
Friedrich-Alexander-Universität Erlangen-Nürnberg

Technische Fakultät, Department Informatik

JENS WÄCHTLER

BACHELOR THESIS

DESIGN AND IMPLEMENTATION OF

PARAMETERIZABLE DATA IMPORT

FOR THE JVALUE ODS

Submitted on 29 October 2020

Supervisors:
Prof. Dr. Dirk Riehle, M.B.A.,
Georg Schwarz, M.Sc.
Professur für Open-Source-Software
Department Informatik, Technische Fakultät
Friedrich-Alexander-Universität Erlangen-Nürnberg

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen,
die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 29 October 2020

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 29 October 2020

i

https://creativecommons.org/licenses/by/4.0/

Abstract

Governments have recognized that the publication of open data is of great eco-
nomic and social value. Collecting and using this data is challenging because it
is not always available in an easy to process format. Minimizing these challenges
is the task of the JValue Open Data Service (ODS), a system that makes data
consumption easy. Yet the location of a resource and the time of a data import
is statically defined.

This thesis presents a concept how the ODS can be extended by parameterizable
datasources and how the data import can be triggered manually. This addresses
the challenge of rapidly changing data on the Internet and adapts the ODS in
order to deal with the emerging problems. With parameterizable datasources it
is viable to dynamically describe the location of resources. The possibility for
manual data imports ensures that data is only retrieved when it is really needed.
The design decisions and the implementation of these functionalities for the ODS
are covered in this thesis.

ii

Contents

1 Introduction 1

2 Requirements: Support parameterizable data imports 3
2.1 Configuration of parameterizable pipelines 3

2.1.1 API design to define parameters 4
2.1.2 UI component for seamless configuration 4

2.2 Execution of parameterizable data sources 4
2.2.1 Trigger mechanism . 4
2.2.2 Should execute data source 5
2.2.3 Should execute pipelines 5
2.2.4 Should return the resulting data to requesting actor 5

2.3 Still support non-parameterizable data sources 5

3 Fundamentals 6
3.1 Uniform Resource Identifier . 6
3.2 Microservices . 7

3.2.1 Characteristics of Microservices 7
3.2.2 Technologies enabling Microservices 8

3.3 JValue Open Data Service . 9
3.3.1 Concept of the ODS . 9
3.3.2 Microservices of the ODS 10
3.3.3 ODS Workflow . 12

4 Architecture and Design 16
4.1 Modeling Parameterizable Datasource 16

4.1.1 Independent design for parameterizable datasources 19
4.1.2 Datasources as a general concept 19
4.1.3 Design decision . 20

4.2 API Design for manual data import 20
4.2.1 Parameters as query strings 20
4.2.2 Parameter transfer as JSON object 21
4.2.3 Design decision . 21

iii

4.3 Enabling transformation for manual data import 21
4.3.1 Integration into the Pipeline-Service 22
4.3.2 Stand-alone microservice 22
4.3.3 Design decision . 22

5 Implementation 24
5.1 Integrating Parameterizable Datasources 24

5.1.1 Adapt Datasource Model to support parameters 24
5.1.2 Build UI Component for Datasource configuration 26

5.2 Trigger Endpoint . 26
5.2.1 Trigger Endpoint Implementation 27
5.2.2 Manual data import . 27
5.2.3 Support of parameters . 29

5.3 Microservice for transformed data 29
5.3.1 Provide skeleton for service 29
5.3.2 Introducing the REST endpoint 30
5.3.3 Enable parameterizable pipeline 31

6 Evaluation 32
6.1 Configuration of parameterizable data sources 32
6.2 Execution of parameterizable data sources 32
6.3 Still support non-parameterizable data sources 33

7 Conclusion 34

References 35

iv

Acronyms

API Application Programming Interface

ODS JValue Open Data Service

REST Representational State Transfer

UI User Interface

URI Uniform Resource Identifier

HTTP Hypertext Transfer Protocol

FTP File Transfer Protocol

ID Identifier

ETL extract, transform, load

AMQP Advanced Message Queuing Protocol

JSON JavaScript Object Notation

URL Uniform Resource Locator

XML Extensible Markup Language

v

1 Introduction

Data has become increasingly important as an economic factor. It is also referred
to as the oil of the information era [Eco17]. Tech companies like Facebook or
Google have specialized in the collection of data, especially user data. These are
rarely made available to other parties and if they are, it is usually for a fee.

This is in contrast to the concept of open data. Open data is the idea that
some data should be freely available to everyone to use, and share. The value
of open data in the European Union is estimated at 184 billion in the year 2019
[HK20]. In addition to the market economy view, open data is a vast collection
of knowledge for society.

The major problem with open data is that the raw information of different sources
is in heterogeneous form. In order to address this, the ODS was developed. It
was created in order to provide public data in a uniform, processed form and to
better utilize the potential of open data.

The ODS collects this data according to a predefined schedule, processes it, stores
it and makes it available to a user. This is called a pipeline. Datasources serve as
the basis for a pipeline. These describe the location of the data and their meta
information.

Users of the ODS in its current state face two problems: First of all, when creat-
ing a datasource, a user specifies the timeliness and quantity of the data using the
preset time slots. It can happen that the external data does not change between
the periods and is unnecessarily collected, or newer data has already been made
available than what was fetched. If the time periods are chosen too large, the
timeliness decreases, if they are too small, the amount of data increases. A user
of the ODS thus determines the up-to-dateness of the data already when creating
a datasource, without having any influence on the original external source. The
ODS lacks the capability to guarantee that the latest data is received.
Second, some open data is made available via an Application Programming In-
terface (API), which requires parameters to be passed in order to be able to use
them. These can be entities that are located around a fixed radius of a geograph-
ical coordinate. When defining a datasource for the ODS, this is done via a fixed

1

Uniform Resource Identifier (URI). This means that the parameters are defined
by the user when creating the datasource. If entities within a different coordinate
are to be requested from the above example, a user must describe a new data
source, although they only differ in the coordinate.

This thesis introduces a concept and implementation to provide these features
for the ODS. It shows how datasources can be requested and processed with the
highest possible currency. Additionally, a concept is implemented how to make
parameter-based data sources accessible.

2

2 Requirements: Support para-
meterizable data imports

In the course Advanced Methods of Software Engineering (AMSE) of the Open
Source Research Group at the Friedrich-Alexander Universität Erlangen-Nürn-
berg students were testing and evaluating the ODS with self-chosen group pro-
jects. In their projects, they were able to make use of the capabilities that the
ODS offers them. However, they also reached the limits of the current feature
set. The most important remark was that they would like to have a way to send
query parameters with their request to the ODS. They also wanted API requests
to be generated not only periodically but also by an individual request to the
ODS.

Those valuable insights from the actual use of the ODS, as well as brainstorm-
ing with the active developers were used to generate the upcoming hierarchical
list of requirements. The respective major features have been divided into sub-
requirements. To realize them completely, all subitems must be implemented.

2.1 Configuration of parameterizable pipelines

Conceptually, a pipeline in the ODS consists of a datasource, a transformation,
data storage and zero or more notifications.

In a datasource URIs are used to specify the location from where data should
be fetched. The endpoint of a Representational State Transfer (REST) interface
usually consists of fixed and variable components. In addition, a URI can con-
tain variable query parameters. At the moment it is only possible to define a
datasource with predefined parameters as a pipeline within the ODS. The user
should be able to define the variable components as parameters.

