
Industry Best Practices for Component Approval in FLOSS
Governance

Nikolay Harutyunyan

Computer Science Department
 Friedrich-Alexander University Erlangen Nürnberg

 Erlangen, Germany
nikolay.harutyunyan@fau.de

Dirk Riehle

Computer Science Department
 Friedrich-Alexander University Erlangen Nürnberg

 Erlangen, Germany
dirk@riehle.org

ABSTRACT

Increasingly companies realize the value of using free/libre and
open source software (FLOSS) in their products, but need to
manage the associated risks. Leading companies introduce open
source governance as a solution. A key aspect of corporate
FLOSS governance deals with choosing and evaluating open
source components for use in products. Following an industry-
based research approach, we present 13 best practices in the
pattern format of context-problem-solutions paired with
consequences. In this paper, we cover an excerpt of the
Component Approval section of our FLOSS governance
handbook. This article builds upon our previous EuroPLoP
publication covering Component Reuse in FLOSS governance
processes, as well as other publications on the topic. Analyzing
qualitative data gathered from 15 expert interviews, we derive
and interconnect the common industry recommendations for
reviewing, tracking, and approving open source components in
a company environment. We conclude by presenting workflow
templates that put various best practices in relation to each
other.

KEYWORDS

Best Practice, Commercial Use of Open Source, Component
Approval, FLOSS, FOSS, Industry Best Practice, Open Source
Software, Open Source Governance, Pattern, Pattern Language

ACM Reference format:

Nikolay Harutyunyan and Dirk Riehle. 2020. Industry Best Practices for
Component Approval in FLOSS Governance. In Proceedings of
EuroPLoP 2020. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3424771.3424791

1 Introduction
Using open source software components in products carries
potential risks for companies including legal, business, and
technical risks resulting from mishandling of open source
licenses, export restrictions, copyright notices, and software

supply chains [21, 22, 24]. While some companies have realized
these risks and establish internal guidelines and rules for open
source governance, many companies remain either ignorant or
unaware of such threats, while using FLOSS components as part
of their commercial products.
As academic literature on the topic of open source governance
is lacking, we studied practitioner articles and reports to
motivate our industry-sourced study. In the context of this
study, we define FLOSS governance as the set of processes, best
practices, and tools employed by companies to use FLOSS
components as parts of their commercial products while
minimizing their risks and maximizing their benefit from such
use [11, 12]. We only focus on the governance aspects of
companies using open source software, not their contributions
to or leadership of open source communities. We covered some
of the latter in a recent publication [13], where we also used the
pattern format of context-problem-solutions and plan to
continue our work in that direction.
Given the different maturity levels of companies when it comes
to open source governance, different aspects have higher
priority. After getting started with open source governance,
companies should define processes for choosing and reviewing
potential FLOSS components and libraries that are to be
checked into company code repositories. Being a crucial topic
for all companies, we asked the following research question:

Research question: How should companies approve the
proposed use of open source components in the context of open
source governance based on existent industry best practices?

To answer the research question, we used the qualitative survey
method [17]. We selected 15 companies from a pool of 140 with
expert knowledge on the topic of open source governance and
interviewed their experts including software developers,
technical and business managers, as well as legal counsels.
Analyzing the gathered data, we found common themes and
recommendations on Component Approval in the context of
FLOSS governance. We aimed to have a polar sample with
diverse companies from small consultancies to large automotive
companies. We do not claim a representative sample, but rather
present exploratory findings from a diverse mix of companies
with state-of-the-art best practices for open source governance.
We contribute to the academic community by proposing a
theory of open source governance focused on Component
Approval. We also contribute to the patterns community by
casting our findings as 13 context-problem-solution patterns
coupled with consequences and building upon our previous
work on Component Reuse as part of FLOSS governance [15].

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
EuroPLoP '20, July 1–4, 2020, Virtual Event, Germany
© 2020 Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-7769-0/20/07…$15.00
https://doi.org/10.1145/3424771.3424791

EuroPLoP 2020, July 2020, Virtual Event, Germany N. Harutyunyan and D. Riehle

While both papers use the data from our larger study into open
source governance, in this paper we present novel findings on
a previously unstudied topic of open source component
approval in companies. This is a topical predecessor to our 2019
paper on component reuse, where we presented best practices
for reusing open source software already inside company
products. These are distinct and equally important topics of the
inbound FLOSS governance, alongside software supply chain
management, which is another topic we plan to address in
future publications.
Some of the best practices in this paper suggest the creation and
maintenance of an open source component repository. Other
practices help define transparent rules for open source
component approval. The proposed best practices come
together in workflows or process templates that any interested
practitioner can employ and adapt to their use case. Aiming for
a high level of industry relevance, we thus tried to increase the
applicability of our results, while not compromising the
research rigor.
In the context of this paper, we use patterns to represent best
practices. The best practices we identified are procedural and fit
together into systematic processes. Thus, we also use patterns
to capture the sequential (and at times the hierarchical) nature
of the best practices. As a result, we use the terms best practices,
patterns, and workflow components interchangeably taking
into account the important distinctions mentioned above.

