
Friedrich-Alexander-Universität Erlangen-Nürnberg

Technische Fakultät, Department Informatik

ABDULLAH AL SAMMAN

MASTER THESIS

MODELING FLOSS DEPENDENCIES

IN PRODUCTS

Submitted on 30 September 2020

Supervisors: Andreas Bauer, M. Sc., Prof. Dr. Dirk Riehle, M.B.A.
Professur für Open-Source-Software
Department Informatik, Technische Fakultät
Friedrich-Alexander-Universität Erlangen-Nürnberg

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen,
die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 30 September 2020

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 30 September 2020

i

https://creativecommons.org/licenses/by/4.0/

Abstract

As the software industry grows fast, the competition to produce high-quality
software as quickly as possible, made the reusability of Free/Libre and Open
Source Software (FLOSS) famous, but with features come challenges and risks.
The main issue with FLOSS is license compliance among the system’s different
FLOSS components; therefore, license compliance tools arise, trying to avoid and
solve the problem. This thesis investigates the license compliance tools to find
how these products model the FLOSS dependencies. The need for a unified model
is significant to reach a fully automated method to decide FLOSS components’
usability without any issues.

ii

Contents

1 Introduction 1

2 Related Work 3

3 Research Questions 5

4 Research Methodology 6
4.1 Multiple case study design . 6
4.2 Case definition . 6
4.3 Case selection . 7
4.4 Data sources . 8
4.5 Analysis method . 10

5 Cases 12
5.1 Case 1: CycloneDX . 12

5.1.1 What is a component? . 13
5.1.2 How are licenses and copyrights represented? 14
5.1.3 How are dependencies represented? 15
5.1.4 How is meta-data represented? 17
5.1.5 How are vulnerabilities represented? 18
5.1.6 What are the common use cases? 18

5.2 Case 2: Fossology . 21
5.2.1 What is an Upload? . 22
5.2.2 How are licenses and copyrights represented? 23
5.2.3 How are dependencies represented? 25
5.2.4 How is metadata represented? 25
5.2.5 How are vulnerabilities represented? 27
5.2.6 What are the common use cases? 27

5.3 Case 3: OSS Review Toolkit (ORT) 28
5.3.1 What is a component? . 29
5.3.2 How are licenses and copyrights represented? 30
5.3.3 How are dependencies represented? 30

iii

5.3.4 How is metadata represented? 30
5.3.5 How are vulnerabilities represented? 31
5.3.6 What are the common use cases? 31

5.4 Case 4: Tern . 34
5.4.1 What is a component? . 37
5.4.2 How are licenses and copyrights represented? 37
5.4.3 How are dependencies represented? 37
5.4.4 How is metadata represented? 37
5.4.5 How are vulnerabilities represented? 38
5.4.6 What are the common use cases? 38

5.5 Case 5: Quartermaster . 43
5.5.1 What is a component? . 44
5.5.2 How are licenses and copyrights represented? 44
5.5.3 How are dependencies represented? 45
5.5.4 How is metadata represented? 45
5.5.5 How are vulnerabilities represented? 45
5.5.6 What are the common use cases? 45

5.6 Case 6: ScanCode Toolkit . 49
5.6.1 What is a component? . 52
5.6.2 How are licenses and copyrights represented? 53
5.6.3 How are dependencies represented? 53
5.6.4 How is metadata represented? 53
5.6.5 How are vulnerabilities represented? 53
5.6.6 What are the common use cases? 54

6 Limitation 57
6.0.1 Construct validity . 57
6.0.2 Internal validity . 57
6.0.3 External validity . 57
6.0.4 Reliability . 58

7 Conclusion 59
7.1 Discussion . 59

7.1.1 Component representation 59
7.1.2 Licenses and copyrights representation 60
7.1.3 Dependency representation 61
7.1.4 Meta-data representation 62
7.1.5 Vulnerabilities representation 63

7.2 Summary . 64

8 Future Work 66

9 Acknowledgements 68

iv

Appendices 69
Appendix A Case Study Candidates List 69
Appendix B FOSSology ERD . 70
Appendix C Thematic Analysis Phases 71
Appendix D Clearly Defined UML 71
Appendix E OSS Review Toolkit design 72

References 73

v

1 Introduction

As the software industry grows, reusability is becoming crucial for vendors to
produce high-quality software quickly. That made FLOSS very popular and used
by all kinds of software vendors worldwide, but with such ease comes challenges.
Managing FLOSS dependencies has many aspects companies need to handle be-
fore using FLOSS dependencies to prevent legal hazards like license noncom-
pliance with other FLOSS dependencies. “The main problem when working with
multiple open-source licenses is that they are not necessarily compatible.” Among
different challenges Luoto (2013) identified license incompatibilities as the main
problem. Security risks raise the following questions. Does a dependency oppose
a threat to software safety or other FLOSS dependencies? Does a component
have vulnerabilities? Possible risks from patent infringement. The community
behind the component, and does it have an up to date documentation? Does the
component have a Software Bill of Material (SBOM) documents available in a
machine-readable format like Software Package Data Exchange (SPDX)1? All the
required information to manage these challenges must be documented next to the
FLOSS component composition. A system architect usually doesn’t consider this
additional information to manage FLOSS dependencies. “The architect’s role as
a key character in orchestrating different stakeholder requirements into a single
system has been widely recognized” (Rozanski and Woods, 2012). Still, the lake
of legal experience or supervision from this key role could be a fatal blow to the
software. All the mentioned challenges must be treated well in the early phase if
the vendor wants to avoid legal problems. That’s why companies using different
tools to collect license compliance information then produce SBOM documents
for future use. The wide usage of these tools as FLOSS products benefits all
vendors and helps create communities around it. Each license compliance tool
has its way of representing the FLOSS dependencies. Usually, license compli-
ance tools offer more features than just listing all used packages and licenses.
They provide license conflict analysis, and they use a machine-readable format
for generating and sharing reports. All variation between license compliance tools
should have something common to build models around it. The challenges with
data gathering for the compliance process, usage of FLOSS in product, custom

1[Accessed on 09.05.2020] https://spdx.dev/specifications/

1

https://spdx.dev/specifications/

reports, SPDX support, and a central system to manage products are found in
the Bauer et al. (2020) case study. Suggest investigating if the different models
behind license compliance tools can be based on a unified product architecture
model. Such a unified model could simplify the use of FLOSS in commercial
software. In this thesis, we want to investigate if the representation of license
relevant information of different license compliance tools can be based on a com-
mon model representing a tool architecture. From this model, documents like the
SBOM should be derived.

Clarification of We usage in this thesis context is to keep on the academic writing
style, and all the work is done by Al Samman alone without any help.

2

2 Related Work

Hammouda et al. (2010) discussed that every architectural design must con-
sider the common stakeholders’ requirements and consider a new aspect of the
legal concerns: using the FLOSS dependencies and components legal part of the
vendor’s offered software. They have proposed patterns used for managing the
way different components can interact to ensure that all licenses of open source
components comply with its license. They introduced several concept open source
legality patterns under these three main categories: a) Interaction legality pat-
terns. b) Isolation legality patterns. c) Licensing legality patterns. This paper
shows how important to consider the legal aspect to ensure license compliance
among used FLOSS dependencies and components in particular software.

Brøndum (2012) dissertation shows how vital it is to model and coordinate the
dependency to satisfy the intended system’s requirements. Then he illustrates the
cases, which the architectural dependency analysis and modeling (ADAM) have
been applied to discovering the hidden dependencies and connections to other
remote or local services, which is not documented by the vendors. It then con-
cludes with the importance of modeling and designing software systems affected
by the dependence relationships with the primary system. By using ADAM and
version control systems help refine and decompose the design elements.

Luoto (2013) main focus is the significance of open source license management on
the architectural level. The developed tool uses UML profiles to create an open
source license management framework. This work is proof that UML elements
can be extended to represent license compliance information since it is a common
approach to model software. Then scan the software for license conflict during
the early phases of the development process or even for released software. But
this approach does not cover dynamically linked libraries usage scenarios.

Sangal et al. (2005) focuses on managing large software systems’ architecture by
converting the system’s statistical analysis data to a visual method known as
the dependency structure method. It utilizes multiple algorithms to detect the
design violations according to the user’s design rules and apply it during the sys-

3

tem development to decide which dependencies are acceptable. This work shows
the importance of managing dependencies to keep the software in the top state
to fulfill the customer needs, avoiding unnecessary and problematic dependencies
by auditing every dependency relationship between the components, whether it
is a FLOSS component.

4

3 Research Questions

In this section, our research questions are defined. In the introduction 1, all our
motives for research on this subject explained. The overall goal is to analyze the
well-established FLOSS license compliance and governance tools to see how they
modeled FLOSS dependencies. To answers the following research questions:

RQ1: What models for modeling FLOSS dependencies in products ex-
ist?
Many vendors care to solve license compliance issues, using FLOSS license com-
pliance tools to determine if they have any legal issues caused by license conflict
within the software. Without even knowing how the license is represented, or
the model used by the tool, running in the background. The companies or the
community that developed license compliance tools are interested in improving
it. Understanding the need for a unified model for license compliance tools leads
us to question how the existing once model FLOSS dependencies to scan the
intended software. A common FLOSS dependency model could help maintainers
understand the rivels tool or decide which tool suits the vendor’s needs.

RQ2: What dimensions are considered to model FLOSS dependencies?
Answering RQ1 suggests the significance of which dimensions matter in model-
ing FLOSS dependencies in license compliance tools. Each tool model will have
design factors that lead to choosing a subset of all possible dimensions. Some
tools prioritize scanning each file in the analyzed project to give accurate results
for each package they scan. Other tools focus on packages they find in the ana-
lyzed projects; others look for contact information and copyright holders. The
focus of license compliance tools, therefore its dimensions, shape the model of
FLOSS dependencies.

RQ3: What are the core use cases for existing modeling solutions?
Use cases of each license compliance tools help reveal similarities and differences
between them, allowing us to see the overall concept. The variety of our case
study subjects will discover which models enable more functionality options in
the tool, demonstrating the results of RQ1 and RQ2. Each case will be discussed
individually, followed by a discussion in section 7.1 to share the findings and
answer the research questions.

5

4 Research Methodology

This section describes in details the followed approach in this thesis, starting with
data collection to the findings to produce a high-quality multiple case study. “No
matter what specific analytic strategy or techniques have been chosen, you must
do everything to make sure that your analysis is of the highest quality”. As Yin
(2018) describes a high-quality case study analysis.

4.1 Multiple case study design

“A case study is an empirical method that investigates a contemporary phe-
nomenon (the ’case’) in depth and within its real-world context, especially when
the boundaries between phenomenon and context may not be clearly evident.” As
Yin (2018) defines a case study, allowing the phenomenon to be studied in a
real-world context with a flexible multi iteration process, not in a controlled en-
vironment. Furthermore, investigating FLOSS license compliance and governance
tools makes conducting controlled experiments nearly impossible because they are
used for many different use cases, not just one. This thesis fundamental inquiry
questions how the existing FLOSS license compliance and governance tools mod-
els FLOSS dependencies, suggesting the significance of investigating a real-world
context. Therefore, a case study is a proper way to answer research questions.
Still, a single case study won’t be enough to give a reliable answer due to a lack
of heterogeneity. That’s where a multiple case study comes in to provide a more
generalized reliable answer. Comparing different case study subjects with each
other gives an insight into how the chosen subjects’ design model influences the
supply chain tools and the FLOSS dependency management processes.

4.2 Case definition

“You need to define a specific, real-world ’case’ to be the concrete manifestation
of any abstraction.” – Case specification by Yin (2018).
Our multiple case study subjects must fulfill six criteria to be considered a rel-
evant case and a real-world case for our multiple case study research:

6

1. The case subject must be a FLOSS product; anyone can access the source
code and the documentation without any commercial or proprietary restric-
tions. As we investigate the product, it has to be on GitHub or any other
public version control system (VCS) with recent commits, pushes, and con-
tinuous integration (CI) feature enabled. With this, the product will be
considered as an active one and a valid case.

2. Scanning projects or repositories for dependencies licenses or copyrights
information using SPDX identifiers or license texts.

3. Product maturity is a requirement with real use cases, not just a written
license crawler, although the product’s age plays no role at all.

4. The ability to generate reports in machine-readable formats is required to
share it with other tools or instances of it, such as SPDX documents from
FOSSology to SW360.

5. The named product must have a model in its source code or specification to
describe the model, e.g. XML Schema, supporting the use case of multiple
license compliance.

6. Proper up to date documentation about the product specifications and
working mechanisms.

We want to demonstrate choosing such criteria to present a proper multiple case
study research with a common theoretical basis to cover as much information to
answer our research questions.
In summary, all cases must be a well-established products with active develop-
ment and the ability to scan for license compliance information, building tools
supply chain using machine-readable formats aiming to automate the process of
FLOSS usage in production.

4.3 Case selection

This section determines the selected candidate for our multiple case studies see
table 4.2. As mentioned in the case definition 4.2, the six criteria are specified, and
a lot of products can fit these criteria, see the list of candidates A. The selection
technique used to finalize our selection is the Most Similar cases by Seawright
and Gerring (2008), which have control variables in our case are the six criteria,
see table 4.1. Besides, focusing on well-established products leads us to select
mature and successful ones. It starts with FOSSology, one of the earliest and
prime products in the license scanning business. ORT as a modern tool with the
automation process of license compliance in its architecture. CycloneDX, with
a model specification in XML schema format, which is also a part of its supply
chain tools. It has different implementations for some ecosystems, e.g., Java,

7

Python, and NPM. Tern as a license compliance tool for containers, e.g. docker.
ScanCode Toolkit as a license scanner tool used as a third-party tool by ORT,
Quartermaster and Tern. Finally, the Quartermaster as license compliance tool
works during build time, unlike other tools integrate into the analyzed project
building process.

Product is FLOSS License Scan Mature Machine-readable formats has Model Documentation
FOSSology Yes Yes Yes Yes Yes Yes
ORT Yes Yes Yes Yes Yes Yes
CycloneDX Yes Yes Yes Yes Yes Yes
Tern Yes Yes Yes Yes Yes Yes
Quartermaster Yes Yes Yes Yes Yes Yes
ScanCode Toolkit Yes Yes Yes Yes Yes Yes

Table 4.1: Selected candidates control variables.

This variation between existing products provides a broad overview and gener-
alized answer to our research questions regarding the dependency modeling in
products.

Product Use Cases
FOSSology LS, LC, CR, CLI, MA, WG.
OSS Review Toolkit (ORT) LS, LC, CR, CLI, MA, E, DLDC.
CycloneDX LS, LC, CR, CLI, VC, S, E.
Tern LS, LC, CR, CLI, MA, VC, CS, E.
Quartermaster LS, LC, CR, CLI, DLDC, BPC.
ScanCode Toolkit LS, LC, CR, CLI, MA.

