
Friedrich-Alexander-Universität Erlangen-Nürnberg

Technische Fakultät

Department Informatik

Kai Malte von Rönne

BACHELOR THESIS

GraphQL-based generic and domain

specific query interfaces

for the JValue ODS

Submitted on 08.10.2020

Supervisor: Prof. Dr. Dirk Riehle, M.B.A.

Professur für Open-Source-Software

Department Informatik, Technische Fakultät

Friedrich-Alexander University Erlangen-Nürnberg

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der an-

gegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch

keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung

angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden,

sind als solche gekennzeichnet.

Nürnberg, 8.10.2020

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other that the de-

clared sources / resources, and that I have explicitly marked all material which has been quoted

either literally or by content from the used sources. Furthermore, this thesis has not been sub-

mitted to any other auditing authority in the same or similar form and has not been accepted by

them as part of an examination paper.

Nürnberg, 8.10.2020

License

This work is licensed under the Creative Commons Attribution 4.0 International license

(CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Nürnberg, 8.10.2020

https://creativecommons.org/licenses/by/4.0/

Abstract

The JValue Open Data Service (ODS) is an open source application, founded and developed by

the professorship of Open Source Software of the Friedrich Alexander Universität Erlangen

Nürnberg (FAU). The application aims to become the go-to place for developers and data

scientists around the world when building applications by using Open Data. The JValue ODS’

business model consists of collecting data from various different Open Data APIs, apply

processing and cleansing and offering the improved version of the data back to the user. At the

time of writing the thesis, the ODS only offers a rudimentary auto generated REST Interface

for accessing the resulting data which does not fulfill the various requirements of its targeted

user base. Therefore, this thesis aims to offer a solution on how a responsive and clean user API

could be implemented using GraphQL as query language. As the ODS itself is a collection of

many different docker native micro-services, the relevant functionality for providing the APIs

is developed using the same core principles.

In order to grant the user the ability to fetch the raw data, each creation of a new pipeline, which

configures the result of the attached data endpoint and a customizable transformation script, can

be further configured to generate a read only GraphQL endpoint on the basis of the underlying

PostgreSQL schema. This API is capable of filtering and combining all the fields of the

collected data. To give the users, who are more knowledgeable in the domain they are working

in, the possibility to add business logic to this data a node.js template project is provided. After

implementing the desired functionality and hosting it on their preferred hosting solution, the

users can register their custom endpoint through the JValue ODS Web Interface which are then

validated and merged with the existing schema.

Content
1 Introduction ... 1

2 Requirements ... 2

2.1 Motivation .. 2

2.2 Functional requirements ... 2

2.2.1 Automatic generation of basic API ... 2

2.2.2 Navigating between snapshots of the data set .. 2

2.2.3 Interface to other components .. 2

2.2.4 Query language ... 3

2.2.5 Extensibility through the JValue ODS community ... 3

2.2.6 Reasonable time to set up API .. 3

2.2.7 User interface ... 3

2.3 Non-functional requirements .. 3

2.3.1 Adaptability .. 3

2.3.2 Licensing .. 3

2.3.3 Deployment .. 3

2.4 Stakeholder ... 4

2.4.1 Developers .. 4

2.4.2 Users ... 4

2.5 Evaluation ... 4

3 API design and GraphQL as a query language .. 5

3.1 Characteristics of a good API ... 5

3.1.1 Easy to learn and memorize ... 5

3.1.2 Hard to misuse .. 5

3.1.3 Easy to extend .. 5

3.1.4 Complete .. 5

3.1.5 Appropriate to audience ... 6

3.2 GraphQL as a query language .. 6

3.2.1 Basic principles of GraphQL .. 6

3.3 Core features ... 8

3.3.1 All data needed with one call ... 8

3.3.2 No over- and under-fetching problems ... 8

3.3.3 Validation and type checking by design ... 8

3.3.4 In-built API maturing and versioning ... 8

3.3.5 Detailed error messages .. 9

3.4 GraphQL compared to REST ... 9

4 Architecture and design ... 10

4.1 Proposed solution ... 15

4.1.1 Hasura GraphQL engine ... 15

4.1.2 Hasura GraphQL engine ... 16

4.1.3 Alternatives to Hasura GraphQL engine .. 18

4.1.4 API Orchestration Services .. 19

4.1.5 Template remote schema project .. 19

5 Implementation .. 21

5.1 Integration of GraphQL engine ... 21

5.2 API Orchestration Service .. 23

5.2.1 Container .. 23

5.2.2 PostgresSQL schema issue ... 24

5.2.3 The REST API .. 26

5.2.4 Integration of RabbitMQ .. 27

5.3 Necessary changes to other components .. 27

5.3.1 User interface ... 27

5.3.2 Database schema .. 28

5.4 Template project ... 29

5.4.1 Programming language ... 29

5.4.2 Functionality ... 30

5.4.3 Querying data ... 30

5.4.4 Exposing endpoint .. 31

6 Evaluation.. 33

6.1 Functional requirements ... 33

6.1.1 Automatic generation of basic API ... 33

6.1.2 Navigating between snapshots of the data set .. 33

6.1.3 Interface to other components .. 33

6.1.4 Query language ... 33

6.1.5 Extensibility through the JValue ODS community ... 33

6.1.6 Reasonable time to set up API .. 33

6.1.7 User interface ... 34

6.2 Non-functional requirements .. 34

6.2.1 Adaptability .. 34

6.2.2 Licensing .. 34

6.2.3 Deployment .. 34

7 Further steps and conclusion ... 35

8 References ... 36

9 List of figures .. 38

10 References of figures ... 39

List of abbreviations

AGPLv3 ... GNU Affero General Public License

API ... Application Programming Interface

FAU ... Friedrich-Alexander Universität

HTTP ... Hypertext Transfer Protocol

JMA ... Japan Meteorological Agency

JSON ... JavaScript Object Notation

Massachusetts Institute of Technology .. MIT

ODS .. Open Data Service

REST .. Representational State Transfer

URL ... Uniform Resource Locator

User Interface ... UI

WSV Wasserstraße- und Schiffahrtsverwaltung des Bundes (Federal Waterways and Shipping

Administration)

1

1 Introduction

The modern world is data driven. This statement is now more relevant than ever before as every

major industry is in the process of incorporating more technology into their daily business

workflows. The digitally captured key indicators which are generated in every step of a supply

chain help large companies, for example in the automotive industry, pinpoint some missed

resource optimization and help fixing this issue. In another part of the world, the data generated

by the sensors of the JMA in Japan helps the country to keep its residents safe by being able to

track seismological shifts and raise alert in case of an impending (Japan Meteorological Agency,

n.d.). Developers around the world have access to this data and can use it to write their own

applications to further increase security and awareness. This is just one of countless examples

in which data drastically changes the current way of living.

