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dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen,
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Abstract

Software licenses play a critical role when developing applications containing open
source dependencies. To avoid legal risks, a proper management of these depend-
encies is necessary and with an increasing number of third-party dependencies in
commercial products, license compliance becomes very difficult. Product Model
Toolkit helps combining multiple license relevant information into one unified
model to derive license compliance artifacts, like the software bill of materials.

For data gathering, Product Model Toolkit uses multiple existing license scan-
ners. It encapsulates these tools and their dependencies into separate Docker
containers. However, its implementation is only a preliminary solution and it
doesn’t ensure a straight forward integration of license scanners.

Considering the diverse technologies in which license scanners are implemented,
a technology independent approach is necessary to facilitate the integration of
such tools by defining them as plugins. This thesis presents a plugin architecture
based on Docker containers. By examining known plugin architecture models
we identify their common aspects as well as appropriate techniques to build a
powerful and efficient Docker-based plugin architecture. Its implementation in
the Product Model Toolkit proofs the feasibility of the proposed approach.
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1 Introduction

Software reuse is a common practice in software development and the phenomenon
of FLOSS has had a significant impact on this aspect. Today, open source de-
pendencies are widely accepted in software industry. However, this also raises
serious concerns. Cox argues that developers “do not yet understand the best
practices for choosing and using dependencies effectively, or even for deciding
when they are appropriate and when not” [Cox19]. Reuse of open source soft-
ware involves an ongoing consideration of associated risk factors. One of them is
license compliance. Bauer et al. state that proper management of open source
dependencies is necessary to avoid legal issues arising from license noncompli-
ence [Bau+20]. The use and development of suitable tools play in this context a
key role.

Various highly useful tools such as license scanners are available to allow software
vendors extract significant information concerning software dependencies from
their applications. Executing each of these tools individually to subsequently
benefit from their generated data implies unnecessary effort. An instrument
that automates these tasks is therefore beneficial and Product Model Toolkit
(PMT) [Ope] proves to be effective in this regard. PMT allows integration of
license and other critical information into a unified model. It contains a server
application that can generate license compliance artifacts, e.g. software bill of
materials (SBOM), and store component graphs into a database. Moreover, PMT
also includes a client application that can run license scanners or other useful tools
inside Docker containers. It then captures the generated files and sends them to
the server. However, the current implementation of the PMT client application is
only a temporary solution. It has certain drawbacks which make the application
error-prone and unstable.

The goal of this master thesis is to provide a technology independent approach
that facilitates the integration of scanner tools into the PMT client application.
This implies building an extensible system which allows the user provide addi-
tional functionality and enhance the application. The plugin architecture pattern
is in this context the optimal approach for building such a system. But this raises
a number of questions which are outlined below.
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• What are the principles, characteristics and limitations of the plugin archi-
tecture pattern?

• How does the interface between the system and plugins look like?

• Which responsibilities lie with the system and which with the plugins?

• Considering the aspects of Docker container technology, how to define Docker
containers that encapsulate scanner tools as plugins?

• Which constraints may Docker container technology impose when using the
plugin architecture pattern?

In this master thesis we aim to address all above mentioned questions and finally
build a powerful, efficient Docker-based plugin architecture. First, we create an
architecture model that serves as a technology independent approach in combin-
ing the plugin architecture pattern and the Docker container technology. Second,
we implement this architecture model in the PMT client application to prove its
feasibility and reveal the capabilities and limitations of the architecture.

1.1 Outline

The outline of this master thesis is based on the structure of an engineering thesis:

• Chapter 2: State of the Art explains the basic aspects of the plugin archi-
tecture pattern. It also describes the fundamentals of the Docker container
technology and highlights the initial state of the PMT client application to
have a better understanding of the requirements for the architecture.

• Chapter 3: Requirements delineates the requirements for the new Docker-
based plugin architecture.

• Chapter 4: Architecture Design describes the design phase of the architec-
ture development. It also strictly reflects the established requirements.

• Chapter 5: Implementation provides details on the implementation phase
of the architecture development including the encountered challenges and
the applied solutions.

• Chapter 6: Evaluation discusses the fulfillment of the established require-
ments.

• Chapter 7: Conclusion includes final thoughts on the entire development
of the Docker-based plugin architecture.
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2 State of the Art

In this chapter we discuss multiple prominent plugin architecture systems to un-
derstand the common aspects of what a plugin architecture consists of. We select
three examples and start with describing their basic concepts in Section 2.1. The
capabilities and limitations of the plugin architecture pattern are then outlined in
Section 2.2. The fundamentals of Docker technology are explained in Section 2.3
and the initial state of PMT client application is finally described in Section 2.4.

2.1 Current Plugin-Based Systems

Birsan [Bir05] describes in his paper a pure plugin architecture based on ex-
perience gained from Eclipse IDE project1. The general idea is to decouple an
application into multiple standalone plugins. In this case, plugins are no longer
typical addons that extend the functionality of a host application, instead, the
application consists entirely of plugins as shown in Figure 2.1.

Host Application

Plugin Plugin Plugin

Runtime Engine

Plugin Plugin Plugin

Plugin Plugin

Figure 2.1: Traditional plugin system (left) vs. pure plugin system
(right) [Bir05]

This allows to create a flexible and extensible system which is described as follows.
The host application or the kernel is merely a runtime engine that is respons-

1https://www.eclipse.org/eclipseide/
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ible to start and run the plugins, whereas it includes no end user functionality.
A framework defines the structure of plugins and how they interact with each
other. An important feature of this architecture is the extensibility of plugins,
meaning that each plugin can become a host for other plugins. For this purpose,
plugins offer hook points or so called extension points that have precise definition.
This way, it is possible to establish contractual obligations between plugins. To
identify the currently installed plugins, kernel maintains a plugin registry that
provides information on the installed plugins and their functions. Each plugin is
responsible to search, identify and run its extenders.

Richards [Ric15] presents a further architecture model which he refers to as mi-
crokernel architecture pattern. The basic concepts of this example are similar to
those of the first example, whereas the author uses a few distinct terms. This
model contains a core system and the plugin modules. The core system is re-
sponsible for making the system operational and includes only minimal or general
functionality. The plugins include custom code and provide additional function-
ality. Therefore, it is possible to extend the core system and, as a result, the
application becomes more complex. The author suggests to reduce the number
of dependencies between the plugins as much as possible to avoid any issues with
data exchange. A plugin registry is also present.

Figure 2.2 shows an implementation example of a business application based on
the microkernel architecture. In this case, an insurance company needs to pro-
cess the insurance claims based on individual regulations across different states.
The core system contains only essential functionality that is necessary to pro-
cess a claim, whereas each plugin holds individual rules for a particular state.
By decoupling the application, it is possible to create the plugins using custom
code separate from the core system. This allows to add, modify or remove state-
specific rules without affecting the rest of the application. In case of a single
and complex application, this realization would require a considerable amount of
effort and resources.

Claims Processing

NH Module

TX Module

GA Module

CA Module

NY Module

MA Module

Figure 2.2: Business application based on microkernel architecture [Ric15]

Similar to first example, Wolfinger et al. [Wol+06] also describe a plugin archi-
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tecture model based on Eclipse IDE project. The authors use .NET platform to
create a “more readable and easier to maintain” [Wol+06] approach by specify-
ing relevant data in source code. So called extension slots are hook points that
specify how other plugins must extend their functionality. The term extension
indicates the way a plugin contributes to a certain slot. The specifications of
extension slots and extensions must therefore correspond. This model also has
a plugin repository where all plugins are located. The system activates them
at startup. Authors created a platform called CAP.NET to confirm their plugin
architectural concepts. Its basic components are depicted in Figure 2.3. For more
implementation details see their paper [Wol+06].

