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In symbols one observes an advantage in discovery which is greatest when they expressed the 

exact nature of a thing briefly and, as it were, picture it; then indeed the labor of thought is 

wonderfully diminished.

In Symbolen beobachtet man einen Entdeckungsvorteil, der am größten ist, wenn sie die genaue Natur

einer Sache kurz zum Ausdruck bringen und gleichsam abbilden; dann wird in der Tat die Arbeit des 
Denkens wunderbar verringert.

— Gottfried Wilhelm Leibniz
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Integration of artificial intelligence and high performance computing

Use cases:
1. Using HPC technologies to execute and enhance AI performance.
2. Using HPC simulations to train AI algorithms.
3. Using AI algorithms to configure and autotune AI workloads or HPC simulations.
4. Using AI algorithms to analyse results of HPC simulations.
5. Using AI algorithms to learn from HPC simulations and produce learned surrogates.
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Workload-optimized Systems Requirements

Region defined by
LINPACK

Example of
a simple

Workflow path

Data Intensive
Applications

Compute Intensive
Applications

Floating Point
OPS

Integer
OPS

Low Spatial
Locality

High Spatial
Locality

• Real-world workflows test a broad range of 
system design points:

• Challenge is to determine the best design region 
boundaries

• Benchmarks are necessary but not sufficient …

• Need to examine workflows to get the full picture of 
requirements

• Need to understand how multiple workflows run 
simultaneously across system(s)
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Powerful Information: AI-enabled Science — a new Area of 
Computing 

Dimensions of data growth

Terabytes to 
exabytes of 
existing data
to process

Structured, 
unstructured,    
text, multimedia

Streaming data,                        
milliseconds to 

seconds to 
respond

Uncertainty
from inconsistency,            

ambiguities, etc.

Variety

Volume Velocity

Veracity

Data volume is on the rise

2010

Vo
lu

m
e 

in
 E

xa
by

te
s

Sensors 
& Devices

VoIP

9000

8000

7000

6000

5000

4000

3000
Enterprise 
Data

Social 
Media

2020
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On the Roads to Software Defined Environments (SDE)

Traditional

W1 W2 W3 W4

R1 R2 R3

• Few, stable, and well known 
workloads

• Fixed system hardware, manual 
scaling

• Hard-wired workload, minimal 
configuration

• Diverse workloads, limited 
patterns

• Homogenous resource pooling

• Expert configuration and mapping 
of workloads

• Rapidly changing workloads, 
dynamic patterns

• Dynamic automatic composition of 
heterogeneous systems

• Autonomic and proactive 
management

Current Future

V1 V2 V3 V4 V5 … Vn V1 V2 V3 V4 V5 … Vn

• Workload types are growing and becoming more flexible and diverse.
• Cloud infrastructure is becoming programmable to meet the requirements in efficiency and resiliency.
• Heterogeneity is increasingly present and important.



HUAWEI | MUNICH RESEARCH CENTER

10

Four Types of Parallel Architectures for Advanced Computing
Compute Intensive Data Intensive: Data 

at Rest
Data Intensive: 
Streaming Data

AI-enabled Science

Programming Language C/C++, Fortran, MPI, 
OpenMP, CUDA

Java, JAQL, Python SPL, C, Java C/C++, Python, UPC, 
SHMEM, MPI, OpenMP

Characteristics • Data is Generated
• Long Running
• Small Input
• Massive Output

• Data at Rest
• Low Velocity
• Mixed Variety
• High Volume

• Data in Motion
• High Velocity
• Mixed Variety
• High Volume

• Data is Moving
• Long Running
• All Data View
• Small Messages

Category • Network Dependent
• Structured 

Communication

• Embarrassingly Parallel
• Structured 

Communication

• Embarrassingly Parallel
• Random Communication

• Network Dependent
• Random Communication

Applications LINPACK Apache Hadoop / Key-
Value Databases

Apache Storm

Network Topology

Scaling Strong Weak Both

Cluster Stack Management Custom Diverse control systems N/A

Schedulers Slurm YARN, Mesos N/A

File System Cluster File-System Distributed across nodes (e.g. HDFS) POSIX or HDFS

Operating system RedHat / CentOS RedHat / CentOS Ubuntu

Reducers

Mappers

Input Data (on disk)

Output Data
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Applicability

Very Low

Low
Medium

High

Very High

Ignorable
N. A.