In recent years, the concept of open data has started to gain more popularity and large amounts

of supporters. Between 2018 and 2030 the European Commission has projected in their Impact

Assessment Support Study for the Revision of the Public Sector Information that the total direct

economic value of Public Sector Information (PSI) will increase from 52 billion Euros to 194

billion euros earthquake (Data Policy and Innovation Unit G. 1, 2020). “Open Data can be

freely used, modified, and shared by anyone for any purpose and is marked as open by being

provided under a conformal license”, claims Riehle (2019). These characteristics allow people

who are interested to use the vast amount of generated data of different fields and economic

disciplines to get their best personal use out of it. The data can be used just out of curiosity but

also as a foundation to build new, innovative and life changing applications.

The JValue ODS, developed by members of the Open Source professorship under the guidance

of Prof. Dr. Dirk Riehle, aims to be an enabler for other people interested in open data in this

context by providing a software platform that connects to various different streams of open data

and makes it accessible from one place.

So far the JValue ODS is still missing an intuitive and a future proof way of making this

transformed data accessible via a fitting API concept, which can be extended by its users and

community. This thesis aims to give the ODS the basic function of such an API by implementing

this feature using Facebook’s GraphQL1 specification which focuses on efficient and logical

data retrieval.

1 https://graphql.org/

2

2 Requirements

2.1 Motivation

As the community around the ODS aims to “[…] establish the ODS as the go-to place for using

Open Data (Schwarz, et al., 2020)”, it does not only need a way to make the transformed data

available to its users, but also a deliberate future proof concept and a concrete reference

implementation on how such a claim can be achieved. Next to the functionality a software

offers, a major issue on whether a software is adopted by the targeted user-group heavily relies

on the way the user can interact with the system (PICCIONI, FURIA, & MEYER, n.d.).

The following requirements for implementing such a system have been collected by firstly

talking to current developers of the system to make sure the proposed concept fits into the

targeted vision of the project. Secondly, interviews have been conducted with several selected

users of the JValue ODS to take their feedback from regularly working with the system from

the consumer viewpoint into account.

2.2 Functional requirements

Malan and Bredemeyer define functional requirements as “[…] functional requirements capture

the intended behavior of the system. This behavior may be expressed as services, tasks or

functions the system is required to perform” (MALAN & BREDEMEYER, 1999). In this case the

functional requirements specify the scope of the GraphQL-API feature of the ODS and the main

focus points.

2.2.1 Automatic generation of basic API

The solution should be able to automatically generate a working API Endpoint that exposes the

raw data collected from a JValue ODS Pipeline to the user. This endpoint should be the first

contact point of users with the data before they continue using, altering, and interpreting it.

2.2.2 Navigating between snapshots of the data set

The API should give the user the possibility to jump from one snapshot to the previous or

following snapshot. This requirement should emphasize the sequencing nature of Open Data

and enable users to easily compare snapshots of data sets at different points in time.

2.2.3 Interface to other components

The API should get their data directly from the storage databases. No intermediate data layer is

planned as of now.

3

2.2.4 Query language

The query language for fetching the data is supposed to be GraphQL. Its features provide the

user with a complete and understandable description of the data in the API (GraphQL

Foundation, n.d.).

2.2.5 Extensibility through the JValue ODS community

The concept should give the community of the JValue ODS the possibility to extend the

provided API with existing API endpoints on top of the existing data and share them with others.

This should enable users to enrich the raw data with customized business logic.

2.2.6 Reasonable time to set up API

The solution should be able to set up the API in a reasonable amount of time. The API should

be available to be queried within ten seconds after a new pipeline has been created or the feature

has been enabled on an existing pipeline.

2.2.7 User interface

Users should be able to configure the API generation and extension workflow via the JValue

ODS user interface. It should be available to choose whether the public API feature is turned

on or off and to configure the extensions of the public API with user provided functionality.

2.3 Non-functional requirements

2.3.1 Adaptability

The solution should be adaptable and applicable to changes in the future. This applies to the

used programming language, libraries, and standards in particular.

2.3.2 Licensing

The licenses of all used components should not conflict with the AGPLv3 license of the JValue

ODS. Only external components licensed under the MIT or Apache License 2.0 should be used.

These licenses are considered as very liberal. They are written permissively and allow the users

to use components distributed under these licenses to use them for any use-case (MIT, n.d.)

(Apache Software Foundation, 2020).

2.3.3 Deployment

All parts of the solution that are included in the final code base of the JValue ODS should be

easily deployable in a controlled environment. As most of the micro services of the JValue ODS

use docker for this task, the solution should be able to use docker as well, unless there is a sound

reasoning for not doing so.

4

2.4 Stakeholder

Developing software in such a wide field of use, for example in the JValue ODS with many

types of stakeholders, often has potential of conflicts of interest. Different stakeholders have

different priorities as they usually focus on different characteristics of the software. Key

stakeholders have been identified to reduce this complexity following

2.4.1 Developers

Developers of the JValue ODS are responsible for building and maintaining the software in the

GitHub repository2. They are responsible for keeping their code base clean and organized.

Developers should have a strong interest for the factual implementation and for the technology

in use.

2.4.2 Users

The users of the JValue ODS are mainly other developers who use ODS as a basis to build their

own applications. Since the data provided by the JValue ODS often is an integral part of their

products, they focus on the reliability of the system, available features and performance.

2.5 Evaluation

The described functional and non-functional requirements in the chapters 2.2 and 2.3 are the

basis against which the final result is being evaluated. Furthermore, this thesis also documents

the progress of implementing the feature for the JValue ODS production code base. All points

discussed in this thesis can be found in the linked GitHub pull request3. The final decision on

whether this feature will be integrated in the productive code base of the JValue ODS belongs

to the developing community around the project.

2 https://github.com/jvalue/open-data-service
3
 https://github.com/jvalue/open-data-service/pull/189

5

3 API design and GraphQL as a query language

3.1 Characteristics of a good API

The API defines of how other programmers can interact with your software. Therefore, the

importance for the success of any project that relies on other developers to integrate their

software in the product’s ecosystem cannot be understated. A good API can certainly make the

difference on whether other developers choose to accept to work with your system or rather

search for an alternative (BLANCHETTE, 2008, pg. 7-13).

Over the history of software development some high-level key characteristics have evolved that

are alike with most good APIs. These characteristics have been collected and written down by

Joshua Bloch, principal software engineer at Google Inc. (BLOCH, n.d.).

3.1.1 Easy to learn and memorize

Quantifying what is considered ‘easy to learn’ is difficult but there are some patterns that should

be featured. Jasmin Blanchette describes this characteristic as follows: “An easy-to-learn API

features consistent naming conventions and patterns, economy of concepts, and predictability.

It uses the same name for the same concept, and different names for different concepts”

(BLANCHETTE, 2008).

Furthermore, the API should be consistent within itself and repeat the same patterns in its

different parts so the user can reapply the same concepts. The semantics should be coherent and

simple. The API should require as little boilerplate code as possible to get started.

3.1.2 Hard to misuse

The API should guide the user into the right direction by default and encourage the developer

on using standard programming best practices. It should reduce implicit side effects that the

user is not aware off and should not be strict order dependent when there is no need.