Legend: LS: License Scanner, LC: License Compliance, CS: Container Scanner, S: Specifications, VC:
Vulnerabilities Check, CR: Copyrights, E: Extensions, WG: Web GUI, CLI: Command Line Interface, MA:

Multiple Analyzers, DLDC: Dynamically Linked Dependency Check, BPC: Building Phase Scanner.

Table 4.2: Selected candidates for multiple case study.

4.4 Data sources

As research questions in chapter 3 suggest investigating FLOSS license compli-
ance and governance tools focusing on how the FLOSS dependencies have been
modeled. All case selection criteria have been specified in section 4.2 prepare
for the data collection process starts with defining the data sources and where
the data comes. According to Yin (2018), a case study should have at least
one “source of evidence”; the more is better. He also identified the primary six
sources of evidence: documentation, archival records, interviews, direct obser-
vations, participant observation, and physical artifacts. Because this thesis was
written during the COVID-19 pandemic1, the following sources of evidence were

1[Accessed on 28.05.2020] https://en.wikipedia.org/wiki/COVID-19 pandemic

8

https://en.wikipedia.org/wiki/COVID-19_pandemic

eliminated. Direct observations, interviews, and participant observa-
tion.
As defined by Yin (2018), archival records take the form of data files and
records, e.g. public use files, service records, organizational records, maps and
charts, and surveys. The previously described source of evidence doesn’t apply
in this research context and hard to get such records if it exists. The remaining
two sources of evidence supply the necessary data for this research.
Documentation: is documentary information whether paper or electronic form
e.g. emails, adminstrative documents, notes, progress reports, announcements,
proposals, internal reports, etc. As Yin (2018) defined, this research focuses
on well-established products, looking into details, not just the popularity of the
product or its place in the FLOSS license compliance and governance tools or its
use cases or performance but also the documentation of different kinds:

� Scientific papers.

� Specifications.

� Github wikis.

� Mailing lists.

� Developers documentation.

this list of documentation sources is our main source of evidence for most of this
research.
Physical artifacts: exemplary defined by Yin (2018), “a technological device, a
tool or instrument, a work of art, or some other physical evidence.” The other
physical evidence category applies to the subjects’ source code and the embedded
logical models in the referenced source codes. As for citing the source codes, we
mention the source file refers to it in the code line number if required.
Discussing the difficulty of unifying the process for all sources of evidence. The
documentation holds a different kind of data source in different shapes, writing
styles, and notations. It makes the possibility of using the automation process
nearly impossible. Driving us to do everything manually and leaving it to the
researcher ways of thinking to match and compare the findings. Considering
the previous facts about this research data sources, the need to standardize the
process for all evidence sources is in play:

1. Look for the following source of documentation in order:

(a) Papers and publications.

(b) Specification.

(c) Mailing lists.

(d) Developers documentation.

9

(e) Github wikis.

(f) Source code as a physical artifact.

2. Consider the usefulness of each source of documentation.

3. Repeat for each case study subject.

The significance of this process affects the ability to distinguish sources of evid-
ence and reliability of findings.
Lastly, the online sources of evidence have no restriction of any kind, including
websites, wikis, and documentation. It was taking into consideration must be
maintained officially by the selected product, not by any other third party organ-
ization or maintainer. If any evidence sources are out of date, it causes immediate
elimination of the product as a case study subject, not just the source of evidence;
it’s also stated in the case definition 4.2 since it’s one of the six criteria to have
proper up to date documentation.

4.5 Analysis method

As data sources for this thesis are specified in section 4.4, our thesis findings are
all done manually without any assistance from an automation tool. We extract
the existing product model, which can take multiple forms or shaps because
each product has its implementation and interpretation of its model. Since we
developed our strategy to analyze the finding by building UML diagrams, which
illustrate the model itself and the significant points based on the case study
subject model. Then defining questions to be answered, as Yin (2018) suggested.
each case must answer the following questions:

1. What is a component?

2. How are licenses and copyrights represented?

3. How are dependencies represented?

4. How is metadata represented?

5. How are vulnerabilities represented?

6. What are the common use cases?

Using this question provides a unified way to describe all the case studies to
distinguish differences and similarities among them. Finally,“Within any general
strategy, including one you might develop yourself, you should consider using any
of five analytic techniques.”(Yin, 2018). The techniques are:

1. Pattern matching.

10

2. Explanation building.

3. Time-series analysis.

4. Logic models.

5. Cross-case synthesis.

Those techniques are derived from pattern matching, with different conditions
and aspects of the case study. As for this thesis, we chose cross-case analysis,
which is easier to combine with our strategy. This strategy will help this multiple
case study research in this thesis to find its way to answer our research questions
with generalized and reliable results. Qualitative Data Analysis (QDA) was used
to analyze the gathered data for the cross-case analysis method. Linking RQs
and research results within the theory are crucial, as Mayring (2014) explains
the QDA steps. Since the QDA thematic analysis by Braun and Clarke (2006)
is highly similar to what we want to achieve, except for the first two steps are
adjusted to fit our need analyzing the gathered data, see table 9.2. Firstly,
transcription is changed to collect data based on case study subject source code
and documentation. Secondly, the coding process shifts to build UML diagrams
based on step one for each subject. Finally, all other steps stay unchanged.

11

5 Cases

5.1 Case 1: CycloneDX

“CycloneDX is a lightweight software bill-of-material (SBOM) specification de-
signed for use in application security contexts and supply chain component ana-
lysis”1. It is a FLOSS product licensed under the Apache-2.0 license. This
product provides a machine-readable format and a way to share the software
bill of material(SBOM) with further features in mind vulnerabilities, dependency
graphs, and BOM descriptor. Considering the young age of the product (started
2017), it is well-established and widely used by other supply chain tools. Some
use it in the supply chain as a source of information, e.g. “OWASP Dependency-
Track is an intelligent Software Supply Chain Component Analysis platform that
helps identify and reduce the risk of using FLOSS dependencies.”2 Other tools
used as a reporting option, e.g. OSS Review Toolkit, see case 5.3. It’s well-
maintained with continuous development by a single maintainer. It also uses
SPDX licenses list and scans for licenses with SPDX identifiers. The CycloneDX
SBOM specification is a vendor-agnostic and language-independent solution to
describe a product’s composition. They aim for a machine-readable and easy
to implement and parse representation as JSON or XML file. Apart from other
goals, the specification should be extensible to support specific and future use
cases and support software components and hardware, frameworks, containers,
and operating systems. Besides a common goal of having a complete and accur-
ate representation of a software and its components, it also covers the application
security context. Interesting in this product is that they see components rather
than a simple list and want to describe the component relationships in a more
detailed fashion. Another aspect is the ability to describe the dependency on
another service, which is not often covered by FLOSS license compliance and
governance tools. These aspects of this product make it an excellent case study
subject to understand how detailed component dependencies can be represen-
ted. Additional use cases can be covered by using CycloneDX extensions, for

1[Accessed on 19.05.2020] https://cyclonedx.org
2[Accessed on 19.05.2020] https://dependencytrack.org

12

https://cyclonedx.org
https://dependencytrack.org

example, the dependency graph functionality and the vulnerability description
are provided as extra extensions.

Figure 5.1: CycloneDX UML model.

5.1.1 What is a component?

As the documentation of bill of materials (BOM) schema v1.2 implies, each
FLOSS dependency is represented as a component with the necessary informa-
tion, e.g. name, publisher, copyrights, etc. The predefined type doesn’t describe
software components only, but hardware devices or software containers are men-
tioned as a note in the figure 5.1. Additionally, a mime-type can be defined to de-
scribe the kind of a component. Apart from general identification properties such
as name, group, and version, a package uniform resource locator (PURL)3 can
be used to accurately identify a software component. With other identification
options through CPE4 is a structured naming scheme for information technology
systems. SWID is defined as an ISO standard under ISO/IEC 19770-2:20155,

3[Accessed on 06.06.2020] http://www.purlz.org
4[Accessed on 06.06.2020] https://nvd.nist.gov/products/cpe
5[Accessed on 06.06.2020] https://www.iso.org/standard/65666.html

13

http://www.purlz.org
https://nvd.nist.gov/products/cpe
https://www.iso.org/standard/65666.html

establishes specifications for tagging software to optimize its identification and
management. Hashes for each component also allows checking if the component
has changed. Authorship of a component can be presented as a simple author
and publisher string, or as a supplier, a more sophisticated organizational entity
with detailed contact information, see figure 5.1.

1 <...

2 type="bom:classification" [1]

3 mime-type="bom:mimeType" [0..1]

4 bom-ref="xs:string" [0..1]

5 Allow any attributes from any namespace (lax validation).

6 >

7 <bom:supplier> bom:organizationalEntity </bom:supplier> [0..1]

8 <bom:author> xs:normalizedString </bom:author> [0..1]

9 <bom:publisher> xs:normalizedString </bom:publisher> [0..1]

10 <bom:group> xs:normalizedString </bom:group> [0..1]

11 <bom:name> xs:normalizedString </bom:name> [1]

12 <bom:version> xs:normalizedString </bom:version> [1]

13 <bom:description> xs:normalizedString </bom:description> [0..1]

14 <bom:scope> bom:scope </bom:scope> [0..1]

15 <bom:hashes > [0..1]

16 Start Sequence [0..*]

17 <bom:hash> bom:hashType </bom:hash> [1]

18 End Sequence

19 </bom:hashes>

20 <bom:licenses > [0..1]

21 Start Choice [1]

22 <bom:license> bom:licenseType </bom:license> [0..*]

23 <bom:expression> xs:normalizedString </bom:expression> [0..1]

24 End Choice

25 </bom:licenses>

26 <bom:copyright> xs:normalizedString </bom:copyright> [0..1]

27 <bom:cpe> bom:cpe </bom:cpe> [0..1]

28 <bom:purl> xs:anyURI </bom:purl> [0..1]

29 <bom:swid> bom:swidType </bom:swid> [0..1]

30 <bom:modified> xs:boolean </bom:modified> [0..1]

31 <bom:pedigree> bom:pedigreeType </bom:pedigree> [0..1]

32 <bom:externalReferences> bom:externalReferences

33 </bom:externalReferences> [0..1]

34 <bom:components > [0..1]

35 Start Sequence [0..*]

36 <bom:component> bom:component </bom:component> [1]

37 Allow any elements from a namespace other than this schema’s

38 namespace (lax validation). [0..*]

39 End Sequence

40 </bom:components>

41 Allow any elements from a namespace other than this schema’s

42 namespace (lax validation). [0..*]

43 </...>

Listing 5.1: CycloneDX XML reference v1.2 component.

5.1.2 How are licenses and copyrights represented?

A component can reference licenses. The definition of a license consists of an
SPDX expression string, which describes the multiple licenses relationship to each
other compliance information and one or more structures of license type entities,

14

see lines 20 to 25 in listing 5.1. An example of an expression is “Apache-2.0 AND
(MIT OR GPL-2.0-only)”, which can be represented as a structured license type
object with an SPDX identifier, a name, license text, and a URL to the license
definition, see listing 5.2 and figure 5.1. This definition also describes the option
to document the license if it does not exist in the SPDX license list by license name
and text. It’s vital to notice the field id only accepts SPDX valid ids, not an SPDX
expression. In contrast, copyright information is specified as a simple string.

1 <...>

2 Start Choice [1]

3 <bom:id> spdx:licenseId </bom:id> [0..1]

4 <bom:name> xs:normalizedString </bom:name> [0..1]

5 End Choice

6 <bom:text> bom:attachedTextType </bom:text> [0..1]

7 <bom:url> xs:anyURI </bom:url> [0..1]

8 Allow any elements from a namespace other than this schema’s namespace

9 (lax validation). [0..*]

10 </...>

Listing 5.2: CycloneDX XML reference v1.2 licenseType.

5.1.3 How are dependencies represented?

It is possible to document dependencies to other components in different ways.
The simplest way is to reference subcomponents in the component’s property
of a component with full BOM. Another way is to use the pedigree property,
which allows us to document complex supply chain scenarios from the beginning
to the end, including the creation, distribution, modification, and redistribution
of components. It is possible to describe how a component deviates from an
ancestor, descendant, or variant with the commits property. The last way is to
use the dependency graph extension. The graph representation of the component
dependencies is defined besides the components using references to the compon-
ents.

15

1 <bom serialNumber="urn:uuid:3e671687-395b-41f5-a30f-a58921a69b79"

2 version="1"

3 xmlns="http://cyclonedx.org/schema/bom/1.1"

4 xmlns:dg="http://cyclonedx.org/schema/ext/dependency-graph/1.0">

5 <components>

6 <component type="framework" bom-ref="pkg:maven/org.example.acme/

7 web-framework@1.0.0">

8 ...

9 </component>

10 <component type="library" bom-ref="pkg:maven/org.example.acme/

11 persistence@3.1.0">

12 ...

13 </component>

14 <component type="library" bom-ref="pkg:maven/org.example.acme/

15 common-util@3.0.0">

16 ...

17 </component>

18 </components>

19 <dg:dependencies>

20 <dg:dependency ref="pkg:maven/org.example.acme/web-framework@1.0.0">

21 <dg:dependency ref="pkg:maven/org.example.acme/common-util@3.0.0"/>

22 </dg:dependency>

23 <dg:dependency ref="pkg:maven/org.example.acme/persistence@3.1.0">

24 <dg:dependency ref="pkg:maven/org.example.acme/common-util@3.0.0"/>

25 </dg:dependency>

26 <dg:dependency ref="pkg:maven/org.example.acme/common-util@3.0.0"/>

27 </dg:dependencies>

28 </bom>

Listing 5.3: Dependency graph example.

For arbitrary external dependencies, which are not part of the BOM, the ex-
ternalReference property exists.“External references provide a way to document
systems, sites, and information that may be relevant but which are not included
with the BOM.”Springett (2020b) as the documentation describes. There are
15 predefined types of external references, which are listed as a note in figure
5.1. If the first 14 types do not fit, you can go to the last option “other” and
describe it as you need, aside with URI and text, see listing 5.4. Meaning any
useful information helps with dependencies documentation not included in the
BOM structure, it is welcomed to be added here, one of CycloneDX’s most strong
suites. Dependencies on other services can also be documented in the top-level
BOM element in a detailed form. Here it is possible to describe endpoints of a
provider, including their URLs, with information about the license of service, a
classification of the provided data, and a flag for a required authentication, see
listing 5.5. Documenting how a component is linked to another from a technical
perspective (static linking vs. dynamic linking) is not possible yet.

1 <...

