
Friedrich-Alexander-Universität Erlangen-Nürnberg

Technische Fakultät, Department Informatik

HANNES FLEISCHER

BACHELOR THESIS

APPLYING EVENT-DRIVEN

ARCHITECTURE IN THE JVALUE ODS

Submitted on 13 July 2020

Supervisor: Prof. Dr. Dirk Riehle, M.B.A.
Professur für Open-Source-Software
Department Informatik, Technische Fakultät
Friedrich-Alexander-Universität Erlangen-Nürnberg

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen,
die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 13 July 2020

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 13 July 2020

i

https://creativecommons.org/licenses/by/4.0/

Abstract

In a world of Big Data and data transparency “open data” might not be con-
sidered as an unknown term anymore. As the name suggests, it describes data
that is commonly available and free to use for everyone.

The vision of the software “JValue Open Data Software (ODS)” is to provide
a solid solution for the community to achieve data availability and homogeneity
in representation regarding open data. With the provision of an user interface to
configure the way open data is extracted and how it is presented, ETL (Extract-
Transform-Load) processes are exceedingly facilitated.

The challenges of scaling large for a platform, based on a software orientated
architecture, demand a solution that can handle a large set of interactions. The
purpose of this thesis is to apply an “Event-Driven Architecture” to the already
existing model of the software in order to fulfil these requirements. This is done
by reevaluating the current software design that is composed of distributed Mi-
croservices and identify events of its current architecture with a technique called
“Event-Storming”. The results will be applied to an architecture design that will
be implemented in the “JValue ODS”.

ii

Contents

1 Introduction 1

2 Fundamentals 3
2.1 Domain Driven Design . 3

2.1.1 Definition . 3
2.1.2 Domain and Bounded Context 3
2.1.3 Ubiquitous language . 4
2.1.4 Layered Architecture . 4
2.1.5 Model-Driven Design . 5

2.2 microservices . 7
2.2.1 Definition . 7
2.2.2 Characteristics . 8
2.2.3 Structure . 9
2.2.4 Communication . 10
2.2.5 Analysis . 12

2.3 JValue ODS . 14
2.3.1 Definition . 14
2.3.2 Structure . 14
2.3.3 Components . 15
2.3.4 Process Flow . 18

2.4 Event-Driven Architecture . 20
2.4.1 Definition . 20
2.4.2 Elements . 20
2.4.3 Topologies . 22
2.4.4 Event-Based Patterns . 24

3 Requirements 26
3.1 Functional . 26
3.2 Non-Functional . 27

4 Architecture Design 28
4.1 Analysis with Event-Storming . 28

iii

4.1.1 Definition . 29
4.1.2 Procedure . 30
4.1.3 Results . 31

4.2 Event-Based Design of ODS . 34
4.2.1 Technology Considerations 34
4.2.2 Architecture . 35
4.2.3 Choreography . 40
4.2.4 Evaluation . 42

5 Implementation 43
5.1 Iteration 1: Transformation-Notification segregation 43
5.2 Iteration 2: Introduction of config databases 44
5.3 Iteration 3: Deletion of pipeline repository 46
5.4 Iteration 4: Transformation-notification communication 47
5.5 Iteration 5: Adapter-transformation communication 48
5.6 Iteration 6: Storage-Transformation communication 49
5.7 Iteration 5: Adapter-scheduler communication 51

6 Evaluation 52
6.1 Requirements . 52

6.1.1 Functional . 52
6.1.2 Non-functional . 53

6.2 Scalability . 54
6.3 Further improvements . 54

Appendices 55
Appendix A Event storming workshop 55
Appendix B Event driven architecture - Scaled 56

References 63

iv

Acronyms

AMQP Advanced Message Queuing Protocol. 35

API Application Programming Interface. 11, 13–15, 25, 34, 38, 49–52, 54

CI Continuous Integration. 8, 9

CQRS Command-Query Responsibility Segregation. 25, 49

CRUD Create-Request-Update-Delete Operations. 39, 45, 51

CUD Create-Update-Delete Operations. 25, 38, 39, 50

DDD Domain Driven Design. 3, 4, 29, 44

DDL Data Definition Language. 49

DevOPS Development Operations. 8, 9

DML Data Modeling Language. 50

EDA Event-Driven Architecture. 2, 20, 40

EERM Enhanced Relationship-Entity Model. 37

ODS Open Data Service. 27, 32, 35–37, 41, 43, 47, 48, 53, 54, 62

REST Representational State Transfer. 11, 13–16, 35, 38–41, 49–52

RPC Remote Proceedure Calls. 11

SJON JavaScript Object Notation. 14, 15, 45, 46

v

1 Introduction

Nowadays more and more importance gets attached to data transparancy and
knowledge exchange, resulting in a demand for provisioning of data for general
welfare purposes. Therefore an increasing amount of establishments is providing
open data to satisfy these needs. Open data describes data, that is commonly
available and free to use for everyone and is the main subject of JValue Open
Data Service .
This software supports open data consumers when it comes to extracting and
maintaining this data from various web services. It provides a platform for the
general public to gain unified control over the ETL-Processes (Extract-Transform-
Load) regarding the obtainment of open data from web interfaces, such as REST-
ful Application Programming Interfaces (APIs).

Extract - To accomplish higher availability this service not only stores already
aquired data sets, it also enables the operators to choose a frequency to update
the persistent data with data from related sources, giving the opportunity to re-
spond to quota restrictions and to counteract scheduled downtimes.

Transform - Furthermore it reduces the efforts of handling various data rep-
resentations, such as XML or JSON, from several sources by giving the user the
opportunity to choose the structure of the data to be received. As a consequence
a consuming application no longer has to take care of covering multiple formats
when aquiring data from different sources, in order to achieve a specific goal.

Load - While many of these applications only use a specific share of the res-
ult sets from web service calls, they might suffer from efficiency losses, due to
having to deal with data, they do not utilize. A solution for this problem is given
by JValue ODS by serving a built-in and easy-to-use filter mechanism. It enables
users to apply filters, in order to retain or omit data sections within the responses
of open data webservices. This feature not only simplifies the processing of the
data in applications, it enhances performance by decreasing webservice response
timings when using JValue ODS as intermediate platform, resulting in an in-
crease of “reponsiveness“.

1

Its structure is composed of different Microservices, whereas every of these com-
ponents serves a specific purpose, contributing to the core functionality of the
whole application.
With its architecture design JValue ODS follows the trend of modularizing “old-
fashioned“ monolithic software structures to a coherent set of services, that rep-
resent specific all functional aspects the application. Many design patterns have
emerged from this proceeding with the intention to provide a more beneficial
solution, in terms of exchangability, scalability and robustness.
One particular pattern, this thesis is paying attention to, is the Event-Driven
Architecture (EDA) in the context of JValue ODS. As Microservices describes
the segmentation of software to isolated services, EDA is more concerned about
the communication between these.

The current design of the software, regarding the inter-service communication,
led to the consideration of a more flexible and scalable message system solution.
The goal this thesis is trying to achieve is to move from the current orchestra-
tion or respectively communication mechanism of JValue ODS to a event driven
choreography. This is done by analysing the current architecture and communic-
ation patterns with a technique called Event-Storming Workshop. The results
of this workshop can be derived to establish a new architecture that encloses
event-based messaging and serves as the basis for the implementation. It will fur-
thermore investigate critical paths in the messaging flow, in order to substitude
the communication patterns efficiently. The results of the implementation will be
evaluated by executing stress tests, regarding the communication, to the former
and new architecture and putting them into comparison.

2

2 Fundamentals

2.1 Domain Driven Design

As the Structure of the Jvalue Open Data Service is, to some extent, created
by Domain Driven Design and the technique to identify events of its current
architecture (Event-Storming) refers to it, a definition of this design pattern is
required.

2.1.1 Definition

Domain Driven Design (DDD) is a technique for designing complex software by
closing the knowledge gap between software developers and domain experts, such
as project owners, business analysts, stakeholders, etc. in order to build mean-
ingful models, that reflect business logic. It was first proposed by Eric Evans in
his work “Domain-Driven Design: Tackling Complexity in the Heart of Software“
and aims at providing more transparency to all participants of a software project,
as well as designing flexible and robust software architectures. It can furthermore
be understood as a way of thinking and a set of priorities, aimed at accelerat-
ing software projects that have to deal with complicated domains [Eva04]. This
modeling approach helps explaining complex relations on an abstract level by de-
termining delimited boundaries and facilitates the design of an evolving software
architecture that is a projection of core business concepts.

2.1.2 Domain and Bounded Context

A domain is, per definition, a “sphere of knowledge“ and should be the primary
focus for most software projects, when it comes to reducing complexity, according
to Evans [Eva04]. In the context of an software application, domains can be
determined by problems and objectives that have to be solved. A domain can
furthermore divided into Subdomains that represent areas of capability, define
business processes and represent functionality of a system [MT15].
Subdomains can moreover differentiated by three categories.

3

Core Domain - DDD mainly focuses on Core Domains, which are part of
the business domain that represent the main purpose of the system. Primary
importance is attached to this Subdomain due to having significant impact on
the success of an organization [Ver13, p. 71].

Supporting Subdomain - These domains are essential for the business, but
do not represent he core business logic. They rather have a supporting function
for the Core Domain.

Generic Subdomain - A Generic Subdomain captures nothing special to the
business, yet is required for the overall business solution [Ver13, p. 71].

Generally business models and the feasibility of technical implementation of these
may differ and may be modeled in another way. Bounded Contexts represent
coherent functional aspects of the system that might not fit exactly into a sub-
domain and define the range of applicability of each model [Eva04, p. 239]. They
should be clearly separated from other contexts to ensure clear competences and
naming conventions and may be connected to each other. In Addition a Context
Map can be defined to provide a global overview of the contexts and relationships
between them [Eva04, p. 239].

2.1.3 Ubiquitous language

When it comes to building a domain model, several parties may contribute to
its design. When domain experts and developers collaborate on this model, the
use of common language plays an important role. Domain experts may have
a limited understanding of technical jargon of software development, but they
use the jargon of their field. On the other hand developers may make use of
descriptive and functional terms, regarding the discussion of systems [Eva04].
Therefore the use of an ubiquitous language is highly recommended to facilitate
the communication between corresponding responsibles.