3.1.3 Easy to extend

Most APIs mature with time and functionality either increases or at the very least changes. A

good API design should consider the life cycle of the application in the design process and take

measure to ensure that it can be adapted with as little effort as possible. Changes that require

the users to alter their code should be minimized. This is how users avoid having to maintain

an array of different API versions.

3.1.4 Complete

Ideally the API should be complete in the sense that it can fulfill all possible use cases of its

users. As this is often not possible to quantify in advance, a good API gives the user the

6

possibility to extend and customize the API. “Completeness is also something that can appear

over time, by incrementally adding functionality to existing APIs”, referring back to the

extendibility of a good API (BLANCHETTE, 2008).

3.1.5 Appropriate to audience

As every good software keeps in mind the audience it caters to, the same applies to a well-

designed API. Recognizing the users, their main goals and motivation can help the process of

API design tremendously. In the end it is most often the users that decide whether the API is

good or bad and suited for the specific use case.

3.2 GraphQL as a query language

GraphQL is a specification that has been developed by Facebook and open sourced to the public

in the year 2015. Currently GraphQL is maintained by the GraphQL foundation, a neutral

foundation founded by global technology and application development companies. This

foundation encourages contributions, stewardship, and shared investments from a broad group

in vendor-neutral events, documentation, tools, and support for GraphQL (GraphQL

Foundation, n.d.). The release included the current specification and a reference

implementation. Developed out of a need for a querying interface that can handle the massive

amount of API calls of their infrastructure, developers of Facebook quickly realized the big

potential of GraphQL. It can be a well-suited alternative for REST APIs, especially for use cases

that require a vast amount of data fetching. GraphQL does this by allowing the users to directly

define which data they exactly need in only one call and therefore reducing the total amount of

data transferred by reducing the overhead of each API call. The nature of a Graph hereby allows

GraphQL to follow relationships between objects. In contrast a REST service would need

multiple roundtrips while sending more data than what might be needed by the caller (GraphQL

Foundation, n.d.).

3.2.1 Basic principles of GraphQL

To understand how GraphQL is an improvement to existing API standards, such as REST, one

must understand how the set-up of GraphQL and how the query language and type system work.

Firstly, a GraphQL service is created by defining the individual types and fields for the existing

data structures. Then functions, named resolvers in GraphQL lingo, are implemented that return

the defined fields on each type (GraphQL Foundation, n.d.).

In this basic example two types called Query and Planet are created. The field Planet is assigned

to the Query. The type Planet itself has the properties ID, name, radius, orbital period and

volume with the corresponding data types.

7

type Query {

 planet: Planet

}

type Planet {

 id: ID

 name: String

 radius: float

 orbital_period: float

 volume: float

}

To allow users to interact with these types, resolvers for the individual fields on the types must

be implemented.

 function Query_planet (request) {

 return db.get(request.param.planetName)

}

function Planet_name(planet) {

 return planet.name

}

function Planet_radius(planet) {

 return planet.circ / (2 * Constants.pi)

 }

When this server is up and running, users can send queries against the URL of the server and

ask for data. Queries are just plain JSON strings that reference the different type and fields and

can thereby specify what exact data is needed (GraphQL Foundation, n.d.).

An example for the service described above could look like this:

{

 Saturn {

 name

 radius

 }

}

8

The returning result is also a JSON string, containing all the data that has been queried for:

{

 “Saturn”: {

 name: “Saturn”

 radius: 58.232

 }

}

The response omits all the other fields of the type Planet, such as the ID, the orbital period, and

the volume of the Planet. This is the core mechanic that allows a decluttered and smooth user

experience by only serving data to the user that has been explicitly asked for.

3.3 Core features

To understand in what other ways GraphQL differs from existing webservice solutions, chapter

3.3 describes the details of the most important features of GraphQL.

3.3.1 All data needed with one call

GraphQL typically provides one endpoint to consolidate all the data to get rid of the need to

combine the data fetched from individual endpoints. The main goal is to reduce the amount of

overhead that increases with the number of requests and serve the data quickly and responsively

(BEZUGLA, 2019).

3.3.2 No over- and under-fetching problems

As the user specifies the fields on the types he wants to receive, they are only served exactly

the data that they will need for their use-case. This reduces the workload on the transfer medium

and increases the efficiency of each call (BEZUGLA, 2019).

3.3.3 Validation and type checking by design

The inherent type system of GraphQL allows the user to offload the type checking to GraphQL.

This system specifies the availability of types, the properties on each type and the relationship

between the different objects (BEZUGLA, 2019).

3.3.4 In-built API maturing and versioning

In contrast to many other systems, that rely on providing different versions of their API to not

break systems built on a previous APIs version, GraphQL solves this issue by deprecating APIs

on a field level. This means that new fields can be easily added, and older fields slowly fade

out without the need for users to immediately adapt to the changes.

9

Fields that have been replaced with other field will not interfere with any clients as they have

not specified the new field in their existing queries. Therefore, they will not feel the change on

the application level (BEZUGLA, 2019).

3.3.5 Detailed error messages

GraphQL gives users an easy default way to handle errors by providing a detailed error message

in the returning payload so that users do not need to manually check for the returning status

code. However, as GraphQL does not enforce a specific standard; users can also choose to build

their own application-specific error code system if they wish to do so (BEZUGLA, 2019).

3.4 GraphQL compared to REST

As REST is currently in fact the default paradigm on how webservices are to be written and

consumed table 1 compares the key features between GraphQL and REST.

Table 1 - Comparison between REST and GraphQL. Von Rönne (2020)

 GraphQL REST

Architecture client-driven server-driven

Data fetching specific data with one API call fixed data with multiple calls

Stateless yes yes

Caching no yes

Operations query, mutation, subscription CRUD

File uploading no yes

The core difference between GraphQL and REST is that REST API is an architectural concept

for network-based software. GraphQL on the other hand is a comprehensible query language, a

specification and a set of tools that operate over a single endpoint using HTTP (Russell, 2019).

The main advantage of REST is that one can always be sure to receive the complete data set

with each call. If data of two objects is required, the client has to make two separate calls. This

concept might be often ineffective but is inherently simplistic and easily understandable.

GraphQL, however, was created with performance and flexibility in mind. This performance

increase leads to a steeper learning curve but rewards the user with a faster development

workflow later.

10

4 Architecture and design

Figure 1 - Adapted overview of JValue ODS architecture. Schwarz et al. (2020)

11

As the thesis aims to implement a viable solution on how GraphQL API could be fast and used

easily by the JValue ODS, the design and architecture of the project must be analyzed. The

JValue ODS is built on a micro service oriented architectural style with individually defined

interfaces. They can be used to communicate between each other during runtime. Furthermore,

each micro service is built on a cloud-native architecture in order to allow for individual scaling.

During the creation process of this thesis the communication between the individual

components was transformed from REST communication to a message broker supported by

RabbitMQ (SCHWARZ, et al., 2020).