Sequence 
Alignment

Encryption & 
Decryption

Hashing

Checksum

Error Detection 
and Correction

Collision 
Detection

Finite Elements

Random 
Numbers

Pattern Matching

Routing

Scheduling

Principal Component 
Analysis

Traditional
Computing
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Very Low
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Medium

High

Very High

Ignorable
N. A.

Algorithms & Libraries

Image Processing

Clustering

Dimensionality 
Reduction

Classification

Conventional 
Neural Networks

Deep Learning 
Networks

Convolutional 
Neural Networks
Recurrent Neural 

Network
Deep Belief 
Networks

Machine Learning

Computer Vison

Intelligence Making 
Decisions

Sight Language and
Communication

Hearing SmellTasteTouch PainSixth
Sense

Creativity Humor

Instance-based 
Learning

General-Purpose 
Machine Intelligence

Contextual 
Computing

Deep Reinforcement 
Learning

Unsupervised 
Learning

Natural Language 
Processing

Translingual
Collaborative Spaces

Natural-Language 
Questioning Answering

Real-time Interpretation 
and Translation

Natural-Language 
Generation

Speech 
Recognition

Linear 
Regression

Search

Sorting

Merging

Compression

Graph

Optimization

Encryption

Analytics

Statistic and 
Stochastic

Hidden Markov 
Models

Bayesian 
Methods

Monte Carlo

Data Mining Recommendation

Decision Tree
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Implementation of end-to-end lifecycle in AI projects [Alake, 2020], [Sato et al., 2019]

Problem definition Research
Data aggregation, 

mining and 
scraping

Data preparation, 
pre-processing 

and augmentation

Model building, 
implementation 

and 
experimentation

Model training and 
evaluation

Model conversion 
(to appropriate 

format)
Evaluation Model deployment Monitoring and 

observability

C
od

e
M

od
el

D
at

a

• Problem statement
• Ideal problem solution
• Understanding and 

insight into the problem
• Technical requirements

• Data structure and 
source

• Solution form
• Model architecture
• Algorithm research
• Hardware requirements

• Data gathering 
(diverse, unbiased and 
abundant)

• Data reformatting
• Data cleaning
• Data normalization
• Data augmentation

• Usage of pre-trained 
models?

• Fine-tuning pre-trained 
models

• Training accuracy
• Validation accuracy
• Training loss
• Validation loss
• Underfitting or 

overfitting?

• Confusion matrix (error 
matrix)

• Precision-recall

• Refine and optimise 
model

• Model conversion
• Mobile-optimised model

• UI interface to access 
model functionalities

• Continuous integration 
pipeline that enables 
model redeployment

• Model performance 
monitoring system

Training code

Training data

Candidate models

Test data Metrics

Chosen model Offline model

Test code

Offline model

Application 
code

Code and model 
in production

Production dataRaw data Labelled data Test data
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Computation
MFLOPS/MIPS

Vector units

Compute Intensive Workloads Data Intensive Workloads Cloud Services

Network
Bandwidth, 

Latency
QoS

Memory
Bandwidth, 

Capacity, Latency

Linux Linux Linux

VMs and Containers

Resource 
Manager

Monitoring & 
Accounting

Programming 
Models

Math- and 
Scientific Libraries

Performance and 
Debugging Tools

Domain-specific Libraries

Programming Languages

Customer Applications

Distributed File System

MapReduce

Cross-Platform Runtimes

Composable Services

C
om

pute Intensive

D
ata Intensive

C
loud M

anagem
ent

Java, JavaScript, Python and Ruby

Catalog of Services

Compute 
Virtualization

Software Defined 
Networking

Storage 
Virtualization

Customer Applications Cloud Users

Computation
MIPS

Network
Latency

QoS

Memory
Capacity

YARN 

Deployment & 
Provisioning

Resource 
Manager

Monitoring & 
Accounting

Deployment & 
Provisioning

Parallel File System

Data Processing Services
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Linux