2.1.4 Layered Architecture

To avoid confusion of domain concepts with software technologies, decoupling of
domain objects from other functions of the system might be mandatory. Layering
of the architecture facilitates this process. The essential principle is that every
element of a layer only depends on another element within the same layer or on
layers “beneath“. This specialisation allows a more cohesive design of each aspect
and makes the design easier to interpret [Eva04, p. 63].
Typical Layers that can be implemented are shown in figure 2.6.

4

Figure 2.1: Layered Architecture [Avr07]

User Interface - The User Interface or Presentation Layer is responsible for
showing information to the user and interpreting user commands [Eva04, p. 64].

Application Layer - the Application Layer is a thin layer which coordinates
the application activity and does not contain business logic or rules. It rather
coordinates tasks and delegates work to collaboration of domain objects to the
Domain Layer [Eva04, p. 64].

Domain Layer - As the name suggests, this layer contains information about
the domain. It further more delegates the persistence of business objects and
their state to the infrastructure layer [Avr07, p. 38].

Infrastructure Layer - The Infrastructure Layer provides technical capabil-
ities that support the other layers. It for instance assists on persisting domain
objects, drawing widgets for the UI and message sending for the application
[Eva04, p. 64].

2.1.5 Model-Driven Design

Whereas the domain model only covers resolving problems regarding the domain,
the model driven design moreover focuses on the implementation on a lower level.
The building blocks, as defined by Evans, stand for the elements of this model to
be designed for the domain driven approach.

Entity Entities are elements, used to express model-driven design models. An
Entity is an object with an individual identity, which remains throughout the
software. It can exist with the lifespan of a system or extend it by being stored
into databases [Avr07, p. 39].

5

Figure 2.2: The Building Blocks Of A Model-Driven Design [Avr07]

Value Objects Value Objects do not have their own identity and are purely
describing domain-relevant attributes of entities, usually in the form of some
quantity [MT15]. They have no state throughout the system might be moreover
considered as an state of an Entity. They are therefore immutable objects and
can be distributed among the system.

Aggregates Aggregates are composite domain objects and decrease complexity
of a model by providing one interface for its coherent Entities and Value Objects.
The root is an Entity and is the only object accessible from outside and holds
references to any of the aggregate objects. With the provision of only one interface
for those coherent domain objects, it ensures data integrity and enforces invariants
[Avr07, p. 44].

Services Services represent domain concepts and are stateless [MT15, p. 435].
They are used when the behaviour does not conform with the concept of the
Model-Driven Design using Entities and Value Objects. The main intention is to
formulate business rules.

6

Repositories Repositories are used to manage the persistence and retrieval
of aggregates usually using a database. It ensures the separation of the domain
model and the data model by mediating between these two models [MT15, p. 525].

Factories The creation of domain objects by encapsulation. Factories can re-
constitute object from a persistence model or create new domain objects , encap-
sulating complex domain logic [MT15, p. 470].

2.2 microservices

2.2.1 Definition

Since the architecture of JValue ODS is based on microservices, further ex-
planation might be mandatory. Although there is no common definition of mi-
croservices, the segmentation or modularisation of software by functionality might
be the best fitting term. A comprehensive definition was given by Nadareishvili
et al. [Nad+16, p. 6]:

“A microservice is an independently deployable component of bounded
scope that sup- ports interoperability through message-based commu-
nication. microservice architec- ture is a style of engineering highly
automated, evolvable software systems made up of capability-aligned
microservices.“

Furthermore a good approach of defining a microservice might be to describe its
core functionalities and benefits in comparison with software monoliths.
While traditional software monoliths describe software, that keeps the whole func-
tionality of a program at one place, the microservice pattern is more focused on
separating the program into components, that represent all functional aspects
of the former structure. The static architecture of the monolith leads generally
to difficulties in terms of changeability, exchangability and team collaboration,
whereas the microservice patterns seem to solve these problems. These advant-
ages over the monolith led to a trend of splitting it into autonomous services to
achieve a more agile development of software.

Referring to Newman [New15] the main key aspect is the autonomy of the ser-
vices. Each microservice of an application is responsible for a specific purpose
and does not interfere with other components of the infrastructure. Thereby
sharing information between the services have to be accomplished vie network
communication, such as requests over application programming interfaces (API)
or remote procedure calls (RPC) to attain the separation between these.

7

2.2.2 Characteristics

According to Nadareishvili et al. [Nad+16, p. 7] a microservice can be identified
by these important characteristics:

Small in size As a result of the segmentation of software by contexts, small
services arise. These exclusively cover one purpose and by that only come in small
size compared to software monoliths. To reduce complexity for the developers,
microservices can generally be owned by separate teams. Thereby microservice
measurements can be somewhat determined by team size.

Messaging enabled With the modularization of software into different ser-
vices, an opportunity of deploying these components on different systems emerged.
To consequently asure correct behaviour of the application, a microservice has
to provide an interface for communication or respectively for messaging in or-
der to exchange information with the other components of the microservice ar-
chitetcture.

Bounded by contexts As the microservice architecture to some extent follows
the Domain Driven Design pattern, the concession of software components with
similar properties to a “bounded context“ results in a microservice, comprising its
function. As a consequence every microservice is defined by one context only and
does not interfere with other microservices and therefore not with other contexts.

Autonomously developed As a key feature this pattern enables teams to
implement each microservice separately without having impact on the function-
ality of the other services. With well-defined contracts to other microservices
the responsible team takes care of the correct behaviour of the service, as well
as provisioning of an interface for communication. This way of implementation
contributes to a more beneficial solution, regarding agile software development
and Development Operations (DevOPS).

Built and released with automated processes Continuous Integration CI
is a development practise where members of a team integrate their work fre-
quently, whereby each integration is verified by an automated build to detect
integration errors by including tests [FF06].
With the segmentation of the software monolith, a need for validation of each unit
before deployment derives and results in the consideration of a integration tech-
nique like CI, that assures the correct behaviour of the independently developed
units.

8

Independently deployable Since every microservice is segregated completely
from the other microservices within an application, the transition of getting new
features into production gets faster and provides more flexible options for piloting
and prototyping Nadareishvili et al. [Nad+16, p. 16]. With DevOPS deployment
techniques, like Continuous Integration (CI), only tested units get deployed into
production and therefore do not interfere with the application’s stability.

Decentralized Since every microservice is a independently deployed unit and
the communication between these is typically done via network calls, they might
be distributed among different servers or virtual machines.
With respect to software development, decentralization means that the bulk of
work done within a system will no longer be managed and controlled by a central
body. Consequently the implementation of software changes become easier, faster
and will result in fewer bottlenecks and less resistance to change [Nad+16, p. 8].

2.2.3 Structure

The composition of software modules to microservices is generally determined
by applying the Domain Driven Design and therefore determines which mir-
coservice within the system should implement which domain [Wol16, p. 100].
The key concept within the microservices pattern is the distributed architecture.
microservices are completely separated from each other and therefore have to
communicate via network calls. As shown in figure 2.4, related modules are com-
bined to service components which represent microservices.
Every microservice serves one purpose and gets in general accessed by an User
Interface Layer via remote access protocol (e.g., AMQP, REST, SOAP, etc.)
[Ric15]. Client requests can be user interactions or other systems interacting with
the microservice system and are typically done via Application Programming In-
terface. The system itself takes care of the correct orchestration or choreography
by either communicating with each other over these interfaces or publishing and
consuming Events in order to maintain the core functionality.

Two architectural characteristics that all microservice implementations have in
common are Loose Coupling and High Cohesion:

Looslely coupled As mentioned before, they are loosely coupled and may be
distributed across various systems. Each microservice should have few depend-
encies on other microservies to facilitate the modification of them, since change
will have only have an impact on other individual microservices [Wol16, p. 102].
Breaking up systems and identifying bounded contexts in a system by applying
Domain Driven Design is an effective way of designing microservice boundaries
[Nad+16, p. 64]. Therefore the boundaries of microservices align to some extent
to the Bounded Contexts of a Domain Driven Design.

9

High cohesion Another aspect is the high cohesion within a microservice.
With the definition of Modules and Services within a process boundary an option
to keep related code together emerged. To reduce complexity of a software ap-
plication, modules with related behaviour should have a close relationship within
a Bounded Context (see 2.1.2). This ensures that change can be done at one
place and avoids deploying lots of services at once when the same functionality
is distributed along several services [New15].

Figure 2.3: Basic microservices architecture pattern [Ric15]

2.2.4 Communication

The Communication between microservices can either be synchronous or asyn-
chronous. Synchronous messaging lets the components of this architecture com-
municate in a blocking manner, resulting in simplicity regarding the implement-
ation, maintenance and collaboration of the system.
On the other hand it might affect the latency or respectively the “responsiveness“
of a system, whereas asynchronous communication seems to solve this problem.
Asynchronous messaging enables the system to react quickly to Events among
the components but is difficult to implement, monitor and test.

10

Each collaboration pattern is based on another model. While synchronous mes-
saging follows the Request/Response model, asynchronous communication is
more concerned about event-based collaboration [New15, p. 89].

Request/Response Model Implementations of the Request/Response pat-
tern, like Representational State Transfer (REST) and Remote Proceedure Calls
(RPC), have in common that a client initiates a request to an Application Pro-
gramming Interface and has to wait until the remote process, that handles the
request, is finished. The end of the remote process is signaled by a response to
the client.

Event-Based Model In Event-Based Models microservices do not know the
existence of other components of the system. They rather wait for Events to
happen, react to them and may moreover publish further Events. High decoup-
ling and scalability gets achieved by the opportunity of adding new subscribers
to events without the event publisher ever needing to know [New15, p. 89].

Another aspect in terms of architecture considerations is the decision to im-
plement Orchestration or Choreography [New15, p. 90]. Both describe a style of
collaboration between components of a system.

Orchestration Orchestration relies on a central component, the Orchestrator,
that controls the behaviour of the microservices. This component acts as a su-
pervisor and coordinates the whole process flow of the system by interacting
with each component. With this type of service composition every service within
the system only cooperates with the Orchestrator in order to achieve a specific
domain functionality. As a consequence microservices only have access to their
domain and therefore have a limited scope.

Choreography Choreography describes the sequence and conditions in which
data is exchanged between participants in order to meet some useful purpose
[BK04]. The core focus of this approach is on implementing domain logic by
decentralizing the communication to a set of peers or respectively microservices.
In comparison to the Orchestration the services do not need a central component
in order to implement desired behaviour. They rather organize themselves by
interacting with each other in an synchronous or asynchronous manner. With
the implementation of Service Choreography the system are significantly more
loosely coupled, as well as more flexible and amenable to change [New15, p. 92].