2 type="bom:externalReferenceType" [1]

3 Allow any attributes from any namespace (lax validation).

4 >

5 <bom:url> xs:anyURI </bom:url> [1]

6 <bom:comment> xs:string </bom:comment> [0..1]

7 </...>

Listing 5.4: CycloneDX XML reference v1.2 externalReference.

16

1 <...

2 bom-ref="xs:string" [0..1]

3 Allow any attributes from any namespace (lax validation).

4 >

5 <bom:provider> bom:organizationalEntity </bom:provider> [0..1]

6 <bom:group> xs:normalizedString </bom:group> [0..1]

7 <bom:name> xs:normalizedString </bom:name> [1]

8 <bom:version> xs:normalizedString </bom:version> [0..1]

9 <bom:description> xs:normalizedString </bom:description> [0..1]

10 <bom:endpoints > [0..1]

11 Start Sequence [0..*]

12 <bom:endpoint> xs:anyURI </bom:endpoint> [1]

13 End Sequence

14 </bom:endpoints>

15 <bom:authenticated> xs:boolean </bom:authenticated> [0..1]

16 <bom:x-trust-boundary> xs:boolean </bom:x-trust-boundary> [0..1]

17 <bom:data > [0..1]

18 Start Sequence [0..*]

19 <bom:classification> bom:dataClassificationType

20 </bom:classification> [1]

21 End Sequence

22 </bom:data>

23 <bom:licenses > [0..1]

24 Start Choice [1]

25 <bom:license> bom:licenseType </bom:license> [0..*]

26 <bom:expression> xs:normalizedString </bom:expression> [0..1]

27 End Choice

28 </bom:licenses>

29 <bom:externalReferences> bom:externalReferences

30 </bom:externalReferences> [0..1]

31 <bom:services > [0..1]

32 Start Sequence [0..*]

33 <bom:service> bom:service </bom:service> [1]

34 Allow any elements from a namespace other than this schema’s

35 namespace (lax validation). [0..*]

36 End Sequence

37 </bom:services>

38 Allow any elements from a namespace other than this schema’s

39 namespace (lax validation). [0..*]

40 </...>

Listing 5.5: CycloneDX XML reference v1.2 service.

5.1.4 How is meta-data represented?

Meta-data can be documented in two different ways. The first is the meta-data
property of the top-level BOM element mostly describes authorship information
of the whole BOM. Furthermore, it allows documenting tools that were involved in
the creation of the BOM document, see figure 5.1. The second, BOM descriptor
extension, adds more metadata options about manufacturers and suppliers to
document much more reliable detailed information about the components in case
of third party existence. This extension works only for BOM v1.1 as for v1.2,
its incorporated. In general, extension possibilities should make it easy to define
custom meta-data that need to be part of the SBOM.

17

5.1.5 How are vulnerabilities represented?

The CycloneDX describes itself as an SBOM specification with a security context
in mind. The vulnerability extension provides the functionality to document
security vulnerabilities. The vulnerability property of a component can represent
an identifier common vulnerabilities and exposures (CVE)6 and a URL to the
source, as well as scores, ratings, and recommendations to assist with the decision-
making process. This extension schema developed in cooperation with Sonatype7,
which is a tool to automate FLOSS governance. However, this information can
be bundled in the BOM structure for each component or bundled at the end of
the BOM as other extensions do; both are valid for all other use cases. This
extension relies on bom-ref to associate the component with the vulnerability
element, recommending PURL usage as bom-ref value to ensure unique reference,
see the example listing 5.6.

5.1.6 What are the common use cases?

This product already has a list of possible use case scenarios Springett (2020a),
demonstrating the power of CycloneDX:

1. License compliance: Document all license compliance information for
FLOSS dependency, using SPDX licenses list, identifiers, and expressions.

2. Package evaluation: PURL helps standardize the package metadata so
it can be located regardless of the source.

3. Integrity verification: List all needed hashes for cryptography use.

4. Known vulnerabilities: Identifying known vulnerabilities in components
can be achieved by using three fields: CPE, SWID, and PURL. Not all
fields apply to all types of components, and not all sources of vulnerability
intelligence support all three fields. The use of multiple sources may be
required to obtain accurate and actionable results.

5. Inventory: Provide a complete list of all first party and third party de-
pendencies.

6. Authenticity: Digital signatures may be applied to BOM for security
purposes.

7. Assembly: BOM elements can be nested in each other to represent a tree
of dependencies.

8. Dependency graph: Provide a graph data representation for each de-
pendency and how depend on other dependencies.

6[Accessed on 06.06.2020] https://cve.mitre.org
7[Accessed on 28.05.2020] https://www.sonatype.com

18

https://cve.mitre.org
https://www.sonatype.com

9. Provenance: CycloneDX is capable of representing component authorship
and the suppliers from which components were obtained. Textual fields
representing the author(s) and publisher(s) can be used, as well as SWID
metadata or complete inline SWID documents.

10. Pedigree: Represent detailed information about the ancestors, descend-
ants, and variants.

11. Service definition: Description of depending services available as web
service and otherwise not visible as a dependency of a component.

12. Packaging and distribution: For software produced for the consumption
of others, it is essential to apply additional metadata about the provided
software, including detailed component information, manufacturer and sup-
plier information, and the tools used to create the BOM.

13. Exploitability: The vulnerability and exploitability (VEX) use cases are
also possible through the use of the optional vulnerability schema extension.

19

1 <?xml version="1.0"?>

2 <bom serialNumber="urn:uuid:3e671687-395b-41f5-a30f-a58921a69b79"

3 version="1" xmlns="http://cyclonedx.org/schema/bom/1.1"

4 xmlns:v="http://cyclonedx.org/schema/ext/vulnerability/1.0">

5 <components>

6 <component type="library"

7 bom-ref="pkg:maven/com.fasterxml.jackson.core/jackson-databind

8 @2.9.9">

9 ...

10 <purl>pkg:maven/com.fasterxml.jackson.core/jackson-databind@2.9.9

11 </purl>

12 <v:vulnerabilities>

13 <v:vulnerability ref="pkg:maven/com.fasterxml.jackson.

14 core/jackson-databind@2.9.9">

15 <v:id>CVE-2018-7489</v:id>

16 <v:source name="NVD">

17 <v:url>https://nvd.nist.gov/vuln/detail/CVE-2018-7489

18 </v:url>

19 </v:source>

20 <v:ratings>

21 <v:rating>

22 <v:score>

23 <v:base>9.8</v:base>

24 <v:impact>5.9</v:impact>

25 <v:exploitability>3.0</v:exploitability>

26 </v:score>

27 <v:severity>Critical</v:severity>

28 <v:method>CVSSv3</v:method>

29 <v:vector>AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H</v:vector>

30 </v:rating>

31 </v:ratings>

32 <v:cwes>

33 <v:cwe>184</v:cwe>

34 <v:cwe>502</v:cwe>

35 </v:cwes>

36 <v:description>FasterXML jackson-databind

37 before 2.7.9.3, 2.8.x

38 before 2.8.11.1 and 2.9.x before 2.9.5 allows

39 unauthenticated remote code execution

40 ...

41 </v:description>

42 <v:recommendations>

43 <v:recommendation>Upgrade</v:recommendation>

44 </v:recommendations>

45 <v:advisories>

46 <v:advisory>https://github.com/FasterXML/jackson-databind/

47 issues/1931</v:advisory>

48 <v:advisory>http://www.securityfocus.com/bid/103203

49 ...

50 </v:advisories>

51 </v:vulnerability>

52 </v:vulnerabilities>

53 </component>

54 </components>

55 </bom>

Listing 5.6: Vulnerability information included in BOM.

20

5.2 Case 2: Fossology

“FOSSology is an open-source license compliance software system and toolkit”8.
It is one of the top well-established products in the license scanning business,
started as a product inside the Hewlett-Packard9. The product was published
as FLOSS in December 2007, licensed under the GPL-v2.0 license. Later on,
it was transferred to the linux foundation10 and hosted by it as one of open
compliance program11; also, the product is a member of automation compliance
tooling12.“FOSSology implemented an architecture of pluggable agents that can
be composed into a pipeline of tasks applied to an uploaded open source compon-
ent.” As Jaeger et al. (2017) mentioned that the used architecture in FOSSology
enables new features to be implemented as separate models, e.g. SPDX2 report
agent13. This product offers different ways of scanning software. FOSSology uses
three agents Nomos, Monk, and Ninka, with different approaches and algorithms
to find any license information embedded in all the analyzed project files. Also,
it allows automated decisions based on the agents joint effort if all agents agree
on the same license decision. The goal was not just to scan and resolve license
compliance issues only but also to reuse previous scan information by storing it in
a database for a future scan to enhance scan times and performance. Generating
reports in a machine-readable format has it’s significant to all supply chain tools
for different use cases. FOSSology offers to make reports not only SPDX format
but also in Debian copyright format. In version 3.1 of the product, an excit-
ing feature was developed, importing SPDX documents to share reports about
FLOSS dependencies with other FOSSology instances or even other supply chain
tools. It also runs via the command line in the repository directory, or you can
upload the compressed software directly to the FOSSology web application and
process the findings. Such flexibility and features made the product famous and
used by many prominent organizations and universities around the globe, e.g.
Siemens, Toshiba, and the University of Nebraska.

8[Accessed on 20.05.2020] https://www.fossology.org/about/project-governance/#overview
9[Accessed on 20.05.2020] https://en.wikipedia.org/wiki/Hewlett-Packard

10[Accessed on 02.06.2020] https://www.linuxfoundation.org/
11[Accessed on 07.06.2020] https://compliance.linuxfoundation.org/
12[Accessed on 07.06.2020] https://automatecompliance.org/
13[Accessed on 02.06.2020] https://fossology.github.io/agentlist.html

21

https://www.fossology.org/about/project-governance/#overview
https://en.wikipedia.org/wiki/Hewlett-Packard
https://www.linuxfoundation.org/
https://compliance.linuxfoundation.org/
https://automatecompliance.org/
https://fossology.github.io/agentlist.html

Figure 5.2: Fossology generlized model.

5.2.1 What is an Upload?

FOSSology is a web server, to use it the user must upload the target software
to it, that’s why each software is referred to as an upload in FOSSology GUI
and database. The individual upload/component has a different representation,
not like the other cases. Based on the entity relationship diagram (ERD)14,
see figure 5.3. The upload/component is divided into three database tables a)
upload, b) uploadtree, and c) pfile. The upload table contains the primary data
on the uploaded software like the file name and the way the target software was
uploaded, e.g. GitHub, local file, or form file server. As for pfile table contains
all files hashes to distinguish each file uniquely. The uploadtree table includes
the relation between all the files with its uploaded target software; therefore, the
relationship is described precisely between file and the parent, no matter what it
is. All three tables enable the analyzed project to be described pretty accurately
as an individual component allowing it to take shape, see figure 5.2.

14[Accessed on 09.06.2020] https://www.visual-paradigm.com/guide/data-modeling/
what-is-entity-relationship-diagram/

22

https://www.visual-paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/
https://www.visual-paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/

Figure 5.3: FOSSology upload ERD.

5.2.2 How are licenses and copyrights represented?

FOSSology scans each file of the uploaded software for license match, meaning
each file has a list of possible licenses. Base on the ERD, see figure 5.4. The
table pfile contains file information and hashes to ensure unique identification of
each file. The license file table links both the file with its license combined with
vital information about the scanner, agent, or user how decided the license time
stamped. The table license ref contains all known licenses with full details, name
of the license with its full text; It also defines license compatibility with GPL-v2
and GPL-v3, free software foundation (FSF)15 status, and open source initiative
(OSI)16 approval of the license as an open source. This way, the analyzed project
license and all included dependencies inside scanned for license compliance, if
an issue is identified, e.g. GPL license incompatibility FOSSology give warnings
about it. The license is represented as a database entity related to each software
file and the upload. The upload relation to license ref represents the whole ana-
lyzed project license or licenses. Copyrights are scanned for each file, just like
licenses, see figure 5.5.

15[Accessed on 08.06.2020] https://www.fsf.org
16[Accessed on 08.06.2020] https://opensource.org

23

https://www.fsf.org
https://opensource.org

Figure 5.4: FOSSology license ERD.

Figure 5.5: FOSSology copyright ERD.

24

5.2.3 How are dependencies represented?

The table uploadtree describes all relations between files, directories, special and
links to its upload and packages. The file mode allows every file to be individually
specified. The parent field is designated to determine which package, project,
container, directory, or artifact the file belongs to and how the upload files depend
on each other, see figure 5.3. Documenting how a component is linked to another
from a technical perspective (static linking vs. dynamic linking) is not possible
yet. Also, checking dynamically linked libraries not possible, e.g. Gradle build
files.

5.2.4 How is metadata represented?

The package agent17 searches for known packages using RPM18 and Debian pack-
age manager19 to store all meta-data in the database, see figure 5.6. The diagram
shows how the package meta-data is stored in the database. The table pkg rpm
stores all data from RPM, and pkg deb stores all data from the Debian package
manager. In addition to the author’s table, stores all data about the agent how
unpacked file, in this case, package. Also, the mime type table helps add more
metadata to each file.

17[Accessed on 08.06.2020] https://fossology.github.io/pkgagent.html
18[Accessed on 08.06.2020] https://rpm.org
19[Accessed on 08.06.2020] https://en.wikipedia.org/wiki/Dpkg

25

https://fossology.github.io/pkgagent.html
https://rpm.org
https://en.wikipedia.org/wiki/Dpkg

Figure 5.6: FOSSology RPM and Debian package manager ERD.

26

5.2.5 How are vulnerabilities represented?

FOSSology itself doesn’t consider vulnerabilities a core use case, but a tool in the
supply chain. “SW360 is a server with a REST interface and a Liferay portal ap-
plication to maintain your projects/products and the software components within.
It can manage SPDX files for checking the license conditions and maintain license
information.”20 As one of the core use cases of SW360 is to check and manage
vulnerabilities for the analyzed project.

5.2.6 What are the common use cases?

1. License compliance: The primary use case of FOSSology is to scan soft-
ware finding all included licenses inside and review all possible conflicts or
problems in license compatibility with each other.

2. Export/Import/Edit SPDX reports: Enabling users or organizations
to share their work on a certain software via a machine-readable format
SPDX tag value or RDF in this case, also allows editing the shared report
and regenerate it again.

3. Auto Deciding: This feature is also a use case; FOSSology uses different
scanners. These scanners work together if the findings are identical, the
license will be auto-identified.

4. Correction of License texts: FOSSology allows the user to edit all li-
censing texts with the flexibility to add it as a variant or modify the existing
ones.

5. Copyrights statements: Find all copyrights statements included in all
of the analyzed project files.

6. Suppliers contact information: List all possible contact information
like addresses and emails embedded in software files.