Web-Client / UI

This service serves the customer the user interface. Built with VueJS4, a popular Javascript user

interface framework, this web application allows the user to add new sources and pipelines or

configure existing sources to their needs. The main entry point for a new user is the declaration

of a new data source. The data source configuration allows the user to configure what open API

is being called and what its characteristics are. For calling the API, the JValue ODS needs to

take several meta information about the API such as the used protocol, encoding, format and

the URL of the endpoint.

In addition, the user can also configure when and how often the data is being collected and store

additional meta data about the pipeline such as a description, name of the author and license.

4 https://vuejs.org/

Figure 2 - User interface of the JValue ODS. Von Rönne (2020)

12

After the data source has been created, the user can then choose to create a pipeline. A pipeline

consists of a connected data source and a transformation function written in Javascript that can

be used to alter the plain data returned by the data source, e.g. by adding additional fields. Each

pipeline has like a data source connected meta field storing the description, author, and license.

Scheduler

This service is responsible for the orchestration of the pipeline’s execution. Written in nodeJS5,

this component takes messages from the UI on creation of data sources and orchestrates the

execution of the different data sources with the help of cron6 jobs and an internal map of jobs

that are to be executed. When a job is ready to be executed, the scheduler component propagates

5 https://nodejs.org/en/
6 Time-based job scheduler in Unix-like operating systems

Figure 3 - User interface: Create new data source form. Von Rönne (2020)

Figure 4 - User interface: Create new pipeline form. Von Rönne (2020)

13

this to the adapter service via a rest call.

Adapter-Service

This service handles the connection to the attached APIs by the user. The service is written in

Java on top of the commonly known Spring framework. The service is being triggered by the

scheduler. Once triggered, it utilizes the configuration provided by the user to call the endpoint

and interprets the results. On successful import execution, the data is then stored as a DataBlob

in a PostgreSQL7 database.

Transformation-Service

Written in nodeJS, this service handles the execution of a pipeline with its specified execution

transformation function. Using the data blob stored by the adapter service, the component tries

to apply the user supplied Javascript function to alter the given data. After successful execution

the new data blob is forwarded to consecutive services.

Notification-Service

This service is responsible for handling notifications of the software by accepting various

configurations, accessible from the user interface. As of now support for three different types

of notification have been added. Firebase, Slack and generic web hook notifications. Whenever

an event that fulfills the requirements of a notification configuration has been received, this

service sends out the proper notification to the specified subscriber.

Storage-Service

The storage of the data and configuration of the JValue ODS is done via PostgreSQL databases.

The storage service is responsible for storing the data of the executed pipelines and providing

the current REST API that can be used to access the data automatically. In addition, this service

handles the changes to its database via Liquibase8, a common tool for database version control.

7 https://www.postgresql.org/
8 https://www.liquibase.org/

14

Reverse-Proxy

The JValue ODS uses Traefik9 as a reverse proxy solution to handle requests to the application.

In short, Traefik is configured to work as a sort of API Gateway that hides the complexity of

the backend system by providing API forwarding requests to the right place. Each container can

then be further configured to be able to access incoming or outgoing traffic to the network

(traefiklabs, n.d.).

Deployment

The ODS is designed as a cloud-native application. Each service is dockerized and individually

deployable. The final reconciliation is done via docker-compose. Hosting can be done by any

platform that is able to run docker and is able to provide the minimal hardware requirements of

each component. Currently no publicly addressable instance is being deployed.

9 https://docs.traefik.io/

15

4.1 Proposed solution

4.1.1 Hasura GraphQL engine

The proposed solution consists of three key areas: the API orchestration service, the running

API service and the template project provided to users to add additional business logic to the

API. All these components are built within the Hasura Open Source GraphQL Engine10

ecosystem, a project which accelerates serving production ready GraphQL APIs.

10 https://hasura.io/opensource/

Figure 5 - Adapted overview of JValue ODS architecture. Schwarz et al. (2020)

16

4.1.2 Hasura GraphQL engine

Hasura GraphQL engine is an open source project developed by the company Hasura which

provides developers with a tool set to set up production ready GraphQL APIs on top of their

PostgreSQL databases. The project has been released to the public on August 6th, 2018 under

the Apache license v2 and has since gathered a thriving community on GitHub with nearly

19.000 users starring the repository. Since its release the software has been widely adapted in

the software industry and has even found its way into the code base of Fortune500 companies,

the largest 500 companies in the United States according to the renowned magazine Fortune

(Hasura, n.d.). On the 8th of September 2020 Hasura announced the closing of their Series B

financing with $25 million US dollars, led by the company Lightspeed with participation of

renowned investors such as Vertex, Nexus, SAP.io and Strive. This investment round was closed

only six months after the $9.9M Series A round and is an indicator on how valuable the services

provided by Hasura are to the tech sector. With announcing the investment, Hasura also

announced that their services have been extended to work with MySQL databases and therefore

tapping up another big sector database (LARDINOIS, 2020).

The engine provides several advantages and fledged out features that enables the JValue ODS

to quickly transform its existing REST API to GraphQL; a highly complex and time enduring

task that would otherwise capture a major part of the available human resources.

Following features have been identified as the most relevant for the JValue ODS.

Automatic API generation

Hasura can automatically generate a production ready API based on a PostgreSQL database

instance. This feature is key for the ODS as the gathered data from the different APIs can have

an arbitrary structure, with the only mutuality being that the data is later stored inside a jsonb

array field in a PostgreSQL database by the storage service (Hasura, n.d.).

Figure 6 - Storage database schema. Von Rönne (2020)

17

Provision of CRUD Queries

Hasura automatically generates all necessary queries to access each field of the database.

Therefore, it is immediately possible to filter for all existing field once the API is set up and

running. This greatly reduces the amount of work that has to be done after adding new pipelines

to the JValue ODS and will enable the software to quickly spin up an API after a new pipeline

has been created (Hasura, n.d.).

Dynamic access control

Hasura allows for a dynamic access control that can be integrated with the existing access

control of the JValue ODS. As currently the primary use case of the JValue ODS only specifies

a read only API, this requirement can be fulfilled by providing role-based schema that restricts

the access to the API (Hasura, n.d.).

Off-site business logic

Hasura offers two ways in which additional logic can be inserted into the auto generated

schema. Firstly, new logic can be added through ‘Hasura Actions’. Here the custom queries and

mutations are defined by the user and subsequently backed by an already existing REST API.

The REST API does not have to run in the same infrastructure context as the remaining services

of the JValue ODS but could be hosted on the users’ private hardware or even as a server-less

function.

The second way in which the GraphQL API can be expanded is by merging Remote GraphQL

schemas together. In this variant the user could write a complete standalone GraphQL API that

uses the generic GraphQL API to access and work with the existing data and then merge the

added functionality into the default API provided by the ODS (Hasura, n.d.).