11

2.2.5 Analysis

The microservices Pattern may come with some key benefits compared to the
software monolith [New15]:

Technology Heterogeneity With the isolation of each microservice the pos-
sibility to use different technologies for each service emerged. Teams that collab-
orate on microservice architectures, may consider the adoption of technologies
that might fit best for their scope. With the segmentation of the system into
services, the developers are not tied to old the technology stack, but are free
to use other technologies at will [Wol16, p. 56]. They might use different pro-
gramming languages, database technologies or frameworks in order to achieve an
enhancement in terms of performance and changeability [New15, p. 20].

Resilience The segmentation of the system into single isolated components
may result in more robustness of the application [Wol16, p. 61]. The service
boundaries become obvious bulkheads and enable the isolation of failures along
the whole system [New15, p. 20]. In addition, problems in the development
process get mitigated by the implementation of Continuous Delivery Pipelines.
With bringing the code of a microservice only into production, if it passes a
chain of test stages, such as Acceptance Tests, Capacity Tests or Explorative
Tests, only full functional components, that exclude unexpected behaviour, will
be integrated into the productive system.

Scaling Variable amounts of user clients, interacting with the system results in
a demand for consistent performance and functionality. With the small size and
delimited boundaries of the services, replication and therefore load balancing can
be applied to specific microservices to serve this consistency. With the distribu-
tion of the services across several servers not only load can be balanced across
those machines, it can also reduce latencies by choosing corresponding servers
based on geographical proximities to the requesting client [Wol16, p.61].

Ease of Deployment Changes can be easily deployed to the productive system
in comparison with the monolithic approach. While in the monolithic system the
change of a single line of code requires the whole application to be deployed in
order to release the change, the microservice approach requires only the coherent
microservices to be deployed [New15, p. 24]. Techniques, such as Continuous
Delivery, assure the isolation of problems due to the migration of new code to
production. The independence of deployed microservies allows the code to get
deployed faster and makes fast rollbacks easy to achieve [New15, p. 24].

12

Composeability With the implementation of microservices, the functionality
of the system can be consumed in different ways for different purposes [New15,
p. 26]. For instance with the provision of mobile and native web applications, a
system composed of microservices can obviously satisfy different needs. With the
Composeability comes the simplicity of modifying or extending the microservices
by simply editing, testing and releasing the code at one place without having
impact on the other services due to the fact that the only interaction with other
services is done via static web service interfaces, such as REST API.

Replaceability The costs of the migration processes of replacing legacy sys-
tems with new systems is facilitated by determining sharp boundaries between
the microservices. The replacement of one micreservice with the same behaviour
and interface for communication does not have an impact on the overall func-
tionality of the system. With the small size of the individual services the costs
of deleting them or replacing them with better implementations will be reduced
[New15, p. 27].

13

2.3 JValue ODS

2.3.1 Definition

JValue Open Data Service is an open source software, that serves as a platform for
open data consuming applications. It provides an web user interface for creating
and maintaining scheduled requests for open data from various web interfaces. By
giving the possibility to select the data representation (regardless of the format
of the data from source) and the possibility to transform the imported data by
defining customized ”transformation/filter” rules, the open data service supports
open data consumers, who encounter problems with the format of the original
data source, such as the unsuitability of the amount of data or the format.
The platform also acts as an intermediate persistence layer between open data
origin and the consuming application. This is achieved, by persisting imported
data sets in a database and by providing an interface (REST) for data extraction.
Further functionality is given by the capability to inform the user by sending
notifications to specific platforms 1 after successful pipeline execution. The user
can define customized conditions, that the data has to meet, in order to trigger
the dispatch of the notification to the corresponding platform.

2.3.2 Structure

The architecture of the service follows the microservice Pattern with a Request/
Response messaging model. It is composed of several Docker Containers2 that
communicate via HTTP-Requests on Representational State Transfer (REST)
APIs. Each service is placed in a container and serves another purpose, such as
the provision of an web user interface or the data persistence.
The communication pattern is implemented as orchestration, whereas the sched-
uler acts as a central component that controls the process flow within the system.
This is done by sending raw data or structured configurations in SJON format
via synchronous HTTP-POST requests and the receiving corresponding results
from each service for further processing (e.g. passing it synchronously to another
microservice). Development is done (in collaboration with all contributors) via
Continuous Delivery. This means that every release has gone through at least
one test stage in order to check the integrity of the service.

1currently supported platforms: slack, firebase and custom webhooks
2https://www.docker.com

14

2.3.3 Components

Web-Client This component provides an web user interface (UI) for easy and
seamless configuration for the import from Open Data Sources and for Pipelines.
The user can manually configure the system’s plan when to fetch data from the
original data sources to counteract quota restrictions or scheduled downtimes.
It furthermore provides the functionality to test and evaluate transformation
code for data aggregation (in javascript syntax) with an embedded “notepad-
like“ interface. The entered transformation code will be used by transformation
service for further aggregation of the imported open data.
The technology used for this service is Node.js 3 with various frameworks, such
as Vue.js4 and typescript5.

Core-Service The Core-Service is responsible for the persistence of pipeline
configurations. It furthermore exposes an interface for the organization of these
configurations via REST API, that can either be accessed directly by the user/
application or indirectly by using the user interface of the Web-Client service.

The pipeline configuration consists of several parts that can manually edited by
the user directly through interaction with the user interface or via REST API:

Adapter Config Within this configuration, the user can provide the loc-
ation of the open datasource and the data representation (e.g. SJON) as
well as additional information, such as license or data descriptions to the
system.

Scheduler Config The Scheduler Config contains information of the
times the open data has to be requested from its source. It can be con-
figured as a ”one time only retrieval” or as a recurring event (e.g. hourly).

Transformation Config The Transformation Configuration is a code
script (based on javascript) that is evaluated by the transformation ser-
vice. The user has therefore the possibility to enrich, filter or aggregate the
imported open datasets.

3https://nodejs.org/en/about/
4https://vuejs.org/
5https://www.typescriptlang.org/

15

Notification Config With the Notification Config the user can indicate
whether to be informed when open data is received and available within
the system of the JValue ODS. Users can choose between various platforms,
such as Slack6 and FireBase7 to be notified on or can configure individual
webhooks. In addition a condition (javascript based) can be provided that
gets evaluated after successful transformation. If the condition is met the
notification will be delivered to the corresponding platform.

The Core-Service utilizes a postgres database for pipeline configuration persist-
ence and is implemented in Java with springboot framework8.

Scheduler-Service The Scheduler-Service is a component that orchestrates
the executions of pipelines. It is a central component, that is responsible for the
correct process flow within the system, which is composed of distributed services.
On frequent basis, it extracts pipeline configurations from the Core Service and
caches them locally. With its integrated scheduling functionality, it is capable to
trigger a sequence of actions according to the time that is defined in the scheduler
configuration of a pipeline.

After the retrieval of the open data by the Adapter microservice it redirects the
data to the Transformation Service that filters and transforms the received data
to the desired format. The resulting data gets persisted by the Storage-Service
and a notification will be sent by the Notification Service (if configured). The
Scheduler Service acts as a central component which triggers these consecutive
actions and takes care of the intercommunication between the microservices.

The technology used for this service is Node.js with typescript framework.

Adapter-Service The purpose of this microservice is to retrieve raw open data
from external data sources over Hyper Text Transfer Protocol (HTTP). With
the provision of the Adapter Configuration to its REST interface the Adapter-
Service retrieves information of the location of the open data source as well
of the desired resulting data representation (e.g. JSON). It provides an REST
interface which returns the requested data by providing an Adapter Config to its
REST application interface via HTTP POST request. The Adapter Service is
implemented in Java with springboot framework.

6https://slack.com
7https://firebase.google.com/
8https://spring.io

16

Transformation-Service The purpose of the transformation service is to ag-
gregate the imported open data according to the corresponding transformation
config of the same pipeline. By presenting data and transformation configurations
to its interface via HTTP-Post requests, it will evaluate and transform the data.
The resulting aggregations of the data will be returned as a HTTP response.
It furthermore provides an interface for dispatching notifications to various plat-
forms, such as slack. With the supply of transformed data and a notification
config, it will evaluate the condition that is embedded in notification config with
the provided data. If the condition is met for the data, it will trigger a notification
to the corresponding platform.

The underlying technology is Node.js with typescript framework.

Auth-Service The authentication service adds a layer of security to the sys-
tem. The user has to authenticate to it in order to get access to the resources in
his scope (e.g. to created pipeline configurations). With this service the system
is capable to achieve access control in an efficient way. Every service is connected
to this service for maintaining controlled utilization to their interfaces.

Storage-Service The Storage-Service is the last stage of the life cycle of open
datasets. After import by the Adapter-Service and further aggregation by the
Transformation-Service the transformed data gets persisted in its database of
the Storage-Service. The bounded context of this service is composed of two
aggregates. One is the database itself and the other is a service, providing a
REST interface to operate on the data in the database. The Auth-Service thereby
ensures that the user can only access with read privileges.

The chosen technology for the database is postgres9. For accessing the data via
HTTP-Requests a postgrest 10 docker container will be deployed.

Reverse-Proxy Due to its decomposed structure, it might be possible that
the locations of the services are distributed or may change. Therefore the reverse
proxy is a entrypoint for the user to interact with the system’s components. It
can also be used for inter-service communication.

9https://www.postgresql.org/
10http://postgrest.org

17

2.3.4 Process Flow

This section describes the lifecycle of a pipeline. It shows all the actions to be
taken by the system in order to deliver open data in a desired form to the user
or respectively application. The communication pattern is an orchestration with
the Scheduler-Service as orchestrator. The communication between the services
is completely handled by the Core-Service by pulling data from one service and
pushing to another. It relies on a synchronous request/reply model on REST
interfaces, whereas the core component is the only communication partner for
each microservice.

