thus create risks that are costly to address post

factum.

Communicate the supply chain management policy using the → regular channels that

OSPO usॽ for open source governance and compliance related internal communication.

The main recipients of OSPO’s communication should be the employees in differ-

ent development teams that occupy the → designated role of responsibility for supply

chain management. For some parts of the policy, these employees should forward the

specifics or changes of the policy to individual developers and other internal or external

stakeholders. At the same time, these designated employees are responsible for collect-

ing the commonly asked employee questions and forwarding them to the OSPO, as

well as collecting and sharing OSPO’s answers with colleagues.

316

B.1.3 Adjust and improve supply chain management policy

Name Adjust and improve supply chain management policy

Actor OSPO (Open Source Program Office)

Context You → established and → communicated supply chain management policy. You are now

getting clarification requests, questions and feedback on the policy from the employees.

Problem How should you address employee feedback regarding supply chain management

policy?

Solution In the early phase of policy, rollout anticipate frequent questions by employees and

external suppliers which can result in changes, clarifications, and adjustments to the

policy. There is no one-size-fits-all policy for supply chain management and open

source governance.

You will have to specify various principles of the policy over time, as well as opera-

tionalize them in the → supply chain management process. Iteratively collect and

analyze the questions and requests you are getting. Identify the common misunder-

standings and use them to adjust and improve the policy. Instruct the → designated

role of responsibility for supply chain management to regularly post updates, clarifi-

cations, and FAQs to the affected employees via internal communication channels

used to → communicate supply chain management policy. It’s important to update and

maintain the policy by receiving feedback from the development teams and others to

improve the processes. It is also essential to record violations to understand why certain

stakeholders violate the policy to address and minimize similar issues in the future.

317

B.2 Supply Chain Management Process

B.2.1 Designate a role of responsibility for supply chain management, in mul-

tiple places in company

Name Designate a role of responsibility for supply chain management, in multiple places in

company

Actor OSPO (Open Source Program Office)

Context Virtually all software products contain open source components that are either added

by your software developers directly or come into your company through the software

supply chain.

You use a → component approval process to systematically manage the components

added by the developers, but software supply chains are not managed in terms of open

source governance and compliance.

Problem Many internal and external stakeholders are involved in software supplier manage-

ment, but none has the explicit responsibility of dealing with FLOSS related issues.

Who should ensure and manage the efficient supply chain management across your

company?

Solution The OSPO is responsible for open source governance in general and for open source

in software supply chains in particular. However, a centralized body like the OSPO

needs local support in different divisions and teams of the company to coordinate the

internal and external stakeholders. OSPO’s role is to:

⇒ Establishing supply chain management policy

⇒ Communicate supply chain management policy

318

⇒ Adjust and improve supply chain management policy

⇒ Establish supply chain management process

⇒ Communicating supply chain management process.

However, OSPO does not have the resources to locally → implement supply chain

management process in every project and division of the company. To address this,

OSPO should create a role of responsibility for supplier management which can be

delegated to employees within different projects in the company.

Depending on the company, recommended candidates for such a role include, but are

not limited to:

• for internal supply chain management

– (software) project managers for internal

– (software) product managers

– technical product managers

– senior developers

– IT manager

• for external supply chain management

– procurement manager

– IT manager.

Employees responsible for supply chain management should spend only a small part of

their work time in component in this role. However, this role can be combined with

other similar responsibilities in other areas of open source governance, such as the →

designated role of responsibility for the component repository.

319

Employees responsible for supply chain management support their teams and divisions

to:

⇒ Assess open source governance and compliance awareness and maturity of a

supplier

⇒ Assess governance maturity of a supplier

⇒ Request supplier certification or self-certification

⇒ Audit your supply chain

⇒ Triঃer supplier contract clausॽ and get the supplier to take care of the issue

⇒ Identify Open Source Components and Metadata from the Supply Chain

⇒ Document BOM in a Consistent and Complete Manner.

Once the employees are designated, OSPO should present their new tasks and should

introduce these employees to their teams in the new capacity. Designated employees

should ensure the communication between the teams and OSPO, as well as feedback

and updates from both sides. Employees tasked with external supplier management

should ensure the communication between suppliers and OSPO.

B.2.2 Establish supply chain management process

Name Establish supply chain management process

Actor OSPO (Open Source Program Office)

320

Context After → establishing supply chain management policy in accordance with the company’s

→ defined goals of governance, you must now define how exactly should the employees

manage suppliers for open source governance.

Problem You → established supply chain management policy and → communicated supply chain

management policy.

However, the supplier management policy is too broad to apply operationally. It

focuses on company’s principles for supplier management in regard to open source

components, but leaves out the operational aspects of this management. How should

you operationalize the policy in the day to day life of the company, while making sure

it is widely accepted and used?

Solution You need to establish a process that guides your employees in different roles through

the operational aspects of governed supplier management. As using supplied software

components in products is virtually inevitable and necessary for efficient development,

this process will ensure that no unwanted open source components will end up in your

products through the supplied code. The centrally defined and unified process has a

number of benefits including, but not limited to:

• point of reference for new developers or managers who need to manage suppli-

ers and their supplied open source components

• a centralized approach for bill of materials management and maintenance with

all the used open source component across the organization

• consistent and up-to-date bill of materials for compliance and release manage-

ment

• search of the open source components in bill of materials and their metadata.

321

Similar to the → established transition process from the Getting Started section of this

handbook, the component reuse process should follow these principles:

• be clearly defined

• be easy to follow without constant guidance by the OSPO (OSPO should

handle the exceptions on a case by case basis)

• be scalable and replicable

• be assisted with tools that automate and/or ensure compliance with the process.

First, you need to establish preparatory steps for the supplier management process. For

this, you need to:

⇒ Established supply chain management policy

⇒ Communicated supply chain management policy

⇒ Adjust and improve supply chain management policy

⇒ Designate a role of responsibility for supply chain management, in multiple placॽ

in the company

Then, you need to define and perform:

⇒ Preventive governance

⇒ Corrective governance

⇒ Bill of materials management

⇒ License compliance for supply chain

The specifics of these measures is described in the practice on the → implementation of

the process.

322

B.2.3 Communicate supply chain management process

Name Communicate supply chain management process

Actor OSPO (Open Source Program Office)

Context After → establishing a supply chain management process, you must communicate it

clearly with the → employeॽ designated a role of responsibility for supply chain manage-

ment and other affected employees who will be using the process.

Problem The supply chain management process must be communicated to the affected employ-

ees across the company. The process can be complex and not all parts of the process are

relevant for everyone. How should you communicate the supply chain management

process before → implementing the supply chain management process?

Solution You should present the overview of the supply chain management process to the af-

fected employees, and point each employee group / role to the best practice patterns

relevant only to them, while guiding them and serving as a central hub for discussions

about the overarching issues. Your direct communication should be with the → em-

ployeॽ designated a role of responsibility for supply chain management. After that, it’s

recommended that they meet their teams to process and to clarify the steps, focusing

on:

• preparatory steps for the supply chain management process

• preventive governance measures

• corrective governance measures

• bill of materials management

• license compliance for supply chain.

323

For efficient communication, use the → regular channels that the OSPO usॽ for open

source governance and compliance related internal communication.

B.2.4 Implement supply chain management process

Name Implement supply chain management process

Actor OSPO (Open Source Program Office), Supply chain management responsibles

Context After → establishing a supply chain management process and → communicating it, you

must implement the process across the company.

Problem Implementing a large-scale process across the company has its challenges. How should

you implement an efficient process?

Solution Gradually implement the supplier management process. Start by introducing pre-

ventive governance measures. Preventive governance ensures that potential suppliers

have a high degree of open source governance and compliance awareness, and thus are

unlikely to supply non-compliant code. Preventive governance includes the following

best practices:

⇒ Choose the right supplier

⇒ Assess open source governance and compliance awareness and maturity

⇒ Request supplier certification or self-certification

⇒ Design supplier contracts with open source governance aspects in mind

Corrective governance ensures that after the code supply any governance and com-

pliance issues are identified are corrected and addresses, mitigating the risks caused by

suppliers.

324

Even after preventive governance there is a potential risk in terms of FLOSS gover-

nance and compliance, so the following best practices should be applied:

⇒ Audit your supply chain

• Enable regular audits

• Enable surprise audits

⇒ Mitigate identified risks

• Assess risks in accordance to the supply chain management policy

• Triঃer supplier contract clausॽ and get the supplier to take care of the issue

• Don’t run your supplier out of business

In parallel to preventive and corrective governance measures, focus on bill of mate-

rials management and on license compliance for supply chain. For bill of materials

management, follow the best practices of the handbook to:

⇒ Identify open source components and metadata from the supply chain

⇒ Track, document and update BOM in a consistent and complete manner

⇒ Have a backup of open source components hosted by yourself

⇒ Use machine-readable and standard format for BOM upon software supply

For license compliance for supply chain, follow the best practicॽ of the handbook to:

⇒ Review identified open source components and metadata

⇒ Review license obligations in the context of SCM

⇒ Review copyright noticॽ in the context of SCM

325

⇒ Review security vulnerabilities in the context of SCM.

Depending on your specific needs you should modify the essential process to include

more steps that would guide the employees in reusing open source components. Fi-

nally, the OSPO should handle the exceptions that deviate from the implemented

process on a case by case basis, while considering process optimization and continuous

improvement.

B.2.5 Use tools to automate supplier management

Name Use tools to automate supplier management

Actor OSPO (Open Source Program Office), Supply chain management responsibles

Context Companies often have hundreds of suppliers. Each supplier provides multiple soft-

ware deliveries with multiple open source components in each, as well as open source

software provided by tier 2 and other suppliers.

Problem It is not possible to manually deal with the complexity of software supply chains. How

can companies deal with this issue in parallel to → implementing the supply chain

management process.

Solution Some aspects of supplier management can and should be performed using tools.

Tools should be used for preventive governance when you choose a supplier to build

and maintain a database of suppliers and their → assessed maturity of open source

governance and compliance. Other tools can be used for → governance awareness

self-certification by suppliers. Lawyers can use tools that assist in → designing supplier

contracts with open source governance aspects in mind.

326

Tools should also be used in corrective governance and license compliance in supply

chains. This includes open source code and license scanning tools that automate →

audits of the supplied software. In bill of materials management tools should be used for

→ tracking, documenting and updating bill of materials, and to → host a backup of the

supplied FLOSS components. Tools should be used to integrate supplier management

process with other processes and artefacts of this handbook in component approval,

component reuse etc.

327

B.3 Preventive Governance

B.3.1 Choose the right supplier

Name Choose the right supplier

Actor Supply chain management responsibles, IT department, Procurement department

Context Virtually all companies use supplied software components as part of their products.

Not all suppliers are the same in terms of open source governance and compliance.

Choosing a supplier without open source governance consideration can result in func-

tionally superior software with open source components that are not compliant with

the company’s license use case pairs.

Problem If supplied code causes open source governance and compliance risks, you will have to

either change your supplier or address the risks in cooperation with the supplier after

the delivery. How can such situations be prevented?

Solution To prevent potential issues with FLOSS governance and compliance you should

choose the right suppliers that are aware and mature in terms of governance and com-

pliance, as well as experienced in using open source components in their products. To

do this, you need to → assess open source governance and compliance awareness and

maturitywhich can be done by → requesting supplier certification or self-certification

from potential suppliers. To establish a consistent approach for preventive governance

→ design supplier contracts with open source governance aspects in mind and use the

governance related clauses in case of license non-compliance by a supplier. The latter

can be used for corrective governance, namely to → triঃer supplier contract clausॽ and

get the supplier to take care of the issue.

328

B.3.2 Assess open source governance and compliance awareness and maturity

Name Assess open source governance and compliance awareness and maturity

Actor Supply chain management responsibles, IT department, Procurement department

Context Companies use supplied software components in their products, but choosing the

wrong supplier in terms of open source governance and compliance maturity can cause

potential financial and legal risks.

Problem To avoid governance and compliance risks caused by your supply chain you → choose

the right supplier. How can you do that if you have many suppliers?

Solution You need to assess open source governance and compliance awareness and maturity

of the potential suppliers to avoid potential risks of license violations or other gover-

nance issues. Companies can demonstrate their knowledge and experience in FLOSS

governance by demonstrating their internal governance process, by providing detailed

bill of materials with highlighted data on the used open source components and their

metadata, as well as through → governance and compliance certification. Make sure to

add a clause about governance awareness and maturity assessment, when → designing

supplier contracts. Document the assessment results for the new suppliers in a central-

ized company-wide database that can be used by other divisions, which will help make

decisions about contracting certain suppliers. A systematic and consistent awareness

and maturity assessment is the best way to prevent future issues with open source li-

cense compliance. This can save financial and legal resources that would otherwise be

spent on corrective governance if issues are identified regarding suppliers’ use of certain

open source components as the final responsibility for all the components lies with the

final client (e.g. OEM) in the end of the supply chain.

329

B.3.3 Request supplier certification or self-certification

Name Request supplier certification or self-certification

Actor Supply chain management responsibles, IT department, Procurement department

Context You are → assessing open source governance and compliance awareness and maturity of

the potential suppliers before signing a contract with them.

Problem How should you assess a supplier’s governance and compliance awareness and maturity

on a large scale with a large number of suppliers?

Solution Most companies have many software suppliers and have higher negotiation power

compared to the suppliers. This enables companies to ask for certain certifications by

suppliers. Such a certification requirement should also be applied to governance and

compliance awareness assessment. The certification would cover all the major aspects

of open source governance and compliance, including processes for components ap-

proval, component integration and reuse, compliance and release management, as well

as supplier management performed in turn by the suppliers. An example of a currently

available self-certification is called OpenChain, which is an effort by multiple com-

panies to ensure preventive governance in their supply chain rather than performing

costly and complex corrective measures. The advantage of self-certification is the easy

access to certification by suppliers. Such a certification requirement can be optional or

mandatory.

B.3.4 Design supplier contracts with open source governance aspects in mind

Name Design supplier contracts with open source governance aspects in mind

330

Actor Supply chain management responsibles, Lawyer / legal counsel, Procurement depart-

ment

Context You are → assessing open source governance and compliance awareness and maturity of

the potential suppliers and → request supplier certification or self-certification.

Problem How can you use supplier contracts to address open source governance and compli-

ance?

Solution Companies build their supplier relationships using supplier contracts with clear terms

for the functionality, quality and availability of the supplied software. However,

contracts do not address aspects of legal compliance specific to open source software

components, which can cause potential governance and compliance problems, as the

responsibility for the final software product that uses supplied code remains with the

client and not the suppliers. Even if some contracts have clauses for putting partial

responsibility for legal compliance caused by suppliers, this is not enough to ensure

no risk caused by ungoverned use of open source in products. In case of a potential

litigation, putting the blame solely on a supplier and potentially → running a supplier

out of business ॾ not a good strateং, as you will be left with no supplier, no source

code in most cases and a remaining legal issue of license compliance in your product.

Therefore, address this issue early on and prevent risks of open source compliance and

governance by adding clauses on the issue in the supplier contract as early as possible.

The contract should inform the supplier of all the obligations around open source

license compliance and other aspects of FLOSS governance. Design contracts that out-

line a supplier’s responsibility in case of license non-compliance, and outline preventive

measures, such as → performing certification or self-certification, which can be optional

or mandatory. Supplier contracts can also include stricter provisions, such as specific

templates that a supplier must fill before any anticipated use of open source compo-

nents in software development and send these templates to the client for approval.

331

You can then use the open source component information in the provided template to

→ run through your component approval process before allowing or rejecting the use of

the component in the software that will eventually be supplied to you. Though more

cost and labor intensive this approach makes sense for companies that have critical

suppliers and large number of products that will have the supplied component. In

such cases the potential risk of non-compliance is too high to only rely on contracts and

subsequent → supply chain audit.

332

B.4 Corrective Governance

B.4.1 Audit your supply chain

Name Choose the right supplier

Actor Supply chain management responsibles, IT department

Context You are → undertaking preventive measurॽ to ensure open source governance and

compliance. You already have many suppliers who supply critical software components

that make it into your products.

Problem How can you check and ensure open source governance and compliance in the sup-

plied code beyond trusting the supplier contracts that you → designed with FLOSS

governance and compliance issuॽ in mind?

Solution Even though supplier contracts specify that suppliers should ensure open source license

compliance in the code they provide, some open source components go unnoticed by

the suppliers and end up in your products, in which case you bear the responsibility for

potential non-compliance or license and copyright violations. To prevent the resulting

legal and financial risks, you should audit your supply chain by scanning and analyzing

the supplied binaries and source code when possible. As a result of such audit checks

you will identify governance and compliance issues in the supplied code, which can be

communicated back to the suppliers with a request to fix the irregularities as specified

in the supplier contract.

Run two types of supply chain audits:

• regular audits

• surprise audits.

For audits → use tools and document your findings in a database or in BOM documen-

tation.

333

If you identify a large number of compliance issues, consider → changing a supplier,

but → don’t run the supplier out of business.

B.4.2 Mitigate identified risks

B.4.3 Assess risks in accordance to the supply chain management policy

Name Assess risks in accordance to the supply chain management policy

Actor OSPO (Open Source Program Office), Supply chain management responsibles

Context You are → undertaking preventive measurॽ to ensure open source governance and

compliance. You already have many suppliers who supply critical software compo-

nents that make it into your products. You also → audit your supply chain to identify

potential risks of open source compliance.

Problem How can you assess potential risks of non-compliance caused by the supply chain?

Solution After → auditing your supply chain, you should document the identified issues and

risks in a systematic manner. You then should assess these risks in accordance to the →

established supply chain management policy. To assess the risks develop a matrix of risk

probability and criticality. Develop performance plans for different risk probability-

criticality combinations. For risks that have a high probability and high criticality, the

outcome of non-compliance will have the most negative impact on the company. So

these risks should be prioritized and addressed first by → triঃering supplier contract

clausॽ and get the supplier to take care of the issue, but → not run your supplier out of

business, as this would only increase the risk and the mitigation cost.

334

B.4.4 Trigger supplier contract clauses and get the supplier to take care

of the issue

Name Trigger supplier contract clauses and get the supplier to take care of the issue

Actor OSPO (Open Source Program Office), Lawyer / legal counsel

Context You have → designed supplier contracts with open source governance in mind. You have

identified compliance and governance risks in your supply chain and → assessed these

risks in accordance to the supply chain management policy.

Problem What actions should you take to address the identified risks of non-compliance by a

supplier?

Solution For risks that have high probability and high criticality, the outcome of non-

compliance will have most negative impact on the company.

Such risks should be prioritized, and you should trigger supplier contract clauses and

get the supplier to take care of the issue, but → not run your supplier out of business,

as this would only increase the risk and the mitigation cost. When you → designed

supplier contracts with open source governance in mind, you included the obligations of

the suppliers. In case of non-compliance, these obligations are not met, thus the con-

tract is violated, and the supplier is liable for the error. You should start by getting back

to your supplier and communicating the issue. In most cases, the supplier will work

on solving the issue without need for litigation. Otherwise, you can use legal tools to

force compliance. In any case, it should be your last resort to sue a supplier or to shift

responsibility to the supplier, as this can run the supplier out of business and leave you

alone to deal with the issue.

335

B.4.5 Do not run your supplier out of business

Name Don’t run your supplier out of business

Actor OSPO (Open Source Program Office), Lawyer / legal counsel

Context You have identified compliance and governance risks in your supply chain and →

assessed these risks in accordance to the supply chain management policy. For certain

critical risks you → triঃered supplier contract clausॽ to take care of the issue.

Problem What actions should you not take when addressing the identified risks of non-

compliance by a supplier?

Solution Most companies have suppliers that are smaller than themselves, thus giving them

higher negotiation power over the suppliers.

This means that in case of non-compliance with open source licenses in the supplied

code, you can easily force your supplier to fix the risk causing software non-compliance.

You can even sue you supplier and get compensation. However, you should be careful

not to endanger the operation of the supplier company. If you run your supplier out

of business by pressuring them with lawsuits or financial pressure, you can end up with

a binary instead of a source code and no ability to maintain or update the software that

was causing the non-compliance issue in the first place.

Most software is not supplied as source code, but rather as a binary in order to protect

the intellectual property of the supplier that makes money by selling different ver-

sion of the product that uses its know-how in the form of source code. If a company

goes bankrupt, you might have to look for another supplier, which is costly and time

consuming. In a nutshell, do not run your supplier out of business, when possible.

Alternatively, make sure to get the source code in case of the supplier bankruptcy or

before changing the supplier to avoid the above mentioned risk.