U
pd

at
e 

M
an

ag
er

 

Plug-ins 

Workbench 

Se
cu

rit
y 

Platform Core + Plug-in Registry 

Web Interface

Figure 2.3: Architecture overview of CAP.NET platform [Wol+06]

Richards [Ric15] mentions some benefits of using the plugin architecture model.
First, a combination with other architecture patterns is practicable. For example,
it is possible to embed plugin architecture as a standalone layer in the layered
architecture pattern, or use it to create an event processor component in the
event-driven architecture pattern. Second, it facilitates the incremental develop-
ment of software. Creating a core system with general functionality allows to add
new features to the program without the necessity of modifying the core system
significantly. This way, the application evolves incrementally with reduced effort.
Last but not least, it is possible to refactor a program created using the plugin
architecture pattern to another pattern whenever necessary.

2.1.1 Common Aspects of Plugin-Based Systems

In this chapter we outline the common aspects among the previously described
plugin architecture models in Table 2.1. We select the mutual components and
specify each plugin system’s approach to identify the similarities and differences
between the models.
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Common as-
pects

Birsan [Bir05] Richards
[Ric15]

Wolfinger
et al. [Wol+06]

Runtime engine
or core system or
platform core

Has minimal
functionality, e.g.
plugin registry
initialization,
resolving of plu-
gin dependencies;
optionally can
offer following
features: logging,
tracing and se-
curity; comprises
a small bootstrap
code and multiple
core plugins

Has minimal
functionality
to ensure that
application op-
erates correctly;
includes gen-
eral business
logic, whereas no
custom code is
permitted

Runs plugins in a
very controlled,
restricted and
consistent way;
provides a secur-
ity component for
managing rights
and roles of plu-
gins; includes life
cycle manage-
ment and update
mechanism for
plugins

Plugin registry Contains inform-
ation on installed
plugins and their
functions; cach-
ing can reduce
startup time
but makes the
application more
complex; plugin
manifest files
offer support for
plugin declara-
tion functionality

Contains in-
formation on all
plugins; includes
details like name,
data contract
and information
on remote ac-
cess protocol; a
WSDL may be
necessary if the
application uses
SOAP

No complicated
or error-prone
configuration;
has a central
storage called
plugin reposit-
ory; discovers
plugins simply
by searching
plugin reposit-
ory; provides
lazy-loading
support

Data exchange Runtime engine
provides an in-
terface which
other plugins
must implement;
plugins can also
define extension
points

OSGi, messaging,
web services,
object instanti-
ation; popular
data formats:
XML or Java
Map; adapters
for custom data
contracts

Slots declare
type of inform-
ation required
(names and
value ranges);
host defines
interface and
extension con-
tributor provides
implementation

Table 2.1: Common aspects among plugin architecture models

6



2.2 Pattern Analysis

A pattern analysis conducted by Richards [Ric15] indicates the potential of
the plugin architecture model, in terms of common architectural characteristics
among software architecture patterns. The high or low rating for each character-
istic is based on a typical implementation of the model.

• Overall agility. Rating: High

Software evolution is a key aspect of software engineering, as long as soft-
ware systems have to remain useful through environment transformations.
Newly emerged requirements, error detection as well as performance im-
provement are several reasons why software products have to be changed
following the initial deployment [Som11]. Given that a program created
using the plugin architecture pattern is decoupled into multiple standalone
plugins, it is possible to isolate the changes and implement them faster.
In the course of continuous software development, the core system usually
becomes stable very soon, therefore requiring only minimal adjustments in
the long term.

• Ease of deployment. Rating: High

This can be accomplished by introducing the hot plugging support to load
the plugins on the fly. As a result, the core system is not interrupted during
deployment.

• Testability. Rating: High

As previously stated, it is possible to isolate the changes to the plugins from
the core system. Analogously, standalone testing of the plugins can be well
performed, e.g. through mocking the functions of the core system.

• Performance. Rating: High

With a proper implementation, highly customizable programs created using
the plugin architecture pattern can achieve high level of performance. By
disabling the plugin modules that are no longer needed, CPU and memory
resources are used more efficiently by the rest of the program. For instance,
WildFly modular application (formerly JBoss AS)2, enables the user to
customize the server and use only the features that are necessary.

• Scalability. Rating: Low

Plugin architecture pattern is typically suitable for small-size applications.
As stated above, it is possible to ensure high scalability through extending
the plugins, however, this is not a common practice.

2https://www.wildfly.org/
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• Ease of development. Rating: Low

Considering the different elements and features required to build an applic-
ation using the plugin architecture pattern, such as the core system, plugin
registry, data exchange standards as well as the plugin granularity, makes
the development challenging.

2.3 Docker Container Technology

Containerization technology has been around for a long time before Docker con-
tainers came into being. A brief overview of its historical development is described
by Mouat [Mou15]. At first, a primitive form of file system isolation has been
offered by chroot command used on Unix systems, whereas FreeBSD’s jail utility
has later expanded chroot sandboxing to processes. In 2001, two proprietary
containerization solutions were introduced: Solaris Zones as part of Solaris OS
and Virtuozzo released by SWsoft (now Parallels). Virtuozzo was later open
sourced in 2005 as OpenVZ3. Subsequently, Google began developing CGroups
and then started running its software in containers. In 2008, Linux Containers
(LXC)4 combined CGroups, kernel namespaces and other mechanisms to offer a
full containerization system [Pou19]. Docker ultimately refined the technology in
2013 which has since become conventional.

Simply put, Docker containers may be viewed as a lightweight alternative of
virtual machines (VMs), whereas these approaches vary in the degree of virtual-
ization: hypervisor-based methods virtualize at hardware level and containers at
OS level [Mer14]. Although hypervisor-based virtualization allows direct access
to hardware, an OS is required for each VM, causing performance bottlenecks
when running numerous VMs. Docker, on the other hand, “can run hyperscale
numbers of containers on a host container because without a hypervisor, they
sit right on top of the operating system” [And15]. Compared to VMs, Docker
containers perform significantly better [Pot+20].

Besides consuming fewer resources than virtual machines, Docker containers offer
further advantages:

• Portability

Constructed Docker images can be copied from one machine to another and
run without any compatibility issues, therefore eliminating the famous “but
it works on my machine” argument [Mou15].

3https://openvz.org/
4https://linuxcontainers.org/lxc/
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• User environment consistency

Docker allows bundling an application with all its dependencies in a single
container. As a result, no further setup and configuration are required prior
to executing the application [Mou15].

• Union file system

By using copy-on-write mechanism, Docker is capable to build layers of
file systems and combine them to create a single instance of a file system.
If something needs to be added, e.g. a new application, another layer is
added on top instead of changing the whole image. Without affecting each
other, multiple containers can also share the same image and change data
separately. This is useful when a particular OS can be used by several
containers [And15; Mer14].

Docker architecture is based on client-server model and includes multiple com-
ponents which are described as follows. At its core lies Docker daemon that is
responsible for managing containers. Its essential capabilities include creating,
executing and distributing containers as well as controlling images, networks and
volumes. The most common method to communicate with Docker daemon is
to use Docker client. All commands specified by the user are transmitted to
Docker daemon using REST API. Images are kept in Docker registries, which
can be both public or private [Doca]. Figure 2.4 depicts the basic elements of the
Docker architecture.

