
A real-world example of Transfer

Pricing in Inner Source

MASTER THESIS

Stefan Buchner

Submitted on 19 May 2021

Friedrich-Alexander-Universität Erlangen-Nürnberg
Technische Fakultät, Department Informatik

Professur für Open-Source-Software

Supervisor:
Prof. Dr. Dirk Riehle, M.B.A.

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen,
die wörtlich oder sinngemäÿ übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 19 May 2021

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 19 May 2021

i

https://creativecommons.org/licenses/by/4.0/

ii

Abstract

Inner source is understood as the application of the open source paradigm within
organizations. Inner source enables developers to contribute to software modules
not only within their own organization, but also to those belonging to other
organizations within the same company. This means from a developers point of
view an increase of �exibility. However, for management, accounting and taxation
transferring work between independent business entities can lead to signi�cant
challenges, as tax boundaries are crossed and therefore, transfer prices must be
calculated. The main challenge here is, that calculating transfer prices for mixed
software development is hard, as no exact data about work time is available.

To assign work time to single projects, a list of code contributions (commits) were
analyzed to �nd logical structures. Based on this analysis, a work time calculation
concept was developed. In addition to the concept development, a prototype for
evaluation was developed. This implementation also includes an example transfer
price calculation for taxation purposes, conducted by the Cost-Plus method.

iii

iv

Contents

1 Introduction 1

2 Fundamentals 3
2.1 Economical . 4

2.1.1 Transfer pricing principle 4
2.1.2 Transfer pricing relevance for companies 5
2.1.3 Taxation methods . 5
2.1.4 Full absorption costing . 8

2.2 Organizational . 10
2.2.1 Traditional organization types 10
2.2.2 Platform and inner source organization 11

2.3 Technical . 12
2.3.1 Open source paradigm . 13
2.3.2 Inner source paradigm . 13
2.3.3 Traditional programming in companies 14

2.4 Inner source and transfer pricing dependencies 15
2.4.1 Problem awareness . 15
2.4.2 Prerequisites for using Cost Plus 17
2.4.3 Tax view on Inner Source Transfer Pricing 18
2.4.4 Accounting and management view on Inner Source Transfer

Pricing . 19

3 Conceptual model development 21
3.1 Background and information requirements 21
3.2 Calculation basis options . 23

3.2.1 Number of hours . 23
3.2.2 Percentage split . 26
3.2.3 Lines of code . 27
3.2.4 Mixture . 27

3.3 Basic working hour calculation . 28
3.3.1 Time di�erence analysis 28

3.3.1.1 First iteration: Time di�erence based LOC/H . . 28

v

3.3.1.2 Second iteration: 24h time di�erence based LOC/H 32
3.3.2 Commit hour analysis . 34

3.3.2.1 Third iteration: Timestamp based LOC/H 34
3.3.2.2 Fourth iteration: Working time concept 39

3.4 Independent commit handling options 45
3.4.1 Ignore individual commits 45
3.4.2 Apply �at rate . 46
3.4.3 Apply LOC/H calculation 46
3.4.4 Individual LOC/H value 48

3.5 Concept Summary . 51

4 Architecture, design, and implementation 55
4.1 Architectural overview . 55
4.2 Information �ow . 56
4.3 Technical overview . 57
4.4 Preparation and work time calculation 57
4.5 Cost calculation . 58

4.5.1 Cost structure . 58
4.5.2 Calculate cost split . 59
4.5.3 Conduct cost calculation 60

5 Evaluation 63

6 Conclusion 65
6.1 Summary . 65
6.2 Limitations and outlook . 65

Appendices 67
A REST API overview . 69
B Example API outputs . 71

References 73

vi

Acronyms

OECD Organisation for Economic Co-operation and Development

HGB Handelsgesetzbuch

EStR Einkommensteuer-Richtlinien

IFRS International Financial Reporting Standards

LOC Lines of Code

REST Representational State Transfer

CSV comma-separated values

vii

viii

1 Introduction

For various business reasons it is important to measure costs and time spend on
products. Most commonly to track costs (controlling), for decision making (stra-
tegic management), and to track product development progress itself. Doing this
for physical goods can be easy. For intellectual property and services, measuring
costs and work time is harder.
As long as work time for services and intellectual property can be clearly separ-
ated (one department, one product/service), there are less problems in calculat-
ing costs. This is also true for software development. However, problems arise if
software development crosses organizational boundaries. Even though calculating
costs for entire organizations seems relatively easy in the �rst place, doing this for
collaborative development is not. It makes the life of programmers easier, if they
can work on project useful to their goals, but not limited to their organization.
Therefore, it would increase e�ciency if developers could work without minding
these organizational boundaries from a managerial point of view.

Development work crossing organizational boundaries (especially with inner source
development) a�ects for example taxation (In which country was the development
done?), controlling (What where developer working on? Which products produce
how many costs?) and management (How can i steer the people so that develop-
ment is more e�cient?)

The main problem is that due to the high frequency of work contributions in
software development, there is no direct way to di�erentiate how the work e�ort
of a department splits between certain products.

This thesis aims to solve the problem of assigning work time and splitting costs of
collaborative software development based on the list of code contributions (com-
mits). Moreover, it does not only present an algorithm to calculate work time,
but also shows a prototype implementation. The goal is to determine work time
for costs calculation for the use case of transfer pricing in inner source software
development, especially for taxation purposes using the cost plus method.

The thesis is structured as followed: First of all, the foundations and relevant lit-
erature are explained (Chapter 2). In this chapter, the basics of transfer pricing,

1

1. Introduction

organization forms and the inner source paradigm are shown individually and
�nally brought together to motivate the need for Inner Source Transfer Pricing.
After the motivation, the work calculation concept (an algorithm) and its devel-
opment process is presented (Chapter 3).
The implementation of the algorithm is then shown with a prototype which cal-
culates the work time and an example transfer price using the cost plus method
(Chapter 4).
Next, some ideas and concept how an evaluation can look like are presented
(Chapter 5).
Finally, the thesis is summarized and its limitations and further research poten-
tials are discussed (Chapter 6).

2

2 Fundamentals

Inner Source Transfer Pricing as an interdisciplinary topic is based on and a�ects
di�erent sciences and subjects. In this chapter, the fundamentals of each subject
are explained individually. Afterwards the topics are connected to show the
problems currently existing for Inner Source Transfer Pricing.

First, Inner Source Transfer Pricing is a topic with economic impact and back-
ground. It contributes to make inner source software development econom-
ical more viable, therefore some basic economic principles need to be explained
(Chapter 2.1). Secondly, inner source is also a way to organize programming
teams, departments and the way information �ows between those (See Chapter
2.2). Afterwards the core elements of the inner source programming paradigm
are explained, how it originates and di�ers from open source development and
what the di�erences to traditional programming paradigm commonly used in
companies are (Chapter 2.3). Finally, the dependencies between those basics are
explained (Chapter 2.4). This chapter additionally motivates the need of the
concepts developed in this thesis from di�erent perspectives. An overview of the
three basic topics can be seen in Figure 2.1.

3

2. Fundamentals

Figure 2.1: Dependencies between Inner Source Transfer Pricing topics

2.1 Economical

Inner source software development can a�ect and improve various economic topics
like taxation, controlling, strategic management and personnel management. In
this work, the focus is on taxation, even though some methods used here are close
to those used in controlling. Future research must show, if the result of this work
is also suitable for a use in controlling.

At �rst, it is important to know, what transfer prices are and what approved
methods exists to calculate those. Afterwards the importance of transfer pricing
for companies is showed. At last, the full absorption costing as basis for the Cost
Plus taxation method is explained.

2.1.1 Transfer pricing principle

First, the term transfer pricing has to be explained generally without being too
speci�c about inner source. The OECD (2017b, pp. 33�34) described the need
for transfer pricing as followed: In an ordinary market, two independent market
participants determine the price of a product or (intellectual) property according
to the price of the overall market and what other participants are o�ering. For
a transfer between two connected companies (e.g. both are part of the same
group/holding), not always a market exists. This makes the price calculation
more complicated.

However, for the government and cooperation the height of the price is important,
as it in�uences the tax earnings and the economic situation of the participating

4

2. Fundamentals

companies (OECD, 2017b, p. 34). Prangenberg et al. (2011) explicitly added that
the calculation of transfer prices does not only a�ect goods, but also services. As
programming is a mainly a service with (as to expect) a lower amount of tangible
assets, it is harder to assign a plausible value to a transaction as when goods are
produced.

2.1.2 Transfer pricing relevance for companies

A dedicated look on how transfer pricing is in�uencing companies helps to under-
stand the need and use for the concept developed in this thesis. As the OECD
(2017b, p. 34) stated, transfer pricing in�uences the cash-�ow of a group, the
shareholder value and overall pro�tability.

Prangenberg et al. (2011, pp. 19�28) are mentioning three categories in which
companies pro�t from transfer pricing: The steering function, income distribu-
tion function and control function. Even though not all functions are directly
correlated with Inner Source Transfer Pricing, the thesis helps to improve these
areas. As an example, Inner Source Transfer Pricing helps to split the pro�t
between connected companies. Consequently, tax risks can be reduced, and a
target/actual comparison can be simpli�ed.

Hanken et al. (2017, pp. 23�28) structured the way companies pro�t from transfer
pricing similarly. However, additionally they di�erentiate between a controlling
and a taxation view. This di�erentiation is not only important for the possible
future use-cases of this thesis, but also to understand the need to quantify inner
source development.
The controlling view on transfer pricing is for the internal use. Prices calculated
there are not for outside use, but for strategic management support.
The tax view on the other hand calculates transfer prices for taxation use and
how the pro�t is split between connected companies. Hanken et al. (2017) are
giving a deep insight into possible ways to calculate tax transfer prices (Chapter
B) and those for internal use (Chapter C). Additionally, they show the correlation
between those methods and who they can be combined (pp. 569-586).
Even though the concept and software in this work was mainly developed for
taxation use, the re-use for other (e.g. controlling) purposes was always kept
in mind during development. Chapter 2.4 will go more into detail, what the
dependencies between inner source and transfer pricing are and how it can be
used for controlling and taxation.

2.1.3 Taxation methods

As said in the previous section, the transfer price methods used for controlling
and taxation might overlap at some points, but this work is focusing on taxation
methods to calculate transfer prices. In this chapter basic methods are shown,

5

2. Fundamentals

Figure 2.2: Overview of transfer price methods, adopted by (Schwerdt, 2016,
p. 166)

which can also be seen in Figure 2.2. The �ve most common methods for transfer
pricing are assigned to two major categories.

The �rst set of methods are the traditional transaction methods which based on
comparing the transaction to one which unconnected companies would have done
on the market (Schwerdt, 2016, pp. 165�166).
The second set of methods are called transactional pro�t methods. They are
looking at the pro�t a transaction brings and examines if it was in�uenced by to
the fact, that it is a controlled environment (OECD, 2017b, p. 117).

Comparable Uncontrolled Price Method:
OECD (2017b, pp. 101�103) describe the Comparable Uncontrolled Price Method
as a method, where the transfer price is set equally to a transaction comparable
to one we are looking at. The transaction to which the current one is compared
must not be under own control, therefore not be a connected company.

Important to know is also, that the circumstances under which the comparing
transactions are happening must be similar, even small di�erences can in�uence
the transfer price (OECD, 2017b, pp. 101�105).
Simply said, the method directly compares the transfer price.

Resale Price Method:
The Resale Price Method has a close relation to the Comparable Uncontrolled
Price Method. In contrast to the latter, the former does not compare the transfer
price directly, but the resale price of the products on the market, as (Schwerdt,
2016, p. 176) presented. They emphasize, that the resale price is reduced by a
margin which helps the selling company of the observed transaction to cover its
costs and make an own pro�t.

According to the OECD (2017b, pp. 105�106) the margin can be determined by

6

2. Fundamentals

Figure 2.3: Cost Plus procedure

comparable internal sales or also to margins of a comparable external sale.

Cost Plus Method:
The next method is the Cost Plus Method, which does not look at the resale
price or the transfer price directly, but to the costs associated in the production
or service delivery. OECD (2017b, p. 113) states, that this method might be
supported by other methods. Therefore, the Cost Plus Method can widely be
used to support other methods.

The basic principle behind Cost Plus is simple(See Figure 2.3). A cost basis must
be calculated, before a pro�t margin is added on top. Schwerdt (2016, pp. 182�
183) made clear, that the pro�t margin must be suitable to risk, function, and the
market conditions of the observed transaction. Moreover, they stated, that the
margin must be comparable to other margins in the market (external) or within
the same company(internal).

Prangenberg et al. (2011, pp. 55�58) explained that any acknowledged cost cal-
culation method can be applied. As the Cost Plus Method is a traditional trans-
action method which base on comparison to external factors, the applied cost
calculation method must also able to be used for calculation towards externals
or at least be based on economic principles.
One commonly used method for cost calculation is the full absorption costing,

7

2. Fundamentals

but also partial cost accounting might be valid in some use-cases. Moreover,
Prangenberg et al. (2011, pp. 56�57) emphasized, that there is also the choice
what type of costs to use (direct vs indirect) or which point of time is used to
calculate the price (actual/target/plan).

Pro�t Split Method:
The Pro�t Split Method is the �rst transactional pro�t methods to be looked at.
This method controls how the pro�t is split in a controlled environment, as OECD
(2017b, p. 144) described. When using this method, the pro�t of a transaction
between two controlled companies must be comparable to pro�t a transaction
between two independent enterprises would have had.