336

B.4.6 BOM Management

B.4.7 Identify open source components and metadata from the supply chain

Name Identify open source components and metadata from the supply chain

Actor OSPO (Open Source Program Office), Supply chain management responsibles

Context Managing your software supply chain you have conducted → preventive governance

measurॽ and → corrective governance measurॽ, namely you have → conducted audits of

the supplied code.

Problem What should you about the open source components coming through supply chains?

Solution Bill of materials management is a key aspect of open source governance in supply

chains. Using bill of materials as a central artifact for FLOSS governance, companies

can manage and map the supplied open source components they are using in their

products. Bill of materials for the supplied software should be used to identify the

open source components and their metadata. Together with the data from component

approval and component reuse, this data will then be used to → track, document and

update BOM in a consistent and complete manner, while → using a machine-readable

and standard format for BOM upon software supply.

B.4.8 Track, document and update BOM in a consistent and complete man-

ner

Name Track, document and update BOM in a consistent and complete manner

Actor OSPO (Open Source Program Office), Supply chain management responsibles

Context You have used the bill of materials and code scanning of the supplied code to → iden-

tify open source components and metadata from the supply chain.

337

Problem What should you about the identified open source components?

Solution Use the data and metadata of the open source components from your component

approval, component reuse and supplier management processes to track, document

and update bill of materials for all your products in a consistent and complete manner.

This will allow to generate an up-to-date view picture of all the open source compo-

nents used on demand, thus enabling license compliant product release without delays

or additional license checks common in the industry.

You can use BOM to visualize the product architecture model and to integrate the

open source component data with → established component repository, resulting in

further synergy. You need to identify, track and document the open source compo-

nents used by your suppliers and their suppliers to ensure the visibility of all supplier

tiers and their open source use. Consider adding a clause in the → designed supplier

contracts to require the provision of detailed BOMs with open source specific metadata,

and → use machine-readable and standard format for BOM upon software supply to

enable the easy use of tools for supplier management.

B.4.9 Have a backup of open source components hosted by yourself

Name Have a backup of open source components hosted by yourself

Actor OSPO (Open Source Program Office)

Context You have used the bill of materials and code scanning of the supplied code to → iden-

tify open source components and metadata from the supply chain. You have → tracked,

documented and updated BOM in a consistent and complete manner.

Problem You are responsible for the open source components used in your products and for

their compliance. How can you ensure that open source components are available to

you and to your customers in the long term?

338

Solution Open source components are often hosted by their developer communities or by

foundations that are supporting certain open source projects. In the long term some

of these communities and foundations cease to exist, which can result in interrupted

hosting of the source code that you rely on.

To avoid such issues, host a backup of the open source components that are part of

your BOM by yourself. You can use this backup hosting for your → component repos-

itory. You can also use this hosting to share your own source code, if required by an

open source license.

B.4.10 Use machine-readable and standard format for BOM upon software

supply

Name Use machine-readable and standard format for BOM upon software supply

Actor OSPO (Open Source Program Office), Supply chain management responsibles

Context You have used the bill of materials and code scanning of the supplied code to → iden-

tify open source components and metadata from the supply chain. You have → tracked,

documented and updated BOM in a consistent and complete manner.

Problem What can you improve the performance of managing your BOMs?

Solution Software supply chains are complex and cannot be handled manually. You need to →

use tools to improve the performance of BOM management. Most importantly you

need to establish a machine-readable and standard format for BOMs.

An example of such a format is called Software Package Data Exchange (SPDX). It

enables the documentation and exchange of data and metadata for open source compo-

nents and BOMs made of such components.

339

B.4.11 License Compliance for Supply Chain

B.4.12 Review identified open source components and metadata for license

compliance

Name Review identified open source components and metadata for license compliance

Actor OSPO (Open Source Program Office), Supply chain management responsibles

Context You have used the bill of materials and code scanning of the supplied code to → iden-

tify open source components and metadata from the supply chain.

Problem How can you ensure license compliance for the identified components from the supply

chain?

Solution Once open source components are identified using BOMs, you need to check them

license compliance by reviewing the components and their metadata.

You go through the components checking their licenses and their use cases. If your

company’s policy allows the use of an identified license/use case pair, you should docu-

ment it as compliant. If you find a non-compliant component, you → need to mitigate

the risks. You can → triঃer a clause in the supplier contract to get a supplier to fix the

non-compliant situation. Alternatively you might have to change your supplier or

replace the non-compliant component on your own.

B.4.13 Review license obligations in the context of supply chain management

Name Review license obligations in the context of supply chain management

Actor OSPO (Open Source Program Office), Supply chain management responsibles

340

Context You have used the bill of materials and code scanning of the supplied code to → iden-

tify open source components and metadata from the supply chain. You have → reviewed

identified open source components and metadata for license compliance.

Problem What do you need to do to comply with open source licenses of the components from

the supply chain?

Solution You need to review the obligations of the identified open source licenses in order to

comply with them. Different licenses have different obligations, which all have to be

documented and checked with the use cases in which the components are used.

Multiple licenses in one component need to be considered, as they can result in in-

compatible license mixtures. Use the reviewed license obligations to → ensure license

compliance.

341

342

C
Data Gathering – Interview Questions

Appendix C presents the interview questions we developed for qualitative data gathering.

Section C.1 presents the set of interview questions we created to gather data from the FLOSS gover-

nance experts for theory building. Section C.2 presents the set of interview questions we created to

gather data from the case study companies’ employees for initial situation assessment at case study

companies during theory evaluation. We developed the interview questions in accordance with the

employed research methods for theory building [77] and for theory evaluation [157].

343

C.1 Interview Questions – Expert Interviews for Theory Building

Section C.1 presents the interview questions we created for the expert interviewees from the sample

of 15 companies with an advanced understanding of open source governance.

Interviewee Context

• Could you briefly present your company? What are your main products and respective mar-

kets?

• Could you briefly present yourself? What’s your role at your company? What are your re-

sponsibilities?

• How are you involved with Open Source Software (FLOSS) at your job? Especially when

using FLOSS in the products you sell / offer?

General FLOSS Governance Best Practicॽ

• Do you have a strategy (strategic program) for Open Source Governance (especially dealing

with FLOSS in products)? Could you please describe it?

• How do you use FLOSS in your products? Some examples?

– How do you search for FLOSS components that you will use in your products?

– How do you choose a FLOSS community to take code from? Do you have well-

defined or ad-hoc criteria (age, diversity, activity of the community, etc.)?

– How do you integrate various FLOSS components into your products? Do you use

any interfaces to isolate some FLOSS components from your main code-base?

– How do developers decide whether to use a given FLOSS code? What’s the process and

who is involved (checking license compatibility, legal review, approval process, etc.)?

– How do you mark the FLOSS components used in your products and where they are

used (software architecture)? How is this useful?

344

– Do you have a centralized repository / knowledge sharing system to document FLOSS

usage in your products / projects to ensure its reusability by other developers at your

company?

• Do you contribute back to FLOSS communities you took code from?

– How do you contribute? Some examples (bug fixes, functional improvements, issues

raised, etc.)?

– Why do you contribute? What are the tangible benefits to your products / projects or

the company in general?

– Do you have rules for your contributions?

– Are you part / leader of a FLOSS foundation / community? How is does this help

your company create better products?

– What are some benefits or challenges for your engagement in FLOSS communities?

– How much do you contribute to the FLOSS community? How do you decide when

and where to contribute?

– When do you not contribute to given FLOSS communities?

– Are there critical communities for you and your products?

• Do you have product management-oriented tools to help deal with FLOSS governance and

license compliance? Examples?

• Do you have development tools to help deal with FLOSS governance and license compli-

ance? Examples?

• Are your products based mainly on FLOSS components or do you mainly use proprietary

components?

• How did your FLOSS governance practice evolve over time?

• How did you recognize the need for Open Source Governance?

General FLOSS Compliance Best Practicॽ

345

• Do you have a strategy (strategic program) for Open Source Compliance (especially dealing

with FLOSS in products)? Could you please describe it?

• Do you have detailed processes of FLOSS license compliance? Some examples?

• Which licenses do you prefer when choosing FLOSS components to use in your products?

– Do you give preference to standard (unmodified) licenses?

– Which specific licenses (MIT license, GPL, etc.) do you use? Which ones are more

common and why?

– Are there some licenses whose use is especially problematic? Why?

– Do you have a legal department with expertise in FLOSS compliance? How is this

(could this be) beneficial?

* Does legal department review FLOSS licenses before the code is integrated into

your products? What’s the process like?

* Does legal department provide guidelines to the developers on which FLOSS

licenses are OK to use and which ones need explicit legal review and approval?

What form do these guidelines take?

* Are the developers aware of various FLOSS licenses? Do they get relevant train-

ing?

– How do you deal with situations when you need to mix various licenses in one prod-

uct?

• Did you or do you scan your products’ code to ensure FLOSS license compliance? Who and

how does this scanning?

– Which tools do you use for such scanning?

– How often do you scan your code?

– What are the benefits and challenges of scanning your code for FLOSS compliance?

• How do you deal with identified FLOSS license non-compliance? Any examples?

346

• How did your FLOSS license compliance practice evolve over time?

• How did they evolve over time? Any exceptional cases (company acquisition, lawsuits, etc.)?

• What was your first step in addressing limited FLOSS governance and non-compliance?

People Related Best Practicॽ

• Who makes final decisions on the inclusion of certain FLOSS components into products?

• Do you have a board / team responsible for Open Source governance and compliance?

– How is it structured? What are the roles of the members?

– How does this team interact with other parts of your company?

– How independent are this team / group from the rest of the organization? How do

you collaborate internally, especially in terms of software engineering?

– Is top management supportive of this board / team? Why?

• Do you have a compliance manager or a person specifically responsible for Open Source

governance and compliance?

• How is your legal department involved in FLOSS licensing, license interpretation? Do they

focus on compliance?

• Does legal department have a veto right in case non-compliance is detected?

• How is IT department involved in FLOSS governance and compliance processes?

• Who else is involved in FLOSS governance and compliance processes?

Supplier Management Related Best Practicॽ

• Who are your main code suppliers? What the proportions of FLOSS vs. proprietary suppli-

ers?

• Do you require proof of FLOSS compliance from them?

– Do you use SPDX standard for this? Why?

347

– What are the benefits and challenges of asking for bills of materials of supplied soft-

ware?

– Do you require any certificates from them (OpenChain, etc.)?

• How did your supplier management change over time? Did you encounter any challenges?

• Do you verify FLOSS compliance of supplied code?

– How (scanning tools, manual review)? Is this automated? Do you use code scanners?

– Do you require bill of materials including licenses used in the supplied code?

• Do you, in turn, provide a bill of materials for your customers? Are they asking for this?

• Do your customers care about FLOSS governance and compliance practices you use?

• How do you deal with export restrictions caused by FLOSS code? Did you have any chal-

lenges with this?

Other Questions

• How are you improving your FLOSS governance and compliance?

• Are you learning from the experience of the other companies concerning FLOSS governance

and compliance?

• Do you have anything to add?

C.2 Interview Questions – Situation Assessment for Theory Evaluation

Section C.2 presents the interview questions we created for the initial situation assessment of cor-

porate open source governance at the case study companies. The questions are split into topical

subsets. Subsection C.2.1 presents the general questions for all the interviewed employees. Section

C.2.2 presents the interview questions only asked the management employees if the related topics

have not already been addressed in answers to the general questions. Section C.2.3 presents the in-

terview questions only asked the engineering employees if the related topics have not already been

addressed in answers to the general questions.

348

C.2.1 General Questions for All Employees

Interviewee Context

• What’s your role at Company X / subsidiary? What are your responsibilities?

• Where is your department / group situated in Company X/subsidiary’s organizational struc-

ture?

– Are there departments that are more advanced in terms of open source governance?

• What products / software products are you working on?

• How independent are your team / group from the rest of the organization? How do you

collaborate internally, especially in terms of software engineering?

Open Source Software (OSS) Usage Situation

• Do you have any experience of work with OSS or OSS components at Company X/subsidiary?

– OSS in your products

– OSS as development tools

– OSS in R&D

• What do you know about OSS, its benefits or challenges?

• Does your management encourage or discourage the use of OSS in products?

– Direct management

– Top management

• Who makes decisions concerning OSS usage? Escalation? Final decisions? Is there an arbitra-

tion committee making decisions?

– Buy vs make vs OSS decision making

– Economic evaluation

349

• Is Company X/subsidiary or individual departments actively involved in an open source

community? Would it be beneficial?

• Would you like to be active members of open source community? What are the perceived

benefits and challenges?

Open Source License Compliance Situation

• How do you understand open source compliance?

• What OSS licenses do you use (LGPL, MIT License, etc.) and why? How much attention is

given to licenses?

• Can you make decisions about open source compliance or OSS licenses in general?

• Who is responsible for OSS compliance in your team / department?

• Are you aware of risks of OSS non-compliance?

• Do you have a mechanism for assuring OSS license compliance?

– Are they automated? Which tools are used?

• Do you think there is a need for OSS compliance process?

• Are internal or external customers asking

– better OSS licensing information

– bill-of-materials including OSS components

– or license compliance?

• How is your legal department involved in OSS licensing, license interpretation? Do they

focus on compliance?

• Does legal department have a veto right in case non-compliance is detected?

Open Source Governance Situation

• How do you understand OSS governance? What does it include?

350

• Do you have an OSS governance program or individual processes?

• Do you have rules / guidelines concerning OSS use? Do you follow them? Are they en-

forced?

• Did you read the documentation about OSS use at Company X/subsidiary? Where and

what?

• Who makes decisions about OSS components, their usage, their quality assurance, licenses?

• How would you evaluate your OSS governance situation in your team / department?

• Is there a centralized body / team / responsible person to address for OSS related decisions?

• Did you have a need for OSS governance program / process / guidelines?

• Would you benefit from OSS governance program / process / guidelines? How, specifically?

• Do you identify potential risks of ungoverned OSS use or non-compliance? Do you match

OSS governance policies to these risks?

• Would you want to see a centralized OSS governance and decision making at Company

X/subsidiary? Why?

• Would you prefer to have an OSS expert in your team? Why?

• How is OSS governance and compliance handled in case of mergers and acquisitions?

• How would you report non-compliance or poor governance decisions?

– Are there outlets for whistle-blowing?

C.2.2 Management Employee Questions

Open Source Software Usage Situation

• Do you use OSS in your products? Which (types of) products especially? Examples, reasons?

• Have you assessed (code scanning, surveys) the use of OSS in your products? Do you have an

overview? How does it affect your products?

351

• Do you have a product architecture model including OSS components?

• Do you track your usage of OSS components and licenses? How? With which tools?

• Did you scan your code to find which OSS components are in use and their compliance?

How do you control and manage OSS components in your products?

• Do you think there is a need for more OSS use in your products?

• Which products make better use of OSS? Why?

• Do you have regular training / internal education on OSS usage or governance for product

managers?

Open Source License Compliance Situation

• Do you analyze license compliance of your product as a whole?

• Do you realize a risk exposure analysis potentially caused by license non-compliance?

• How do you mitigate intellectual property risks, especially those related to patents?

• Are there pre-approved for use open source licenses?

• Do you have agreed-upon license interpretations?

• Do you develop standard license interpretation for products together with your legal team?

• Do you use (did you develop) standard license compatibility matrix to manage licenses in

your products? Do you enforce it on engineers?

• Do you define OSS component requirements for your developers? How detailed?

• Do you have OSS governance requirements for your suppliers?

– Do you require a bill-of-materials (standards) with OSS components (and their li-

censes) used in the supplied software?

– Do you automate this? Why?

– Are you using a standard format? Why?

• Do you audit the supplied code / products to check compliance?

352

Open Source Governance Situation

• Do you have an OSS governance program for product managers? Any rules, guidelines docu-

mented?

• Do you have an OSS governance role / team? Who has what role?

• Do you do a capabilities analysis to assess your need and dependence on OSS?

• Have you defined product management goals of OSS governance?

• How do you communicate these goals to your team and across teams? Who’s responsible?

• How important is good OSS governance for your clients? Why? How does it show?

• Who do your customers contact to discuss licensing and compliance of OSS components of

your products?

• Do you keep an eye on industry best practices and standards for managing OSS use in prod-

ucts? Are you involved in a community / network?

• Do your suppliers use OSS? Do you track this usage and compliance?

• Do you ask for better OSS licensing or compliance / governance certification from your sup-

pliers?

C.2.3 Engineering Employee Questions

Open Source Software Usage Situation

• Do you use OSS in development? How much? Some examples?

– For development (i.e. developer tools e.g. Eclipse Java IDE)

– In products (e.g. code components, libraries, e.g. glibc, Linux, Apache commons li-

brary)

• What OSS components are mainly used by you (your team)?

353

• Which OSS components are especially important / crucial for the development of your prod-

ucts?

• Do you modify and contribute to open source communities? Why? How?

• Are used OSS components shared throughout Company X/subsidiary or between teams?

Do you reuse them?

• Do you have a repository for used OSS components? Would you need one? Why?

• Does this component repository have good search mechanism in accordance with require-

ments by product management?

• Describe your software development practices, especially concerning OSS selection and us-

age. Preferably on a specific example.

• Do you track your usage of OSS components and licenses? How? With which tools?

• Did you scan your code to find which OSS components are in use and their compliance?

How?

• Do you manage / analyze OSS contributions to your code? How (survey, external tools)?

• Did you consider using a mandatory survey for initial assessment of OSS contributions?

Open Source License Compliance Situation

• Do you have license-related rules about OSS components used in development? What li-

censes can you use, what licenses are not allowed?

• What OSS licenses are mainly used by your team or at Company X/subsidiary in general?

Which licenses are given priority (LPGL, MIT License, etc.)? Examples, if possible.

• Are you restricted in the source code that you can use in development, based on the original

license?

• When using OSS components, do you ask for license vetting?

• Did you have issues of OSS non-compliance? How do you detect these issues?

354

• What do you do if non-compliance is detected? Do you have a process? Is it case-based?

• Do you replace problematic components? How? Practice examples?

• Do you decouple problematic components? How? Practice examples?

Open Source Governance Situation

• Do you have an OSS governance program for engineers? Any rules, guidelines documented?

• Do you have quality-related concerns when using OSS components? Why? How do you

address any?

• Do you have a process for quality assurance of OSS code? Please describe and give an exam-

ple if possible.

• Do you analyze security risks of OSS involvement?

• Did you have regular training / internal education on OSS usage or governance for engineers,

especially new developers?

• Who approves selection and use of OSS components?

• If there an approval process for OSS components that a developer wants to use? Are these

decisions centrally stored and available to all developers?

• What would you like to see as part of OSS governance handbook?

C.3 Interview Questions – Theory Evaluation at Case Study Companies after

Handbook Implementation

Section C.3 presents the interview questions we created for the theory evaluation at the case study

companies, where we guided the implementation of our handbook for corporate open source gover-

nance – an actionable presentation of our theory. The questions are split into subsets according to

the units of analysis we defined for the case studies following Yin’s methodology [157] and according

to our Case Study Protocol presented in Appendix E. Subsection C.3.1 presents the general ques-

tions for all the interviewed employees. Section C.3.2 presents the interview questions on the general

355

aspects of the handbook implementation, its preparation, and execution at the studied companies.

Section C.3.3 presents the specific questions with the predefined theory evaluation criteria asked for

three units of analysis: handbook as a whole, handbook sections, and individual best practices. For

the latter, we focus on select best practices from our theory for an in-depth evaluation.

C.3.1 Questions on Interviewee Context

Interviewee Context

• What’s your name and role at your company?

– What are your responsibilities?

– Which organizational unit are you part of?

• How are you involved with open source governance at your company?

• How are you involved with open source governance handbook implementation at your com-

pany?

C.3.2 Questions on General Aspects of Handbook Implementation

General Aspects of Handbook Implementation

• Before implementation, how did you assess the current situation of corporate open source

governance at your company?

• How did you prepare for handbook implementation?

– Who were the involved stakeholders? What tasks do they have?

– Please describe the planning process?

– Which part of the handbook did you start with? What came next? Why?

• How did you conduct the actual implementation?

– Who were the involved stakeholders? What tasks do they have?

356

– Please describe the actual implementation process?

• What were the main artifacts used in handbook implementation?

• What were the main tools used in handbook implementation?

• What were the main challenges and issue during implementation?

C.3.3 Questions on Theory Evaluation via Handbook Implementation

Level of Evaluation - Handbook ॼ a Whole

• How complete was it? Did it have an adequate beginning, middle, and end? Did it lack any-

thing?

• How variable was it? Did it have a mixture of concepts, not focusing on single concepts?

• How well-structured was it? Are the parts structured in a logical and interconnected manner?

• How comprehensive was it? Did it answer all the problems you had? Did it go into enough

detail?

