
Friedrich-Alexander-Universität Erlangen-Nürnberg

Technische Fakultät, Department Informatik

VINCENT FEDERLE

MASTER THESIS

Searching within EDITIVE

Evaluation and Implementation of a Reference
Architecture

Submitted on 18.05.2021

Supervisor: Dipl.-Inf. Hannes Dohrn, Prof. Dr. Dirk Riehle, M.B.A.

Professur für Open-Source-Software

Department Informatik, Technische Fakultät

Friedrich-Alexander University Erlangen-Nürnberg

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der
angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form
noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer
Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß
übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 18.05.2021

License
This work is licensed under the Creative Commons Attribution 4.0 International license
(CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 18.05.2021

2

https://creativecommons.org/licenses/by/4.0/

Abstract

EDITIVE is a platform based upon the collaboration principles first spread by GitHub. In
such a multi-level content collaboration platform, a search functionality is useful and often
demanded. The main reasons therefore are to reduce complexity and provide advanced infor-
mation retrieval, including content meta-information. The difficulty to provide a search func-
tionality within such a platform relates to the underlying content data model and its complex-
ity. Atomic data structures enable more search precision and contribute towards an effective
search implementation. EDITIVE runs on a mainly atomically defined data structure. The
highly complex data model within EDITIVE stems from the flexibility based on the Git col-
laboration principles offered to the user, merged with advantages of wikis.

This master thesis shows the difficulties of implementing a search functionality within a
multi-level content collaboration platform, more specifically EDITIVE. It presents the design
and implementation of it in the EDITIVE context based on the search engine Apache Solr.
This thesis shows a reference architecture implemented on Solr. Furthermore, it elaborates on
the utilization of the underlying data model. We advise several ways on how to further refine
and extend the resulting search implementation beyond the scope of this thesis.

3

Contents

1 Introduction..5

2 Requirements..6

2.1 Purpose of search in a multi-level content collaboration platform...................................6

2.2 Requirements for the search component...6

2.2.1 Functional requirements...7

2.2.2 Non-functional requirements...7

2.3 Evaluation scheme for requirements...8

3 Technology and state of the art...10

3.1 Apache Solr...10

3.2 A look at the GitHub Search...12

3.3 Wiki Object Model (WOM)..12

3.4 Difficulties in designing search functionality...13

4 Architecture and design...14

4.1 Systems architecture...14

4.1.1 Architecture patterns..14

4.1.2 Search component embedded within EDITIVE...17

4.1.3 Indexing and searching sequence within EDITIVE...19

4.1.4 Testing..20

4.2 Search functionality design...22

4.2.1 EDITIVE actions..22

4.2.2 Collections and Fields..25

4.2.3 Java interfaces for an implementation..26

5 Implementation..28

5.1 Java implementation and integration..28

5.2 Indexing..31

5.3 Querying..32

6 ISO/IEC 25010 evaluation...34

7 Outlook..36

8 Conclusion...37

Appendices
 Appendix A Bill of Materials..38

References..39

4

1 Introduction

Expectations towards software applications have grown in the direction of easy usability, shal-
low learning curves and intuitive designs (Gupta et al., 2017). Nevertheless, professional tools
are expected to provide a high set of features and flexibility depending on their appliance. The
necessity of information retrieval has grown with the increasing amount of data available
(Roshdi et al., 2015). Additionally, problems such as data security and safety are growing
more important because sensitive information is increasingly stored in a digital format. Pro-
tected information is stored within search indexes and must be secured accordingly. On top of
that, software code should facilitate proper maintenance to ensure a long lifetime (Abdullah et
al., 2017).

EDITIVE enables new ways of collaboration (EDITIVE, n.d.) and therefore new layers of
complexity for information retrieval considering security, usability and performance. This the-
sis showcases a reference architecture and its evaluation and implementation based on Apache
Solr (Apache, n.d.), which we will further refer to as Solr. The resulting artifact follows state-
of-the-art coding guidelines. It provides a basis for high usability and performance, which can
be further configured and extended. Some possible extensions are described in the outlook
section of this thesis. The result of this thesis consists of:

• An architecture and implementation of a search component fulfilling requirements to-
wards an EDITIVE search functionality.

• Validation of requirements based on an evaluation schema.

• An outlook on the search functionality development beyond the scope of this thesis.

EDITIVE is in some ways similar to but also unique from other platforms. There is no across-
the-board implementation that can be utilized, but many search platforms provide a large
spectrum of functionality out of the box, which this thesis also utilizes. EDITIVE’s business
model is mainly structured around flowing text compared to a source code management plat-
form such as GitHub, which might also change the expectations towards its search functional-
ity. In this work, we provide a possible implementation and architecture for a search compo-
nent integrated within EDITIVE.

The thesis is structured as follows: Section 2 focuses on requirements towards a search feature
embedded in a multi-level content collaboration platform. It presents an evaluation scheme for
its requirements. In section 3, current technologies are discussed and the reasoning for choos-
ing Solr is explained. Additionally, a brief overview of the GitHub search (GitHub, n.d.), the
Wiki Object Model (Dohrn et al., 2011), short WOM, and difficulties for a search implemen-
tation are outlined. Section 4 leads through the design and reference architecture for a search
implementation. Section 5 briefly concludes on the implementation, continuing with the eval-
uation of the architecture and implementation in section 6. Subsequently, an outlook is out-
lined in section 7. Section 8 concludes the scope of this work.

5

2 Requirements

The availability of applications improved over the years (Robillard et al., 2009). Companies
such as Microsoft decided to focus more on open-sourcing applications including the well
known Windows calculator among many others. With more and more tools contributing to a
better development process, complex solutions can be realized. But whether those solutions
provide value to users often depends on solid requirements. Therefore, we need to gather and
formulate requirements to be able to build an effective solution. Requirements mostly dictate
the direction an implementation takes (More et al., 2011). This section is structured into the
purpose of search functionality, functional requirements, non-functional requirements and an
evaluation scheme to validate these requirements.

2.1 Purpose of search in a multi-level content collaboration
platform

Platforms such as YouTube, Facebook, Netflix and Reddit are successfully employing recom-
mendation and subscription systems. The fast consumption of entertainment and information
nowadays requires such systems and these systems become relevant even within the field of
software engineering (Robillard et al., 2009). These recommendation and subscription sys-
tems don’t replace searches, in fact users expect the existence of search functionality within
most applications. The trend shows, that search functionality became simplified over the last
years. There are fewer search options, facets, filters and topics, even up to the point of offer-
ing a search bar without any further possibility of configuration. Additionally, users increas-
ingly rely on high precision in the top few search hits, partially caused by the growing impa-
tience of users (Lown et al., 2013). As Steve Lohr describes in 2014, even an “Eye Blink” is
too long for a user to wait while querying e. g. Google (Lohr, 2012).