3

2.1.1 API design to define parameters

The system shall provide an endpoint to create parameterizable datasources. For
this purpose, a suitable model shall be provided.

Allow naming of parameters

It shall be possible to pass names for the parameters. These shall serve for
identification and assignment of potential parameters.

Allow default values of parameters

When creating a parameterizable datasource it shall be allowed to set default
values for the parameters. These are to be used for the localization of a resource
unless otherwise specified during execution.

2.1.2 UI component for seamless configuration

Within the user interface it should be possible to create and configure paramet-
erizable datasources. This should be kept as intuitive as possible for the user.

2.2 Execution of parameterizable data sources

Currently, the ODS uses an internal scheduler to trigger a pipeline periodically.
The user has the option to define the period between two executions for each
individual pipeline. However, it is not possible for a user to manually trigger an
execution of the pipeline outside the defined times. This would be necessary if the
most current data of a data source is needed. To achieve this goal, a function shall
be provided that enables the manual triggering of a pipeline. This functionality
should be available via the User Interface (UI) as well as by a request to the ODS.
The following tasks must be implemented for this purpose.

2.2.1 Trigger mechanism

To initiate a data import there shall be a mechanism to notify the system. For
this purpose, interfaces must be defined.

API

The system shall offer an API to trigger a manual data import. For this purpose,
a suitable interface has to be modeled.

4

UI

Within the UI a user should be able to initiate a data import for a created
datasource.

Allow defining parameters

The user should be able to fill open parameters at the time of a manual data
import request. The system shall provide an interface for purpose.

2.2.2 Should execute data source

The system shall fill the open parameters with those set by the user in a data
import request. Then a data import is to be initiated. In the case of a valid
request, the user receives the requested data.

Take default parameters if not defined

When a data import request is made to the system, it should be executed. If
there are open parameters for the requested datasource and no parameters are
passed in the request, the default parameters should be used.

2.2.3 Should execute pipelines

As it is possible to trigger a data import manually, it should be ensured that
transformations are applicable to it. For this, the system must be informed about
a manual data import. Once the system receives a request for a pipeline for a
parameterizable datasource by a user it should execute it. The request should
be checked for validity. For valid requests the data source should be queried. If
a transformation has been defined for this pipeline, it is applied to the received
data.

2.2.4 Should return the resulting data to requesting actor

After the manual request for a pipeline has been made, the pipeline is executed.
The system then sends the data back to the requester as a response.

2.3 Still support non-parameterizable data sources

The modifications to the system should not change the previous way of using
the ODS, but only expand it. In particular, the function of a parameterizable
datasource is not intended to replace the existing periodic pipeline queries from
data sources.

5

3 Fundamentals

This chapter provides an overview of the basics for this thesis. A brief overview
of the technologies that were required to expand the ODS to support paramet-
erizable data imports is given. The first part of the chapter deals with how to
access resources in the network. Then, the technologies on which the ODS is
based are discussed, in order to go into the ODS in more detail at the end.

3.1 Uniform Resource Identifier

As a basis for the ODS it is important to be able to request resources. The
ODS makes use of public data that is accessible via the Internet. In order to
make this data usable through the ODS, it is necessary to localize the data. For
this purpose, a description language is used to identify a resource. URIs are
used to identify these resources. They belong to the Internet standard and are
documented in [BFM05]. The following specification defines URIs.

“A Uniform Resource Identifier (URI) is a compact sequence of char-
acters that identifies an abstract or physical resource. This specifica-
tion defines the generic URI syntax and a process for resolving URI
references that might be in relative form, along with guidelines and
security considerations for the use of URIs on the Internet. The URI
syntax defines a grammar that is a superset of all valid URIs, allow-
ing an implementation to parse the common components of a URI
reference without knowing the scheme-specific requirements of every
possible identifier. This specification does not define a generative
grammar for URIs; that task is performed by the individual specific-
ations of each URI scheme.” [BFM05]

A URI is first of all an abstract construct, but in the form of a Uniform Resource
Locator (URL) it forms one of the foundations for the World Wide Web. A URL
is a specialized form of the URI. First, we take a closer look at the structure of
a URI.

6

URI

scheme :
�����

�//
�� ��authority

�
�

path �
� ?

����query

�
�

�
� #

����fragment

�
�

Figure 3.1: URI syntax diagram [BFM05]

Syntax and Grammar

A URI consists of a limited set of characters from US-ASCII. By default the
letters of the Latin Alphabet, numbers and the special characters - . and ~

are allowed. There are also characters with certain tasks. Some of them are used
to delimit the URI, others to encode characters that are not allowed. There is a
pool of possible delimiters, which you can allow, but do not have to. These are
”:”, ”/”, ”?”, ”#”, ”[”, ”]”, ”@”, ”!”, ”$”, ”&”, ”’”, ”(”, ”)”, ”*”, ”+”, ”,”, ”;”
and ”=”. For encoding, use ”%” followed by two hexadecimal numbers. This
results in characters that are still available and must not appear in a URI. These
include ”|” ”{” ”}” ”<” ”>”, ”ˆ”, and ”\”.

A URI consists of five parts: Scheme, authority, path, query and fragment. The
structure is shown in figure 3.1. For a valid URI only scheme and path are
required.

The scheme defines a context. This can be a protocol like Hypertext Transfer
Protocol (HTTP) or an International Standard Book Number (ISBN) to identify
books. To differentiate to the next part of the URI a colon follows after the
scheme. A scheme always starts with a letter. Examples include http, https, ftp
or mailto [BFM05].

The hierarchical path follows the scheme, which is composed of the optional
authority and the path.

3.2 Microservices

Originally, the architecture of the ODS was a monolith, a coherent unit. Since
then it has been transformed into a microservice architecture. For a better un-
derstanding of how the ODS works, it is important to know what microservices
accomplish.

3.2.1 Characteristics of Microservices

The idea of microservices is to divide a large application into many small func-
tionalities, each one as a separate standalone service. They interact with each
other using a communication protocol over the network through fixed interfaces

7

[New15]. This leads to a reduction in coupling. Microservices can be deployed
independently. Changes to one microservice can be released into production in-
dependently of changes to other microservices [Wol16].

Typically, when a monolithic application is running at full capacity, the solution
is to start an additional instance, even though only individual functions within
it represent the bottleneck. The microservice architecture allows to run an ap-
plication not only on one single machine but on many different ones in their
own processes. As a result, microservices are not restricted to a technology like
the programming language. It is possible that each service is implemented in
a different programming language. The fact that you can run several instances
of a service in parallel increases the scalability. If a service has an increased
computing demand, new instances can be started and if the load drops, they
can be shut down again. It is easy to replace the implementation of individual
services without having to go deep into the architecture, because of well-defined
interfaces. This makes it easier to add, extend or change functionality without
the need to understand the complete implementation of an application archi-
tecture. Furthermore, it is possible to provide new functionalities as a part of
the application without replacing and providing the complete system. Therefore,
the maintainability is increased. In addition, individual microservices can also
be reused for other applications, as they are ideally only responsible for single
functionalities. Individual services should be manageable, preferably handled by
a single team. This takes up the idea of agile software development, where the
goal is to make the development process more flexible and leaner [Wol16].