• How understandable was it? Did you and other employees understand the intention and the

specifics?

• How applicable was it? Were you able to apply it in your context? Did you need to adjust

anything?

• How relevant was it? Did it address an issue of relevance for the company and employees?

• How significant was it? Was the impact on the company significant?

• How useful was it? Did it add value to your company in solving the issue? Did it enhance

your knowledge on the issue? Did it achieve its goals?

Level of Evaluation - Section - Getting Started

• [Question X] In the context of applying this handbook section:

357

– How complete was it? Did it have an adequate beginning, middle, and end? Did it lack

anything?

– How well-structured was it? Are the parts structured in a logical and interconnected

manner?

– How comprehensive was it? Did it answer all the problems you had? Did it go into

enough detail?

– How understandable was it? Did you and other employees understand the intention

and the specifics?

– How applicable was it? Were you able to apply it in your context? Did you need to

adjust anything?

– How relevant was it? Did it address an issue of relevance for the company and employ-

ees?

– How significant was it? Was the impact on the company significant?

– How useful was it? Did it add value to your company in solving the issue? Did it en-

hance your knowledge on the issue? Did it achieve its goals?

Level of Evaluation - Best Practice - OSGOV-GETSTA-TRAORG-1. Establish a board of stake-

holders to organize the transition (A.1.1)

• Which stakeholders were on the board of transition?

– How did you choose them?

– Why them?

• [Question Y] In the context of applying this best practice:

– How well-structured was it? Are the parts structured in a logical and interconnected

manner?

– How comprehensive was it? Did it answer all the problems you had? Did it go into

enough detail?

358

– How understandable was it? Did you and other employees understand the intention

and the specifics?

– How applicable was it? Were you able to apply it in your context? Did you need to

adjust anything?

– How relevant was it? Did it address an issue of relevance for the company and employ-

ees?

– How significant was it? Was the impact on the company significant?

– How useful was it? Did it add value to your company in solving the issue? Did it en-

hance your knowledge on the issue? Did it achieve its goals?

Level of Evaluation - Best Practice - OSGOV-GETSTA-TRAORG-4. Start small, then replicate -

define the scope of the transition process (A.1.4)

• What was the scope of the transition process?

• Did you follow the process matching the one from the handbook? Did you have to modify

it? How?

• In the context of applying this best practice, the same questions as in [Question Y].

Level of Evaluation - Best Practice - OSGOV-GETSTA-TRAORG-5. Define the transition time-

line (A.1.5)

• What was the timeline of the transition process?

• Did you follow the process matching the one from the handbook? Did you have to modify

it? How?

• In the context of applying this best practice, the same questions as in [Question Y].

Level of Evaluation - Best Practice - OSGOV-GETSTA-IPRISK-1.3. Create license/use case pairs

(A.4.4)

• How did you create license/use case pairs during the transition towards governance?

359

• How did you document the license/use case pairs?

• In the context of applying this best practice, the same questions as in [Question Y].

Level of Evaluation - Section - General Governance

• Same as in [Question X].

Level of Evaluation - Best Practice - OSGOV-GENGOV-GOVMAN-3. Establish open source

program office

• Same as in [Question Y].

Level of Evaluation - Best Practice - OSGOV-GENGOV-CAPABI-2. Create educational resourcॽ

for capabilitiॽ building

• Same as in [Question Y].

Level of Evaluation - Section - Inbound Governance

• Same as in [Question X].

Level of Evaluation - Best Practice - OSGOV-INBGOV-COMAPP-1. Define the component ap-

proval process

• Same as in [Question Y].

Level of Evaluation - Best Practice - OSGOV-INBGOV-COMREU-8. Create component reposi-

tory

• Same as in [Question Y].

Level of Evaluation - Section - Outbound Governance

• Same as in [Question X].

360

Level of Evaluation - Best Practice - OSGOV-OUTGOV-LICCOM-1. Ensure license compliance

• Same as in [Question Y].

Level of Evaluation - Best Practice - OSGOV-OUTGOV-CONMAN-1. Establish contribution

management policy

• Same as in [Question Y].

Level of Evaluation - Section - Supply Chain Management

• Same as in [Question X].

Level of Evaluation - Best Practice - OSGOV-SUCHMA-SCMPRO-2. Establish supply chain

management process

• Same as in [Question Y].

Level of Evaluation - Best Practice - OSGOV-SUCHMA-SCMPRO-5. Use tools to automate

supplier management

• Same as in [Question Y].

Level of Evaluation - Best Practice - OSGOV-SUCHMA-BOMMAN-1. Identify open source

components and metadata from the supply chain

• Same as in [Question Y].

Level of Evaluation - Best Practice - OSGOV-SUCHMA-BOMMAN-2. Track, document and

update BOM in a consistent and complete manner

• Same as in [Question Y].

361

Level of Evaluation - Best Practice - OSGOV-SUCHMA-BOMMAN-4. Use machine readable

and standard format for BOM upon software supply

• Same as in [Question Y].

• Do you have any additional remarks about the implementation of the handbook, its content,

or process?

362

D
Qualitative Data Analysis – Code Systems

Appendix D presents the code systems developed for and used in the qualitative data analysis

in this research project. We used qualitative data analysis for the literature review presented in Chap-

ter 2, and for theory building presented in Chapter 3. This appendix gives an overview of the code

systems. See Section D.1 for the code system for the literature review, and Section D.2 for the code

system for the theory building.

363

D.1 QDA Code System – Literature Review

Code System Coded Segments Documents

All Codes 1443 87

OS Adoption 0 0

Categories 5 3

Maturity And Measurement 19 6

Decision Criteria 11 6

OS And Standards 32 6

Open Innovation 15 7

OS Business Model 25 14

Creating A Business Model 1 1

OS Evolution 15 11

Commercially Friendly Licensing 6 4

Standards 23 10

OS Challenges 31 12

Leadership And Control 4 2

Others 17 10

Switching Costs 9 6

Lower Innovation 4 4

Free Riding Problem 7 6

Company’s Readiness 6 6

Infringements Due To Licenses 10 9

Support 4 3

Development Issues 9 7

User Motivation 8 6

Edge Case Groups 3 3

OS Benefits 24 15

Standards 3 2

Others 12 9

Skills 5 5

Security 2 2

Customization 3 3

Popularity 10 7

Benefits For Public Sector 7 3

Standards Adoption 1 1

Trialability 3 3

Reliability 7 5

Development Enhancements 10 7

Projects As Examples For Success 10 7

Economic Efficiency 1 1

Profit 8 8

Quality 7 6

Costs 15 10

Competitive Advantage 7 5

Innovation 6 5

Current Adoption Of OS 8 7

Getting Started 0 0

364

Code System Coded Segments Documents

Education And Communication 2 1

Communication 1 1

Education 3 3

Risk Analysis 5 4

Security Risk Analysis 2 2

IP-at-Risk Analysis 4 2

Contribution Analysis 3 2

Product Architecture 3 3

Product Analysis 7 5

Transition To Governance 2 2

Transition Motivation 2 2

Transition Board 2 2

Transition Policy 5 2

OS Progam Office 0 0

Purpose 4 4

Goals And Responsibilities 12 8

Members And Structure 6 4

Head Of Program Office 1 1

OS Program 0 0

Best Practices 1 1

Artefacts 1 1

Processes 1 1

Principles 2 1

Governance Management 2 2

Best Practices 15 6

Purpose 9 6

Conflict Resolution 1 1

Decision Making 6 6

Management Hierarchy 3 3

Governance Processes 6 4

Strategy And Policy 8 4

Policy 16 7

Strategy 11 6

Challenges 10 5

Principles 4 3

License Interpretation 2 2

Best Practices 2 2

Distribution of Licenses 9 4

OS Definition 17 15

License-Use Case Pairs 7 4

Technical Interpretation 5 4

Business Interpretation 15 5

Edge Case Licenses 5 4

Permissive Licenses 7 4

Licenses In General 14 11

Reciprocal Copyleft Licenses 18 12

GPL 6 6

Purpose And Definition 17 10

Dual Licensing 1 1

365

Code System Coded Segments Documents

Legal Interpretation 0 0

Edge Case Licenses 12 8

Reciprocal (Copyleft) Licenses 16 8

Permissive Licenses 6 5

General OS Licenses 9 8

Communication Education 0 0

Organizational Capabilities 0 0

Learning Materials 6 2

Employee Training 13 11

Assessing Employee Capabilities 2 2

External Communication 2 2

Scientists 1 1

Public 10 6

Suppliers 2 2

Customers 2 2

Internal Communication 1 1

Knowledge Exchange 6 5

Documentation 13 7

Best Practices 6 3

Challenges 7 2

Communication Process 3 3

Communication Channels 4 2

Incoming OS 0 0

Software Development 8 7

Best Practices 13 4

Challenges 16 11

Definition And Approaches 9 5

Tools And Standards 5 3

Other Development 2 2

Component-Based Development 13 6

Supplier Management 3 3

Bill Of Materials Management 6 5

License Management 3 2

Planning 5 4

Quality Management 4 3

Certification 5 2

Standards 10 6

Audits 1 1

Contracts 3 2

Tools 8 1

Optimization 9 5

Challenges 8 7

Component Monitoring 6 3

Component Integration 6 5

Best Practices AndWorkarounds 4 3

Challenges 8 5

Process 1 1

Component Repository 9 6

Tools 16 6

366

Code System Coded Segments Documents

Product Architecture Model 4 3

Reuse 11 7

Search 8 3

Documentation 7 3

Component Approval 3 3

Tools 3 2

Approval Criteria 11 7

Quality Assurance 2 2

Process 4 4

Component Selection 7 7

Component Search 2 2

Outgoing OS 0 0

License Compliance 2 2

Legal Team 10 8

Best Practices 25 10

Examples Of Projects 2 2

Questions To Be Asked 1 1

Tools and Automation 15 9

Patents 11 7

Definition 1 1

Challenges 3 2

Mixing Licenses And Compatibility 10 8

Challenges 26 10

Obligations 12 5

Compliance Process 19 6

Release Review 4 3

Compliance Officer Responsibilities 8 7

Compliance Officer 4 4

Governance Research 0 0

Research Issues 7 4

Innovation 2 2

Competing With Proprietary Software 2 2

Licensing 2 1

Choosing OS 3 3

Development 2 2

Contribution 5 4

Literature Review 0 0

Literature Review Results 6 2

Literature Categories 3 2

Definition Of OS Governance 7 3

OS User Foundation 5 5

OS Developer Foundation 6 5

OS Communities 28 11

Private Contribution 1 1

Benefits 9 5

Motivation 24 11

Corporate Contribution 2 2

Decision Criteria 6 3

Best Practices And Strategies 7 6

367

Code System Coded Segments Documents

Types Of Contribution 18 8

Roles Within The Community 6 3

Challenges 25 10

Benefits 16 9

Motivation 36 20

Table D.1: QDA Code System – Literature Review

D.2 QDA Code System – Theory Building

Code System Coded Segments Documents

All Codes 1012 43

Getting

Started

0 0

Transition

Org

0 0

Implement the transition process 25 10

Communicate the transition process 14 7

Establish the transition process 21 9

Define the transition timeline 5 1

Define the scope of the transition process 3 3

Define responsibilities of the transition manager 6 3

Designate the transition manager 9 7

Establish a board of stakeholders 26 13

Transition

Policy

0 0

Adjust and improve FLOSS governance policy for

the transition

3 3

Communicate FLOSS governance policy for the

transition period

2 2

Establish FLOSS governance policy for the

transition period

49 14

Product

Analysis

0 0

Use a combination of methods for product

analysis

0 0

Select and use governance tools for

automation

24 13

Establish a process of continuous

reporting and assessment

17 8

Use one mandatory survey for initial

assessment

3 3

Product architecture model 0 0

Maintain product architecture

model

10 7

Create product architecture model 12 8

368

Code System Coded Segments Documents

Method of product analysis 0 0

Use one mandatory survey for initial

assessment

1 1

Establish a process of continuous

reporting and assessment

4 4

Contribution Analysis 0 0

Create a policy on how to contribute

back to the community

15 8

Assess contributions by survey 1 1

Assess contributions by external

tools

1 1

Use Analysis 0 0

Document current open source use 18 11

Run open source use analysis in

products

5 3

IP-at-Risk

Analysis

0 0

License Compliance Analysis 0 0

Create license-use case pairs 12 7

Use standard license interpretation 27 13

Develop standard license interpreta-

tion

29 14

Risk Exposure Analysis 28 11

IP Risk Mitigation 0 0

Replace problematic components 5 4

Decouple problematic components 4 2

Require bill-of-materials 19 10

Run random audits 14 9

Security Risk Analysis 9 6

Capabilities Analysis 2 2

Communication

and Capa-

bilities

0 0

Establish communication channels for open

source governance han

14 7

Assess open source governance capabilities 2 1

Develop FLOSS governance and compliance

capabilities at the cen

10 1

Design employee training 6 6

Provide employee training 10 9

Governance 0 0

General

Governance

0 0

Governance Management 0 0

Define goals of governance 9 7

Establish an open source program 7 5

Establish an open source program

office

7 5

Define role of legal counsel 5 4

369

Code System Coded Segments Documents

Give legal counsel veto right 1 1

Give arbitration committee decision

right

1 1

Integrate program office in product

development

2 1

Integrate program office in mergers

and acquisitions

2 1

Open Source Program Office 0 0

Define roles, responsibilities, and

policies

21 12

Provide roles, responsibilities, and

policies in written form

5 4

Match policies to actual risks 7 6

Provide contact for internal in-

quiries

5 3

Provide channel for whistleblowing 2 2

Provide contact for external in-

quiries

2 2

Collaborate with legal counsel on

license interpretation

3 3

Track industry best practices and

standards

9 5

Network to learn from others 8 4

Engage with community 5 3

License Interpretation 0 0

Use standard license compatibility

matrix

8 7

Develop standard license compati-

bility matrix

6 5

Automate license identification and

interpretation

10 7

Capabilities 0 0

Capabilities Analysis 0 0

Assess open source governance

capabilities

1 1

Capabilities Building 0 0

Create educational resources

for capabilities building

4 2

Inbound Governance 0 0

Component Selection 8 6

Selection criteria 3 1

Component selection process 3 3

Component Search 3 3

Component Approval 7 6

Review a component approval

request

0 0

Review use in context of

product architecture

3 2

370

Code System Coded Segments Documents

Analyze code for license

compliance

6 4

Approval process 0 0

File a component approval

request

5 2

Define component approval

process

5 5

Communicate component

approval process

3 3

Implement component ap-

proval process

4 4

Appeal a component approval

decision

1 1

Make a component approval

decision

2 2

Communicate open source

component approval rules

2 2

Define transparent rules

for open source component

approval

4 3

Documentation 1 1

Add decision to component

repository

7 4

Provide approval request

templates

3 2

Component Repository 6 3

Component reuse policy 0 0

Establish component reuse

policy

7 7

Communicate component

reuse policy

3 3

Adjust and improve compo-

nent reuse policy

1 1

Component reuse process 0 0

Designate a role of respon-

sibility for the component

repository

1 1

Establish component reuse

process

1 1

Communicate component

reuse process

2 2

Implement component reuse

process

2 2

Component repository 0 0

Create a component repository 8 4

Update component repository 9 7

Maintain component reposi-

tory

5 4

Audit component repository 5 4

371

Code System Coded Segments Documents

Use tools to create, update

and maintain component

repository

10 7

Provide component repository

a single well-defined location

3 2

Track prior approval data for reuse 1 1

Previous use information 5 5

Component metadata 7 5

Component data 3 3

Provide all relevant meta-data for

component

3 2

Search component repository for

reusable components

2 1

Contact OSPO for details on a

repository entry

2 2

Add security check information to

repository

2 2

Link BOM and component reposi-

tory

2 2

Supply Chain Management (SCM) 0 0

Meta 0 0

Challanges 6 4

Opportunities 1 1

Process 0 0

Designate role responsible for

supply chain management

4 3

Establish supply chain man-

agement process

3 2

Implement supply chain

management process

1 1

Policy 0 0

Establish supply chain man-

agement policy

5 5

Define tasks for the designated

role responsible for supply

chain

1 1

Communicate supply chain

management policy

3 2

Adjust supply chain manage-

ment policy

1 1

Preventive Governance 0 0

Choose the right supplier 0 0

Assess open source governance

and compliance awareness

3 3

Assess governance maturity 3 3

Run supplier self-certification 3 3

Run third party supplier

certification

1 1

372

Code System Coded Segments Documents

Design supplier contracts with

FLOSS governance aspects in

mind

2 2

Use contracts for open source

tools for development (IT

procure

2 2

Use contracts for open source

software for production - third

p

3 2

Corrective Governance 0 0

Audit your supply chain 0 0

Regular audits on supplier site 2 2

Regular audits on own site 3 3

Surprise audits 2 2

Mitigate identified risks 2 2

Assess risks in accordance to

the SCM policy

4 4

Trigger supplier contract

clauses and get the supplier to

take

2 2

Don’t run your supplier out of

business

2 2

Get the source code (before

changing the supplier)

2 2

(Special Aspect) BoMManagement 0 0

Identify open source compo-

nents and metadata from the

supply ch

3 3

Document BoM in a consis-

tent and complete manner

9 8

Track open source component

from the supply chain

5 5

Keep BoM up-to-date 8 6

Have a backup of open source

components hosted by yourself

1 1

Manage open source software

on deeper levels in supply

chain

3 2

Use machine readable BoM

upon software supply

17 10

Use standard format for BoM

upon software supply

17 10

(Special Aspect) License Compliance

for Supply Chain

0 0

Review license obligations in

the context of SCM

4 3

Review identified open source

components and metadata

12 5

Review license obligations 6 5

373

Code System Coded Segments Documents

Review copyright notices in

the context of SCM

1 1

Review security vulnerabilities

in the context of SCM

5 4

(Special Aspect) Tooling / Automa-

tion

0 0

Tools for preventive gover-

nance

9 6

Tools for corrective gover-

nance

1 1

Tools for BoMmanagement 5 5

Integration with component

approval and component

repository (i

3 3

Integration with license

compliance and release man-

agement

3 2

Component Integration 4 2

Component Monitoring 3 2

Engineering Management 8 5

Communication 3 3

Education 2 2

Exchange best practices and learn

from others

6 3

0 0

Release Management 6 5

Concudct Source Code Inspections

before Release

3 3

Define Product Shipment Checklist 1 1

Double check the contribution 5 4

Ensure License Compliance 18 10

Disclose All Licenses Used 5 4

Establish Compliance Policy 4 4

Define Required License Artifacts 3 3

Distribution Preparation 7 7

Contribution Management 18 8

Table D.2: QDA Code System – Theory Building

374

E
Evaluation Case Study Protocol

Appendix E presents the case study protocol for the multiple-case case study used

during theory evaluation. The evaluation and its methodology are presented in Chapter

4. This case study protocol is developed following the case study research method by Yin

[157].

375

E.1 Protocol Summary

We conducted expert interviews to develop a theory of industry best practices for open

source governance in companies that use open source components in their products. We

case our theory as a handbook of industry best practices. We plan to evaluate our theory by

implementing subsets of the handbook best practices at 2-3 case study companies, where

employees will follow these practices in production projects. We will measure the complete-

ness, comprehension, understandability, applicability, and usefulness of the practices in

order to evaluate the quality of our proposed theory. This document serves as a case study

protocol and lays out the design of the case study. It outlines and discusses the case study

design and planning we set out in preparation for the theory evaluation.

E.2 Case Study Overview

E.2.1 Case Study Research Questions

To gather data during the case study at each case, we plan to create two sets of questions –

one for the initial situation assessment of open source governance at companies, another

one for the theory evaluation at case study companies after the open source governance

handbook implementation. For both questionnaires we plan to ask the following types of

questions (building upon Yin’s recommendations for case study protocol questions [157]):

• Level 1: questions on specific interviewees and their context

• Level 2: questions about case study companies (individual cases)

• Level 3: questions about patterns of findings across multiple case studies

• Level 4: questions about the entire case study

• Level 5: questions about policy recommendations and conclusions

376

The overarching goal of our research is to evaluate the quality of our theory on indus-

try best practices for open source governance in companies. The quality criteria (based on

related work in other disciplines [133] [11] [13] [85]) we will study are:

• Completeness

• Variability

• Structure

• Comprehension

• Understandability

• Applicability

• Relevance

• Significance

• Usefulness.

We will observe the subjects of implementation and conduct follow-up interviews to

evaluate the quality criteria in relation to our proposed theory’s implementation.

The research questions we will ask are:

• RQ1: How complete was it? Did it have an adequate beginning, middle, and end?

Did it lack anything?