20[Accessed on 08.06.2020] https://github.com/eclipse/sw360

27

https://github.com/eclipse/sw360

5.3 Case 3: OSS Review Toolkit (ORT)

“The OSS Review Toolkit (ORT) assists with verifying FLOSS license compliance
by checking a project’s source code and its dependencies”21. This product is li-
censed under the Apache-2.0 license. It started in 2017 with automation processes
in mind to ensure FLOSS license compliance and give evaluation about the is-
sues and document the analysis findings with different machine-readable formats
to share it within a supply chain. All ORT tools are programmed in kotlin, a
modern language that runs on the java virtual machine (JVM)22. This product
is part of automation compliance tooling (ACT)23, where they aim for efficient
and effective exchange of SBOM to enable license compliance. ORT divided its
functionalities in different tools as part of one toolkit. These tools are:

1. Analyzer: Scans a source code directory my facilitating various package
managers and pull meta-data from ClearlyDefined24 about the software
packages included in the source code. The result of an analysis run is a de-
pendency tree that can be represented as JSON, XML, or YAML document
and share back the concluded results with ClearlyDefined via cd-upload
command. It also allows defining custom policy rules to check for during
the analysis for packages and dependencies.

2. Downloader: Job is vital to analyze transitive dependencies, the analyzer
uses it as an intermediate tool, or you can use it as a separate tool before
running the analyzer.

3. Scanner: Scans for licenses in all software packages included in the direct-
ory or the analyzed project. It uses a different license scanner, e.g. Licensee,
ScanCode Toolkit, which stores the scanned packages and results locally or
in a file server or in a PostgreSQL database to be reused in the future scans
saving time and resources.

4. Evaluator: Checks license compliance and looks for issues to be resolved;
it can also run custom license policy checks.

5. Reporter: Task is to generate machine-readable formats; it supports the
following formats:

(a) Amazon OSS Attribution Builder25.

(b) CycloneDX BOM, see the case 5.1.

21[Accessed on 11.06.2020] https://github.com/oss-review-toolkit/ort
22[Accessed on 20.09.2020] https://www.infoworld.com/article/3272244/

what-is-the-jvm-introducing-the-java-virtual-machine.html
23[Accessed on 18.06.2020] https://automatecompliance.org/community/projects/
24[Accessed on 11.06.2020] https://clearlydefined.io/about
25[Accessed on 11.06.2020] https://github.com/amzn/oss-attribution-builder

28

https://github.com/oss-review-toolkit/ort
https://www.infoworld.com/article/3272244/what-is-the-jvm-introducing-the-java-virtual-machine.html
https://www.infoworld.com/article/3272244/what-is-the-jvm-introducing-the-java-virtual-machine.html
https://automatecompliance.org/community/projects/
https://clearlydefined.io/about
https://github.com/amzn/oss-attribution-builder

(c) Excel sheets.

(d) Notice summarized or full license with texts.

(e) Static HTML.

(f) Web App.

ORT has two planned tools, advisor to cover vulnerabilities checks and docu-
menter to generate the review process outcomes, including the legal conclusion.
Even though this product is not complete as designed yet, see figure E, reach-
ing it’s full potential still needs development and time. However, the currently
available features and core use cases are worthy of being reviewed and considered
an important case study, and the modeling done here will shape the future of
FLOSS automated governance.

Figure 5.7: ORT UML model.

5.3.1 What is a component?

The component here is divided into a) projects and b) packages. The project
contains all necessary information about the root software, which will be analyzed
and scanned for sub-packages or sub-projects. The analyzer fills the packages used
for describing underlying components related to the root software with all neces-
sary information and meta-data with the help of package managers supported by
ORT, e.g. Gradle, Maven, NPM, and PIP, see figure 5.7.

29

5.3.2 How are licenses and copyrights represented?

Both packages and the analyzed project has a known license provided by the
package managers and ClearlyDefined, but that does not mean there are no hid-
den license compliance issues with underlying packages under the hood. That’s
why ORT separated licenses representation to declared licenses, processed de-
clared licenses, and concluded licenses. The declared licenses are the listed ones
by package managers or ClearlyDefined. ORT analyzer treats the processed de-
clared licenses; mapping the licenses by its SPDX identifier if it does not have
one will be counted as an unmapped license. The concluded license is an SPDX
expression to express multiple license scenarios with ease as the final documented
result by ORT analyzer, see lines 22 to 25 in listing 5.8.

5.3.3 How are dependencies represented?

ORT model represents the dependency tree for each package in the analyzed
project with a set of scopes referencing the package reference, which considers
the relationship with other packages. It also specifies if the package is dynamically
or statically linked26 library or subproject in the analyzed project itself, and it
can be used recursively as deep as needed by the analyzer, see figure 5.7. the
dependencies tree is essential; all dependencies source code will be downloaded
and scanned for license compliance with the declared project license, see listings
5.7 and 5.8.

5.3.4 How is metadata represented?

ORT offers multiple ways to document the analyzed project and packages meta-
data, see figure 5.7. package and project classes store data until the results are
finished. Those classes contain essential meta-data about itself, e.g. homepage
URL, and PURL. VcsInfo used as a separate entity specifying information about
the source code of the analyzed project on any public VCS. The binary artifacts
can also be added with URLs and hashes, see listing 5.8; it shows how depend-
encies are described for each package and its sub-packages. ORT also can pull
meta-data from ClearlyDefined about the analyzed project, allowing the user to
add, edit, and fix the missing meta-data. Afterward, it can be pushed back to
ClearlyDefined after the curation process is done as updated meta-data, see figure
9.4; this figure shows a defined structure by ClearlyDefined and used by ORT.

26[Accessed on 18.06.2020] https://github.com/oss-review-toolkit/ort/blob/master/model/
src/main/kotlin/PackageLinkage.kt

30

https://github.com/oss-review-toolkit/ort/blob/master/model/src/main/kotlin/PackageLinkage.kt
https://github.com/oss-review-toolkit/ort/blob/master/model/src/main/kotlin/PackageLinkage.kt

5.3.5 How are vulnerabilities represented?

ORT has planned for the advisor tool, which scans the analyzed project vul-
nerabilities based on the analyzer results and documents it for later use, not
implemented yet.

5.3.6 What are the common use cases?

1. License scan: ORT has multiple options to use as a scanner during the
analysis looking for licenses, but the default one is ScanCode Toolkit, see
case 5.6.

2. License compliance: One of the most core use cases in this product
is to download all included packages source codes and check for license
incompatibilities under the hood of the analyzed project.

3. Outdated software packages: The evaluator will take analyzer scan
results and work to see if there are any problems regarding the components,
including the version of the components.

4. Missing meta-data: The analyzer results will show if there are any miss-
ing meta-data about any package of the analyzed project.

5. Custom rules evaluation: The evaluator forces the user to provide a set
of rules consulted by a legal representative to give the final evaluation of
the analyzer results if there are any violations within the analyzed project
regarding licenses.

6. Copyrights: The scanners utilized by ORT look for copyright notices dur-
ing the scanning of the analyzed project.

7. Vulnerabilities check: is a planned feature.

31

1 "analyzer" : {

2 "start_time" : "2020-06-16T10:54:47.770881Z",

3 "end_time" : "2020-06-16T10:55:16.814027Z",

4 "environment" : {

5 "ort_version" : "0.1.0-SNAPSHOT",

6 "java_version" : "11.0.7",

7 "os" : "Linux",

8 "variables" : {

9 "JAVA_HOME" : "/opt/java/openjdk",

10 "GOPATH" : "/go"

11 },

12 "tool_versions" : { }

13 },

14 "config" : {

15 "ignore_tool_versions" : false,

16 "allow_dynamic_versions" : false

17 },

18 "result" : {

19 "projects" : [{...}],

20 "packages" : [{

21 "package" : {

22 "id" : "NPM::acorn-jsx:5.2.0",

23 "purl" : "pkg:npm/acorn-jsx@5.2.0",

24 "declared_licenses" : ["MIT"],

25 "declared_licenses_processed" : {

26 "spdx_expression" : "MIT"

27 },

28 "description" : "Modern, fast React.js JSX parser",

29 "homepage_url" : "https://github.com/acornjs/acorn-jsx",

30 "binary_artifact" : {

31 "url" : "",

32 "hash" : {

33 "value" : "",

34 "algorithm" : ""

35 }

36 },

37 "source_artifact" : {

38 "url" : "https://registry.npmjs.org/acorn-jsx/-

39 /acorn-jsx-5.2.0.tgz",

40 "hash" : {

41 "value" : "4c66069173d6fdd68ed85239fc256226182b2ebe",

42 "algorithm" : "SHA-1"

43 }

44 },

45 "vcs" : {

46 "type" : "Git",

47 "url" : "git+https://github.com/acornjs/acorn-jsx.git",

48 "revision" : "c30617bd8d3763ee96fc76abfc0a9bb00e036d68",

49 "path" : ""

50 },

51 "vcs_processed" : {

52 "type" : "Git",

53 "url" : "https://github.com/acornjs/acorn-jsx.git",

54 "revision" : "c30617bd8d3763ee96fc76abfc0a9bb00e036d68",

55 "path" : ""

56 }

57 },

58 "curations" : []

59 }

60 }],

61 },

62 "scanner" : null,

63 "evaluator" : null

64 }

Listing 5.7: Analyzer result packages JSON sample.

32

1 "analyzer" : {

2 "start_time" : "2020-06-16T10:54:47.770881Z",

3 "end_time" : "2020-06-16T10:55:16.814027Z",

4 "environment" : {

5 "ort_version" : "0.1.0-SNAPSHOT",

6 "java_version" : "11.0.7",

7 "os" : "Linux",

8 "variables" : {

9 "JAVA_HOME" : "/opt/java/openjdk",

10 "GOPATH" : "/go"

11 },

12 "tool_versions" : { }

13 },

14 "config" : {

15 "ignore_tool_versions" : false,

16 "allow_dynamic_versions" : false

17 },

18 "result" : {

19 "projects" : [{

20 "id" : "NPM::mime-types:2.1.27",

21 "definition_file_path" : "package.json",

22 "declared_licenses" : ["MIT"],

23 "declared_licenses_processed" : {

24 "spdx_expression" : "MIT"

25 },

26 "vcs" : {

27 "type" : "",

28 "url" : "https://github.com/jshttp/

29 mime-types.git",

30 "revision" : "",

31 "path" : ""

32 },

33 "vcs_processed" : {

34 "type" : "Git",

35 "url" : "ssh://git@github.com/jshttp/mime-types.git",

36 "revision" : "47b62ac45e9b176a2af35532d0eea4968bb9eb6d",

37 "path" : ""

38 },

39 "homepage_url" : "",

40 "scopes" : [{

41 "name" : "dependencies",

42 "dependencies" : [{

43 "id" : "NPM::mime-db:1.44.0"

44 }]

45 }, {

46 "name" : "devDependencies",

47 "dependencies" : [{

48 "id" : "NPM::eslint-config-standard:14.1.1"

49 }, {

50 "id" : "NPM::eslint-plugin-import:2.20.2",

51 "dependencies" : [{

52 "id" : "NPM::array-includes:3.1.1",

53 "dependencies" : [{

54 "id" : "NPM::define-properties:1.1.3",

55 "dependencies" : [{

56 "id" : "NPM::object-keys:1.1.1"

57 }]

58 }

59 }],

60 }],

61 }],

62 }],

63 "packages" : [{...}],

64 },

65 "scanner" : null,

66 "evaluator" : null

67 }

Listing 5.8: Analyzer JSON result sample.

33

5.4 Case 4: Tern

“Tern is an inspection tool to find the metadata of the packages installed in a
container image”27. This product is licensed under the BSD-2 License, which
started in 2017 by VMWare, as a member of ACT23. Tern has a different use
case, unlike the others, it specializes in scanning containers and image layers for
packages licenses, and it is wholly programmed in python and shell, see figure
5.8. Tern has four primary elements working together to perform the following
steps:

1. Mount the BaseOS layer to build the container.

2. Scans for installed packages in that layer.

3. Repeat steps 1 and 2 for the rest of the container layers.

4. Generate reports.

These four elements are28:

1. The Cach: This is the database where filesystem identifiers can be queried
against to retrieve package information. That is useful as many containers
are based on other container images. If Tern had come across the same
filesystem in another container, it could retrieve the package information
without spinning up a container28. It helps save resources and time, reusing
filesystem identifiers.

2. The Command library: This is a database of shell commands that may
create a container’s layer filesystem. There are two types of shell com-
mands - one for system-wide package managers and one for custom shell
commands or install scripts. The library is split in this way to account for
situations where whole root filesystems are imported to create a new con-
tainer. When Tern uses an external file scanner, it bypasses the command
library altogether and relies on the external tool’s results. The approach
allows Engineers to compare results from different tools available to them
as they have always done, but on container images.

3. The Analyzer: Tern has a dedicated analyzer to the type of image being
analyzed. Currently, it can analyze only images created by Docker. The
inspection part can be done using Tern’s native analyzer or an external tool.
The analyzer will collate the metadata it can get in image objects, which
encapsulate data for each layer and each package found. It also encapsulates

27[Accessed on 23.06.2020] https://github.com/tern-tools/tern
28[Accessed on 24.06.2020] https://github.com/tern-tools/tern/blob/master/docs/

architecture.md

34

https://github.com/tern-tools/tern
https://github.com/tern-tools/tern/blob/master/docs/architecture.md
https://github.com/tern-tools/tern/blob/master/docs/architecture.md

notes while execution takes place. The native analyzer logical flow in figure
5.9.

4. The Formatter: Generates reports in different machine-readable repres-
entations, the available formats are text, JSON, YAML, and SPDX tag-
value. It provides SBOM to see the underlying hidden software dependen-
cies in the container and helps with the decision-making process, how to
deal with the software and its risks.

Tern allows us to choose between the native analyzer and ScanCode Toolkit as
an extension scanning for licenses, packages, and copyrights to analyze license
compliance. Tern also performs vulnerability checks by utilizing another exten-
sion for this task. CVE Binary Tool is a command line tool which scans for
several common, vulnerable components (openSSL, libpng, libxml2, expat, and
others) to let you know if your system includes common libraries with known
vulnerabilities with additional report options. Tern allows BOM generation from
the docker image or docker file.

Figure 5.8: Tern general architecture diagram.28

35

Figure 5.9: Tern analyzer logical model.28

Figure 5.10: Tern UML model.

36

5.4.1 What is a component?

Tern divides the component into three primary elements: a) image layer, b)
package, and c) file. Since Tern is specialized in container scans dividing container
to layers as the docker file does, each image layer holds a list of all packages
included in it. The package contains all critical information with a full list of
all included files. The file contains all necessary information about each file,
including a list of multiple packages that might belong to it. Tern uniquely
represents the component compared to other case study subject, see figure 5.10.