In addition to the many advantages of microservices, there are also challenges in
development. The introduction of microservices creates more complexity within
the system. It is important to note that network connections are not reliable.
Delays or complete failures can occur, which must be taken into account during
development. Because messages are exchanged over the network, it is necessary
to serialize and deserialize them, resulting in a higher computing load than ex-
changing data directly within the process space. Due to the variable number of
instances of services, there must be possibilities to localize them in the system.
In addition, not only a single system or replicas of it must be monitored, but a
large number of small services [Wol16].

3.2.2 Technologies enabling Microservices

One of the most important technologies for microservices is virtualization. In the
case of microservices, this means pretending to have its own operating system
that runs exclusively on one computer. In reality, the application shares the
actual hardware with many others. Container virtualization is usually used for
microservices. The virtualization happens on the userspace level, so they also
share the kernel. This makes the provision of new instances easy, since no new

8

virtual machines have to be started [Wol18].

There are different ways to communicate over the network and exchange data or
events. You can communicate synchronously or asynchronously. In synchronous
communication, the system waits for a response from the other party. In more
specific terms this means that as soon as a request is made to a service, the
caller waits until the request is processed, and a response is returned. In the
microservice environment HTTP is mostly used to make requests to APIs. These
days REST is mostly used for the design of web interfaces [SR20].

With asynchronous communication, the caller makes a request and does not wait
for a response. This is later sent to him as a message via a message broker or,
in the event-driven approach, via the channel on which the response is published
[MFP06].

3.3 JValue Open Data Service

The ODS originally had a monolithic architecture. Over time, more and more
parts of the original monolithic architecture were migrated to a microservice
architecture. This means that the ODS has changed from a single autonomous
unit to an application consisting of many small services. The monolith has since
broken open, but the ODS is still a changing system and is constantly being
improved.

This chapter provides an overview of how the ODS fetches data from a data
source, transforms it, manages it and makes it available to users. It also de-
scribes the various microservices and how they build the architecture of the ODS.
Furthermore, it is described how changes in the architecture influence design de-
cisions.

3.3.1 Concept of the ODS

The ODS makes it as easy as possible for a user to retrieve, modify and store data
for further use, according to the principle of extract, transform, load (ETL). ETL
originates from the concept of data warehouse. In this process, data from differ-
ent sources are transferred into a system. Therefore, it is irrelevant whether the
data is available in homogeneous or heterogeneous form. In the transformation
step, the data is transformed into a structure that allows easy access and storage.
Load refers to the transfer into a target database for later access [Den+16]. Since
open data is not available in a standardized form, such processes are indispensable
for its meaningful use. As a result, the ODS must provide ETL and it must be
made as easy as possible for a user to use the system. For this purpose, the ODS
provides several microservices that work together to fulfill the task. Section 3.3.2

9

goes into more detail on the individual components. There are services for ful-
filling the core tasks, including the Datasource-Service, Transformation-Service
and Query-Service. These services are responsible for retrieving data from ex-
ternal sources, modifying it and then persistently storing it for later use. Due
to the microservice architecture, additional components are required to ensure
a workflow that runs smoothly. These include a load balancer, scheduler and
message broker. A web interface and a service for notification of changes are
available for ease of use.

3.3.2 Microservices of the ODS

The ODS is a system in ongoing development and as such new functionalities are
constantly being added or the existing system is being revised. While working on
this thesis a lot has changed in the system, affecting the different microservices.
The attempt was made to provide the most current possible view of the system.
In addition, recent and upcoming changes are mentioned. It must be particu-
larly emphasized that the communication within the system has changed from
a request response model via REST to an event-driven model. In addition, the
architectural change has moved away from a workflow orchestration to a workflow
choreography. Away from the scheduler as the central control element within the
architecture to the principle that each service is independently responsible for its
interactions within the system. This has resulted in a major change within the
system.

The ODS consists of a number of microservices that together form the system.
These are described in the following.

Datasource-Service

The Datasource-Service is responsible for the extract process. This was formerly
known as the Adapter-Service but has been renamed to better describe its task.
It is responsible for the administration of datasources and for the collection of
the data they describe. Datasources describe the locality of data, their metadata
and the times of collection. The configuration is done by a REST interface
and offers the ability to create, change or delete datasources. Furthermore, the
Datasource-Service is responsible for the collection of the data that a datasource
describes. Whenever new data is available, this is announced within the system.
The communication with the other microservices takes place using event-driven
communication through the Message-Broker.

Pipeline-Service

The Pipeline-Service is responsible for the transformation process according to
ETL. This service offers a REST interface to configure transformations on data-

10

sources and to apply them when new data is available. This information is made
known to it via the Message-Broker. For the transformations JavaScript code is
used, which is executed in an isolated environment. After a transformation has
been successful, the result is made known to the system via the Message-Broker.

Query-Service

The Query-Service is responsible for providing the data. This includes storing
the data persistently. In addition, it makes it available to a user via a REST
interface. As soon as new transformed data for a datasource are announced via
the Message-Broker, they are stored in a Postgres1 database.

Notification-Service

The Notification-Service ensures that a user is informed about new transformed
data via external services. The information about new data is made public via
the Message-Broker. The configuration is again done via a REST interface. Cur-
rently, configurations for Firebase2 or Slack 3 are offered. It is also possible to
implement own webhooks.

Scheduler

The Scheduler is responsible for informing the Datasource-Service when a data-
source is due to be collected. Before the changeover to an event-driven approach
to communication took place, the Scheduler had a far-reaching coordination task.
It was necessary to use constant polling to ask the Datasource-Service whether
there were any new changes to the datasources. In addition, the Scheduler ini-
tiated when the datasources were to be collected and then informed the other
components in the system. The only thing that is left of the orchestration is
informing when datasources should be collected. In the previous version the
Scheduler was a potential bottleneck in the system. This has been solved with
the event-driven approach. Furthermore, the complexity of the Scheduler has
been reduced.

Message-Broker

The Advanced Message Queuing Protocol (AMQP) Message-Broker provides the
infrastructure for the internal communication between the various microservices.
As mentioned in chapter 2, the microservice architecture requires some form of
orchestration. With the introduction of the Message-Broker, this task was taken

1https://www.postgresql.org/
2https://firebase.google.com/
3https://slack.com/

11

out of the scheduler. As Message-Broker RabbitMQ4 is used. For communica-
tion with RabbitMQ AMQP is utilized. AMQP is an open network protocol for
application-level communication [Vin06]. The Message-Broker provides channels
on which services can publish data. Other services can subscribe to these channels
and are informed about new data. They can then decide independently whether
and how they react to it.

Load Balancer and Reverse Proxy

Traefik 5 is used as a load balancer and reverse proxy. As described in Chapter
3, a major advantage of the microservice architecture is its dynamic scalability.
In order to take advantage of this, it is necessary that requests to the services
are distributed evenly. For this purpose, traefik serves as an additional layer for
communication with the services by a user. Each type of service is provided for
the outside world under a location and distributed to the individual instances of
these microservices.

Web-Client

The above-mentioned components of the ODS are to be assigned to the server
side. The communication with the ODS is performed via REST interfaces, which
would be very difficult for a human user to use. In order to achieve greater
acceptance for the ODS, there is a web client that provides a user interface.
Datasources can be created and modified via this. Transformations to datasources
can be configured in the form of pipelines. In addition, the data assigned to a
pipeline can be viewed.