2 Related Work
Conceptually we differentiate between inbound and outbound
open source governance. The former focuses on managing how
open source components get into the company, while the latter
covers managing the distribution of products that include open
source components. As component approval is part of the
inbound governance, we studied the limited research available
on the topic, including engineering management and software
development [2, 7, 16, 24], open source component search [8,
20], open source component selection [1, 4], open source
component approval [9, 18], and open source component reuse
[3, 8].
In our own previous work, we already covered some of the
related open source governance topics, such as Getting Started
with FLOSS governance [14], Component Reuse [15], and
Tooling [11, 12]. Building upon the FLOSS governance patterns
from these publications [14, 15], this paper adds industry best
practice patterns for open source Component Approval.
In the context of FLOSS component approval in companies,
Glynn et al. [9] discussed the commercial adoption of open
source software through an empirical study followed by a
survey. Adapting the OSS Assimilation Levels framework by
Fichman and Kemerer [5], they find that companies with a basic
open source governance awareness aimed to evaluate the open
source components they were about to use. In our study, we
confirm that companies focus on open source component
review and evaluation following the establishment of the initial
governance infrastructure during a getting started process. This
is reflected in the best practice patterns OSGOV-COMAPP-4.
and OSGOV-COMAPP-1.
Koltun [18] wrote about the commercial use of open source
software and license compliance as part of FLOSS governance.

One of his key insights addresses the review and approval of
the open source components used in company products.
Namely, he finds that an open source review board (OSRB) in a
company should review FLOSS use in the context of the use case
and license of a given component. We find similar
recommendations based on our expert interview analysis,
captured in the pattern OSGOV-COMAPP-11. where we cover
analyzing code for license compliance, and in OSGOV-
COMAPP-12. on reviewing FLOSS use in the context of product
architecture.
As to the presentation of our findings, we chose patterns
following successful examples and learning from related
research [19, 23, 25, 26]. Following up on our previous work we
aim to develop an all-encompassing pattern language for
commercial open source governance in the future. This
publication constitutes another building block in this effort.

3 Related Method
We asked the research question on how companies should
review, track, and approve the proposed use of open source
components in the context of open source governance. To
answer this question, we conducted a qualitative survey using
interviews with industry experts to collect data [6, 17]. We
collected background information, designed and planned the
study, conducted several rounds of sampling, and chose 15
experts to interview (employees involved with designing and
implementing open source governance were interviewed). We
defined interview questions that covered different aspects of
open source governance and component approval among other
topics. As this was part of a larger study, we used the same
interviews for our study on a related topic of open source
governance and component reuse which resulted in a number
of best practices on that topic [15].
The resulting semi-structured interviews were conducted in an
iterative manner. We then analyzed the survey data employing
qualitative data analysis (QDA) aided by a QDA tool called
MAXQDA to ensure the systematic analysis and traceability to
our findings. Finally, we presented our theory reflecting the
state-of-the-art best practices for commercial open FLOSS
governance and component approval.
As a result of an iterative sampling process from our network
of about 140 organizations with advanced FLOSS governance
awareness, we chose 14 companies and one open source
foundation. To ensure a diverse set of sources we classified the
companies and foundations in our professional network by
business domain, size (based on the revenue and number of
employees), type of customers, business models, etc. The list of
companies and some of their characteristics are presented in
Table 1. Company names are anonymized per their request.

Table 1. Theoretical sample of companies
Company Company

domain
By size By type of

customer
Company 1 Consulting Medium Enterprise
Company 2 Automotive Small Enterprise
Company 3 Automotive Large Enterprise
Company 4 Enterprise

Software
Medium Enterprise,

retail
Company 5 Enterprise

Software
Medium Enterprise,

retail

Industry Best Practices for Component Approval in FLOSS
Governance

EuroPLoP 2020, July 2020, Virtual Event, Germany

Company 6 Enterprise
Software

Large Enterprise,
retail

Company 7 Enterprise
Software

Medium Enterprise,
retail

Company 8 FLOSS
Foundation

Small Enterprise,
retail

Company 9 Hardware and
Software

Large Enterprise

Company 10 Legal Large Enterprise,
government

Company 11 Enterprise
Software

Medium Enterprise

Company 12 Consulting,
Enterprise
Software

Large Enterprise

Company 13 Hardware and
Software

Large Enterprise,
retail,
government

Company 14 Enterprise
Software

Small Enterprise

Company 15 Enterprise
Software

Large Enterprise

4 Research Results
Answering our research question, we propose a set of industry
best practices for open source governance in the context of
FLOSS component approval in companies. Through our
qualitative survey, we find 13 patterns common across 15
companies we studied. We present each best practice using
context-problem-solution patterns that are interconnected
forming a section in an open source governance handbook on
component approval.
Our patterns are linked forming process templates that can be
used by practitioners looking to apply our theory in their
companies. At the end of this section, we present some
examples of such processes. Not all best practices need to be
applied in order to achieve the company’s goals. Our findings
are abstract recommendations based on companies with
different contexts. Therefore, to apply our theory in practice,
one should invest the time to adjust and detail the proposed
solutions to the specific application contexts.
Our theory of industry best practices for open source
governance and component approval includes:

• definition of component approval process
• operationalization of component approval process
• definition of component approval rules
• design and review of component approval requests
• guidelines for making, communicating, and appealing

component review decisions
• component analysis in the context of license

compliance and product architecture.
Our theory focuses on the early maturity levels of open source
governance in companies. While companies need to start by
establishing a successful transition from ungoverned use of
open source first, they then need to follow up by designing and
operationalizing a review process for the FLOSS components
developers want to check into the company codebase. We find
that a key actor responsible for open source component
approval in companies is the Open Source Program Office

(OSPO). While the title changes from one company to the other,
OSPO’s responsibilities and tasks are consistent, even though
different in scale depending on the company. Generally, we find
that practitioners (and OSPOs in particular) should start by
defining transparent rules for component review, alongside a
component evaluation process that should take as input key
component data, including among others:

• component name
• component address / location
• product / project name
• open source license name
• multiple licenses (y/n)
• open source license version
• copyright holder
• linkage type to the rest of the (software) product (e.g.

dynamic or static)
• use case (e.g. internal use only, to be directly

distributed as part of the product, used to compile
software to be distributed as part of the product).

Covering the above-mentioned aspects of open source
governance and beyond, we present the proposed theory in its
entirety as a collection of interconnected patterns (presented by
“→” within the patterns). The overview of these patterns is
presented as follows:

OSGOV-COMAPP-1. Define the component approval process
OSGOV-COMAPP-2. File a component approval request
OSGOV-COMAPP-3. Review a component approval request
OSGOV-COMAPP-4. Define transparent rules for open source

component approval
OSGOV-COMAPP-5. Communicate open source component

approval rules
OSGOV-COMAPP-6. Make a component approval decision
OSGOV-COMAPP-7. Appeal a component approval decision
OSGOV-COMAPP-8. Communicate component approval

process
OSGOV-COMAPP-9. Implement component approval process
OSGOV-COMAPP-10. Provide approval request templates
OSGOV-COMAPP-11. Analyze code for license compliance
OSGOV-COMAPP-12. Review use in the context of product

architecture
OSGOV-COMAPP-13. Add decision to component repository.

The above-mentioned best practices are presented in full as
follows.

OSGOV-COMAPP-1. Define the component approval process

Name Define the component approval process
Actor OSPO (Open Source Program Office)
Context One of the key aspects of open source

governance is component approval. Software
developers routinely go through a process of
searching, selecting, approving, and integrating
software components into the company’s
products.

Problem Using open source components has its unique
complexities, such as considering open source

EuroPLoP 2020, July 2020, Virtual Event, Germany N. Harutyunyan and D. Riehle

licenses, their obligations, and
interdependencies. Without a systematic
approach, companies end up having no or
inconsistent open source governance in place
depending on the awareness of a given
employee or team. How can a company
systematically check and approve the use of
open source components?

Solution Companies using open source components in
their products need to establish components
approval processes that follow → component
search and → component selection. OSPO must
define a streamlined component approval
process that does not hinder the production, but
reliably ensures that the selected open source
component can be used in the product without
any negative side effects. The component
approval process consists of:

� filing a request
� reviewing a request
� making a decision
� appealing a decision.

The component approval process can be assisted
by tools as part of the production toolchain, in
order to automate the request and decision
submission, and communication.

Conse-
quences

By defining the component approval process,
the OSPO:

+ restricts the otherwise ad-hoc
approach for open source component
review, thus limiting the risks of
ungoverned FLOSS use in company
products

+ prescribes concrete roles and
responsibilities related to open source
component approval at a high level

- does not provide low level guidance
on how to implement the steps of open
source component review.

OSGOV-COMAPP-2. File a component approval request

Name File a component approval request
Actor Developers
Context Software developers → select components on

their own based on their functional and non-
functional requirements. However, before the
usage, open source components need to be
checked and approved by the OSPO or by
following → OSPO’s predefined rules.

Problem How can software developers inform the OSPO
about their intention to use a certain open
source component?

Solution The developer must fill in an OSPO-provided
checklist for an open source component. The
checklist includes the following data about the
components:

- Component ID
- Component name
- Component address / location
- Product / Project ID
- Product version
- Product / Project name
- Open source license name
- Multiple licenses (y/n)
- Open source license version
- Copyright holder
- Linkage type to the rest of the

(software) product (e.g. dynamic or
static)

- Use case (e.g. internal use only, to be
directly distributed as part of the
product, used to compile software to
be distributed as part of the product)

- Has the component (with its
unchanged license and version) been
used in the company before (can be
automatically identified)?

OSPO can define and communicate additional
points in the checklist if necessary.
The developer must file the request with the
complete checklist to the OSPO that → reviews
the request. Filing a request can be done using
→ provided approval request templates, or it
can be automated to an extent and integrated
into the development toolchain to ensure
efficiency and ease of use.

Conse-
quences

By filing component approval requests, software
developers:

+ increase their certainty on conforming
with company rules for open source
use, thus reducing the risks of open
source license non-compliance

+ increase development efficiency by
setting up and following a standard
procedure for the common and
frequent task of vetting an open
source component to be used

- create an overhead to their core
responsibility for product
development, which can decrease the
speed of development and result in
longer timelines.

OSGOV-COMAPP-3. Review a component approval request

Name Review a component approval request
Actor OSPO (Open Source Program Office)
Context Software developers → file component

approval requests to OSPO. OSPO needs to
respond to these requests as soon as possible.

Problem How can OSPO review open source component
approval requests in an efficient and timely
manner?