5.4.2 How are licenses and copyrights represented?

As mentioned in section 5.4.1, the package has a declared license as meta-data
are pulled from the Tern cache. The other represents all included licenses in the
package with copyright. As for file, it has a list of all licenses in the file with the
possibility to express multiple licenses scenario through SPDX expressions and
the list can be left empty in this case, it also has a list of copyrights in case of
multiple exists in the file, see figure 5.10. If any notice exists about any packages
regarding license compliance, it is represented in a list of origins, which filled by
the analyzer while it runs, see the listing 5.10 lines 80 to 91.

5.4.3 How are dependencies represented?

Tern represents the dependency is a list of packages and files included in each
image layer, as for packages, it holds a list of all included files in it. The file has
a list of packages that might belong to it if some packages have common files
with another. This how Tern represents dependency, including the image layer
in it, see figure 5.10. Also, see the listing 5.10 lines 42 to 44, which explains the
relationship between layers and packages in SPDX format, this example has only
one layer.

5.4.4 How is metadata represented?

The architecture introduces Tern28. All images meta-data will be pulled from the
docker hub as it supports only docker for now. The docker image and inctance
contains all meta-data about the container. As for packages and files, meta-data
is coming from the cache, and if there are any missing pieces of information, Tern
will issue a warning to fill the missing ones, see the listing 5.10 lines 54 to 60 and
70 to 76. Each element has its meta-data included in it, as the Tern data-model
indicates, see figure 5.10. Also, see the listing 5.9, the lines from 3 to 65 show
the meta-data about the container, which comes from the docker hub.

37

5.4.5 How are vulnerabilities represented?

The vulnerability checks are provided by the extension CVE Binary Tool29, which
reports its findings separated from the analyzer. The available output formats
for CVE Binary Tool extension are only YAML and JSON, which looks like
the default analyzer output except for the analyzer output field. It contains the
vulnerabilities for each layer as a table with extra information about each layer
scan, see figure 5.11.

5.4.6 What are the common use cases?

1. License scans for containers: This is the primary use case of Tern to
search for packages licenses included in each layer of the container reporting
the missing information.

2. License compliance: Tern does not look for licenses only, but also gives
warnings about possible compliance issues in the analyzed project.

3. Missing meta-data: The results of the scans also contains warnings about
the missing meta-data about the analyzed project, e.g. copyrights, hashes,
URLs, and licenses.

4. Copyrights: The default analyzer and ScanCode Toolkit extension both
perform copyrights scans during the analysis.

5. Vulnerability checks: Use a third-party extension CVE Binary Tool to
perform these checks to provide CVEs list for the analyzed project.

29[Accessed on 23.06.2020] https://github.com/intel/cve-bin-tool

38

https://github.com/intel/cve-bin-tool

Figure 5.11: Tern CVE binary tool extension sample.

39

1 # This report was generated by the Tern Project

2 # (’package’, ’2.1.0’)

3 image:
4 Image checksum: ...
5 Image checksum type: sha256
6 Image checksums: []
7 config:
8 architecture: amd64
9 config:

10 AttachStderr: false
11 ...
12 Cmd:
13 - /bin/sh
14 =...
15 Domainname: ’’
16 Entrypoint: null
17 Env:
18 =...
19 ExposedPorts:
20 8080/tcp: {}
21 Healthcheck:
22 Interval: 300000000000
23 Test:...
24 Timeout: 3000000000
25 Hostname: ’’
26 Image: sha256:...
27 Labels:
28 maintainer: steve.springett@owasp.org
29 vendor: OWASP
30 OnBuild: null
31 OpenStdin: false
32 StdinOnce: false
33 Tty: false
34 User: ’1000’
35 Volumes: null
36 WorkingDir: /opt/owasp/dependency=track/
37 container: sha256:...
38 container config:
39 AttachStderr: false
40 AttachStdin: false
41 AttachStdout: false
42 Cmd: ...
43 Domainname: ’’
44 Entrypoint: null
45 Env: ...
46 ExposedPorts:
47 8080/tcp: {}
48 Healthcheck:
49 Interval: 300000000000
50 Test: ...
51 Timeout: 3000000000
52 Hostname: b019223e956a
53 Image: sha256:...
54 Labels:
55 maintainer: steve.springett@owasp.org
56 vendor: OWASP
57 OnBuild: null
58 OpenStdin: false
59 StdinOnce: false
60 Tty: false
61 User: ’1000’
62 Volumes: null
63 WorkingDir: /opt/owasp/dependency=track
64 created: ’2020-03-22T23:02:49.8701459Z’
65 docker version: 19.03.8
66 history: &id001
67 - created: ’2019-08-20T20:19:55.062606894Z’
68 created by: ’...’
69 - created: ’2019-08-20T20:19:55.211423266Z’
70 created by: ’/bin/sh -c #(nop) CMD ["/bin/sh"]’

71 empty layer: true
72 ...
73 - created: ’2020-03-22T23:02:49.8701459Z’
74 created by: ’/bin/sh -c #(nop) HEALTHCHECK &{["CMD-SHELL"]’

75 empty layer: true
76 os: linux
77 rootfs:
78 diff ids:
79 - sha256: ...
80 - sha256: ...
81 ...
82 type: layers
83 history: *id001
84 image id: ...
85 layers:
86 - analyzed output: ’’
87 checksum: ...
88 checksum type: sha256
89 checksums: {}
90 created by: ’/bin/sh -c #(nop) ADD

91 file: ...
92 diff id: ...
93 extension info: {}
94 files:
95 ...
96 - analyzed output: ’’
97 ...
98 manifest:
99 - Config: ...config.json

100 Layers:
101 - a61298a1d179786c2c176dc6c3e20c2d0cad.../layer.tar
102 - .../layer.tar
103 - .../layer.tar
104 - .../layer.tar
105 - .../layer.tar
106 RepoTags: &id002
107 - owasp/dependency=track:latest
108 name: owasp/dependency=track
109 origins:
110 - notices: []
111 origin str: ’Docker image: owasp/dependency-track:latest’

112 repotag: owasp/dependency=track:latest
113 repotags: *id002
114 tag: latest

Listing 5.9: Tern YAML report sample.

40

1 SPDXVersion: SPDX=2.2
2 DataLicense: CC0=1.0
3 SPDXID: SPDXRef=DOCUMENT
4 DocumentName: Tern report for alpine
5 DocumentNamespace: https://spdx.org/spdxdocs/tern=report=...=alpine
6 LicenseListVersion: 3.8
7 Creator: Tool: tern=12ba057e29095100995d11f973fc76cd1a5c0f70
8 Created: 2020=06=25T14:32:50Z
9 DocumentComment: <text>This was generated by the Tern</text>

10 PackageName: alpine
11 SPDXID: SPDXRef=a24bb40132=alpine=latest
12 PackageVersion: latest
13 PackageDownloadLocation: alpine:latest
14 FilesAnalyzed: false
15 PackageLicenseConcluded: NOASSERTION
16 PackageLicenseDeclared: NOASSERTION
17 PackageCopyrightText: NOASSERTION
18 Relationship: SPDXRef=...=alpine=latest CONTAINS SPDXRef=...
19 PackageName: layer.tar
20 SPDXID: SPDXRef=50644c29ef
21 PackageFileName: fa27c...d432/layer.tar
22 PackageDownloadLocation: fa27...ad432/layer.tar
23 FilesAnalyzed: false
24 PackageChecksum: SHA256: 5064...dd0a
25 PackageLicenseConcluded: NOASSERTION
26 PackageLicenseDeclared: NOASSERTION
27 PackageCopyrightText: NOASSERTION
28 PackageComment: <text>
29 Layer: 70b38e3fcc:
30 info: Found ’Alpine Linux v3.12’ in /etc/os=release.
31 info: Layer created by commands: /bin/sh ...
32 info: Retrieved by invoking listing in command lib/base.yml
33 versions:
34 in container: ...
35 proj urls:
36 in container: ...
37 names:
38 in container: ...
39 licenses:
40 in container: ...
41 </text>
42 Relationship: SPDXRef=... CONTAINS SPDXRef=musl=1.1.24=r8
43 Relationship: SPDXRef=... CONTAINS SPDXRef=busybox=1.31.1=r16
44 ...
45 PackageName: musl
46 SPDXID: SPDXRef=musl=musl=1.1.24=r8
47 PackageVersion: musl=1.1.24=r8
48 PackageDownloadLocation: NONE
49 FilesAnalyzed: false
50 PackageLicenseConcluded: NOASSERTION
51 PackageLicenseDeclared: LicenseRef=c7ea3b7
52 PackageCopyrightText: NONE
53 PackageComment: <text>
54 musl:
55 warning: No metadata for key: copyright
56 warning: No metadata for key: download url
57 warning: No metadata for key: checksum
58 warning: No metadata for key: files
59 warning: No metadata for key: pkg licenses
60 </text>
61 PackageName: busybox
62 SPDXID: SPDXRef=busybox=busybox=1.31.1=r16
63 PackageVersion: busybox=1.31.1=r16
64 PackageDownloadLocation: NONE
65 FilesAnalyzed: false
66 PackageLicenseConcluded: NOASSERTION
67 PackageLicenseDeclared: LicenseRef=c66410f
68 PackageCopyrightText: NONE
69 PackageComment: <text>
70 busybox:
71 warning: No metadata for key: copyright
72 warning: No metadata for key: download url
73 warning: No metadata for key: checksum
74 warning: No metadata for key: files
75 warning: No metadata for key: pkg licenses
76 </text>
77 ...
78 LicenseID: LicenseRef=5a8406a
79 ExtractedText: <text>Original license: BSD=2=Clause AND BSD=3=

Clause</text>
80 LicenseID: LicenseRef=c66410f
81 ExtractedText: <text>Original license: GPL=2.0=only</text>
82 LicenseID: LicenseRef=1eaea05
83 ExtractedText: <text>Original license: ISC</text>
84 LicenseID: LicenseRef=c7ea3b7
85 ExtractedText: <text>Original license: MIT</text>
86 LicenseID: LicenseRef=f262406
87 ExtractedText: <text>Original license: Zlib</text>
88 LicenseID: LicenseRef=d312664
89 ExtractedText: <text>Original license: MIT BSD GPL2+</text>
90 LicenseID: LicenseRef=f30c02b
91 ExtractedText: <text>Original license: MPL=2.0 GPL=2.0=or=later</text

>
92 LicenseID: LicenseRef=de5acdd
93 ExtractedText: <text>Original license: OpenSSL</text>

Listing 5.10: Tern SPDX tag value report sample.

41

42

5.5 Case 5: Quartermaster

“Quartermaster is an integrated free and open-source software (FOSS) toolchain
that implements industry best practices of license compliance management”.30

This product is licensed under the GPL-3.0 license; it started in 2017 with
Siemens support as a FLOSS product and a member of ACT23. It has a unique
feature unlike all previous cases; it runs in building/compiling time. The Quarter-
master process starts right before building the analyzed project and finishes with
reporting after it is done. Still, it would be best if you made sure the analyzed
project runs very well without any issues before integrating Quartermaster to
its build process. It also uses a flexible architecture dividing it to the following
modules:

1. Analyzers module: This module is responsible for scanning the analyzed
project for license information, such as the available two in this case:

� SPDX-Identifier: The analyzer looks for SPDX-identifier across the
analyzed project files.

� ScanCode Toolkit: Quartermaster also utilizes the well-known scan-
ner ScanCode Toolkit as one of its modules, see case 5.6.

2. Builders: It holds the supported building systems modules responsible for
building the analyzed project, e.g. Gradle, Maven, and Python builder.

3. Manifests: Contain modules that define the reports outputs in machine-
readable formats, in this case, SPDX.

4. Packages: It holds the supported package manager, e.g. Debian package
manager.

5. Reporters: It holds reporting modules responsible for generating reports
with the Manifests module, e.g. SPDX, after the build is finished as the
last step.

Each module communicates with others via the gRPC framework31 managed
by the master process; this flexible architecture made the module programming
language choices unlimited as long it supports gRPC. Quartermaster aggregates
the acquired knowledge in a graph database Dgraph32 managed by the master
process.

30[Accessed on 30.06.2020] https://qmstr.org/documentation/
31[Accessed on 30.06.2020] https://grpc.io/
32[Accessed on 30.06.2020] https://dgraph.io/

43

https://qmstr.org/documentation/
https://grpc.io/
https://dgraph.io/

Figure 5.12: Quartermaster UML model.

5.5.1 What is a component?

Quartermaster divides the analyzed project into three primary elements a) pro-
ject, b) packages, and c) files each project has a list of included packages. The
packages also have a list of included files. The corporation between these elements
represents the component, see figure 5.12.

5.5.2 How are licenses and copyrights represented?

The package node has the package declared license by the vendor and a list
of targets. These are the files included in the package. This node has a data
node class that links all these targets with its copyrights, authors, and a list of
licenses found in the file. Then these results generated in the reporting phase
as a machine-readable format. In addition to the diagnostic node, allow the
analyzer to document any SPDX license expressions well, scanning the analyzed
project, and reported after finishing the build phase with severity level indicating
the significance of this finding, mentioned as a note in figure 5.12. All SPDX
identifiers are stored as a map of a string with struct to contain all the matched

44

license information33. If the found license doesn’t exist in the SPDX identifiers
list, it will be added as a diagnostic node with a severity level of an error, see
listings 5.12 and 5.11.

5.5.3 How are dependencies represented?

Quartermaster illustrates dependencies on a file-level; in the file node, it has a
list of itself as a dependency field, which holds all dependent files. All related files
are listed here, and Quartermaster also has a derived field that holds all parent
files of the selected file node, see figure 5.12. It also considers dynamically linked
libraries via supported building systems, e.g. Gradle.

5.5.4 How is metadata represented?

In addition to significant meta-data included in each element, there is a flexible
way to add more meta-data from the analyzers or the user via info node, which
can be added to the project node, and file data node as much as needed. Info
node type can determine the type of this node, e.g. meta-data; see figure 5.12.
The meta-data about the analyzed project is in a YAML report see listing 5.11,
and as for the analyzer results found in the SPDX tag value file, see listing 5.12.

5.5.5 How are vulnerabilities represented?

As far as we know, Quartermaster doesn’t have any extensions or any services
yet to perform vulnerabilities, or any other supply chain tools that can integrate
with it.

5.5.6 What are the common use cases?

1. License scan: During the build phase, all used source code scanned for
license generating report contains all license compliance information. If
everything is set up properly and the meta-data in the project source code
is well-maintained. It also distinguishes between test files and releases files;
the scanned is only release files.