Figure 2.4: Lifecycle of a pipeline

With the creation of a pipeline (Step 1) on the Web-Client a request, containing
the pipeline configuration in JSON format, is sent to the Core-Service.
This service persists it to the database and replies to the Web-Client, indicating
the result of the operation. The Scheduler-Service requests frequently pipeline
configuration deltas from the Core-Service and holds or respectively updates them

18

in its local cache (Step 2). It loads the scheduling configuration to its scheduling
module and triggers the execution of the pipeline when the time criteria is met.
Upon pipeline execution the Scheduler-Service sends the local cached adapter
configuration to the Adapter Service, which will then import open data from the
external source and will respond with the extracted data as payload (Step 3).
The Scheduler-Service will publish the extracted data and the corresponding
transformation config to the Transformation-Service. This service takes care of
the transformation and will result in replying with the transformed data (Step
4).
The scheduler will send the transformed data to the REST interface of the
Storage-Service, where the data gets persisted (Step 6).
As last step it will send the transformed data and the notification config to the
Transformation-Service which will evaluate the condition in the config with the
transformed data as input and send a notification to an external platform on
evaluation success.

19

2.4 Event-Driven Architecture

2.4.1 Definition

Event-Driven Architecture (EDA) describes a pattern in which interaction or
respectively messaging between components of a distributed system is done by
using Event Notifications. It can furthermore be understood as an asynchronous
messaging approach for systems consisting of highly decoupled components, like
microservices. Systems, that implement this pattern, include units that produce,
transmit, process and consume events.

An Event can thereby be interpreted as an occurrence or happening, which ori-
ginates inside or outside a system and can be consumed by a system’s component
[HPX13, p. 13]. An Event Notification on the other hand is a message that in-
forms interested recipients that an Event happened. It can be moreover defined
as an event-triggered signal sent to a at run-time defined recipient [Fai11]. In
the context of EDA Event and Event Notification might be considered as inter-
changeable terms.

Event-Based Systems consist of Event Producers/Publishers, that emit Events,
such as system state changes and Event Consumers, which represent interested
parties that evaluate the Event and optionally take action based upon the type of
the Event. An important note to take is that event publishers do not know which
part of the system consumes the emitted events, as well that event consumers
have no information of the origin of the events, they subscribed to.

This pattern has the potential of easy integration of autonomous, heterogeneous
components into complex systems that are easy to evolve and scale [MFP06].

2.4.2 Elements

Events The structure of events can be subdivided into event header and event
body. The header contains meta information that describes the event, such as the
event type, event name, event timestamp and event creator, whereas the body
contains relevant payload that needs to be published and consumed.
Events can be primitive and composite. While the former describes occurrences
within the system, which are atomic and occur only at one point in time, the
latter is composed of several primitive events that occur over time and may have
specific patterns [HPX13, p. 13].

20

Event Producer An event producer is a component that publishes events to
an event driven system and is often denoted as “publisher“. One key concept is,
that it does not address a specific receiver. Its implementation can be moreover
interpreted as “self-focused“ and does only observe its own state. It will rather
forward it to a notification service, for instance rabbitmq11, which will take care
of the correct distribution of the published events [MFP06, p. 12].

Event Consumer Event consumers interact with elements of a notification
service, such as event channels. They indicate interests in specific system state
changes by issuing subscriptions[MFP06, p. 12]. A subscription can be described
as a set of events to which consumers can show interest by subscribing.
Events are generally published with the intention to trigger further processing
actions. This can be achieved either by the consumer itself or by delegation by
the consumer, whereas the consumer also can act as a producer.

Channels An event channel portrays a mechanism to propagate system state
changes from the producer to interested parties and can be furthermore under-
stood as a subscription model [Fai11, p. 91].

A channel is composed of these elements [EN10, p. 135]:

Event channel identifier Every channel can by identified by a unique
name, that is provided to it.

Terminals Each channel has an input and an output terminal. The fur-
ther is used to publish events to the queue while the latter is for event
consumption.

Routing scheme A channel makes routing decisions in order to route
events that have been demanded by subscribing to event subscribers.

Quality of service assertions These assertions specify non-functional
characteristics, such as security, performance or availability aspects.

11https://www.rabbitmq.com

21

Routing Routing can also be interpreted as a filter mechanism for channels and
is therefore often denoted as filtering. It represents a set of rules for a channel
to make a decision where to send incoming events, whereby the events remain
unchanged.

Events can be routed by using one of these mechanisms:

Fixed This is the simplest for of routing, where no filtering is applied. The
channel routes every event that is published to it to the output terminal,
with the consequence that every consumer that subscribed to that channel
will receive all published events [EN10, p.136].

Subject-Based This routing type uses string matching, whereas publish-
ers annotate each event with a subject string, that denotes a rooted path
in a tree of subjects [Fai11, p. 19]. “/University/fau/tecfac/oss“ can be
such a subject path to identify location where an event can be published to.
Consumers can then subscribe for instance to the path “University/fau/*“
in order to get all events that have been published in that tree structure.

Type-based With this form of filtering, the channel utilizes the event
types to make routing decisions. Path expressions, as well subtype inclu-
sions will be therefore used, resulting in routing of to the same node of a
routed path (such as in subject based filtering) [MFP06, p.19].

Content-based With content-based routing, the whole content of an
event will be evaluated. If a the event contents match with a specific con-
ditional expression, it will be routed to the corresponding location. This
can be achieved in various ways, for instance by template matching, simple
comparisons or XPath expressions in XML [MFP06, p. 20].

2.4.3 Topologies

Mediator With the mediator topology the system is composed of multiple
event consuming and producing software components that rely on the orchestra-
tion by a central unit, the mediator. The mediator takes care of the order of
events that have to be processed, as well as of the communication between event
producers and event-processing consumers.

22

The type of events in this pattern can be categorized in an initial event and a
processing event. While the an initial event denotes the occurrence of a system
state change that might lead to actions within the system, the processing event
is sent to processing components to imply that an action has to be taken [Ric15,
p. 12]. The role of the mediator is to consume the initial event from a channel
and publish processing events to the right event processors.

Figure 2.5: Mediator topology example [Ric15].

Broker In contrast to the mediator, the broker topology follows an orchestrated
communication pattern. This means that the message flow is rather distributed
across the event processors in a chain-like fashion, than controlled by a central
component [Ric15, p. 14].

The event processors thereby take care of the consumption of the event that il-
lustrates a system change and performs an action. They furthermore indicate
that an action has been performed by publishing a new event to the system. The
broker therefore only serves the purpose of providing the technology to enable
the communication between event publisher and event processor (which can be
the same component).

23

Figure 2.6: Broker topology example [Ric15, p. 14].

2.4.4 Event-Based Patterns

Competing Consumer The Competing Consumer pattern describes a mech-
anism to efficiently distribute events that trigger processes among subscribers
of a Point-to-Point Channel or respectively a “fixed“ routing scheme (see 2.4.2)
The parties that issue a subscription to the same event, will be served in a “fist
come, first serve“ manner. Due to the fact that an event is being consumed
upon receival, it is no longer available for the other subscribers. This procedure
reduces bottlenecks and increases efficiency by letting only those consumers take
event processing actions who have available resources for the consumption and
therefore for the processing [HW12, p. 446].

Event Sourcing Event-sourcing captures the state of a domain object as a
sequence of state-changing events [Ric20a]. By changing the state of an entity,
a new event is appended to a list of previous occurred events rather than just
replacing the state of this object. This sequence of event is persisted to an event
store, which can be interpreted as an database for events. It exposes persisted
events to all interested parties and can furthermore be used to reconstruct the
state of an domain object by just replaying the events from a specific state (initial
or snapshot) [Ric20a].

Saga The Saga pattern is pattern for transactions that span across distributed
components of a system with the intention to guarantees consistency. A saga can
be understood as a sequence of local transactions, whereby a successful execution

24

of such a transaction triggers another transaction located another component. If
a local transaction fails due to the violation of business constraints, compensat-
ing transactions that undo the changes are chained back to the component that
initiated the saga in order to maintain the original state and consequently con-
sistency across the distributed services [Ric20b].
In an event driven context, the saga is implemented as an event based choreo-
graphy. Each local transaction publishes events to the succeeding component
that causes another locatl transaction.

CQRS Command-Query Responsibility Segregation (CQRS) is a pattern that
strictly segregates operations that read from operations that write data to a
database with the intention to scale and perform better, as well as to enhance
security [al20a].
The architecture consists of a “Query Database“ that only serves the purpose
to provide its datasets via “Retrieve API“ and “Database of Record“ that is
designed for creation, and modification and deletion of data via “Modification
API“.

Figure 2.7: Architecture - Command Query Responsibility Segregation [al20a]

The “Write solution“ as shown in figure 2.7 handles “Create-Update-Delete“(CUD)
operations of domain entities (see 2.1.5) that get applied to the database and sub-
sequently published to the “Read Solution“ in order to synchronize the data of
the “Database of Record“ with the “Query Database“. The “Database of Re-
cord“ thereby acts as “single source of truth“ [al20a].
The CQRS pattern complements the Event Sourcing pattern. An event store
can be modelled as change log that keeps track of states of the database and is
responsible to publish the change events to an Event Bus.

25

3 Requirements

3.1 Functional

F1 Choreography instead of orchestration The system should move from
the existing orchestrated communication pattern to a event-based choreography.
As process flow of the system is currently determined by the control of a cent-
ral component, the scheduler, a need for the replacement of the orchestrated
communication pattern with event-based choreography emerges.

F2 Asynchronous messaging All synchronous request/reply patterns should
be replaced with asynchronous event messaging. Due to the blocking behaviour of
the request/reply model that is implemented in the open data service, the switch
of all these communication mechanisms to asynchronous event-based message
exchange is required

F3 Inter-service dependencies A microservice should be only depending on
the message bus when running and not on other microservices.

26

3.2 Non-Functional

N1 Functionality of the system has to be preserved The behaviour of
the system should not change to the outside, so that ODS users will not recognize
that a change has been made to the system. The Invariant of the system should
stay unchanged.

N2 Increase in performance The overall system should increase the through-
put of the system (amount of parallel running pipelines).

N3 Collaboration and Development The changes to the architecture should
be planed in meaningful iterations, that are all applicable to the repository 1,
without interfering the functionality. In Addition drastic changes have to be
discussed with the contributors of the software,

1https://github.com/jvalue/open-data-service

27

4 Architecture Design

4.1 Analysis with Event-Storming

To identify the events and to reevaluate the architectural design of the current
system, a technique, called Even-Storming, was applied. Therefore an Event-
Storming workshop was held in which a part of the JValue ODS developers or
respectively constributors participated.