An effective search implementation seems to be difficult to achieve under these assumptions,
but indexing and search libraries such as Lucene enable effective implementations given these
requirements. Therefore, even smaller products can provide search functionality with a man-
ageable amount of effort.

Search functionalities can provide many benefits to a multi-level content collaboration plat-
form. First, users will find relevant content faster and can also discover new content of other
collaborators, maybe even exploring content. Second, search metrics can be documented and
used for further product development. Third, mobile users don’t like complex navigation,
since they have a smaller device than desktop users to operate on. A search functionality sim-
plifies navigation. Lastly, users nowadays simply expect a search functionality within most
applications (Aliannejadi et al., 2018). These benefits, especially the first, justify the imple-
mentation of a search functionality within EDITIVE.

2.2 Requirements for the search component

The requirements listed in this thesis are mostly based on internal company design. Some re-
quirements are influenced by potential customers of EDITIVE as relayed by the company
staff. The small startup EDITIVE, based in Erlangen – Germany, doesn’t have a large user
base at this point in time but is currently focused on gaining momentum in the market. Most
functional requirements have been defined on assumptions of user behavior, user expectations
and other comparable existing search features offered by popular products. Non-functional re-
quirements have been aligned with the company’s technical specialist.

EDITIVE’s data model is comparable to a Git based data model. It consists of commits con-
taining changes on different branches, therefore enabling versioning in addition to high col-

6

laboration. Tags can be assigned to specific versions, acting as snapshots of a branch in a spe-
cific version. The main elements of EDITIVE’s contents are Eddys and their documents. Ed-
dys represent projects which can contain many documents. These projects can be forked to a
separate representation and can be modified on multiple branches and versioned with multiple
tags. Any commit represents a version of none or multiple documents and can be restored at
any point in time.

2.2.1 Functional requirements

The goal is to be able to search through most of the content within the HEAD commits of all
projects in the version representing the most recent content. The search should be performed
with the following information. The user can retrieve this information from the search results:

User editable information:

• The descriptions and names of Eddys.

• Eddy documents’ names and contents.

• Authors, creating and modifying content within EDITIVE.

• Branches within Eddys.

User non-editable information:

• Names of commits represented by their commit-hash.

When retrieving an Eddy, all Eddy related information is accessible from the result of the
search. From there on, the user can navigate to the Eddy and will be able to further navigate
from there to specific branches or versions. Documents retrieved from searches are in the
HEAD version for each Eddy and fork the documents are referenced in.

Additionally, issued searches must respect the visibility settings of projects and consider the
searching user’s permissions to ensure no information is leaked in any unauthorized way. Re-
garding usability, the users should be able to decide whether they want to search solely
through Eddy information, Eddy document information, or both. Documents are indexed
completely to reduce complexity. They will be stored in a plain text form instead of their
WOM extensible markup language (XML) representation.

2.2.2 Non-functional requirements

The search implementation should be done following the “kiss”-principle. The design of the
search functionality should follow a simplistic design and can be initially implemented with-
out any third party software. It doesn’t require to be scalable in its first iteration. From this
starting point on, the search functionality should be refined and improved incrementally. Non-
functional requirements towards the design and implementation are:

• The software artifact needs to be easily maintainable and extendable. For that, all cod-
ing functionality needs to be unit tested. Integration tests are expected where of use.
Additionally, the code should follow best practices, fulfill EDITIVE Checkstyle rules
and follow internal coding guidelines.

• All programming code needs to be written in Java. Configuration files should be in a
common format, e. g. XML. These files are restricted to the backend service and
should be running within docker-compose for local setup and Kubernetes for cloud
setup. The resulting objects must be easily processable by the frontend. The frontend
implementation is not the scope of the search implementation.

• Written Java code follows the principles of object-oriented design.

7

• It is recommended to use as many existing dependencies as possible introducing new
dependencies only when required for core functionality. Emphasis is placed on imple-
menting specific functionality on the existing dependencies instead of introducing new
dependencies to the project. This prevents unnecessary governance and maintenance
of marginal dependencies as well as reduces project complexity.

• All the search component functionalities such as indexing, searching and starting of
services can be toggled on or off by a switch. The EDITIVE backend must remain
fully functional if the search is disabled. In this case, search queries should return an
empty result set. This also benefits towards a separation of concerns and resilient soft-
ware design by enabling possible implementations to cope with ways of failure.

• Program code should allow for easy profiling, that can be toggled on or off. This helps
to validate implementations and therefore improves further extension and testing of
the functionality.

• The implementation should follow a synchronous approach for indexing and searching
in order to reduce complexity by possibly compromising on response time.

• All relevant Eddys and documents must be retrievable by the search implementation.
This implementation does not focus on precision and recall, but instead focuses on in-
dexing and reading performance. Precision and recall can be analyzed effectively by
utilizing metrics and query logs, thereby requiring a user base (Zhou et al., 2017). Ex-
isting search engine frameworks can be configured and fine tuned to deliver a relevant
ranking of hits.

• A modular structure of the functionality enables simple replaceability. The implemen-
tation utilizing a search platform can be switched out with low effort and without
change to the non technology related implementation. This requirement might change
since EDITIVE is starting to gain traction in the market.

2.3 Evaluation scheme for requirements

Based on the requirements, we define some criteria of quality for the search component.
These criteria will be used to validate and evaluate the requirements. The criteria are chosen
from the ISO/IEC 25010, that replaced the previously established standard ISO/IEC 9126
(ISO, n.d.).

• The functional suitability of the implementation is measured by the set of functions
covering the functional requirements listed in 2.2.1. Additionally, the implementation
provides correct results. Lastly, the implementation facilitates the accomplishment of
the user’s tasks.

• The time behavior is measured in order to evaluate performance efficiency. Indexing
and searching both fulfill the specified performance requirements and also scale in a
reasonable way under the assumption of higher capacity.

• Compatibility is measured by the co-existence and interoperability with the existing
EDITIVE implementation. Passing integration tests on the EDITIVE backend, includ-
ing the search components as well as successful deployment builds, indicate the inte-
gration and compatibility.

• An appropriate user error protection is established. The interface is simple to use and
easy to understand. Additionally, the search implementation is transparent to the user
thereby encapsulating internal complexity. The search component has a high degree of
usability.

8

• Security measures are implemented in order to prevent the user from manipulating
data in an unauthorized or unintended way. Also, users only retrieve information com-
pliant with Eddy visibility and access grants.