3.3.3 ODS Workflow

In order to select work packages for the implementation of the requirements, it is
important to be aware of how the processes within the ODS were at the beginning
of this thesis. In addition, with the change to an event driven approach to
communication, a major change was imminent. Since parameterizable datasources
are an important functionality, desired by users of the ODS, it was important to
integrate them into the system as quickly as possible. Extensive planning and
foresight was therefore required as to how the division and sequence of changes
would be integrated into the system. First it is shown how the processes within
the ODS were at the beginning of the work. Then what changes had been assumed
that influenced the design decisions. Finally, which decisions result from it.

4https://www.rabbitmq.com/
5https://traefik.io/

12

Workflow at beginning

At the beginning of the thesis, the internal communication of the ODS ran via a
request response model. Figure 3.2 shows the components involved in the ODS.

Figure 3.2: Architecture of ODS at beginning of thesis

The interaction with the ODS takes place via a REST interface. It is either used
by a human user via the UI or addressed directly via HTTP. A pipeline describes
the process of fetching data from the system, applying one or more transform-
ations to it and then saving it. Therefore, a datasource is first defined at the
Datasource-Service. It is determined where the data is located, and which pro-
tocol is used. In addition, metadata is added to a datasource, such as the license

13

model of the data. When creating a datasource, it is determined in which period
the data should be fetched. The model of a datasource is sent to the Datasource-
Service as a JavaScript Object Notation (JSON) structure via a HTTP POST
request.

The Scheduler polls the Datasource-Service to obtain information about the latest
changes to datasources. This gives the Scheduler the information when a data-
source is to be fetched. The Scheduler handles the task of orchestration within
the system. It triggers the collection with a request to the Datasource-Service
and waits for a response about the location of the data.

In the Pipeline-Service, a user can define transformations on datasources. The
Scheduler informs the Pipeline-Service about the new data of the datasource.
The Pipeline-Service then applies all defined transformations and responds to
the Scheduler.

The Scheduler instructs the Query-Service to store the data. It also informs the
Notification-Service about the transformed data. If a user has defined notifica-
tions about this, these are sent out.

Workflow changes

The change to an event-driven architecture for internal communication changes
the processes within the system. Mainly tasks will be removed from the scheduler.
Figure 3.3 shows the process after the switch to RabbitMQ as the Message-
Broker. Internal communication no longer takes place via the request response
model. The publish subscribe model is used for communication with the various
components. The exchange of messages takes place via channels that have a
topic identifier. Services can publish on these channels and others can subscribe
to them. When new messages are available, they are informed.

The Datasource-Service, which is configured by the user via a REST interface,
is still responsible for the administration of datasources. It no longer propagates
changes to datasources directly to the Scheduler but via the Message-Broker.
This removes the coupling between the components. The Scheduler continues to
manage the times for collecting data sources and notifies the Datasource-Service
of this via a Message-broker. Information about the successful collection is no
longer passed on to the Scheduler but made known via the Message-Broker. This
enables interested components in the system to react to it. In the case of the ODS,
this is the Pipeline-Service, which executes the transformations on the retrieved
datasources and makes the result known via Message-Broker. The subscribed
Query-Service and Notification-Service react to this and save the data in storage
for use by the user and notifies the user if required.

14

Reference:
https://github.com/jvalue/open-data-service/blob/master/doc/service_arch.png

Figure 3.3: Architecture after switching to RabbitMq

15

https://github.com/jvalue/open-data-service/blob/master/doc/service_arch.png

4 Architecture and Design

This chapter addresses design decisions that form the basis for the implement-
ation. First, it is evaluated how parameterizable data sources can be modelled.
Subsequently, it is argued how the endpoints of the system can be designed to
trigger a manual data import. Finally, it is discussed how transformations can
be applied to manual data imports.

4.1 Modeling Parameterizable Datasource

This section describes how parameterizable datasources can be transferred to the
ODS. It was considered how to integrate parameterizable datasources into the
system in addition to the existing non-parameterizable datasources. In addition,
how the concept of a datasource can be extended to parameterizable datasources.

For both considerations, it is important to be familiar with the creation of tradi-
tional datasources.

The first step is to consider what information a user must define for an existing
datasource. This is usually done in the Web-Client. The UI guides a user through
the necessary steps. The sequence is:

1. Assignment of a name

2. Location and representation of the data

(a) Specifying the protocol

(b) Specifying the URL

(c) Specifying the encoding

(d) Determination of data format

3. Adding Metadata

(a) Description of a datasource

(b) The author

16

(c) The license

4. Defining the point in time and frequency of a data import

The name makes it easier for a user to differentiate between the various data-
sources. For a meaningful use of parameterizable datasources, names should also
be assigned to them. The metadata fields should be retained.

In order to investigate how a parameterizable data source could be modeled, it
was decided to create a prototype for the UI based on the creation of the already
existing data sources.

For the prototype, the UI for creating datasources was copied to make adjust-
ments. It is obvious here that a parameterizable datasource must still have a
name and it must be possible to assign metadata. These can be adopted in this
way. Adjustments are necessary for the localization of the data. In addition, it
is not necessary to fetch parameterizable datasources periodically, because they
should be addressed manually. For this reason, the modelling of parameterizable
datasouces focusses on the localization of the data.

First an attempt was made to model how parameters can be defined within a
URI. For this purpose, a regular expression was used, which recognizes potential
parameters in the structure of a URI. Variable parts are located both in the path,
which is used for REST, and in the query part of a URI. For the parameters,
elements are dynamically displayed in the UI, which allows a user to configure
them. Figure 4.1 shows the UI after entering a URI and the parameter elements
generated from it. The user can specify whether the parameter is a parameter
he wants to configure or is a fixed part of the URI. In addition, it is possible to
define which identifier is given to a parameter and which value is to be assigned
to it.

By designing the prototype, experience was gained that lead to two different
design considerations. These are shown in the following.

The localization of the data is done via the URI of a data source. To fulfill the
requirements of chapter 2, this URI should have variable parts that can be named.
As shown in the prototype mentioned above, this can be realized by a regular
expression, which potentially filters out variables. A parameter must be seen as
a separate data structure as part of a URI. A parameter needs an identifier and
a default value to fulfill the requirements of section 2.1.1. A URI needs to be
modelled in a more complex way then it is done in the existing datasources, where
they are represented by a simple string. It consists of a sequence of static parts
combined with dynamically filled gaps. Thus, parameterizable datasources differ
from existing ones and have to be considered separately.

The UI prototype has revealed weaknesses in the first approach to modeling a
parameterizable datasource. By specifying a regular expression for the separation

17

Figure 4.1: UI prototype for extracting parameters from a URL

18

of parameters, the UI takes away configuration possibilities from the user. To
address these, it was examined how URIs are structured. As described in sec-
tion 3.1 a URI has defined syntax and grammar rules. The idea is to encode free
parameters directly into the URI. To make this possible, strings are required that
cannot be part of a URI. These include the curly brackets. The beginning of a
parameter can be defined with an open curly bracket and the end of a parameter
with a closed curly bracket. The character string between the curly braces is used
as an identifier. Then it is sufficient to replace the areas within a URI with the
desired string. This makes it even possible to replace the authority within a URI.
A possible use for this would be to react on address changes of servers without
having to create a new datasource. This would meet the requirement that open
parameters can be defined within a datasource without restricting which part of
a URI should be variable. By encoding parameters in a URI, it is possible that
existing datasources can be expanded into parameterizable datasources.

Depending on whether parameterizable datasources are considered as an inde-
pendent concept or as part of the existing datasources, different changes to the
ODS system are necessary. These changes will be presented below.