Figure 4.1: Event-Storming Workshop: results

28

4.1.1 Definition

The Event-Storming technique was invented by Alberto Brandolini with the in-
tention to facilitate the creation of system architectures based on Domain Driven
Design. In order to get a better understanding of the business problem, stake-
holders (including developers, product owners and domain experts) of a specific
domain are invited the workshop. This approach can also apply to identify bot-
tlenecks in a system.
“Sticky notes“ are used in order to illustrate different types of building blocks
in DDD. Besides reevaluating the current structure of the system in a domain
driven context, the main draftback of this workshop should be that all events
between the different entities of a Domain (2.1.1) will be identified and brought
into context.

Figure 4.2: Event Storming - Building block relations [al20b]

The entities that are used in this workshops are “sticky notes“ which represent
the following building blocks [Bra19].

Domain Events Domain Events indicate that a system state change occurred.
Their existence within the system may have different origins. They can be a
result of a user interaction, triggered by external systems, triggered by time or
as a result of some cascading reaction.

Data Data will be presented to actors or derived by domain events.

29

Actor An actor can be a user or an application that interacts with the system.
They may use data to make decisions and issue commands. Actors can also
trigger Events directly.

Command Commands are the entities which will result in a system state trans-
ition and have therefore a domain event as consequence.

Policies Policies represent some logical rules that exist within a domain. They
might be considered as rules that may trigger an domain event with interaction
by an actor.

External systems Systems outside of the domain may interact with the system
and therefore can trigger events.

Pivotal Events and Swimmlanes The horizontal axis on the wall represents
the time, whereas the vertical one can be used to define context in regards of
events. Pivotal events are domain events that can be used to indicate a major
change to the system (from a temporal perspective). Due to the fact that many
events in a domain may occur simultaneously, a building block called system
candidate boundary can be used to separate events by different aspects of the
domain, resulting in different (swimm-) lanes.
The usage of both elements facilitate the identification of Bounded Contexts (see
2.1.2) and as a consequence the identification of microservices.

4.1.2 Procedure

The workshop was split into several iterations [al20b].

Domain event discovery The first step of the workshop was to identify the
current events of the system and bring them in the right order. This was done by
putting all “sticky notes“, which represent domain events, on the wall. After a
period of time all important events were identified and were consequently brought
into the right sequence.

Tell the story The next step was the reevaluation of the previous step. The
sequence of events was told as a story that occurred within the domain. In the
context of the open data service, the story from the configuration of a pipeline
to the extraction of the transformed data was told from different perspectives.

Find the Boundaries The goal of this iteration was to find time boundaries
indicated by pivotal elements on the one hand (see figure 4.3), on the other hand

30

to identify subject boundaries, that can be detected when multiple simultaneous
series of events that only come together at a later time occur [al20b].

These boundaries will be used to identify bounded contexts and consequently
microservices.

Figure 4.3: Event-Storming: Boundaries [al20b]

Locate the commands In this iteration the origins of all events were iden-
tified. Events may occur when commands are issued within a system or when
conditions of policies of the domain are met. In addition they can be triggered
by a scheduler or when external systems or sensors provide a stimulus [al20b]

Describe the data In this step the data that is used in the domain was intro-
duced to the model. Therefore “sticky notes“ that represent data with the cor-
responding description were placed near the previous modelled building blocks.

Identify the Aggregates Aggregates emerged from the process by grouping
related events and commands and suggest microservice boundaries and are most
likely defined by pivotal evens and candidate system boundaries [al20b]).

4.1.3 Results

The results of the event storming workshop can be found in Appendix A.

Lanes and aggregates The resulting lanes, and microservice boundaries differ
to some extent from the previous architecture.
A new lane with the topic ”notification” was introduced. All events (and other
building blocks) that are related to the functionality of sending notifications to

31

another platform were put in the ”notification” context. These events were previ-
ously a part of the transformation service (see 2.3.3) but represent another aspect
of the system and should be therefore defined in an own context.
Another outcome is that there exists no lane that represents the scheduler service
(see 2.3.3). It belongs moreover to the adapter aggregate, due to the fact that
the event, that a specific time occurred, is only consumed by the adapter service.

In addition storage was not considered to be a an own aggregate and assign to
the transformation lane, due to its purpose to persist transformation results.

Core-Service Due to the fact that an architecture for the open data service
already existed, previous elements were taking into consideration, resulting in
the lane ”pipeline” for the core service (see 2.3.3), even though it might not cor-
rectly defined in a domain driven context. The purpose of this service is the
persistence and offering of pipeline configurations. The pipeline configuration
of previous architecture is composed of adapter, scheduler, transformation and
notification configuration. The event storming modeling approach resulted in
the insight that each configuration within the pipeline configuration should be
located to the corresponding bounded context and therefore in the corresponding
lane. The consequence is that every configuration will have an own repository
that is attached to the related microservice., resulting in the unnecessity and as
a consequence to the elimination of the core service. For example the transform-
ation configuration will not be stored within a pipeline configuration in the core
service. It will be furthermore persisted in a repository in the transformation
service.
Another outcome regarding the open data service configuration is that the sched-
uler configuration is a part of the adapter configuration. The reason behind this
is that a scheduler configuration cannot exist without a adapter config, meaning
that a data import cannot be triggered if a data source does not exist. This
embedded configuration structure will be persisted within the adapter bounded
context.

Events

Adapter Several events have been discovered within the adapter aggregate. In
order to apply event driven architecture to the existing system of ODS only the
events that have been triggered from other aggregates in the ODS domain were
taken into account (see figure 4.4).

32

Three critical events exist within the adapter aggregate that are related to the
adapter configuration. Due to the reconsideration of the deletion of the core
aggregate adapter configs will be stored within the adapter context. The com-
mands to create, modify or delete those imply the existence of corresponding
events. Another crucial event that exists within the adapter boundary is an
event that indicates that the imported data is available to the system for further
processing (transformation).

Figure 4.4: Event Storming - Adapter Events

Transformation The transformation aggregate consumes the event “Adapter
data available“, that is located to the adapter lane with the consecutive action
of data processing (transformation). The configuration related events are similar
to the ones in the adapter lane. After the transformation process has finished an
event is published to the notification service in order to trigger the dispatch of a
notification.

Figure 4.5: Event Storming - Transformation Events

Notification The notification service exclusively consumes events in from the
system. It subscribes to events regarding the notification configurations and to
the event published by the transformation service to reveal that the transforma-
tion process has been finished.

33

Figure 4.6: Event Storming - Notification Events

Storage Service The purpose of the storage service in the previous architec-
ture was to persist and provide transformed data. As a consequence it is sub-
scribed to the event expresses the transformation data is available, as well to the
request of the user interface or user to subsequently respond with the persisted
data.

Figure 4.7: Event Storming - Storage Events

4.2 Event-Based Design of ODS

4.2.1 Technology Considerations

Two technologies for event communication where taken into consideration. On
the one hand Apache Kafka 1 and on the other RabbitMQ 2. While the further
is an stream-processing software platform developed by the Apache Software
Foundation, the latter is based on message queues using channels

Apache Kafka The core entities used in Apache Kafka are event streams.
They represent a replayable ordered sequence of events, similar to the Event
Sourcing pattern (see 2.4.4), whereas components of a system can publish events
and issue subscriptions to it. Kafka can be run on a cluster of multiple servers
and is capable of handling large amounts of events. It is often used for real-time
processing applications that provide real-time analysis by pattern matching. Due
to the characteristic of storing events in a immutable sequence, the commit log,
it can also be used as a persistence layer. Besides its consuming and produ-
cing Application Programming Interface’s, it provides three more API’s, such

1https://kafka.apache.org/
2https://www.rabbitmq.com

34

as a Connector API that allows users or respectively applications to connect to
additional resources, such as databases or REST interfaces.

RabbitMQ RabbitMQ,whereby MQ stands for message queue, is a message
broker system (see 2.4.3) that enables applications to connect and scale. It acts
as an intermediate layer of communication for system components to exchange
messages asynchronously over so called “channels“. As Kafka it can be clustered
and therefore scaled. Main subjects, besides channels, are exchanges which are
logical entities where events or respectively messages can be sent to, similar to
Terminals (see 2.4.2). Another building block in the context of the RabbitMQ
message broker are bindings that implement the functionality of routing schemes
(see 2.4.2).
RabbitMQ supports a variety of messaging protocols, including the Advanced
Message Queuing Protocol (AMQP) 3, that is most commonly used.

Technolgy comparison Both technologies are applicable for the JValue Open
Data Service due to the license and capabilities. One major concern with the
consideration of applying Kafka to the existing system is the amount of changes
that have to be implemented. With this approach every microservice has to be
refactored to a great extent, resulting in

Figure 4.8: Kafka vs. RabbitMQ (in the context of the ODS)

4.2.2 Architecture

The final event driven architectural concept is derived from the results of the
“Event-Storming workshop“. The system is composed of 4 bounded contexts as
shown in figure 4.9.

3https://ieeexplore.ieee.org/abstract/document/4012603

35

• UI Service

• Transformation Service

• Adapter Service

• Notification Service

The architecture has been established with the intention to scale up the system
by increasing the amount of microservice instance with container orchestration
software (e.g. with kubernetes 4). Therefore the services have been modeled with
multiple instances, as far as it made sense.

Figure 4.9: Event Driven Architecture of ODS

4https://kubernetes.io/

36

Decomposition of pipeline configuration A pipeline in the context of JValue
ODS describes the process from the extraction over the transformation to the per-
sistence of open data with subsequent notification on external platforms.
In the previous architecture the properties of data import (adapter config), data
extraction time (scheduler config), data aggregation (transformation config) and
notification (notification config) were each embedded within a 1:1 relation in the
pipeline config. This results in the logic that a configuration (e.g. adapter config)
can only endure with the existence of a pipeline config.
One result of the Event-Storming workshop is that the pipeline configuration
should be decomposed into seperate bounded contexts (configuration items). As
a consequence a new relational mapping between the different configs, that spans
over multiple microservices, emerged.

Figure 4.10: EERM of configurations

For efficiency reasons the relational semantic between the configs changed. As
shown in figure 4.10 a datasource config consists of the scheduling config (1:1
relation) and several pipeline configs, which is composed of the transformation
and notification config (1:N relationship). Due to the elimination of the core
service a location for the persistence of pipeline properties emerges. The 1:1
relation between the transformation and the pipeline config results in This enables
the transformation of imported open data in various representations without
importing these datasets for each aggregation (transformation) with subsequent
notification handling.