Transactional Net Margin Method:
The last method to look at is the Transactional Net Margin Method. As this
method belongs to the category of the transactional pro�t method, it takes a
deeper look into the pro�t. In comparison to the Pro�t Split Method, not the
height of the pro�t split between two companies is important, but the height of
the net margin itself.
The net margin is compared to an appropriate base (like costs, sales, assets)(OECD,
2017b, p. 117). Like the methods explained before, the values used must be com-
parable. In this case, the base must be comparable to external and internal
values. OECD (2017b, p. 117) explicitly mentioned that this method might not
be appropriate, if a party contributes a unique value to the transaction, as those
are not easy comparable.

To sum up the di�erent methods looked so war, it can be seen, that all methods
are basing on comparing certain values to the market or to equal internal transac-
tion. All methods have in common, that they are comparing di�erent aspects or
steps in a value chain. That can be the production costs and margin (Cost-Plus),
the pro�t split of the transaction, the transfer price itself, the resale price, or any
other base value the margin can be compared to.

For future research, it might be reviewed, whether the concept and software
developed here might be suitable for all methods introduced. However, this work
is focusing on the use of the Cost-Plus Method, as the nature of the data given
and task to be solved �t best to this method.
A more detailed explanation will be given in Chapter 2.4.2 as �rst the nature of
the inner source paradigm and it specialties needed to be explained (Chapter 2.2
and 2.3) to fully understand the reasons for using Cost Plus.

2.1.4 Full absorption costing

As the Cost-Plus Method is used in this work, a detailed look at how full absorp-
tion costing is working is necessary.

8

2. Fundamentals

Figure 2.4: Full absorption costing procedure

First, it is important to understand how the basic process is working. In the
following, full absorption costing will be explained as Hanken et al. (2017, pp. 461�
473) described it. The previous chapter already indicated the principle of full
absorption costing: It is a way to include all costs which occur during a production
process or service delivery.
The term itself does not specify one �x procedure. The way to calculate and
decision which costs to include is depending on the accounting scheme used and
country the company is located it. In Germany for example the standards of
HGB, EStR and IFRS might be applied, depending on the use-case, whereas
the EStR is the tax regulation that might be applied to Inner Source Transfer
Pricing. However, the decision which standard is chosen for inner source will not
be a part of this work, as this decision might come with many considerations to
be made in practice. Depending on the accounting standard chosen, some cost
can, must or mustn't be included in the calculation.

For the cost calculation itself, two type of costs must be di�erentiated, which
have a di�erent connection to the good being produced. On the one hand there
are direct costs. Those are (as the name says) in height directly correlated to
the good being produced. Classical examples are the materials for production.
On the other hand, there are indirect costs. Those do exist in the company

9

2. Fundamentals

independently from the amount of goods being produced. Practical examples
might be overhead for management, production or marketing. An example how
the split between direct and indirect costs look like can be seen in Figure 2.4.

To calculate the costs a good or service produces, all direct costs must be added
together. All the indirect costs must be split down to an appropriate ratio which
re�ect the e�ort spend with producing the good or conducting the service. After
the cost are split, they are also added to the direct costs.

However, if this scheme is applied to software engineering, some problems are
occurring. As software engineering is more a service and less production with
hardware associated to it, it is harder to di�erentiate between direct and indirect
costs. Developers whose are dedicated to one speci�c project might be easy and
directly assigned to the product designed. Nevertheless, those developers who
are working on di�erent products or bringing support work are indirect costs as
their work time is split up.

The concept provided in this thesis helps to tackle the cost split problem for
software engineering, especially occurring in inner source development. Chapter
x shows gives a more detailed look from the inner source paradigm point of view.

2.2 Organizational

Beside transfer pricing and its calculation, the way an organization can be struc-
tured is the second important business fundamental needed to know. On the one
hand, two traditional organization types will be explained: Functional and divi-
sional organization. On the other hand, the platform organization is described,
what advantages it has for software engineering (especially inner source) and
problems of the traditional forms it solves.

The way a company structures its organization is important, as this structure
also shows in the product the entity it is designing (Conway's law). Therefore,
an organization not suitable for designing software, but for physical products
leads to ine�ciency, which will be explained in this chapter.
Additionally, the type of organization used for software is also connected to and
in�uences transfer pricing and inner source. The explicit connection to inner
source will be considered in chapter 2.4.1.

2.2.1 Traditional organization types

Two commonly used ways to internal structure and organization are the func-
tional and divisional organization. Even though in practice more organizational
principles exist, this work focusses just on these two as those show practical the

10

2. Fundamentals

problems of an ine�cient structure for software engineering (especially in case of
inner source and platform development).

Weber et al. (2014, p. 115) explained the functional organization as one, where
each department is responsible for a speci�c type of business task. This can be
procurement, production, or sales. In this way or organizing a company has one
department for each type of task to be ful�lled. Consequently, this leads to a high
specialization for each task, but also to a higher separation between departments.
As Weber et al. (2014, p. 115) described, this kind of organization is structure is
mostly �tting for companies which produce a single kind of good requiring similar
knowledge (e. g. market needs, production etc.).

The contrast to a functional organization is the divisional organization, which
Weber et al. (2014, p. 116) speci�ed as an organization, where a single company
is split into several smaller divisions. Those divisions are again structured like
a functional organization. Reason to split a company into divisions is that it
produced di�erent kind of products which need special knowledge in each area.
Therefore (as an example), the procurement department can more easily see the
market need for its products. On the contrary this leads to redundancies as each
department needs its own divisions.

In the transfer pricing description in Chapters 2.1.1 and 2.1.2 where described,
that calculating transfer prices is related to transactions made between two con-
nected companies. Taking the de�nition for functional or divisional organization
into consideration, it can be seen, that the two connected companies might be
di�erent functions or divisions of a business group.

Applying the functional or divisional organization structures to software devel-
opment means, that for example development teams for di�erent products are
assigned to extra organizations and therefore treated individually. Considering
Conway's law it can make sense to use functional or divisional organization, if
it is reasonable, that the product developed inherits the structure given by the
organization.

2.2.2 Platform and inner source organization

As said in the previous section, organizing software development with a tradi-
tional functional or divisional organization might make sense, if the product more
or less inherits the structure of the organization.
However, as software is getting more complex over the years, functional organiz-
ation brings problems for programmers with it.

Fluri and Deck (2018, pp. 259�261) described one of the main problems functional
organization is bringing with it in modern software development. Splitting devel-
opment strict into functions makes problem-solving and communication between

11

2. Fundamentals

those departments harder as each team sees its own responsibilities mainly in
its own tasks. Consequently, higher coordination costs and development times
are arising. Fluri and Deck (2018, pp. 259�261) mainly showed that problem for
the split between IT Development and Operations and proposed DevOps as one
possible solution to this problem.

However, these problems do not only occur between operation and development,
but also within the development. Fuller (2019) con�rmed this and even con-
sidered functional organization harmful and counter-productive for software de-
velopment. He also emphasized, that this is especially for cross-platform products
the case.

Considering these problems, a new way to organize teams is needed to �t the
special need of software developers. Inner source development is (from an organ-
izational point of view) a paradigm specially designed to �t products which are
based on a platform and might be ine�cient to develop being functional struc-
tured.
What the inner source programming paradigm exactly means from a program-
mers point of view will be discussed in the next chapter. From an organizational
view it means, that product development is opened up in a way, that a single
developer is no longer responsible for (a single part of) a product but can work on
many di�erent software (-parts). This can be helpful, if a programmer can adjust
software he needs without following the strict rules of a functional organization.

Designing an organization that specially �ts software platforms helps to increase
an organizations performance, Leite et al. (2020) found out. They compared 4
types of organizations by conducting about 20 Interviews with people working
in those organizations. The team compared functional (siloed) organization, De-
vOps, Cross-Functional teams and platform teams. They not only found out that
the platform team deliver a higher output, but also that the time-to-market was
decreased.

From an organizational point of view, the concept and software developed in this
thesis helps to measure the performance and workload of an organization. This
consequently might help to deploy an e�cient platform organization, transform-
ing an functional organization and improving performance of an overall organiz-
ation.

2.3 Technical

The third important fundamental to fully understand the reasons and impacts of
this thesis is to understand, which di�erent programming paradigm exist, what
inner source development does and how it di�erentiates from traditional pro-
gramming paradigm or open source development.

12

2. Fundamentals

2.3.1 Open source paradigm

To understand how inner source works, it must be shown at �rst what open source
development is, what the key factors are and which impact it has.

Open source is a paradigm, which the Open Source Initiative (2007) not only
de�ned as open access to the source code of a software, but made concrete with
ten criteria which must be complied to be called open source. Most important to
understand inner source development are:

� Free Redistribution: The Software must be free to redistribute (Like selling
or giving away) and free to combine with other programs

� Source Code: The source code must be accessible.

� Derived Works: It must be allowed to modify and derive own work of the
given program

Feller and Fitzgerald (2000, pp. 59�60) described availability, modi�able and
unlimited in usage as some of the criteria that must be met to be de�ned as
open source. Stol et al. (2014) added some practices commonly observed in open
source: Peer-Review, self-selection and frequent releases are also mentioned as
typical for open source development.

In practice, these criteria are often implemented using public repositories, where
a single user can choose a project they like, adapt it (Commercially or privately)
and might channel back improvements they made for public use.

2.3.2 Inner source paradigm

Inner source as paradigm is based on the principles of open source. Stol and
Fitzgerald (2015, pp. 60�61) described it as organizations adopting open source
practices internally.

However, as open source was above especially emphasized as a way to open pro-
gram code up to the public, not all practices commonly used in open source
development are used for inner source development. Stol et al. (2014, p. 3) ex-
tracted, that the key di�erence from inner source to open source is, that the
software is getting kept proprietary. Besides that, there are some elements of
open source which are commonly used and de�ne the key concept of inner source.
Stol et al. (2014, p. 5) de�ned those as the peer-review (within an organization),
communication channels, self-selection, and frequent releases.

Adopting these practices is bringing many bene�ts with it, as Stol and Fitzgerald
(2015, pp. 60�61) showed:
Making written software internally (e.g. with a central repository) available
makes reuse easier and therefore produces less development costs. Additionally,

13

2. Fundamentals

it is more likely that bugs will be found, and that innovation will be accelerated
as more people with di�erent expertise have a look at the software and get ideas
of how modules can be reused to solve other problems. Lastly Stol and Fitzgerald
(2015, pp. 60�61) argued that inner source also improves mobility of personnel,
as they get more used to di�erent projects.
Capraro (2020, Appendix A) also found out various bene�ts that come with
inner source. Besides the already mentioned ones, others like higher employee
motivation and enhanced knowledge management were added.

If open source and inner source development are compared, it can be seen that
both paradigm are close related to each other, even though open source works
in a public context where source code is available for everyone's use and inner
source just internal of a company. The core ideas of making source code available,
modi�able, and adoptable to more people to increase performance, stability, and
transparency are the same. The bene�ts of inner source development are not only
the technical but also on the management side, as increased personnel mobility,
and performance (mentioned above) are bringing an obvious business value.

2.3.3 Traditional programming in companies

The contrast to open- or inner source programming is the way companies are
traditionally developing software.
Traditional software development has a close relationship to the organization
forms explained earlier in Chapter 2.2. In this earlier chapter the di�erence
between a functional and platform organization were explained. As stated there,
a functional organization is ine�cient for software development, as organiza-
tional boundaries need to be crossed. Therefore, splitting coding on one software
(platform) into several functional entities re�ects the way companies without a
platform or inner source organization developing software.

Consequently, the inner source paradigm explained in the previous chapter is
correlating with the platform organization explained in Chapter 2.2.2. The pre-
vious chapter looked at the organizational point of view and how the inner source
paradigm can change companies organization. Now we saw open code sharing,
modi�ability and peer-review as a key factor from a programmers point of view.
Therefore, inner source in�uences both: the business and technical work�ow.

Being �exible and o�ering modularity is one important feature, the inner source
paradigm o�ers (Stol & Fitzgerald, 2015, pp. 62�63). Assigning developers in
contrast to a traditional development not only to one project but enabling them
with inner source to contribute to several projects is bringing new problems with
it.

Riehle et al. (2016) found out, that one big challenge with introducing inner source
are the middle managers responsible for a certain business area or product. The

14

2. Fundamentals

main reason is that developers putting work into software modules not belonging
to their department do not directly contribute to their performance goals. There-
fore, introducing inner source means for them losing resources, even though they
might pro�t from it in the long run.

Measuring inner source development, analyzing cross-functional �ow of workforce
and assigning a value to it can be the basis for accepting inner source development
not only by developers but also from middle and upper management.

2.4 Inner source and transfer pricing dependen-

cies

In the previous chapters the three important foundations for Inner Source Trans-
fer Pricing were set. The �rst main topic discussed were the basic principles
of transfer pricing (Chapter 2.1.1), why it is important for companies (Chapter
2.1.2) and which methods exist to calculate them (Chapter 2.1.3). Addition-
ally, this work looked more detailed at how full absorption costing is working,
as this method is one important part of this thesis(Chapter 2.1.4). The second
foundation were the ways an organization can be set up (functional, divisional
and platform teams) to best �t the companies needs (Chapter 2.2). The third
foundation were widespread paradigm(Open source, inner source and traditional
ways) used to develop software (Chapter 2.3).