• RQ2: How variable was it? Did it have a mixture of concepts, not focusing on single

concepts?

• RQ3: How well-structured was it? Are the parts structured in a logical and intercon-

nected manner?

• RQ4: How comprehensive was it? Did it answer all the problems you had? Did it go

into enough detail?

377

• RQ5: How understandable was it? Did you and other employees understand the

intention and the specifics?

• RQ6 : How applicable was it? Were you able to apply it in your context? Did you

need to adjust anything?

• RQ7: How relevant was it? Did it address an issue of relevance for the company and

employees?

• RQ8: How significant was it? Was the impact on the company significant?

• RQ9: How useful was it? Did it add value to your company in solving the issue? Did

it enhance your knowledge on the issue? Did it achieve its goals?

E.2.2 Case Selection

For a case study, we searched for an organization that fulfills the following requirements:

1. Develops software and uses it in own (shipped) products

2. Uses open source software as part of own (shipped) products

3. No or basic open source governance in place.

We selected the following companies (anonymized per their request): Company A, Com-

pany B, and Company C. These are appropriate company choices from our sample because

they meet our requirements, and have different levels of open source governance maturity,

which enables a broader evaluation of the proposed theory.

E.2.3 Theoretical Framework

The theoretical framework for the case study is our theory of corporate open source gov-

ernance, presented in detail in Chapter 3. Our proposed theory covers the key aspects of

378

corporate open source governance, including getting started with governance, general gov-

ernance, inbound governance, outbound governance, and supply chain management gov-

ernance.

In this theory evaluation case study, we will use our handbook for open source gover-

nance as a practically applicable representation of our theory. The handbook, whose parts

are presented in Appendix A and in Appendix B, provides best practices for establishing

and managing open source software governance and compliance at a company. It starts

with the assumption that the company has decided that denying itself the benefits of open

source software is counterproductive and that it would like to engage. This handbook pro-

vides an answer in the form of interlinked best practice descriptions. A best practice is pre-

sented as a pattern, that is, in the form of a context, problem, solution triple as known from

the patterns community. All best practices thereby show how, why, where and by who they

are applicable and what might come next. In this way, the handbook is more than a passive

list of best practices; it provides active guidance for establishing and managing open source

software governance and compliance at a company.

E.2.4 Case Study Design

There are different kinds of case studies. Case studies can differ on the purpose of research,

whether different units of analysis are investigated, and whether they study the phenomena

in different contexts or not. The next section will discuss why we perform an exploratory

and descriptive (purpose), holistic (one primary unit of analysis), multiple-case study (mul-

tiple contexts).

E.2.5 Case Study Purpose

According to Yin [157] and Runeson [132] case studies can be used for different purposes:

379

• Descriptive – portraying the current status of a situation or phenomenon.

• Exploratory – finding out what is happening, seeking new insights, and generating

ideas and hypotheses for new research.

• Explanatory – seeking an explanation for a situation or a problem, mostly but not

necessarily, in the form of a causal relationship.

• Improving – trying to improve a certain aspect of the studied phenomenon - this is

very close to action research [157]

To address our case study’s overall goal of testing (evaluating) the proposed theory of

open source governance, we set out two specific purposes for this study:

• Descriptive – in the first stage of the case studies, describing the situation of open

source governance or lack thereof in detail.

• Exploratory – in the first stage of the case studies, explaining the handbook imple-

mentation at companies, its effects, and its quality criteria.

E.2.6 Unit of Analysis

According to Yin [157], there are two different units of analysis in case studies:

• Holistic – the case is studied as a whole.

• Embedded – the case is divided in multiple units (each being an individual data

source during the case study).

Our case study will have one unit of analysis – the core teams at each case implementing

and using our handbook for open source governance. These teams will be our main data

sources. We will analyze how these teams are using the handbook and by extension how

380

our theory worked in their contexts (analyzing transferability of our proposed theory). We

will break down our theory according to the logical categories (topic) of open source gover-

nance corresponding to the handbook sections, which will be implemented at different case

study companies (depending on their open source governance maturity).

E.2.7 Case Study Contexts

Yin [157] proposes two types of case studies according to the study contexts:

• Single case case studies – analyzing one case only focused on one context

• Multiple case case studies – analyzing and comparing multiple cases with different

contexts.

We will conduct a multiple case case studies with 2-3 case study companies in order to

test our proposed theory in different context (in different production level environments).

This will help us evaluate our theory from different perspectives and identify limitations to

its transferability caused by real life application in different contexts.

E.2.8 Quality of Research Design

Following Yin [157], throughout the study we will ensure the quality of our case study re-

search design by assessing its construct validity (by following case study research methods

to identify correct operational measures for the evaluated concepts, and by ensuring data

triangulation using multiple sources of evidence), internal validity (establishing causal re-

lationships during handbook evaluation in the second explanatory stage of the study; not

testable for the first descriptive stage of the study [157]), external validity, and reliability (by

documenting out case study protocol to enable the replication of our study).

381

E.3 Data Collection Procedures

Yin [157] lists six potential sources of evidence:

• Documentation

• Archival records

• Interviews

• Direct observations

• Participants observation

• Physical artifacts.

We will aim to use as many data collection techniques and sources as possible. However,

we do expect that our access to the internal documentation and archival records could be

limited, given that we will working at production level projects at case study companies.

Nor do we expect to deal with physical artifacts.

We will employ direct observation and participants observation throughout the case

study, writing meeting minutes and notes for further analysis and case study results re-

porting. In particular we will directly observe the handbook implementation at the pilot

projects and engaged teams at each case study company.

As our main source of data, we will use semi-structured interviews, interviewing em-

ployees in different roles related to open source use and governance. See Section E.4 of this

protocol for details on the interview questions. Some of the potential weaknesses of this

technique can be minimized in the following ways:

• Response bias – we will ask many individuals the same questions

382

• Inaccuracies and poorly articulated questions – we will develop interview questions

based on our proposed theory of FLOSS governance, peer review the questions and

improve them over time

• Reflexivity – we will only ask questions which do not imply answers.

In our case study we will interview employees from Company A, Company B, and Com-

pany C. If some interviewees can grant us access to documentation we will use the docu-

mentation for our case study, too.

Data collection and analysis will be conducted by the principal researcher (the author

of this dissertation), and by colleagues and student helpers working temporarily with the

principal researcher.

The interview records will only be available to the researchers of our research group at

FAU (hosted on the university network). We will transcribe the interviews using services

that are approved by case study companies in accordance to their data handling and privacy

guidelines. We will get non-disclosure agreement from the transcription service companies

used. The interview transcription will only be available to the researchers involved directly

in this study. Both the transcriptions and the audio files will be archived in the case study

database.

E.4 Data Collection Questions

To collect data, among other techniques, we will conduct interviews with the case study

company interviews for our theory evaluation. We plan to collect data at two stages in each

case study company:

• Stage 1: before the introduction of our theory at case study companies – questions

on the initial situation assessment of corporate open source governance

383

• Stage 2: after the introduction of our theory at case study companies – questions on

the handbook implementation and evaluation.

We will develop two detailed questionnaires, and improve them iteratively (addressing

unclear questions or other issues we observe during the interviews). See the final question-

naire for Stage 1 in Section C.2 in Appendix C. See the final questionnaire for Stage 2 in

Section C.3 in Appendix C.

For each stage we will select the most competent employees with the help of our contacts

at case study companies. We will make sure that we interview employees with different and

complementing roles to ensure the breadth of our findings.

E.5 Case Study Reporting

After collecting data from the case studies, we will analyze the data focusing on:

• the initial situation of open source governance

• the implementation of the governance handbook (select sections and best practices).

First, we will analyze the strengths, weaknesses, opportunities, and threats of the use of

open source at each case study company. We will then analyze the initial (before the intro-

duction of our governance handbook) governance situation at each case study company.

We will report these situations in comparable formats across the case studies.

Second, we will analyze the implementation of the select sections of the corporate open

source governance handbook, as well as on the select best practices from these sections. Dis-

cussing the handbook sections and individual best practices that were applied and used at

case study companies, we will discuss how they improved the state of governance at each

case study company compared to the respective initial governance situations. In reporting

384

our case study findings, we will have subsections corresponding to the evaluated parts of

our theory in each case study report talking about the implementation, created company-

internal artifacts, and proposed industry best practices (from our theory) used at each com-

pany. We will share handbook implementation artifacts, when possible to illustrate how

our theory was applied in a real-life setting. We will then discuss the implementation in de-

tail. Among other theoretical instruments, we will employ the pattern matching technique

of data analysis proposed by Yin [157]. Following this technique we will observe how case

study companies are using our handbook, identifying specific patterns, which we will then

compare with the best practice patterns we propose in our theory. As a result we will study

and report on the deviations between these patterns, discussing such deviations.

Finally, we will present our analysis on the predefined quality criteria for our theory eval-

uation. We will discuss these evaluation criteria for the implemented and studied sections

of the handbook (representing parts of the proposed theory) and specific best practices in

each of these sections. We will first report our analysis for the case studies individually, then

discussing them side by side, presenting the common findings and differences across the

cases. We will also discuss the effects and the shortcoming of using our theory, aiming at a

critical theory evaluation as a result.

385

386

F
Handbook Implementation Artifacts

Appendix F presents some exemplary artifacts created and used by the employ-

ees at theory evaluation case studies at Companies A, B, and C. These artifacts were created

during the guided implementation of the corporate open source governance handbook (a

representation of the proposed theory). We did not influence the handbook implementa-

tion, but rather observed the implementation process (including the creation and use of

such artifacts) with a goal of evaluating of our theory through multiple-case case study fol-

387

lowing the case study protocol presented in Appendix E.

F.1 Case Study A – Overview of FLOSS Governance Processes

As observed in our theory evaluation in Case Study A, this artifact was developed at Com-

pany A following our theory’s best practices and their interconnections. They used our

open source governance handbook (a practical representation of our theory) as the basis for

developing this process overview. The artifact was developed and first used at Division A.1

of Company A with the goal of visually illustrating and communicating all the processes

of corporate open source governance with the stakeholder employees. The employee (a de-

veloper from the R&D department at Division A.1) tasked with reading the full handbook

and suggesting potential ways of implementing the proposed best practices and processes

at Division A.1 at first, and then at the whole Company A created this artifact going be-

yond the original content of the handbook, expanding the suggested processes by adding

company-specific IDs, color coding, and links between the best practices.

In this section of Appendix F we presented the corporate FLOSS governance processes

on all the topics of the handbook. Figure F.1 covered the company processes for getting

started with open source governance. Figure F.2 covered the company processes for gen-

eral open source governance. Figure F.3 covered the company processes for inbound open

source governance, focused on component approval. Figure F.4 covered the company pro-

cesses for inbound open source governance, focused on component reuse. Figure F.5 cov-

ered the company processes for supply chain management related open source governance.

Figure F.6 covered the company processes for outbound open source governance.

388

3
.1

.1
 E

st
a

b
li

sh
 a

 b
o

a
rd

 o
f

st
a

k
e

h
o

ld
e

rs
 t

o
 o

rg
a

n
iz

e
 t

h
e

 t
ra

n
si

ti
o

n

3
.1

.5
 D

e
fi

n
e

 t
h

e
 t

ra
n

si
ti

o
n

 t
im

e
li

n
e

3
.1

.8
 I

m
p

le
m

e
n

t
th

e
 t

ra
n

si
ti

o
n

 p
ro

ce
ss

3
.1

.6
 E

st
a

b
li

sh
 t

h
e

 t
ra

n
si

ti
o

n
 p

ro
ce

ss

3
.1

.7
 C

o
m

m
u

n
ic

a
te

 t
h

e
 t

ra
n

si
ti

o
n

 p
ro

ce
ss

3
.2

.1
 E

st
a

b
li

sh
 F

LO
S

S
 g

o
v

e
rn

a
n

ce
 p

o
li

cy
 f

o
r

th
e

 t
ra

n
si

ti
o

n
 p

e
ri

o
d

3
.2

.2
 C

o
m

m
u

n
ic

a
te

 F
LO

S
S

 g
o

v
e

rn
a

n
ce

 p
o

li
cy

 f
o

r
th

e
 t

ra
n

si
ti

o
n

 p
e

ri
o

d

3
.2

.3
 A

d
ju

st
 a

n
d

 i
m

p
ro

v
e

 F
LO

S
S

 g
o

v
e

rn
a

n
ce

 p
o

li
cy

 f
o

r
th

e
 t

ra
n

si
ti

o
n

 p
e

ri
o

d

3
.1

.3
 D

e
fi

n
e
 r

es
p

o
n

si
b

il
it

ie
s

a
n

d
 t

a
sk

s
o

f
th

e
tr

a
n

si
ti

o
n

 m
a

n
a

g
er

3
.1

.2
 D

e
si

g
n

a
te

 t
h

e
 t

ra
n

si
ti

o
n

 m
a

n
a

g
e

r

3
.1

.4
 S

ta
rt

 s
m

a
ll

,
th

e
n

 r
e

p
li

ca
te

 -
d

e
fi

n
e

 t
h

e
 s

co
p

e
 o

f
th

e
 t

ra
n

si
ti

o
n

 p
ro

ce
ss

3
.3

.1
 U

se
 a

 c
o

m
b

in
a

ti
o

n
 o

f
m

e
th

o
d

s
fo

r
p

ro
d

u
ct

 a
n

a
ly

si
s

3
.3

.1
.1

 U
se

 o
n

e
 m

a
n

d
a

to
ry

 s
u

rv
e

y
 f

o
r

in
it

ia
l

a
ss

e
ss

m
e

n
t

3
.3

.1
.2

 E
st

a
b

li
sh

 a
 p

ro
ce

ss
 o

f
co

n
ti

n
u

o
u

s
re

p
o

rt
in

g
 a

n
d

 a
ss

e
ss

m
e

n
t

3
.3

.1
.3

 S
e

le
ct

 a
n

d
 u

se
 g

o
v

e
rn

a
n

ce
 t

o
o

ls
 f

o
r

a
u

to
m

a
ti

o
n

3
.3

.3
 U

se
 A

n
a

ly
si

s

3
.3

.3
.1

 R
u

n
 o

p
e

n
 s

o
u

rc
e

 u
se

 a
n

a
ly

si
s

in
 p

ro
d

u
ct

s
3

.3
.3

.2
 D

o
cu

m
e

n
t

cu
rr

e
n

t
o

p
e

n
 s

o
u

rc
e

 u
se

3
.3

.2
 P

ro
d

u
ct

 a
rc

h
it

e
ct

u
re

 m
o

d
e

l

3
.3

.2
.1

 C
re

a
te

 p
ro

d
u

ct
 a

rc
h

it
e

ct
u

re
 m

o
d

e
l

3
.3

.2
.2

 M
a

in
ta

in
 p

ro
d

u
ct

 a
rc

h
it

e
ct

u
re

 m
o

d
e

l

3
.4

.1
 L

ic
e

n
se

 C
o

m
p

li
a

n
ce

 A
n

a
ly

si
s

3
.4

.2
 R

is
k

 E
x

p
o

su
re

 A
n

la
y

si
s

3
.4

.4
 S

e
cu

ri
ty

 R
is

k
 A

n
a

ly
si

s

3
.5

.2
 A

ss
e

ss
 o

p
e

n
 s

o
u

rc
e

 g
o

v
e

rn
a

n
ce

 c
a

p
a

b
il

it
ie

s

a
m

o
n

g
 d

e
v

e
lo

p
e

rs
 a

n
d

e
n

g
in

e
e

ri
n

g
 m

a
n

a
g

e
r

3
.4

.3
 I

P
 R

is
k

 M
it

ig
a

ti
o

n

3
.5

.3
 P

ro
v

id
e

 e
m

p
lo

y
e

e
 t

ra
in

in
g

3
.5

.1
 E

st
a

b
li

sh
 c

o
m

m
u

n
ic

a
ti

o
n

 c
h

a
n

n
e

ls
 f

o
r

o
p

e
n

so
u

rc
e

 g
o

v
e

rn
a

n
ce

h
a

n
d

b
o

o
k

3
.4

.1
.1

 U
se

 s
ta

n
d

a
rd

 l
ic

e
n

se
 i

n
te

rp
re

ta
ti

o
n

3
.4

.1
.2

 C
re

a
te

 l
ic

e
n

se
/u

se
 c

a
se

 p
a

ir
s

3
.4

.3
.1

 R
e

p
la

ce
 p

ro
b

le
m

a
ti

c
co

m
p

o
n

e
n

ts

3
.4

.3
.2

 D
e

co
u

p
le

 p
ro

b
le

m
a

ti
c

co
m

p
o

n
e

n
ts

3
.4

.3
.3

 R
e

q
u

ir
e

 b
il

l-
o

f-
m

a
te

ri
a

ls
 f

o
r

su
p

p
li

e
d

 c
o

d
e

 b
y

 3
rd

 p
a

rt
y

 p
o

st
-f

a
ct

u
m

3
.4

.3
.4

 R
u

n
 r

a
n

d
o

m
 a

u
d

it
s

to
 i

d
e

n
ti

fy
 p

re
v

io
u

sl
y

 u
n

d
e

te
ct

e
d

 o
r

m
is

se
d

 o
p

e
n

 s
o

u
rc

e
co

m
p

o
n

e
n

ts
 a

n
d

 t
h

e
ir

 m
e

ta
d

a
ta

Figure F.1: Handbook Implementaধon Arধfact at Case Study A – Overview of FLOSS Governance Processes on
Geষng Started

389

4.1.2 Establish an open source program office (OSPO)

4.2.1 Ensure operation of open source program office

4.3.1 Ensure license interpretation

4.4.1 Analyze and build open source governance capabilities

Figure F.2: Handbook Implementaধon Arধfact at Case Study A – Overview of FLOSS Governance Processes on
General Governance

5.1.1 Search for open source components

5.2.1 Select open source components

5.3 Component Approval

5.3.1 Define component approval process

5.3.2 File a component approval request

5.3.3 Review a component approval request
5.3.4 Define transparent rules for open

source component approval
5.3.6 Make a component approval decision

5.3.7 Appeal a component approval decision

5.3.5 Communicate open source

component approval rules

5.3.8 Communicate component approval

process

5.3.9 Implement component approval process 5.3.10 Provide approval request templates

5.3.11 Analyze code for license compliance

5.3.12 Review use in context of

product architecture

5.3.13 Add decision to component repository

5.4 Component Integration and Reuse

(Repository)

5.7 Communication5.5 Supplier Management 5.8 Education

5.8.1 Establish internal education for open

source governance

5.7.1 Establish internal communication for

open source governance

5.7.2 Establish a knowledge exchange procedure

5.6 Component Monitoring

5.6.1 Monitor open source components

(5.6.2) Monitor components for updates

(5.6.3) Monitor components for license changes

(5.6.4) Monitor component for vulnerabilities

Figure F.3: Handbook Implementaধon Arধfact at Case Study A – Overview of FLOSS Governance Processes on
Inbound Governance, focused on Component Approval