As shown in the Enhanced Relationship-Entity Model (EERM) in figure 4.10 the

37

only non-weak entity is the Datasource config. This means that all the other
configs cannot not exist without it. Due to the distributed architecture almost
every weak relationship is modeled on the side of the weak entity resulting in
having references to the entity it depends on. For example, the relationship
between adapter and pipeline config is modeled with a reference to the datasource
config on pipeline config side. As the scheduler

The segregation of datasource properties and pipeline configuration improves
efficiency of the system by mapping

The embedded configuration “transformation config“ will be assigned to the
transformation microservice.

Adapter The adapter bounded context is composed of the adapter configur-
ation database, the adapter service and the scheduler service. The interaction
of the user with the system in regards to adapter config creation, modification
and deletion accounts for the provision of a REST API instead of an event based
message queue.
Two queues have been modeled for the inter-service communication in this con-
text. One queue is responsible for the exchange of the scheduler config (that is
part of the adapter config) that is published by the adapter and consumed by
the scheduler. Due to the existence of the config REST API on adapter side,
this event can either contain the config (fat event) or contain a reference to the
config interface (thin event) for its extraction. The queue is configured with a
“fixed“ routing mechanism (see 2.4.2) to adapt the Competing Consumer pat-
tern, resulting in the distribution of the scheduled data import jobs. Increasing
the amount of adapter service instances therefore enhances the performance of
the system.
The scheduler holds these configurations in its local cache and triggers the adapter
service as soon as the scheduled time occurs by sending an event over another
queue to the adapter service. The adapter service executes the import of open
data from an external source as event processing action and publishes the results
to the transformation service via event channel (queue).

Transformation The transformation bounded context is composed of a config
database, the transformation and the storage service. It offers, analog to the
adapter service, a configuration REST API for CUD operations and receives im-
ported open data for further transformation via event channel and matches its
datasource identifier with the transformation configs in the database. If trans-
formation configs that refer to the datasource exist, it will execute the transform-
ation with the subsequent persistence of the data.
As the open data service consumer/consuming application is interested in re-
questing (un-) aggregated open datasets that will be delivered by the storage

38

system, a demand emerges for a more efficient solution when scaling large in
order to handle enormous amount of requests. The Command-Query Responsib-
ility Segregation pattern has been, to some extent, applied to the model for that
purpose. The design of the storage model has been split into a “Read“ and a
“Write Solution“ (see 2.7).

• Write Solution The “Write Solution“ is composed of the transformation
service and RabbitMQ. While RabbitMQ acts like a the “Event Bus“ with
the provision of a lazy queue 5, the transformation service serves as the write
model that receives CUD operations by the previous mentioned reception of
“adapter data events“ from the adapter service. Optionally an Event Store
(see 2.7) can be attached to this solution, in order to scale the storage
services (and therefore databases) at run time. A storage service instance
that will be introduced to the system will be consequently synchronized
with the event store in order to maintain consistency.

• Read Solution The “Read Solution“ consists of the storage service, that
consumes events from the transformation service via “Event Bus“ and
provides a REST interface for the request of the data only and a data-
base that serves as “Query Database“ (see 2.7. The routing scheme on the
“persistence queue“ (Event Bus) is modeled as an exchange with “fanout“
binding. This means that all events that are published to the exchange will
be forwarded to all queues that are bound to the exchange.

For a better performance the number of databases and storage services can
be scaled up. Each service must register a channel to the RabbitMQ broker
in order to synchronize with the “Event Store“ to reach the current state
and to achieve consistency.

A “Read“REST interface is exposed to the user (-interface) for querying
transformed datasets from the the storage service and therefore from the
open data service platform.

Another channel was modeled within this bounded context. It serves the publica-
tion of events that indicate that the transformation has been done and persisted.

Notification The notification bounded context consists of a notification service
and a configuration database. Likewise the other contexts, it provides a CRUD
interface for notification configs. It subscribes to the channel on which events
are published by the transformation service to express that the transformed open
datasets are available for extraction. In order to evaluate a condition that is
provided by the user via config, the transformed data must be delivered to the
notification service. This can either be done by embedding the contents of the

5Lazy queue persists the events on local storage until consumed

39

transformation in the event itself (fat event) or by exposing the location of the
transformed data for extraction.
With the arrival of one of these events, it matches the pipeline reference of no-
tification configs in the database to the pipeline reference in the event. For each
notification config, that refers to the pipeline, a notification is sent to the cor-
responding platform if the an evaluation of the condition upon the transformed
data succeeds.

4.2.3 Choreography

With this architectural modeling approach, the scheduler does not act as an or-
chestrator, its rather an initiator of a choreographed process flow. The figure
4.11 illustrates the process from the creation of datasource and pipeline config-
urations, over the extraction of the open data and its subsequent transformation
to its persistence and notification to a external platform.
For simplicity reasons the initial state of this process is that all configs have been
persisted via REST interface and the datasource config is held in the local cache
of the scheduler. Only one instance per microservice is modeled in this diagram
and all events have been models as fat events (see 4.2.2) .
The process flow can be understood as a pipeline in the context of the open data
service, as well as a Saga in the context of Event-Driven Architecture.

1. Scheduled time occurs The scheduler service checks for the schedule
properties that are held in its local cache. If a specific time occurs an
event is sent to the adapter service to trigger event processing actions (data
import).

2. Data Import The adpater service searches for the adapter config that
corresponds to the event in its config database and executes the data ex-
traction.

3. Send imported data After successful import of the data is sent as a fat
event that contains the data and the internal identified of the datasource
to the transformation service.

4. Transformation The transformation service receives the imported data
with the datasource id and searches in its configuration database for peris-
ted pipeline/transformation configs that are related to the datasource (via
id). It executes the function that is contained in the transformation config
upon the imported data.

5. Persist the transformation results After successful execution of the
transformation function the aggregated data will be sent (as fat event) to
the storage service.

40

6. Data provision The persisted data will be offered to the user/application
for extraction via read-only REST interface by the storage service.

7. Send notification event An event is sent to the notification service to
indicate that the transformation and its persistence have been completed.
The event consists thereby of a pipeline id and the transformed data for
condition evaluation upon the data.

8. Notification dispatch After the reception of the event from the transform-
ation service, the notification service searches for in the config database for
matching notification configs with the pipeline id of the event. For each
notification config, the condition will be evaluated and a notification will
be sent to the corresponding platform if the condition is met.

Figure 4.11: Event based choreography of JValue ODS

41

4.2.4 Evaluation

Microservice and Bounded Context The 1:1 relation constraint between
microservice and bounded context could not consistently be applied throughout
this modeling approach. In the results of the Event-Storming work, the scheduler
was interpreted as an actor in the adapter context (see 4.1.3). In this architec-
tural design, it has been modeled as an own microservice that is located in the
bounded context of the adapter. If it is considered to be integrated in the adapter
service, scaling would have no effect due to the fact that either all adapter service
container instances would be triggered by a scheduled time event or only one if
a leader election is implemented.
This applies also for the transformation bounded context due to having the stor-
age service integrated in the context.

Scaling All services in this pattern can be scaled by increasing the amount of
instances per service. This does not apply to the scheduler service. If it is scaled
with no additional control, each instance would trigger the process flow of the
same pipeline. The consideration of keeping it unscaled or to scale it with the
leader election pattern emerges (for instance with Apache zookeeper 6).

Communication analysis Another outcome of this architecture is that the
communication throughput can be reduced. This could be achieved on the one
hand by separating the configuration databases, resulting in the unnecessity to
share the configurations across the microservices. On the other hand by elimin-
ating the orchestrated pattern (the message exchange had to be sent twice, due
to the scheduler as intermediate component).

6https://zookeeper.apache.org

42

5 Implementation

The implementation was planned in several consecutive iterations. The strategy
pursued is to replace synchronous communication patterns step by step with
event based message queues. The major requirement for each iteration is that
the system has at least the same functionality as before.
It has been implemented on github 1 as a git fork of the original repository 2.
At the end of all phases integration tests have been modified in order to check
the integrity of the system after the implementation. Due to the continuous
development of the JValue Open Data Service the collaborators, some developers
contributed to the implementation of the architecture.

5.1 Iteration 1: Transformation-Notification se-

gregation

The purpose of this iteration is to segregate the functionality of transforming
imported data from the functionality to send notifications to external systems.
Both processes are previously defined within the transformation service and are
triggered by the scheduler service (see 2.3.3). After a successful transformation
and persistence of the imported data the user gets a notification send to an ex-
ternal system (e.g. Slack) if it has been configured in the notification part of the
pipeline configuration.
According to the outcomes of the “Event-Storming Workshop“ the dispatch of
notifications is in another bounded context then the transformation of the im-
ported data and has to be therefore defined in a separated microservice. As a
consequence the “notification service“ was introduced to the system, whereby
it derived all the functionalities of the transformation service in regards of the
notification handling.
These modules have been integrated into the notification service:

1https://github.com/ke45xumo/open-data-service
2https://github.com/jvalue/open-data-service

43

Notification Dispatch All modules that refer to the transmission of notifica-
tions to external systems have been migrated in this iteration.

Notification REST-API The scheduler service triggers the notification emis-
sion by sending a HTTP-POST request with the notification configuration as
payload to the notification service. All interfaces regarding the notification have
been implemented and the scheduler service was modified to use the new end-
point.

Condition evaluation The module for the evaluation of conditions of the
transformed data was imported and additionally extended by the functionality
to send notifications upon failures in the system. The requirement to keep the
functionality of the system was met and even extended.

The technology used for the notification service is NodeJS 3 that runs in a Docker
container.

5.2 Iteration 2: Introduction of config databases

Due to the composition of several configuration items within the pipeline con-
fig, the need to separate them and assign them to the corresponding bounded
contexts emerged (see 4.1.3). To comply with the domain correctness one con-
figuration repository was a applied to each bounded context. This adapts the
layered structure of Domain Driven Design. It represents the building block re-
pository and is part of the persistence layer (see 2.1.4).
The technology that is used for the configuration repositories are PostgreSQL 4

databases that introduced to the system as Docker containers. Each microservice
communicates with its corresponding configuration database via ODBC.