Industry Best Practices for Component Approval in FLOSS
Governance

EuroPLoP 2020, July 2020, Virtual Event, Germany

Solution OSPO receives a checklist with each developer-
filled component approval request. OSPO needs
to review these requests in an efficient and
timely manner in order not to hinder the
production by becoming a bottleneck. To ensure
this OSPO needs to → define transparent rules
for open source component approval and →
communicate the rules for open source
component approval.
These rules help make the → decision making
process easier, because some licenses-use case
pairs can be automatically approved, while some
other pairs can be automatically rejected.
Moreover, the review of approval claims takes
into account whether the given component with
this license and license version has been used in
the company (in the same use case as requested)
in the past. If that’s the case, the use of the
component is automatically reviewed and
approved (or rejected if such a decision was
recorded). As a result, the OSPO only reviews
the new license/use case pairs of open source
components, after which a decision is made and
→ the decision is documented for future
reference. To review a new license/use case pair,
the OSPO assesses the technical, legal, and
business implications of the open source
component use. If these correspond to the
company’s policy towards open source
governance, OSPO → analyzes code for license
compliance, which can be assisted by open
source compliance scanners or other tools.
You can → use open source governance tools to
make the open source component approval
more efficient, helping to automate the
decisions that can be resolved without the
involvement of the OSPO.

Conse-
quences

By filing component approval requests, software
developers:

+ increases the transparency and
efficiency of FLOSS component
review independent of the developer
or team filing the request

+ streamlines the review process and
integrates it into the existing
production workflow

- reduces the flexibility and speed of the
review that was previously based on
personal relationships and (FLOSS-
related) experience of the developer
filing the request.

OSGOV-COMAPP-4. Define transparent rules for open source
component approval

Name Define transparent rules for open source
component approval

Actor OSPO (Open Source Program Office)
Context Software developers → file component

approval requests to OSPO. OSPO → reviews
component approval requests. For this review,
OSPO must define consistent, transparent and
traceable rules.

Problem How can OSPO define rules for open source
component approval review?

Solution OSPO must define and communicate
transparent rules for open source component
approval. These rules are based on open source
license(s) of the component and its intended use
case in the final product. Having such rules
enables developers to take open source licenses
and use cases into consideration during →
component search and → component selection.

OSPO must define:

• open source licenses that contradict
the company's open source
governance policy for any use case

• open source licenses/use case pairs
that contradict company’s open
source governance policy

• open source licenses/use case pairs
that correspond to the company’s
open source governance policy.

For these three situations, OSPO must define
component approval rules that can be
automated using open source governance tools.
If a developer → files a component approval
request with a checklist that matches one of the
above-mentioned scenarios, the rules should
automatically approve or reject the open source
component request. This applies only to the
known or recorded → license/use case pairs
that OSPO inherits from the transition board
(during the getting started process) that are
based on the → standard license interpretations
developed during the getting started process.
The rules can be modified and adjusted by OSPO
as needed.

Conse-
quences

By defining transparent rules for open source
component approval, the OSPO:

+ establishes certain, centralized, and
standardized approach to dealing with
open source components

+ educates the developers on the
accepted use of FLOSS components in
different use cases

- could discourage developers from
experimenting with open source
software that can be deemed non-
conformant to the rules, even though
technologically superior.

EuroPLoP 2020, July 2020, Virtual Event, Germany N. Harutyunyan and D. Riehle

OSGOV-COMAPP-5. Communicate open source component
approval rules

Name Communicate open source component approval
rules

Actor OSPO (Open Source Program Office)
Context After → defining transparent rules for open

source component approval, it is necessary to
make the rules accessible to the employees, so
they can follow them during → component
search and → component selection.

Problem What are the best channels to communicate the
open source component approval rules?

Solution Communicate open source component approval
rules using a variety of channels:

● transition board’s → communication
channels for open source governance
handbook

● multi-purpose internal
communication channels, such as
intranet, wikis, forums, etc.

● open source governance tools
integrated into development
toolchain.

It is also recommended to communicate the
details of the policy through employee trainings
that include other topics around open source
governance.

Conse-
quences

By communicating open source component
approval rules, the OSPO:

+ explicitly announces the newly
established open source component
review rules for software developers,
decreasing the unnecessary
complexity of the informal
governance and sending the message
on a new structured approach for
governance

- creates additional overhead for
software developers as they need to
familiarize themselves with the new
rules and may need additional
training.

OSGOV-COMAPP-6. Make a component approval decision

Name Make a component approval decision
Actor OSPO (Open Source Program Office)
Context Software developers → file component

approval requests to OSPO. OSPO → reviews
component approval requests. Now OSPO needs
to make a decision whether to approve or reject
the use of the given open source component in
the product.

Problem How should OSPO make a decision about
component approval requests?

Solution OSPO must first double check if the component
can be automatically approved or rejected. This
applies only to the previously used license/use
case pairs, meaning the requested open source
license has already been used in the requested
use case. OSPO refers to its → defined rules for
open source component approval and its
previous → decisions added to component
repository.

The following decisions are taken:

• if open source licenses contradict the
company’s open source governance
policy for all use cases, then the
component is automatically rejected

• if open source licenses/use case pairs
contradict the company’s open source
governance policy, then the
component is automatically rejected

• if open source licenses/use case pairs
correspond to the company’s open
source governance policy, then the
component is automatically approved.