• Good maintainability of the search component code is required, especially regarding
the modifiability. Establishing a high degree of maintainability is required because the
recommended architecture and implementation will represent a first iteration of the
search functionality. It should be capable of modification and configuration to fit fu-
ture requirements. Unit tests are provided for all implemented logic to also imply
modularity. Simple profiling is implemented in order to make the software analyzable
and to make future modifications comparable to current implementation.

• In this context we also place high value on the portability. There are many other tech-
nologies this architecture can be implemented on, but the architecture might change
slightly due to the choice of technology. The many search platforms available are spe-
cialized to cover a wide field of application areas and therefore an appropriate frame-
work is carefully chosen in regards to the requirements. The design separates the im-
plementation of the specific search engine framework from the implementation re-
quired in the EDITIVE context. This should improve the replaceability of the search
engine framework implementation and technology by keeping the EDITIVE specific
non-framework related implementation.

9

3 Technology and state of the art

In this chapter, we will further examine Apache Solr and why it was chosen for the EDITIVE
search implementation. Choosing Solr also has an impact on the architecture and implementa-
tion of our solution, therefore chapter 3.1 is further separated into a description of the Solr ar-
chitecture, our reasoning for choosing Solr and an overview of few optimizations and best
practices using Solr. In chapter 3.2 we briefly look at the GitHub search, which is imple-
mented using Elasticsearch. Then in chapter 3.3, the WOM is briefly presented as the basis of
EDITIVE documents’ internal storage. Finally, chapter 3.4 presents some difficulties in de-
signing the search functionality.

3.1 Apache Solr

Apache Solr is an open-source search platform with an active development community and
regular releases. It is well established for enterprise search and designed for its scalability and
fault tolerance, utilizing index replication and distributed search (Apache, n.d.). Solr is based
on the open-source search engine library Apache Lucene. Lucene and Solr merged in 2010
and the same committers are further developing Lucene as well as Solr. Both, Lucene and
Solr, are written in Java. Some of Solr’s major features relevant for this thesis are its “Ad-
vanced Full-Text Search Capabilities”, “Near Real-Time Indexing”, “Flexible and Adaptable
with easy configuration”, “Highly Scalable and Fault Tolerant” and “Easy Monitoring and
Optimized for High Volume Traffic” (Apache, n.d.).

There are currently two modes to run Solr. First is the SolrCloud mode, which offers many
features which are automatically coordinated by Apache ZooKeeper and Solr. These include
functionalities such as index replication, load balancing and distributed queries relevant for
fault tolerance and performance. Second is the standalone mode. The standalone mode also
offers these possibilities similar to the SolrCloud mode, but they have to be implemented and
handled manually by using third party tools or self-made implementations. For some use
cases, the standalone mode can be preferred, but these don’t include any requirements cur-
rently set for the EDITIVE search. Additionally, the SolrCloud mode can always be reduced
to standalone, if it is too heavyweight. The flexibility and improved utility it provides are de-
sirable in a startup, which isn’t that established on the market yet. Concluding, we will only
use the SolrCloud mode for our reference architecture and implementation.

The chart below shows a simplified view of the SolrCloud architecture. SolrCloud nodes are
all independent from each other, they don’t use a master-slave architecture compared to the
standalone mode. Every node can use ZooKeeper to learn about the state of the cluster. One
Solr node can host multiple cores and within each of these cores runs its own Lucene engine.
SolrCloud uses collections to define the data schema. Collections are logical unions of shards
and each shard is represented as a core inside of a node. The replication factor of Solr and the
number of shards determine the number of cores used. For example, with a configured repli-
cation factor of 2 and a collection distributed across 3 shards, we will then require a total of 6
cores (replication factor 2×3 shards). All data is stored on the local file system. Solr Cloud
also provides many metrics and monitoring capabilities. These have to be explicitly activated
by starting a Solr metrics process which is a separate process within a Solr node.

10

Figure 3.1: Apache Solr SolrCloud architecture

The decision towards Apache Solr is based on multiple criteria. Due to our requirements, the
focus on technology is reduced, since the technology should be easily interchangeable. Most
of the code is required to be portable to a different concrete implementation and search plat-
form.

• Licensing of the software.

• The degree of establishment within enterprise applications.

• Possibility for support & present up to date documentation.

• Active product development with frequent and recent updates.

• Needs to be capable to fulfill all requirements towards our search component.

• Java support.

There are many established search platforms on the market, but Solr, being one of the most
established platforms, was chosen based on the criteria mentioned above. Elasticsearch was
also a highly considered choice. Both Elasticsearch and Solr are utilizing Lucene and are writ-
ten in Java. Due to the previous work on a complex search implementation within EDITIVE
(earlier Sweble) by Robert Miller (Miller, 2018), which was implemented utilizing Elastic-
search, we decided to choose Solr and its simple Java interface SolrJ.

Solr enables us to fulfill all requirements in an efficient way. It has high potential and offers
the capability to be configured and optimized for most use cases. Utilizing its metrics to fur-
ther evaluate configurations can ease the validation and implementation. At the core of Solr’s
performance is its schema design. Here we carefully need to decide on appropriate field defi-
nitions to enable dynamic flexibility or a more optimized stricter schema. Furthermore, an ef-
fective schema design enables Solr to make best use of its text analysis features (Apache,
n.d.). It is capable of tokenization, stemming, handling synonyms, removing stop words, even
sound-like analysis and partial indexing. Spell checking can be configured for a domain spe-
cific language checking. Solr’s XML support could be of interest because one of the native
and descriptive formats of Eddy documents is XML, but more about that in section 3.3.

11

Enhanced searching also provides benefits to performance, precision and recall. Solr pro-
vides a lot of functionality and built-in functions, which can be utilized in queries. Addition-
ally, it allows to set up result rules, query and function boosting. Solr is well known for its
faceting functionality to further enhance navigation.

3.2 A look at the GitHub Search

The GitHub Search application programming interface (API) is implemented utilizing Elastic-
search. It offers several representational state transfer (REST) APIs as well as a simple graphi-
cal user interface (GUI). It makes use of Elasticsearch’s ranking, ordering result hits by their
relevance. Additionally, it enforces rate limiting and other limitations as query length and op-
erator count. Queries can run into timeouts and will then only return the hits that were identi-
fied until its timeout (GitHub, n.d.).

The GitHub Search API differentiates between searching code, commits, issues & pull re-
quests, labels, repositories, topics and users. It has separate REST methods for each of these
search cases. The search bar in the GUI queries all of these interfaces and provides results
ranked by their relevance score within their respective categories. Searching in the code cate-
gory requires to provide a login. Facets can be further utilized within the GUI to navigate to
results in specific programming languages.