Adapter configuration Database A Database for the adapter service was
created in order to persist the configuration of the properties of a data import.
The configuration items, named “Datasource-Configs“ contain thereby all the
properties, such as the data location, that are mandatory for the extraction of
open data from its data sources. The time, as well as the frequency of the extrac-
tion is considered to be the scheduler configuration, which has been embedded
within the structure of a data source configuration.

Transformation configuration Database The persistence of the properties
of a transformation is introduced to the transformation service as a repository. A

3https://nodejs.org
4https://www.postgresql.org/

44

conclusion of the Event-Storming workshop was that the core service should be
eliminated. As the target database for pipeline configurations vanishes, a need for
the persistence of pipeline meta data, which describes the purpose these emerges.

Notification-configuration Database There are currently three types of no-
tification configurations available

• Slack configuration

• Firebase (FCM) configuration

• Webhook configuration

The communication to each platform requires different options (e.g. workspace
id for Slack) resulting in the need of differentiating notification configurations
into these types. Every notification config refers to a pipeline configuration,
enabling a relational mapping of 1:N A database table was created for every
type of configuration. The persistence of these configuration types is handled via
Object-relational mapping (ORM) in typescript 5.

The separation of the entities results in having 1:N relationships between the sep-
arated configuration items. For instance can one datasource config be referenced
by multiple pipeline configs, which reduces resource consumption by not having
to import the same dataset for different transformation results.

Configuration interfaces An interface for the control of configurations has
to be implemented for each microservice. Handling these CRUD operations via
event communication was taking into consideration, but would interfere with the
requirement not to restrict the functionality of the platform. , because the user
would no longer be able to persist configs in a convenient way.

As a consequence, an endpoint for the persistence of configuration was imple-
mented for each microservice. The endpoint provides this interface:

• GET {service url}/config?{query parameter} This interface returns
a list of configurations that match the conditions provided by the query
parameters in SJON format.

• POST {service url}/config This interface’s purpose is to persist the con-
fig by sending a configuration in SJON format. It will return the persisted
config, containing an id.

• DELETE {service url}/config/{id} This interface’s purpose is to de-
lete a config. The results of the delete operation can be derived from the
status code.

5https://github.com/typeorm/typeorm

45

• PUT {service url}/config/{id} This interface’s purpose is to update a
config with id id by sending a configuration in SJON format. The results
of the delete operation can be derived from the status code.

5.3 Iteration 3: Deletion of pipeline repository

Elimination of Core-Service The purpose of the core service, was to persist
pipeline configurations. With the successful implementation of the config data-
bases for each service and the corresponding interfaces, the core service is no
longer required and has been therefore removed from the system.

UI-Service modification The ui service offers a web based user interface for
the creation, deletion and modification of pipeline configurations. Due to the
elimination of the pipeline repository, the communication patterns of the ui ser-
vice have to be modified, in order to move from the communication with the
core service to a meaningful way to communicate with the distributed config
repositories.

The configuration of a pipeline on this frontend previously consisted of a con-
secutive selection of properties of its embedded configuration items, such as the
notification configuration. A pipeline could only be persisted if all of those steps
have been applied and confirmed in the user interface.

This procedure been replaced by the segregation of these embedded items into
these single web parts on the webclient:

• Datasources: This webpart serves the configuration of the open data im-
port (“Datasource Configs“). The user may select the data location, meta
data and the time, as well as the frequency of the data extraction (em-
bedded scheduler config). Data sources are now handled separately. The
results will be sent to the adapter service for persistence.

• Pipelines: The pipeline configuration on the user interface has been de-
constructed and simplified. It only consists of meta data information, the
transformation config and a reference to the data source config id.

• Notifications: With the decomposition of the pipeline config, After suc-
cessful pipeline creation the user will be forwarded

46

Scheduler Service modification For the orchestrated communication with
all microservices within the JValue ODS, the scheduler uses pipeline configs in
order to dispatch the embedded configs to the corresponding service.
To maintain the logic or respectively the functionality, the requests to the inter-
face of the core service has to be replaced by requests to the microservice that
offer the embedded configurations of the pipeline. After the retrieval of the con-
figurations, they have to be composed to the previous pipeline config structure,
so that the scheduler can process pipeline executions the same way as before.

5.4 Iteration 4: Transformation-notification com-

munication

Introduction AMQP-Service In this phase a new service is introduced to the
current infrastructure of the open data service. A RabbitMQ server embedded
in a Docker container has been integrated. It serves as an intermediate layer
of communication and provides mechanisms (e.g. channels) for event exchanges
between the services.

Notification queue According to the outcomes of the architecture design, a
queue (channel) has to be implemented in order to notify the notification service
after transformation execution. Several ways to implement this have been eval-
uated. A trade-off between domain correctness and unnecessary network load in
regards of the condition evaluation has been identified.
The condition that are persisted within the notification configuration in the noti-
fication config database are evaluated upon the transformed data for the decision
whether to dispatch a notification. This can either be achieved by handing the
transformed data over to the notification service, where the evaluation takes
place, or by sending the conditions to the transformation service for condition
evaluation by the transformation service.
The further approach maintains domain correctness by assigning the condition
evaluation functionality to the notification service, where it should be semantic-
ally located. Due to sending the transformed data from the transformation to
the notification service, a higher network load will be the consequence (because
the transformed data is in the means larger than the contents of a condition
evaluation function that would be sent in the second scenario).
The latter approach causes domain incorrectness by having the transformation
service evaluate the conditions for the notification service to check whether a
notification should be sent or not, but causes a lower network work load.
The transformation service has in general a higher resource consumption than
the notification service because of the execution of the aggregation of data. In
order to distribute the load across the microservice evenly and to ensure simpli-

47

city in development due to domain correctness, the decision has been made to
implement the first solution.

Fat vs. thin event Another consideration has been taken into account, either
to embed the transformation data in the event body (fat event) or to send a
reference to it (thin event), whereas the notification service requests the data
synchronously from the storage service. The storage service is expected to have
a high network throughput due to having to respond to many data requests by
users/applications. The overall performance of the implementation of the fat
event is expected to be better and should be therefore chosen.

Notification Message Because of the direct communication between trans-
formation and notification service, the possibility emerged, to send additional
meta data, such as the duration of the transformation execution to the notific-
ation service. This additional information has been embedded in the message
that is sent to the platform, serving the users of the open data service more
transparency in regards of when to expect the data after the schedule.

Condition Evaluation The evaluation of condition has been extended with
the functionality for error conditions, for the use case that a ODS user wants only
to be informed when the data import and aggregation fails. This makes sense,
since the import frequency can be set to minutely.
An event with an undefined dataset is sent to the notification service, when the
transformation of the imported data fails. The user is now able to check whether
the pipeline fails, by checking for the condition “data == undefined“ or “data
== null“ (in javascript syntax).

At the end of this phase, the orchestrated communication behaviour in regards
of the notification has been removed from the scheduler. The requirement to
maintain the functionality is given or even extended by the introduction of this
feature.

5.5 Iteration 5: Adapter-transformation com-

munication

The communication between adapter and transformation in this phase was im-
plemented by using an event queue. After successful import of the desired data,
the adapter service publishes an “AdapterData“ event to this channel.
Also in this section considerations have been made whether to use thin or fat
events for the exchange of the imported data. In this case the event has been
implemented as a hybrid solution. The event type is defined by these properties:

48

• datasourceId This id is used to search for pipelines or respectively trans-
formation configs with the same datasourceId in order to execute them.

• data This is the field where the imported data can be set (when it is used
as a fat event)

• dataLocation This property can be set to indicate the location (adapter
RESTendpoint) where the imported open data sets can be extracted.

If the data is contained in the event itself (“ data != null“), the transformation
service will process it directly. It extracts otherwise the data from the REST
interface referenced by the entry dataLocataion.
With the reception of an event the transformation service searches its database
for pipeline configs that refer to the “datasourceId“ and executes the correspond-
ing transformation functions with the subsequent publication of events to the
notification service.

5.6 Iteration 6: Storage-Transformation com-

munication

Introduction of Storage-MQ-Service Hence the previous storage service is
based on a predefined docker image that is based on the software PostgREST 6

and is therefore not modifiable, an implementation of a new service that incor-
porates event based massaging is mandatory.
The technology used for this service is based on NodeJS 7 with typescript 8

framework. It is connected to the storage database via ODBC connection and is
subscribed to a queue, which the transformation service publishes various events
to. An REST API has been implemented that only accepts HTTP-GET requests
to align with the concept of CQRS (see 2.7). The queue thereby acts as an Event-
Bus between the transformation service and this storage service.

Two event types have been defined with this iteration, whereas these contain
event subtypes as shown in figure 5.1. One the one hand, the event type DDL,
whereby DDL stands for Data Definition Language. These event types are ne-
cessary due to the current structure of the database, where for each pipeline a
corresponding table exists. They indicate that a table has to be created upon
pipeline creation or that a table has to be deleted within a pipeline deletion. A
sub event type for each of these database structure defining operations has been
created.

6http://postgrest.org
7https://nodejs.org
8https://www.typescriptlang.org

49

Figure 5.1: Events of the storage queue

On the other hand, the event type DML, which is an acronym for Data Mod-
eling Language is categorized in three further event types that represent CUD
operations on the data in the database itself (see figure 5.1).

Modification of transformation service The transformation service has to
send an “create table“ event to the storage queue when a pipeline config is created
by accessing the config REST API. This ensures that the data can be inserted
when the transformation is triggered by receiving an event from the “adapter
data“ queue. Similarly, an “drop table“ event will be sent upon the deletion of a
pipeline.
After transformation of the imported open data the transformation service sends
an “Insert“ event (Type: “DML“) to the storage queue in oreder to trigger the
persistence of the data the new storage service.
The other event subtypes of the “DML“ event are currently not used by the open
data service.
As final step the communication between the storage and the scheduler has been
removed in the scheduler service. Also the transformation communication could
be removed because it is no longer needed for persistence purposes.

50

5.7 Iteration 5: Adapter-scheduler communica-

tion

This iteration has not been fully implemented. Nevertheless, the implementation
strategy will be demonstrated in this section.
Two queues or respectively channels are introduced in this phase. The objective
of both queues is to provide an event based mechanism for the communication
between scheduler and adapter service. One queue is responsible for the exchange
of “trigger“ events, that are published by the scheduler and consumed by the ad-
apter service to initiate the open data import and therefore the whole process
flow of a pipeline. The events thereby contain references (id) to the datasource
config, whereas the adapter can identify the corresponding config from its data-
base upon event reception.
The purpose of the other queue is to keep the cached scheduling configs, or re-
spectively adapter configs up to date. These events are published by the adapter
service as soon as it receives a CRUD request for datasource config persistence
on its REST API. The event types are thereby categorized in CRUD operations,
which illustrate a change of the datasource config to the scheduler.