VMs and Containers

Cross-Platform Runtimes

Composable Services

C
loud M

anagem
ent

Java, JavaScript, Python and Ruby

Catalog of Services

Compute 
Virtualization

Software Defined 
Networking

Storage 
Virtualization

Cloud Users

Artificial Intelligence and Deep Learning Workloads

Compute Hardware

NVIDIA GPUs AMD GPUs Intel Xeon Phi FPGA ASIC

Linux

Libraries 

Linear Algebra BLAS, cuBLAS, Intel MKL, Eigen

Neural Network Algorithms 

Convolutional Neural Network (CNNs), Recurrent Neural Network (RNNs)

Deep Learning Frameworks

ISV and Macro Frameworks

Spark, Flink, KNIME, and other domain specific environments

Applications

Tensor Flow Caffe MindSpore PyTorch Minerva Chainer Microsoft CNTK Paddle … Mxnet

Artificial Intelligence and 
D

eep Learning

Robotic Process Automation Supply Chain / Inventory Dynamic Pricing Recommendation

Behavior AnalyticsSpeech & AudioVisual Object Recognition

IT Process Automation

Life Science
Oil & Gas

Manufacturing

Government

Retail
Legal

—
H

ua
w

ei
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fid

en
tia

l —
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Computers
“invented”

Computers
“available”

Workstations’

PCs GPUs

Powerful PDAs
Pervasive ubiquitous 
computing

Bandwidth, storage, 
compute universally 
available

1940 1950 1960 1970 1980 1990 2000 2010 2020

Ex
pe

ct
at

io
ns

Low

High

1st AI Winter 2nd AI Winter

1943
Neural Nets

1958
Artificial NN
Perceptrons

1960
Back Propagation

1965
Deep Learning

1970
Expert Systems

1984 CYC

1983 Thinking Machines

1982 Japan 5th Generation Project / US 5th Generation Project (MCC)

1997 LSTM

1999 Aibo

2012 Google Brain

2013
Hanson Robotics

2017
AI Citizen in Saudi Arabia (Sophia) / Aibo 2

The hype roller coaster of artificial intelligence [Villain, 2019]

1999 First GPU

2010 ImageNet

2015 DeepMind AlphaGo
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Neural networks beat human performance /1 [Giró-i-Nieto, 2016], [Gershgorn, 2017]

— Example: Image classification on ImageNet

15 million images in dataset, 22,000 object classes (categories) and 1 million images with bounding boxes.
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Neural networks beat human performance /1 [Giró-i-Nieto, 2016], [Gershgorn, 2017]

— Example: Image classification on ImageNet

15 million images in dataset, 22,000 object classes (categories) and 1 million images with bounding boxes.
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Neural networks beat human performance /2 [Russakovsky et al., 2015], [Papers With Code, 2020]

— Example: Image classification on ImageNet

SIFT + FVs

AlexNet - 7CNNs

Five Base + Five HiRes
VGG-19

ResNet-152 ResNeXt-101 64x4
PNASNet-5

ResNeXt-101 32x48d BiT-L (ResNet)

FixEfficientNet-L2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Top-1 accuracyYears’ best Top-1 accuracy Top-5 accuracy

Estimated Top-5 human classification error (5.1%)
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Two distinct eras of compute usage in training AI systems [McCandlish et al., 2018], [Amodei et al., 2019]

Perceptron

NETtalk
ALVINN

TD-Gammon v2.1

RNN for Speech

LeNet-5

BiLSTM for Speech

Deep Belief Nets and layer-
wise pretraining

AlexNet

DQN

VGG
ResNets

Neural Machine Translation

TI7 Dota 1v1

AlphaGO Zero

1,00E-14

1,00E-12

1,00E-10

1,00E-08

1,00E-06

1,00E-04

1,00E-02

1,00E+00

1,00E+02

1,00E+04

1950 1960 1970 1980 1990 2000 2010 2020

2-year doubling (Moore’s law)

3.4-month doubling

Modern era →← First era
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Microprocessor trends [Brookes, 1986], [Sutter, 2005], [Rupp, 2015], [Rupp, 2018a], [Rupp, 2018b], [Hennessy et al., 2019]

Original data up to the year 2010 collected and plotted by M. 
Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, 
and C. Batten