The current GitHub Search implementation also meets critique regarding simplicity. An ad-
vanced search can provide many options but some users express their confusion or criticize
requiring too many steps to reach their goal. This is further described in an issue thread on
GitHub (GitHub, 2017).

3.3 Wiki Object Model (WOM)

Eddy documents are internally stored in the extensible wikitext markup language (XWML)
and can be read and modified using the WOM. These documents contain different parts that
can be further distinguished. See a simple example below containing a body with a paragraph
and some text.

Snippet 3.1: WOM document

Regarding a search implementation, this document structure enables further faceting and more
precise searching by utilizing the different defined sections of a document. This would in-
crease the complexity of the search implementation, but could also provide more features and

12

 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
<article xmlns="https://schema.editive.org/editive-article-data-model/

1.0.0" version="1.0.0">

 <body>

 <p xmlns="https://schema.editive.org/editive-hypertext-data-model/1.0.0">

 <text xmlns="https://schema.editive.org/editive-resource-data-model/1.0.0"

 xmlns:ns1="https://schema.editive.org/editive-article-data-model/1.0.0">

 Richtlinien zum Vollzug der Zweiten Bayerischen Infektionsschutzmaßnahmenvero

rdnung an den bayerischen Universitäten</text>

 </p>

 </body>

</article>

flexibility. By reducing a WOM document to its text representation, the above document is re-
duced to the string:

Snippet 3.2: WOM document content text

The current goal of the EDITIVE search is not a navigation from paragraph to paragraph, but
a navigation towards Eddys and their documents.

3.4 Difficulties in designing search functionality

Taking a look at the Google search functionality again the user is only confronted with a sin-
gle search bar. After issuing the first search, Google retrieves all hits within less than a second
and offers further navigation, utilizing its faceting functionality. These facets include a few
categories such as “News”, “Images”, “Videos” and “Shopping”, offering a few filters regard-
ing languages and time. With these few features, Google is dominating the search market,
even having an active lawsuit initiated by the U.S. Justice Department. The lawsuit is charg-
ing that Google holds an illegal monopoly over search by controlling 88 percent of general
searches and therefore stifling competition (Office of Public Affairs, 2020). So even with such
simple functionality offered to the end user, Google has such a dominant position due to its
accurate and precise algorithms combined with high performance. Due to this dominant posi-
tion, it has shaped user expectations even towards libraries (Lown et al., 2013). One might ar-
gue, that this has no relevance for EDITIVE, since the requirements for Google’s search and
EDITIVE’s search are not comparable. The complexity of Google’s search is much higher and
its amount of content exceeds EDITIVE’s by an immense magnitude. But we can still derive
some of the users’ current expectations towards a search system from it. By keeping the
search interface simple and focusing on high precision and recall instead, the EDITIVE search
can be more useful for the user and improve the overall value of the product. This can be ac-
complished in a limited way in the scope of a master thesis, but the basis for this can be cre-
ated, which can then be further improved upon by analyzing user behavior.

13

Richtlinien zum Vollzug der Zweiten Bayerischen Infektionsschutzmaßnahmenverordnung

an den bayerischen Universitäten

4 Architecture and design

This chapter describes the design for the search functionality in EDITIVE. Chapter 4.1 con-
tains information on the EDITIVE systems architecture as well as a proposed architecture for
embedding search functionality within EDITIVE. To define a systems architecture, design
patterns and architectures are analyzed. Furthermore, we describe potential modules within an
architecture for the EDITIVE search functionality. Next, a sequence flow is discussed to con-
cretize the behavior. Chapter 4.2 describes specifics regarding the search functionality and its
design and architecture, based on Solr using the embedded architecture from chapter 4.1. Ad-
ditionally, chapter 4.2 focuses on a target architecture for Solr within EDITIVE. It only de-
scribes and utilizes best practices and currently required functionalities.

4.1 Systems architecture

There are currently many architectural patterns as well as several ways to describe a designed
architecture. The work from Niu et al. (Niu et al. 2013) evaluates software architectures and
introduces methods to determine appropriate architectures, which will be utilized in the fol-
lowing chapters. We elaborate the design based on a few standardized diagrams using unified
modeling language (UML) and other established methods. Additionally, we decided to keep
the architecture description focused on the impact of non-functional requirements. Software
architecture includes conflicting objectives and, at a system level, all of these have to be con-
sidered. Because of these conflicting objectives, we can only design and evaluate a system ar-
chitecture based on its requirements (Niu et al. 2013). The conflicting objectives include scal-
ability vs. reliability. Methods such as backup strategies and data replication can be imple-
mented to fulfill reliability, but at the same time they will reduce the ability to scale the sys-
tem. This scalability is reduced because all replication and backup strategies have to be scaled
as well. This impacts the resulting cost of operation or, within a given set of hardware, both of
the two objectives require more resources without improving the adversary objective.

4.1.1 Architecture patterns

Patterns in the domain of software engineering are general and reusable solutions to com-
monly occurring problems. Architecture patterns in specific have a broader scope compared to
software design patterns.

Since synchronous search implementations can slow down the application’s performance, it is
a common practice to provide asynchronous indexing and sometimes even asynchronous
searching. Updating an Eddy document leads to saving new commit data to the database (DB)
and likely also leads to an indexing of said data into the search index. If this is done syn-
chronously and the time consumption by the DB access is noticeable, then the indexing time
of the search will noticeably add on top. Therefore, an event driven architecture can provide
good performance. Additionally, it provides high flexibility and loose coupling of different
event-consuming processes. Below, an event architecture is displayed containing some of the
main search functionality processes.

14

Figure 4.1: Event-driven architecture mediator topology

This event-driven architecture utilizes the mediator topology, providing event channels to-
wards specific processors. There would be an event channel for Eddy related events and an
event channel for Eddy documents related events. This could be extended to also include an
event channel for events such as indexing tags within EDITIVE. This is accomplished by uti-
lizing a broker topology. The difference is the absence of an event mediator redirecting events
from the event queue directly to the corresponding event channels. Instead, events from the
queue are consumed by any processor and if the processor can’t consume the event, it is for-
warded to another specified event channel.

Figure 4.2: Event-driven architecture broker topology

15

An event-based architecture has many benefits for EDITIVE. It provides overall agility due to
its loose coupling. It can be scaled by adding further processor instances or different proces-
sors. All processors can be separately run on suitable infrastructure if necessary, which could
benefit performance. The downside is that testing within such an architecture is very difficult.
The processors’ functionality itself could be unit tested. But tests for other components or
tests on a higher level in the test pyramid are difficult to implement and maintain. Develop-
ment is more complicated due to asynchronous operations and higher complexity of under-
standing and perceiving the overall system. Currently, a notification is not required when the
search request is completed. Most likely, the user will issue a search and then wait for its com-
pletion. The search functionality in EDITIVE is required to be fast, but doesn’t need to scale
to an extreme, therefore we see no need for an event-based searching architecture introducing
further complexity.