These three topics were discussed relatively independently of each other so far.
The connections between the three main topics were considered pairwise up to
now(See Figure 2.5). The relations already looked at so far, where those between
the organizational principles and inner source development (Chapters 2.2.2 and
2.3.3), between the organizational principles and transfer pricing(Chapter 2.2.1)
and between cost accounting/transfer pricing and software development in general
(Chapter 2.1.4), but not speci�c to inner source. To fully understand the need
and impact of Inner Source Transfer Pricing all three areas into are needed to be
taken into consideration, which will follow in this chapter.

2.4.1 Problem awareness

In this section the previously detailed explained foundations are brought together
to explain the need for Inner Source Transfer Pricing.

The previous chapters showed that inner source is a programming paradigm,
where individual people are working on more than software modules or programs
within their (superior) organization. It was discovered that programmers are
crossing organizational boundaries, if non-platform organizations like functional
or divisional are used. The Riehle et al. (2016) research discussed above showed,

15

2. Fundamentals

Figure 2.5: Dependencies and text references between Inner Source Transfer
Pricing topics

that these cross-functional developments can cause problems with middle man-
agers. Additionally, it can be conducted, that not only functional/divisional or-
ganizations are causing problems (where a middle manager is responsible for his
products development), but also platform-teams as software platforms easily can
be reused in several products belonging to di�erent entities or countries. There-
fore, Inner Source Transfer Pricing has a connection to organizational boundaries
and the problem that comes with it.

The connection between inner source and organizational principles from a man-
agement perspective is just one reason inner source development needs to be
measured and evaluated numerically.
The second main reason to evaluate inner source development is the connection
to taxation. In Chapter 2.1 it was discovered that transfer prices are needed for
transactions which are done between connected companies crossing tax boundar-
ies. Moreover, it could be seen, that implementing inner source development in
functional or platform teams leads to crossing team boundaries (Chapter 2.2.2).
Therefore, it can be concluded, that inner source development is directly connec-
ted to calculating transfer prices and a need for measuring development exists.
Chapter 2.4.3 will go more into detail about needs why transfer prices needed
to be calculated for inner source software development from a taxation point of
view.

Furthermore, there is not only a need for calculating Inner Source Transfer Prices
from a taxation and management point of view, but also for more precise cost
calculation for software development independently of its usage. Chapter 2.1.3 is

16

2. Fundamentals

an overview, which methods may be used to calculate a transfer price.
As said there, in this thesis the Cost-Plus method is chosen, which is based on full
absorption costing. In Chapter 2.1.4 the full absorption costing and its applic-
ation to software engineering in general is mentioned. The chapter showed that
the di�erentiation between direct and indirect costs is harder. Reasons for that
are, that on the one side, personnel cost are directly correlated to the develop-
ment, but on the other side, as soon as developers are working in more than one
projects, the costs needed to be split between those projects. Assigning the cost
split incorrect can make a major di�erence, as software development is mainly
personnel focused and less hardware driven.
Inner source development speci�cally makes use of cross-functional and platform
development (See Chapter 2.3.3 and 2.3.2), therefore calculating the right cost-
share of the development costs for each product developed is important to con-
duct a reasonable full absorption costing and consequently receive an acceptable
transfer price.

To sum up the di�erent point of views and impacts of Inner Source Transfer
Pricing, it can be seen, that assigning values to the inner source development
solves mainly two problems: On the one hand there is the taxation point of view
including the full absorption costing problem (speci�c looked at in this work). On
the other hand, there is the controlling and management view including strategic,
organizational and personnel planning problems. Hanken et al. (2017, Part B and
C) supported these two points of views, even though not speci�c for inner source
development.

The following chapters will go into more details about these two points of views
and which broader motivation and impact the work done can potentially have
for these areas. Chapter 2.4.3 will go more into the motivation why there is a
need to measure inner source development for taxation and its broader use on
the tax system. Chapter 2.4.4 will go into the details about the controlling and
management view and how and why it can make organizations more e�cient.

2.4.2 Prerequisites for using Cost Plus

Before the broader impact of Inner Source Transfer Pricing on taxation and ac-
counting is discussed, a look at the reasons why Cost-Plus was chosen is necessary.
Future work must show, whether the concept developed here is transferable to
other transfer pricing methods.

Cost Plus is chosen, as there is a direct connection between the working time
performed for and project and the cots used to calculate for absorption costing.
The structure of the calculation needed to be performed suites the nature of the
data given.
The Transactional Net Margin Method is looking at the pro�t and compares

17

2. Fundamentals

the height of the margin to a basis. The working time here might be suitable
for a basis, but further research might show, whether this is true or also other
measurements are suitable (such as code complexity, number of developers, num-
ber/category/ depth of interactions between organizations over ticket systems
etc.).
The Comparable Uncontrolled Price Method and Pro�t Split Methods in contrast
do not have a direct correlation between hours worked and the transfer price, as
the price itself or pro�t is compared. A larger database of transfer prices with
meta information might help to �nd a correlation suitable for the model developed
in this thesis.
The Resale Price method compares the price of the good sold. Assigning a trans-
fer price for regular contract programming work can be done. However, as there
is no dedicated market for software developed with inner source paradigm, a
method to compare these markets must be developed �rst before the price can
be assigned.

This thesis is not to decide, whether the Cost-Plus Method is applicable for all
software developed, especially those with the inner source paradigm. Therefore,
it must be assumed, that all the preconditions for using Cost-Plus are met and
this method is valid for transfer pricing.

According to the United Nations (2014, pp. 213�226) Cost Plus is especially
suited for use cases that comply with the following characteristics:

� Typically, Cost-Plus is used for tangible goods or services, with mostly
assembling activities and simple services

� Low risks performing the service is assumed

� The customer of the transaction is much more complex than the service pro-
vider. The complexity is by function (e.g marketing, selling, coordination,
giving instructions) and risk (e.g. market risk)

� Cost Plus is not suitable for "a fully-�edged manufacturer which owns valu-
able product intangibles" (United Nations, 2014, p. 224)

2.4.3 Tax view on Inner Source Transfer Pricing

As �rst view on Inner Source Transfer Pricing the tax view was identi�ed. As
already described earlier in Chapter 2.4.1 with inner source development, there is
a transfer price problem need to be solved. Within the taxation point of view, it
can di�erentiate between two types of problems that are or might be supported
with the concept implemented in this thesis: One the one side, the concept (as
lengthy mentioned before) helps to calculate the transfer price for the taxation
purpose itself. On the other hand, it might support solving a taxation problem
of digital business models in general.

18

2. Fundamentals

Previously it was conducted, that calculating transfer prices for taxation is a
problem. Krause and Pellens (2018, p. 160) are supporting this assumption,
especially with the knowledge, that the marginal costs approach zero.

Additionally, transfer prices are also getting increasing attentions by o�cials like
the OECD. The problems occurring with developed software are not directly cor-
related to the transfer prices calculated with inner source development. However,
OECD (2017a) lengthy analyzed the problems occurring with digital business
models in general and set up a plan how to tackle with tax avoidance in these
business models.
Olbert and Spengel (2017, p. 5) also analyzed that problem: "In the near fu-
ture, revising the determination of transfer prices is one of the key challenges in
designing an administrable system of pro�t taxation with a minimum of distort-
ive e�ects for digital business models".
Calculating transfer prices for inner source development might be part of a solu-
tion to take the digital business model taxation problems. Whether this is the
case or not, future research must show.

2.4.4 Accounting and management view on Inner Source
Transfer Pricing

The second main point of view on transfer pricing is the controlling and man-
agement view. This view considers the dependencies between the organizational
aspects, management and value assigned to programming between organizational
boundaries.

That calculating transfer prices can help make a company work more e�cient was
already described in the previous Chapter 2.4.1. Riehle et al. (2016) concluded
that separating product units is causing ine�ciency and middle managers are
more reluctant against inner source. Carroll et al. (2018, p. 4) made more con-
crete, that measuring performance makes the middle managers decision making
easier.

Consequently, assigning values to inner source development cannot only help tax-
ation, but also be of real use within companies. Cooper and Stol (2018) described
the challenges that occurred within Bosch's inner source introduction. They
recognized exactly the same problems described in this and previous chapters:
Quantifying inner source development for middle managers and transfer pricing
for tax authorizations.

19

2. Fundamentals

20

3 Conceptual model development

In the previous chapter the three foundations for this work and how they are
correlated to each other were described. Additionally, it was motivated, why the
need for Inner Source Transfer Pricing exists and which impact it might have on
taxation, controlling and management.

Now we will look at the conceptual model which was developed to quantify work
time spend for certain inner source projects. Not only will be mentioned, how the
�nal concept is looking like(Chapter 3.5), but also which information are needed
(Chapter3.2), what options are available to measure inner source development
in general (Chapter 3.2) and how the concept development progress proceeded
(Chapters 3.3 and 3.4). The idea is not only to show the result, but also the pro-
cess behind the development, so that certain design decisions can be understood
more clearly.

3.1 Background and information requirements

This thesis wants to solve the problem, how values can be assigned to (Inner
source) software development. As already said before, software development
causes high personnel costs and low hardware costs, through which the exact
work time per project is relevant enough to in�uence the transfer price.

If developers contribute to di�erent programs, the costs cannot be assigned to a
single product. Therefore, the personnel costs are indirect costs and not direct
assignable at the full absorption cost calculation. Consequently, the development
time must be split accordingly to comply with full absorption costing and Cost
Plus consequently.

The main task of this thesis is to �nd out, how the work time a developer spends
is distributed to certain projects. The data basis used are information, which
usually are created during the development anyway and are known with the
organization.

Most information which will be used in this thesis are taken from a version control

21

3. Conceptual model development

system (e.g. Git). Main information source is a list, which �les the users were
uploading to the central repository. One upload, called commit contains the
following information:

� The software or module a commit belongs to

� The �le path(Branch)

� The name of the �le

� The changeset: An id of the change, if more �les are changes at the same
time

� The timestamp (Date and time) a �le was uploaded, including time zone

� The author of the changed/uploaded �les

� Number of lines added

� Number of lines modi�ed

� Number of lines deleted

In addition to the commit data, information about the organizational background
is given:

� The list of (inner source) projects

� The organisational units within the company

� The organisation an author belongs to

� The hierarchy behind the organisational units

These data are all, that are given to extract work time per project as exact as
possible. Out of this context, some questions are arising, which will be answered
in the following chapters:

1. Which information is the right calculation basis for the work time?

2. How can the right amount of time worked be estimated with the given
information and in context of the calculation basis?

3. How to handle commits, which have no connection to others?

The answers to these questions will then be brought together in an overall concept,
on which basis the �nal implementation is based on.

The real-world sample data are taken from a development organization with
about 400 developers over about 1.5 years. Overall, the dataset contains about
228000 �le changes, which conclude to 28600 grouped commits. For the general
structure it can be said, that about 12300(10300, 7200) of the commit times were
not further then 6h(4h,2h) apart from the previous one. Moreover, there are 403

22

3. Conceptual model development

commits with no time context to others.
As the data used in this thesis are taken as real-world data from, they are assumed
to be representative. However, as the following chapters will show, some aspects
of the concept still might di�er from use case to use case, as (for example) some
type of commits might be more usual in one organization than in others.

3.2 Calculation basis options

In this chapter, the possible options which can be chosen as a calculation basis
will be discussed. As the commit data are taken from a version control system,
the main ideas to calculate work time are based on these data.

For further evaluation, additional information might be taken to investigate those
possibilities. Additionally, it might be helpful for evaluation to write software
which measures the exact working time per unit and project.

3.2.1 Number of hours

The �rst idea is to take the number of hours worked at each project and conduct
the full absorption costing with these numbers.

The number of hours worked therefore must be calculated out of the timestamps
of the commits. The basic idea is, to assign a work time to every commit made.

Advantages:
The main advantage of this calculation basis is, that it is an exact way of calcu-
lation, as every single commit, and therefore every time a developer is working,
is included in the cost calculation. The assumption is, that a reasonable working
time per commit can be estimated just with the data available, so that these data
can be used for further calculation.
Having an exact working time in minutes (or hours) means, that each time spend
on each project can be summed up. Out of this, a share can be calculated, how
the costs must be split between the projects conducted.

Another big advantage is, that with the working time in minutes per project and
the percentage-splits, we can do a top-down calculation and bottom-up validation
of the cost calculation.

23

3. Conceptual model development

Figure 3.1: Top-Down software cost calculation example

The top-down calculation which can be done by assigning percentage-splits per
project can be seen in Figure 3.1. The main assumption is, that the organizational
structure is given and that it is already determined, how the costs are split in
percent of the organization itself. In the example of the Figure, 40% of the
overall costs within the organization are assigned to the projects included for the
calculation. The other 60% are those projects outside the scope, which may be
completely di�erent activities (non-software development activities) or software
projects, whose costs are determined on another way.
The further cost calculation is done by splitting the costs relevant to the project
(40% in the Figure) again by the share determined by the working hour calculated
out of the commit data. For example, if the commit data calculation (done in
this thesis) results in 3500 hours overall working time for the two projects looked
at, the costs might be split 2800 hours (80%) to Project A and 700 hours (20%)
to Project B. These numbers then are used within the full absorption costing to
calculate e. g. the personnel cost.

Furthermore, the absolute amount of working time can be used within a bottom-
up validation (See example Figure 3.2).