Figure 2.4: Docker architecture overview [Doca]

Docker released its source code in 2013 under open source Docker project [Docb],
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which was renamed to Moby in 2017 [Jan18; Pou19]. It is a software collection
that contains all resources required to build container-based applications [MG18],
including the components depicted in Figure 2.4. Most of the code is written in
Go programming language5.

2.4 Product Model Toolkit (PMT)

PMT helps software developers to integrate critical license information and re-
lated metadata generated by license scanners into a unified model. It includes
a client that can perform scanning operations using already available scanner
tools. These external applications are bundled along with their dependencies
into standalone Docker containers. PMT is written in Go programming language.
Figure 2.5 shows a high level overview of the PMT client architecture.

Figure 2.5: PMT client architecture overview [Ope]

Although the client in its original state performs well, its implementation is only
a preliminary solution. The implementation drawbacks are explained as follows:

5https://golang.org/
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• Hardcoded configuration

The information on external scanners and the associated Docker images are
stored in the source code, which implies that any modification of that data
requires recompilation of code.

• Docker client is accessed using a shell command

To start a container, PMT client runs a shell command to access Docker
client installed on the OS, rather than directly executing Docker operations,
e.g. through a library. This makes the application unreliable and insecure.

• Result files are saved locally

A host directory is mounted in the container to obtain result files, then, the
files are loaded into the program. This has negative impact on performance
and, similar to prior issue, makes the application more OS-dependent.

• No error handling

If an application error occurs inside a container, no indication is given to
the user, thus making troubleshooting difficult.

• No loading of remote images

Docker images are imported manually into the local Docker registry before
the application start.

These implementation drawbacks makes the application error-prone, unstable
and also complicates the integration of new license scanner tools.
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3 Requirements

This chapter outlines the requirements for design and implementation of the
plugin architecture, compiled by analyzing common aspects of plugin architecture
models and problem domain.

R1: Programming Language Independent Architecture

The PMT client application uses external, standalone scanner tools for license
scanning, whereas each of these tools may be written in different programming
languages. It is therefore important to create a plugin architecture that accepts
such tools regardless of their implementation details. In this case, interoperability
between plugins and the core engine has to be provided to ensure exchange of
data, such as program inputs, outputs and results.

R2: Docker-Based Encapsulation of Plugins

Applications commonly have dependencies on other applications or libraries to
function properly. On top of that, versioning and configuration of such depend-
encies play a crucial role, since a mismatch can prevent an application to run suc-
cessfully. To prevent this, all external scanner tools including their dependencies
have to be encapsulated in Docker containers. This ensures correctly constructed
plugins function consistently on any Docker-enabled OS or platform.

R3: Core Engine with Minimal Functionality

All three previously reviewed plugin architecture models use a small, simple and
robust core engine (also called runtime engine, core system or platform core) that
has, as a rule, only minimal functionality to orchestrate the plugins and ensure
system stability, whereas any additional functionality is provided by plugins.

R4: Plugin Registry

Without information on available plugins or their location, the core engine is
incapable to load them. Such details have to be stored in a registry. It is import-
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ant to specify which metadata are relevant for a proper start and execution of
plugins. Moreover, the registry is an independent component and must be stored
to persistent memory, such as a file.

R5: Data Exchange

To allow data exchange between plugins and the core engine, it is necessary
to decide upon an appropriate data exchange approach. Considering the vast
number of different standards, protocols and data formats that are available, it is
important to examine the upsides and downsides of each of them. Furthermore,
the limitations of Docker containerization have to be taken into consideration as
well.

R6: Error Handling

Considering that the system may get very complex with increasing number of
installed plugins, it is necessary to facilitate the detection of possible errors and
be able to track them back to their source. In case of PMT client, errors may
occur not only internally, but can also originate from the Docker daemon or
the external, standalone scanner tools. Thus, the source of error should also be
distinguished.

R7: Configuration

Software configuration provides significant flexibility by simplifying the applic-
ation adaptation to various user needs or environments. The options can be
adjusted without recompiling the code [Say+18]. Considering different configur-
ation approaches, a proper solution has to be found. Besides, configuration is
necessary for the core engine as well as the plugin registry.

R8: Versioning

Like any other software unit, plugins may be updated periodically to remain
useful through environment transformations. As a result, the core engine must
support versioning to be able to prevent execution of outdated or incompatible
plugins.

R9: Parallel Execution of Multiple Plugins

To make effective use of multicore systems, the application should be able to run
plugins in parallel. Typically, a scanner tool only performs read operation on a
specified path, therefore, no interference may occur between the plugins, which
facilitates the implementation of parallel execution.

13



4 Architecture Design

To build an efficient and robust architecture, we first analyzed common techniques
of plugin architectures in Section 2.1. Than we considered the challenges and
limitations of container technology and how it can fit in a plugin architecture. The
architecture design reflects the requirements gathered by the previous analysis
processes.

The main aspects of the architecture design are a core engine, plugin registry,
and data transfer layer. These main aspects are shown in Table 2.1. In this
chapter we describe all aspects of the architecture design in detail and how they
work together as a complete system. It is critical to state that a plugin can be
in general any program or tool that extends the main application. To simplify
explanation, we utilize for our use case license scanners as example tools which
serve as plugins for PMT client.

4.1 Core Engine

The core engine represents the heart of the architecture and determines the re-
sponsibilities, as well as the functionality, of a minimal core engine and its plugins.
We design the core engine to be minimal and avoid unnecessary complexity. A
minimal core engine is easier to understand and maintain compared to a complex
system.

It is important to state that core engine does not know anything about license
scanning at all. It orchestrates all plugins in a way that the PMT client can use
several plugins without detailed information about the underlying technology of
a scanner or other plugin.

One important aspect of our design compared to traditional plugin architectures
is the plugins are independent of any specific programming language or techno-
logy. To cover the related requirements R1 and R2 we use Docker containers
as abstraction layer. Although the initial state of the program, as described in
Section 2.4, satisfies R1 and R2 sufficiently, their fulfillment in the course of devel-
opment is crucial. R6-R9 indicate additional core engine features, namely error
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handling, configuration, versioning and parallel plugin execution. These features
should add reliability and efficiency to the application.

We further divide the core engine into multiple distinct parts, each responsible
for particular tasks, and propose optimal methods and mechanisms for their
realization.

4.1.1 Container Creation and Execution

Plugins are based on Docker images and can include a fully operational license
scanner or any other tool that provides usable information needed for the product
model. Accordingly, core engine’s objective is allowing the user easily integrate
plugins into the application and expect a reliable, efficient and secure execution
of plugins such as scanner tools.

As described in Section 2.3, Docker daemon is responsible for handling contain-
ers’ life cycle and Docker client is the interface to communicate with the daemon.
According to Docker documentation, Software Development Kits (SDKs) and lib-
raries for communicating with Docker daemon are also available. They provide
an effective way “to build and scale Docker apps and solutions quickly and eas-
ily” [Doca]. Considering that PMT client and Docker are both written in Go, the
most suitable library to communicate with the Docker daemon is the Go client
package1 provided by Docker itself [Docb]. It is worth noting that PMT client
uses Docker command line interface (CLI) based on this package, therefore its
direct integration into the application yields performance improvement.