Scalability

Hasura is by default designed to only use as many resources as needed while still being able to

quickly scale as the number of requests increases. As the Hasura API is deployed in a

containerized environment, automatic scaling is done as easily as spawning new instances of

the container based on key performance indicators such as requests per second. In summer 2019

the Hasura team verified these statements by testing their system with up to one million rows

updated per second on a PostgreSQL database (GraphQL Foundation, n.d.). At this number of

requests the PostgreSQL load was measured at 28% load with peak number of PostgreSQL

connections at around 850. These values are way above any traffic that the ODS has been seen

until today and most likely will not see for the foreseeable future and is therefore more than

18

sufficient for the ODS (Hasura, 2019).

Onboard explorer

Hasura ships with the GraphiQL11 online explorer tool which is used to explore the different

parts of the API. The explorer lets one examine all queries and types and supports building

queries by providing documentation, auto completion and an interface to build a query out of

existing components. This UI could be forwarded from the JValue user interface to enable easy

exploration of the available data.

4.1.3 Alternatives to Hasura GraphQL engine

Two alternatives to Hasura were considered but in the end were not pursued for various reasons.

One possible solution alternative is the PostGraphile12 library, developed within the toolset of

Graphile. This library follows a similar approach to the Hasura GraphQL engine. The library

takes existing postgres tables and uses them to automatically create a working GraphQL API.

The current set of functions is also very similar, extensions are being handled via a plugin

system (GitHub, n.d.). In the end the main arguments for not using Postgraphile are the more

complex initial setup and less active community. Especially the activity of the community with

new commits and active contributors fueled the decision to implement the feature using the

Hasura GraphQL engine.

The second approach consists of building the component that handles the API creation

internally. Benefits are of course the ownership of the code base and therefore the ability to

create and use code that has been directly designed for the JValue ODS. An early concept

consisted of a number single docker containers that hosted a self-written, automated GraphQL

11 https://github.com/graphql/graphiql
12 https://www.graphile.org/postgraphile/

Figure 7 - Interface of GraphiQL. Von Rönne (2020)

19

API that would have been able to be expanded by community supplied docker images.

However, the amount of development work needed and missing knowledge in the developing

team along with security concerns quickly eliminated this approach.

4.1.4 API Orchestration Services

The API Orchestration Service is the main piece of code written for this thesis. As seen in

Illustration 5 the service is the mediator between the Hasura API and the other micro-services.

Its main responsibility consists of two tasks. Firstly, setting up the default configuration of

Hasura, so that all existing pipelines get served with a default API that allows all users to gain

reading access to the data stored by the JValue ODS.

The other responsibility is handling the configuration of the GraphQL engine during runtime.

This means the service must allow for modifications of the GraphQL API which could consist

of adding or deleting pipelines or extending the existing schema with additional remote

endpoints.

As the internal communication of the ODS is being rewritten as of writing this thesis, the

orchestration service exposes this functionality through a Rest interface, and in addition is being

able to handle incoming messages through the RabbitMQ13. The GraphQL-engine primarily

provides a GraphQL configuration API which will be used to handle the setup and necessary

adjustments.

There are two primary use-cases for users of the ODS in which they want to interact with the

GraphQL API. Firstly, they simply want to consume the API and use the provided data for their

own use and projects. Secondly, they might want to inject additional business logic to the default

API.

The proposed solution fulfills this request by providing the user the possibility to do this by

utilizing the Hasura remote schema feature. The user must build their own GraphQL server,

host it on their own hardware and then registers the service via the JValue ODS UI.

4.1.5 Template remote schema project

To use the remote schema feature of Hasura, users are required to have a basic understanding

on how GraphQL works to be able to implement their own server. To simplify this process for

the users of the JValue ODS, the template remote schema project is designed as a template that

already includes most of the boilerplate code required for setting up a basic GraphQL Web

service.

13 https://www.rabbitmq.com/

20

The project is being kept intentionally lean, just the very basic required functions are

implemented. These consist of consuming the existing GraphQL API, altering the data and

exposing a new endpoint that can be used to register the service via the UI. All settings that can

be generalized are being preconfigured, and an easy to understand short documentation is being

provided to guide users along the way.

21

5 Implementation

5.1 Integration of GraphQL engine

Hasura offers three different ways on how their service can be integrated into an existing project

landscape: using their own Hasura hosted cloud, using a deployment on Heroku or using native

docker. As the JValue ODS is setup of multiple dockerized microservices, it makes sense to

continue this pattern by integrating the GraphQL-engine in the docker-compose file.

 graphql-engine:

 image: hasura/graphql-engine:v1.2.1

 ports:

 - "7654:8080"

 depends_on:

 - "storage"

 restart: always

 environment:

 HASURA_GRAPHQL_DATABASE_URL: postgres://ods_admin:ods_pw@storage-db:5432/ods

 HASURA_GRAPHQL_ENABLE_CONSOLE: "true"

To set up a default Hasura instance, the chosen image and the configuration of the environment

in which Hasura is supposed to run must be provided. The setup mainly consists of the network

configuration and providing the settings to the PostgresSQL storage database.

Additionally, there are some other parameters to customize the instance, e.g. enabling the web

console or defining secret for security.

22

After this step and running the application it is already possible to access the Hasura console.

Hasura takes by default every table it has access to, through the provided credentials and creates

a default GraphQL API for it. This API can be explored through the GraphiQL tool in the

interface.

Using the default example of creating a pipeline that connects to the ‘Pegelstände’ Online API

of the WSV, it can be seen how Hasura converts the existing PostgreSQL database schema into

an API. Each individual field gets taken and transformed into a select-able and parameterize-

able identifier which can be used to build queries to the API.

This proves a challenge for the usage of Hasura with the existing JValue ODS as the schema

currently condenses all the data provided by one execution of the pipeline as a JSON string into

the data field. Hasura is therefore only able to allow filtering on the metadata fields of the

pipeline, namely the ID, license, origin, pipeline-ID and the timestamp.

However this is mostly data that the user is not particularly interested in, the user wants to be

able to filter through the data that was returned by the ‘Pegelstände’ API and filter for different

properties in there, e.g. which station currently reports a water level above a certain threshold.

This issue and further configurations therefore must be handled during runtime by the API

Orchestration Service.

Figure 8 - Interface of the Hasura web console. Von Rönne (2020)

23

5.2 API Orchestration Service

5.2.1 Container

#---#

First stage: image to build and test Java application #

#---#

FROM adoptopenjdk/openjdk13-openj9:alpine-slim as builder

WORKDIR /builder

COPY *.gradle /builder/

COPY src /builder/src

COPY gradle /builder/gradle

COPY gradlew /builder/gradlew

Build project and run unit tests

RUN ./gradlew assemble

RUN ./gradlew test

#---#

Second stage: image to run Java application #

#---#

FROM adoptopenjdk/openjdk13-openj9:alpine-slim

RUN mkdir /app

WORKDIR /app

ENV SPRING_PROFILES_ACTIVE prod

Pull the dist files from the builder container

COPY --from=builder /builder/build/libs/* app.jar

Run app and expose port to other containers

EXPOSE 6969

ENTRYPOINT ["java", "-jar", "app.jar"]

The container is mostly setup the same way as the other services of the JValue ODS that run in

a java environment. The common approach is it to divide the Dockerfile into two stages. The

first stage is concerned with building the application whereas the second stage starts the final

application. For both stages the alpine-slim image has been used as base image with the JDK

version 13. Firstly, all the needed files are copied into the /builder directory. Afterwards

24

Gradle14 is started with the assemble command to build the application.