390

5
.4

.1
 E

s
ta

b
li
s

h
 c

o
m

p
o

n
e
n

t
re

u
s

e
 p

o
li

c
y

5
.4

.2
 C

o
m

m
u

n
ic

a
te

 c
o

m
p

o
n

e
n

t
re

u
s
e

 p
o

li
c

y

5
.4

.3
 A

d
ju

s
t

a
n

d
 i
m

p
ro

v
e

 c
o

m
p

o
n

e
n

t
re

u
s
e

 p
o

li
c

y

5
.4

.4
 D

e
s

ig
n

a
te

 a
 r

o
le

 o
f

re
s

p
o

n
s

ib
il

it
y

 f
o

r
th

e
 c

o
m

p
o

n
e

n
t

re
p

o
s
it

o
ry

,
in

m
u

lt
ip

le
 p

la
c
e

s
 i
n

 t
h

e
 c

o
m

p
a
n

y

5
.4

.5
 E

s
ta

b
li

s
h

 c
o

m
p

o
n

e
n

t
re

u
s
e

 p
ro

c
e

s
s

5
.4

.6
 C

o
m

m
u

n
ic

a
te

 c
o

m
p

o
n

e
n

t
re

u
s

e
 p

ro
c

e
s
s

5
.4

.7
 I

m
p

le
m

e
n

t
c

o
m

p
o

n
e
n

t
re

u
s

e
 p

ro
c

e
s
s

5
.4

.8
 C

re
a

te
 c

o
m

p
o

n
e

n
t

re
p

o
s

it
o

ry
5

.4
.9

 U
p

d
a
te

 c
o

m
p

o
n

e
n

t
re

p
o

s
it

o
ry

5
.4

.1
0
 M

a
in

ta
in

 c
o

m
p

o
n

e
n

t
re

p
o

s
it

o
ry

5
.4

.1
1
 A

u
d

it
 c

o
m

p
o

n
e

n
t

re
p

o
s
it

o
ry

5
.4

.1
2
 U

s
e
 t

o
o

ls
 t

o
 c

re
a

te
,
u

p
d

a
te

 a
n

d

m
a

in
ta

in
 c

o
m

p
o

n
e

n
t

re
p

o
s

it
o

ry

5
.4

.1
3
 P

ro
v
id

e
 c

o
m

p
o

n
e
n

t
re

p
o

s
it

o
ry

 a

s
in

g
le

 w
e
ll

-d
e

fi
n

e
d

 l
o

c
a

ti
o

n

5
.4

.1
7

 C
o

n
ta

c
t

O
S

P
O

 f
o

r
d

e
ta

il
s
 o

n
 a

 r
e

p
o

s
it

o
ry

 e
n

tr
y

5
.4

.1
4
 T

ra
c
k

 p
ri

o
r

a
p

p
ro

v
a
l

d
a
ta

 f
o

r
re

u
s
e

5
.4

.1
5

 P
ro

v
id

e
 a

ll
 r

e
le

v
a
n

t
m

e
ta

d
a

ta
 f

o
r

c
o

m
p

o
n

e
n

t

5
.4

.1
6

 S
e

a
rc

h
 c

o
m

p
o

n
e
n

t
re

p
o

s
it

o
ry

 f
o

r
re

u
s

a
b

le
 c

o
m

p
o

n
e

n
ts

5
.4

.1
8

 A
d

d
 s

e
c

u
ri

ty
 c

h
e
c

k
 i
n

fo
rm

a
ti

o
n

to
 c

o
m

p
o

n
e
n

t
re

p
o

s
it

o
ry

5
.4

.1
9

 L
in

k
 B

O
M

 a
n

d
 c

o
m

p
o

n
e

n
t

re
p

o
s
it

o
ry

Figure F.4: Handbook Implementaধon Arধfact at Case Study A – Overview of FLOSS Governance Processes on
Inbound Governance, focused on Component Reuse

391

5
.5

.1
 S

u
p

p
ly

 C
h

a
in

 M
a

n
a

g
e

m
e

n
t

P
o

li
cy

5
.5

.2
.1

 D
e

si
g

n
a

te
 a

 r
o

le
 o

f
re

sp
o

n
si

b
il

it
y

 f
o

r
su

p
p

ly

ch
a

in
 m

a
n

a
g

e
m

e
n

t,
 i

n
 m

u
lt

ip
le

 p
la

ce
s

in
co

m
p

a
n

y

5
.5

.2
.2

 E
st

a
b

li
sh

 s
u

p
p

ly
 c

h
a

in
 m

a
n

a
g

e
m

e
n

t
p

ro
ce

ss

5
.5

.2
.3

 C
o

m
m

u
n

ic
a

te
 s

u
p

p
ly

 c
h

a
in

 m
a

n
a

g
e

m
e

n
t

p
ro

ce
ss

5
.5

.2
.4

 I
m

p
le

m
e

n
t

su
p

p
ly

 c
h

a
in

 m
a

n
a

g
e

m
e

n
t

p
ro

ce
ss

5
.5

.2
.5

 U
se

 t
o

o
ls

 t
o

 a
u

to
m

a
te

 s
u

p
p

li
e

r
m

a
n

a
g

e
m

e
n

t

5
.5

.3
 P

re
v

e
n

ti
v

e
 G

o
v

e
rn

a
n

ce

5
.5

.4
 C

o
rr

e
ct

iv
e

 G
o

v
e

rn
a

n
ce

5
.5

.5
.1

 I
d

e
n

ti
fy

 o
p

e
n

 s
o

u
rc

e
 c

o
m

p
o

n
e

n
ts

 a
n

d

m
e

ta
d

a
ta

 f
ro

m
 t

h
e

 s
u

p
p

ly
 c

h
a

in

5
.5

.5
.2

 T
ra

ck
,

d
o

cu
m

e
n

t
a

n
d

 u
p

d
a

te
 B

O
M

 i
n

 a

co
n

si
st

e
n

t
a

n
d

 c
o

m
p

le
te

 m
a

n
n

e
r

5
.5

.5
.3

 H
a

v
e

 a
 b

a
ck

u
p

 o
f

o
p

e
n

 s
o

u
rc

e
 c

o
m

p
o

n
e

n
ts

h
o

st
e

d
 b

y
 y

o
u

rs
e

lf

5
.5

.5
.4

 U
se

 m
a

ch
in

e
 r

e
a

d
a

b
le

 a
n

d
 s

ta
n

d
a

rd

fo
rm

a
t

fo
r

B
O

M
 u

p
o

n
 s

o
ft

w
a

re
 s

u
p

p
ly

5
.5

.6
.1

 R
e

v
ie

w
 i

d
e

n
ti

fi
e

d
 o

p
e

n
 s

o
u

rc
e

co
m

p
o

n
e

n
ts

 a
n

d
 m

e
ta

d
a

ta
 f

o
r

li
ce

n
se

 c
o

m
p

li
a

n
ce

5
.5

.6
.2

 R
e

v
ie

w
 l

ic
e

n
se

 o
b

li
g

a
ti

o
n

s
in

 t
h

e
 c

o
n

te
x

t

o
f

su
p

p
ly

 c
h

a
in

 m
a

n
a

g
e

m
e

n
t

6
.1

 E
n

su
re

 l
ic

e
n

se
 c

o
m

p
li

a
n

ce

5
.5

.3
.1

 C
h

o
o

se
 t

h
e

 r
ig

h
t

su
p

p
li

e
r

5
.5

.3
.2

 D
e

si
g

n
 s

u
p

p
li

e
r

co
n

tr
a

ct
s

w
it

h
 o

p
e

n
 s

o
u

rc
e

g
o

v
e

rn
a

n
ce

 a
sp

e
ct

s
in

 m
in

d

5
.5

.4
.1

 A
u

d
it

 y
o

u
r

su
p

p
ly

 c
h

a
in

5
.5

.4
.2

 M
it

ig
a

te
 i

d
e

n
ti

fi
e

d
 r

is
k

s

Figure F.5: Handbook Implementaধon Arধfact at Case Study A – Overview of FLOSS Governance Processes on
Supply Chain Management

392

6
.1

 E
n

s
u

re
 l
ic

e
n

s
e

 c
o

m
p

li
a
n

c
e

6
.1

.1
 E

s
ta

b
li
s

h
 a

n
 o

p
e

n
 s

o
u

rc
e

 c
o

m
p

li
a
n

c
e

 s
tr

a
te

g
y

6
.1

.2
 E

s
ta

b
li
s

h
 a

n
 o

p
e

n
 s

o
u

rc
e

 c
o

m
p

li
a
n

c
e

 p
o

li
c

y

6
.2

 D
is

tr
ib

u
ti

o
n

 P
re

p
a

ra
ti

o
n

6
.2

.1
 P

re
p

a
re

 p
ro

d
u

c
ts

 f
o

r
o

p
e

n
 s

o
u

rc
e

 l
ic

e
n

s
e

c
o

m
p

li
a

n
t

d
is

tr
ib

u
ti

o
n

6
.2

.2
 G

e
n

e
ra

te
 c

o
m

p
li

a
n

c
e

 a
rt

if
a
c

ts

6
.3

 R
e

le
a

s
e

 M
a

n
a
g

e
m

e
n

t

6
.3

.1
 M

a
n

a
g

e
 p

ro
d

u
c
t

re
le

a
s

e

6
.2

.1
 D

e
te

rm
in

e
 c

o
m

p
li

a
n

ce
 a

rt
if

a
ct

s
(6

.1
.1

.1
)

6
.2

.3
 P

ro
d

u
ct

 D
is

tr
ib

u
ti

o
n

(6
.1

.2
)

6
.2

.3
.1

 P
ro

v
id

e
 c

o
m

p
li

a
n

ce
 a

rt
if

a
ct

s
(6

.1
.2

.1
)

6
.2

.3
.2

 P
ro

v
id

e
 b

il
l-

o
f-

m
a

te
ri

a
ls

 u
si

n
g

 S
P

D
X

 f
o

rm
a

t

u
p

o
n

 c
u

st
o

m
e

r
re

q
u

e
st

(6
.1

.2
.2

)

6
.3

.1
 D

e
fi

n
e

 r
e

le
a

se
 m

a
n

a
g

e
m

e
n

t
p

ro
ce

ss

6
.3

.2
 D

e
fi

n
e

 r
e

le
a

se
 g

a
te

s
fo

r
o

p
e

n
 s

o
u

rc
e

 g
o

v
e

rn
a

n
ce

6
.3

.3
 C

o
m

m
u

n
ic

a
te

 r
e

le
a

se
 m

a
n

a
g

e
m

e
n

t
p

ro
ce

ss

6
.3

.4
 I

m
p

le
m

e
n

t
re

le
a

se
 m

a
n

a
g

e
m

e
n

t
p

ro
ce

ss

6
.3

.5
 E

st
a

b
li

sh
 r

e
le

a
se

 m
a

n
a

g
e

m
e

n
t

sy
st

e
m

d
is

tr
ib

u
ti
n
g
 c

o
p

y
ri

g
h
t

n
o
ti
c
e
s
 a

n
d
 o

p
e
n
 s

o
u
rc

e
 l
ic

e
n
s
e
 w

it
h

 r
e
le

a
s
e
d
 p

ro
d
u

c
ts

d
e
fi
n
in

g
 c

o
m

p
lia

n
c
e
 a

rt
if
a
c
ts

g
e
n
e

ra
ti
n

g
 c

o
m

p
lia

n
c
e

 a
rt

if
a
c
ts

 f
ro

m
 p

ro
d
u

c
t

a
rc

h
it
e
c
tu

re
 m

o
d
e

l

p
ro

v
id

in
g
 c

o
m

p
lia

n
c
e
 a

rt
if
a

c
ts

o
p
e
n

 s
o

u
rc

in
g

,
d
is

tr
ib

u
ti
n

g
 a

n
d
 h

o
s
ti
n

g
 o

w
n
 s

o
ft

w
a
re

,
if
 r

e
q

u
ir
e

d

Figure F.6: Handbook Implementaধon Arধfact at Case Study A – Overview of FLOSS Governance Processes on
Outbound Governance

393

F.2 Case Study A – FOSSology Report Excerpt from Division A.1

As observed in our theory evaluation in Case Study A, this artifact was created at Company

A following our theory’s best practices for getting started A.3.9 (Run open source use anal-

ysis in products) and A.3.4 (Select and use governance tools for automation). The artifact

was created after the first experimental run of open source use analysis in one product of

Division A.1 of Company A, using the open source compliance tool FOSSology.

FOSSology

Your Organization Gen Date: 2018/12/18 10:27:21 UTC FOSSology Ver:#4d6334-2018/12/07 12:20 UTC Page 1 of 7

OSS Component Clearing Report [Excerpt] at Division A.1, Company A

Clearing
Information

 Department FOSSology Generation

 Prepared by Employee X (employee_x)

 Reviewed by (opt.) NA

 Report release date 2018/12/18

Component
Information

 Community NA

 Component NA

 Version NA

Component hash (SHA-
1)

D2D346D1B90E4E1E0F7DB22CD92B6649DA7EF1C2

Release date NA

 Main license(s) Main License(s) Not selected.

 Other license(s) License(s) Not Identified.

 Fossology
Upload/Package Link

http://nas02fra:8081/repo/?mod=showjobs&upload=5

 SW360 Portal Link NA

 Result of License Scan 0BSD, AFL-2.0, AFL-2.1, XXXXXXXXXXX, AMD, ATT,
Apache, Apache-1.0, Apache-2.0, Artistic-1.0, Artistic-1.0-
Perl, Artistic-2.0, Autoconf-exception, BSD, BSD-2-
Clause, BSD-2-Clause-FreeBSD, BSD-2-Clause-NetBSD,
BSD-3-Clause, BSD-4-Clause, BSD-4-Clause-UC, BSD-
possibility, BSD-style, BSL-1.0, Bison-exception, Bison-
exception-2.2, CC-BY-NC-SA-3.0, CC-BY-ND-2.0, CC-
BY-SA, CC-BY-SA-3.0, CC0-1.0, CMU, CNRI-Python,
ClArtistic, Cryptogams, DOC, Dual-license, FSF, FTL,
Freeware, XXXXXXXXXXXXXXXX XXXXXXXXXXXX
XXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX
ZZZZXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXX

1. Assessment Summary

394

F
O

S
S

o
lo

g
y

Y
o

u
r

O
rg

an
iz

at
io

n
 G

en
 D

a
te

:
2

01
8

/1
2

/1
8

 1
0

:2
7

:2
1

U
T

C

F
O

S
S

o
lo

g
y

V
e

r:
#

4d
6

33
4

-2
01

8/
1

2
/0

7
12

:2
0

U
T

C
 P

a
g

e
 2

 o
f

7

T
he

 f
ol

lo
w

in
g

ta
b

le
 o

nl
y

co
nt

ai
ns

 s
ig

n
ifi

ca
nt

 o
b

lig
at

io
n

s,
 r

e
st

ric
tio

ns
 &

 r
is

ks
 fo

r
a

qu
ic

k
ov

er
vi

ew

 a
ll

ob
lig

a
tio

ns
,

re
st

ric
tio

ns
 &

 r
is

ks
 a

cc
or

di
ng

 to
 S

ec
tio

n
3

m
us

t
be

 c
on

si
de

re
d.

 G
en

er
al

 a
ss

e
ss

m
e

n
t

N
A

 S

o
u

rc
e

/
b

in
ar

y
in

te
g

ra
ti

o
n

n

o
te

s
 n

o
cr

iti
ca

l f
ile

s
fo

un
d,

 s
ou

rc
e

co
de

 a
nd

 b
in

a
rie

s
ca

n
b

e
us

ed
 a

s
is

 c

rit
ic

al
 fi

le
s

fo
un

d,
 s

ou
rc

e
co

de
 n

ee
d

s
to

 b
e

ad
ap

te
d

an
d

b
in

ar
ie

s
po

ss
ib

ly
 r

e-
b

ui
lt

 D
e

p
en

d
en

c
y

n
o

te
s

 n

o
d

ep
e

nd
e

nc
ie

s
fo

un
d,

 n
ei

th
er

 in
 s

ou
rc

e
co

de
 n

or
 in

 b
in

ar
ie

s

 d

ep
en

d
en

ci
es

 f
ou

n
d

in
 s

ou
rc

e
co

de
 (

se
e

 o
bl

ig
at

io
ns

)

 d

ep
en

d
en

ci
es

 f
ou

n
d

in
 b

in
ar

ie
s

(s
ee

 o
b

lig
a

tio
n

s)

 E

xp
o

rt
 r

e
st

ri
ct

io
n

s
 b

y
co

p
yr

ig
h

t
o

w
n

e
r

 n
o

ex
po

rt
 r

es
tr

ic
tio

ns
 f

ou
n

d

 e

xp
or

t r
e

st
ric

tio
ns

 f
ou

n
d

(s
ee

 o
bl

ig
at

io
ns

)

 R

e
st

ri
c

ti
o

n
s

 f
o

r
u

se
 (

e.
g

.
n

o
t

fo
r

N
u

cl
ea

r
P

o
w

er
)

b
y

co
p

yr
ig

h
t

o
w

n
e

r

 n
o

re
st

ric
tio

ns
 f

or
 u

se
 f

ou
n

d

 r

es
tr

ic
tio

ns
 f

or
 u

se
 fo

un
d

(s
ee

 o
bl

ig
at

io
ns

)

 A

d
d

it
io

n
al

 n
o

te
s

N
A

 G

en
er

al
 R

is
ks

 (
o

p
ti

o
n

a
l)

N

A

 2
.

R
e

q
u

ir
ed

 li
ce

n
s

e
 c

o
m

p
lia

n
ce

 t
a

s
ks

2
.1

.
C

o
m

m
o

n
 o

b
lig

a
tio

n
s,

 r
e

st
ri

ct
io

n
s

an
d

 r
is

ks
:

 T
he

re
 is

 a
 li

st
 o

f
co

m
m

on
 r

ul
e

s
w

hi
ch

 w
a

s
de

fin
e

d
to

 s
im

pl
ify

 th
e

T
o

-D
os

 fo
r

de
ve

lo
pm

en
t

an
d

di
st

rib
ut

io
n

.
T

he

fo
llo

w
in

g
lis

t c
on

ta
in

s
ru

le
s

fo
r

de
ve

lo
pm

e
nt

,
an

d
d

is
tr

ib
ut

io
n

w
hi

ch
 m

us
t a

lw
a

ys
 b

e
fo

llo
w

e
d!

2.
1.

1
 D

o
c

u
m

en
ta

ti
o

n
 o

f
lic

en
se

 c
o

n
d

it
io

n
s

an
d

 c
o

p
y

ri
g

h
t

n
o

ti
ce

s
in

 p
ro

d
u

ct
 d

o
cu

m
en

ta
ti

o
n

 (
L

ic
en

se

N
o

ti
ce

 F
ile

 /
R

E
A

D
M

E
_O

S
S

)
is

 p
ro

v
id

ed
 b

y
th

is
 c

o
m

p
o

n
en

t
cl

ea
ri

n
g

 r
ep

o
rt

:

2.
1.

2
 A

d
d

it
io

n
a

l C
o

m
m

o
n

 O
b

lig
at

io
n

s
:

N
ee

d
 t

o
 b

e
e

n
su

re
d

 b
y

th
e

d
is

tr
ib

u
ti

n
g

 p
a

rt
y:

2.
1.

3
 O

b
li

g
at

io
n

s
an

d
 r

is
k

as
s

es
sm

e
n

t
re

g
ar

d
in

g
 d

is
tr

ib
u

ti
o

n

 2
.2

.
A

d
d

iti
on

a
l o

b
lig

a
tio

n
s,

 r
es

tr
ic

tio
ns

 &
 r

is
ks

 b
e

yo
n

d
 c

o
m

m
o

n
ru

le
s

F
O

S
S

o
lo

g
y

Y
o

u
r

O
rg

an
iz

at
io

n
 G

en
 D

a
te

:
2

01
8

/1
2

/1
8

 1
0

:2
7

:2
1

U
T

C

F
O

S
S

o
lo

g
y

V
e

r:
#

4d
6

33
4

-2
01

8/
1

2
/0

7
12

:2
0

U
T

C
 P

a
g

e
 3

 o
f

7

in
cl

ud
e

d
O

S
S

 li
ce

ns
es

 (
ne

e
d

to
 g

et
 a

d
de

d
 m

an
ua

lly
 d

ur
in

g
co

m
po

ne
nt

 c
le

ar
in

g
p

ro
ce

ss
).

O
b

lig
at

io
n

L

ic
e

n
s

e
L

ic
e

n
s

e
s

ec
ti

o
n

 r
ef

e
re

n
ce

 a
n

d
 s

h
o

rt
 D

es
cr

ip
ti

o
n

 3
.

A
c

kn
o

w
le

d
g

e
m

en
ts

(R

e
fe

re
n

c
e

to
 t

h
e

 li
c

en
se

, T
ex

t
o

f
a

ck
n

o
w

le
d

g
em

en
ts

,
F

ile
 p

a
th

)

 4
.

E
xp

o
rt

 R
es

tr
ic

ti
o

n
s

T
h

e
co

n
te

n
t

o
f

th
is

 p
ar

a
g

ra
p

h
 is

 n
o

t
th

e
re

su
lt

 o
f

th
e

ev
a

lu
a

ti
o

n
 o

f
th

e
 e

x
p

o
rt

 c
o

n
tr

o
l e

xp
e

rt
s

 (
th

e
 E

C
C

N
).

It

 c
o

n
ta

in
s

in
fo

rm
at

io
n

 f
o

u
n

d
 b

y
th

e
sc

an
n

e
r

w
h

ic
h

 s
h

a
ll

b
e

ta
ke

n
 i

n
 c

o
n

si
d

e
ra

ti
o

n
 b

y
th

e
ex

p
o

rt
 c

o
n

tr
o

l
ex

p
er

ts
 d

u
ri

n
g

 t
h

e
 e

v
al

u
at

io
n

 p
ro

c
es

s.
 I

f
th

e
s

ca
n

n
er

 id
e

n
ti

fi
e

s
an

 E
C

C
N

 it
 w

ill
 b

e
 li

st
e

d
 h

e
re

. (
N

O
T

E
:

T
h

e
E

C
C

N
 is

 s
e

en
 a

s
an

 a
tt

ri
b

u
te

 o
f

th
e

co
m

p
o

n
en

t
re

le
as

e
an

d
 t

h
u

s
it

 s
h

al
l b

e
 p

re
s

en
t

in
 t

h
e

co
m

p
o

n
en

t
ca

ta
lo

g
u

e.