To run a Docker container, the application needs an image first. Two options
for obtaining Docker images are generally possible: locally and remotely. Docker
uses a local file system to store layers of images ready for use by pulling them from
a registry or loading them from an archive [Sar20]. A registry can be both local
or remote as well as public or private. To pull an image remotely from a registry,
authentication may be necessary. For instance, GitHub Packages registry requires
an access token even for public images [Git]. In this case, our core engine must
allow the user specify their authentication details for obtaining images from both
private or public registries.

When integrating a scanner tool into an isolated container, it is necessary to
consider the configuration aspects of that container. Generally, a license scanner
requires the path to the directory containing the software files and the path
to a location for saving the result files. Docker Go client package includes the
function ContainerCreate which provides numerous possibilities for configuring
containers [Docb]. Table 4.1 depicts Docker container configuration settings and
options that are highly relevant for our plugin architecture.

1https://pkg.go.dev/github.com/docker/docker/client

15



Settings / op-
tions

Description

Image The basis of a container; identifiable by a string that can
also include the hostname of the registry, the name of the
image and a tag that specifies its version

Bind mounts Critical for mounting directories into containers; read-only
mounts are also possible

TTY Necessary for allocating a pseudo-TTY connected to stdin
of container; combined with interactive option, Docker
creates an interactive shell inside the container [Jun20]

Command Mandatory for starting a new container; following its ex-
ecution Docker stops the container; it is possible to keep
the container up and running by using a shell as the initial
command, e.g. sh or bash

Table 4.1: Configuration settings and options for container creation

The initial state of PMT client compels the user to manually store images locally
before using the application. By including the registry hostname in the string
that identifies an image, the core engine is able to search for that particular image
remotely and pull it from the corresponding registry. This significantly facilitates
the integration of new plugins into the application. An example string that serves
as image identifier may look like this:

registry.example.com/path/to/license_scanner:v1.0

Every license scanner requires the path to a codebase as input, therefore it is
necessary to mount the specified directory into container. To add an extra layer
of security, the core engine mounts the directory as read-only to prevent scanner
tools altering any files.

According to Table 4.1 it is possible to keep a container up and running by using
the TTY option and a shell as the first command. Although a single command
can be sufficient for running a scanner tool, we consider that executing multiple
commands inside a container can be necessary, e.g. for troubleshooting purposes,
see Section 4.1.2. Therefore, the core engine is able to start a container and
consequently execute all commands separately from each other.

Each license scanner generates one or more result files that are saved locally on
the system. PMT client in its initial form mounts a host directory for saving the
generated files. This implies unnecessary dependency on OS given the result files
are sent to PMT server subsequently. On the other hand, we include this as an
extra feature that the user can enable or disable as needed.
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4.1.2 Error Handling and Logging

Lang and Stewart have long ago recognized that “component-based software
needs exception detection and handling mechanisms to satisfy reliability require-
ments” [LS98]. In a more recent paper, Liu et. al also state that “a system
without proper error-handling is likely to crash frequently” [Liu+17].

Our plugin architecture is based on multiple independent components, e.g. stan-
dalone Docker containers which encapsulate external scanner tools, external Docker
Go client library as well as Docker daemon. As a result, the user may not be
able to recognize the root causes of program faults without proper error handling
mechanisms.

Osman et. al study in their paper the evolution of exception handling in large
software projects and state that “exception handling allows developers to deal
with abnormal situations that disrupt the execution flow of a program” [Osm+17].
They classify exceptions into three types. Standard exceptions can occur when
using regular functions of a programming language; custom exceptions indicate
additional information about domain specific errors that developers may provide;
third-party exceptions can arise when calling functions from external libraries or
other systems.

In general terms, an exception is an error that arises unexpectedly during the
execution of an application [NVN19]. Various programming languages, e.g. Java
or C#, use an error handling mechanism that includes a special exception class.
The programmer can use the corresponding exception object to signal an error
in the program. Go, on the other hand, doesn’t comprise such mechanism, but
provides a built-in error type and also allows the programmer to return or receive
multiple return values.

To help user effectively troubleshoot the program errors and correct them, we use
the above categorization of exceptions. We introduce following analogous terms
to signal errors depending on their origin:

• Standard errors: originate from common Go functions within PMT itself,
e.g. file opening or saving or reading values of environment variables.

• Core engine errors: arise when core engine is not able to function prop-
erly due to misconfiguration or incorrect user input, e.g. invalid authentic-
ation credentials.

• External library errors: occur when using functions from external lib-
raries; core engine indicates the name of external library when signaling the
error, e.g. Docker client error.

Every new function that core engine comprises must therefore signal errors by
returning an error value where applicable. When using standard Go functions or
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calling functions from external libraries, the core engine must handle their error
values accordingly. It is critical to state how the core engine communicates the
errors to the user. We consider that printing messages that include the origin and
a brief description of the error to the console is sufficient. An example message
that signals an error may look like this:

Core engine signals a Docker client error: the specified image

does not exist remotely or locally , please check the image

name for typos

Previously mentioned error handling approach does not apply to license scanners
that run as standalone programs inside containers. We consider using logging for
this purpose. Reynders mentions that “application logging plays a crucial role
in tracking and identifying issues that may surface as well as in providing useful
insights on the workflow processes of solutions” [Rey18].

It is common that console applications may already provide useful information
by writing to output streams [Kir20]. When a program starts, a Linux or Unix-
like OS opens three data streams: stdin, stdout and stderr [Bot20]. As a rule,
applications communicate any errors by writing to stderr. We consider capturing
both stdout and stderr when executing a command and combine and write that
data into a log file. Subsequently, the user may examine the log file when a
problem occurs. The core engine creates the log file in a temporary directory
given by the OS and displays its path on the terminal. The contents of an
example log file may look like this:

stdout of command mv oldName newName

[empty]

stderr of command mv oldName newName

mv: cannot stat ’oldName ’: No such file or directory

We use Unix/Linux command mv2 to rename a file or folder named oldName to
newName inside a container. Following its execution, the command doesn’t write
anything to stdout, hence it’s empty, but signals an error by printing to stderr
and informs that no such file or folder named oldName exists. Analogously, the
user can examine the outputs of every command executed inside containers.

4.1.3 Configuration of Core Engine Settings

This section discusses configuration of core engine settings. For plugin registry
configuration see Section 4.2.1. Configuration helps user adapt an application
to their needs based on settings or options the application itself provides. We
consider including following settings in the core engine configuration:

2https://www.gnu.org/software/coreutils/manual/html node/mv-invocation.html#mv-
invocation
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• Authentication credentials

As mentioned in Section 4.1.1, an access token is necessary when using Git-
Hub Packages registry to pull images remotely, even for publicly available
images. The user must therefore provide their authentication credentials
in form of a username and a string that includes the password or token
depending on registry conditions.

• Setting for saving result files locally

This configuration setting comprises two elements. The first element is a
flag that indicates that user wants to receive result files locally in addition
to sending them to PMT server. When user enables this option, they may
consequently provide a path for saving the result files. If no path is specified,
core engine uses temporary directory given by OS.

• Path to directory for saving log files

When executing commands inside containers, core engine logs all messages
written to output streams and saves them in a log file for later examina-
tion. By default, core engine saves that data in temporary directory given
by OS. If user provides the path to a directory as attribute value of this
configuration setting, PMT client must use that directory for storing the
log files.