In the second stage an /app directory is created in which all the artifact app.jar and the libraries

from the builder are put into. Lastly the app is started with the command java -jar app.jar and

an exposed port.

To integrate this service into the micro service structure of the ODS now, it must be configured

through the docker-compose.yml file. The code snippet for that looks as follows:

api-configuration:

 image: ${DOCKER_REGISTRY}/api-orchestration

 ports:

 - 8090:8090

 build:

 context: ./api-configuration/

 depends_on:

 - graphql-engine

 labels:

 - "traefik.enable=true"

 - "traefik.http.routers.to-apiorchestration.rule=PathPrefix(`/api/apiorchestration`)"

 - "traefik.http.routers.to-apiorchestration.middlewares=apiorchestration-stripprefix@docker"

 - "traefik.http.middlewares.apiorchestration-stripprefix.stripprefix.prefixes=/api/apiorchestration"

 - "traefik.http.services.apiorchestration.loadbalancer.server.port=8090"

In short, this code fragment instructs docker-compose to build the previously described image,

export port 8090 and configure various Traefik rules that describe how this service is positioned

in the network. Additionally, all needed environment variables are being passed to the service

through here.

5.2.2 PostgresSQL schema issue

There are multiple ways on how the problem of the insufficient database schema of the JValue

ODS can be addressed. Firstly, it would be possible to alter the whole schema application wide.

However, this has serious implications on all other parts of the application that in some way

interact or depend on the current schema. This change would need lots of analyzing and

communication with the current project team to settle on a suitable solution.

Another more pragmatic solution, and the way it was finally implemented, was is to create a

view on top of the existing table that unwraps the jsonb data field of the individual entries and

create individual columns and rows. PostgreSQL provides additional functions to plain SQL

14 https://gradle.org/

25

that can handle data stored in jsonb datatype fields. These functions allow us to loop through

the data field and unwrap it into different columns for the keys and individual rows for the

stored objects.

The java class SQLFactory of the API Orchestration Service handles most of this workload. It

exposes a method called createSchemaQueryWithUnpackedFields which takes the name of

table and the name of the to be created view and returns a SQL Command as a String. Internally

it queries the first entry of the table and extracts all of the keys stored in the data field on the

top level. These keys are then used to build the resulting SQL Command which consists of three

different parts.

Firstly, the header is generated.

private static final String SQL_SCHEMA_CREATION_HEADER =

 "CREATE OR REPLACE VIEW \"storage\".%s AS " +

 "SELECT id, \"timestamp\" ";

This part is responsible for creating the view with the provided viewName as parameter.

The second part is responsible for creating a field based on the previously extracted keys. The

final java script loops through the keys and adds this SQL snippet for each individual key.

private static final String SQL_SCHEMA_CREATION_FIELD = "x.datapoint ->> '%s'::text AS %s ";

The last part describes from where the data is to be picked to make it available to the previous

script.

private static final String SQL_SCHEMA_CREATION_REST =

 "FROM (WITH a AS " +

 "(SELECT \"%s\".id, \"%s\".timestamp, jsonb_array_elements(\"%s\".data) AS datapoint " +

 "FROM storage.\"%s\")" +

 "SELECT a.id, a.timestamp,a.datapoint FROM a) x;";

After these steps, a query is being returned that can be run against the PostgreSQL Instance to

create a new view for the specified table.

This is the resulting view when run against the table containing the ‘Pegelstände’.

Figure 9 - Example entry of unraveled storage database

entry after transformation. Von Rönne (2020)

26

Note that individual fields for each key of the data have been created. A column now does not

represent the data returned by the execution of a pipeline but instead a specific station with the

associated properties. This also implies that the primary key is no longer just the ID, but the

combination of the ID and UUID of the data.

5.2.3 The REST API

The REST API is implemented with the framework of spring boot. To keep it consist with the

other rest Service of the JValue ODS, the same libraries with the same version have been used

whenever possible.

The API is integrated the same way as the other services in the application by referencing it in

the docker-compose.yml file.

Following minimal set of endpoints have been identified and implemented.

@PostMapping("/deleteAPIForTable")

HttpStatus deleteAPIForTable(@RequestParam(name = "tableName", required = true) String tableName);

@PostMapping("/createDefaultApiForTable")

HttpStatus createDefaultApiForTable(@RequestParam(name = "tableName", required = true) String

tableName);

@PostMapping("/removeDefaultAPI")

HttpStatus removeDefaultAPI(@RequestParam(name = "tableName", required = true) String tableName);

@PostMapping("/initDefaultGraphAPI")

HttpStatus initDefaultGraphAPI(@RequestParam(name = "tableName", required = true) String[] tableNames);

@PostMapping("/addRemoteSchema")

HttpStatus addRemoteEndpoint(@RequestParam(name = "schemaName", required = true) String schemaName,

@RequestParam(name = "url", required = true) String url);

@PostMapping("/removeRemoteSchema")

HttpStatus removeRemoteSchema(@RequestParam(name = "schemaName", required = true) String

schemaName);

These endpoints provide the following functionality: creating and deleting default APIs for a

given pipeline, initializing the default API on first start-up and registering a remote schema by

a given URL.

27

5.2.4 Integration of RabbitMQ

For the integration of RabbitMQ the provided libraries of Spring spring-amqp and spring-rabbit

have been used. The RabbitConfiguration class takes the environment variables provided in the

docker-compose.yml file to enable to RabbitMQConsumer class to listen to the proper events

exposed by the storage-mq service. These events include the necessary API configuration in its

payload which is then parsed into the PipelineData model class. After analyzing the received

data, the proper methods of the ApiConfigurationService are being executed (Müller 2020).

5.3 Necessary changes to other components

5.3.1 User interface

The user interface must be extended to give the users the control over the API associated to

their pipelines. The main features that need to be configured from the UI are whether a default

API is generated or not and furthermore the different remote Schemas that are being attached

to it.

The configuration for this part of the pipeline is done in a separate step in the pipeline

creation/edit workflow.

Figure 10 - JValue ODS UI: Updated pipeline creation/edit form. Von Rönne (2020)

28

Firstly, the user can choose whether he wants to have the GraphQL API created or not by

selecting or deselecting the checkbox ‘Default API’. Next, the user is confronted with an input

Form in which he can attach remote Endpoints with the endpoint URL and a name of the Author

responsible for this endpoint. The button ‘Add new Endpoint’ adds the endpoint to the

configuration of the pipeline and displays it in the table below. Illustration 11 shows how the

user can delete an endpoint or change the configuration by editing it.

5.3.2 Database schema

During the development of this feature there has been a focus on keeping all changes as

backwards compatible as possible. However, for the persistence of the API configuration it was

necessary to alter the PostgreSQL schema for the PipelineConfiguration table. In line with the

changes to the User Interface two new fields have been added.