(S
ta

te
m

en
ts

,
C

o
m

m
e

n
ts

, F
ile

 p
a

th
)

 5
.

N
o

te
s

O
nl

y
su

ch
 s

o
ur

ce
 c

od
e

of
 t

hi
s

co
m

po
n

en
t m

ay
 b

e
us

ed
-

w

hi
ch

 h
as

 b
e

en
 c

he
ck

ed
 b

y
an

d
o

bt
ai

ne
d

vi
a

 th
e

 C
le

ar
in

g
C

en
te

r
or

w

hi
ch

 h
as

 b
e

en
 s

u
bm

itt
ed

 to
 C

le
ar

in
g

S
u

pp
or

t t
o

be
 c

h
ec

ke
d

O
th

er
 s

ou
rc

e
 c

od
e

 o
r

bi
na

rie
s

fr
om

 th
e

In
te

rn
e

t
m

u
st

 n
o

t
b

e
us

ed
.

 T
he

 f
ol

lo
w

in
g

ch
ap

te
rs

 a
re

 g
en

er
at

ed
 b

y
th

e
 s

ou
rc

e
co

de
 s

ca
nn

er
.

 5
.1

.
N

o
te

s
o

n
 in

d
iv

id
u

a
l f

ile
s

(L
ic

en
s

e
n

am
e,

 C
o

m
m

en
t

E
n

te
re

d
,

F
ile

 p
a

th
)

395

F
O

S
S

o
lo

g
y

Y
o

u
r

O
rg

an
iz

at
io

n
 G

en
 D

a
te

:
2

01
8

/1
2

/1
8

 1
0

:2
7

:2
1

U
T

C

F
O

S
S

o
lo

g
y

V
e

r:
#

4d
6

33
4

-2
01

8/
1

2
/0

7
12

:2
0

U
T

C
 P

a
g

e
 4

 o
f

7

6
.

R
e

su
lt

s
 o

f
L

ic
e

n
se

 S
ca

n

(S
ca

n
n

er
 c

o
u

n
t,

 C
o

n
cl

u
d

e
d

 li
c

en
s

e
c

o
u

n
t,

 L
ic

en
s

e
n

a
m

e)

99

0
0B

S
D

1
0

A
F

L-
2.

0

23

0
A

F
L-

2.
1

1
0

X
X

X
X

8
0

X
X

X
X

X
X

X

1
0

A
M

D

1
0

A
T

T

2
0

A
pa

ch
e

35

0
A

pa
ch

e
-1

.0

25

0
A

pa
ch

e
-2

.0

10
31

0

A
rt

is
tic

-1
.0

1
0

A
rt

is
tic

-1
.0

-P
er

l

2
0

A
rt

is
tic

-2
.0

68

0
A

ut
oc

o
nf

-e
xc

ep
tio

n

40
4

0

B
S

D

66

0
B

S
D

-2
-C

la
us

e

12

0
B

S
D

-2
-C

la
us

e-
F

re
eB

S
D

1
0

B
S

D
-2

-C
la

us
e-

N
et

B
S

D

29
9

0

B
S

D
-3

-C
la

us
e

57

0
B

S
D

-s
ty

le

64
1

0

D
ua

l-
lic

e
ns

e

27
0

0

F
S

F

73
7

0

X
X

X
X

X
X

X
X

X
X

X
X

X
X

16
90

0

M
IT

[E
xc

e
rp

t;
 4

 p
ag

es
 r

em
o

v
ed

]

F
O

S
S

o
lo

g
y

Y
o

u
r

O
rg

an
iz

at
io

n
 G

en
 D

a
te

:
2

01
8

/1
2

/1
8

 1
0

:2
7

:2
1

U
T

C

F
O

S
S

o
lo

g
y

V
e

r:
#

4d
6

33
4

-2
01

8/
1

2
/0

7
12

:2
0

U
T

C
 P

a
g

e
 5

 o
f

7

7
.

M
a

in
 L

ic
e

n
se

s

(L
ic

en
s

e
n

am
e,

 L
ic

e
n

s
e

 t
ex

t,
 F

il
e

p
a

th
)

 8
.

O
th

e
r

O
S

S
 L

ic
e

n
s

es
 (

re
d

)
-

sp
ec

if
ic

 o
b

li
g

a
ti

o
n

s

(L
ic

en
s

e
n

am
e,

 L
ic

e
n

s
e

 t
ex

t,
 F

il
e

p
a

th
)

 9
.

O
th

e
r

O
S

S
 L

ic
e

n
s

es
 (

ye
llo

w
)

-
ad

d
it

io
n

a
l

o
b

lig
at

io
n

s
 t

o
 c

o
m

m
o

n
 r

u
le

s
(e

.g
.

co
p

yl
e

ft
)

(L
ic

en
s

e
n

am
e,

 L
ic

e
n

s
e

 t
ex

t,
 F

il
e

p
a

th
)

 1
0.

 O
th

e
r

O
S

S
 L

ic
e

n
s

es
 (

w
h

it
e

)
-

o
n

ly
 c

o
m

m
o

n

ru
le

s
(L

ic
en

s
e

n
am

e,
 L

ic
e

n
s

e
 t

ex
t,

 F
il

e
p

a
th

)

 1
1.

 O
ve

rv
ie

w
 o

f
A

ll
L

ic
en

s
es

 w
it

h
 o

r
w

it
h

o
u

t
O

b
lig

at
io

n
s

(L
ic

en
s

e
S

h
o

rt
N

am
e

, O
b

li
g

at
io

n
)

 1
2.

 C
o

p
yr

ig
h

ts

(S
ta

te
m

en
ts

,
C

o
m

m
e

n
ts

, F
ile

 p
a

th
)

 s
rc

/k
er

ne
l.b

z2
/k

e
rn

e
l/a

p
al

is
-

tk
1

/u
sr

/in
cl

u
de

/li
bi

ca
l/i

ca
ls

s.
h

396

F
O

S
S

o
lo

g
y

Y
o

u
r

O
rg

an
iz

at
io

n
 G

en
 D

a
te

:
2

01
8

/1
2

/1
8

 1
0

:2
7

:2
1

U
T

C

F
O

S
S

o
lo

g
y

V
e

r:
#

4d
6

33
4

-2
01

8/
1

2
/0

7
12

:2
0

U
T

C
 P

a
g

e
 6

 o
f

7

 s

rc
/k

er
ne

l.b
z2

/k
e

rn
e

l/a
p

al
is

-
tk

1
/u

sr
/in

cl
u

de
/li

bi
ca

l/i
ca

lc
al

en
d

ar
.h

sr

c/
ke

rn
e

l.b
z2

/k
e

rn
e

l/a
p

al
is

-
tk

1
/u

sr
/in

cl
u

de
/li

bi
ca

l/i
ca

lfi
le

se
t.h

sr

c/
ke

rn
e

l.b
z2

/k
e

rn
e

l/a
p

al
is

-
tk

1
/u

sr
/in

cl
u

de
/li

bi
ca

l/i
ca

lm
es

sa
ge

.h

sr
c/

ke
rn

e
l.b

z2
/k

e
rn

e
l/a

p
al

is
-

tk
1

/u
sr

/in
cl

u
de

/li
bi

ca
l/i

ca
ls

et
.h

 s
rc

/k
er

ne
l.b

z2
/k

e
rn

e
l/a

p
al

is
-

tk
1

/u
sr

/in
cl

u
de

/li
nu

x/
ne

tf
ilt

e
r/

xt
_

A
U

D
IT

.h

 s

rc
/k

er
ne

l.b
z2

/k
e

rn
e

l/a
p

al
is

-
tk

1
/u

sr
/in

cl
u

de
/li

nu
x/

ne
tf

ilt
e

r/
xt

_
C

H
E

C
K

S
U

M
.h

 s
rc

/k
er

ne
l.b

z2
/k

e
rn

el
/a

p
al

is
-t

k1
/u

sr
/in

cl
ud

e
/g

st
re

am
er

-
0

.1
0

/g
st

/p
bu

til
s/

e
nc

od
in

g
-t

ar
ge

t.h

sr
c/

ke
rn

e
l.b

z2
/k

e
rn

e
l/a

p
al

is
-t

k1
/u

sr
/in

cl
ud

e
/g

st
re

am
er

-
1

.0
/g

st
/p

b
ut

ils
/e

n
co

di
n

g
-t

a
rg

et
.h

 s
rc

/k
er

ne
l.b

z2
/k

e
rn

e
l/a

p
al

is
-

tk
1

/u
sr

/s
ha

re
/X

1
1/

xk
b

/s
ym

b
ol

s/
h

u

 s
rc

/k
er

ne
l.b

z2
/k

e
rn

e
l/a

p
al

is
-t

k1
/u

sr
/in

cl
ud

e
/g

st
re

am
er

-
0

.1
0

/g
st

/p
bu

til
s/

e
nc

od
in

g
-p

ro
fil

e
.h

sr

c/
ke

rn
e

l.b
z2

/k
e

rn
e

l/a
p

al
is

-t
k1

/u
sr

/in
cl

ud
e

/g
st

re
am

er
-

1
.0

/g
st

/p
b

ut
ils

/e
n

co
di

n
g

-p
ro

fil
e.

h

 s

rc
/k

er
ne

l.b
z2

/k
e

rn
e

l/a
p

al
is

-
tk

1
/u

sr
/in

cl
u

de
/li

bs
oc

ke
tc

a
n.

h

 s

rc
/k

er
ne

l.b
z2

/k
e

rn
e

l/a
p

al
is

-t
k1

/u
sr

/in
cl

ud
e

/g
st

re
am

er
-

1
.0

/g
st

/c
od

ec
p

ar
se

rs
/g

st
h2

6
4p

ar
se

r.
h

 s

rc
/k

er
ne

l.b
z2

/k
e

rn
e

l/a
p

al
is

-t
k1

/u
sr

/in
cl

ud
e

/li
b

v4
l1

.h

sr
c/

ke
rn

e
l.b

z2
/k

e
rn

e
l/a

p
al

is
-t

k1
/u

sr
/in

cl
ud

e
/li

b
v4

l2
.h

sr

c/
ke

rn
e

l.b
z2

/k
e

rn
e

l/a
p

al
is

-
tk

1
/u

sr
/in

cl
u

de
/li

b
v4

lc
on

ve
rt

.h

 s

rc
/k

er
ne

l.b
z2

/k
e

rn
e

l/a
p

al
is

-t
k1

/u
sr

/in
cl

ud
e

/g
st

re
am

er
-

1
.0

/g
st

/c
od

ec
p

ar
se

rs
/g

st
h2

6
4p

ar
se

r.
h

 s

rc
/k

er
ne

l.b
z2

/k
e

rn
e

l/a
p

al
is

-
tk

1
/u

sr
/s

ha
re

/p
er

l5
/P

ar
se

/P
id

l/S
am

b
a4

/C
O

M
/H

ea
d

er
.p

m

 s

rc
/k

er
ne

l.b
z2

/k
e

rn
e

l/a
p

al
is

-
tk

1
/u

sr
/in

cl
u

de
/li

nu
x/

ne
tf

ilt
e

r/
xt

_
N

F
Q

U
E

U
E

.h

 s

rc
/k

er
ne

l.b
z2

/k
e

rn
e

l/a
p

al
is

-
tk

1
/u

sr
/s

ha
re

/p
er

l5
/P

ar
se

/P
id

l/O
D

L
.p

m

 s

rc
/k

er
ne

l.b
z2

/k
er

ne
l/a

pa
lis

-
tk

1
/u

sr
/in

cl
u

de
/li

nu
x/

nf
sa

cl
.h

 s
rc

/k
er

ne
l.b

z2
/k

e
rn

e
l/a

p
al

is
-

tk
1

/u
sr

/s
ha

re
/X

1
1/

xk
b

/s
ym

bo
ls

/r
o

 X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

 s

rc
/k

er
ne

l.b
z2

/k
e

rn
e

l/a
p

al
is

-
tk

1
/u

sr
/s

ha
re

/X
1

1/
xk

b
/s

ym
bo

ls
/h

u

 s

rc
/k

er
ne

l.b
z2

/k
e

rn
e

l/a
p

al
is

-
tk

1
/u

sr
/in

cl
u

de
/li

nu
x/

ne
tf

ilt
e

r/
xt

_
C

H
E

C
K

S
U

M
.h

sr

c/
ke

rn
e

l.b
z2

/k
e

rn
e

l/a
p

al
is

-
tk

1
/u

sr
/in

cl
u

de
/li

nu
x/

ne
tf

ilt
e

r_
ip

v4
/ip

t_
E

C
N

.h

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

 X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

 s

rc
/k

er
ne

l.b
z2

/k
e

rn
e

l/a
p

al
is

-
tk

1
/u

sr
/in

cl
u

de
/li

nu
x/

ne
tf

ilt
e

r/
xt

_
D

S
C

P
.h

sr

c/
ke

rn
e

l.b
z2

/k
e

rn
e

l/a
p

al
is

-
tk

1
/u

sr
/in

cl
u

de
/li

nu
x/

ne
tf

ilt
e

r/
xt

_
ec

n.
h

 s

rc
/k

er
ne

l.b
z2

/k
e

rn
e

l/a
p

al
is

-
tk

1
/u

sr
/s

ha
re

/X
1

1/
xk

b
/s

ym
bo

ls
/r

o

F
O

S
S

o
lo

g
y

Y
o

u
r

O
rg

an
iz

at
io

n
 G

en
 D

a
te

:
2

01
8

/1
2

/1
8

 1
0

:2
7

:2
1

U
T

C

F
O

S
S

o
lo

g
y

V
e

r:
#

4d
6

33
4

-2
01

8/
1

2
/0

7
12

:2
0

U
T

C
 P

a
g

e
 7

 o
f

7

 s

rc
/k

er
ne

l.b
z2

/k
e

rn
e

l/a
p

al
is

-
tk

1
/u

sr
/in

cl
u

de
/li

nu
x/

ne
tf

ilt
e

r/
xt

_
co

nn
tr

ac
k.

h

 X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

 s

rc
/k

er
ne

l.b
z2

/k
e

rn
e

l/a
p

al
is

-
tk

1
/u

sr
/in

cl
u

de
/li

nu
x/

ne
tf

ilt
e

r_
ip

v4
/ip

t_
T

T
L.

h

[e
xc

e
rp

t;
 1

20
0

+
 p

a
g

es
 r

em
o

v
ed

]
 1

3.
 B

u
lk

 F
in

d
in

g
s

(L

ic
en

s
e

n
am

e,
 L

ic
e

n
s

e
 t

ex
t,

 F
il

e
p

a
th

)

 1
4.

 N
o

n
 F

u
n

c
ti

o
n

a
l L

ic
en

se
s

e.
g

. /
te

st
 o

r
/e

xa
m

p
le

.

 1
5.

 I
rr

e
le

va
n

t
F

il
e

s
(P

at
h

,
F

ile
s

, L
ic

en
se

s
)

 1
5

.1
.

C
o

m
m

e
n

t
fo

r
Ir

re
le

va
nt

 f
ile

s

(L
ic

en
s

e
n

am
e,

 C
o

m
m

en
t

E
n

te
re

d
,

F
ile

 p
a

th
)

 1
6.

 C
le

ar
in

g
 P

ro
to

c
o

l
C

h
an

g
e

 L
o

g

L
as

t
U

p
d

a
te

 R
e

s
p

o
n

si
b

le

C
o

m
m

en
ts

397

F.3 Case Study B – Supplier Questionnaire on FLOSS Governance Maturity

As observed in our theory evaluation in Case Study B, this artifact was developed at Com-

pany B following our theory’s best practices B.3.2 (Assess open source governance and com-

pliance awareness and maturity) and B.3.3 (Request supplier certification or self-certification).

398

399

400

F.4 Case Study B – SPDX Requirements for Suppliers

As observed in our theory evaluation in Case Study B, this artifact was developed at Com-

pany B following our theory’s best practices B.4.7 (Identify open source components and

metadata from the supply chain) and B.4.10 (Use machine-readable and standard format

for BOM upon software supply).

401

402

403

F.5 Case Study B – Continuous Compliance Process

As observed in our theory evaluation in Case Study B, this artifact was developed at Com-

pany B following our theory’s best practices B.4.12 (Review identified open source com-

ponents and metadata for license compliance), B.4.13 (Review license obligations in the

context of supply chain management), and other practices including OSGOV-INBGOV-

COMAPP-1. Define the component approval process, presented in Table 3.9, and OSGOV-

OUTGOV-LICCOM-1. Ensure license compliance, presented in Table 3.18.

This artifact illustrated a proposed compliance process, developed by a compliance of-

ficer at Company B following the above-mentioned best practices from our theory, and

extending them aspiring to achieve continuous compliance. Our theory did not find this

to be an industry best practice, as many of the interviewed experts during theory building

deemed it to be unrealistic given the currently available compliance tools. Though we did

find that companies want to have tools to meet a requirement of continuous compliance, as

presented in our paper on industry requirements for FLOSS governance tools [68].

Figure F.7 presented one option of the proposed continuous compliance process at

Company B. Figure F.8 extended this process by adding the governance tools (both inter-

nally developed and third-party ones). Figure F.9 completed the process by adding pro-

posed auto-approval rules for process automation. Figure F.10 built upon the process by

linking Company B’s third-party (including open source) software component repository

(TP Vault) to the public Maven repository. Figure F.11 extended the process by adding a

central database for the third-party software component metadata.

The key legend for the above-mentioned figures included:

• iData – a Master Data Management system, which was used to manage Company

B’s product catalog. The catalog contained technical dependencies between different

404

products and their third-party products (TPP – third-party components including

open source software).

• PCI Scanner, which identified requested (known) TPPs and gave as output the scan-

ning results to be used to manage the BOM stored in iData repository.

• TP Vault – a Repository that contained requested TPPs (sources and binaries).

• TPP Fetcher – an internally developed tool that collected TPP metadata (compo-

nent names, versions, licenses, copyrights, etc.) from different sources within the

built environment. Sources could be dependency managers/declarations or source

code scans. It fetched TPP files (source code and binaries) that belonged to a TPP via

package managers. It uploaded TPP metadata and TPP files to the TPP Interface.

• TPP Interface – an internally developed tool that took TPP metadata to create re-

quests and uploaded TPP files to TP Vault, which triggered the TPP review process.

Figure F.7: Handbook Implementaধon Arধfact at Case Study B – Conধnuous Compliance Process Version 1

405

Figure F.8: Handbook Implementaধon Arধfact at Case Study B – Conধnuous Compliance Process Version 2

Figure F.9: Handbook Implementaধon Arধfact at Case Study B – Conধnuous Compliance Process Version 3

406

Figure F.10: Handbook Implementaধon Arধfact at Case Study B – Conধnuous Compliance Process Version 4

Figure F.11: Handbook Implementaধon Arধfact at Case Study B – Conধnuous Compliance Process Version 5

407

F.6 Case Study C – Tooling for FLOSS Governance and Compliance

As observed in our limited theory evaluation in Case Study C, this artifact was used at

Company C following our theory’s best practices A.3.4 (Select and use governance tools

for automation) and OSGOV-INBGOV-COMREU-12. Use tools to create, update and

maintain component repository (for tools focused on component reuse).

Fossology	

Fossology	is	one	of	the	popular	tools	for	OSS	compliance	and	focuses	on	detection	of	licenses,	copyrights,	or	export	controls	information.	The
basic	workflow	using	Fossology	is	dividable	in	the	following	steps:	

License	scanning	

To	detect	licenses,	copyrights,	or	export	controls	Fossology	using	different	pattern	recognition	methods.	

License	review/clearing	

One	of	the	key	features	of	FOSSology	is	the	user	interface	to	review	license	findings	in	order	to	determine	the	exact	licensing	of	a	file.	A	review	of
the	findings	is	necessary	because	the	unequivocal	detection	of	a	license	is	not	trivial.	For	instance,	the	license	text	can	be	modified	or	a	complete
unknown	license	is	detected.	The	review/clearing	results	are	stored	in	a	database	and	can	be	reused	for	other	scans.	

Report	generation	

In	the	last	step,	a	report	with	all	detected	components	with	their	licenses,	copyright,	and	export	restriction	information	can	be	created.	This	list	is
called	bill-of-materials	(BOM).	The	usual	representation	of	a	BOM	is	in	the	form	of	the	machine-readable	SPDX	standard.	