4.1.1 Independent design for parameterizable datasources

The first consideration is how parameterizable datasources can be implemented for
the ODS in addition to the existing datasources. Since this is a new functionality,
a new microservice should be introduced. This service is responsible for the
administration of the parameterizable datasources and their configuration. In
addition, it is responsible for data import and thus also for filling parameters
with values. If data from these datasources are available, the system must be
informed. This can be done as a new topic via the Message-Broker. Other
services that are interested can subscribe to this topic.

For the configuration of the parameterizable datasources by the user new REST
endpoints must be defined. These need to have the same functionality as the
Datasource-Service.

4.1.2 Datasources as a general concept

As described above, there is the possibility to consider datasources as a gen-
eral concept by encoding the parameters. This requires changes to the existing
datasources. Parameters must be made known by braces or other not allowed
characters. Default parameters must be defined during the configuration of a
datasource. Datasources can then be created using the endpoints already exist-
ing in the system. The Datasource-Service is responsible for this. The validation
takes place within this service. For the implementation of parameterizable data-
sources, the concept must be made known to the service. This means that,

19

together with values for the parameters, a datasource can be created that de-
scribes a resource that can be requested via the network. This task has to be
fulfilled by the service.

4.1.3 Design decision

Both changes were necessary to meet the requirements 2.1.1 and 2.2.2.

The concept from section 4.1.1 has disadvantages. A separate service for para-
meterizable datasources would increase the maintenance effort. It would also
have to be built from scratch. This creates an additional component within the
distributed system that can fail. In addition, other services have to be modi-
fied, which contradicts the domain-driven design that only one service has to be
touched to implement a new feature.

It was decided for the design from section 4.1.2 to consider datasources as a
general concept. A big advantage here is that the remaining services of the
ODS work directly with the data import from parameterizable datasources, as
they appear externally as a structure that is already known. Since it is already
possible to apply transformations in the form of pipelines to datasources, this is
also possible automatically for parameterizable datasources.

4.2 API Design for manual data import

Depending on the decision from section 4.1 it has to be considered how a data
import can be initiated. Since it was decided not to differentiate between existing
datasources and parameterizable datasources, the behavior must be the same for
both. A REST endpoint has to be provided because a user from outside should
trigger it. It has to be examined how parameters are to be passed. Thereby it
has to be considered how values are assigned to the parameters and passed to
the system. Two different possibilities are shown below.

4.2.1 Parameters as query strings

The first consideration is to provide a HTTP GET endpoint on the system,
passing parameters via the query string of the URI. With the query string it is
possible to describe key-value pairs. If a request is sent by a user, a data import
should be initiated. If parameters are defined on a datasource, the query string
should be evaluated. For this purpose, the Datasource-Service must provide the
endpoint. When a query reaches the service, the service must evaluate it and
then trigger the data import. On success, the system is informed, and the user
is answered with the data.

20

4.2.2 Parameter transfer as JSON object

Another modelling would be via a HTTP POST endpoint. For parameter passing
the body of the http message is utilized. The Datasource-Service must evaluate
the data and use it to fill the free parameters of a datasource. Afterwards the
data import should be initiated and if successful, the user should receive the data.

As in the previous section, the endpoint must be provided by the system. The
Datasource-Service is responsible for this. If a data import was successful, it is
announced within the system.

4.2.3 Design decision

From a functional point of view, both designs would work. With both it is
possible to initiate the data import manually and to specify the free parameters
for parameterizable data sources. An API is defined for a trigger mechanism and
it is possible for a user to fill parameters with values during a manual data import.
This means that both points of the requirements from sections 2.2.1 and 2.2.2
are fully met. Additionally, it is possible to execute the pipelines defined on
datasources as required in section 2.2.3.

The query string has disadvantages. If values are being passed, it has to be
taken into account that they are encoded correctly. An example is the equals
sign, because it serves as a separator of the key-value pairs. This restriction does
not exist if the mapping is done as an object over the body. In addition, the
functionality would not match the GET semantics. It requires that the state of
the system should not change [Fie+99]. This happens through the data import,
as the transformed data is saved by the Query-Service. Therefore, the endpoint
should be implemented as described in section 4.2.2.

4.3 Enabling transformation for manual data

import

The concept of integrating the parameterizable datasources into the existing ones
makes it possible to use the existing services of the ODS, consequently also the
Pipeline-Service. It applies the defined transformation as soon as a data import
has been announced. To meet the requirements of section 2.2.4, the system needs
to be adjusted. In order to receive transformed data, the Query-Service must be
contacted as soon as the pipeline has been successfully executed. This additional
request should be avoided for a user. A mechanism is to be introduced to initiate
a data import and receive the transformed data as response. For this purpose, a
REST endpoint must be introduced.

21

In the following, two different ways to achieve this are shown.

4.3.1 Integration into the Pipeline-Service

The Pipeline-Service is already responsible for the transformations and has all
data a user potentially requests. This makes it possible to integrate the function-
ality there. The service must provide an additional REST endpoint that allows
manual data import for the targeted pipeline. A user should be able to specify
values for parameters based on the endpoint described in section 2.1.1. A manual
data import is to be initiated on the Datasource-Service. The connection must
be maintained until the data arrives. With the data received in response, the
selected transformation can be executed. After successful transformation, the
data is sent back to the user as a response.

4.3.2 Stand-alone microservice

Another possibility for the implementation is to outsource the task to a new
independent microservice. As above, this would have to provide a REST interface
for user interaction. The endpoint should refer to a pipeline. Since the newly
introduced microservice has no information on which datasource the pipeline was
defined on, this must be requested from the Pipeline-Service. A manual data
import can be triggered with the identifier of the datasource. The manual data
import automatically informs the Pipeline-Service and applies the transformation
to the data. The Pipeline-Service already publishes this via the Message-Broker
for the Storage-Service. The new microservice can also subscribe to this. As soon
as it is informed about the successful transformation, it can extract the data and
send it back to the user as a response. The user session must be maintained from
the request to the final response.

4.3.3 Design decision

The implementation effort for the first design proposal is lower because only one
additional endpoint needs to be introduced and the actual logic already exists in
the Pipeline-Service. A new service introduces an additional component into the
system, which may fail and further complicates the architecture.

One problem is the maintenance of a user session. Keeping the session alive adds
additional load on the Pipeline-Service and is not one of its core tasks. Currently,
the Pipeline-Service does not communicate with the Datasource-Service. Further-
more the Pipeline-Service does not communicate with the Datasource-Service at
the moment. This is not known to the Pipeline-Service. The Pipeline-Service
is decoupled from the Datasource-Service. This restriction would have to be
softened.

22

A new microservice would circumvent this. Its principal task is to maintain a user
session and forward the requests to the corresponding services. This ensures that
the data source service only makes new data imports known to the system via the
Message-Broker and the pipeline service still does not have to communicate with
it. For these reasons it was decided to implement the design from section 4.3.2.

23

5 Implementation

This chapter describes the implementation process of the design decisions made in
chapter 4. The goal is to meet the requirements from chapter 2. New functions
are implemented in the smallest possible independent sub-steps in such a way
that they can be easily integrated into the system. The integration was done in
the github repository of the ODS1. Development was performed on a separate
fork.

First, parameterizable datasources are integrated into the system, then the func-
tionality of manual data import. Next, a new microservice is integrated into
the system, which provides transformed data for manual data imports to a user.
Additionally, the new functionalities are documented, and tests are written. For
easy configuration by users, the new functions are also provided within the UI.