In order to cope with this complexity and development problems, a layered architecture can
be implemented. A layered architecture provides high testability, easy development and re-
duced complexity. Since these are very important for EDITIVE and required for the search
functionality, we accept its downsides of tight coupling and dependent deployment. The
downside of low scalability only affects the adapter we design integrated within EDITIVE,
since Solr has its own ways of scaling which are not directly affected by our adapter architec-
ture. The EDITIVE backend architecture can be identified as a layered architecture including
service oriented architecture patterns. Therefore, it would reduce the complexity by not intro-
ducing a new architectural pattern into a module of EDITIVE.

Figure 4.3: Layered architecture within EDITIVE

This general purpose architecture provides a starting point for EDITIVE’s search functional-
ity. It contains the adapter to Solr represented by a search service and a search repository. The
search service functions as the interpretation of user actions within EDITIVE such as com-
mits and it extracts relevant information for indexing. It also provides a simple interface to-
wards other EDITIVE components issuing searches. The extracted information is then passed

16

on to a search repository, which is responsible for managing the Solr client. This architectural
pattern supports the realization of the requirements towards an EDITIVE search functionality.

A microkernel architecture improves some issues implied by a layered architecture. It can be a
useful pattern for incremental development by providing better deployment and loose cou-
pling compared to the layered architecture. The microkernel architecture can be implemented
within other architectural patterns. This is not within the scope of this thesis, but we recom-
mend a microkernel architecture for further development of the search repository as shown in
Figure 4.4:

Figure 4.4: Microkernel architecture for the search repository

The central search repository represents the core system of the microkernel architecture en-
abling plug-in modules to be defined. For an architecture utilizing Solr within EDITIVE these
plug-in modules can include a highlighting module, a faceting module or an indexing module.
These modules are solely responsible for their task, enhancing overall agility, loose coupling
and development of new features.

4.1.2 Search component embedded within EDITIVE

The search component embedded within EDITIVE is, on a high level, only concerned with
two use cases:

1. A contributor changes content related data within EDITIVE.

2. A user issues a search within EDITIVE.

Other use cases, utilized by actors such as developers, include monitoring, testing and profil-
ing but are not included as the core functionality. Nevertheless, these use cases are essential
and the core functionality needs to enable or provide room for extension.

17

Figure 4.5: Use case diagram for the main use cases relevant for a search functionality

These use cases can be further detailed into editing Eddy document content or the direct edit-
ing of Eddys and the search for Eddys or Eddy documents. This can be further extended with
the searching of authors, editing and searching of tags and commits.

A brief search architecture within the EDITVE system is designed. The EDITIVE is separated
into multiple layers. It consists of the frontend (presentation layer), the editive-service (busi-
ness layer), the editive-engine (service/business layer) and the storage modules (persistence
layer). As mentioned in chapter 4.1.1, the search functionality should be located within the
services and persistence layer.

Figure 4.6: Java interfaces within EDITIVE’s Engine and Storage modules

The approach displayed in Figure 4.6 is common practice within the EDITIVE implementa-
tion. The Search Service has no knowledge of the implementation and technology used within
the Search Storage. Additionally, the Engine provides the interface that is implemented by the
Search Repository. The Search Service operates on the interface, receiving the Search Reposi-
tory implementation instance trough dependency injection. This prevents the Engine from de-
pending on the Search Storage. By utilizing this method, further components similar to the
Search Storage can be implemented. The current Search Storage would be an implementation
on top of Solr, but future implementation could utilize other technologies and be easily tog-
gled and compared. Since the Engine defines the interface it consumes, the expectations to-
wards the Search Storage are clearly defined. The separation of these concerns simplifies test-
ing, as well as enabling mocking of the used interfaces.

18

4.1.3 Indexing and searching sequence within EDITIVE

With a sequence flow, we can further concretize the two core use cases of indexing and
searching. First, we describe the case of synchronous indexing in the EDITIVE environment.
Indexing occurs during any content change, but the most complex changes to Eddy docu-
ments occur within commits. Therefore, we will mostly focus on commits within EDITIVE
concerning the indexing.

Figure 4.7: Sequence diagram for an EDITIVE commit

This sequence flow diagram shows a commit request from the GUI client to the persistence
layer. The calls are issued sequentially in order to prevent the introduction of complexity
through an asynchronous design in the current state of EDITIVE. The requests towards the
persistence layer can be parallelized because the processing of both requests utilizes different
resources underneath. There is no limiting time specified for the indexing operation, but it
should not be more than two-fold the duration of the processing of the resource change re-
quest.

19

Figure 4.8: Sequence diagram for an EDITIVE search request

When processing a search request with a search index, the scale of access to EDITIVE re-
sources depends on the amount of information stored in the index. If only IDs and data re-
quired for querying are stored, we need to later retrieve the objects from the EDITIVE stor-
age, if a user wants to access these. An efficient way would be to retrieve enough information
to display the hits to the user without retrieving all resources (Eddys and Eddy documents)
found by the search. This information should include information necessary to validate autho-
rization of the user, such that only accessible hits are shown. Currently, EDITIVE only pro-
vides authorization functionality within the editive-service layer therefore not allowing an ear-
lier filtering of search hits.

4.1.4 Testing

All code should be testable. By utilizing the approach of a layered architecture, all parts
should be unit tested. Furthermore, a possibility to test the implementation against a larger set
of test data should be at hand. Currently, there is not a lot of test data available within EDI-
TIVE in order to perform a meaningful performance test on the search implementation.
Therefore, a small service is implemented to crawl through a Git repository, transforming all
commits and files and inserting those into the EDITIVE application. This would enable per-
forming manual and automated larger-scale tests on the whole backend system. Most Git
projects contain code and, looking at the GitHub language rankings from 2018-2020, most
code is JavaScript, Python and Java (GitHut, 2021). Therefore, this test is not focused on the
content of the files but can be utilized to measure the indexing and searching performance of
the search implementation.

Utilizing JGit, a simple implementation is done which traverses over and imports the commits
of a Git repository. We can resolve the HEAD commit on a JGit repository and each commit
offers a method to retrieve all parent commits.