SW360	

SW360	on	the	other	hand,	helping	users	by	establishing	a	central	hub	for	software	components	in	an	organization.	SW360	allows	for	

tracking	components	used	by	a	project/product,
assessing	security	vulnerabilities,
maintaining	license	obligations,
enforcing	policies,	and
generating	legal	documents.
Integration	with	other	tools	and	data	sources	(e.g.	license	scanner,	static	code	analysis,	build	infrastructure,	etc.)	

SW360	doesn’t	provide	necessary	functionalities	for	license	clearing	by	itself;	instead,	it	can	trigger	a	clearing	process	in	FOSSology	and	import	the
resulting	clearing	reporting.	

The	is	another	example	where	different	compliance	tools	can	be	used	together,	or	depend	on	each	other,	e.g.,	OSS	Review	Toolkit	(ORT)	and
ScanCode.	

ScanCode	from	NexB	

ScanCode	is	another	popular	exemplar	of	a	license	scanner	like	Fossology,	with	similar	functionalities.	No	further	explanation	here	because	it’s
very	similar	to	Fossology.	

OSS	Review	Toolkit	
The	goal	of	the	OSS	Review	Toolkit	(ORT)	is	to	verify	Free	and	Open	Source	Software	license	compliance	by	checking	project	source	code	and
dependencies.	ORT	analyzing	the	source	code	for	dependencies,	downloading	the	source	code	of	the	dependencies,	scanning	all	source	code	for
license	information,	and	summarizing	the	results.	It	uses	data	from	a	projects	build	system	(Maven,	Gradle,	etc.)	to	determen	all	components	and
it’s	dependencies	and	for	the	actual	license	check	it	triggers	one	of	four	supported	license	scanner.	ScanCode	is	here	the	recommended	option.
ORT	also	using	SPDX	as	a	format	to	exchange	results	with	other	tools.	

ClearlyDefined	

Different	companies/people	perform	license	clearing	process	on	widely	used	components,	like	parts	from	the	Linux	kernel	or	open	source
frameworks.	To	eliminate	redundant	work,	initiatives	like	ClearlyDefined	provide	a	platform	to	share	clearing	results	beyond	company	borders.	At
the	moment	it’s	not	clear	how	many	companies	will	trust	someone	elses	results	and	provide	own	results	to	share	it	on	a	global	platform.

408

In parallel to using this tool comparison, Company C also used the list of the common

industry requirements for open source governance and compliance tools resulting from our

previous research [68]. Excerpts from this list of requirements are presented in Figure F.12

– tool requirements for tracking and reuse of FLOSS components, and in Figure F.13 – tool

requirements for license compliance of FLOSS components.

1. The tool should help users identify the use of FLOSS components in their code base.
a. The tool should allow reading in an existing code base.
b. The tool should allow automated finding of open source licenses in an existing code base.
c. The tool should allow automated finding of open source software checked-in and used by a company developer.
d. The tool should allow automated finding of open source software not checked-in, but used by a company developer.
e. The tool should allow automated finding of open source software that is part of the supplied proprietary software

using commonly accepted data exchange standards (such as SPDX).
f. The tool should allow automated finding of open source software that is part of the supplied proprietary software

using binary or source code scanning.

2. The tool should help users report the use of FLOSS components in a product architecture model.
a. The tool should allow creating a product architecture model to systematically record use of FLOSS components, their

metadata and component dependencies.
b. The tool should allow manual recording of metadata of the used FLOSS components.
c. The tool should allow confirming the metadata of FLOSS components identified automatically.
d. The tool should allow modifying the metadata of FLOSS components identified automatically.
e. The tool should allow removing the metadata of FLOSS components identified automatically.
f. The tool should allow automated reporting of a newly used FLOSS component within the build process and/or con-

tinuous integration process.
g. The tool should allow reporting undeclared use of FLOSS components and their metadata.

3. The tool should help users update FLOSS components and their metadata.
a. The tool should allow automated updates of FLOSS components to their newest available versions.
b. The tool should allow to back up the current versions of FLOSS components before updating them.
c. The tool should allow automated identification of changed metadata including FLOSS component license and copy-

right information.
d. The tool should allow automated history recording of FLOSS components and their metadata.

4. The tool should help users maintain bill of materials of the FLOSS components used in a product.
a. The tool should allow creating a formal bill of material using a commonly accepted data exchange standard (such as

SPDX).
b. The tool should allow automated generation of a formal bill of materials using company’s product architecture model.
c. The tool should allow developers to add identified and reported metadata on used FLOSS components into the formal

bill of materials.
d. The tool should allow developers to update the formal bill of materials.
e. The tool should allow automated generation of a bill of materials instance in a structured textual format.
f. The tool should allow automated generation of a bill of materials instance in a commonly accepted data exchange

standard (such as SPDX) format.

5. The tool should help users reuse FLOSS components that have already been used in a product.
a. The tool should allow creating a centralized and company-wide accessible FLOSS component repository.
b. The tool should allow automated adding of FLOSS components and their metadata into the repository using the

product architecture model.
c. The tool should allow automated updating of FLOSS components repository using the product architecture model.
d. The tool should allow all company developers to access the FLOSS components repository.
e. The tool should allow searching in the FLOSS component repository.
f. The tool should allow finding the company developers who used an FLOSS component from the repository.

Figure F.12: Handbook Implementaধon Arধfact at Case Study C – Tool Requirements for Tracking and Reuse of
FLOSS Components

409

1. The tool should help users interpret open source licenses.
a. The tool should allow user to document open source license interpretations using a formal language or notation

supported by the tool.
b. The tool should provide automated standard interpretation of the most common FLOSS licenses in company’s license

repository or license handbook.
c. The tool should allow users to modify license interpretation of the most common FLOSS licenses in company’s

license repository or license handbook.
d. The tool should allow users to add license interpretation of the FLOSS licenses of the used FLOSS components to

company’s license repository or license handbook.
e. The tool should allow users to change license interpretation in the license repository or license handbook.
f. The tool should allow developers to request license interpretation of a FLOSS license of an FLOSS component s/he

wants to use in a product.
g. The tool should allow open source program office to discuss license interpretation requests.
h. The tool should allow open source program office to fulfill license interpretation requests.

2. The tool should help users document the identified licenses of the used FLOSS components in the company’s open
source license repository or license handbook.
a. The tool should allow creating an open source license repository.
b. The tool should allow developers, lawyers and managers to read the open source license repository.
c. The tool should allow automated inventorying of known open source licenses from the product architecture model.
d. The tool should allow users to add new open source licenses into the open source license repository.
e. The tool should allow users to remove obsolete open source licenses from the open source license repository.
f. The tool should support the commonly accepted data exchange standards (such as SPDX).
g. The tool should allow users to search open source license information in the open source license.

3. The tool should help users find and document the unidentified licenses of the used FLOSS components in com-
pany’s open source license repository or license handbook.

a. The tool should allow software package scanning to find the open source licenses unidentified previously through
product architecture model.

b. The tool should allow source code scanning for the internally developed code to find the origin of used, but uniden-
tified open source code and its license.

c. The tool should allow source code scanning for the FLOSS components taken from FLOSS projects to find the origin
of used, but unidentified open source code and its license.

d. The tool should allow binary scanning for the FLOSS components that are part of the supplied proprietary software
components to find the origin of used, but unidentified open source code and its license.

e. The tool should allow automated inventorying of the open source licenses identified because of binary and source
code scanning.

f. The tool should allow manual changing the automatically identified open source licenses.
g. The tool should allow removing the automatically identified open source licenses.
h. The tool should support binary and source code scanning integration into the build process and/or continuous inte-

gration process.
i. The tool should allow finding and documenting copyright notices, export restriction information and other compli-

ance-related metadata for FLOSS components used in a product.

4. The tool should help users approve the use of a FLOSS component in a product based on FLOSS license compli-
ance guidelines.
a. The tool should allow creating white lists of company-approved FLOSS licenses according to company policy.
b. The tool should allow creating black lists of company-blocked FLOSS licenses according to company policy.
c. The tool should allow updating white and black lists of FLOSS licenses.
d. The tool should allow creating license interpretation-based rules for automated recommendation on component use

approval according to company policy.
e. The tool should allow developers to request approval of FLOSS components with previously unassessed licenses.
f. The tool should allow lawyers to approve or block use of FLOSS components due to license incompatibility with

company policy.
g. The tool should allow automated recording of FLOSS license approval decisions in company’s open source license

repository.

5. The tool should help users distribute a product that is compliant with the FLOSS licenses of the FLOSS compo-
nents used in that product.
a. The tool should allow automated generating of FLOSS license obligations for each product using product architecture

model and open source license repository.
b. The tool should allow automated assignment of tasks that will ensure compliance with FLOSS license obligations.
c. The tool should allow automated audit of product’s bill of materials before distribution.
d. The tool should allow manual audit of product’s bill of materials before distribution.
e. The tool should allow adjusting product’s bill of materials before distribution.

Figure F.13: Handbook Implementaধon Arধfact at Case Study C – Tool Requirements for License Compliance of
FLOSS Components

410

References

[1] Agerfalk, P. J., Deverell, A., Fitzgerald, B., & Morgan, L. (2006). State of the art and practice
of open source component integration. In 32nd EUROMICRO Conference on Software
Engineering and Advanced Applications (EUROMICRO’06) (pp. 170–177).: IEEE.

[2] Akkanen, J., Demeter, H., Eppel, T., Ivánfi, Z., Nurminen, J. K., & Stenman, P. (2007).
Reusing an open source application—practical experiences with a mobile crm pilot. In IFIP
International Conference on Open Source Systems (pp. 217–222).: Springer.

[3] Aksulu, A. & Wade, M. (2010). A comprehensive review and synthesis of open source re-
search. Journal of the Association for Information Systems, 11(11).

[4] Alspaugh, T. A., Asuncion, H. U., & Scacchi, W. (2009). Analyzing software licenses in open
architecture software systems. In Proceedings of the 2009 ICSE Workshop on Emerging Trends
in Free/Libre/Open Source Software Research and Development (pp. 54–57).: IEEE.

[5] Andersen-Gott, M., Ghinea, G., & Bygstad, B. (2012). Why do commercial companies con-
tribute to open source software? International Journal of Information Management, 32(2),
106–117.

[6] Ardagna, C. A., Banzi, M., Damiani, E., & Frati, F. (2010). Implementing open source soft-
ware governance in real software assurance processes. In International Conference of Software
Business (pp. 103–114).: Springer.

[7] Ayala, C., Hauge, Ø., Conradi, R., Franch, X., Li, J., & Velle, K. S. (2009). Challenges of the
open source component marketplace in the industry. In IFIP International Conference on
Open Source Systems (pp. 213–224).: Springer.

[8] Ayala, C. P., Cruzes, D., Hauge, Ø., & Conradi, R. (2011). Five facts on the adoption of open
source software. IEEE Software, 28(2), 95–99.

[9] Baskerville, R. L. & Wood-Harper, A. T. (1996). A critical perspective on action research as a
method for information systems research. Journal of Information Technoloং, 11(3), 235–246.

[10] Beamon, B. M. (2008). Sustainability and the future of supply chain management. Opera-
tions and Supply Chain Management, 1(1), 4–18.

[11] Beck, C. T. (1993). Qualitative research: The evaluation of its credibility, fittingness, and
auditability. Western Journal of Nursing Research, 15(2), 263–266.

411

[12] Berglund, E. & Priestley, M. (2001). Open-source documentation: in search of user-driven,
just-in-time writing. In Proceedings of the 19th Annual International Conference on Com-
puter Documentation (pp. 132–141).: ACM.

[13] Bitsch, V. (2005). Qualitative research: A grounded theory example and evaluation criteria.
Journal of Agribusiness, 23(345-2016-15096).

[14] Bitzer, J., Schrettl, W., & Schröder, P. J. (2007). Intrinsic motivation in open source software
development. Journal of Comparative Economics, 35(1), 160–169.

[15] Blecken, A. & Hellingrath, B. (2008). Supply chain management software for humanitarian
operations: review and assessment of current tools. Proceedings of the 5th ISCRAM, (pp.
342–351).

[16] Boldyreff, C., Nutter, D., Rank, S., et al. (2002). Architectural requirements for an open
source component and artefact repository system within genesis. InOpen Source Software
Development Workshop.

[17] Bonaccorsi, A., Giannangeli, S., & Rossi, C. (2006). Entry strategies under competing stan-
dards: Hybrid business models in the open source software industry. Management Science,
52(7), 1085–1098.

[18] Bonaccorsi, A. & Rossi, C. (2003). Why open source software can succeed. Research Policy,
32(7), 1243–1258.

[19] Brown, A. W. & Booch, G. (2002). Reusing open source software and practices: The impact
of open-source on commercial vendors. In International Conference on Software Reuse (pp.
123–136).: Springer.

[20] Calder, B. J., Phillips, L. W., & Tybout, A. M. (1982). The concept of external validity. Jour-
nal of Consumer Research, 9(3), 240–244.

[21] Capek, P. G., Frank, S. P., Gerdt, S., & Shields, D. (2005). A history of ibm’s open-source
involvement and strategy. IBM Systems Journal, 44(2), 249–257.

[22] Capra, E., Francalanci, C., & Merlo, F. (2008). An empirical study on the relationship be-
tween software design quality, development effort and governance in open source projects.
IEEE Transactions on Software Engineering, 34(6), 765–782.

[23] Capraro, M. & Riehle, D. (2017). Inner source definition, benefits, and challenges. ACM
Computing Surveys (CSUR), 49(4), 67.

[24] Cavaye, A. L. (1996). Case study research: a multi-faceted research approach for is. Informa-
tion Systems Journal, 6(3), 227–242.

[25] Chang, S., Lee, J., & Yi, W. (2010). A practical management framework for commercial
software development with open sources. In 2010 IEEE 7th International Conference on
E-Business Engineering (pp. 164–171).: IEEE.

412

[26] Chau, P. Y. & Tam, K. Y. (1997). Factors affecting the adoption of open systems: an ex-
ploratory study. MIS Quarterly, (pp. 1–24).

[27] Chen, W., Li, J., Ma, J., Conradi, R., Ji, J., & Liu, C. (2008). An empirical study on software
development with open source components in the chinese software industry. Software Pro-
cess: Improvement and Practice, 13(1), 89–100.

[28] Clements, P. C., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., & Stafford,
J. (2004). A practical method for documenting software architectures.

[29] Conlon, P. & Carew, P. (2005). A risk driven framework for open source information systems
development. In 1st International Conference on Open Source Systems (pp. 200–203).

[30] Cook, T. D., Campbell, D. T., & Peracchio, L. (1990). Quasi Experimentation. Consulting
Psychologists Press.

[31] Copenhaver, K. (2010). Open source policies and processes for inbound software. Interna-
tional Free and Open Source Software Law Review, 1(2), 143–154.

[32] Coughlan, S. (2017). The bid by openchain to transform the supply chain. IFOSS L. Rev., 9,
45.

[33] Coughlan, S., Noda, T., & Tansho, T. (2013). A case study of the collaborative approaches to
sustain open source business models. In Proceedings of the 9th International Symposium on
Open Collaboration: ACM.

[34] Crowston, K., Wei, K., Howison, J., & Wiggins, A. (2012). Free/libre open-source software
development: What we know and what we do not know. ACM Computing Surveys (CSUR),
44(2).

[35] Dahlander, L. & Magnusson, M. G. (2005). Relationships between open source software
companies and communities: Observations from nordic firms. Research Policy, 34(4), 481–
493.

[36] Dedrick, J. & West, J. (2003). Why firms adopt open source platforms: a grounded theory of
innovation and standards adoption. In Proceedings of the Workshop on Standard Making: A
Critical Research Frontier for Information Systems (pp. 236–257).

[37] Dedrick, J. & West, J. (2004). An exploratory study into open source platform adoption. In
Proceedings of the 37th Annual Hawaii International Conference on System Sciencॽ: IEEE.

[38] Denzin, N. K. & Lincoln, Y. S. (2011). The Sage Handbook of Qualitative Research. Sage.

[39] Deodhar, S. J., Saxena, K., & Ruohonen, M. (2010). Firm-oriented success factors of an open
source software (oss) product. In Proceedings of the 3rd International Workshop on Emerging
Trends in Free/Libre/Open Source Software Research and Development (pp. 1–4).: ACM.

[40] Deshpande, A. & Riehle, D. (2008). The total growth of open source. In IFIP International
Conference on Open Source Systems (pp. 197–209).: Springer.

413

[41] Dohrn, H. & Riehle, D. (2011). Design and implementation of the sweble wikitext parser:
unlocking the structured data of wikipedia. In Proceedings of the 7th International Sympo-
sium on Wikॾ and Open Collaboration (pp. 72–81).: ACM.

[42] Eisenhardt, K. M. (1989). Building theories from case study research. Academy of Manage-
ment Review, 14(4), 532–550.

[43] Enkel, E., Gassmann, O., & Chesbrough, H. (2009). Open r&d and open innovation: ex-
ploring the phenomenon. R&d Management, 39(4), 311–316.

[44] Fendt, O., Jaeger, M., & Serrano, R. J. (2016). Industrial experience with open source soft-
ware process management. In 2016 IEEE 40th Annual Computer Software and Applications
Conference (COMPSAC), volume 2 (pp. 180–185).: IEEE.

[45] Fink, A. (2003). The survey handbook. Sage Publications.

[46] Fitzgerald, B. (2006). The transformation of open source software. MIS Quarterly, (pp.
587–598).

[47] Franch Gutiérrez, J., Susi, A., Annosi, M. C., Ayala Martínez, C. P., Glott, R., Gross, D.,
Kenett, R., Mancinelli, F., Ramsany, P., Thomas, C., et al. (2013). Managing risk in open
source software adoption. In Proceedings of the 8th International Joint Conference on Soft-
ware Technologiॽ (ICSOFT 2013) (pp. 258–264).

[48] Francis, J. J., Johnston, M., Robertson, C., Glidewell, L., Entwistle, V., Eccles, M. P., &
Grimshaw, J. M. (2010). What is an adequate sample size? operationalising data saturation
for theory-based interview studies. Psycholoং and Health, 25(10), 1229–1245.

[49] Gamalielsson, J. & Lundell, B. (2016). On involvement in open standards: How do organisa-
tions contribute to w3c standards through editorship? In IFIP International Conference on
Open Source Systems (pp. 57–70).: Springer.

[50] Gamalielsson, J. & Lundell, B. (2017). On licensing and other conditions for contributing to
widely used open source projects: an exploratory analysis. In Proceedings of the 13th Interna-
tional Symposium on Open Collaboration: ACM.

[51] Gandhi, R., Germonprez, M., & Link, G. J. (2018). Open data standards for open source
software risk management routines: An examination of spdx. In Proceedings of the 2018
ACM Conference on Supporting Groupwork (pp. 219–229).: ACM.

[52] Gangadharan, G., D’Andrea, V., De Paoli, S., & Weiss, M. (2012). Managing license com-
pliance in free and open source software development. Information Systems Frontiers, 14(2),
143–154.

[53] German, D. & Di Penta, M. (2012). A method for open source license compliance of java
applications. IEEE Software, 29(3), 58–63.

414

[54] German, D. M. & Hassan, A. E. (2009). License integration patterns: Addressing license
mismatches in component-based development. In Proceedings of the 31st International Con-
ference on Software Engineering (pp. 188–198).: IEEE Computer Society.

[55] Germonprez, M., Young, B., Mathiassen, L., Kendall, J. E., Kendall, K. E., Warner, B., &
Cao, L. (2012). Risk mitigation in corporate participation with open source communities:
protection and compliance in an open source supply chain. Risk, 12, 15–2012.

[56] Gibbert, M., Ruigrok, W., & Wicki, B. (2008). What passes as a rigorous case study? Strategic
Management Journal, 29(13), 1465–1474.

[57] Glynn, E., Fitzgerald, B., & Exton, C. (2005). Commercial adoption of open source software:
an empirical study. In 2005 International Symposium on Empirical Software Engineering:
IEEE.

[58] Gobeille, R. (2008). The fossology project. In Proceedings of the International Working
Conference on Mining Software Repositoriॽ (pp. 47–50).: ACM.

[59] Goertz, G. & Mahoney, J. (2012). A tale of two culturॽ: Qualitative and quantitative research
in the social sciencॽ. Princeton University Press.

[60] Gordon, T. F. (2011). Analyzing open source license compatibility issues with carneades.
In Proceedings of the 13th International Conference on Artificial Intelligence and Law (pp.
51–55).: ACM.

[61] Guba, E. G. (1981). Criteria for assessing the trustworthiness of naturalistic inquiries. Ectj,
29(2).

[62] Guest, G., Bunce, A., & Johnson, L. (2006). How many interviews are enough? an experi-
ment with data saturation and variability. Field Methods, 18(1), 59–82.