It is critical to discuss which representation is optimal for the configuration
file used by the core engine to store the settings. Rasool et. al mentions
following file formats for storing data: HOCON, JSON, OpenDDL, XML and
YAML. [Ras+19]. We consider JSON is the optimal choice for this purpose, as it
“makes it easy for human to read and write, and for computers to generate and
parse” [PCX11]. Although it has several downsides such as “lack of namespace
support, lack of input validation and extensibility drawbacks” [Nur+09], they do
not impair its applicability in this case.

4.1.4 Versioning of Core Engine and Plugins

Stuckenholz [Stu05] studied component evolution in component-based software
development and the related compatibility conflicts that may arise due to modific-
ations to components. He states that “versioning mechanisms are typically used
to distinguish evolving software artifacts over time” and also that “these mechan-
isms play an important role in component based software development” [Stu05].

A version indicates a specific state of an application or component. Thus, if
they change so does their associated version number. In our case, we have to
consider version handling in three different parts of the architecture: core engine,
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plugins and plugin registry. In this section we discuss versioning of core engine
and plugins, for versioning of plugin registry see Section 4.2.1.

We consider that core engine may be subject to continuous improvement in the
future. Ghezzi states that “requirements for a given application are only vaguely
known when a new development starts” and “they become progressively better
known as development proceeds, and in particular, as feedback information starts
flowing from customers and from operation” [Ghe17]. As a result, each specific
state of the core engine must be identifiable by its associated version number.
The reason for doing this is to inform the user of potential changes to the core
engine which they must take into consideration when creating or modifying their
plugins. For instance, a particular version of the core engine may not have any
constraints on which shell is used inside container, although a future version
may require a particular shell, e.g. bash, to function properly. We consider the
indication of such changes in a corresponding change log file is sufficient.

Each plugin is also identifiable by a version indicator which makes it noticeable
if a new version of a plugin is used. On the other hand, the specific execution
of an older version should also be possible. A plugin must therefore include the
version of the tool which it encapsulates and the version of the core engine it
corresponds to. Core engine must ensure the plugin can be loaded based on the
core engine version the plugin specifies.

4.1.5 Parallel Plugin Execution

One single plugin is not able to cover all aspects of a product. The execution
of multiple tools as plugins is therefore necessary. Considering that core engine
mounts the directory containing the target code repository as read-only, no in-
terference between plugins may occur. We therefore consider the possibility to
run the plugins in parallel to improve performance of the application.

4.2 Plugin Registry

Plugin registry has the responsibility to store and handle information about in-
stalled plugins. Although many plugin architecture models describe the plugin
registry as an integral part of the core engine, as mentioned in Section 2.1, R2
explicitly indicates that plugin registry must be an independent module.

The representation of our plugin registry is in essence a file that includes all
relevant information about prepackaged plugins. Then, plugin registry handler
imports that file during application startup and consequently provides various
associated functions that core engine can use. It is worth mentioning that in
general plugin registries can also be a public or company-wide service which
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can then be explored by the core engine. In the future, provisioning of the
plugin registry as a public service, filled with community plugins may be therefore
possible.

4.2.1 Representation of Plugin Registry

To store information about ready-to-use plugins a proper representation of plu-
gin registry is necessary. First, it is critical to consider which configuration file
formats are suitable for this purpose and, second, which attributes are most ap-
propriate.

As mentioned in Section 4.1.3, different file formats for configuration files are
available. We consider that two file formats, namely YAML and JSON are well
suited for our case. Both file formats are human-readable which plays a fun-
damental role considering that user creates configuration files manually. At the
same time, both file formats offer advantages and disadvantages. For instance,
YAML allows comments to be added by the user, whereas JSON doesn’t provide
this feature [GDB15]. In terms of serialization and deserialization, JSON outper-
forms YAML [SM12]. Finally, we prefer adding support for both file formats and
leave it up to user to choose the convenient file format.

It is important to discuss which metadata about plugins is necessary to include in
plugin registry. By analyzing the main functions of the core engine, we consider
following plugin metadata are significant for our Docker-based plugin architec-
ture:

• Name and version of the tool: are necessary to identify the plugin.

• Core engine version: helps the core engine determine whether the plugin
is compatible with its current version or not; the user specifies the actual
version at the time of plugin creation.

• Image: identifies the corresponding Docker image that core engine must
load for execution of Docker container; it may contain the registry hostname
as described in Section 4.1.1.

• Shell: indicates the shell necessary to start the tool.

• Command: is the actual command including the associated options and
parameters to execute the tool.

• Result files list: specifies the result files that core engine must receive
following the execution of the plugin.

The representation of the plugin registry also needs a version number to determine
the attributes of this representation. Based on the version number, core engine
can then determine if it can load the plugin registry specified as well as execute
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the plugins included. An example for such versioning is the version number in
Docker Compose files [Doca] or XML files [HKS02].

Plugin registry must also specify a default plugin which is then used by the core
engine in case user doesn’t indicate a plugin when executing the PMT client. An
example YAML configuration file that represents a plugin registry may look like
this:

version: R1.0

default_plugin: 1

plugins:

- name: Example Tool

version: 3.3.3

core_version: C1.0

docker_image: registry.example.com/path/to/example_tool:v3.3.3

shell: /bin/bash

cmd: example_tool -i /input/ -o /result/result.json

results:

- result.json

4.2.2 Plugin Registry Handler

This component is responsible for providing the core engine with all data and
corresponding functions necessary to orchestrate the plugins. It executes some
functions automatically at startup and other functions on demand:

• Check compatibility with specified configuration file (at startup)

• Import plugin metadata from YAML or JSON configuration file (at startup)

• Signal empty registry (at startup)

• Search for a plugin by its name

• Provide a default plugin

4.3 Communication between Core Engine and

Plugins

As described in Section 2.1, most plugin architecture models use same program-
ming language for core engine and plugins. As a result, a method from the core
engine can directly call another method from a plugin or vice versa. Moreover,
different standardized technologies exist that help developers create applications
based on plugin architecture, e.g. OSGi, but are limited to a particular program-
ming language [Ric+11]. Considering that our plugin architecture must not be
subject to such limitation, a universal approach for data exchange between core
engine and plugins is necessary.
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According to Docker documentation, communication between core engine and
plugins is possible in two different ways, namely by using network communication
or a special Docker command that can transfer files between containers and local
file system [Doca]. To provide more flexibility we consider utilizing both methods
and provide a configuration setting that can be adjusted by the user according
to their needs.

4.3.1 Network Communication

Paraiso et. al mention following binding technologies for plugin systems: HTTP,
JGroups, JMS, JNA, JSON-RPC, Java RMI, OSGi, REST, SLP, SOAP and
UPnP [Par+12]. Many of these technologies rely on a specific programming lan-
guage or file format, therefore we disqualify them and compare the remaining
ones, namely HTTP, REST, SLP and UPnP and consider that REST fits best
in our Docker-based plugin architecture as it “attempts to minimize latency and
network communication while at the same time maximizing the independence and
scalability of component implementations” [FT00]. REST is a software architec-
tural style for distributed systems which is also used by Docker daemon [Doca]
for its API as described in Section 2.3.

In our particular case, core engine must be able to communicate with plugins
in order to receive the generated result files. Although no further interaction
is currently necessary, this may change in the future. Therefore, we consider
building a simple REST API that plugins can use for sending result files as well
as for other prospective purposes.