51

6 Evaluation

6.1 Requirements

6.1.1 Functional

F1 Choreography instead of orchestration The requirement was to move
from a orchestrated communication pattern to a event-based choreography. This
could be achieved by removing the blocking REST API requests by the scheduler
and introducing queues between the microservices for information or respectively
event exchange. The scheduler is no longer assigned to the role as an orchestra
tor. It can be moreover understood as an “event flow initiator“, since it publishes
the initial event to the system, which engages other services to publish events as
well.

F2 Asynchronous messaging The goal of this architecture was to eliminate
all synchronous communication mechanisms (request reply). This has only been
implemented to some extent. For some endpoints, it was either not applicable,
for instance ODBC connections to the databases or it was unreasonable to do so
(e.g. for the REST interface that are exposed to the user/application.

F3 Inter-service dependencies This requirement states that a microservice
should not communicate with other microservices directly. It should instead use
the event bus, or respectively the channels for that purpose. This has been ap-
plied to some microservices, mainly those who consume and publish fat events.
The microservices that use thin events, like the scheduler still depend on com-
municating directly with the adapter service for datasource config extraction.

52

6.1.2 Non-functional

N1 Functionality of the system has to be preserved The demand to the
system is that the functionality of the ODS platform stay the same. This could
be fully achieved. The system was even extend by further functional aspects,
such as the provision of conditional evaluation of platform failures.

N2 Increase in performance The overall performance should be increased
(untested) due to the fact that less communication takes place within the system.
The reason for this is the elimination of the orchestrated behaviour of the sched-
uler, that forced inter-service communication to be exchanged at least twice. The
notification execution, for instance, required the scheduler to extract transformed
data from the transformation service and then pass it to this service. This prob-
lem has been resolved by the direct communication in an choreographed manner.

Another aspect that should be considered in terms of performance increase, is
that pipelines that refer to the same datasource, will not instruct the adapter
service to extract the data from the open data sources anymore. Due to the sep-
aration of the context of pipeline and datasource and their corresponding configs,
the data is only extracted once and processed several times.

N3 Collaboration and Development This non-functional requirement is
about how to handle the development for a successful integration of the code
into the existing repository, as well about collaboration with the open data con-
tributor team.
The development was planned in several phases, that each did not reduce func-
tionality and were applicable to the repository. The implementation of these
phases was not done as planned. The challenge of implementing simultaneously
on several, different microservices lead to the tendency to implement on one mi-
croservice one after another, or to implement similar functionalities within an
iteration. As a consequence the git “pull requests“ that have been made for the
git “master branch“ were not properly separated and lead to difficulties in terms
of integration.
In regards to the collaboration, every major change that has been made was dis-
cussed in a collaboration standup meeting, that was scheduled every two weeks.

53

Appendix : Scalability

6.2 Scalability

The architecture was planned with the intention to improve the performance of
the system. Scalability plays thereby an important role and was consequently
included in the modeling process. The implementation build a foundation for
the system to scale large but did not specifically setup scaling rules or similar
functionality, like the configuration of Kubernetes 1.

6.3 Further improvements

The goal of this thesis was to achieve choreography within the architecture of
the JValue Open Data Service, by applying event driven architecture. A further
improvement to the system in regards of event based communication could be
to extend the inbound and outbound Application Programming Interfaces with
event queues. The implementation of an outbound queue can enable users or
respectively applications to consume transformed open data from the platform.
The introduction of an inbound event channel could extend the functionality by
enabling the system to import or respectively consume from open data message
queues.

1https://kubernetes.io/

54

Appendix A Event storming workshop

55

Event driven architecture - Scaled

Appendix B Event driven architecture - Scaled

56

Figure 6.1: Results of the event storming workshop - Adapter Lane

57

Event driven architecture - Scaled

Figure 6.2: Results of the event storming workshop - Notification Lane

58

Figure 6.3: Results of the event storming workshop - Transformation Lane

59

Event driven architecture - Scaled

Figure 6.4: Results of the event storming workshop - Storage Lane

60

Figure 6.5: Results of the event storming workshop - Overview

61

Event driven architecture - Scaled

Figure 6.6: Event Driven Architecture of ODS

62

References

[al20a] Jerome Boyer et al. Command-Query Responsibility Segregation (CQRS).
2020. url: https://ibm-cloud-architecture.github.io/refarch-
eda/patterns/cqrs/ (visited on 12/05/2020).

[al20b] Jerome Boyer et al. Event driven solution implementation methodo-
logy. 2020. url: https://ibm-cloud-architecture.github.io/
refarch-eda/methodology/event-storming/ (visited on 03/05/2020).

[Avr07] Abel Avram. Domain-Driven Design Quickly. Lulu.com, 2007. isbn:
1411609255. url: https://www.infoq.com/minibooks/domain-
driven-design-quickly.

[BK04] David Burdett and Nickolas Kavantzas. WS Choreography Model Over-
view. WD not longer in development. http://www.w3.org/TR/2004/WD-
ws-chor-model-20040324/. W3C, Mar. 2004.

[Bra19] Alberto Brandolini. Introducing EventStormin. Apress, 2019. url:
https://leanpub.com/introducing_eventstorming.

[EN10] Opher Etzion and Peter Niblett. Event Processing in Action. 1st.
USA: Manning Publications Co., 2010. isbn: 1935182218.

[Eva04] Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart
of Software. Addison-Wesley, 2004.

[Fai11] Ted Faison. Event-Based Programming: Taking Events to the Limit.
1st. USA: Apress, 2011. isbn: 1430243260.

[FF06] Martin Fowler and Matthew Foemmel. Continuous integration. 2006.
url: https://martinfowler.com/articles/continuousIntegration.
html.

[HPX13] Sven Helmer, Alexandra Poulovassilis and Fatos Xhafa. Reasoning
in Event-Based Distributed Systems. Springer Publishing Company,
Incorporated, 2013. isbn: 3642267866.

[HW12] G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley Signa-
ture Series (Fowler). Pearson Education, 2012. isbn: 9780133065107.
url: https://books.google.de/books?id=qqB7nrrna%5C_sC.

[MFP06] Gero Mühl, Ludger Fiege and Peter Pietzuch. Distributed Event-
Based Systems. Berlin, Heidelberg: Springer-Verlag, 2006. isbn: 3540326510.

63

https://ibm-cloud-architecture.github.io/refarch-eda/patterns/cqrs/
https://ibm-cloud-architecture.github.io/refarch-eda/patterns/cqrs/
https://ibm-cloud-architecture.github.io/refarch-eda/methodology/event-storming/
https://ibm-cloud-architecture.github.io/refarch-eda/methodology/event-storming/
https://www.infoq.com/minibooks/domain-driven-design-quickly
https://www.infoq.com/minibooks/domain-driven-design-quickly
https://leanpub.com/introducing_eventstorming
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
https://books.google.de/books?id=qqB7nrrna%5C_sC

REFERENCES

[MT15] S. Millett and N. Tune. Patterns, Principles, and Practices of Domain-
Driven Design. Wiley, 2015. isbn: 9781118714706. url: https://
books.google.de/books?id=SsK5mwEACAAJ.

[Nad+16] Irakli Nadareishvili et al. Microservice Architecture: Aligning Prin-
ciples, Practices, and Culture. 1st. O’Reilly Media, Inc., 2016. isbn:
1491956259.

[New15] S. Newman. Building Microservices. O’Reilly Media, 2015. isbn: 9781491950357.
url: https://books.google.de/books?id=1uUDoQEACAAJ.

[Ric15] Mark Richards. Software Architecture Patterns. O’Reilly Media, Inc.,
2015. isbn: 9781491925409.

[Ric20a] Chris Richardson. Pattern: Event sourcing. 2020. url: https: //

microservices.io/patterns/data/event-sourcing.html (visited
on 10/04/2020).

[Ric20b] Chris Richardson. Pattern: Saga. 2020. url: https://microservices.
io/patterns/data/saga.html (visited on 12/04/2020).

[Ver13] Vaughn Vernon. Implementing Domain-Driven Design. 1st. Addison-
Wesley Professional, 2013. isbn: 0321834577.

[Wol16] E. Wolff. Microservices: Flexible Software Architectures. CreateSpace
Independent Publishing Platform, 2016. isbn: 9781523361250. url:
https://books.google.de/books?id=X7YzjwEACAAJ.

64

https://books.google.de/books?id=SsK5mwEACAAJ
https://books.google.de/books?id=SsK5mwEACAAJ
https://books.google.de/books?id=1uUDoQEACAAJ
https://microservices.io/patterns/data/event-sourcing.html
https://microservices.io/patterns/data/event-sourcing.html
https://microservices.io/patterns/data/saga.html
https://microservices.io/patterns/data/saga.html
https://books.google.de/books?id=X7YzjwEACAAJ

	Introduction
	Fundamentals
	Domain Driven Design
	Definition
	Domain and Bounded Context
	Ubiquitous language
	Layered Architecture
	Model-Driven Design

	microservices
	Definition
	Characteristics
	Structure
	Communication
	Analysis

	JValue ODS
	Definition
	Structure
	Components
	Process Flow

	Event-Driven Architecture
	Definition
	Elements
	Topologies
	Event-Based Patterns

	Requirements
	Functional
	Non-Functional

	Architecture Design
	Analysis with Event-Storming
	Definition
	Procedure
	Results

	Event-Based Design of ODS
	Technology Considerations
	Architecture
	Choreography
	Evaluation

	Implementation
	Iteration 1: Transformation-Notification segregation
	Iteration 2: Introduction of config databases
	Iteration 3: Deletion of pipeline repository
	Iteration 4: Transformation-notification communication
	Iteration 5: Adapter-transformation communication
	Iteration 6: Storage-Transformation communication
	Iteration 5: Adapter-scheduler communication

	Evaluation
	Requirements
	Functional
	Non-functional

	Scalability
	Further improvements
	Appendices
	Appendix Event storming workshop
	Appendix Event driven architecture - Scaled

	References