New plot and data collected for 2010-2017 by K. Rupp1,00E+00

1,00E+01

1,00E+02

1,00E+03

1,00E+04

1,00E+05

1,00E+06

1,00E+07

1,00E+08

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Transistors (thousands)

Single-thread SPECint (thousands)

Frequency (MHz)

Typical power (Watts)

Number of logical cores
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Original data up to the year 2010 collected and plotted by M. 
Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, 
and C. Batten

New plot and data collected for 2010-2017 by K. Rupp1,00E+00

1,00E+01

1,00E+02

1,00E+03

1,00E+04

1,00E+05

1,00E+06

1,00E+07

1,00E+08

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Transistors (thousands)

Single-thread SPECint (thousands)

Frequency (MHz)

Typical power (Watts)

Number of logical cores

Processor clock rate stops increasing
1. Frequency wall

Power cannot be increased
2. Power wall

Core count doubling ~ every 2 years
Memory capacity doubling ~ every 3 years

3. Memory wall

Microprocessor trends [Brookes, 1986], [Sutter, 2005], [Rupp, 2015], [Rupp, 2018a], [Rupp, 2018b], [Hennessy et al., 2019]
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Original data up to the year 2010 collected and plotted by M. 
Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, 
and C. Batten

New plot and data collected for 2010-2017 by K. Rupp1,00E+00

1,00E+01

1,00E+02

1,00E+03

1,00E+04

1,00E+05

1,00E+06

1,00E+07

1,00E+08

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Transistors (thousands)

Single-thread SPECint (thousands)

Frequency (MHz)

Typical power (Watts)

Number of logical cores

Processor clock rate stops increasing
1. Frequency wall

Power cannot be increased
2. Power wall

Core count doubling ~ every 2 years
Memory capacity doubling ~ every 3 years

3. Memory wall

Microprocessor trends [Brookes, 1986], [Sutter, 2005], [Rupp, 2015], [Rupp, 2018a], [Rupp, 2018b], [Hennessy et al., 2019]

Moore’s Law

“The Free Lunch is Over”

“No Silver Bullet”

“A New Golden Age for Computer Architectures”
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Original data up to the year 2010 collected and plotted by M. 
Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, 
and C. Batten

New plot and data collected for 2010-2017 by K. Rupp1,00E+00

1,00E+01

1,00E+02

1,00E+03

1,00E+04

1,00E+05

1,00E+06

1,00E+07

1,00E+08

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Transistors (thousands)

Single-thread SPECint (thousands)

Frequency (MHz)

Typical power (Watts)

Number of logical cores

Processor clock rate stops increasing
1. Frequency wall

Power cannot be increased
2. Power wall

Core count doubling ~ every 2 years
Memory capacity doubling ~ every 3 years

3. Memory wall

Microprocessor trends [Brookes, 1986], [Sutter, 2005], [Rupp, 2015], [Rupp, 2018a], [Rupp, 2018b], [Hennessy et al., 2019]

Moore’s Law

“A New Golden Age for Computer Architectures”

“The Free Lunch is Over”

“No Silver Bullet”

CISC 2x/2.5 years
(22%/year)

RISC 2x/1.5 years 
(52%/year)

End of Dennard Scaling → Multicore 2x/3.5 years (23%/year)
Amdahl’s Law → 2x/6 years (12%/year)

End of the Line → 2x/20 years (3%/year)
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Rich variety of computing architectures

• Wide range of options to optimise for performance and 
efficiency:

− Central processing unit (CPU) executes general purpose applications (e.g. 
N-body methods, computational logic, map reduce, dynamic programming)

− General-purpose computing on graphics processing units (GPGPU) 
accelerates compute intensive and time consuming applications for the CPU 
(e.g. dense linear algebra and sparse linear algebra)

− Digital signal processor (DSP) accelerates signal processing for post 
camera operations (e.g. spectral methods)

− Image signal processor (ISP) executes processing for camera sensor 
pipeline

− Vision processing unit (VPU) accelerates machine vision tasks

− Network processor (NP) accelerates packet processing

Note: Not exact proportion

Performance (GOPS)

Power (mW)

Area (mm2)

GPGPU

Vector DSP 

Scalar DSP 

Large CPU 
Medium CPU 

Each of these options represents different power, performance, and area 
trade-offs, which should be considered for specific application scenarios.