24

3. Conceptual model development

Figure 3.2: Bottom-up software cost validation example

By knowing an estimated working time in hours (which includes every single
commit) it is possible to validate, whether the assumed percentage split from
the Top-Down calculation is valid or not. In Figure 3.2 it can be seen, what it
means. Knowing, that the sum of the working time spend in projects A and B is
3500 hours, it can be veri�ed, if the 40% of the working time spend in the overall
organization is reasonable or not. To do this, the real working time (e.g. as an
information from HR) is needed. Consequently, �nding out a more reasonable
way to assign the costs helps other departments with their cost calculation.

It can be seen, that working with a (as exact as possible) number of hours worked,
is not only more exact with the cost calculation (conducted Top-Down), but also
helpful for validating the way of calculation (Bottom-up)

Disadvantages:
As one major disadvantage of working with number of hours, the handling of
single independent commits can be named. As inner source development is a
�exible way of organizing the software development, not every commit must come
from and elaborate member of the core development team. Developers who are
often using, but just changing one or very view times the code of other software
modules do commit irregular. Those commits have just a view or no connection to
other commits. Therefore, calculating working time spend for exact this commit
can be hard.

The biggest challenge when coping with numbers of hours worked are the irregu-
larities in the commit structures. To �nd out a the time worked within a commit
without having the real working time on hand, certain problems have to solved.
The most important are for example the handling of the nighttime (When was

25

3. Conceptual model development

the developer really working), the midday break, the handling of greater time
distances (e.g. days and weeks: Holiday, or just no commit?) and �nally the
question of how to deal with overhead like meetings.

Designing a dedicated software to �lter the exact work time would make the
calculation much easier. However, this thesis tries to calculate working time as
reasonable as possible from the commit information at hand.

3.2.2 Percentage split

The second way, on which basis the cost can be calculated is to look at the
percentage distribution of the commits only. This method tackles the problem
described by using the number of hours as calculation basis: Including every
commit, especially singular ones with no less time context can be hard.

The idea behind this calculation basis is, just to look at the percentages, how the
work e�ort within an organization is split. This means, that not the number of
hours is relevant and therefore less complex calculations have to be done.

Advantages:
The biggest advantage this method is bringing, is the reduction of complexity.
Not only the calculation complexity can be made easier, but also the amount of
commits which mus be considered, can be reduced.

Within a large organization, having a large number of commits might be enough
to get an exact number, how the working time for the overall organization is split
between several projects. Reason is, that with many commits included in the
calculation, single ones do not have a huge impact on the percentage, as with
the growing number of commits considered, the percentage-split is �oating less.
Further research and practical test must show, if just assigning percentage values
might be exact enough.

Disadvantages:
The main disadvantage of just considering the percentage spit is, that the bottom-
up validation might be inaccurate or not doable at all.
Depending on the structure of the commits and the commit behavior within
an organization, a huge number of hours might be ignored. As looking at the
percentage split only means, that no hour calculation is necessary, comparing the
total hours spend in reality with the numbers calculated is not possible. Even
if the working time is calculated for all commits included in this method, the
comparison of the working time calculated to the true working time might be
much more inaccurate, depending on how much single commits were ignored.

26

3. Conceptual model development

3.2.3 Lines of code

The third idea, how the costs can be assigned to the projects, is looking at the
number of lines of code (LOC), a project was committed to. Using this method,
it is assumed, that LOC do represent the amount of work that �owed into the
module.

Advantages:
The biggest advantage using just the LOC is, that this information is already
given by the commit. Therefore, applying this method is very easy to calculate
with, as just a percentage split needs to be calculated.

This means, that (o� course) the top-down calculation is possible. Additionally,
a bottom-up validation is also possible, but not as extensive as with knowing all
working time in hours (Chapter 3.2.1). It is possible to validate and �nd out, how
much a certain developer (or business unit) is contributing to a software platform
and validate this information with the planning and management.

Disadvantages:
One disadvantage using LOC as calculation basis is, that (as already suggested
above) there are less possibilities to make a bottom-up validation. If organizations
are doing more than just writing software, validating bottom-up is much more
harder, as these performance cant be measured in LOC.

Additionally, it is not easy to quantify the relationship between LOC and work
time spend, as a large conceptual phase can also result in a complex to under-
stand, but small code. On the other hand, large amount of LOC must not mean,
that the work e�ort was higher, as code can also by replicated easy.

3.2.4 Mixture

Another possibility which can be used as can calculation basis is mixing the
previous mentioned suggestions. In this way, some of the important aspects can
be combined, to �nd an optimum solution.

This means, that not only the number of hours is in focus for all commits, but also
the possibility exists to handle di�erent commits in di�erent ways. Depending
on the detailed concept, the results might be more or less exact.
Possible ideas calculating exact working time for some, assigning a projection for
others or including LOC in the extrapolation.

The following chapters are concentrating on �nding a way, how these aspects can
be brought to together to make working time calculation more precise, without
being to complex. It is important, that the concept developed is as generally
applicable to other datasets as possible, without getting to inaccurate.

27

3. Conceptual model development

To bring several possible calculation basis together means in concrete terms, that
for example an correlation between the LOC and time worked for a commit must
be found. Additionally, a way of including the nighttime or holidays must be
found.

3.3 Basic working hour calculation

As not a singular value (e.g. just LOC) is used as calculation basis, but several
aspects are considered, a detailed concept must be set up, which takes together
multiple in�uence factors. Main goal after all is still to calculate hours worked,
so that these numbers can be reused for further cost calculation (full absorption
costing) and top-down validation.

Before a detailed concept for calculating working hours can be set up, the struc-
ture of the commit data given must be analyzed and �nd out correlations which
help to extract the time a developer worked on the software.

3.3.1 Time di�erence analysis

The �rst aspect that were analysed was not the time of commit, but the commit
behavior itself. Idea was to �nd out, which commit regularity can be seen by
looking at the time di�erence between two commits of the same developer.

3.3.1.1 First iteration: Time di�erence based LOC/H

The analysis and �rst value calculation concept was sketched by answering ques-
tions on basis of the data available.

The �rst question answered was:

How many commits have a certain time difference?

Idea behind this question was to �nd out if commits accumulate with a certain
time di�erence. To analyze this, all the commits were grouped for each user and
than analyzed, how much time (in minutes) they were apart. Ordering the time
di�erence in an ascending order and plotting them leads to the results shown in
Figure 3.3.

28

3. Conceptual model development

Figure 3.3: Number of commits per time di�erence

The Figure shows the �rst two interesting things:
At �rst, the daytime structure is immediately visible. There are a low number
of commits made in a 12 hour rhythm, which is why there is a valley in the
graph at around 720minutes(=12 hours) and all consecutive 24 hours(e.g. 36
hours=2160minutes and 60 hours=3600 minutes). These observation seem obvi-
ous with the background of typical workday being less than 12 hours. The second
interesting aspect which can be seen is, that most of the commits are done within
12 hours. The number of commits per day is decreasing, the more apart the days
are. The last important and visible spike is around 7 Days (=10080 minutes).
Therefore, it can be said, that most of the time, developers commit rather regular
within one day, but also mainly once a day is possible. To commit every 2-7 days
seems is done less frequently.

This behavior gives important data of how di�erent commits might be treated.
One idea therefore might be to calculate every minute as work time, for all com-
mits which are a certain threshold, but with one day apart. The threshold e.g.
might be 6 hours or the whole workday (12 hours apart, until the valley of the
graph in the Figure is reached). However, with that �rst attempt, the problems
of night times and midday break are still remaining.
Another unsolved problem by using all commits within a certain threshold is,

29

3. Conceptual model development

that all commits above this threshold are not used, especially those more days
apart.

This construct leads to the next question to be answered:

Do commits, which are larger apart, contribute more LOC?

This question was answered by grouping all the commits by time di�erences and
calculating the average number of LOC contributed at each time di�erence. The
result can be seen in Figure 3.4.

Figure 3.4: Average number of LOC per time di�erence

In this Figure it can be seen the average lines committed for each time di�erence.
The �rst interesting aspect is, that the number of LOC has a high �uctuation, as
many commits are with less LOC and some commits contribute a large amount
of LOC.
The reason for this lies in the structure of the data given. The software platform
which is developed here consists of several modules, which sometimes are put
together. Moreover, sometimes other large parts of code are either transferred or
normally committed. This results into a commit structure, where (if the commits
are ordered by LOC ascending) at some point the LOC are exponentially rising.

30

3. Conceptual model development

The largest commit in the database for example commits 2.6 millions LOC, which
certainly is not representative for an average performance of a single developer.
These large commits are the spikes which can be seen in Figure 3.4.

To not distort the picture with some smaller commits, the average LOC per time
di�erence was calculated again, but with only the smallest 95% included. This
results into the largest commit being about 1200LOC and therefore ignoring all
the large single commits.
The result can then be seen in the Figure as a relatively stable value over all time
di�erences. Therefore, it is not relevant, whether the commit is one or seven
days apart, the commits always contribute about the same number of LOC. The
moving average of the 95%-LOC is even more stable.

Knowing the commit structure from a time di�erence point of view, the next
question raised, and �rst concept was created:

How can working time be calculated based on the time difference?

The idea behind this �rst concept is, to calculate with the time di�erence struc-
ture as background knowledge a LOC per Hour (LOC/H) performance value,
which then can be applied to all the commits taken into consideration. Every
commit, which is less than 9 hours after the previous commit from the same
user, was calculated fully, as a temporal connection can be expected (Only view
commits with 12 hours di�erence, see Figure 3.3). For all commits larger than
9 hours apart, it was assumed, that one workday is 9 hours long. Therefore, all
commits with a larger distance must be broken down to assume only 9 hours of
work and the rest of work free time. This was done with the following formula:

AvgLOC
H

=
LOC

mod
(
timediff, timediff∗900

1440

) (3.1)

The explanation of formula 3.1 is relatively easy: 9 hours working means, that
15 hours of a day (=900 minutes) was not worked. This formula looks at every
time di�erence and breaks down the share for each 24h time slot. Example: A
commit with a time di�erence of 40 Hours (which extends to almost two days).
This can mean (in theory) two extremes: 18 hours working, 22 hours not working
but also the other extreme with 10Hours working and 30 hours not working. This
formula applied here simpli�es it and assumes, that 9 hours were worked full in
the �rst day. Unknowingly 16 hours were in the time slot of the next day. 16 out
of 24 hours are 2/3. Therefore, 2/3 of the 9 hour workday is simply calculated,
which are 6 hours of work in the second day. Finally, this leads for the 40 Hour
workday to 15 working hours.
However, this is obviously not perfect, but gave a good �rst look how the working
hours are correlating with the time di�erences.

31

3. Conceptual model development

Figure 3.5: Average number of LOC/h per time di�erence

Figure 3.5 plotted the calculation from formula 3.1 for every time di�erence for all
commits within the 95% range. The �rst obvious observation is, that the LOC/H
performance is increasing as the time di�erence between the commits are getting
smaller. Besides that, the LOC/H is relatively stable within each day-frame
(e.g. 720 - 2160 minutes), except the commits <1 day. The moving average is
decreasing slowly for every day larger apart. There are two main reasons for this:
On the one hand, the formula is handing 24h-blocks. On the other hand (and
more importantly), looking at commits which are for example two or three days
apart assumes here, that two or three days were fully worked.

3.3.1.2 Second iteration: 24h time di�erence based LOC/H

Taking the analysis of Figure 3.4, it can be seen, that commits are following
the day and week structure (Daily commits, 2-day-commits, 3-day-commits etc.)
However, in Figure 3.5 it can also be seen, that every commit, whatever time
distance to the previous commit existed, roughly committed about the same
LOC. Consequently, it can be said, that even commits larger than one day apart
are not having e.g. double the work time spend. Therefore, it is common for
developers to commit at least once per day and most of the commits further

32

3. Conceptual model development

apart might be days like weekend or holidays. This behavior can be con�rmed by
looking at holidays and weekends of the sample data, even though not all commits
stick always true to these dates, as the developers are working internationally.

On this basis, the �rst concept was redesigned at a second iteration: All com-
mits were broken down to a time frame, which �ts within the daily commit struc-
ture (36 Hours max). The result (Figure 3.6) shows, that still a larger amount of
commits are within one day, but many are daily with a steady curve spiking at
1440 minutes time di�erence (24 hours).

Figure 3.6: Number of commits per time di�erence and 24h

Appling the formula used above again to all commits with 24h-breakdown leads
to the plot in Figure 3.7. In this graph it can be seen, that with assuming daily
commits, the LOC/H performance is relatively steady for all commits larger than
12 hours apart. All commits less than 12 hours apart are having a much higher
LOC/H performance. Most relatable reason for the exponential growth towards
small time di�erences are copied software parts, which have much LOC, but just
take a view minutes to commit. Consequently, those copy and paste commits let
the LOC/H performance exponentially grow.

33

3. Conceptual model development

Figure 3.7: Average number of LOC/h per time di�erence and 24h

The moving average of the LOC/H performance is �rst good guess, which later
might be used to assign working time for all commits.

Problems:
Even though the �rst concepts showed a stable LOC/H performance which might
be used, there are also some problems coming with it.

Most importantly, the formula applied guessed the working time based on a
percentage for each time di�erence. Therefore, all commits which are equally far
apart assume the same work time, not looking at the time and circumstances a
commit was made in.

To solve this problem, not only the time di�erence was taken into consideration,
but in the following chapter, the time of the commit was looked at.