For situations where the open source license
and/or the use case are new to the company,
OSPO needs to → analyze code for license
compliance, while assessing its use case. After
this OSPO (supported by the legal department)
must decide if the new license/use case pair
corresponds to the company's open source
governance policy. To decide OSPO hears the
assessment of its legal and business decision-
maker members. OSPO also → reviews open
source component use in context of product
architecture. Once an approval or rejection
decision has been made, OSPO → adds this
decision to component repository.

The developer who submitted the component
approval request can → appeal a component
approval decision to the Open Source Program
Officer.

Conse-
quences

By making component approval decisions, the
OSPO:

+ employs open source component
review automation when possible,
which leads to reduced overhead for
software developers and other
stakeholders

+ follows the pre-defined rules for the
manual review cases, thus rendering
the decision making more objective
and acceptable to the requesting party

- adds considerable overhead for the
case-by-case review of complex
requests.

OSGOV-COMAPP-7. Appeal a component approval decision

Industry Best Practices for Component Approval in FLOSS
Governance

EuroPLoP 2020, July 2020, Virtual Event, Germany

Name Make a component approval decision
Actor Developer
Context OSPO → reviews component approval requests

and → makes approval or rejection decisions.
However, OSPO can make mistakes, so
developers need a channel to appeal component
rejection decisions.

Problem How can a developer appeal OSPO’s component
rejection decision?

Solution Developers can appeal OSPO’s component
rejection decision to the Open Source Program
Officer. This appeal must at least include:

- open source component information
- license/use case assessment by the

developer
- argumentation for the appeal.

Open Source Program Officer reviews the
appeal, consults with other members of the
OSPO, legal, and business management if
needed. The Open Source Program Officer then
makes a final decision and sends it to the
developer.

If the decision is different from OSPO’s original
decision, OSPO → adds this decision to
component repository.

Conse-
quences

By making component approval decisions, the
OSPO:

+ deals with the outlier or special cases
and ensures that the decision making
remains aligned with the production
goals and requirements, even when
the open source component review is
controversial

+ adds the necessary flexibility to the
open source component review
process and ensures that the semi-
automated decision-making process is
not merely a formality

- can create conflicts or unnecessary
escalations with software developers
with a strong inclination of using an
open source component that is
ultimately rejected.

OSGOV-COMAPP-8. Communicate component approval
process

Name Communicate component approval process
Actor OSPO (Open Source Program Office)
Context After → defining the component approval

process, it is necessary to make the process
accessible to the employees, so they can follow
it.

Problem How should you store and share the used open
source components, their metadata and reuse
information across the organization?

Solution Communicate open source component approval
process using a variety of channels:

• transition board’s → communication
channels for open source governance
handbook

• multi-purpose internal
communication channels, such as
intranet, wikis, forums, etc.

• open source governance tools
integrated into development
toolchain.

It is also recommended to communicate the
details of the policy through → employee
training that includes strategic topics around
open source governance and → employee
training that includes specialized topics around
open source governance.

Conse-
quences

By communicating the component approval
process (similar to the pattern on
communicating the component approval rules),
the OSPO:

+ explicitly announces the newly
established open source component
approval process replacing the
previously informal governance

- creates additional overhead for
software developers and other
stakeholders of the process, which can
require additional education and
coordination.

OSGOV-COMAPP-9. Implement component approval process

Name Implement component approval process
Actor OSPO (Open Source Program Office)
Context After → defining component approval process

and → communicating component approval
process, OSPO needs to implement the
component approval process and transition
towards this institutionalized approach.

Problem How can OSPO implement a component
approval process?

Solution You implement the established process that
covers the essentials of the component approval
process. OSPO implements the process
gradually, first introducing the overall process
to the affected team, then demonstrating an
example of filing and reviewing an approval
request. The decision-making rules are
explained to the affected developers. Along the
way, Q&A sessions and discussions between
developers and OSPO ensure a smooth
implementation and process evaluation. The
end goal of the process implementation is to
ensure that developers understand the changes
introduced by this handbook, as well as the
motivation behind these changes.

EuroPLoP 2020, July 2020, Virtual Event, Germany N. Harutyunyan and D. Riehle

Conse-
quences

By implementing the component approval
process, the OSPO:

+ operationalizes the newly defined
process and integrates it into the
existing workflows of the company,
which results in an efficient
application of the process while
minimizing the disruptions to the
production

- can result in unexpected disruptions
to software development if done
carelessly and without the
engagement of the affected
stakeholders.

OSGOV-COMAPP-10. Provide approval request templates

Name Provide approval request templates
Actor OSPO (Open Source Program Office)
Context After → defining component approval process

and → communicating component approval
process, developers start using the process. The
first step is for developers to → file component
approval requests.

Problem How can OSPO make it easier for developers to
file component approval requests?

Solution To make it easier for developers to → file
component approval requests OSPO can:

• create and provide approval request
templates

• integrate approval request templates
in tools as part of overall development
toolchain.