Mobile GPU

NPU Max

NPU Lite

NPU Tiny

− Neural processing unit (NPU) accelerates artificial intelligence applications 
(e.g. matrix-matrix multiplication, dot-products, scalar a times x plus y)
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Rich variety of computing architectures

• Wide range of options to optimise for performance and 
efficiency:

− Central processing unit (CPU) executes general purpose applications (e.g. 
N-body methods, computational logic, map reduce, dynamic programming)

− General-purpose computing on graphics processing units (GPGPU) 
accelerates compute intensive and time consuming applications for the CPU 
(e.g. dense linear algebra and sparse linear algebra)

− Digital signal processor (DSP) accelerates signal processing for post 
camera operations (e.g. spectral methods)

− Image signal processor (ISP) executes processing for camera sensor 
pipeline

− Vision processing unit (VPU) accelerates machine vision tasks

− Network processor (NP) accelerates packet processing

Note: Not exact proportion

Performance (GOPS)

Power (mW)

Area (mm2) Each of these options represents different power, performance, and area 
trade-offs, which should be considered for specific application scenarios.

Target: Search for the optimal 
power-performance-area (PPA)  
design point.

− Neural processing unit (NPU) accelerates artificial intelligence applications 
(e.g. matrix-matrix multiplication, dot-products, scalar a times x plus y)
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Ubiquitous and future AI computation requirements
M
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Computation (TOPS)

Low

High

HighLow

Smartwatches

Today

Wearables

Smartphone

Smart Home

Robotics

Autonomous Vehicles

Data Center

Wearable Speech-based Controller

Gesture Control Devices
Smart Footwear

Smart Rings

Smart Contact Lenses

Smart Photo Management
Voice as UI

Biometric Identification

Eye Tracking

Image Super Resolution
Real-time Language Translation

Environmental Awareness

Intelligent Ambient Cards

Virtual Private Assistants

Situationally Adaptive Behaviour

Smart Thermostats
Intelligent Lighting

Smart Mirrors

Smart Robots

Commercial UAVs (Drones)

Drone Delivery

Fully Autonomous Robots

Adaptive Cruise Control

Driver Monitoring System

Semantic Scene Understanding

Autonomous Taxi Fleets

Consumer Smart Appliances

Virtual Customer Assistants

Proactive Search

Bots

Augmented Reality

Cognitive Expert Advisors

Prescriptive Analytics

Key element to enable intelligence
in physical devices is a scalable AI
architecture.

Scalability

n Years n+1 Years
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Ascend 910
Highest compute density on a single chip

• Half precision (FP16): 256 TFLOPS
• Integer precision (INT8): 512 TOPS
• 128-channel full-HD video decoder: H.264/265 
• Max. power consumption: 350 W 
• 7nm

Inference Training

Ascend 310
AI SoC with ultimate efficiency

• Half precision (FP16): 8 TFLOPS
• Integer precision (INT8): 16 TOPS
• 16-channel full-HD video decoder: H.264/265
• 1-channel full-HD video encoder: H.264/265
• Max. power consumption: 8 W 
• 12nm

“Once a technology becomes digital—that is, once it can be 
programmed in the ones and zeros of computer code—it hops on the 
back of Moore’s law and begins accelerating exponentially.”

– Peter H. Diamandis & Steven Kotler, The Future Is Faster Than You Think 

Focus on innovation, continuous dedication and backward compatibility
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Kunpeng 920

• ARM v8.2-architecture
• up to 64 cores, 2.6 GHz
• 8 DDR4 memory channels
• PCIe 4.0 and CCIX
• Integrated 100GE LOM and encryption and compression engines
• Supports 2- or 4-socket interconnects

The industry's highest-performance ARM-based server CPU

52 mm x 38 mm x 10 mm

Atlas 200

• 16 TOPS of INT8 
• 16-channel HD video real-time analytics, JPEG decoding
• 4 GB/8 GB memory, PCIe 3.0 x4 interface
• Operating temperature: -25°C to +80°C