3.3.2 Commit hour analysis

3.3.2.1 Third iteration: Timestamp based LOC/H

For the third iteration the time - to be more precise the hour and minute- of the
commit was analyzed. The idea here is, that the LOC/H performance is guessed
with the background of knowing the daytime the developer worked. Analyzing

34

3. Conceptual model development

this structure leads to a commit distribution by hour of the day, which can be
used to guess a reasonable work time.
The �rst question to analyze the working time by commit hour was:

At which times to developers usually commit?

Figure 3.8: Number of commits per time

Many aspects which can be observed at Figure 3.8 are as can be expected: During
the night, only a low number of commits are done (single-digit numbers), even
though there are some. The number of commits is increasing in the morning and
decreasing at the evening, with a small dip during midday. It must be noted, that
during the afternoon comparable more commits are done than in the morning.
Additionally, there is no straight 'cut' in the evening (like classic 9-to-5 o�ce
hours), but the workload is decreasing steadily into the evening.

This distribution leads to the �rst important �nding for this chapter: Personnels
work time is di�erent from developer to developer, there cannot be simply as-
sumed a �x working time, on which basis the working time can be calculated on.
Therefore, the next step is to �nd out if there is any connection to the previously
looked at time di�erences. The question now to be asked is:

How do the commit time and time difference to previous commit correlate?

35

3. Conceptual model development

Figure 3.9: Number of commits and time di�erences per time

Figure 3.9 shows on the left y-axis the number of commits per time(See Figure
3.8). New is the secondary right y-axis, which shows the average and �oating
average of the time di�erences of the commits at the respective timestamp. The
time di�erences here are the total time di�erences without breaking them down
to 24h.

Analyzing the results, the time di�erences are smaller within the day and larger
over night. The �uctuation of time di�erences outside usual working hours is high,
which might be connected so single irregular commits, which are automatically
planned to be executed over night. However, this should be evaluated again in
future research, as this data set gives no hint which commits truly belong to
automatic commits.

As with the time di�erence analysis before, the graphs were done again, but
this time with breaking down the time di�erences to a 24 hours basis and just
including the smallest 95% of the commits. The results are shown in Figure
3.10, with being the time di�erences on the left y-axis and the already looked at
number of commits on the right y-axis.

36

3. Conceptual model development

Figure 3.10: Number of commits and average/median time di�erences per time

The two lines are showing the moving average for each time di�erence value
calculated at each timestamp. These lines are di�erentiating in the way, the time
di�erence value for a single timestamp was calculated. The lower line is taking
all the commits of a timestamp and calculates the median time di�erence. The
line shows the moving average over all median time di�erences. The line above
takes all commits of a timestamp and calculates the average time di�erence.
Comparing these two lines it can be seen, that while the average time di�erence is
�oating during the day around 1440 minutes (24h), the median is steadier during
the day, but lower. The median time di�erence line declines in the evening hours
(about 19:00 o'clock /7PM) and increasing in the morning(8:00), which might
hint to a working behavior of working/committing steady during the day and a
�rst/�nal morning and evening commit.

The commits over night are a lower number, with larger �oating dime di�erences
as already mentioned. This leads to a high �uctuation during the nighttime.
Looking at this numbers it can again prove an already made guess right: Looking
at time di�erences as only criteria for development performance is not right, as
for almost every timestamp(especially during the day), the structure behind the
commit di�erences is similar. Taking only the time di�erence as criteria would
lead to similar LOC/H performances, even though one commit was made in the
morning and another one after a whole day of work.

Out of this insight, the next questions raised:

37

3. Conceptual model development

How do the commit time and number of LOC correlate?

To answer this question, for every timestamp, the average number of LOC com-
mitted were calculated. Figure 3.11 shows the plot of this analysis.

Figure 3.11: Number of commits and average LOC per time

In the chart in Figure 3.11 it can be seen, that during the day a low number of
LOC is committed. During the night, larger number of LOC are contributed.
Over the night, the �uctuation is much more higher than during the day. This
�gure also shows another way how the LOC/H performance might be calculated:
Taking the average LOC committed per time di�erence as basis and calculate
with the time di�erence analysed above a LOC/H performance. As to expect,
the LOC/H performance is on an almost similar level. Interesting to see is, that
the LOC/H Performance is slightly lower over night, as there the time di�erence
between the commits is larger.

However, as with previously introduced possibilities of calculating a LOC/H per-
formance, this iteration might not be a valid enough, as the daytime plays a
secondary role.

All the methods how working time can be measured were based on the principle
to calculate a LOC/H performance and use this to calculate working time. There-
fore, next step is trying to calculate a more reasonable LOC/H performance out
of the working time determined.

38

3. Conceptual model development

To make this possible, �rst of all the working time - which is ultimately tried to be
calculated - must be calculated out of the LOC/H determined before. As this is
a circular reference, the only way out is to �nd a method of �nding working time
without looking at LOC/H. It must be noted here, that it might seem pointless
in the �rst place to calculate working time (which is the main goal of the overall
concept) and then to calculate LOC/H out of this after all, if we already got
the working time needed. However, as stated in Chapter 3.2.1, in inner source
development not every commit of a project must come from an elaborate member
of a team. There might be a large amount of commits with less or no connection to
other previous commits. Consequently, those commits cannot be analyzed with
any working time method using the time di�erence. Moreover, large commits
were already �ltered out as they are distorting the picture. For those two types
of independent commits, it is viable to use the LOC/H performance calculated
through other commits and assign the working time over this method.

Interim summary:

To have a better overview what is already known and which knowledge can used
to build a working time measurement model, a brief interim summary is needed.

It could be seen, that during the day, the more regular (stable time di�erences),
but smaller commits (Less LOC) are made. During the night, a view larger
commits with larger time di�erences are made. Therefore, it can be concluded,
that normal working times are (as to be expect) over the day, with irregular work
being committed over night (e.g. through automatization).

Moreover, di�erent approaches how a LOC/H price can be calculated were shown:
Using the LOC and time di�erences with the timestamp point of view at �rst
and using only time di�erences secondly (With and without 24h-breakdown).

Looking at the results it can already be seen, that overall speaking, each commit
seems to be more or less equally productive.

3.3.2.2 Fourth iteration: Working time concept

To ful�l the need of measuring working time based on time di�erence to the
previous commit and the timestamp it is committed, a working time concept was
created. As before, a basic working time of 9 hours per day was assumed. The
concept was tested and implemented with this work time, nevertheless it can be
adjusted easily in the prototype if needed.

The concept developed di�erentiates between four base cases. Each base case
is di�erentiated by the time di�erence of the current commit to the previous
one: First of all, those <360 minutes (6 Hours), secondly those >720 minutes(12
Hours) and ≤2160 minutes(36 Hours), at third those ≥360 minutes and ≤720
minutes and lastly all >2160 minutes.

39

3. Conceptual model development

Main idea behind the di�erentiation is to take the contexts (e.g. nighttime)
behind the time di�erences into consideration. On the one side, there are those
commits, which happen after holidays, weekends and after long time without
commit. Commits with >2160 minutes (36 Hours) time di�erence are treated
as irregular commits, as the time distance is larger than usual workday apart
(and the previous analysis showed, that daily commits are usual). On the other
side, there are those commits which happen within one day (36 Hours limit). All
commits less than 36 Hours apart are again di�erentiated by time di�erence, as
a commit less than 360 minutes after the previous one is less likely to have only
a small working time. For example, a commit 15 hours after the previous one is
more likely to have a nighttime in this time period than a commit which covers
the day.

Commits <360 minutes time difference:

In this concept, all commits which are <360 minutes in time di�erence to the
previous commit will be counted as full working time. Background and main
motivation is, that 6 hours seem a reasonable time di�erence where person might
have worked on project and not leaving work. In the sample data, about 7440
commits (26%) are in this group.

Of course, this approach cannot guarantee, that the whole time was worked on
the project the commit contributes to. Therefore, this concept assumes that the
whole time is spend on the project, as no other information (e.g. concrete �le
change date, ticket systems, mailbox timetable) are available. This approach re-
lies on the e�ect, that for large data sets, the average time spend per project is
correct over all projects in the long term, but single commits can be wrong as-
signed. Especially for developers whose development work is almost fully included
in the measured dataset, assuming full work time also accounts for organizational
overhead of the projects. In full absorption costing all costs need to be included,
therefore it is not allowed to exclude overhead like meetings from the calculation.

Calculating every small commit as full working time is supported by the �ndings
of Chapter 3.3.1 (especially Figure 3.6), where it can be seen, that commit reg-
ularly within smaller time di�erences makes a large part of the commits and is
one common commit behavior.

Commits >720 minutes and ≤2160 time difference:

All commits which have a time di�erence >720 and≤2160 minutes to the previous
commit (daily commits) are calculated not fully, but in proportion to the typical
sum of commits done in the time span they cover. In the sample data, about
6500 (22.7%) of the commits have this time di�erence. 12 hours was taken as a
threshold, as for this time span it is very much likely, that the commit is through
the night with no work time there. Having work time larger than 12 hours during
the day for example means, that the developer starts at 8am and �nishes later

40

3. Conceptual model development

or equal to 8pm.
Due to the structure of the usual commit behavior (most commits during the day)
and the proportional calculation method (which will be explained more detailed
in the following), not the full 12+ hours are granted, but only those number of
hours, which a typical developer is working(committing) through that time.

Proportional work time calculation:

The proportional work time calculation is based on the number of commits which
are done at the timestamp of the commit which is currently looking at.
The basic idea is, to start from the timestamp of the current commit and to go
backwards in time until the previous commit is reached (See Figure 3.12). For
every minute, the number of commits historically made during this minute of the
day is summed up. Consequently, after iterating through 24 hours, the sum of
all historically made commits is reached (In our sample dataset it is 28601).

Figure 3.12: Calculating proportional work time

After summing up the number of commits historically made through the time
period of the commit, this number is set into proportion with the overall number
of commits made in 24 hours. This proportion is then used to calculate the
working time. If, for example, 75% of the historically typical number of commits
where covered, it is assumed that the developer also performance 75% of the
typical workday. This percentage is then used to multiply with the duration of
a typical workday. In hour example 9 hours(540 minutes) were assumed, which

41

3. Conceptual model development

results by 75% to 6 hours and 45min workday (405minutes).

The consequence by calculating with the proportional method is, that a commit,
which is exactly 24 hours after the previous one, get the full workday assigned
(e.g. 9 hours). Two commits which are larger apart get a bit more, those less
apart get proportional less working time assigned.
For commit near the 12 hour threshold this method seems not perfect in the
�rst place, as commits 12 hours apart during the day (e.g. 8am to 9pm) have
less than a full workday. At this point, the still unsolved problem shows that
it cant be known if the person was really working 13 hours or having a large
break in between. For this thesis it cannot be said more in detail which time
was development time, break time, free time, organizational overhead or other
projects. Therefore, future research has to �ll in the gaps to �lter enable �ltering
these time gaps and to make this model more precise.
Despite that fact, the proportional work time represents a historically typical
work distribution. Consequently, applying the proportion to a large dataset might
lead to inaccuracy for single commits, but con�rms the overall trend, which is
more important than correct values for every single commit.

The formula how the proportional work time can be calculated can be seen in
compact in the following formula:

worktimeproportional =

∑timestamppreviousCommit

i=timestampcurrentCommit
numberOfCommitsi

numberOfCommitsoverall
∗ worktimeday

(3.2)

This formula describes the previously mentioned proportion: The sum of all his-
torical commits (numberOfCommitsi) at the timestamps between two commits
(commitcurrent and commitprevious) in proportion to the overall sum of commits
(numberOfCommitsoverall). worktimeday describes the number an usual work-
day has to have as a calculation basis, for example 9 hours. The result shows the
estimation in minutes.

Commits ≥360 and ≤720 minutes time difference:

Commits which are between 6 and 12 hours after the previous one are treated
di�erently depending on the timestamp, the commit was done. Background is,
that it not sure for those commits, if they are just a longer workday without a
commit or a short night. As the sample data show, both cases seem to happen.
Especially commits in the afternoon more than six hours after the morning com-
mit are not unusual.
The commits which are made e.g. once on the end of the workday have to be
di�erentiated from those who happen during e.g. in the morning and were the

42

3. Conceptual model development

previous commit was sometimes over night. In the sample data 1350 commits
(4.7%) belong to this group.

The easiest way to di�erentiate the two mentioned commit cases is to look at the
timestamp and time di�erence a commit has. The basic idea is, that a nighttime
is declared which is used to grant a commit less work time for this timespan.
Commits which are covering less or no nighttime, but rather larger parts of the
day are assumed to have more work time as those who cover the night.

The declaration, which time is nighttime can be made dependent on the historical
commit data or just be �x values. The exact time where the night ends and begins
can determined by a percentage limit (e.g. 15%) of the maximum number of
commits a single timestamp has. To be not in�uenced by single timestamps where
large amounts of commit happen, the �oating average of the commit numbers is
taken in the example of this thesis. The time in the morning and evening, where
the limit is crossed, is set as end and begin of the day. Figure 3.13 shows visually
how the limit can be understood.

Figure 3.13: Day- and nighttime di�erentiation

The main assumption is, that on commits during the day was worked less than on
commits which go through the night. Additionally, morning-commits (previous
commit was before or during the night) are getting not fully every minute as
work time, but just proportional to the historical typical work time for this time
period. If for example the night is from 10pm to 7am, the previous longest time a

43

3. Conceptual model development

previous commit can apart is 7:01pm. As it is very unlikely that the whole night
was worked, only proportional work time is assigned.