[63] Hammouda, I., Mikkonen, T., Oksanen, V., & Jaaksi, A. (2010). Open source legality pat-
terns: architectural design decisions motivated by legal concerns. In Proceedings of the 14th
International Academic MindTrek Conference: Envisioning Future Media Environments
(pp. 207–214).: ACM.

[64] Hannebauer, C. & Gruhn, V. (2019). An open source pattern language. In Transactions on
Pattern Languagॽ of Programming IV (pp. 76–99). Springer.

[65] Hannebauer, C., Link, C., & Gruhn, V. (2014). Patterns for the distribution of power in floss
projects. In Proceedings of the 19th European Conference on Pattern Languagॽ of Programs:
ACM.

[66] Hannebauer, C., Wolff-Marting, V., & Gruhn, V. (2010). Towards a pattern language for
floss development. In Proceedings of the 17th Conference on Pattern Languagॽ of Programs:
ACM.

415

[67] Hannebauer, C., Wolff-Marting, V., & Gruhn, V. (2011). Contributor-interaction patterns in
floss development. In Proceedings of the 16th European Conference on Pattern Languagॽ of
Programs: ACM.

[68] Harutyunyan, N., Bauer, A., & Riehle, D. (2018). Understanding industry requirements
for floss governance tools. In I. Stamelos, J. M. Gonzalez-Barahoña, I. Varlamis, & D. Anag-
nostopoulos (Eds.), IFIP International Conference on Open Source Systems (pp. 151–167).:
Springer.

[69] Harutyunyan, N., Bauer, A., & Riehle, D. (2019). Industry requirements for floss governance
tools to facilitate the use of floss components in commercial products. Journal of Systems and
Software: Under Review.

[70] Harutyunyan, N. & Riehle, D. (2019a). Getting started with floss governance and compli-
ance: A theory of industry best practices. In Proceedings of the 15th International Symposium
on Open Collaboration: Forthcoming.

[71] Harutyunyan, N. & Riehle, D. (2019b). Industry best practices for floss governance and
component reuse. In Proceedings of the 23rd European Conference on Pattern Languagॽ of
Programs: Forthcoming.

[72] Hauge, Ø., Ayala, C., & Conradi, R. (2010). Adoption of open source software in software-
intensive organizations–a systematic literature review. Information and Software Technoloং,
52(11), 1133–1154.

[73] Hauge, Ø., Sørensen, C.-F., & Conradi, R. (2008). Adoption of open source in the software
industry. In IFIP International Conference on Open Source Systems (pp. 211–221).: Springer.

[74] Helmreich, M. (2011). Best practicॽ of adopting open source software in closed source software
products. PhD thesis, Diplomarbeit, Friedrich-Alexander-Universität Erlangen-Nürnberg.

[75] von Hippel, E. & von Krogh, G. (2003). Open source software and the “private-collective”
innovation model: Issues for organization science. Organization Science, 14(2), 209–223.

[76] Jaaksi, A. (2007). Experiences on product development with open source software. In IFIP
International Conference on Open Source Systems (pp. 85–96).: Springer.

[77] Jansen, H. (2010). The logic of qualitative survey research and its position in the field of social
research methods. Forum Qualitative Sozialforschung / Forum: Qualitative Social Research,
11(2).

[78] Jansen, S., Finkelstein, A., & Brinkkemper, S. (2009). A sense of community: A re-
search agenda for software ecosystems. In 2009 31st International Conference on Software
Engineering-Companion Volume (pp. 187–190).: IEEE.

[79] Jiang, Q., Qin, J., & Kang, L. (2015). A literature review for open source software studies. In
International Conference on HCI in Business (pp. 699–707).: Springer.

416

[80] Kapitsaki, G. M., Tselikas, N. D., & Foukarakis, I. E. (2015). An insight into license tools for
open source software systems. Journal of Systems and Software, 102, 72–87.

[81] Kaufmann, A. & Riehle, D. (2017). The qdacity-re method for structural domain modeling
using qualitative data analysis. Requirements Engineering, (pp. 1–18).

[82] Kemp, R. (2009). Towards free/libre open source software governance in the organization.
IFOSS L. Rev., 1.

[83] Kogut, B. & Metiu, A. (2001). Open-source software development and distributed innova-
tion. Oxford Review of Economic Policy, 17(2), 248–264.

[84] Koltun, P. (2011). Free and open source software compliance: An operational perspective.
IFOSS L. Rev., 3.

[85] Krefting, L. (1991). Rigor in qualitative research: The assessment of trustworthiness. The
American Journal of Occupational Therapy, 45(3), 214–222.

[86] Krivoruchko, J. (2007). The use of open source software in enterprise distributed computing
environments. In IFIP International Conference on Open Source Systems (pp. 277–282).:
Springer.

[87] von Krogh, G. & Spaeth, S. (2007). The open source software phenomenon: Characteristics
that promote research. The Journal of Strategic Information Systems, 16(3), 236–253.

[88] von Krogh, G. & von Hippel, E. (2006). The promise of research on open source software.
Management Science, 52(7), 975–983.

[89] Kuan, J. (2002). Open source software as lead user’s make or buy decision: a study of open
and closed source quality. Stanford Institute for Economic Policy Research, Stanford Univer-
sity.

[90] Lau, K.-K. & Wang, Z. (2007). Software component models. IEEE Transactions on Software
Engineering, 33(10), 709–724.

[91] Lee, S.-Y. T., Kim, H.-W., & Gupta, S. (2009). Measuring open source software success.
Omega, 37(2), 426–438.

[92] Leonard, L. (2010). Floss strategic thinking: a proposed framework to support strategic
decision for commercial open source companies. In 4th FLOSS International Workshop on
Free/Libre Open Source Software, Jena, Germany.

[93] Lerner, J. & Tirole, J. (2005). The economics of technology sharing: Open source and be-
yond. Journal of Economic Perspectivॽ, 19(2), 99–120.

[94] Li, J., Conradi, R., Slyngstad, O. P., Torchiano, M., Morisio, M., & Bunse, C. (2008). A
state-of-the-practice survey of risk management in development with off-the-shelf software
components. IEEE Transactions on Software Engineering, 34(2), 271–286.

417

[95] Li, Y., Tan, C.-H., & Teo, H.-H. (2012). Leadership characteristics and developers’ motiva-
tion in open source software development. Information & Management, 49(5), 257–267.

[96] Lin, L. C.-H. & Shen, N. (2019). Copyleft referring to gpl-3.0 was cited as a defense method
in chinese intellectual property court in beijing. International Free and Open Source Software
Law Review, 10(1), 1–7.

[97] Lincoln, Y. S. & Guba, E. G. (1985). Establishing trustworthiness. Naturalistic inquiry, 289.

[98] Link, C. (2010). Patterns for the commercial use of open source: legal and licensing aspects.
In Proceedings of the 15th European Conference on Pattern Languagॽ of Programs: ACM.

[99] Lombard, M., Snyder-Duch, J., & Bracken, C. C. (2002). Content analysis in mass communi-
cation: Assessment and reporting of intercoder reliability. Human Communication Research,
28(4), 587–604.

[100] López, L., Costal, D., Ayala, C. P., Franch, X., Annosi, M. C., Glott, R., & Haaland, K.
(2015). Adoption of oss components: a goal-oriented approach. Data & Knowledge En-
gineering, 99, 17–38.

[101] Lovejoy, J., Odence, P., & Lamons, S. (2013). Advancing the software package data exchange:
An update on spdx. International Free and Open Source Software Law Review, 5(2), 145–152.

[102] Lundell, B. & Gamalielsson, J. (2013). Open standards and open source in swedish schools:
On promotion of openness and transparency. In IFIP International Conference on Open
Source Systems (pp. 207–221).: Springer.

[103] Lundell, B., Lings, B., & Lindqvist, E. (2006). Perceptions and uptake of open source in
swedish organisations. In IFIP International Conference on Open Source Systems (pp. 155–
163).: Springer.

[104] Lundell, B., Lings, B., & Lindqvist, E. (2010). Open source in swedish companies: where are
we? Information Systems Journal, 20(6), 519–535.

[105] Madanmohan, T. et al. (2004). Notice of violation of ieee publication principles open source
reuse in commercial firms. IEEE Software, 21(6), 62–69.

[106] Mancinelli, F., Boender, J., Di Cosmo, R., Vouillon, J., Durak, B., Leroy, X., & Treinen, R.
(2006). Managing the complexity of large free and open source package-based software distri-
butions. In 21st IEEE/ACM International Conference on Automated Software Engineering
(ASE’06) (pp. 199–208).: IEEE.

[107] Markus, M. L. (2007). The governance of free/open source software projects: monolithic,
multidimensional, or configurational? Journal of Management & Governance, 11(2), 151–163.

[108] Mateos-Garcia, J. & Steinmueller, W. E. (2008). The institutions of open source software:
Examining the debian community. Information Economics and Policy, 20(4), 333–344.

418

[109] Mays, N. & Pope, C. (1995). Qualitative research: rigour and qualitative research. Bmj,
311(6997), 109–112.

[110] McGrath, J. E. (1981). Dilemmatics: The study of research choices and dilemmas. American
Behavioral Scientist, 25(2), 179–210.

[111] Merilinna, J. & Matinlassi, M. (2005). Assessing the role of open source software in the eu-
ropean secondary software sector: a voice from industry. In 1st International Conference on
Open Source Systems.

[112] Miles, M. B., Huberman, A. M., Huberman, M. A., & Huberman, M. (1994). Qualitative
data analysॾ: An expanded sourcebook. Sage Publications.

[113] Morgan, L. & Finnegan, P. (2010). Open innovation in secondary software firms: an ex-
ploration of managers’ perceptions of open source software. ACM SIGMIS Database: the
DATABASE for Advancॽ in Information Systems, 41(1), 76–95.

[114] Morse, J. M., Barrett, M., Mayan, M., Olson, K., & Spiers, J. (2002). Verification strategies
for establishing reliability and validity in qualitative research. International Journal of Quali-
tative Methods, 1(2), 13–22.

[115] Munga, N., Fogwill, T., & Williams, Q. (2009). The adoption of open source software in
business models: a red hat and ibm case study. In Proceedings of the Annual Research Confer-
ence of the South African Institute of Computer Scientists and Information Technologists (pp.
112–121).: ACM.

[116] Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., & Ye, Y. (2002). Evolution patterns
of open-source software systems and communities. In Proceedings of the International Work-
shop on Principlॽ of Software Evolution (pp. 76–85).: ACM.

[117] O’Mahony, S. (2007). The governance of open source initiatives: what does it mean to be
community managed? Journal of Management & Governance, 11(2), 139–150.

[118] O’Mahony, S. & Ferraro, F. (2007). The emergence of governance in an open source commu-
nity. Academy of Management Journal, 50(5), 1079–1106.

[119] O’Reilly, M. & Parker, N. (2013). ’unsatisfactory saturation’: a critical exploration of the
notion of saturated sample sizes in qualitative research. Qualitative Research, 13(2), 190–197.

[120] Pearson, H. E. (2000). Open source licences: Open source—the death of proprietary sys-
tems? Computer Law & Security Review, 16(3), 151–156.

[121] Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science
research methodology for information systems research. Journal of Management Information
Systems, 24(3), 45–77.

[122] Peters, S. (2010). Best practices for creating an open source policy.

419

[123] Popp, K. M. (2015). Best Practicॽ for commercial use of open source software: Business models,
processॽ and tools for managing open source software. BoD–Books on Demand.

[124] Poslad, S., Buckle, P., & Hadingham, R. (2000). The fipa-os agent platform: Open source
for open standards. In Proceedings of the 5th International Conference and Exhibition on the
Practical Application of Intelligent Agents and Multi-Agents, volume 355.

[125] Riehle, D. (2007). The economic motivation of open source software: Stakeholder perspec-
tives. Computer, 40(4), 25–32.

[126] Riehle, D. (2009). The commercial open source business model. In SIGeBIZ Track of the
Americॼ’ Conference on Information Systems (pp. 18–30).: Springer.

[127] Riehle, D. (2011). Lessons learned from using design patterns in industry projects. In Trans-
actions on Pattern Languagॽ of Programming II (pp. 1–15). Springer.

[128] Riehle, D. & Harutyunyan, N. (2017). Legal aspects – open source license compliance in soft-
ware supply chains. In B. Fitzgerald, A. Mockus, & M. Zhou (Eds.),No.099 Towards Engi-
neering Free/Libre Open Source Software (FLOSS) Ecosystems for Impact and Sustainability:
NII Shonan Meeting.

[129] Riehle, D. & Lempetzeder, B. (2014). Erfolgsmethoden der Open-Source-Governance und-
Compliance. Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU).

[130] Ritchie, J., Lewis, J., Nicholls, C. M., Ormston, R., et al. (2013). Qualitative research practice:
A guide for social science students and researchers. Sage Publications.

[131] Ruffin, C. & Ebert, C. (2004). Using open source software in product development: A
primer. IEEE Software, 21(1), 82–86.

[132] Runeson, P. & Höst, M. (2009). Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering, 14(2).

[133] Russell, C. K. & Gregory, D. M. (2003). Evaluation of qualitative research studies. Evidence-
Based Nursing, 6(2), 36–40.

[134] Saini, S. K., Krishnan, C., & Rajaram, L. (2010). open source adoption index: quantifying
foss adoption by an organisation. International Journal of Open Source Software and Processॽ
(IJOSSP), 2(3), 48–60.

[135] Schöttle, H. & Steger, U. (2015). Managing open source software in the corporate environ-
ment. Computer Law Review International, 16(1), 1–7.

[136] Schreiber, A. & Haupt, C. (2017). Sharing knowledge about open source licenses at dlr. In
Proceedings of the 13th International Symposium on Open Collaboration: ACM.

[137] Shaikh, M. & Cornford, T. (2009). Innovating with open-sourcing: governance concerns for
managers. In Proceedings of the 15th Americॼ’ Conference on Information Systems.

420

[138] Shenton, A. K. (2004). Strategies for ensuring trustworthiness in qualitative research
projects. Education for Information, 22(2), 63–75.

[139] Stam, W. (2009). When does community participation enhance the performance of open
source software companies? Research Policy, 38(8), 1288–1299.

[140] Stewart, K., Odence, P., & Rockett, E. (2010). Software package data exchange (spdx) specifi-
cation. IFOSS L. Rev., 2.

[141] Stol, K.-J. & Ali Babar, M. (2010). Challenges in using open source software in product
development: a review of the literature. In Proceedings of the 3rd International Workshop
on Emerging Trends in Free/Libre/Open Source Software Research and Development (pp.
17–22).: ACM.

[142] Tapia, L. M., López, L., Ayala, C. P., & Annosi, M. C. (2015). Towards an oss adoption busi-
ness impact assessment. In IFIP Working Conference on The Practice of Enterprise Modeling
(pp. 289–305).: Springer.

[143] Ternier, S., Verbert, K., Parra, G., Vandeputte, B., Klerkx, J., Duval, E., Ordonez, V., &
Ochoa, X. (2009). The ariadne infrastructure for managing and storing metadata. IEEE
Internet Computing, 13(4), 18–25.

[144] Torkar, R., Minoves, P., & Garrigós, J. (2011). Adopting free/libre/open source software
practices, techniques and methods for industrial use. Journal of the Association for Informa-
tion Systems, 12(1).

[145] Trochim, W. M. (1989). Outcome pattern matching and program theory. Evaluation and
Program Planning, 12(4), 355–366.

[146] Trochim, W. M. (2006). Qualitative measures. Research Measurॽ Knowledge Base, 361,
29–31.

[147] Umarji, M., Sim, S. E., & Lopes, C. (2008). Archetypal internet-scale source code searching.
In IFIP International Conference on Open Source Systems (pp. 257–263).: Springer.

[148] Wang, H. & Wang, C. (2001). Open source software adoption: A status report. IEEE Soft-
ware, 18(2), 90–95.

[149] Webster, J. & Watson, R. T. (2002). Analyzing the past to prepare for the future: Writing a
literature review. MIS Quarterly, (pp. xiii–xxiii).

[150] Weiss, M. (2010). Profiting from open source. In Proceedings of the 15th European Conference
on Pattern Languagॽ of Programs, EuroPLoP ’10 (pp. 5:1–5:8).: ACM.

[151] Weiss, M. (2018). Business of open source: A case study of integrating existing patterns
through narratives. In Proceedings of the 23rd European Conference on Pattern Languagॽ
of Programs, EuroPLoP ’18 (pp. 23:1–23:4).: ACM.

421

[152] West, J. (2003). How open is open enough?: Melding proprietary and open source platform
strategies. Research Policy, 32(7), 1259–1285.

[153] West, J. et al. (2007). The economic realities of open standards: Black, white and many shades
of gray. Standards and Public Policy, 87.

[154] West, J. & Gallagher, S. (2004). Key challenges of open innovation: lessons from open source
software. San Jose State College of Business, mimeo.

[155] von Willebrand, M. & Patanen, M.-P. (2010). Package review as a part of free and open
source software compliance. IFOSS L. Rev., 2.

[156] Wolff-Marting, V., Hannebauer, C., & Gruhn, V. (2013). Patterns for tearing down contri-
bution barriers to floss projects. In 2013 IEEE 12th International Conference on Intelligent
Software Methodologiॽ, Tools and Techniquॽ (SoMeT) (pp. 9–14).: IEEE.

[157] Yin, R. K. (2017). Case study research and applications: Design and Methods. Sage Publica-
tions.

[158] Zhu, S. (2007). Patent rights under foss licensing schemes. Shidler Journal of Law, Com-
merce & Technoloং, 4(1).

[159] Zimmermann, J.-B. & Jullien, N. (2007). Free/libre/open source software: lessons for in-
tellectual property rights management in a knowledge-based economy. The Icfai Journal of
Cyber Law, 6(3), 19–36.

422

This thesis was typeset using LATEX,
originally developed by Leslie Lamport
and based on Donald Knuth’s TEX. The

body text is set in 11 point Egenolff-Berner Gara-
mond, a revival of Claude Garamont’s humanist
typeface. The above illustration, “Science Ex-
periment 02”, was created by Ben Schlitter
and released under cc by-nc-nd 3.0. A tem-
plate that can be used to format a PhD thesis
with this look and feel has been released under
the permissive mit (x11) license, and can be
found online at github.com/suchow/Dissertate
or from its author, Jordan Suchow, at su-
chow@post.harvard.edu. This template was
adapted for Friedrich-Alexander-University
Erlangen-Nuremberg (FAU) by Nikolay Haru-
tyunyan. You can get the source code to this
template on Overleaf or from him, at niko-
lay.harutyunyan [at] fau.de.

423

http://creativecommons.org/licenses/by-nc-nd/3.0/
https://github.com/suchow/Dissertate
mailto:suchow@post.harvard.edu
mailto:suchow@post.harvard.edu
https://www.overleaf.com/latex/templates/phd-dissertation-and-doktorarbeit-latex-template-for-fau-friedrich-alexander-universitat-erlangen-nurnberg/tpmfykhzbkpz

	Introduction
	Publications
	Dissertation Structure

	State of The Art
	Overview
	Research Question
	Research Method
	Risks of Open Source Use in Companies
	Open Source Governance in Companies

	Theory of Industry Best Practices for Open Source Governance
	Overview
	Research Question
	Research Method
	Industry Best Practices for Corporate Open Source Governance

	Theory Evaluation
	Overview
	Research Question
	Research Method
	Case Study A
	Case Study B
	Case Study C

	Conclusion
	Discussion
	Limitations

	Appendix Selected Practices for Getting Started
	Transition Organization
	Transition Policy
	Product Analysis
	IP-at-Risk Analysis
	Communication and Capabilities

	Appendix Selected Practices for Supply Chain Management
	Supply Chain Management Policy
	Supply Chain Management Process
	Preventive Governance
	Corrective Governance

	Appendix Data Gathering – Interview Questions
	Interview Questions – Expert Interviews for Theory Building
	Interview Questions – Situation Assessment for Theory Evaluation
	Interview Questions – Theory Evaluation after Handbook Implementation

	Appendix Qualitative Data Analysis – Code Systems
	QDA Code System – Literature Review
	QDA Code System – Theory Building

	Appendix Evaluation Case Study Protocol
	Protocol Summary
	Case Study Overview
	Data Collection Procedures
	Data Collection Questions
	Case Study Reporting

	Appendix Handbook Implementation Artifacts
	Case Study A – Overview of FLOSS Governance Processes
	Case Study A – FOSSology Report Excerpt from Division A.1
	Case Study B – Supplier Questionnaire on FLOSS Governance Maturity
	Case Study B – SPDX Requirements for Suppliers
	Case Study B – Continuous Compliance Process
	Case Study C – Tooling for FLOSS Governance and Compliance

	References