2. License compliance: The analyzer module utilizes different scanners; all
of them give reportings about possible license compliance issues within the
analyzed project.

3. Copyrights: The analyzer looks for copyrights statements during the ana-
lysis, reporting its findings in different available machine-readable formats.

33[Accessed on 02.07.2020] https://github.com/QMSTR/qmstr/blob/master/modules/
analyzers/spdx-identifier-analyzer/spdx identifiers.go

45

https://github.com/QMSTR/qmstr/blob/master/modules/analyzers/spdx-identifier-analyzer/spdx_identifiers.go
https://github.com/QMSTR/qmstr/blob/master/modules/analyzers/spdx-identifier-analyzer/spdx_identifiers.go

4. Missing meta-data: Quartermaster CLI allows the user to fill and store
the missing meta-data for any project, file, or package-node utilize it later
for reporting.

46

1 project:
2 name: "json-c"
3 metadata:
4 Vendor: "Endocode"
5 OcFossLiaison: "Mirko Boehm"

6 OcComplianceContact: "foss@endocode.com"
7 analysis:
8 - analyzer: spdx=identifier=analyzer
9 name: "Simple SPDX Analyzer"

10 trustlevel: 300
11 config:
12 workdir: "/buildroot"
13 - analyzer: scancode=analyzer
14 name: "Scancode Analyzer"

15 trustlevel: 400
16 config:
17 workdir: "/buildroot/jsonc"
18 resultfile: "/buildroot/scancode.json"
19 #cached: "true"

20 - analyzer: test=analyzer
21 name: "Simple CI Test Analyzer"

22 config:
23 workdir: "/buildroot"
24 tests: "TestPackageNode"
25 - analyzer: spdx=analyzer
26 name: "SPDX Analyzer"

27 trustlevel: 300
28 config:
29 spdxfile: "/buildroot/SPDX.tag"
30 reporting:
31 - reporter: test=reporter
32 name: "Test Reporter"

33 config:
34 siteprovider: "Endocode"
35 - reporter: qmstr=reporter=html
36 name: "HTML Reporter"

37 config:
38 #generatehtml: "no"

39 siteprovider: "Endocode"
40 baseurl: "http://localhost:8080/"
41 outputdir: /buildroot/
42 - reporter: package=manifest=reporter
43 name: "Package manifest Reporter"

44 config:
45 outputdir: "/buildroot"

Listing 5.11: Quartermaster YAML report sample.33

33[Accessed on 13.07.2020] https://github.com/QMSTR/qmstr-demo/demos/jsonc/qmstr.
yaml

47

https://github.com/QMSTR/qmstr-demo/demos/jsonc/qmstr.yaml
https://github.com/QMSTR/qmstr-demo/demos/jsonc/qmstr.yaml

1 SPDXVersion: SPDX=1.2
2 DataLicense: CC0=1.0
3 DocumentComment: <text>This is the spdx document for the Calculator

</text>
4

5 ## Creation Information

6 Creator: Person: Math Codder
7 Creator: Organization: Endocode AG
8 Created: 2018=05=16T00:00:00Z
9 CreatorComment: <text>This is an example of an SPDX spreadsheet

format for CI demo tests</text>
10

11 ## Review Information

12 Reviewer: Person: Joe Reviewer
13 ReviewDate: 2018=05=17T00:00:00Z
14 ReviewComment: <text>LGTM</text>
15

16 ## Package Information

17 PackageName: libjson=c
18 PackageVersion: Version 0.1
19 PackageDownloadLocation: http://www.example.org/thecalc
20 PackageSummary: <text>A simple calculation utility</text>
21 PackageSourceInfo: <text>Version 0.1 of the Calculator application</text>
22 PackageFileName: thecalc=0.1.tar.gz
23 PackageSupplier: Organization:Endocode AG
24 PackageOriginator: Organization:Endocode AG
25 PackageChecksum: SHA1: 2fd4e1c67a2d28fced849ee1bb76e7391b93eb12
26 PackageVerificationCode: 4e3211c67a2d28fced849ee1bb76e7391b93feba (

SpdxTranslatorSpdx.rdf, SpdxTranslatorSpdx.txt)
27 PackageDescription: <text>This utility calculates.</text>
28

29 PackageCopyrightText: <text> Copyright 2017, 2018 Endocode AG</text
>

30

31 PackageLicenseDeclared: GPL=3
32 PackageLicenseConcluded: GPL=3
33 PackageLicenseInfoFromFiles: GPL=3
34 PackageLicenseInfoFromFiles: GPL=3
35 PackageLicenseComments: <text>Just GPL 3</text>
36

37

38 # File Info

39

40 FileName: Calculator/add.c
41 FileType: SOURCE
42 FileChecksum: SHA1: 7c2f3b2fb26ad864f443bbecee8a059c91c83d26
43 LicenseConcluded: GPL=3
44 LicenseInfoInFile: GPL=3
45 FileCopyrightText: <text>Copyright 2018 Endocode AG</text>
46 ArtifactOfProjectName: The Calculator
47 ArtifactOfProjectHomePage: http://www.endocode.com/
48 ArtifactOfProjectURI: http://www.endocode.com/
49 FileComment: <text>perform addition</text>

Listing 5.12: Quartermaster SPDX tag value report sample.33

33[Accessed on 13.07.2020] https://github.com/QMSTR/qmstr-demo/demos/jsonc/SPDX.
tag

48

https://github.com/QMSTR/qmstr-demo/demos/jsonc/SPDX.tag
https://github.com/QMSTR/qmstr-demo/demos/jsonc/SPDX.tag

5.6 Case 6: ScanCode Toolkit

“A typical software project often reuses hundreds of third-party packages. License
and origin information is not always easy to find and not normalized: ScanCode
Toolkit discovers and normalizes this data for you.”34 ScanCode Toolkit is a
FLOSS product licensed under Apache-2.0, CC0-1.0, and multiple licenses for its
plugins, e.g. MIT, GPL-3.0, and BSD. This product is one of the best, earliest
(started 2013) and most used in this field of license scanning business. It is utilized
by other products responsible for FLOSS license compliance and governance tools,
see cases 5.3, 5.4 and 5.5. ScanCode Toolkit has a flexible architecture that
divides the process into modules; each module can have one or more plugins
programmed in C++ or python. The plugin phases are divided into three types35:

1. Pre: Before the scan begins, these plugins are responsible for extracting
the analyzed project archives or handling specific file types.

2. Scan proper: During the scan, these are responsible for investigating the
analyzed project files for licenses, keywords, phrases, copyrights, and meta-
data or specific license policies or rules.

3. Post: After the scan finishes, those are responsible for generating reports
in machine-readable formats.

ScanCode Toolkit performs scans on a code-base in the following steps:

1. Collect an inventory of the code files and classify the code using file types.

2. Extract files from an archive using a general-purpose extractor.

3. Extract texts from binary files if needed.

4. Use an extensible rules engine to detect open source license text and notices.

5. Use a specialized parser to capture copyright statements.

6. Identify packaged code and collect metadata from packages.

7. Report the results in a format of your choice, e.g. JSON, for integration
with other supply chain tools, see listing 5.13.

The scan results contain the following information for each file:

1. File path.

2. Detected licenses.

3. Copyrights statements.

34[Accessed on 05.07.2020] https://github.com/nexB/scancode-toolkit
35[Accessed on 05.07.2020] https://scancode-toolkit.readthedocs.io/en/latest/plugins/

plugin arch.html

49

https://github.com/nexB/scancode-toolkit
https://scancode-toolkit.readthedocs.io/en/latest/plugins/plugin_arch.html
https://scancode-toolkit.readthedocs.io/en/latest/plugins/plugin_arch.html

4. Location of the findings in lines.

5. References for the recognized licenses.

ScanCode Toolkit can be used for individual users in multiple platforms, e.g.
Windows, Linux, and macOS via CLI. There is also a tool to visualize the scan
results to help the user evaluate licenses, and other notices identified, provided
by nexB called ScanCode Workbench36.

1 output formats:

2 --json FILE Write scan output as compact JSON to FILE.

3 --json-pp FILE Write scan output as pretty-printed JSON to FILE.

4 --json-lines FILE Write scan output as JSON Lines to FILE.

5 --csv FILE Write scan output as CSV to FILE.

6 --html FILE Write scan output as HTML to FILE.

7 --custom-output FILE Write scan output to FILE formatted with the

8 custom Jinja template file.

9 --custom-template FILE Use this

10 Jinja template FILE as a custom template.

11 --spdx-rdf FILE Write scan output as SPDX RDF to FILE.

12 --spdx-tv FILE Write scan output as SPDX Tag/Value to FILE.

13 --html-app FILE (DEPRECATED: use the ScanCode Workbench app

14 instead) Write scan output as a mini HTML application to FILE.

Listing 5.13: ScanCode Toolkit reporting options in v3.1.1.

36[Accessed on 05.07.2020] https://github.com/nexB/scancode-workbench

50

https://github.com/nexB/scancode-workbench

Figure 5.13: ScanCode Toolkit license and rules UML model.

51

Figure 5.14: ScanCode Toolkit UML model.

1 @attr.s()

2 class AndroidApp(Package):

3 filetypes = (’zip archive’,)

4 mimetypes = (’application/zip’,)

5 extensions = (’.apk’,)

6 default_type = ’android’

7 default_primary_language = ’Java’

Listing 5.14: Custom package example.

5.6.1 What is a component?

ScanCode Toolkit considers a component as a) packages and b) files. The model
has a base package that holds the necessary information about it. A successor
to the base package, which is package inherits all the base package information
and methods with far more extended information options. ScanCode Toolkit has
an extended list of package types inherited from the package class has specified

52

information about it, e.g. AndroidApp, see figure 5.14 and listing 5.14. The file
contains all critical information, e.g. licenses, copyrights, holders, and authors,
including packages list, in case the file is repeated in multiple packages, see figure
5.14.

5.6.2 How are licenses and copyrights represented?

The list of known licenses is stored inside the license module in a data directory
to reference it during the scans. As for the runtime, the model has a license class
that holds viable information to link it to the default rules or customized once,
e.g. SPDX rules; see figure 5.13. The package itself has a license expression,
which accepts SPDX expressions and a declared license by the vendor, see figure
5.14 and see sample 5.15, the lines 38 to 76 showing how the license/licenses
represented in the JSON report.

5.6.3 How are dependencies represented?

ScanCode Toolkit model the dependencies on both package level and file level,
unlike other cases in this thesis. With a list of dependent package class, ScanCode
Toolkit describes all the related packages to the scanned one, with URLs and
requirement for the dependent package, see figure 5.14. Documenting how a
component is linked to another from a technical perspective (static linking vs.
dynamic linking) is not covered by ScanCode Toolkit but in another planned
product called DependentCode37 by the same vendor nexB.

5.6.4 How is metadata represented?

During the scan phase, ScanCode Toolkit gathers meta-data about the package
from the available source code, which depends on the source code’s well-being
and maintainability by the vendor. The package class has the most of meta-data
about each package from the analyzed project. In addition to a list of responsible
parties, e.g. vendor, developer, and communities, as ScanCode Toolkit describes
it, provided as a note, with all vital contact information, see figure 5.14 and
see sample 5.15; it shows how all contact information, copyrights, and holders
represented. In addition to the configuration was passed on to ScanCode Toolkit,
see lines 2 to 31. See sample in SPDX tag value 5.16.

5.6.5 How are vulnerabilities represented?

ScanCode Toolkit roadmap mentions a planned supply chain tool called Vulner-
ableCode to scan for vulnerabilities. It uses CVE and NVD, which still work in

37[Accessed on 05.07.2020] https://github.com/nexB/dependentcode

53

https://github.com/nexB/dependentcode

progress38.

5.6.6 What are the common use cases?

1. License scan: ScanCode Toolkit primary function to scan each file for the
included licenses, demonstrating the licenses’ detailed information.

2. License compliance: ScanCode Toolkit can provide compliance informa-
tion via the customizable rules to search for during the scan.

3. Copyrights: The user can configure ScanCode Toolkit to look for copy-
rights in the same scan, represented as a list for each scanned file.

4. Custom license policy scanner: ScanCode Toolkit can do more by de-
fining custom rules to check during the scan.

5. Contact Information and URLs: It also looks for emails, URLs, and
contact information or parties presenting it as a list.

6. Missing meta-data: ScanCode Toolkit reports missing notices and li-
censes texts inside the analyzed project.

38[Accessed on 05.07.2020] https://scancode-toolkit.readthedocs.io/en/latest/contribute/
roadmap.html

54

https://scancode-toolkit.readthedocs.io/en/latest/contribute/roadmap.html
https://scancode-toolkit.readthedocs.io/en/latest/contribute/roadmap.html

1 {

2 "headers": [

3 {

4 "tool_name": "scancode-toolkit",

5 "tool_version": "3.1.1",

6 "options": {

7 "input": [

8 "."

9],

10 "--copyright": true,

11 "--email": true,

12 "--json-pp": "fossology-scancode-result.json",

13 "--license": true,

14 "--package": true,

15 "--url": true

16 },

17 "notice": "Generated with ScanCode and provided on an \"AS IS\"

18 BASIS, WITHOUT WARRANTIES\nOR CONDITIONS OF ANY KIND,

19 either express or implied. No content created from\nScanCode

20 should be considered or used as legal advice.

21 Consult an Attorney\nfor any legal advice.\nScanCode is a free

software

22 code scanning tool from nexB Inc. and others.

23 \nVisit https://github.com/nexB/scancode-toolkit/ for support

and download.",

24 "start_timestamp": "2020-07-09T090533.267094",

25 "end_timestamp": "2020-07-09T101146.642187",

26 "message": null,

27 "errors": [],

28 "extra_data": {

29 "files_count": 4120

30 }

31 }

32],

33 "files": [{

34 ...