The �rst step is to calculate, how much of the nighttime was covered through the
commit:

nightshare =

∑timestamppreviousCommit

i=timestampcurrentCommit
xi ∗ 1∑timestampnightEnd

i=timestampnightBegin
1

xi =

{
1, if i ∈ nighttime,

0, otherwise

(3.3)

This formula counts, how many of the total possible minutes a night has (denom-
inator) were also covered by the current commit looking at (numerator). The
result (a percentage) is then used to calculate the working time:

worktimenightshare = nightshare ∗ worktimeproportional + (1− nightshare) ∗ daycoverage

daycoverage =
∑timestamppreviousCommit

i=timestampcurrentCommit

xi

xi =

{
1, if i ∈ daytime,

0, otherwise
(3.4)

The logic behind the working time calculation with nightshare (360 to 720 minutes
time di�erence) is, that a commits gets as much proportional working time (see
Formula 3.2) as it covers the night(nightshare). This ensures, that commits
which cover large parts or the whole night only get the work time for the night
assigned, that historically was typical for that time. For the minutes which be-
longs to the day(daycoverage, sum of minutes during the day), the height which
the night is not covered is fully assigned.
Example: The night is between 10pm and 7am. Commit 1 is at 8am, the previous
one at 9pm. As Commit 1 covers the full night (nightshare = 1), it is fully cal-
culated as proportional. Commit 2 is at 4pm, the previous one at 6am. Commit
2 covers only 11% of the night (nightshare = 0.11), this amount is calculated
proportional. The minutes during the day (7am to 4pm) are calculated to 89%.
Comparing these two main use cases it can be seen that a commit which was done
early in the day got less working time (Just the historical typical amount). Those
commits which rarely go into the night got almost regular work time assigned.

44

3. Conceptual model development

3.4 Independent commit handling options

In the previous chapter, a concept how working time can be calculated was de-
veloped. Through the four iterations various possibilities could be seen to archive
the overall goal. While most of the (former) iterations are based on calculating
a LOC/H performance value which is used to calculate working time, the latest
iteration brought an alternative direct formula how the time spend per commit
can be calculated.

However, as already described above, not all commits couldn't be included in
the previous analysis or cannot be analyzed with the resulted concept. Main
reasons is, that some commits are more than one workday apart (>2160 minutes).
Additionally, there are single commits from users which contribute to the software
platform only once. The latter cant be calculated by using a time di�erence.
Moreover, it must be considered from case to case, if large commits (5% in our
example, mainly large imports) have to be evaluated extra, as they distort the
trends the analysis are showing. In the sample data, 12867 commits (45%) are
more than 36 hours apart, 403(1.4%) have are single commits where no time
di�erence can be calculated. It has to be noted, that in our dataset there is a
large portion of commits which is further than one workday apart. This is due
to the structure of the project, as the software developed is (as typical for inner
source development) a platform where multiple organizations are contributing,
but rather irregular than daily. However, it is important to understand, that the
concept developed in this thesis unfolds it whole potential (and is most precise)
by applied to a large number of commits, even if some commits are not directly
linked to the projects/products being measured.

To be able to calculate top-down and validate bottom-up (See Chapter 3.2), all
(or most of) the commits need to be calculated. In the following, four options
(and there development) will be presented, which can be used to complete the
working time calculation. In the following, all commits with no time di�erence
and those > will be called 'individual commits' or 'independent commits'.

3.4.1 Ignore individual commits

The �rst (and rather obvious) possibility is to ignore these individual commits.
This means, that all single commits are not included. For the to large commits,
an individual threshold must be introduced, which is based on the structure of
the data. As the sample dataset also got commits included, where other projects
were completely imported at once, the threshold was set to 95%, which results
in the largest commit being about 1200 LOC. This value of course may di�er if
no imports and just regular commits are done.

Choosing not to include individual commits results into not being able to make an

45

3. Conceptual model development

exact bottom-up validation, if the ignored commits are representing a signi�cant
share of the overall commits. On the other side, the percentage split might still
be valid for a large enough dataset. Advantage using this method is the easy
implementation and logic that is applied to it.

3.4.2 Apply �at rate

Another possibility to assign a value to individual commits is to calculate them
with a �at rate, a �x number of minutes/hours for all commits.

This method is also easy to apply and implement. However, it might lead to devi-
ations in the percentage split (as the �at rate represents not the same percentage
like the other commits) or false total hours worked.

It might be useful, if the project we are looking at is clearly de�ned and it is well
known, where the individual commits come from. An example use case where
a �at rate might be applicable is a project where regularly (e.g. each semester)
internships are coding extensions for a platform, which get included once at the
end of the project, if they meet the quality criteria.
For those use cases, where the �at rate is applicable, the key question is, which
rate is to be chosen. However, this can't be answered generally as the answer is
depending on the project.

3.4.3 Apply LOC/H calculation

A third option to assign values to individual commits is to choose one of the
previously calculated LOC/H performance values and apply this to the individual
commits. An overview of the possible LOC/H values that can be chosen for the
sample data set can be seen in Table 3.1.

The table shows various combinations, how LOC/H values can be calculated.
First of all there are two dimensions which di�erentiate each 2 possibilities. The
�rst dimension is the decision whether to use the original data or to break them
down to 24h-ranges (assume daily commits). The second dimension di�erentiates
between all commits and the smallest 95% (to get rid of the large outliers).

During the iterations in Chapter 3.2 several possibilities were discussed. One
possibility was the way of calculating the LOC/H value grouped by the time
di�erences of the commits (Figure 3.7). Out of this array of values, either the
median (Diff −MED) or average (Diff − AV G) can be used to calculate a
single value. The same is true for the LOC/H value resulted due to the timestamp
grouping (See Figure 3.11, resulting in Time−AV G and Time−MED). The last
option List is not grouped by timestamp or time di�erence, but just calculating
the LOC/H value out of the unordered list of commits without context.

46

3. Conceptual model development
T
a
b
le
3
.1
:
L
O
C
/H

p
os
si
bi
lit
ie
s

P
e
rc
e
n
ta
g
e

M
e
th
o
d

M
e
d
ia
n

A
v
e
ra
g
e

M
a
x
L
O
C
/
H

M
in

L
O
C
/
H

or
ig
in
al

10
0
%

L
is
t

2.
25

15
7.
75

11
88
66
0.
00

0.
00

T
im
e-
A
V
G

24
.7
2

24
2.
95

17
05
20
.0
0

0.
00

T
im
e-
M
E
D

2.
05

12
6.
94

17
05
20
.0
0

0.
00

D
i�
-A
V
G

1.
25

20
.2
3

23
29
8.
74

0.
00

D
i�
-M

E
D

0.
57

4.
64

27
42
.8
4

0.
00

95
%

L
is
t

1.
90

54
.9
9

75
12
0.
00

0.
00

T
im
e-
A
V
G

17
.8
8

44
.6
6

22
76
.9
3

0.
00

T
im
e-
M
E
D

1.
70

4.
52

54
9.
47

0.
00

D
i�
-A
V
G

0.
97

6.
65

63
48
.6
8

0.
00

D
i�
-M

E
D

0.
48

2.
68

96
0.
00

0.
00

24
-H

B
re
ak
do
w
n

10
0
%

L
is
t

5.
20

17
2.
08

11
88
66
0.
00

0.
00

T
im
e-
A
V
G

32
.1
7

25
5.
05

17
05
20
.0
0

0.
04

T
im
e-
M
E
D

4.
63

13
0.
75

17
05
20
.0
0

0.
04

D
i�
-A
V
G

15
.0
4

81
.1
2

23
29
8.
74

0.
03

D
i�
-M

E
D

3.
45

9.
59

96
0.
00

0.
03

0.
95

%

L
is
t

4.
45

58
.0
9

75
12
0.
00

0.
00

T
im
e-
A
V
G

21
.4
1

47
.8
0

22
82
.4
0

0.
04

T
im
e-
M
E
D

3.
97

7.
29

54
9.
47

0.
04

D
i�
-A
V
G

8.
96

26
.5
3

63
48
.6
7

0.
03

D
i�
-M

E
D

2.
95

8.
24

96
0.
00

0.
03

47

3. Conceptual model development

The main takeaway from Table 3.1 is, that there are many options to calculate
working time out of a LOC/H value. The values of the real-world sample data are
in a range from 0.48 minimum to 1618.52. If it is assumed, that the taken data
are representative for any larger software organization some of the values can be
eliminated instantly. As the assumption is, that commits are at least daily and
outliers should not a�ect the LOC/H value, all rows with 'Percentage = 100%'
and in the 'original'-Section of the table can be eliminated.

Moreover, it can be seen, that depending on the way of calculation, the median
and average of each possibility can deviate largely. Looking at the plots of the
originating lines (Figures 3.7 and 3.11) one reason of the di�erentiation is clear:
Spikes in the lines do in�uence the average but not less the median. Moreover,
are most of the commits having a low number of LOC and less are larger ones.
Therefore, the median values are typically lower than those of the average.

3.4.4 Individual LOC/H value

As a fourth option of how to handle individual commits, further analysis was
conducted. In this section, the correlation between time di�erence and LOC will
be analyzed more deeply. This idea is originating out of the previous analysis res-
ults, where it was shown, that the average and median LOC/H are di�erentiating.
Therefore, the question to be answered now is:

How do the time differences, working time and number of LOC correlate?

To analyze this, the commits with its representative time di�erences (just con-
sidering commits within one workday, <36 Hours) and working time (calculated
with the formula developed in Chapter 3.3.2.2) were ordered ascending by LOC
as �rst criteria and then by time di�erence as second criteria. The result is shown
in Figure 3.14.

48

3. Conceptual model development

Figure 3.14: LOC, time di�erence and working time correlation

The plot in the �gure shows on the exponentially rising number of LOC (left
Y-Axis) and the correlating, �uctuating time di�erences and working time (right
Y-Axis). Putting LOC, time di�erences and working time together several things
can be recognized: On the one hand, the time di�erences and working times are
high �uctuating, especially for smaller LOC. Reason is, that there are numerous
small commits. Moreover, these large amounts of small commits are covering a
large area of time di�erences. The larger the LOC committed are, the less com-
mits are made and consequently the less �uctuation within the time di�erences
and working time is. On the other hand, the di�erence between working time
and time di�erence can clearly be seen for each LOC. It has to be noted, that
the working time line is �atter than the line of time di�erences. Reason are, that
time di�erences are not looking at e.g. night times like the work time calculation
shown above does.
Additionally, despite the exponential rise of LOC, the time di�erences and work-
ing time are relatively steady and not also exponentially rising. Therefore, it can
be concluded, that the working time is correlating with the LOC committed, but
not in a way, that the two numbers are linked together one to one. The working
time is indeed increasing (linear) with more LOC provided, but not exponentially
in the same factor.

Figure 3.14 shows the correlations for all time di�erences. However, the same pat-
tern and correlations were recognized for doing this analysis for di�erent windows
of time di�erences(e.g all time di�erences <3/6 hours, 3-15 hours, >12 hours).
Even though the curves are sometimes �atter or steeper, the basic idea (No one
to one correlation between working time and LOC) stays the same.

49

3. Conceptual model development

As this analysis showed that there is a huge deviation how the time di�erences
are distributed, the next step was to show the working time and LOC correlation
again. This time the plot is not ordered ascending by LOC but using the LOC
as the X-axis and additionally showing the quartiles and average of the working
time. The result is shown in Figure 3.15.

Figure 3.15: LOC and work time(quartiles, avg) comparison

The results are showing, how the working time for each LOC is distributed. In this
�gure it is more clearly (as already written above), that for low number of LOC
committed, the di�erence between the working times is high (high �uctuation).
There are many small commits, which results in a low �rst and high third quartile.
As the number of commits per LOC get lower for higher LOC, the �uctuation
range is smaller, which results into an almost similar plot at the right end of the
scale. Additionally, calculating a linear regression line makes the results more
obvious: At the left end of the plot, the regression lines are larger apart and
approach each other as the number of LOC are rising (In fact, the quartiles
are resulting in the same point for the highest LOC. Due to the nature of the
regression calculation, they are crossing each other at some point and not directly
ending at the right end of the axis)

Looking at the correlation between working time and LOC it is clear, that there is

50

3. Conceptual model development

no such element as an uniquely applicable value how the LOC and working time
are correlating. For each LOC committed, a large variety of time di�erence can
be observed. Additionally, for every time di�erence of a commit, a large variety
of LOC can be observed from historic data.
Therefore, it can be concluded, that it is not possible to assign an exact working
time to a commit by just having the LOC and time di�erence available.

A last option in this thesis, how (independent) commits can be assigned with
working time is to choose one of the regression lines as calculation basis. As the
second quartile and average liens are closely related to each other, this choice
might be viable option. However, it has still to be decided by the use case and
overall circumstanced if e.g. large commits (in this analysis: largest 5%) are
also valued by this regression line, as the regression line is rising with larger
commits, which might lead to a comparable lower working time per LOC than
looking at smaller commits. Especially for large imports of other projects must
be considered, if they were not already included at another point.

3.5 Concept Summary

Before an example implementation can be done, the overall concept will now be
summarized again.