Snippet 4.1: Retrieving the HEAD commit of a JGit repository

20

ObjectId commitId = repository.resolve(Constants.HEAD);

RevCommit commit = walk.parseCommit(commitId);

In this case, the method resolve on the repository object retrieves the HEAD commit ID. The
parseCommit method on the RevWalk instance walk retrieves the actual commit object for a
commit ID.

Snippet 4.2: Retrieving a commit’s parent commit IDs

By executing method getParents on a commit object, all parentIds are retrieved within in-
stances of the RevCommit class. But these objects only contain the ID, all other fields are null.
The IDs from within these RevCommit instances have to be resolved in order to receive all
RevCommit information. With these possibilities available in the JGit API, a simple Git-im-
porter-service can be designed as follows:

Figure 4.9: Git-importer-service import algorithm

21

RevCommit[] parentIds = commit.getParents();

First, a new Eddy is created from the Git repository metadata. From there, the HEAD commit
of the Git repository can be retrieved. Next, we retrieve all parent commits and their parent
comments by looping or traversing recursively. This executes until we reach the Git reposi-
tory’s initial commit. The initial commit is transformed to Eddy resource changes and these
are committed on the Eddy. Now all commits retrieved earlier are transformed and processed
following the “last in – first out” principle. If the HEAD commit is applied to the Eddy, the
service can terminate and all commits from the Git project have been transformed and com-
mitted to the Eddy. With this simple Git-importer-service, commits and Eddy test data can be
generated within EDITIVE.

4.2 Search functionality design

Solr provides a wide range of functionality, but not all functionality is required within EDI-
TIVE. This architecture focuses on the indexing and searching of Eddys, Eddy documents,
commits, authors and branches according to the requirements. Additionally, forks and com-
mits have to be handled. The search functionality will only enable searching content on the
HEAD commits within Eddys and will not perform a full historical search on all commits.
Therefore, an efficient way of indexing and searching is designed.

4.2.1 EDITIVE actions

EDITIVE actions are initiated changes to content and content meta-information within EDI-
TIVE. There are multiple actions within EDITIVE, which create data relevant for indexing.

• An Eddy is created.

• Eddy meta-information is changed (renames and changes of description).

• An Eddy is forked.

• An Eddy is deleted.

• A commit is performed on an Eddy.

• A branch or tag is created.

• A branch is renamed.

• A branch or tag is deleted.

If an Eddy is forked, the fork also contains all the existing documents. Therefore, all docu-
ments, branches and tags are required to be searchable for both resulting Eddys. Within EDI-
TIVE, Eddy related resources don’t receive new IDs.

All documents of the forked Eddy in the search index receive a field containing information
on the Eddys they are referenced in. A version reference attached to Eddy documents can be
introduced, which consists of an Eddy and a branch in its HEAD state or an Eddy and a tag.

22

Figure 4.10: EDITIVE action: fork

This “referencing” approach is chosen because users are not expected to often change all re-
sources within a fork. Instead, they are expected to be changing only a few resources after
forking, tagging or branching. Regarding tags, it is possible that not all resources within a tag
are changed. Therefore, adding the version reference to all relevant Solr documents is much
faster and requires less indexing space compared to duplication.

An example of possible indexed data further illustrates the indexing behavior based on a “ref-
erencing” approach for all EDITIVE actions. Assume there is an Eddy named Eddy1 with a
document named doc1 in its initial version named versionA. The Eddy has a branch called
master on which changes to its documents can be performed. First, Eddy1 is forked into
Eddy2. The graphic below displays the new reference entry to doc1 (Eddy2:master) in addi-
tion to its initial reference Eddy1:master.

Figure 4.11: Index data example – forked Eddy

After Eddy1 is forked into Eddy2, some changes are applied to doc1 and doc2 is added. These
changes are committed on Eddy1 as versionB.

23

Figure 4.12: Index data example – * modify + add document commit

These changes result in three different Solr documents, representing two Eddy documents in
different versions. Assuming a change is done within the Eddy fork Eddy2 on doc1, the ver-
sion for doc1 referencing Eddy2 would change. Since there are no other references than
Eddy2:master, the result is still three documents.

Figure 4.13: Index data example – * modify document commit

If a tag, tag1, within Eddy2 is applied to versionA the result is the following.

Figure 4.14: Index data example – tagging initial version

Tagging an “old” version of a document not known to the index leads to re-indexing of those
version’s unknown contents. Eddy documents within the index relevant for Eddy2;versionA
would receive the reference to Eddy2:tag1. If tags are applied to the current version, no docu-
ments are added to the index. All relevant documents are indexed and receive the reference to
Edd2:tag1.

Concluding, if a document loses all references, it can be deleted. This could happen if an
Eddy, tag or branch is deleted. If the Eddy document itself is deleted, the reference of the
deleted Eddy is removed. Branches are treated the same way as tags and represent a specific
reference together with the Eddy. Collections and fields are designed utilizing this strategy to
handle relevant EDITIVE action.

24

4.2.2 Collections and Fields

Solr’s fundamental units of information are sets of data. These sets are called documents and
should not be confused with EDITIVE documents. Solr documents are composed of fields.
Every field has at least a name and a specific field type attached to it and can store data ac-
cording to its field type. When receiving a document, Solr takes all information from the doc-
ument’s fields and adds those to an index. While querying Solr, it searches the index and re-
turns matching documents. Another basic part of fields is the “field analysis” consisting of an-
alyzers, tokenizers and filters. These are used to configure the handling of incoming data by
Solr during the building of an index. “Field analysis” includes techniques such as stemming,
removing stop words or configuration on how to handle upper and lower casing among many.
In SolrCloud mode, we can define fields for a collection thereby implying defined fields for
all documents within the collection. Two collections are defined to store relevant EDITIVE
data. The collection eddys contains Eddy specific data. The collection eddy_documents con-
tains Eddy documents specific data.

Fields in the collection eddys:

Name Type

id UUID

eddy_id UUID

eddy_group_id UUID

eddy_name Text

eddy_description Text

Table 4.1: eddys collection fields

The id field is a universally unique identifier (UUID) and is unique for each Solr document in
the eddys collection. With an internal ID, internal logic can rely on that and is not dependent
on external IDs. Within the eddys collection, the combination of eddy_id and eddy_group_id
is unique, but for handling Solr documents the id field is used.

The eddy_id is an UUID and represents an Eddy within EDITIVE. Forks of an Eddy have
their unique eddy_id. The eddy_group_id represents a group of Eddys. The initial Eddy and
all its forks have the same eddy_group_id but a different eddy_id.

The eddy_name and eddy_description are simply text fields in which Solr’s synonym filter
and lower case filter can be applied. It could also make sense to apply a stop word filter re-
garding the Eddy description. The standard tokenizer is sufficient for both fields.