AI Accelerator Module

• Thousands of Ascend 910 AI 
processors

• High-speed interconnection
• Delivers up to 256 to 1024 

PetaFLOPS at FP16
• Can complete model training based on 

ResNet-50 within 59.8 seconds
• 15% faster than the second-ranking 

product
• Faster AI model training with images 

and speech

Atlas 900 AI Cluster
The pinnacle of computing power

Atlas 200 DK

• 16 TOPS of INT8 @ 24 W
• 1 USB type-C, 2 camera interfaces, 1 GE port, 1 SD card slot
• 4 GB/8 GB memory

Quickly build development environments in 30 minutes

• 16 TOPS of INT8
• 25–40 W 
• Wi-Fi & LTE
• 16-channel HD video real-time analytics
• Fanless design, -40°C to +70°C environments

Atlas 500
AI Edge Stations

Atlas 300

• 64 TOPS of INT8 @ 67 W
• 32 GB memory  
• 64-channel HD video real-time analytics
• Standard half-height half-length PCIe card form factor, 

applicable to general-purpose servers

AI Accelerator Card

Atlas 800
Deep Learning System

• Plug-and-play installation
• Ultimate Performance
• Integrated Management

5290
4U 72-drive storage model

2280
2U 2S balanced model

5280
4U 40-drive storage model

X6000
2U 4-node high-density model

1280
1U 2S high-density model

2480
2U 4S high-performance model

Storage-intensive Computing-intensive

Ascend 910
Highest compute density on a single chip

• Half precision (FP16): 256 TFLOPS
• Integer precision (INT8): 512 TOPS
• 128-channel full-HD video decoder: H.264/265 
• Max. power consumption: 350 W 
• 7nm

Ascend 310
AI SoC with ultimate efficiency

• Half precision (FP16): 8 TFLOPS
• Integer precision (INT8): 16 TOPS
• 16-channel full-HD video decoder: H.264/265
• 1-channel full-HD video encoder: H.264/265
• Max. power consumption: 8 W 
• 12nm

Focus on innovation, continuous dedication and backward compatibility
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Focus on innovation, continuous dedication and backward compatibility

“Once a technology becomes digital—that is, once it can be 
programmed in the ones and zeros of computer code—it hops on the 
back of Moore’s law and begins accelerating exponentially.”

– Peter H. Diamandis & Steven Kotler, The Future Is Faster Than You Think 
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Building blocks and compute intensity

Scalar Unit
Full flexibility in computation
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Vector Unit
Rich and efficient operations

16 x 4 Multiply units

Cube Unit
High intensity computation
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●
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Advantages of special compute units

Computing density Flexibility

for (int i=0; i<16; i++) { 

for (int j=0; j<16; j++) {

for (int k=0; k<16; k++) {

c[i][j] += a[i][k] * b[k][j];

}

}

} 

float a[16][16], b[16][16], c[16][16];

for (int i=0; i<16; i++) { 

for (int j=0; j<16; j++) {

c[i][j] = a[i][:] *+ b[:][j];

}

} 

c[:][:] = a[:][:] X b[:][:]

16

16

16

16

16

16=×

Scalar:

Vector:

Cube:

𝐶𝑦𝑐𝑙𝑒𝑠 = 16 ∗ 16 ∗ 16 ∗ 2 = 8192
𝐷𝑎𝑡𝑎 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒 = 𝑅𝑑 2; 𝑊𝑟 1

𝐶𝑦𝑐𝑙𝑒𝑠 = 16 ∗ 16 = 256
𝐷𝑎𝑡𝑎 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒 = 𝑅𝑑 2 ∗ 16; 𝑊𝑟 16

𝐶𝑦𝑐𝑙𝑒𝑠 = 1
𝐷𝑎𝑡𝑎 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒 = 𝑅𝑑 2 ∗ 16 ∗ 16; 𝑊𝑟 16*16
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Computing density Flexibility

Advantages of special compute units

for (int i=0; i<16; i++) { 

for (int j=0; j<16; j++) {

for (int k=0; k<16; k++) {

c[i][j] += a[i][k] * b[k][j];