35 {

36 "path": "fossology/Dockerfile",

37 "type": "file",

38 "licenses": [

39 {

40 "key": "fsf-ap",

41 "score": 100.0,

42 "name": "FSF All Permissive License",

43 "short_name": "FSF All Permissive License",

44 "category": "Permissive",

45 "is_exception": false,

46 "owner": "Free Software Foundation (FSF)",

47 "homepage_url": "http://www.gnu.org/prep/maintain/

48 html_node/License-Notices-for-Other-Files.html",

49 "text_url": "",

50 "reference_url": "https://enterprise.dejacode.com/

51 urn/urn:dje:license:fsf-ap",

52 "spdx_license_key": "FSFAP",

53 "spdx_url": "https://spdx.org/licenses/FSFAP",

54 "start_line": 5,

55 "end_line": 8,

56 "matched_rule": {

57 "identifier": "fsf-ap.LICENSE",

58 "license_expression": "fsf-ap",

59 "licenses": [

60 "fsf-ap"

61],

62 "is_license_text": true,

63 "is_license_notice": false,

64 "is_license_reference": false,

65 "is_license_tag": false,

66 "matcher": "2-aho",

67 "rule_length": 35,

68 "matched_length": 35,

69 "match_coverage": 100.0,

70 "rule_relevance": 100

71 }

72 }

73],

74 "license_expressions": [

75 "fsf-ap"

76],

77 "copyrights": [

78 {

79 "value": "Copyright Siemens AG 2016,

80 fabio.huser@siemens.com",

81 "start_line": 2,

82 "end_line": 3

83 },

84 {

85 "value": "Copyright TNG Technology Consulting

86 GmbH 2016-2017, maximilian.huber@tngtech.com",

87 "start_line": 2,

88 "end_line": 3

89 }

90],

91 "holders": [

92 {

93 "value": "Siemens AG",

94 "start_line": 2,

95 "end_line": 3

96 },

97 {

98 "value": "TNG Technology Consulting GmbH",

99 "start_line": 2,

100 "end_line": 3

101 }

102],

103 "authors": [],

104 "packages": [],

105 "emails": [

106 {

107 "email": "fabio.huser@siemens.com",

108 "start_line": 2,

109 "end_line": 2

110 },

111 {

112 "email": "maximilian.huber@tngtech.com",

113 "start_line": 3,

114 "end_line": 3

115 },

116 {

117 "email": "fossology@fossology.org",

118 "start_line": 14,

119 "end_line": 14

120 }

121],

122 "urls": [],

123 "scan_errors": []}

124 },

125 ...

126 }],

Listing 5.15: ScanCode Toolkit scan JSON report sample.

55

1 # Document Information

2

3 SPDXVersion: SPDX=2.1
4 DataLicense: CC0=1.0
5 SPDXID: SPDXRef=DOCUMENT
6 DocumentComment: <text>Generated with ScanCode and provided on
7 an "AS IS" BASIS, WITHOUT WARRANTIES
8 OR CONDITIONS OF ANY KIND, either express or implied.
9 No content created from

10 ScanCode should be considered or used as legal advice.
11 Consult an Attorney for any legal advice.
12 ScanCode is a free software code scanning tool from
13 nexB Inc. and others.
14 Visit https://github.com/nexB/scancode=toolkit/ for support and

download.
15 </text>
16

17 # Creation Info

18

19 Creator: Tool: scancode=toolkit 3.1.1
20 Created: 2020=07=09T11:51:08Z
21

22 # Package

23

24 PackageName: fossology
25 PackageDownloadLocation: NOASSERTION
26 PackageVerificationCode: da39a3ee5e6b4b0d3255bfef95601890afd80709
27 PackageLicenseDeclared: NOASSERTION
28 PackageLicenseConcluded: NOASSERTION
29 PackageLicenseInfoFromFiles: 0BSD
30 PackageLicenseInfoFromFiles: 389=exception
31 PackageLicenseInfoFromFiles: AAL
32 PackageLicenseInfoFromFiles: ADSL
33 PackageLicenseInfoFromFiles: AFL=1.1
34 PackageLicenseInfoFromFiles: AFL=1.2
35 PackageLicenseInfoFromFiles: AFL=2.0
36 PackageLicenseInfoFromFiles: AFL=2.1
37 PackageLicenseInfoFromFiles: AFL=3.0
38 PackageLicenseInfoFromFiles: AGPL=1.0=only
39 PackageLicenseInfoFromFiles: AGPL=1.0=or=later
40 PackageLicenseInfoFromFiles: AGPL=3.0=only
41 PackageLicenseInfoFromFiles: AGPL=3.0=or=later
42 ...
43

44 #File

45

46 FileName: ./fossology/.travis.yml
47 FileChecksum: SHA1:
48 LicenseConcluded: NOASSERTION
49 LicenseInfoInFile: GPL=2.0=only
50 LicenseInfoInFile: LGPL=2.1=only
51 FileCopyrightText: <text>Copyright Siemens AG, 2014=2019</text>
52 ...
53 # File

54

55 FileName: ./fossology/Dockerfile
56 FileChecksum: SHA1:
57 LicenseConcluded: NOASSERTION
58 LicenseInfoInFile: FSFAP
59 FileCopyrightText: <text>Copyright Siemens AG 2016, fabio.

huser@siemens.com
60 Copyright TNG Technology Consulting GmbH 2016=2017,

maximilian.huber@tngtech.com
61 </text>
62 ...
63 # Extracted Licenses

64 ...
65 LicenseID: LicenseRef=scancode=bsd=simplified=darwin
66 LicenseComment: <text>See details at https://github.com/nexB/

scancode=toolkit/blob/develop/src/licensedcode/data/licenses/bsd=
simplified=darwin.yml

67 </text>
68 ExtractedText: <text>See details at https://github.com/nexB/scancode

=toolkit/blob/develop/src/licensedcode/data/licenses/bsd=simplified
=darwin.yml

69 </text>
70 ...
71 LicenseID: LicenseRef=scancode=cpl=0.5
72 LicenseComment: <text>See details at https://github.com/nexB/

scancode=toolkit/blob/develop/src/licensedcode/data/licenses/cpl
=0.5.yml

73 </text>
74 ExtractedText: <text>See details at https://github.com/nexB/scancode

=toolkit/blob/develop/src/licensedcode/data/licenses/cpl=0.5.yml
75 </text>

Listing 5.16: ScanCode Toolkit SPDX tag value report sample.

56

6 Limitation

In this section, we discuss the four tests Yin (2018) mentioned to check the quality
of the research method at various levels and the whole case study research.

6.0.1 Construct validity

Construct validity concerns that the case study design’s correct operational meas-
ures have been followed to ensure the soundness of the studied concept. In this
research, all of the gathered information is maintained by the studied products
directly, pulling out the core models used, and analyzing it, establishing the chain
of evidence. Besides using multiple data sources for each case as one of the recom-
mended tactics by Yin (2018) to ensure high construct validity. The operation of
combining the available documentation with the physical artifacts (source code)
gave an integral whole to the cases, discovering the FLOSS dependencies model
within.

6.0.2 Internal validity

This test seeks to establish a causal relationship, whereby certain conditions leads
to another set of conditions, as distinguished from spurious relationships. Internal
validity only applies to explanatory case studies. The used method in our case is
multiple case study, focusing on analyzing the well-established products and how
they model FLOSS dependencies. We don’t address rival explanation or explan-
ation building, but we use logical models and pattern matching. The possible
threats to internal validity come from the entire manual process of analyzing the
gathered data, which means research bias is potential in the cross-analysis phase.
We grounded our reasons for this process in section 4.5.

6.0.3 External validity

External validity cares for the generalization of the research findings. This re-
search is not based on quantitive methods; we can’t claim statistical generaliz-
ation to a large population where sampling applies. But we can affirm gener-

57

alization with respect to the most similar cases and replication logic. Choosing
well-established products for our research and using the cross-case analysis to
compare these cases among each other, gives strong findings generalization.

6.0.4 Reliability

Reliability concern is the ability to repeat the followed processes in the research,
leading to the same findings. We guarantee following the same procedures, pro-
cesses, and strategies, leading to the same results, but what can change is the data
and models, because the chosen products are continually developing. The repe-
tition of these findings must consider the dates of gathering the data, including
the documentation and the physical artifacts.

58

7 Conclusion

7.1 Discussion

This section will discuss (significant) findings of this thesis regarding our strategy
questions and research questions.

7.1.1 Component representation

In all cases, the component has different characteristics and shared aspects; see
figure 7.2 shows all common elements across all UML diagrams of the cases.
These aspects are naming, hashes, URLs, and types. Naming is always about
the package name or the file name as separated entities and the packages’ ver-
sions. Hashes utilized by these tools intensively to ensure that the long list of
files and packages are unique to avoid duplication during the analysis, in some
cases used for vulnerability checks, derived origin, or authenticity of the available
source code. URLs have many varieties, which describes the analyzed project
homepage, source code, download, or even binary URL. Types show how each
case outlines the analyzed project type accurately on file or package level and
mime types with different representations to add more details about each pack-
age or component.For instance, CycloneDX has eight classifications of types to
describe the component, e.g. application, device, or firmware; you can also add a
mime-type composed of any letter and numbers, see case 5.1 and figure 5.1. As for
uncommon aspects of the component, some cases have more to attach to it, e.g.
VCS information, description of the component, the analyzed project primary
language, or keywords. The critical part of the component representation com-
parison is how each case represents the underlying model of a component. As for
the elements refer to primary parts that compose the model of the component,
e.g. package linked to alist of files compose the component from the product
model perspective, see figure 7.1.

59

Figure 7.1: Component elements comparsion.

Figure 7.2: Component common aspects.

7.1.2 Licenses and copyrights representation

Since the cases consider the components on different levels as mentioned in com-
ponent representation 7.1.1, it is required to slice every level individually to
clearly see the similarities and differences. Regarding licenses, see figure 7.4.
The primary levels are (project, upload, component) level, package level, and
file level. Four of the cases ORT, Tern, Quartermaster, and ScanCode Toolkit
consider the package declared licenses by the vendor, in addition to SPDX expres-
sion to express multiple licenses situation and list of all included licenses in the
package. FOSSology, CycloneDX, and ORT consider overall license on (project,
upload, component) level. FOSSology, Tern, and ScanCode Toolkit also acknow-
ledge the licenses on file level by listing all existing licenses in the file with an
SPDX expression to get a hold on the situation with multiple licenses. All the
cases represent the licenses with a simple string or a list of strings containing the
SPDX identifiers as value. ORT, ScanCode Toolkit, FOSSology, and CycloneDX
model the license in their unique way to fit the needs of its logic and design,
as for the other cases, the license is embedded in their model. Copyrights are
considered only on two levels (project, package) level and file level; see figure 7.3.
FOSSology, Tern, and Quartermaster recognize the copyrights on file level the
others consider on a project, package level as for Quartermaster, and ScanCode
Toolkit considers both. Tern has a separate representation of notices. In all the
cases, copyrights are stored as string or list of strings, ORT, and FOSSology add
the copyrights statements’ location in the scanned files.

60

Figure 7.3: Copyrights common aspects.

Figure 7.4: Licenses common aspects.

7.1.3 Dependency representation

As a reminder, the dependency is a reference to another component with linking
information. Most cases allow the dependency representation on different levels;
see figure 7.5. FOSSology represents dependency relationships only on the upload
level. On the other hand, CycloneDX has multiple options to represent compon-
ent to component relationship and older/parent versions through pedigree type.
Tern, as a container license compliance tool, also has an extra level to describe
dependent packages for each image layer. There is variation between all the cases,
but it can be categorized to file level dependent Tern, Quartermaster, ScanCode
Toolkit, and FOSSology and Package level dependent CycloneDX and ORT. The
older scanners, e.g. FOSSology and ScanCode Toolkit, have no consideration for
dynamically linked libraries. The only two products that consider the dynam-
ically linked libraries are ORT and Quartermaster, with abilities to download
and scan the remote library, then add all license compliance information to the
final results, see figure 7.6. Only two of the products represent dependencies as
a graph ORT and CycloneDX; the ORT analyzer uses the dependency graph as
an intermediate result to export it to the other tools, e.g. reporter, scanner, or
downloader. CycloneDX represents the dependency graph in the BOM as a tree;
the older versions use dependency graph extension allowing the users to see how
all packages are dependent on each other in a machine-readable format of your

61

choice. Products like Quartermaster have a way to describe dependencies on file
level. They can be represented as a tree, but no other additional uses for these
data as a dependency tree or as a graph within the product itself.

Figure 7.5: Dependency common aspects.

Figure 7.6: Products with dynamic linkage.

7.1.4 Meta-data representation

Meta-data is defined as data on data or information on information, with time
enigmatic of this definition is cleared, the refined definition appeared. Metadata
is structured information that describes, explains, locates, or otherwise makes it
easier to retrieve, use, or manage an information resource by Riley (2017). All
cases that have mandatory filed must be filled to store, analyze, and processes
the analyzed project. These fields are necessary meta-data, also directly related
to the primary use case license compliance. Still, all other fields that describe
the analyzed project are additional meta-data. For example, case 5.6 gathers
all possible meta-data during the analysis, e.g. URLs, keywords, and primary
language, also see figure 7.7. Meta-data spread on different levels for each case,
but what makes CycloneDX and Quartermaster unique, allowing analyzer or the
user to add meta-data dynamically as much as needed, unlike the others, see
figure 7.7. ORT is also unique because it connects to ClealyDefined to pull and
push curated meta-data about the analyzed project. Tern pulls information from
docker hub since it is specialized for container scans and its database. ScanCode
Toolkit looks for meta-data that only provided in the analyzed project by the
vendor; if the analyzed project is not well-maintained, it fails to deliver good up

62

to date results. FOSSology uses RPM and Debian package to pull meta-data of
the well-known packages.

Figure 7.7: Meta-data common aspects.

7.1.5 Vulnerabilities representation

Most of the project does not support vulnerability checks by default. Some use
extensions, e.g. Tern and FOSSology, some have planned the feature, but it is not
available yet, see figure 7.8. The only project that supports vulnerabilities built-in
is CycloneDX v1.2, which was released 26.05.2020 during this thesis. FOSSology
and Tern externalize the vulnerability check to extensions or another supply chain
tool, so there is no clear standard linking these products. On the other hand,
CycloneDX has ways to reference its vulnerability by CVE id, sources with a list
of common weakness enumeration (CWE)1 to distingue the vulnerability type,
scores, rating, and recommendation to find the solution to this vulnerability.

1[Accessed-on 08.08.2020] https://cwe.mitre.org/

63

https://cwe.mitre.org/

Figure 7.8: Vulnerabilities common aspect.

7.2 Summary

After we presented the results of our thematic analysis across the cases, pointing
out the essential aspects. Answering the research questions follow it as a result.

RQ1: “What models for modeling FLOSS dependencies in products exist?”
The cases we discussed earlier and the common aspects show existing product
models the dependency on a project and package levels like ORT and CycloneDX.
FOSSology has a flat-level characteristic, which considers the dependency as a
file relationship across all the analyzed project files. Tern has considered the
dependency relationship across the package and file level with an extra consider-
ation about each image layer of the container, which depends on a list of packages.
ScanCode Toolkit has both modeled the dependency across two levels package
and file. Quartermaster has an explicit representation for dependence and derived
origin on a file level, besides the project level. The answer shows various ways to
represent FLOSS dependency in the studied cases with critical similarities and
differences.