The template needs to have only the essential
information of the request, including:

• name and ID of the developer
• name and ID of the organizational unit
• component approval checklist needed

to → file a component approval
request:

o Component ID
o Component name
o Component address /

location
o Product / Project ID
o Product version
o Product / Project name
o Open source license name
o Multiple licenses (y/n)
o Open source license version
o Copyright holder
o Linkage type to the rest of

the (software) product (e.g.
dynamic or static)

o Use case (e.g. internal use
only, to be directly
distributed as part of the
product, used to compile
software to be distributed as
part of the product)

o Has the component (with its
unchanged license and
version) been used in the
company before (can be
automatically identified)

This template needs to be automated and pre-
filled to the extent that it is possible using tool
integration and open source governance tools
(e.g. license scanners, software component
management tools, etc.).

Conse-
quences

By providing approval request templates, the
OSPO:

+ creates a standardized and easy-to-
follow way of conforming with the
newly established open source
component approval process, which
saves employee time and overhead

+ ensures that the newly established
open source component approval
process is followed even if some
employees did not receive the training
on the process

- can end up receiving incomplete data
and/or metadata on the given open
source component, if the template
does not explicitly request it.

OSGOV-COMAPP-11. Analyze code for license compliance

Name Analyze code for license compliance
Actor OSPO (Open Source Program Office)
Context Software developers → file component

approval requests to OSPO. OSPO → reviews

Industry Best Practices for Component Approval in FLOSS
Governance

EuroPLoP 2020, July 2020, Virtual Event, Germany

component approval requests. During the
review, you need to assess license compliance.

Problem How can OSPO analyze the requested code for
license compliance?

Solution OSPO needs to look at the open source licenses
and the use case of the component from the filed
component approval requested in the
component approval request. It also needs to
look at the open source licenses declared in the
checklist by the developer in the submitted
component approval requested. OSPO then
needs to analyze the source code of the open
source component to verify if all the open
source licenses are correctly identified in the
checklist. This includes checking the precise
license text and whether it has been modified.
This affects license compliance and the resulting
obligations for the company. If all the licenses
are correctly identified, OSPO needs to assess
the code for license compliance with company
policy using its → defined rules for open source
component approval.
If other open source licenses are identified in the
component, each needs to be assessed for license
compliance using the → defined rules for open
source component approval or individual case
by case analysis for the new license/use case
pairs. Moreover, OSPO needs to assess the
license compliance of license mixtures to avoid
incompatible open source licenses and
communicate to the developer what problems
were found in the application, so that the
developer learns how to check more effectively.
When analyzing code for license compliance,
OSPO should employ open source code/license
scanners and other open source governance
tools to ensure efficiency.

Conse-
quences

By analyzing code for license compliance, the
OSPO:

+ aligns the governance process for
open source license checking and that
for open source component approval,
which results in a more coordinated
and efficient approach to using open
source in products

- lengthens the duration of the review
due to the need for additional license
scanning, even though the component
might not be ultimately used in
products.

OSGOV-COMAPP-12. Review use in the context of product
architecture

Name Review use in the context of product
architecture

Actor OSPO (Open Source Program Office)

Context Software developers → file component
approval requests to OSPO. OSPO → reviews
component approval requests. During the
review, you need to assess how the open source
component fits into the product architecture.

Problem Open source components will become part of
the product architecture. Different
interdependencies that are created can affect the
component approval process because of the
interactions between licenses. How should
OSPO review the use of open source
components as part of product architecture?

Solution OSPO needs to assess the technical and legal
effects of adding an open source component to
the product architecture. Technical issues
include whether the open source component can
be easily integrated once approved. Legal issues
include whether the integration of the open
source component under its current license is
not problematic now or will not be problematic
in the future (e.g. in terms of open source license
compatibility or mixing licenses).

OSPO inherited the initial product architecture
from the getting started process after →
running open source use analysis in products
and → documenting current open source use.
OPSO can use open source governance tools to
simulate the effect of adding the requested
component into the current product
architecture. The results of this review feed into
→ reviewing a component approval request.

Conse-
quences

By reviewing the open source component use in
the context of product architecture, the OSPO:

+ aligns the software architecture
(software components, their data, and
interconnections) with the
governance process for open source
component approval, which results in
unified storage of the FLOSS-specific
metadata in the overall product
architecture, thus making its
documentation more efficient

- can introduce additional complexity
to the overall product architecture,
that might not be relevant to all the
employees using the product
architecture and thus negatively
impact its readability.

OSGOV-COMAPP-13. Add decision to component repository

Name Add decision to component repository
Actor OSPO (Open Source Program Office)
Context OSPO → reviews component approval requests

and → makes approval or rejection decisions.
Developers can → appeal a component
approval decision. Once that’s settled, the final

EuroPLoP 2020, July 2020, Virtual Event, Germany N. Harutyunyan and D. Riehle

approval or rejection decision must be
documented for future use and reference.

Problem How should OSPO document its component
approval or rejection decisions?

Solution OSPO needs to set up a component repository
based on the → documented current open
source use from the getting started process. This
component repository includes the relevant
information about all open source component
approval requests, including the data from the
filed request checklist. The repository includes
information on all the requests with both
approval and rejection decisions by the OSPO.
Each decision can have an optional memo to
explain the decision to the employees. The
repository should be open to the developers of
the company, so they can consult it before
making a new request, as the same license/use
case pair may have already been assessed in the
past. In the latter situation, the developer still
needs to make a formal request, however, it will
be automatically approved if the same
license/use case pairs have already been
approved in the past.
The repository needs to be searchable and easy
to use for developers and for OSPO. It should
have well-defined structure and be maintained
by OSPO, preferably supported by an open
source governance tool and using a common
(standard) format for such data (e.g. SPDX). The
latter can be useful for supply chain
management and outbound governance.