Regular commits within one workday(<2160 minutes time difference):

The concept shows the result after the four iterations of developing a working
time concept. In the fourth iteration, several formulas (respectively algorithms)
were introduced, on which basis the implementation can be done.

The Formula 3.5 puts together all the single equations shown in Chapter 3.3.2.2.

51

3. Conceptual model development

worktime =



∑timestamppreviousCommit

k=timestampcurrentCommit
1, if timedifference < 360minutes,

worktimenightshare, if timedifference ≥ 360 and ≤ 720minutes,

worktimeproportional, if timedifference > 720 and ≤ 2160minutes

with:

worktimeproportional =

∑timestamppreviousCommit

i=timestampcurrentCommit
numberOfCommitsi

numberOfCommitsoverall
∗ worktimeday

worktimenightshare = nightshare ∗ worktimeproportional + (1− nightshare) ∗ daycoverage

nightshare =

∑timestamppreviousCommit

i=timestampcurrentCommit
xi ∗ 1∑timestampnightEnd

i=timestampnightBegin
1

daycoverage =
∑timestamppreviousCommit

j=timestampcurrentCommit

xj

worktimeday = typical workday in minutes

xi =

{
1, if i ∈ nighttime,

0, otherwise
xj =

{
1, if j ∈ daytime,

0, otherwise
(3.5)

As a short reminder, the following aspects must be given to implement the equa-
tions:

� The time di�erence from each commit to the previous one

� Time length of a typical workday in minutes (worktimeday)

� A limit of the maximum number of commits per timestamp to calculate the
nighttime/daytime (nightEnd and nightBegin respectively) (See Figure
3.13) OR

� Manually set a nighttime and daytime

Irregular commits without time difference and commits >36 Hours apart:

52

3. Conceptual model development

All commits don't have any previous commit, are >2160 minutes apart or are
other special cases (e.g. imported projects that needed to be evaluated again) can
be assigned with a working time by using the LOC and working time correlation
found out in Chapter 3.4.4. For this, either the average or median regression line is
used to calculate the working time. To calculate the regression line, each working
time with time di�erence <2160 minutes already must have been calculated.
These commits are then grouped by LOC. For each LOC, the median or average
working time is given. This array of values is then used for the linear regression.
The median linear regression line for the sample dataset is:

worktimelinear = 0.0525280 ∗ loc+ 272.4397728 (3.6)

Using the linear regression enables irregular commits to get work time assigned
in height of the median work time provided by the other more exact commits.

53

3. Conceptual model development

54

4 Architecture, design, and imple-

mentation

In this Chapter a prototype implementation of the previous developed concept
will be presented. At �rst, an architectural overview will be given (Chapter 4.1).
Based on this architecture, the way information is �owing through the system
will be explained(Chapter 4.2). After a brief overview, some technical details
(Chapter 4.3) the work time calculation(Chapter 4.4) and cost calculation is
shown (Chapter 4.5).

4.1 Architectural overview

The basic architecture of the system can logically be split into four parts, which
are shown in Figure 4.1.

Part A (Top of the �gure) represents the data sources used in the system. There
are two main types of data sources needed to implement the transfer price. On
the one side there are the commit data originating from a version control system.
Depending on the type of version control system, the commits might either be
directly transferred via an interface or (like in this thesis) be exported as CSV
data and used in this format. On the other side there are also the cost data
needed for the Cost Plus calculation, especially from a cost centre point of view.
For a non-prototype implementation, the cost data should be directly imported
from the accounting software.

Part B of the System shows the processing part of the Implementation. In this
part, the algorithm is implemented (work time is calculated, accumulation of
work time per project) and the Cost Plus Method is applied.

In Part C of the implementation, the costs per commit/transaction is then pro-
cessed again so that the right data are outputted and the data format is suitable.
Depending on the further usage (Part D), the data might be grouped by Project
(Transferred costs per Project), by Organization (Transferred costs per organiz-
ation) or by user (Individual user contributions, if needed).

55

4. Architecture, design, and implementation

Figure 4.1: Architectural overview over the implemented System

4.2 Information �ow

The processing done during the runtime of the program is also shown in Figure
4.1. The procedure is in alignment with the structure of the system previously
explained.

Step 1 is the extraction and processing of the commit data. In this prototype
implementation, the commits were preprocessed, loaded into the database and
then are requested on demand.
The next step (Step 2) is then to calculate the work time for each commit ac-
cording to the algorithm developed in this thesis (See Chapter 3.5). The result
is again a list of commits, but this time with work times assigned to it.
Step 3 (when requested) is the aggregation of the work times from an user level
to an organizational level to hide individual programmers performance.
Step 4 is loading the cost centre data from the database needed for the level

56

4. Architecture, design, and implementation

requested.
The information form Step 3 and 4 are consequently used to do the cost calcu-
lation for each organization. The result is list of costs, each committing entity
is producing to contribute to certain software modules, which are consequently
owned by others or the same entity again.
After adding the pro�t margin for each transaction (Step 5), the result is pre-
pared according to the query(Step 6).
Lastly the results will be output (here: REST API) so that the results can be
reused for di�erent purposes.

4.3 Technical overview

Before the process is described in detail, a brief overview of the techniques used
in the system will be given.

In Part A of the prototype system (See Figure 4.1) one PostgreSQL database was
used, to which the commit data were imported. The commit data were exported
from an enterprise version control system in CSV format.
The cost centre data were also stored in the database, as no dedicated connection
to an external accounting tool was available.

Beside SQL for database queries, PHP was used as main language. The main
reason in this thesis to use PHP as language was, that it was easy to implement
a CSV-Import webpage for easy usage, which later might be extended to also
show the work times, costs and transfer prices between the organizational units.
To have a consistent choice of technology within one thesis, the processing (Part
B) and output (REST API, Part D) was also done with PHP. The execution was
done by an Apache Webserver.

Querying the data can be done with a REST Interface solely implemented with
PHP (without extra packages). Implementing a REST API was chosen because,
on the one hand, it is a modern and widely used approach (Neumann et al., 2018)
and, on the other hand, enables the results of the implementation to be reused
easier in further research. The data returned by the REST API are formatted in
the JSON format.

4.4 Preparation and work time calculation

As a �rst step, the available commit data in CSV format were preprocessed and
uploaded to the database. In this step, at �rst, a simple PHP Upload webpage
was built. This form can be used to upload the CSV commit data. During the
upload process, invalid commits were sorted out. As the sample data are only
a part of a larger commit set (The commits belong to a platform as part of a

57

4. Architecture, design, and implementation

larger product portfolio), all commits where the author is belonging to a willingly
unsupervised organization were not uploaded. Additionally, commits to modules
not included in the platform were also ignored.

When requesting the data for usage with a SQL-Query, the commits were not
simply returned, but also further preprocessed. As in the list of commits each
entry represents one single �le change, the commits were aggregated, so that for
one upload (also called Patch (Capraro, 2020)) is calculated one time. In this
step, the number of added/deleted/modi�ed lines were also summed up.
In addition, the time di�erences for each commit to the previous commit of the
same user were calculated.

After returning the commit data with time di�erences from the database, the
calculation of the algorithm presented in Chapter 3.5 can be done.
First, all commits with time di�erences <2160 minutes are calculated with the
Formula 3.5. After this is done, the regression lines are calculated. To do this, all
commits including their work time are sorted by LOC ascending as �rst criteria.
For each LOC, the average or 2nd quartile work time must be calculated (As
they are similar, this thesis uses the 2nd quartile data). The 2nd Quartile work
time per LOC data is then used for the regression calculation. The result (like
equation 3.6) is used for all other commits, which are those >2160 minutes time
di�erence and those without time di�erence available.

The �nal result after this step is a complete list of commits with their estimated
work time, which can now be used to calculate costs with the Cost Plus Method.

4.5 Cost calculation

The calculation of the transfer price is the next. Before the calculation itself
can be done, some preparations must be made, which will be explained in this
chapter.

4.5.1 Cost structure

In this thesis, the work time concept is in focus, while the implementation itself
is a prototype. Therefore, having a real-world cost structure imported from an
accounting system was not the main task.

The costs used for calculation where randomly created as the height of the costs
plays only a secondary role and the procedure of calculation and structure of the
costs is more important. For every transaction made between entities, the direct
and indirect costs (See Chapter 2.1.4) must be known. All direct costs (e. g.
dedicated Server in Entity A for a software project which belonging to Entity B)
can be assigned directly to the transaction.

58

4. Architecture, design, and implementation

All indirect costs (e. g. personnel costs) must be available for each cost centre
(Organizational unit). These costs can later then split according to the workload
information provided by the commits. In this thesis, the personnel costs were
calculated by taking the number of developers of each organizational unit and
multiplying them with a randomly distributed salary for each employee. Addi-
tionally, four other indirect costs were generated, which represent other indirect
costs like rent and maintenance. In addition, the costs were di�erentiated by year,
so that each �scal year can be treated individually, as it is usual in taxation.

The sample data are giving organizational data as granular as the scrum teams
within each organization. However, the costs used here are generated not on
scrum-team level, but on the organizational level, the scrum teams are belonging
to.

4.5.2 Calculate cost split

At this point of the calculation process, the cost calculation itself is prepared
by processing the list of commit data with its work times. In addition, the
organizational hierarchy, number of people for each entity and a user (author of
a commit) to entity mapping is required. In addition it must be known, which
software project (or module) belongs to which organizational unit.

Figure 4.2: Commit, Author and module dependencies

In Figure 4.2 the di�erent attributes of a commit and how they are connected to
each other is shown. As part of the commit, the data of the committing author
and the target module is directly known. Moreover, it is also known, which entity
a user or a software module belongs to. Therefore, the entity which receives the
work (Target-Entity) and the entity which contributes (Commit-Entity) can be
found out.

On basis of these relationships, di�erent mappings can be calculated. Based on
the request of the user it can, for example, be calculated how much a committing
entity contributes to projects belonging to other entities or how much work�ows
to which projects. The mappings can also be done in the other direction.

Depending on the detailed request, the work time of the commit list will now be
aggregated according to the structure needed. As this sample implementation

59

4. Architecture, design, and implementation

is about �nding transfer prices for taxation, the goal will be to �nd out, how
much a Commit-Entity is contributing to other entities (crossing tax boundaries).
Therefore, the organizational structure is the basis. For each organizational unit,
the number of minutes worked for each Target-Entity will be summed up. The
result is a list of organizational units with the work time contributing to each
other unit.

Having the work time for each Commit-Entity to Target-Entity mapping, a share
can be calculated, how much percent of the work time was spent for which project.
This is done, because for the cost calculation it must only be known, how the
indirect costs must be split (See Chapter 2.1.4).

Depending on the hierarchy requested, the work times of lower-level organizations
may be aggregated, to �t the level needed. Moreover, the overall annual work
time (e. g. manual guess or imported by personnel system) and annual work
time of analyzed developers must be known.

4.5.3 Conduct cost calculation

The �nal step is the cost calculation itself. Based on the list of organizations,
their work time and percentage share, the costs can now easy be calculated.

At this point, it will be (like in Chapter 2.1.4 explained), di�erentiated again
between direct and indirect costs. All direct costs can directly be assigned to one
transaction. In our case, this may for example be a dedicated Server Entity A
uses to be able to contribute to a module owned by Entity B.
All indirect costs are structured by cost centre (organizational unit), as the en-
tities are those who contribute. Therefore, the costs of the current organization
and year must be requested. In the preparation, the work time shares for each
organization where calculated. Based on this share, the costs per entity (cost
centre) can be split. If, for example, Entity A contributes 60% of the work time
for its own projects, 30% of the work time for Entity B and 10% of the work time
for Entity C, the costs can/must be split according to that share. This a�ects
all costs of the cost centre, which cannot directly be assigned to one project (like
personnel costs, rent etc.).

At this point the di�erence of calculating Top-Down (explained here) and valid-
ating Bottom-up (see Chapter 3.2.1) can be emphasized again. At this point the
organization must decide depending on the use-case, if all costs of an organization
are included for the cost calculation (all commits are measured) or if just a part
of the overall number of commits are being analyzed and therefore just a smaller
part of the costs must be split according to the shares. Moreover, it would be
possible to validate if the guessed cost share/work time for the observed projects
ware concluded in the right way (Bottom-Up validation).

60

4. Architecture, design, and implementation

The last step is adding a pro�t margin for each transaction (5% �at in our
prototype). After this is done, the result and consequently the transfer price is
calculated. In our prototype implementation, the result is a list of organizations,
including the work time spend, costs, pro�t margin and overall transfer price for
each entity the contributed projects are belonging to.

This list may now be used again for further processing in taxation, accounting, or
other software. As already said, the prototype implementation makes it also easy
not only to structure by organization, but also to get e.g. the Commit-Author
to Target-Entity mapping. This information can now be accessed over the REST
API which was implemented.

The endpoints of the REST API are in Appendix A. A demonstration (Sample
output) of the API is shown in Appendix B.

61

4. Architecture, design, and implementation

62

5 Evaluation

The evaluation is no central part of this thesis but should be conducted in further
research. Therefore, this chapter will show rather how the evaluation can be done
for this work.

The main problem, this thesis solved was to calculate work times from a commit
log using statistical analysis. The sample use case the calculation was developed
for is cost calculation. Therefore, the evaluation should also target to evaluate
the cost share in the �rst place.