We consider LabStack’s Echo web framework [Lab] written in Go is the optimal
choice for creating our REST API, which is also used by PMT server and therefore
doesn’t introduce a new dependency. Our REST API must include a single
HTTP method at the moment, namely POST; user may later add various HTTP
methods as necessary. The server must then check the result files enclosed in
plugin’s request if they correspond with specified result files in the plugin registry
configuration file, see Section 4.2.1. Following the receiving of result files, core
engine must also stop the running container and send the data to PMT server
and, if requested, save the data locally. To provide a reliable communication, we
must build the REST API in a blocking fashion, meaning that the application
waits until data transmission is completed.

For plugin side, a tool is necessary to send the results back to the core engine.
We choose the widely used curl command line tool for this purpose, which can
make “transfers for resources specified as URLs using Internet protocols” [Ste18].
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4.3.2 File Transfer between Container and Local Machine

As a second way to transfer files between the core engine and a plugin we can
utilize the CopyFromContainer function of Docker Go client package [Docb].
Following the execution of the tool, core engine can therefore use this function
to get the result files specified in the plugin registry. In case core engine cannot
find the specified result files, it must signal a corresponding error and inform the
user of a possible misconfiguration.

4.4 Plugin Compatibility Verification

Most plugin architectures, as described in Section 2.1, provide interfaces which
plugins must implement. An interface ensures that the corresponding implement-
ation strictly conforms to the defined contract, e.g. by implementing the specified
methods. This makes it easier for core engine to verify if plugins are compatible
with the program and it also helps to identify the cause of a fault execution of a
plugin. Considering that our plugins are basically external tools that run inside
Docker containers isolated from the core engine, an appropriate compatibility
verification is therefore beneficial.

We consider checking plugin compatibility at two stages. First, implicitly when
creating the container and, second, explicitly when it is up and running. As
described in Section 4.1.1, Docker first creates the container using the specified
image and configuration settings. At this point, Docker signals an error if con-
tainer creation is not possible, e.g. due to a corrupted image or inability to mount
directory into container.

At the next stage, namely when container is up and running, a compatibility
check is necessary to ensure core engine is able to execute commands inside
container. A basic command such as echo test can confirm that core engine can
execute commands and receive data printed to output streams stdout and stderr
as mentioned in Section 4.1.2. Moreover, in Section 4.3.1 we take advantage
of curl command line tool to send result files to core engine. Therefore, the
image must include this tool for plugin to function properly. We consider that
execution of a related command to test if the dependency within the plugin is
present without causing side effects is an appropriate solution. In case of curl we
call the command with the -V flag3 to return its version number. Depending on
prerequisites or dependencies required to run the plugins, a function that checks
all preconditions is therefore required.

3https://curl.se/docs/manpage.html

24



4.5 System Integration

As described previously, our plugin architecture comprises multiple components
each responsible for different aspects. At this juncture, we need to put these
components together and show how they function as a complete system.

Figure 4.1 depicts the fundamental building blocks of our plugin architecture and
particularly how Docker fits in. Core engine uses Docker Go client to commu-
nicate with Docker daemon which is in control of containers’ life cycle. Plugins,
in turn, consist of containers that include the external tools and all necessary
dependencies to ensure that they can properly fulfill their role in the application.
Two types of registry are present. Plugin registry includes all relevant metadata
about plugins. Container registry, on the other hand, is a remote repository where
images are located. Plugins can use REST API to send the generated result files,
whereas the server then saves the data into filestore which can be accessed by the
core engine. As a result, core engine can stop containers as quickly as possible
and not depend on them when sending result files to PMT server.

The fundamental interactions between components are shown in Figure 4.2. It
is worth mentioning that all messages in this sequence diagram are synchronous
which means that a response is necessary for the application to continue. This is
related to error handling mechanisms described in Section 4.1.2. Depending on
configuration of core engine, alternative scenarios and optional steps are possible.
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Figure 4.1: Fundamental building blocks of our Docker-based plugin architec-
ture
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5 Implementation

To prove the feasibility of our Docker-based plugin architecture designed in
Chapter 4, we implemented our architecture in PMT client. This chapter de-
scribes the different phases of the implementation including the challenges we
encountered as well as the corresponding solutions we applied to meet the afore-
mentioned design criteria and specified requirements. Before we started imple-
menting the architecture in PMT client, we forked the code repository to be
able to adjust the application without interfering with the rest of application
development. We then generated pull requests to submit our modifications.

It is worth mentioning that the implementation of PMT application is based on
Domain-Driven Design (DDD) which has the aim of creating “better software
by focusing on a model of the domain rather than the technology” [Eva04]. In
addition, DDD approach suggests using modules that “serve as named contain-
ers1 for domain object classes that are highly cohesive with one another” [Ver13].
As a result, PMT application consists of multiple packages2 that meet low coup-
ling, high cohesion principle for good modularization and are each responsible
for a particular concept. To conform to the current application’s structure, we
therefore considered creating a new package that includes all concerns regarding
plugins. Hereinafter we refer to the implementation of our Docker-based plugin
architecture as Docker-based plugin system.

We modeled our problem domain using UML. Figure 5.1 depicts a class dia-
gram that shows the structure of our Docker-based plugin system including the
attributes, methods and relationships among classes. It is important to state
that we removed retrospectively some helper methods and other details such as
method parameter data to make the class diagram easier to understand. Some
class names are abbreviated, e.g. core for core engine or agent for plugin agent.

In the following sections we describe in detail each class included in the package
individually and explain how their functions communicate with each other to
ensure a reliable and efficient execution of plugins.

1Do not confuse with Docker containers
2Evans also refers to modules as packages [Eva04].
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Plugin

Core
-coreConfig: struct

+StartCore(tool:string,regFile:string,inDir:string)
-loadCoreEngineConfig(): coreConfig, error
+LoadPluginRegistry(file:string): *Registry
-getRemoteRepoAuth(): string, error
-createLogFile(pluginName:string): string, error

Agent
-agent: interface
-agentCfg: struct
-execResponse: struct

-execPlugin(wg:*sync.WaitGroup): error
-execAllPluginCmd(...): error
-compatibilityCheck(...): error
-getExecResponse(...): execResponse, error
-stopContainer(...): error

Communication
-portNr: int

-getResultsFromContainer(...): error
-startServer(): error
-receiveResultFile(c:echo.Context): error
-saveResultFileLocally(...): error

Filestore
-filestore: struct
-resultsFilestore: []filestore

-initializeFilestore(length:int)
-saveResultFile(id:int,bytes:[]bytes)
-getResultFiles(id:int): [][]byte

Plugin
+Plugin: struct
+Config: struct

+String(): string

Registry
+Register: interface
+Registry: struct

+NewRegistry(file:string): *Registry, error
-importFromYamlFile(file:string): Registry, error
-importFromJsonFile(file:string): Registry, error
+Available(): []Plugin
+Default(): Plugin
+IsEmpty(): bool
+FromStr(name:string): Plugin, bool

 1

 1

 1

 *
 1

 *

 1

 *

plugins.yaml

plugins.json

core_engine_config.json

Figure 5.1: Class diagram representation of the plugin package
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5.1 Core Engine

Core engine is the central point of our plugin system which is responsible for
initializing all other components necessary to handle the plugins. It is critical
to mention that we initially designed the core engine to be in charge of directly
managing the plugins, as shown in Figure 4.2. In order to carry out the parallel
execution of plugins, see R9, we bundled the functions responsible for plugin
orchestration in a separate plugin agent class as described in Section 5.3.