Conse-
quences

By adding decisions to the component
repository, the OSPO:

+ documents the log of open source
component use requests, approvals,
rejections, and the related metadata
and reasoning in a semi-automated
and consistent manner that can save
time in the future if another developer
(from any team at the company)
makes a similar request

- needs to maintain the component
repository and ensure its consistency
over time, as employees might make
incomplete or redundant requests.

5 Discussion and Conclusion
This study follows our previous work on the topic of inbound
open source governance focused on component reuse.
Leveraging the rich data from our qualitative survey, we
propose a theory of industry best practices of FLOSS
governance and component approval in this paper.
When it comes to FLOSS component review, tracking, and
approval, we found that companies should start by defining a
process that guides developers, managers, and other
stakeholders in selecting and evaluating the components to be

used as part of a product. Following the process definition for
component approval, companies should operationalize it by
setting up company guidelines and workflows that encompass
how approval requests are made, review decisions are
determined and documented. Our best practices address these
issues in detail.
Known uses are an important part of a pattern. We trace the
known uses of our proposed best practices to our data of expert
interviews, as well as other supporting literature both academic
and practitioner. Let’s discuss some examples of such known
uses below. The first best practice OSGOV-COMAPP-1. Define
the component approval process is an overview of the common
approach all companies had towards the issue of systematic
open source component approval. For example, an expert from
Company 2 (a small automotive supplier company) talks about
their process for component selection and approval. Given the
small size of their company, their process is not formalized
using checklists (common approach for the company), but
rather is part of the documentation process that employees have
to follow when using open source software in production.
Another known use for the same pattern was observed at
Company 6 (a large enterprise software vendor), where a whole
team of 4 full-time employees was working on open source
component review and approval. Given the much larger scale
of the company and its critical reliance on open source software
in products, the open source review team had a formal and
clearly defined process for component approval. As suggested
in the captured best practices, this process included filing
approval requests by software developers, reviewing such
requests and making approval decisions by the team after
checking for open source license compliance and the fit of the
component into the overarching product architecture. As yet
another known use of the pattern, the interviewed open source
governance expert from Company 9 (a large producer of both
hardware and software) presented their component approval
process, which was systematically integrated with the
outbound governance process. When checking an open source
component for use in products, the process would make sure
that the details of the component approval were documented
and checked in a manner that allowed for a quicker review of
the final product before the release (outbound review). Beyond
the known uses in the companies we studied directly, we also
found other known uses of the same best practices reported in
the literature. In particular, practitioner literature such as
corporate guidelines often confirmed our findings. Continuing
the example of the OSGOV-COMAPP-1. pattern, we found that
it was confirmed by leading FLOSS governance experts such as
Jeff McAffer (Director of Open Source Program Office) of
Microsoft and Ibrahim Haddad (VP of R&D, Head of Open
Source) of Samsung Research America. As for academic
literature, we found fewer known uses of our best practices
there, which was our initial expectation and reason for taking a
practice-oriented approach that would help capture the state-
of-the-art practices in the industry yet unreported by
researchers. However, an example of a known use from the
academic literature is Koltun’s paper on FLOSS compliance [8],
which provided some known uses for our best practices
OSGOV-COMAPP-6. Make a component approval decision,
OSGOV-COMAPP-11. Analyze code for license compliance, and
OSGOV-COMAPP-12. Review use in the context of product

Industry Best Practices for Component Approval in FLOSS
Governance

EuroPLoP 2020, July 2020, Virtual Event, Germany

architecture. Namely, Koltun described how an Open Source
Review Board or OSRB of a company should make approval
recommendations for given open source components, as well as
guidance on checking open source license compliance and
reviewing how such a component would fit the overall product
architecture.
Another important property of the patterns we propose is their
interconnection both hierarchical and sequential. Using the
latter, we defined exemplary workflows consisting of some of
the discovered best practices. Such workflows can enable
practitioners to apply our findings in an industry context with
some adjustment and specification. Figure 1 and Figure 2
illustrate two examples of process templates for open source
component approval.

6 Research Limitations
We recognize that our study has some limitations and follow
Guba [10] in assessing the trustworthiness of our research
through the quality criteria of credibility and dependability.

Credibility is the degree to which we can establish confidence
in the truth of our findings in the context of the inquiry. To
ensure credibility during data collection we conducted our
interviews iteratively, adjusting our semi-structured interview
questions based on the company's context and on our
experience with earlier interviews.
Dependability is the degree of consistency of the findings and
traceability from the data to the results. We ensured
dependability by collecting and saving raw interview data,
documenting our qualitative data analysis in different stages of
the coding, and by documenting our analysis in a manner that
allows tracing each best practice in our theory to its origin in
the data.

ACKNOWLEDGMENTS
This research was funded by BMBF’s (Federal Ministry of
Education and Research) Software Campus 2.0 project (OSGOV,
01IS17045-17570). We would like to thank our colleagues and
the anonymous reviewers for their feedback. We would also
like to thank our industry partners that provided their valuable
time and expertise for this research project.