5.1 Integrating Parameterizable Datasources

The system shall be extended by parameterizable datasources. After the consid-
erations in section 4.1.3 it was decided to extend the existing datasources with
this functionality. The Datasource-Service is responsible for the management of
datasources within the system, therefore the implementation must be performed
within the code base of this microservice.

5.1.1 Adapt Datasource Model to support parameters

In order to make parameterizable datasources valid without passed runtime para-
meters, it was necessary to adapt the model of a datasource so that it includes
default values for the free parameters during creation. The model used for config-
uring datasources is shown in fig. 5.1. In this context, the question arose whether
default values should be modelled by a separate attribute or be by extending
one of the existing attributes. It could be argued that a DatasourceTrigger

describes the execution of a request, making it a potential class for the extension

1https://github.com/jvalue/open-data-service

24

https://github.com/jvalue/open-data-service

Datasource

- protocol: DatasourceProtocol
- format: DatasourceFormat
- metadata: DatasourceMetadata
- trigger: DatasourceTrigger

Figure 5.1: Datasource Class

DatasourceProtocol

- type: String
- parameters: Map<String, Object>

Figure 5.2: DatasourceProtocol Class

of the default parameter functionality. Another possibility is to locate it within
the protocol attribute. In this field the protocol of the URI is defined, but also
the URI itself is specified. Since default parameters are necessary to complete
the URI, it was decided to store them directly in the DatasourceProtocol. The
structure of a DatasourceProtocol is described in fig. 5.2. It is kept very abstract
for flexibility reasons. Any object can be stored under a string key. This is ne-
cessary because a URI has different syntax for different protocols, as described
in section 3.1.

Within the parameter map the default parameters should be stored. For this
purpose, a new model, the Runtime-Parameters was created. When performing
a HTTP POST request on the the trigger endpoint of a datasource, the runtime
parameters object is used to specify the open parameters of a parametrized data-
source. It is also intended to be used to define the default values. For these
changes a map as data structure was the obvious choice. To avoid that future
model changes lead to code modifications in many places, a separate class for
runtime parameters was created.

Since strong typing is eliminated in the protocol, validation must be done manu-
ally. This happens within the Import class. To support a new protocol, it is
necessary to create a new importer, which inherits from an abstract superclass
Importer. There are currently the generic Importer class and the HttpImporter
class for the HTTP protocol. For the implementation of the default parameters
it was necessary to make changes to these two classes.

The parameter list of an importer defines the string keys and the corresponding
object class for a protocol. This checks if they match when adding a datasource
to the system. It would reject the protocol validation if pairs are missing or not
defined. In the case of an original datasource, it was necessary to soften this re-

25

striction, since these have no default parameters. Therefore potential parameters
were introduced. These can be missing during validation but are accepted as
valid parameters if they are necessary.

For the HttpImporter potential parameters are defined under the string key
defaultParameters. It is necessary to override the newly introduced method
getRequiredParameters() to make this distinction to the required location

and encoding parameters. The RuntimeParameters class is used to describe the
object to be stored for the key defaultParameter.

After these adjustments it is possible to create datasources with default para-
meters. Tests were written for all additional functionalities. Furthermore, the
documentation of the ODS was extended by the additional changes.

5.1.2 Build UI Component for Datasource configuration

The UI component was integrated into the productive system at a later stage but
was already written during the implementation of the datasources. A developer
branch was used for this purpose. This made it possible to test the configuration
of the backend, but a user was not yet offered a feature that he could not use. The
real benefit of parameterizable datasources comes into play as soon as parameters
can be specified at the time of data import.

Within the web client the component responsible for the configuration of dat-
sources was extended. Creation and modification of a datasource behave the
same way for a user of the UI and is further summarized as configuration of a
datasource.

In order to expand the configuration to include parameterizable datasources, de-
fault parameters must be definable. Therefore, parameter components have to
be provided within the UI, which allows to name a parameter and assign a value
to it. Two text fields per parameter are displayed. For this purpose, the UI
was extended by such a component. As soon as a part of the URI is marked as
variable by curly brackets, a parameter component appears for this part within
the UI. The area enclosed by the brackets is used as a standard identifier and
default value for the parameter. A user can still change both independently of
each other. The remaining creation process behaves as before. The changes are
then transferred to the system via the REST interfaces of the Datasource-Service.

5.2 Trigger Endpoint

This section shows the process for enabling manual data import. For this purpose,
the considerations from section 4.2.3 are implemented. These are implemented
iteratively in small pull requests to simplify the review process. First, the end

26

point was integrated into the system. Then the functionality of the data import
of existing data sources was added. Finally, the support of parameters was added.

5.2.1 Trigger Endpoint Implementation

To provide an additional REST endpoint it is necessary to define it in the
Datasource-Service. Its REST endpoints are defined by annotations in the
DatasourceEndpoint.java as shown in listing 5.1. For trigger endpoints,
this is done with @PostMapping("/{id}/trigger") above the method signa-
ture. Where {id} is a variable value provided by the caller and interpreted
by the Datasource-Service as the ID of a datasource. This triggers the method
getData() for each POST access for the respective datasource. The data trans-
ferred via POST in the body can be missing or must be Runtime-Parameters.
These are discussed above in more detail in section 5.1.1. The framework tests
whether the call is valid. In case of an error it sends back a error response. The
DatasourceManager class contains the logic that is used by the REST endpoints.
The trigger method is added to the class in the first step as an empty method,
which does not offer any functionality yet. This makes it possible to test the
communication with the endpoint.

1 @PostMapping("/{id}/ trigger")

2 public DataBlob.MetaData getData(@PathVariable Long id ,

3 @Valid @RequestBody (required =

false) RuntimeParameters runtimeParameters) {

4 try {

5 return datasourceManager.trigger(id , runtimeParameters);

6 } catch (IllegalArgumentException e) {

7 throw new ResponseStatusException(HttpStatus.NOT_FOUND , "No

valid Datasource for id "+ id);

8 } catch (InterruptedException e) {

9 throw new ResponseStatusException(HttpStatus.

INTERNAL_SERVER_ERROR);

10 }

11

Listing 5.1: Trigger Endpoint

After the communication works, the functionality for trigger() is added. The
implementation is described in the next section.

5.2.2 Manual data import

For the conversion of the data import the trigger() method must be implemen-
ted. This is shown in listing 5.2. The data import is done with an Adapter via
executeJob(). This selects the appropriate interpreter of the data, such as JSON
or Extensible Markup Language (XML). To fetch data, a datasource must be

27

converted to an Adapter. An AdapterConfig is required to create an adapter.
This is an abstraction of the datasource and describes the locality and repres-
entation of the data. The AdapterConfig contains all the information needed to
trigger a data import.