Figure 11 - JValue ODS UI: Configure API of pipeline. Von Rönne (2020)

29

The defaultAPI field of data type boolean saves whether this pipeline should publish a default

GraphQL pipeline or not.

The remoteSchemata jsonb field saves the configuration of the various remote Schemata in a

JSON array of objects. The JSON object consists of the fields’ ‘id’, ‘endpoint’ and ‘author’

which persist the configuration done by the user in the UI.

5.4 Template project

The template project has one defined goal that it aims to accomplish, namely give users that are

unfamiliar with GraphQL a hands-on example on how they can implement and run their own

server to enrich the GraphQL API with their own customary logic. To accomplish this task, a

tech stack has been chosen that caters to a big audience and is considered beginner friendly.

5.4.1 Programming language

The server is setup with node.js in the version 8.10. Node is a JavaScript runtime that is built

on Chromes V8 JavaScript engine. It is widely used and has and offers the GraphQL libraries

of Apollo15 with excellent integration with GraphQL.

15 https://www.apollographql.com/

Figure 12 - New Pipelineconfigs table schema. Von Rönne (2020)

30

5.4.2 Functionality

To keep the project as simple as possible and only focus on its main purpose, its sole

functionality is in reading data from an existing GraphQL API, enriching this data with an

additional field and exposing this endpoint via an URL which then can be taken to bind this

service to the ODS.

5.4.3 Querying data

As the Apollo library is used, the main point of interest is the Apollo client. After initializing

this client with the library pointed to the GraphQL endpoint of the ODS, querying data can be

started:

const data = client.query({

 query: gql`

 query MyQuery {

 storage_viewz(limit: 1) {

 id

 agency

 }

 }

 `,

})

In this example the user queries for the object ‘storage_viewz’ and ask for the first object and

require that the response should include the id and agency of the object.

31

5.4.4 Exposing endpoint

Following the introduction introduced in chapter 3.2, the required types of the new API are

defined:

const typeDefs = gql`

 # Example enriched data type

 type ImprovedData {

 id: String

 agency: String

 newCustomField: String

 }

 # Example Query type

 type Query {

 betterData: ImprovedData

 }

`;

The type improved data type gets an additional field newCustomField of type string. This type

is then added to a query called betterData which returns the type ImprovedData.

Next it must be defined what happens internally when betterData is being queried for by

defining the resolvers:

// mapping of how the example type betterData is being resolved

const resolvers = {

 Query: {

 betterData: () => collectBetterData(),

 },

};

32

In this example the request is being passed on to the function collectBetterData(). This function

queries the existing JValue GraphQL API and returns the same data with the additional field

newCustomField with value ‘custom’.

// example function that firstly collects data from the server and then

// enriches the data with custom business logic

function collectBetterData() {

 const data = client.query({

 query: gql`

 query MyQuery {

 storage_viewz(limit: 1) {

 id

 agency

 }

 }

 `,

 })

 .then(result => {

 console.log(result.data.storage_viewz[0].id)

 return {

 id: result.data.storage_viewz[0].id,

 agency: result.data.storage_viewz[0].agency,

 newCustomField: "custom1"

 }

 });

 return data;

}

33

6 Evaluation

In the beginning of the thesis several different functional and non-functional requirements have

been established that can be used to evaluate the final result against. Analyzing each

requirement on whether it has been successfully implemented and if not what the reasons are

behind the failure.

6.1 Functional requirements

6.1.1 Automatic generation of basic API

This requirement has been fulfilled. A user is able to decide by selecting a checkbox on creation

or editing of the pipeline whether a generic API should be automatically generated or not.

6.1.2 Navigating between snapshots of the data set

This requirement has been mostly fulfilled. The final generated API allows filtering for different

data snapshots with their specific timestamps. However, when formulating the requirement, the

optimal solution would have included separate field in the data to their successor and

predecessor. In hindsight this was owed to the fact of imagining some sort of REST interface

in which an implementation as of now would have not been possible.

6.1.3 Interface to other components

This requirement has been fulfilled, there is no intermediate layer between service and the

storage database. The service exposes a REST interface along with the integration of RabbitMQ

so developers of other components can choose how they want to interact with the API-

configuration service.

6.1.4 Query language

This requirement has been fulfilled. GraphQL is the main query language that is being used to

acquire the data gathered by the pipeline.

6.1.5 Extensibility through the JValue ODS community

This requirement has been mostly fulfilled. A template project that can extent the schema of the

GraphQL database is available for the users of the ODS. However, to use this solution the user

needs to be technology versed and familiar with node.js.

The current solution only works for offsite hosted GraphQL servers, the users must host their

extension themselves. This limits users that are not able to host their own infrastructure, be it

for knowledge-based reasons or economic ones.

6.1.6 Reasonable time to set up API

This requirement has been fulfilled. Using some benchmark testing the median time measured

34

between creating the pipeline and the ability to query it takes about 4.5 seconds. Note that this

also includes all the other steps the system has to take when a new pipeline creation has been

triggered like querying the first data set, applying transformations and storing the data and

configuration in the databases.

6.1.7 User interface

This requirement has been fulfilled. The user has the possibility to choose whether the API is

available or not through a checkbox in the edit pipeline workflow. Furthermore, the user is able

to add or remove certain entries of the remote API configuration table which maps the external

schema extensions to the API.

6.2 Non-functional requirements

6.2.1 Adaptability

This requirement has been mostly fulfilled. All code that is being deployed with the JValue

ODS it written in Java utilizing the Spring framework which is heavily relied on by the JValue

ODS. The GraphQL-engine is open sourced and will be continually improved on by the

flourishing community or even the team of the JValue ODS themselves if the need arises in the

future.

6.2.2 Licensing

This requirement has been fulfilled. All licenses of the suggested solution are compatible with

the open source standards set by the JValue ODS.

6.2.3 Deployment

This requirement has been fulfilled. The API-orchestration service is deployed with docker and

included in the docker-compose files of the main application. The Hasura GraphQL-engine is

also deployed in a docker container and included in the docker-compose files.

35

7 Further steps and conclusion

The pull request associated with this thesis contain all the previously described and discussed

features and is ready to be integrated into the master branch of the JValue ODS project.

However, as it is the case with most new features, there is still a lot of work that could be done

to further improve the quality of the GraphQL components. One major aspect that has been

mostly left out of this thesis but is of high importance and should be analyzed in the coming

future, is the security concept resolving around the APIs. As of now all the APIs are created in

a public domain and can therefore be accessed by any individual who has access to the network

that is hosting the JValue ODS. Hasura GraphQL-engine has a huge array of features that enable

the provider of the service to secure their endpoints, be it via integration of Keycloak16 or even

using the existing role concept of the database.

Another area that requires additional work in the feature is the way in which the data stored by

the adapter service is turned into a PostgreSQL schema that is used as the basis of the GraphQL

API. However, this will require a complete look at the way the ODS works in transforming data

from external endpoints in a suitable format that can be used by the JValue ODS and its

components.