How the plugin system exactly operates depends on core engine configuration.
We included a JSON configuration file that user can adjust according to their
needs. A segment of this file including the attributes and their default values is
shown below:

"RestApi ": true ,

"RemoteRepoUser ": "",

"RemoteRepoPass ": "",

"SaveResultsLocally ": true ,

"PathDirResults ": "",

"PathDirLogs ": ""

The user can change the first attribute to indicate if plugins must use REST
API to send the generated result files. If user disables this feature, plugin system
copies the generated result files directly from container, see Section 5.5. Consid-
ering that authentication may be necessary even for public images, the user must
therefore indicate their authentication credentials. We provided the possibility
to include them in the configuration file or by setting the environment variables
REMOTEREPO USER and REMOTEREPO PASS which adds an extra layer of security.
The function getRemoteRepoAuth is responsible for providing a corresponding
authentication string that Docker subsequently uses to pull a container from a
container registry. The user can also specify the path to a location for saving
result files or disable this feature completely. If no path is indicated, core engine
creates a folder in the temporary directory given by the OS; the same applies to
log files.

After reading the options and parameters specified by the user, PMT client calls
a single function named CoreStart to start the plugin system. This also holds
to the principle of low coupling. CoreStart function performs following tasks to
make the whole plugin system operable:

• Load core engine configuration

A special loadCoreEngineConfig helper function decodes the JSON con-
figuration file and reads the data inside. It also automatically creates new
directories for result files and log files when necessary.

30



• Load plugin registry

Core engine initializes plugin registry by creating an instance of Register
interface that provides all plugin registry operations.

• Initialize filestore

Depending on how many plugins user wants to execute, core engine initial-
izes filestore with corresponding amount of pointers to byte slices. This is
necessary for saving result files temporarily before sending them to PMT
server and therefore preventing the application from sending incomplete
results.

• Start selected plugins in parallel

At this point core engine uses WaitGroup3 type provided by Go itself to start
the plugins in parallel. Core engine runs the plugins in separate threads
and waits until all plugins finish their operation. To avoid conflicts that
can arise when accessing same resources, plugins system mounts the direct-
ory containing the codebase into container as read-only and uses separate
memory pointers for saving result files. Moreover, each plugin has its own
log file.

Finally, core engine also includes three functions that can be used by all plugins.
One is getRemoteRepoAuth that generates the authentication string required to
pull containers from container registries and two further functions for creating
and writing to log files.

5.2 Plugin Registry

Plugin registry provides the core engine with all information necessary for plugin
orchestration. It includes a Register interface that core engine instantiates using
the path to configuration file specified by the user. Registry type, on the other
hand, represents a plugin registry.

NewRegistry is the function that initializes the plugin registry by importing the
configuration file. Depending on the file format, it uses other helper functions
to import data from YAML or JSON configuration files and generates the cor-
responding variable of type Registry that includes that data. If the import is
successful, this function then checks whether its version is compatible.

Register interface provides the following functions

• Available: provides all available plugins by returning a list of Plugin

variables

3https://golang.org/pkg/sync/
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• Default: returns the default plugin as specified by the user in the config-
uration file

• IsEmpty: indicates whether plugin registry is empty or not by returning
the corresponding boolean value

• FromStr: searches for a plugin by its name and indicates with a boolean
value if plugin is not in the plugin registry

Except for helper methods, we made all functions in the plugin registry class
public. The reason for doing this is to allow the user examine which plugins are
available without starting the core engine. PMT client allows the user to use -l

flag to print a complete list of available plugins on the terminal.

5.3 Plugin Agent, Communication and Filestore

Plugin agent class is responsible for the complete life cycle of a plugin. It provides
a function named execPlugin that core engine calls to start the plugin execution
in a separate thread. This function then uses multiple helper methods to manage
the associated Docker container. Plugin agent class is highly cohesive with other
two classes, namely communication and filestore. In this chapter we describe
how the functions in these classes interoperate to ensure a reliable and efficient
plugin execution, whereas Figure 5.2 depicts an activity diagram which provides
a visual overview of the complete procedure.

First, plugin agent prepares the container. It checks whether the image exists in
the specified container repository and pulls it if found. If the image is not available
remotely or the image identifier does not include the repository hostname, it
searches Docker’s local file system for that image. It then uses ContainerCreate
function provided by Docker Go client to configure and create the container. At
this stage plugin agent mounts directory containing the target code repository as
read-only into container and also uses TTY option and the specified shell as the
first command to keep the container up and running when starting it.

After starting the container, plugin agent checks the configuration of core engine
if plugins must use REST API to send the generated result files or for other
related purposes. If this is the case, plugin engine starts the server by calling
startServer function in communication class. Consequently, this function opens
a free TCP/IP port to listen on and uses LabStack’s Echo web framework [Lab]
as mentioned in Section 4.3.1 for handling POST method requests. It is worth
mentioning that although this function runs in a separate thread for each plugin,
the server starts only once and all plugins use the same TCP/IP port to send
POST method requests. If REST API feature is disabled, then plugin engine
doesn’t start the server and proceeds to the next step.
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Figure 5.2: Activity diagram showing the complete behavior of plugin agent
running in a separate thread
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At this point container is up and running and plugin agent can start executing all
necessary commands inside. However, to ensure it can successfully do this, plugin
agent performs a compatibility verification as described in Section 4.4. It first
executes echo test to verify whether it is able to capture data printed to stdout
and stderr, see Section 4.1.2. Moreover, if REST API feature is enabled, plugin
engine then checks if curl command line tool is available inside container. After
checking the plugin compatibility, plugin engine creates a special folder where
plugin can save the generated result files. Finally, it executes the external tool.

Plugin engine must ensure at this stage it collects all result files as specified in
the plugin registry. If REST API feature is enabled, it executes curl command
for each result file inside container as shown below:

for i in /result /*; do curl -F name=[name] -F id=[id] -F

result=@$i http ://127.0.0.1:[ port]/save; done

In case REST API feature is disabled, plugin agent receives the result files by
running getResultsFromContainer function in communication class. It is im-
portant to note that no additional verification is necessary to check whether
filestore contains all result files as specified in the plugin registry because either
procedure implicitly signals an error in case a result file is missing.

Finally, plugin agent calls an external function in scanning package which sends
the result files to PMT server. Consequently, PMT client terminates.

5.4 Status and Error Messages

To facilitate the tracking of application progress in the course of its operation,
our plugin system displays status and possible error messages on the terminal.
During the implementation we also revised the error handling approach designed
in Section 4.1.2 so that status and error messages conform to the same structure.
Every message therefore includes the name of the class it originates from as well
as the name of the associated external tool if applicable and the actual message.
An example status message that originates from plugin agent is shown below:

[Plugin agent] [Licensee] Executing following command in

container: mkdir /result

The same structure applies to error messages, whereas they include a short de-
scription of the error as well as the original error message if it originates from
external library functions. As a result, error messages include more details as
initially discussed in Section 4.1.2. An example error message is shown below:

[Plugin agent] [Composer] Unable to pull image from container

registry , got following error: [...]
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Regarding the log files that include stdout and stderr data of each command ex-
ecuted inside containers, we chose to ignore empty outputs completely as opposed
to explicitly disclosing them in log files.

5.5 Tests

Jorgensen mentions two primary reasons for testing software which “are to make
a judgment about quality or acceptability and to discover problems” [Jor14]; he
also describes different approaches to test software. We used two approaches to
test our plugin system at two different levels, namely unit tests and system tests.

For each function that doesn’t depend on any external library we built unit
tests that comprise various test cases. As part of the PMT application’s CI
pipeline, GitHub Actions then runs the corresponding workflows to execute these
tests [Git; Ope]. This ensured the sustained operability of our functions during
the implementation of our plugin architecture. In total, 15 test cases that cover
9 functions in our package are included.