RQ2: “What dimensions are considered to model FLOSS dependencies?”
As the discussion exhibits, everything spins around the analyzed project licenses
in a query to find any compliance problems within the included packages. All
the cases model the licenses in a significant way with a detailed sight to serve
the primary concern of avoiding legal matters, leading us to these products’ fun-
damental dimensions. Firstly, licenses shape the base model in all the cases,
showing how the license details are managed, including the declared licenses by
the vendor, the concluded license, multiple license scenarios, and the scan res-
ults. Secondly, the ability to share reports in a machine-readable format
allows these products to integrate into the tools supply chain and other possible
production lines. Thirdly, copyrights are a critical aspect of scanning projects
considered by all the cases on different levels. Fourthly, meta-data filling the
gaps, storing these forms of data, and keep the analyzed projects well maintained
will enable products to provide more use cases on this matter, e.g. risk assess-
ment. Finally, vulnerabilities are a crucial dimension, even though not all the
instances of the study consider it built-in, provided ways to scan for it via ex-
tensions or other supply chain tools. In summary, all five dimensions shaps most

64

of the existing products’ models; later on, new use cases and needs will increase
these dimensions to provide a more automated way of deciding how to manage
FLOSS dependencies in software.

RQ3: “What are the core use cases for existing modeling solutions?”
Of the identified nine use cases, we identified three use cases present in each
case, see figure 7.9. These core use cases are license scan, license compliance, and
copyrights. Five out of six cases allow the user to update the missing meta-data
to help keep the SBOM and the analyzed project well-maintained, one of the
crucial and common use cases among the products. Four out of six cases scan for
contact information of copyright holders, maintainers, developers, and respons-
ible parties is also a widespread use case among the products. One out of six
cases has a vulnerability scan builtin and two out of six features using extensions
or other supply chain tools Tern, and FOSSology with SW360. There are less
common use cases with scores of two out of six, dependency graph/tree, outdated
packages, and custom policy scans.

*: indicate that vulnerability scans done by extension or other supply chain tools.

Figure 7.9: Common core use cases.

The answer to the research questions are not the only contribution of this paper; it
also provided a full-scale comparison between the features of the selected products
with a detailed view of the potentials for each product and its use cases.

65

8 Future Work

After concluding our research by answering the research questions, presenting the
possible future work is critical to make use of these findings.

In this thesis, the selected license compliance tools we discussed are widely used in
a real-world context, not just theoretical concepts. Interviewing the communities
or the companies behind these tools will allow us to perform data triangula-
tion using multiple resources to collect the data, as Carter Nancy and J. (2014)
described it. Also, performing theory triangulation by further analysis and in-
terpretation of the data by Carter Nancy and J. (2014) will adjust the finding,
giving more reliable answers to the research questions.

During the case selection 4.3 processes, we chose six candidates according to
our case definition 4.2, but the list contains more than 25 other candidates; see
table A. Conducting additional single or multiple case studies based on the listed
products will increase this thesis’s generalization. It is worth to mention this list
also contains a lot of widely used license scanners standalone or as a utilized tool
by other products.

Furthermore, our case definition 4.2 demonstrates the sharable reports in a
machine-readable format as one of our six criteria, indicating that the products
have an unlimited probability of building a supply chain of tools. Some of the
selected products have already been a part of the supply chain of tools, e.g.
CycloneDX with Dependency Track and FOSSology with SW360. Arising the
questions, How the modeling of dependencies in products affected the supply
chain tools? How the supply chain tools appropriated the imported data? Which
use cases do these supply chain tools have?

We looked into the products based on the vendors’ available documentation and
physical artifacts; we investigated the defined use cases. Still, further investig-
ation is required to ensure how these products operate in a real-world context.
Interview companies and software businesses that use these products will identify
the most critical use cases with valuable knowledge about the drawbacks, miss-

66

ing features, and functionalities. Companies will also provide vital information
about these products and the FLOSS integration process into their production
lines and products. Exhibiting how crucial license compliance is, maybe they will
share some of the current challenges and problems.

Interviews will complement this thesis, provide more real-world knowledge and
expertise to enhance the results with an additional case study research about more
well-established license compliance tools will definitely improve the findings and
generalization.

67

9 Acknowledgements

I would like to acknowledge Prof. Dr. Dirk Riehle and my supervisor Andreas
Bauer as the second readers of this thesis. I am gratefully indebted to Sebastian
Schmid for his precious feedback and comments on this thesis’s research method.

Finally, I must express my very profound gratitude to my wife, my kids, and my
mother for providing me with unfailing support and continuous encouragement
throughout my years of absence to study in Germany and through the process of
researching and writing this thesis.

This accomplishment would not have been possible without them. Thank you.

68

Appendix A Case Study Candidates List

Project Name Publisher License Version Github Website
CycloneDX Apache Apache-2.0 v1.1 https://github.com/CycloneDX https://cyclonedx.org

Quartermaster Endocode AG GPL-3.0 v0.5.1 https://github.com/QMSTR https://qmstr.org/documentation/
SW360 Eclipse EPL-2.0 v8.2.0-M1 https://github.com/eclipse/sw360 https://projects.eclipse.org/proposals/sw360

OSS Review Toolkit HERE Apache-2.0 - https://github.com/oss-review-toolkit/ort
AboutCode Toolkit nexB Apache-2.0 v4.0.1 https://github.com/nexB/aboutcode-toolkit https://aboutcode.readthedocs.io/en/latest/aboutcode-toolkit/home.html

FOSSA-CLI Fossa MPL-2.0 v1.0.27 https://github.com/fossas/fossa-cli/releases https://fossa.com
OSS Discovery OpenLogic AGPL-3.0 v2.3.2 https://github.com/openlogic/ossdiscovery http://ossdiscovery.sourceforge.net

Debian/copyright Debian - v1.0 https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/#introduction
Apache Whisker Apache Apache-2.0 v0.1 SNAPSHOT http://creadur.apache.org/whisker/

OSS Attribution Builder Amazon Apache-2.0 v0.9.0 https://github.com/amzn/oss-attribution-builder
OSS Police Ruian Duan, GPL-3.0 - https://github.com/osssanitizer/osspolice

Tern VMware BSD-2-Clause v2.0.0 https://github.com/tern-tools/tern
SPDX Linux Foundation CCA-3.0 v2.2 https://github.com/spdx/spdx-spec https://spdx.org
Augur Augur Labs MIT v0.12.0 https://github.com/chaoss/augur http://www.augurlabs.io

Fossology Linux Foundation GPL-2.0 v3.8.0 https://github.com/fossology/fossology https://www.fossology.org
in-toto NYU Secure Systems Lab Apache-2.0 v0.4.2 https://github.com/in-toto/ https://in-toto.io

OWASP Dependency-Track OWASP Foundation Apache-2.0 v3.8.0 https://github.com/DependencyTrack/dependency-track https://owasp.org
kernel-spdx-ids Linux Foundation Apache-2.0 - https://github.com/swinslow/kernel-spdx-ids

REUSE Free Software Foundation Europe Multi-Licenses v0.10.0 https://github.com/fsfe/reuse-tool.git https://reuse.software/
ScanCode Toolkit nexB Multi-Licenses v3.0.2 https://github.com/nexB/scancode-toolkit https://scancode-toolkit.readthedocs.io/en/latest/

Qualipso - - - http://qualipso.icmc.usp.br/
npm-spdx Linux Foundation Apache-2.0 - https://github.com/swinslow/npm-spdx

SPDX Online Tool Linux Foundation Apache-2.0 - https://github.com/spdx/spdx-online-tools
License Checker LC Ben Boyter MIT v1.3.1 https://github.com/boyter/lc

Apache Rat Apache Apache-2.0 v0.13 https://github.com/apache/creadur-rat https://creadur.apache.org/rat/#Who Develops Rat
Go-License-Detector Source{d} Apache-2.0 v3.1.0 https://github.com/src-d/go-license-detector
Go-License-Discovery Jfrog Apache-2.0 - https://github.com/jfrog/go-license-discovery https://jfrog.com

License Classifier Google Apache-2.0 - https://github.com/google/licenseclassifier
License Check Google BSD 2-Clause Simplified - https://github.com/google/licensecheck

LiD Code Aurora Forum BSD 3-Clause https://github.com/codeauroraforum/lid
NPM License Checker DavGlass BSD 3-Clause v25.0.1 https://github.com/davglass/license-checker
NPM License Crawler M Wittig BSD 3-Clause V0.1.4 https://github.com/mwittig/npm-license-crawler/

dpkg-licenses Daniel Alder GPL-3.0 - https://github.com/daald/dpkg-licenses
Askalono Amazon Apache-2.0 v0.4.2 https://github.com/amzn/askalono

Black Duck Docker Inspector Black Duck Software Apache-2.0 v9.0.1 https://github.com/blackducksoftware/blackduck-docker-inspector
Barista Amazon Apache-2.0 v0.4.2 https://github.com/Optum/barista https://optum.github.io/barista/docs/architecture
Licensee Ben Balter MIT v9.14.0 https://github.com/licensee/licensee

Table 9.1: Case study candidates list here for full version.

69

https://drive.google.com/open?id=17lEmp2YE8Id_kUqdDcUN2gHrdQuQOJ5N

Appendix B: FOSSology ERD

Appendix B FOSSology ERD

Figure 9.1: FOSSology v3.8.0 full ERD.
70

Appendix C Thematic Analysis Phases

Figure 9.2: Thematic analysis phases by Braun and Clarke (2006).

Appendix D Clearly Defined UML

Figure 9.3: Clearly Defined UML1.

71

OSS Review Toolkit design

Appendix E OSS Review Toolkit design

Figure 9.4: OSS Review Toolkit design2.

1 Accessed-on[25.07.2020] https://github.com/oss-review-toolkit/ort/tree/master/
clearly-defined/src/main/kotlin

2 Accessed-on[24.09.2020] https://events19.linuxfoundation.org/wp-content/uploads/2018/
07/Starting-and-scaling-an-Open-Source-Office-v2.pdf

72

https://github.com/oss-review-toolkit/ort/tree/master/clearly-defined/src/main/kotlin
https://github.com/oss-review-toolkit/ort/tree/master/clearly-defined/src/main/kotlin
https://events19.linuxfoundation.org/wp-content/uploads/2018/07/Starting-and-scaling-an-Open-Source-Office-v2.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2018/07/Starting-and-scaling-an-Open-Source-Office-v2.pdf

References

Bauer, A., Harutyunyan, N., Riehle, D. & Schwarz, G.-D. (2020). Challenges of
tracking and documenting open source dependencies in products: A case
study. IFIP International Conference on Open Source Systems, 25–35.

Braun, V. & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative
research in psychology, 3 (2), 77–101.

Brøndum, J. (2012). Architectural dependency analysis and modelling (Doctoral
dissertation). University of New South Wales.

Carter Nancy, D. A. w. B. J., Bryant-Lukosius Denise & J., N. A. (2014). The
use of triangulation in qualitative research. Oncology nursing forum, 41 (5),
545.

Hammouda, I., Mikkonen, T., Oksanen, V. & Jaaksi, A. (2010). Open source leg-
ality patterns: Architectural design decisions motivated by legal concerns.
Proceedings of the 14th International Academic MindTrek Conference: En-
visioning Future Media Environments, 207–214.

Jaeger, M. C., Fendt, O., Gobeille, R., Huber, M., Najjar, J., Stewart, K., Weber,
S. & Wurl, A. (2017). The fossology project: 10 years of license scanning.
IFOSS L. Rev., 9, 9.

Luoto, A. (2013). A uml profile approach to managing open source software
licensing.

Mayring, P. (2014). Qualitative content analysis: Theoretical foundation, basic
procedures and software solution.

Riley, J. (2017). Understanding metadata. Washington DC, United States: Na-
tional Information Standards Organization (http://www. niso. org/public-
ations/press/UnderstandingMetadata. pdf), 23.

Rozanski, N. & Woods, E. (2012). Software systems architecture: Working with
stakeholders using viewpoints and perspectives. Addison-Wesley.

Sangal, N., Jordan, E., Sinha, V. & Jackson, D. (2005). Using dependency mod-
els to manage complex software architecture. Proceedings of the 20th an-
nual ACM SIGPLAN conference on Object-oriented programming, sys-
tems, languages, and applications, 167–176.

73

REFERENCES

Seawright, J. & Gerring, J. (2008). Case selection techniques in case study re-
search: A menu of qualitative and quantitative options. Political research
quarterly, 61 (2), 294–308.

Springett, S. (2020a). Cyclonedx use cases [accessed on 30.05.2020]. https : / /
cyclonedx.org/use-cases

Springett, S. (2020b). Cyclonedx xml reference external references [accessed on
28.05.2020]. https://cyclonedx.org/docs/1.2/#type externalReferences

Yin, R. K. (2018). Case study research and applications. Design and methods, 6.

74

https://cyclonedx.org/use-cases
https://cyclonedx.org/use-cases
https://cyclonedx.org/docs/1.2/#type_externalReferences

	Introduction
	Related Work
	Research Questions
	Research Methodology
	Multiple case study design
	Case definition
	Case selection
	Data sources
	Analysis method

	Cases
	Case 1: CycloneDX
	What is a component?
	How are licenses and copyrights represented?
	How are dependencies represented?
	How is meta-data represented?
	How are vulnerabilities represented?
	What are the common use cases?

	Case 2: Fossology
	What is an Upload?
	How are licenses and copyrights represented?
	How are dependencies represented?
	How is metadata represented?
	How are vulnerabilities represented?
	What are the common use cases?

	Case 3: OSS Review Toolkit (ORT)
	What is a component?
	How are licenses and copyrights represented?
	How are dependencies represented?
	How is metadata represented?
	How are vulnerabilities represented?
	What are the common use cases?

	Case 4: Tern
	What is a component?
	How are licenses and copyrights represented?
	How are dependencies represented?
	How is metadata represented?
	How are vulnerabilities represented?
	What are the common use cases?

	Case 5: Quartermaster
	What is a component?
	How are licenses and copyrights represented?
	How are dependencies represented?
	How is metadata represented?
	How are vulnerabilities represented?
	What are the common use cases?

	Case 6: ScanCode Toolkit
	What is a component?
	How are licenses and copyrights represented?
	How are dependencies represented?
	How is metadata represented?
	How are vulnerabilities represented?
	What are the common use cases?

	Limitation
	Construct validity
	Internal validity
	External validity
	Reliability

	Conclusion
	Discussion
	Component representation
	Licenses and copyrights representation
	Dependency representation
	Meta-data representation
	Vulnerabilities representation

	Summary

	Future Work
	Acknowledgements
	Appendices
	Appendix Case Study Candidates List
	Appendix FOSSology ERD
	Appendix Thematic Analysis Phases
	Appendix Clearly Defined UML
	Appendix OSS Review Toolkit design

	References