}

}

} 

float a[16][16], b[16][16], c[16][16];

for (int i=0; i<16; i++) { 

for (int j=0; j<16; j++) {

c[i][j] = a[i][:] *+ b[:][j];

}

} 

c[:][:] = a[:][:] X b[:][:]

16

16

16

16

16

16=×

Scalar:

Vector:

Cube:

𝐶𝑦𝑐𝑙𝑒𝑠 = 16 ∗ 16 ∗ 16 ∗ 2 = 8192
𝐷𝑎𝑡𝑎 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒 = 𝑅𝑑 2; 𝑊𝑟 1

𝐶𝑦𝑐𝑙𝑒𝑠 = 16 ∗ 16 = 256
𝐷𝑎𝑡𝑎 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒 = 𝑅𝑑 2 ∗ 16; 𝑊𝑟 16

𝐶𝑦𝑐𝑙𝑒𝑠 = 1
𝐷𝑎𝑡𝑎 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒 = 𝑅𝑑 2 ∗ 16 ∗ 16; 𝑊𝑟 16*16

FC 1000

FC 4096 / ReLU

FC 4096 / ReLU

Max Pool 3x3s2

Conv 3x3s1, 256 / ReLU

Conv 3x3s1, 256 / ReLU

Conv 3x3s1, 256 / ReLU

Max Pool 3x3s2

Local Response Norm

Conv 5x5s1, 356 / ReLU

Max Pool 3x3s2

Local Response Norm

Conv, 11x11s4, 96 / ReLU

AlexNet

884K

1.3M

442K

37M

16M

4M

307K

35K 35K

223M

149M

112M

74M

37M

16M

4M

Parameters FLOPS

Number of parameters and floating point operations per second (FLOPS)
for each layer of the AlexNet artificial intelligence model.

Typical CNN networks

AlexNet VGG16 Inception-v3

Model memory (MB) ＞ 200 ＞ 500 90-100

Parameter count (Million) 60 138 23.2

Computation amount (Million) 720 15300 5000 

99% of the computations are 
matrix-matrix multiplications
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Upscaling and colourisation of video footage

Despina Manaki is the earliest-born person on
film. In 1905, when she was 114 years old
(born 1791), she was filmed by her
grandsons, Yanaki and Milton Manaki, cinema
pioneers in the Balkans and the Ottoman
Empire. This video shows the full force of
artificial intelligence restoring old footages.

Source: https://www.reddit.com/r/interestingasfuck/comments/idbtrg/i_upscaled_and_colorized_the_footage_about_the/

https://www.reddit.com/r/interestingasfuck/comments/idbtrg/i_upscaled_and_colorized_the_footage_about_the/
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Retinal blood vessel segmentation in the eyeground

• The fundus retinal blood vessel segmentation application was developed for the
Atlas 200 DK inference system, in partnership with the Nankai University, led by
Professor Li Tao of Intelligent Computing System Research Office .

• This project makes full use of the neural network computing power of the Atlas 200
DK system to segment the fundus vessels in real-time.

• The total inference time of 20 pictures is 761.8 milliseconds, and the average
inference time of one image is 38 milliseconds.

An overview of the vascular segmentation model

Before and after
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Things we can do in science with AI technologies now /1

Underhood air flow External aerodynamics HVAC

Standard case 3 stationary points
- vmax, 250 km/h
- Idle
- Mountain 30 km/h

- 140 km/h
- With and without 

underhood flow

- Defrost
- Pull-down
- Heater mode

Target values - Cooling air mass flow
- p distribution

- Drag
- Lift
- cp distribution 

- Air distribution
- Velocity distribution
- Δp

Turnaround times 5-8 h/over-night 2-3 days Few hours/over-night
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Things we can do in science with AI technologies now /2
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In ten years …

1. Learned AI model begin to replace data
2. The discovery process of experiments is dramatically refactored
3. We will persue many questions semi-autonomously
4. HPC simulations and AI technologies will merge
5. AI algorithms will contribute to advancing theories
6. AI technologies are becoming a common part of scientific laboratories activities

→AI technologies will help to solve new challenges
→AI technologies will become a new partner in simulation and data analytics
→AI technologies will generate new computing architectures, new software environments, new policies, new user 

communities and new ways of dissemination.
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Stay safe — stay healthy