Fields in the collection eddy_documents:

Name Type

id UUID

eddy_group_id UUID

eddy_document_id UUID

eddy_commit_name String

eddy_document_name Text

eddy_document_content Text

eddy_document_referenced_in String

Table 4.2: eddy_documents collection fields

25

With this collection schema, there are only a few fields, which should be able to fulfill the
requirements. The id field is an internal ID for each document in a version.

A version is defined by the eddy_commit_name where the secure hash algorithm string,
identifying a specific Eddy commit, is indexed. This is used for the mechanisms, explained in
chapter 4.2.1, and represents the version. Additionally, searches for a specific commit can be
performed to find all documents changes within that commit or simply the commit itself can
be retrieved.

The eddy_group_id is the same eddy_group_id as in the eddys collection, which can be used
to narrow down the results of documents for an Eddy group.

The eddy_document_id is an ID from EDITIVE identifying an Eddy document.

The fields eddy_document_name and eddy_document_content are both text fields containing
the name and the content of an Eddy document. The content of an Eddy document in
EDITIVE is stored in the WOM format. The WOM is converted before indexing to a running
text. Choosing the correct configuration for the eddy_document_content field improves
performance, reduces storage usage and also accelerates the retrieving of search results,
because the largest amount of data within EDITIVE is represented by the document content.
Minimal English or German stemming can be enabled for indexing. Additionally, synonym
filtering, stop word filtering and white-space tokenization can be applied to both, indexing
and querying.

The reference to Eddys is performed in the field eddy_document_referenced_in. It is a
“multiValued” field, which can be characterized as similar to an array providing high
performance while adding and removing values, without changing other content of the Solr
document. This enables simple addition and removal of references.

The author information is missing within the field definitions. A collection for author related
information could be created, but author names don’t require a lot of features provided by
Solr such as word stemming. Additionally, the amount of data consisting of author
information is small. Therefore, authors are searched for on EDITIVE’s database and, in order
to reduce complexity and indexing of author information, author data is not indexed.

4.2.3 Java interfaces for an implementation

Solr can be accessed via HTTP. Apache offers SolrJ as a small client application for Java,
while other coding languages have to issue HTTP requests. We utilize SolrJ because it simpli-
fies the code by using its client methods. SolrJ takes care of building the required HTTP re-
quests.

Two interfaces are used to introduce layers of abstraction in the application. The first layer
aims to enable the EDITIVE application to interact with a search functionality. It describes the
requirements of the EDITIVE application towards a search functionality. The second layer
utilizes the requirements of the search architecture and implementation specifically for Solr in
the EDITIVE context.

To directly work on the repository, the SearchRepository interface is defined.

26

Figure 4.15: Java interface – SearchRepository

It contains methods required for searching, indexing (adding and updating) and deleting. Ad-
ditionally, it provides the methodology for the use cases branching, tagging and forking. De-
pending on the implementation, these can be merged into one method.

The other interface is located in the service layer of EDITIVE, accessible by other EDITIVE
backend services.

Figure 4.16: Java interface – SearchService

This Java interface is designed more towards the use within EDITIVE. It extracts information
resulting from EDITIVE actions to provide relevant data for indexing. For searching, it re-
stores familiar data types within the other editive-engine classes.

27

5 Implementation

This chapter describes the current implementation and possible future implementations for the
EDITIVE team. In chapter 5.1, the Java implementation is described and some shortcomings
are mentioned. Chapter 5.2 briefly explains how indexing is performed and chapter 5.3 out-
lines the querying.

All implemented code can be found on GitHub in the main EDITIVE project repository, pre-
viously on GitLab in the editive-hub project.

5.1 Java implementation and integration

The implementation is done directly embedded within EDITIVE. For a simple search func-
tionality, some code is implemented using the existing technologies in EDITIVE. It enables
searching for Eddy information such as description and name. Unfortunately, this solution is
not sufficient for searching Eddy documents. Eddy documents are stored as binary data in the
database. This data is retrieved from the database and serialized to WOM XML. This serial-
ized WOM representation is kept in the random-access memory (RAM) and can be searched
with Java string functions. If the search string matches content of a document, the document is
retrieved and displayed as a search hit. This is performed on all documents within EDITIVE.
Therefore, a majority of the database’s overall data has to be read and processed utilizing Java
string functions. This results in multiple performance issues and slows the overall system
down. For that, we need a designated system capable of handling these kind of use cases.
Therefore, we prefer the full Solr implementation while excluding author information. The re-
sulting class diagram is displayed below. It focuses on the search functionality’s implementa-
tion and excludes tests and test utilities such as the Git-importer-service.

28

Figure 5.1: Implemented classes

Figure 5.1 displays the classes implemented during this thesis. The interface EddyService and
the classes EddyServiceImpl and EddyResourceLogic existed beforehand but methods were
added to these existing classes. A search method within the EddyResourceLogic represents the
entry point for the search requests from the GUI.

The resulting implementation utilizes the EddyService for searching, because the SearchSer-
vice itself doesn’t contain all the information currently required for the GUI. The EddyService
resolves all resources from the search hits, which are directly displayed and also authorized.
This is not effective from an architectural point of view. The implementation following this is
intended to be the first increment of the search functionality. Therefore, the most efficient so-
lution is not implemented in order to prevent too many changes to the EDITIVE application
such as providing user authentication on different objects and designing a new search hit list
for the GUI. The EDITIVE team can be contacted regarding further implementation details.
All code is available within a Git repository for authorized users.

The schema configuration is currently performed within SolrJ to ensure identical collections
and fields within local development, during testing and on Kubernetes. The schema configu-
ration is utilizing only the SolrCloud mode and not the standalone mode. The docker configu-
ration uses Solr-slim containing only the minimal Java packages and thereby reducing the size
of the image. This can easily be changed within the docker-compose file. The ZooKeeper is
used as the environment necessary for SolrCloud mode even though only a single Solr in-
stance is used within the docker-compose configuration as illustrated in Snippet 5.1.

29

Snippet 5.1: docker-compose Solr configuration

Solr references ZooKeeper in its environment property and ZooKeeper then automatically
manages all registered Solr containers. The number of shards for a Solr collection and the
replication factor can be configured through SolrJ. The Solr nodes running on docker are con-
figured within the docker-compose configuration.

Snippet 5.2: docker-compose ZooKeeper configuration

To enable and disable the search configuration, a toggle switch is added to the editive-service
configuration. This setting can be modified for unit and integration tests through test configu-
rations. If the toggle is switched on for deployment or local execution, the code for the search
functionality is then active and attempts to connect to an active Solr instance. If isEnabled is
set to false, the toggle is switched off and the current implementation will return null values.