One simple evaluation possibility is to conduct interviews with the data owner
showing the results of the algorithm. To do this, people with a good overview
over the development activities must be questioned. Ideally, the algorithm might
be applied to more recent development activities in one sample organizational
unit again and then evaluated with the manager of the department or a person
knowledgeable over the internal work distribution in that business entity.

A second way of evaluation is to take the algorithm and execute it at historic
data where transfer prices are known. In this way, the results can be directly
compared to real world data. However, it is likely that (as the algorithm in only
an estimation) the results of the algorithm and real-world data are di�erentiating.
For that reason, additionally an expert in transfer pricing might be conducted to
compare and rate the result.

A third way for evaluation would be to systematically write down or track work
times at the developers workplace. To do that, either the detailed work time per
commit must be measured (e. g through tracking �le changes) or just the overall
work time per day in combination with the organizational overhead (timestamps
and which project) is needed. In the latter case, the overhead helps to understand,
how the work time not dedicated for development is distributed over the day. The
algorithm presented in this thesis includes overhead in the calculation. Using
exact work times therefore not only helps to improve the cost share, but also
might enable to use detailed work time calculation for a large variate of further
uses cases.

63

5. Evaluation

64

6 Conclusion

6.1 Summary

The goal of this thesis was to develop a concept how transfer prices, especially
Cost Plus, can be calculated for software development by using a list of code
contributions.
The solution was created iterative through analyzing the time di�erence between
commits, the timestamp of the commit and the relationship between LOC and
calculated work time. The extracted dependencies were used to develop an al-
gorithm which can be used to assign every commit an estimation of work time
spend on it.

In addition to the conceptual work, a prototype implementation was done, where
not only the work times where calculated, but also used for a sample transfer price
calculation. This prototype makes it easy to reuse work times, costs, transfer
prices and di�erent sorts of work�ows between commits and modules in future
research.

6.2 Limitations and outlook

When applying the developed algorithm, it is worth to keep in mind, what it was
designed for and for what not. The main goal of this algorithm is to calculate
work times usable for cost calculation. Therefore, the algorithm was designed to
output a work distribution (share per project) for each organization, even though
single commits might be inaccurate. With that context in mind, some limitations
are important to know, but which also show potential for future research.

One limitation is, that the algorithm was in this thesis especially design to be
applicable for the Cost-Plus method in taxation. Future work might show if
the concept is transferable (especially from a tax point of view) to other transfer
pricing method and which information are additionally needed for those methods.
Moreover, it might also be worth analyzing, how the work time calculation is
helpful for controlling and management to lower the boundaries of introducing

65

6. Conclusion

and performing inner source software development.

From an technical point of view future work must also show, how exact work
time of single commits really are. This can be done by calculating the deviation
to real work time per commit and improve the algorithm with that data.

Even though the algorithm developed in this thesis is not yet uniquely applicable
for all use cases, it might set the basis to improve software development, taxa-
tion, controlling and ultimately strategic management decisions based on exactly
measured work �ows between and within organizations.

66

Appendices

67

Appendix A: REST API overview

A REST API overview

Method Endpoint Description
GET /commit/rank/:rank Returns the list of com-

mits, grouped by commit-
date per author, with rank,
extracted hour and time
di�erence to previous com-
mit

GET /commit/numberPerHour/ Returns a list of commit
times and number of com-
mits made in this time

GET /commit/hourPriceComplex/ Returns a list of commits
with time di�erences,
loc/h performance value
and work time calcu-
lated by the (internally
called) complex hour price
method (Working time
concept from fourth itera-
tion, all commits with time
di�erence 2160 minutes,
Chapter 3.3.2.2)

GET /commit/workingTime/ Returns a list of commits
with the working time
assigned. All commits with
an previous commit by the
same user are calculated
by the hourPriceComplex-
Formula (360/360-
720/720-2160 di�erence).
All irregular commits are
calculated by using the
LOC-Worktime relation-
ship (median regression
line). See Chapter 3.5

69

Appendix A: REST API overview

GET /nightTime/ Returns the start of
the night(dayEndTime)
and begin of the
day(dayStartTime). If
no commits are found, it
returns default time for the
night

PUT /commit/updateHourPriceComplex/ Updates intermediate used
table for linear regression
calculation with data from
regular commits

GET /commit/wtPerLocData/ Returns the avg and quart-
iles (q1_median_wt,
q2_median_wt,
q3_median_wt) for
each LOC found in the
dataset. See Figure 3.15

GET /commit/wtPerLocRegLines/ Returns the regression
lines for the avg and quart-
iles (q1_median_wt,
q2_median_wt,
q3_median_wt). Ba-
sic data is working_time
foreach LOC found in the
dataset. See Figure 3.15

GET /costs/transferPrice/ Returns for each org unit
the transfer prices and
minutes worked at projects
from other organizations

Table A.1: Overview of REST endpoints

70

Appendix B: Example API outputs

B Example API outputs

Case JSON Output

Regular commit with
time di�erence < 360
min

{"module": "Module A",

"commit_date": "2015 -01 -02 15:18:02" ,

"owner": "Person A",

"time_difference": "23",

"loc": "462",

"working_time": "23"}

Regular commit with
time di�erence 360-720
min

{"module": "Module B",

"commit_date": "2016 -02 -15 09:35:27" ,

"owner": "Person B",

"time_difference": "655",

"loc": "70",

"night_share": 1,

"working_time": 50}

Regular commit with
time di�erence 720-2160
min

{"module": "Module C",

"commit_date": "2016 -04 -08 11:07:01" ,

"owner": "Person C",

"time_difference": "953",

"loc": "684",

"working_time": 154}

Irregular commit with
no time di�erence

{"module": "Module D",

"commit_date": "2015 -01 -06 17:58:19" ,

"owner": "Person D",

"time_difference": null ,

"loc": "227",

"working_time": 268}

71

Example transfer price
calculation

{"org_name": "Organisation -A-A-A",

"parent_org": "Organisation -A-A",

"overall_personnel_sum": 16,

"transfer_data": {

"2015":

{

"Organisation -A-A": {

"share": 84.96,

"costs": 47701.28,

"transfer_price": 50086.34

},

"Organisation -A-A-A": {

"share": 7.31,

"costs": 4106.04,

"transfer_price": 4311.34

},

"Organisation -B-A": {

"share": 6.53,

"costs": 3669.06,

"transfer_price": 3852.51

},

"Organisation -C-A": {

"share": 0.80

"costs": 448.18,

"transfer_price": 470.59

},

"Organisation -D-A": {

"share": 0.40,

"costs": 223.23,

"transfer_price": 234.39

}}}}

Table B.1: Example API output

72

References

Capraro, M. (2020).Measuring inner source collaboration (doctoralthesis). Friedrich-
Alexander-Universität Erlangen-Nürnberg (FAU).

Carroll, N., Morgan, L. & Conboy, K. (2018). Examining the impact of adopting
inner source software practices. Proceedings of the 14th International Sym-
posium on Open Collaboration. https://doi.org/10.1145/3233391.3233530

Cooper, D. & Stol, K.-J. (2018). Adopting innersource: Principles and case stud-
ies.

Feller, J. & Fitzgerald, B. (2000). A framework analysis of the open source soft-
ware development paradigm, 58�69.

Fluri, J. & Deck, K.-G. (2018). Automatisierte Kollaboration und Prozesse in
der Softwareentwicklung - Wandel von Unternehmenskultur und Unter-
nehmensstruktur. In K. O. Tokarski, J. Schellinger & P. Berchtold (Eds.),
Strategische Organisation: Aktuelle Grundfragen der Organisationsgestal-
tung (pp. 259�283). Springer Fachmedien Wiesbaden. https://doi.org/10.
1007/978-3-658-18246-5_12

Fuller, R. (2019). Functional organization of software groups considered harm-
ful. 2019 IEEE/ACM International Conference on Software and System
Processes (ICSSP), 120�124. https://doi.org/10.1109/ICSSP.2019.00024

Hanken, J., Kleinhietpaÿ, G. & Lagarden, M. (2017). Verrechnungspreise. Prax-
isleitfaden für Controller und Steuerexperten (2. Au�age). Haufe Gruppe.

Krause, S. & Pellens, B. (Eds.). (2018). Herausforderungen neuer digitaler Geschäfts-
modelle für die Bestimmung von Verrechnungspreisen. In Betriebswirtschaft-
liche Implikationen der digitalen Transformation (pp. 143�165). Springer
Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-18751-4_8

Leite, L., Kon, F., Pinto, G. & Meirelles, P. (2020). Platform teams: An organ-
izational structure for continuous delivery. Proceedings of the IEEE/ACM
42nd International Conference on Software Engineering Workshops, 505�
511. https://doi.org/10.1145/3387940.3391455

Neumann, A., Laranjeiro, N. & Bernardino, J. (2018). An analysis of public rest
web service apis. IEEE Transactions on Services Computing, PP, 1�1.
https://doi.org/10.1109/TSC.2018.2847344

73

https://doi.org/10.1145/3233391.3233530
https://doi.org/10.1007/978-3-658-18246-5_12
https://doi.org/10.1007/978-3-658-18246-5_12
https://doi.org/10.1109/ICSSP.2019.00024
https://doi.org/10.1007/978-3-658-18751-4_8
https://doi.org/10.1145/3387940.3391455
https://doi.org/10.1109/TSC.2018.2847344

References

OECD. (2017a). Gewährleistung der Übereinstimmung zwischen Verrechnungs-
preisergebnissen und Wertschöpfung. https://doi.org/10.1787/9789264274297-
de

OECD. (2017b). Oecd transfer pricing guidelines for multinational enterprises
and tax administrations 2017. https://doi.org/10.1787/tpg-2017-en

Olbert, M. & Spengel, C. (2017). International taxation in the digital economy
: Challenge accepted? World Tax Journal : WTJ, 9 (1), 3�46. https ://
madoc.bib.uni-mannheim.de/41867/

Open Source Initiative. (2007). The open source de�nition. Retrieved March 11,
2021, from https://opensource.org/osd

Prangenberg, A., Stahl, M. & Topp, J. (2011). Verrechnungspreise in konzernen.
Hans-Böckler-Stiftung.

Riehle, D., Capraro, M., Kips, D. & Horn, L. (2016). Inner source in platform-
based product engineering. IEEE Transactions on Software Engineering,
42, 1162�1177. https://doi.org/10.1109/TSE.2016.2554553

Schwerdt, D. (2016). Verrechnungspreismethoden und Ökonomische Analyse. In
R. Dawid (Ed.), Verrechnungspreise: Grundlagen und Praxis (pp. 163�
241). Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-
658-09377-8_5

Stol, K.-J., Avgeriou, P., Babar, M. A., Lucas, Y. & Fitzgerald, B. (2014). Key
factors for adopting inner source. ACM Trans. Softw. Eng. Methodol.,
23 (2). https://doi.org/10.1145/2533685

Stol, K.-J. & Fitzgerald, B. (2015). Inner source�adopting open source develop-
ment practices in organizations: A tutorial. IEEE Software, 32 (4), 60�67.
https://doi.org/10.1109/MS.2014.77

United Nations. (2014). United nations practical manual on transfer pricing for
developing countries. United Nations. https : / /www . un - ilibrary. org /
content/books/9789210561372

Weber, W., Kabst, R. & Baum, M. (2014). Einführung in die Betriebswirtschaftslehre.
Gabler Verlag. https://doi.org/10.1007/978-3-8349-4677-5_1

74

https://doi.org/10.1787/9789264274297-de
https://doi.org/10.1787/9789264274297-de
https://doi.org/10.1787/tpg-2017-en
https://madoc.bib.uni-mannheim.de/41867/
https://madoc.bib.uni-mannheim.de/41867/
https://opensource.org/osd
https://doi.org/10.1109/TSE.2016.2554553
https://doi.org/10.1007/978-3-658-09377-8_5
https://doi.org/10.1007/978-3-658-09377-8_5
https://doi.org/10.1145/2533685
https://doi.org/10.1109/MS.2014.77
https://www.un-ilibrary.org/content/books/9789210561372
https://www.un-ilibrary.org/content/books/9789210561372
https://doi.org/10.1007/978-3-8349-4677-5_1

	Introduction
	Fundamentals
	Economical
	Transfer pricing principle
	Transfer pricing relevance for companies
	Taxation methods
	Full absorption costing

	Organizational
	Traditional organization types
	Platform and inner source organization

	Technical
	Open source paradigm
	Inner source paradigm
	Traditional programming in companies

	Inner source and transfer pricing dependencies
	Problem awareness
	Prerequisites for using Cost Plus
	Tax view on Inner Source Transfer Pricing
	Accounting and management view on Inner Source Transfer Pricing

	Conceptual model development
	Background and information requirements
	Calculation basis options
	Number of hours
	Percentage split
	Lines of code
	Mixture

	Basic working hour calculation
	Time difference analysis
	First iteration: Time difference based LOC/H
	Second iteration: 24h time difference based LOC/H

	Commit hour analysis
	Third iteration: Timestamp based LOC/H
	Fourth iteration: Working time concept

	Independent commit handling options
	Ignore individual commits
	Apply flat rate
	Apply LOC/H calculation
	Individual LOC/H value

	Concept Summary

	Architecture, design, and implementation
	Architectural overview
	Information flow
	Technical overview
	Preparation and work time calculation
	Cost calculation
	Cost structure
	Calculate cost split
	Conduct cost calculation

	Evaluation
	Conclusion
	Summary
	Limitations and outlook

	Appendices
	REST API overview
	Example API outputs

	References