1 public DataBlob.MetaData trigger(Long id , RuntimeParameters

runtimeParameters) throws InterruptedException {

2 AdapterConfig adapterConfig = getParametrizedAdapterConfig(id

, runtimeParameters);

3 try {

4 Adapter adapter = adapterFactory.getAdapter(adapterConfig

);

5 DataBlob executionResult = adapter.executeJob(

adapterConfig);

6 DatasourceImportedEvent importedEvent = new

DatasourceImportedEvent(id , executionResult.getData ());

7 publishAmqp(RabbitConfiguration.AMQP_IMPORT_SUCCESS_TOPIC

, importedEvent);

8 return executionResult.getMetaData ();

9 } catch (Exception e) {

10 ImportFailedEvent failedEvent = new ImportFailedEvent(id,

e.getMessage ());

11 publishAmqp(RabbitConfiguration.AMQP_IMPORT_FAILED_TOPIC ,

failedEvent);

12 if(e instanceof IllegalArgumentException) {

13 System.err.println("Data Import request failed.

Malformed Request: " + e.getMessage ());

14 throw e;

15 } else {

16 System.err.println("Exception in the Adapter: " + e.

getMessage ());

17 throw e;

18 }

19 }

20 }

21

Listing 5.2: Trigger Implementation

Via publishAmqp() an event is published on the Message-Broker in case of suc-
cess or failure. If the process is successful, it contains the imported data and the
identifier of the datasource. The Pipeline-Service can react to this if a transform-
ation has been specified for the datasource.

When a request is made to the Datasource-Service via the REST endpoint de-
scribed in section 5.2.1, the data import for the corresponding Datasource is
initiated. To retrieve the parameterizable datasources, it is necessary to resolve
the URI when converting a datasource to an AdapterConfig. This is described
in the next section.

28

5.2.3 Support of parameters

The data import is supposed to work also with datasources that contain para-
meters. The function from listing 5.2 serves as a basis. To get the necessary
AdapterConfig for the data import the method getParametrizedAdapterConfig

has already been introduced. This method gets the corresponding datasource for
an identifier from the database and passes the runtime parameters to it. In case
of datasources without parameters or if the default parameters are used, the
value can be empty. This method currently only converts datasources without
parameters. It considers a URI as it is, including the curly brackets. The data
import of a parameterizable datasource would fail with an error message in this
case. The conversion of a datasource to an AdapterConfig is now adjusted.

The URI field of the protocol is filled with the parameters. For this purpose,
the default parameters are copied. Afterwards their values are updated by the
passed parameters. This makes it possible that parts of the URI are overwritten
by the values of the default parameters and others by the passed parameters.
The values that are specified by the user via the trigger endpoint have a higher
priority.

For the replacement process the URI string is searched for the parameter identi-
fiers surrounded by the curly brackets. These are replaced by the values of the
parameters from the resulting map.

If this is successful, a corresponding AdapterConfig is returned with which the
data import can be triggered. This allows to specify values of a parameterizable
datasource at the time of the data import.

5.3 Microservice for transformed data

The next step is to fulfill the requirements of section 2.2.3. For this purpose, a
new microservice is introduced. This section describes the process of integrating
a new service into the ODS. Then it is described how this is extended by the
functionality to provide transformed data of a manual data import.

5.3.1 Provide skeleton for service

After consultation with the active developers of the ODS it was decided to write
the microservice in TypeScript. This is due to the great experience of the de-
velopers with this programming language. In addition, the latest services have
been developed in TypeScript and offer a good introduction to how a service can
be provided within the ODS.

First of all, a TypeScript project must be created. This is named pipeline-trigger.

29

�interface�
DataImportRequest

pipelineId: number
runtimeParameters: object

Figure 5.3: DataImportRequest Model

This is accomplished by the JavaScript Runtime Node.js2. The initialization of
the project is done by the commandline tool npm, which is delivered with Node.js.
This tool is also used to install dependencies and offers commands to start the
server.

Services for the ODS must run in their own Docker container3. Therefore, it is
necessary to describe how the service should be built and started. A Docker file
is used for this. For the new service such a Docker file was created. This allows
the service to be executed in virtualization.

For the configuration of an application, which is composed of several Docker
containers, a docker-compose file is used. This file describes how the new service
fits into the system. Such a file is available for the execution of the ODS. This
file was modified for the new Pipeline-Trigger-Service. Necessary environment
variables were set, dependencies were defined and metadata for the reverse proxy
was set.

After these steps the new service can be started as part of the ODS. It does not
yet provide any functionality but can be tested against the other services.

5.3.2 Introducing the REST endpoint

Next, the corresponding endpoints were added to the service. Each service within
the ODS should have an endpoint for the API version. This was provided. Under
the base endpoint a user can request if the service is available.

For the actual functionality of the service a REST endpoint was provided. For a
request to this endpoint a HTTP POST on baseurl/dataImport is used. The
body of the message must contain a DataImportRequest. This consists of the
pipelineId and runtimeParameters as shown in fig. 5.3.

2https://nodejs.org/
3https://www.docker.com/

30

https://nodejs.org/
https://www.docker.com/

/configs/{pipelineId}

DatasourceID

dataImport

/{dataSourceId}/trigger

publish

transformation

notify

publish

notify

/dataImport

data

User Pipeline-Trigger Pipeline Datasource Message-Broker

Figure 5.4: Sequence Diagram of a DataImport

5.3.3 Enable parameterizable pipeline

Now that the necessary infrastructure for a new service has been set up, the
actual functionality is provided. Figure 5.4 shows a sequence diagram of the
data import process. The PipelineId is extracted from a request to the ser-
vice. The DatasourceId for which the transformation was created is required
for the request to the Datasource-Service. Therefore, a request to the Pipeline-
Service must be made to query it. The DatasourceId can be extracted from the
response. Then a request is made to the datasource trigger endpoint with the
runtimeParameters. The Datasource-Service publishes the successful data im-
port. The Pipeline-Service responds to this and applies the transformation. The
data is then published as an event via the Message-Broker. The Pipeline-Trigger-
Service waits for this event. It extracts the data from the event and returns it to
the user in response.

If the data import takes too long, an error message is sent back to the user. This
can happen if there are network failures within the system.

31

6 Evaluation

In this chapter the requirements defined in chapter 2 are checked for their fulfill-
ment. It is examined whether the requirements are fully, partially or not fulfilled.
Furthermore, possible weaknesses of the implementation are discussed and how
these can be addressed.

6.1 Configuration of parameterizable data sources

Datasources have been extended by the possibility to mark parts of the URI as
variable. This was achieved by encoding parameters using curly brackets. The
string enclosed by the braces made it possible to assign names to these para-
meters. datasources have been expanded to include default parameters which,
together with the URI string marked as a parameter, can localize a resource. The
configuration is possible via a REST interface as well as via the UI. As a result,
the two sub-items from sections 2.1.1 and 2.1.2 this requirement were met.

Encoding within a URI gives the user of the ODS the greatest possible freedom
in defining parameterizable datasources. Errors would occur if protocols that al-
low curly brackets were to exist in the future. This happens with protocols that
do not follow the specification of a URI. For such protocols, albeit improbable,
such a case would have to be intercepted. This would be possible with a differ-
ent encoding of parameters specific to such a protocol. The requirements from
section 2.1 are met.

6.2 Execution of parameterizable data sources

An interface was added to the system that enables a user to initiate a data
import. The user can assign values for defined parameters at the time of the
request. When importing data, these values are used to complete the URI. On
success, the response contains the retrieved data.

This functionality is used within the UI when creating pipelines. When defining
a transformation, it can be tested directly on the actual data.

32

In addition, a user can also use this interface for manual data import of data-
sources without parameters. This was not explicitly required, but since data
sources have been extended by the concept of parameterizable datasources, the
functionality is also available for them.

The requirements of sections 2.2.1 and 2.2.2 are fulfilled.

It was required that transformations are applicable to a manual data import.
This is possible by publishing an event via the Message-Broker. Additionally, it
was required that one can initiate a data import with following transformation
and receive the transformed data as response. This was achieved by an additional
microservice, the Pipeline-Trigger-Service. Through an interface requests can be
made. Values for parameters can be sent along. A data import is triggered, the
selected transformation is executed and sent back to the user as response.