Figure 1. An example of a workflow diagram for FLOSS Governance and Component Approval - Process Template A

Figure 2. Another example of a workflow diagram for FLOSS Governance and Component Approval - Process Template B

REFERENCES
[1] Ardagna, C. A., Banzi, M., Damiani, E., & Frati, F.: Implementing open source

software governance in real software assurance processes. In International
Conference of Software Business. Springer, 103–114 (2010)

[2] Berglund, E., Priestley, M.: Open-source documentation: in search of user-
driven, just-in-time writing. In Proceedings of the 19th Annual International
Conference on Computer Documentation. ACM, 132–141 (2001)

[3] Brown, A. W., Booch, G.: Reusing open source software and practices: The
impact of open-source on commercial vendors. In International Conference
on Software Reuse. Springer, 123-136 (2002)

[4] Fendt, O., Jaeger, M., & Serrano, R. J.: Industrial experience with open source
software process management. In 2016 IEEE 40th Annual Computer Software
and Applications Conference (COMPSAC), volume 2. IEEE, 180–185 (2016)

[5] Fichman, R. G., Kemerer, C. F.: The Assimilation of Software Process
Innovations: An Organizational Learning Perspective, Management Science
(43:10), 1345-1363 (1997)

EuroPLoP 2020, July 2020, Virtual Event, Germany N. Harutyunyan and D. Riehle

[6] Fink, A.: Analysis of qualitative surveys. In: The survey handbook, 61–78.
SAGE Publications, California (2003)

[7] Fitzgerald, B.: The transformation of open source software. MIS Quarterly,
587–598 (2006)

[8] German, D. & Di Penta, M.: A method for open source license compliance of
java applications. IEEE Software, 29(3), 58–63 (2012)

[9] Glynn, E., Fitzgerald, B., & Exton, C.: Commercial adoption of open source
software: an empirical study. In 2005 International Symposium on Empirical
Software Engineering: IEEE (2005)

[10] Guba, E. G.: Criteria for assessing the trustworthiness of naturalistic
inquiries. In: Educational Technology Research and Development, 29(2), 75–
91 (1981)

[11] Harutyunyan, N., Bauer, A., & Riehle, D.: Industry requirements for FLOSS
governance tools to facilitate the use of open source software in commercial
products. Journal of Systems and Software, 158 (2019)

[12] Harutyunyan, N., Bauer, A., Riehle, D.: Understanding Industry
Requirements for FLOSS Governance Tools. In: IFIP International
Conference on Open Source Systems, 151-167 (2018)

[13] Harutyunyan, N., Riehle, D., & Sathya, G.: Industry Best Practices for
Corporate Open Sourcing. In Proceedings of the 53rd Hawaii International
Conference on System Sciences (2020)

[14] Harutyunyan, N., Riehle, D.: Getting started with open source governance
and compliance in companies. In Proceedings of the 15th International
Symposium on Open Collaboration. ACM, 1-10 (2019)

[15] Harutyunyan, N., Riehle, D.: Industry best practices for open source
governance and component reuse. In Proceedings of the 24th European
Conference on Pattern Languages of Programs, 1-14 (2019)

[16] Hauge, Ø., Ayala, C., & Conradi, R.: Adoption of open source software in
software-intensive organizations-a systematic literature review. Information
and Software Technology, 52(11), 1133–1154 (2010)

[17] Jansen, H.: The logic of qualitative survey research and its position in the field
of social research methods. In: Forum Qualitative Sozialforschung/Forum:
Qualitative Social Research, 11(2) (2010)

[18] Koltun, P.: Free and open source software compliance: An operational
perspective. IFOSS L. Rev., 3 (2011)

[19] Link, C.: Patterns for the commercial use of open source: legal and licensing
aspects. In Proceedings of the 15th European Conference on Pattern
Languages of Programs. ACM (2010)

[20] López, L., Costal, D., Ayala, C. P., Franch, X., Annosi, M. C., Glott, R., &
Haaland, K.: Adoption of oss components: a goal-oriented approach. Data &
Knowledge Engineering, 99, 17–38 (2015)

[21] Radcliffe, M., Odence, P.: The 2017 Open Source Year in Review. In: Black
Duck Software, DLA Piper. (self-published presentation) (2017)

[22] Riehle, D., Harutyunyan, N.: Open-Source License Compliance in Software
Supply Chains. In Towards Engineering Free/Libre Open Source Software
(FLOSS) Ecosystems for Impact and Sustainability. Springer, 83-95 (2019)

[23] Riehle, D.: Lessons Learned from Using Design Patterns in Industry Projects.
In: Transactions on Pattern Languages of Programming II, LNCS 6510.
Springer-Verlag, 1-15 (2011)

[24] Ruffin, C., Ebert, C.: Using open source software in product development: A
primer. In: IEEE Software, 21(1), 82-86 (2004)

[25] Weiss, M.: Profiting even more from open source. In Proceedings of the 16th
European Conference on Pattern Languages of Programs. ACM (2012)

[26] Weiss, M.: Profiting from open source. In Proceedings of the 15th European
Conference on Pattern Languages of Programs. ACM (2010)