In retrospect the main difficulties with this thesis have been the large amount of knowledge that

is required to understand all the different aspect of the JValue ODS and the final integration.

Such an integral new feature as an automatically created and deployed API required changes in

many different areas of the project and therefore the need to familiarize oneself with a wide

array of different technologies such as deployment with Docker and docker-compose, Spring,

vueJS, Traefik, PostgreSQL, GraphQL, Apollo, nodeJS, GraphQL-engine and more. This prior

learning process required a large amount of the time used for writing this thesis that in the end

is not being reflected by the final result. Nevertheless, have most of the defined acceptance

criteria been fulfilled and a working system is ready to be integrated into the JValue ODS which

can be improved on in future changes.

16 https://www.keycloak.org/

36

8 References

Apache Software Foundation. (January 2020). apache.org. Retrieved on 31. July 2020 from

https://www.apache.org/licenses/LICENSE-2.0

BEZUGLA, K. (19. April 2019). dzone.com. Retrieved on 7. July 2020 from

https://dzone.com/articles/graphql-core-features-architecture-pros-and-cons

BLANCHETTE, J. (2008). The Little Manual of API Design. Espoo: Trolltech. Retrieved on 6.

September 2020 from https://people.mpi-inf.mpg.de/~jblanche/api-design.pdf

BLOCH, J. (n.d.). How to Design a Good API and Why it Matters. Retrieved on 23. August

2020 from

https://pdfs.semanticscholar.org/8d66/ded1587ffc89b860d2217ff6543aa2da0592.pdf

Data Policy and Innovation Unit G. 1. (22. March 2020). europa.eu. Retrieved on 31. July

2020 from https://ec.europa.eu/digital-single-market/en/open-data

GitHub. (n.d.). github.com. Retrieved on 15. August 2020 from

https://github.com/graphile/postgraphile

GraphQL Foundation. (n.d.). graphql.org. Retrieved on 13. September 2020 from

https://graphql.org/

GraphQL Foundation. (n.d.). graphql.org. Retrieved on 27. September 2020 from

https://graphql.org/learn/

Hasura. (17. July 2019). hasura.io. Retrieved on 9. September 2020 from

https://hasura.io/blog/1-million-active-graphql-subscriptions/

Hasura. (n.d.). hasura.io. Retrieved on 27. July 2020 from https://hasura.io/user-stories/

Hasura. (n.d.). hasura.io. Retrieved on 9. September 2020 from

https://hasura.io/docs/1.0/graphql/core/

Japan Meteorological Agency. (n.d.). data.jma.go.jp. Retrieved on 24. July 2020 from

https://www.data.jma.go.jp/svd/eqev/data/bulletin/catalog/notes_e.html

LARDINOIS, F. (8. September 2020). techcrunch.com. Retrieved on 22. September 2020 from

https://techcrunch.com/2020/09/08/hasura-raises-25-million-series-b-and-adds-mysql-

support-to-its-graphql-service/?guccounter=1

MALAN, R., & BREDEMEYER, D. (7. July 1999). psu.edu. Retrieved on 14. August 2020 from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.436.4773&rep=rep1&type=

pdf

MIT. (n.d.). opensource.org. Retrieved on 29. August 2020 from

https://opensource.org/licenses/MIT

37

PICCIONI, M., FURIA, C. A., & MEYER, B. (n.d.). An Empirical Study of API Usability. Zürich,

Switzerland. Retrieved on 14. August 2020 from

http://se.ethz.ch/~meyer/publications/empirical/API_usability.pdf

RIEHLE, D. (September 2019). Enabling Open Innovation through Open Data with the JValue

Open Data Service. Penang, Malaysia. Retrieved on 16. July 2020 from

https://dirkriehle.com/wp-content/uploads/2019/09/Enabling-Open-Innovation.pdf

RUSSELL, D. (21. November 2019). rubrik.com. Retrieved on 6. August 2020 from

https://www.rubrik.com/blog/graphql-vs-rest-apis/

SCHWARZ, G., ZINNEN, M., User 9dt, BAUER, A., MARTINEZ, H., & CASADO QUIJADA, A. (3.

August 2020). github.com. Retrieved on 4. September 2020 from

https://github.com/jvalue/open-data-service/blob/master/README.md

traefiklabs. (n.d.). traefic.io. Retrieved on 29. September 2020 from

https://doc.traefik.io/traefik/

38

9 List of figures

Figure 1 - Adapted overview of JValue ODS architecture. Schwarz et al. (2020) 10

Figure 2 - User Interface of the JValue ODS ... 11

Figure 3 - User interface: Create new data source form... 12

Figure 4 - User interface: Create new pipeline form .. 12

Figure 5 - Adapted overview of JValue ODS architecture. Schwarz et al. (2020) 15

Figure 6 - Storage database schema ... 16

Figure 7 - Interface of GraphiQL ... 18

Figure 8 - Interface of the Hasura web console ... 22

Figure 9 - Example entry of unraveled storage database entry after transformation 25

Figure 10 - JValue ODS UI : Updated pipeline creation/edit form .. 27

Figure 11 - JValue ODS UI: Configure API of pipeline ... 28

Figure 12 - New Pipelineconfigs table schema .. 29

file:///C:/Users/lucij/Desktop/Malte%20Bachy.docx%23_Toc52982839
file:///C:/Users/lucij/Desktop/Malte%20Bachy.docx%23_Toc52982840
file:///C:/Users/lucij/Desktop/Malte%20Bachy.docx%23_Toc52982841
file:///C:/Users/lucij/Desktop/Malte%20Bachy.docx%23_Toc52982842
file:///C:/Users/lucij/Desktop/Malte%20Bachy.docx%23_Toc52982843
file:///C:/Users/lucij/Desktop/Malte%20Bachy.docx%23_Toc52982844
file:///C:/Users/lucij/Desktop/Malte%20Bachy.docx%23_Toc52982845
file:///C:/Users/lucij/Desktop/Malte%20Bachy.docx%23_Toc52982846
file:///C:/Users/lucij/Desktop/Malte%20Bachy.docx%23_Toc52982848
file:///C:/Users/lucij/Desktop/Malte%20Bachy.docx%23_Toc52982849
file:///C:/Users/lucij/Desktop/Malte%20Bachy.docx%23_Toc52982850

39

10 References of figures

Figure 1

SCHWARZ, G., ZINNEN, M., User 9dt, BAUER, A., MARTINEZ, H., & CASADO QUIJADA, A. (3.

August 2020). github.com. Retrieved on 4. September 2020 from

https://github.com/jvalue/open-data-service/blob/master/README.md

Figure 5

SCHWARZ, G., ZINNEN, M., User 9dt, BAUER, A., MARTINEZ, H., & CASADO QUIJADA, A. (3.

August 2020). github.com. Retrieved on 4. September 2020 from

https://github.com/jvalue/open-data-service/blob/master/README.md

Figures 2 - 4; 6 - 12

Von Rönne, K. M. (September 2020). Self-created illustrations. Nürnberg, Germany.