A weakening in consistency is that a query cannot be assigned to the data with
certainty. This is due to the distributed architecture of the ODS. One possibility
to address this issue would be to give the requests unique identifiers that are
passed through the system. This would require the adaptation of all components
that are currently involved in the data import process. This could not be done in
the context of the thesis. As a result, the service lays the foundation for meeting
the requirements of section 2.2.3 but still offers potential for improvement.

Therefore requirement 2.2 is partially fulfilled.

6.3 Still support non-parameterizable data sources

The existing functionality of the ODS has been extended without changing it.
Although parameterizable and non-parameterizable data sources share the same
configuration process, they can be used as before the changes. The normal peri-
odic pipelines are not affected. Therefore the requirement of section 2.3 is fulfilled.

33

7 Conclusion

The JValue Open Data Service is a service that was launched to make the con-
sumption of open data reliable, easy and safe. The constantly advancing system
picks up on suggestions for improvement from its users. Many users wished to
be able to initiate data imports not only according to a fixed schedule but also
manually. Others required parts of datasource URI to be specified dynamically
when querying the data.

This thesis addressed this feedback. Its goal was to enable parameterizable data
sources for the ODS. Furthermore, a mechanism should be integrated to manually
trigger a data import and dynamically assign values to the open parameters. In
chapter 4 the design decisions were discussed. Parameters can be provided by
encoding within a URI. For the manual data import an API was defined. It was
determined that a user can request transformed data from a manual data import
by a newly introduced microservice. Their implementation was then shown in
chapter 5.

The artifacts produced during this thesis extends the existing ODS functionality
in three aspects: First, parameterizable datasources for the system were enabled.
Second, a user can trigger a manual data import and specify parameters for a
parameterizable datasource. Finally, transformed data resulting from a manual
data import can be received as a synchronous response to the trigger request.
This is enabled by a new microservice.

Due to the distributed architecture of the system, an exact assignment of requests
and data cannot be guaranteed. To avoid this, the system must be extended by
a one-to-one mapping of requests and data. This will be one of the next steps to
improve the JValue Open Data Service.

34

References

[BFM05] Tim Berners-Lee, Roy T. Fielding and Larry Masinter. Uniform Re-
source Identifier (URI): Generic Syntax. STD 66. http://www.rfc-
editor.org/rfc/rfc3986.txt. RFC Editor, Jan. 2005. url: http:
//www.rfc-editor.org/rfc/rfc3986.txt.

[Den+16] Michael J. Denney et al. ‘Validating the extract, transform, load pro-
cess used to populate a large clinical research database’. In: Int.
J. Medical Informatics 94 (2016), pp. 271–274. doi: 10.1016/j.

ijmedinf.2016.07.009. url: https://doi.org/10.1016/j.

ijmedinf.2016.07.009.

[Eco17] The Economist. Regulating the internet giants - The world’s most
valuable resource is no longer oil, but data. (Accessed on 10/20/2020).
May 2017.

[Fie+99] Roy T. Fielding et al. Hypertext Transfer Protocol – HTTP/1.1. RFC
2616. http://www.rfc-editor.org/rfc/rfc2616.txt. RFC Ed-
itor, June 1999. url: http://www.rfc-editor.org/rfc/rfc2616.
txt.

[HK20] Esther Huyer and Laura van Klippenberg. The Economic Impact of
Open Data Opportunities for value creation in Europe. Tech. rep.
European Commission, 2020. doi: 10 . 2830 / 63132. url: https :

/ / www . europeandataportal . eu / sites / default / files / the -

economic-impact-of-open-data.pdf.

[MFP06] Gero Mühl, Ludger Fiege and Peter Pietzuch. Distributed Event-
Based Systems -. 1st ed. Berlin Heidelberg: Springer Science Business
Media, 2006. isbn: 978-3-540-32653-3.

[New15] Sam Newman. Building microservices: designing fine-grained systems.
” O’Reilly Media, Inc.”, 2015.

[SR20] Georg Schwarz and Dirk Riehle. ‘What Microservices Can Learn From
Enterprise Information Integration’. In: Jan. 2020. doi: 10.24251/
HICSS.2020.678.

35

http://www.rfc-editor.org/rfc/rfc3986.txt
http://www.rfc-editor.org/rfc/rfc3986.txt
http://www.rfc-editor.org/rfc/rfc3986.txt
http://www.rfc-editor.org/rfc/rfc3986.txt
https://doi.org/10.1016/j.ijmedinf.2016.07.009
https://doi.org/10.1016/j.ijmedinf.2016.07.009
https://doi.org/10.1016/j.ijmedinf.2016.07.009
https://doi.org/10.1016/j.ijmedinf.2016.07.009
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
https://doi.org/10.2830/63132
https://www.europeandataportal.eu/sites/default/files/the-economic-impact-of-open-data.pdf
https://www.europeandataportal.eu/sites/default/files/the-economic-impact-of-open-data.pdf
https://www.europeandataportal.eu/sites/default/files/the-economic-impact-of-open-data.pdf
https://doi.org/10.24251/HICSS.2020.678
https://doi.org/10.24251/HICSS.2020.678

REFERENCES

[Vin06] S. Vinoski. ‘Advanced Message Queuing Protocol’. In: IEEE Internet
Computing 10.6 (Nov. 2006), pp. 87–89. issn: 1941-0131. doi: 10.
1109/MIC.2006.116.

[Wol16] Eberhard Wolff. Microservices - Flexible Software Architecture. Am-
sterdam: Pearson Education, 2016. isbn: 978-0-134-65040-1.

[Wol18] Eberhard Wolff. Microservices - A Practical Guide. CreateSpace In-
dependent Publishing Platform, 2018. isbn: 978-1-717-07590-1.

36

https://doi.org/10.1109/MIC.2006.116
https://doi.org/10.1109/MIC.2006.116

	Introduction
	Requirements: Support parameterizable data imports
	Configuration of parameterizable pipelines
	API design to define parameters
	UI component for seamless configuration

	Execution of parameterizable data sources
	Trigger mechanism
	Should execute data source
	Should execute pipelines
	Should return the resulting data to requesting actor

	Still support non-parameterizable data sources

	Fundamentals
	Uniform Resource Identifier
	Microservices
	Characteristics of Microservices
	Technologies enabling Microservices

	JValue Open Data Service
	Concept of the ODS
	Microservices of the ODS
	ODS Workflow

	Architecture and Design
	Modeling Parameterizable Datasource
	Independent design for parameterizable datasources
	Datasources as a general concept
	Design decision

	API Design for manual data import
	Parameters as query strings
	Parameter transfer as JSON object
	Design decision

	Enabling transformation for manual data import
	Integration into the Pipeline-Service
	Stand-alone microservice
	Design decision

	Implementation
	Integrating Parameterizable Datasources
	Adapt Datasource Model to support parameters
	Build UI Component for Datasource configuration

	Trigger Endpoint
	Trigger Endpoint Implementation
	Manual data import
	Support of parameters

	Microservice for transformed data
	Provide skeleton for service
	Introducing the REST endpoint
	Enable parameterizable pipeline

	Evaluation
	Configuration of parameterizable data sources
	Execution of parameterizable data sources
	Still support non-parameterizable data sources

	Conclusion
	References