Although we could have created integration tests to test whether the components
of our plugin system properly interact with each other, which requires mocking
of external dependencies, in our case Docker Go client and Echo web framework
libraries, we chose to test this at a higher level, namely with system tests.

Considering that plugins created for our plugin system can generally be very
distinct from each other as they are equivalent to lightweight VMs that include
different applications, dependencies and even OSs, it is practically impossible
cover all test cases. We therefore performed system tests manually by building
multiple plugins which have various external tools that can run different opera-
tions on a codebase.

5.6 README

Prana et al. say that “README files play an essential role in shaping a de-
veloper’s first impression of a software repository and in documenting the soft-
ware project that the repository hosts”. [Pra+19]. In our case, it is critical to
provide documentation that properly describes how the user can create a plugin.
We included the following information in our README file:

• A brief description of our plugin system

• A figure that depicts the fundamental building blocks

• A step-by-step guide on how to create a plugin

• Further prerequisites, e.g. authentication credentials
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6 Evaluation

At this juncture we completed the design and implementation of our Docker-
based plugin architecture and in this chapter we evaluate the architecture and
its implementation by reviewing whether the specified requirements in Chapter 3
are met. We assess the fulfillment of each requirement individually.

R1: Programming Language Independent Architecture (3)

Our plugin architecture accepts plugins which consist of Docker containers that
encapsulate external tools. The implementation details of these tools, including
their programming language, execution environment or used dependencies, are
therefore abstracted as executable Docker containers. The successful operation of
external tools inside containers is the only premise for ensuring interoperability
between plugins and our plugin system. Hence, the tools inside a plugin can
be based on any programming language or technology and this requirement is
therefore satisfied.

R2: Docker-Based Encapsulation of Plugins (3)

As mentioned in Section 2.3, various containerization technologies exist that can
run applications including their dependencies inside isolated containers. This re-
quirement explicitly indicates that the architecture must support Docker-based
encapsulation of plugins. We designed the architecture to support Docker con-
tainers from the very beginning so it fully complies with this requirement which,
in essence, also represents the goal of this master thesis.

R3: Core Engine with Minimal Functionality (3)

Core engine is responsible for a reliable, efficient and secure execution of plugins
and this can easily lead to a very complex system. Therefore, this requirement
makes a good point in regard to complexity of the architecture. Core engine must
include only the necessary functionality to orchestrate the plugins and nothing
more than that. Except for one aspect which we later eliminated in the imple-
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mentation phase, see review of R8, we cannot find any further element of our
plugin architecture that we can omit and simultaneously ensure a failsafe oper-
ation. All building blocks of our plugin architecture as shown in Figure 4.1 or
functions included in our plugin package as outlined in Figure 5.1 are certainly
necessary to handle the plugins, therefore our core engine has minimal and at the
same time sufficient functionality to ensure a reliable orchestration of multiple
plugins and this requirement therefore is met.

R4: Plugin Registry (3)

This requirement is very specific regarding the details of the plugin registry: it
contains information about plugins, specifies which metadata are relevant and is
also an independent component. We strictly followed these criteria and designed
and implemented the plugin registry as a configuration file representation and ad-
ded support for both YAML and JSON file formats. The plugin registry handler
provides the core engine with all data and corresponding functions necessary for
plugin orchestration. We further suggested that public, community maintained
registries may be possible in the future.

R5: Data Exchange (3)

This requirement signifies a delicate aspect of the architecture. Considering the
execution of external tools inside isolated containers, a suitable data exchange
approach is necessary to ensure these tools can send the generated result files
to the application. Fortunately, Docker Go client provides the possibility to
copy files from container’s file system. But this functionality doesn’t allow a
reliable communication between plugins and core engine. In this case, network
communication is the only way to ensure platform independence. We compared
different standards and protocols and ultimately built a REST API that plugins
can use to easily communicate with the core engine, e.g. to provide the generated
result files or signal the status of an operation. Our plugin architecture supports
both approaches and therefore entirely satisfies this requirement.

R6: Error Handling (3)

With an increasing number of plugins which collectively perform various tasks,
the root cause of a possible disruption of plugin system operation can be very
difficult to determine without proper error handling mechanisms. We took this
aspect very seriously into consideration when designing and implementing our
plugin architecture and provided two error handling approaches. The first ap-
proach addresses errors that occur during plugin system operation internally, it
namely communicates to user all related details about their origin. The second
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approach involves logging the outputs of every command run inside Docker con-
tainers which facilitates the detection of plugin-related errors. These approaches
fully comply with this requirement.

R7: Configuration (3)

Our Docker-based plugin architecture allows the user to configure the applica-
tion according to various settings and options we provided, e.g. enable or disable
REST API, set authentication credentials or specify path to directory for saving
result files. We also analyzed multiple data representation formats to find the
suitable ones and added support for both YAML and JSON file formats as rep-
resentation of the plugin registry. The user can therefore use the one they prefer
most. This requirement is thus met.

R8: Versioning (7)

This requirement indicates that the architecture must support versioning in order
to determine whether plugins are compatible or not. In the design phase we
discussed version handling in three different parts of our architecture. Later in
implementation phase we omitted versioning of core engine as we considered that
this aspect is already covered when plugin agent performs plugin compatibility
verification. Nevertheless, we included versioning of plugins as this is necessary
to distinguish between different versions of containers when pulling them from
container registries and we also included versioning of plugin registry to prevent
loading of an unsupported representation in regard to its attributes. We consider
that our plugin system accomplishes the goal of this requirement but not its
specification as it doesn’t explicitly verify the plugin compatibility based on its
version.

R9: Parallel Execution of Multiple Plugins (3)

The fundamental idea behind the plugin architecture pattern is to support a
relatively high number of plugins that extend the functionality of application.
Our Docker-based plugin architecture is no exception as multiple plugins are ne-
cessary to cover all aspects of a product. Parallel execution of plugins allows
effective utilization of multicore systems and saves time. Considering that ex-
ternal tools perform only read-only operations on the codebase, this significantly
facilitated the implementation of this feature in our plugin system and improved
its performance. This requirement is therefore fully satisfied.
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7 Conclusion

At the very beginning of this master thesis we raised questions regarding the
characteristics of the plugin architecture pattern and how can we combine this
pattern with Docker containers to build an efficient plugin system that facilit-
ates the integration of individual tools into the PMT client application. In the
course of our development we considered all these questions and provided appro-
priate explanations and solutions. We were able to create an architecture model
that serves as a technology independent approach and subsequently reveal its
capabilities and limitations by implementing it in the PMT client application.

The complexity of our Docker-based plugin architecture plays a decisive role
in assessing its suitability for a particular system. In Section 2.2 we already
identified the difficulties in implementing the plugin architecture and mentioned
that it requires creation of multiple components such as a core engine, plugin
registry or communication mechanisms. This can make the implementation very
challenging. Therefore, software vendors should establish a trade-off with respect
to the number of plugins and the overall implementation effort. Our Docker-
based plugin architecture promises a flexible and efficient approach towards the
orchestration of a relatively high number of plugins.

As future work we consider that provisioning of plugin registries as a a public,
company-wide or even community maintained service can further facilitate the
management of open source dependencies in products. Instead of creating and
integrating each plugin separately, software vendors could simply use services
filled with already created plugins and directly run all associated operations to
extract significant information from their applications.
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