30

 search:

 image: registry.gitlab.com/editive-public/editive-hub/solr:8.5.2-slim

 container_name: editive-hub-2_search_1

 networks:

 editive-hub-dev:

 ipv4_address: 10.6.0.90

 extra_hosts:

 - 'local.editive.org:10.6.0.1'

 ports:

 - 3090:8983

 environment:

 - ZK_HOST=zoo1:2181

 zoo1:

 image: zookeeper:3.5

 container_name: zoo1

 restart: always

 hostname: zoo1

 ports:

 - 2181:2181

 environment:

 ZOO_MY_ID: 1

 ZOO_SERVERS: server.1=0.0.0.0:2888:3888;2181

 networks:

 editive-hub-dev:

 ipv4_address: 10.6.0.100

Snippet 5.3: Toggle switch search configuration

Each implemented Java class containing testable logic is unit tested. Some integration tests
are performed to assess the complete code behavior from the modification of Eddy documents
to a retrieval of that information from the index. By utilizing Solr testcontainers, managing
lightweight instances of Solr running in SolrCloud mode, unit tests covering the search func-
tionality succeed within milliseconds.

5.2 Indexing

The indexing within EDITIVE is performed utilizing the SolrJ client. The Eddy references
within the documents are implemented using a “multiValued” field. Currently, when there are
no references remaining for a document, it is not deleted. It has no Eddy reference and there-
fore, when retrieved, it is identified as an obsolete document. This implementation of not
deleting indexed documents is preferred for development and debugging reasons. Eddys on
the other hand can be deleted explicitly through the SearchRepository Java interface.

The forking logic of Eddys and some of the branching logic have been implemented within
Solr. A tagging logic has not yet been implemented. The tagging logic can be performed in the
same way as the forking logic by using the referencing array within the Eddy documents col-
lection. Since this tagging implementation follows the same logic as the forking implementa-
tion, it is not considered necessary regarding the evaluation of the search functionality’s effi-
ciency.

The indexing implementation follows the architecture and is mostly performed within the
SearchRepositoryImpl and the supporting classes. Logging for the debug and trace modes is
included in the implementation. Additionally, extended logging, unit tests and integration tests
are implemented including a few profiling points. These profiling points are switched off per
default. This profiling measures the time consumption of indexing related actions interacting
with Solr. It is separated in two steps. Step one includes all preparation for indexing and step
two includes interaction with the Solr client by adding documents to the index and commit-
ting those. These time measurements can be used to further evaluate the code’s performance.

Field analysis is mainly configured through out-of-the-box field types. Solr’s field type
text_general is used for the content of Eddy documents and no custom field type is config-
ured. text_general utilizes the removal of stop words per default as well as the capability of
processing synonyms and acronyms. It doesn’t provide stemming, since no language is speci-
fied. For basic English stemming, the text_en field type can be utilized.

31

searchConfiguration:

 isEnabled: false

 host: local.editive.org

 port: 3090

5.3 Querying

All querying is handled in a similar fashion to the indexing through a SolrJ client. All queries,
which can be entered by users, are first escaped to ensure security. This currently prevents the
usage of operators within the queries, but should not be considered critical at this stage of the
implementation. If further operator or keyword usage is required, search strings could be vali-
dated instead of escaping the query.

Queries are per default executed in both Solr collections, those containing Eddy information
and those containing Eddy document information. The specific configuration to only search
for Eddys or Eddy documents is accomplished by utilizing a Java enum. Currently, the GUI is
searching within both configurations, but enabling the user to set the EnumSet can be added to
the existing GUI controls.

In addition to the search hits, the implementation contains the highlighting of matching con-
tent as an example configuration of further Solr capabilities. The highlighting is enabled
within the Solr query settings, resulting in content snippets from the matched documents con-
taining the matching terms. The highlighting configuration allows the specification of fields,
which should be highlighted within each query. The matching terms can be surrounded by
configured strings to enable customized highlighting within the snippets as displayed in Snip-
pet 5.4.

Snippet 5.4: Solr hits highlighting configuration

32

 // define highlighted fields

 solrQuery.set(QUERY_HIGHLIGHTED_FIELDS_PARAM, "*");

 // define the max char length of the snippets

 solrQuery.setHighlightFragsize(100);

 // define if tags should be around the highlighted hit -> default is

 solrQuery.setHighlightSimplePre("");

 solrQuery.setHighlightSimplePost("");

All highlights are flattened regardless of their fields. The format of the highlights returned by
Solr is displayed in Snippet 5.5.

Snippet 5.5: Solr hits highlighting flattening

Solr returns highlights in a map containing all document hits and a map containing all fields
and their matching lists of strings. The implementation flattens these maps for every docu-
ment ID and all fields are passed as a parameter for flattening. This highlighting implementa-
tion is not achieved based on the proposed microkernel architecture, but could be extracted
into a microkernel architecture when enabling further Solr capabilities.

The embedded querying of information is currently not as efficient as possible. The search
hits from Solr are transformed and resolved utilizing the EDITIVE database. All Eddy re-
sources are fetched from the database for the first page of search hits. Currently, the first page
is configured to display up to 50 hits. This occupies a lot of resources on the system only to
perform a later authorization on those resources for each search hit.

33

 private Set<String> getHighlightsFromResults(

 final @Nullable Map<String, Map<String, List<String>>> highlights,

 final @NotNull String docId,

 final @NotNull String... fields

) {

 Set<String> snippets = new HashSet<>();

 if (highlights != null) {

 Map<String, List<String>> highlight = highlights.get(docId);

 if (highlight.size() > 0) {

 // flatten the highlights from list

 snippets = Arrays.stream(fields)

 .map(highlight::get)

 .filter(Objects::nonNull)

 .flatMap(Collection::stream)

 .filter(highlightEntry -> highlightEntry != null

 && !highlightEntry.isEmpty())

 .collect(Collectors.toSet());

 }

 }

 return snippets;

 }

6 ISO/IEC 25010 evaluation

This chapter evaluates the architecture and implementation described in the previous chapters.
The evaluation is performed, based on the evaluation scheme highlighted in chapter 2.3 Eval-
uation scheme for requirements, while utilizing criteria from the ISO/IEC 25010 standard for
software quality. The category evaluation is performed independently for each criterion from
the ISO/IEC 25010.

Functional suitability: Functional requirements have been implemented. A small search im-
plementation was executed on the database before introducing Solr to the project. Whether the
implementation facilitates the accomplishment of the user’s tasks has still to be proven. It is
expected to hold true according to the formulated requirements.

Performance efficiency: In order to analyze the performance efficiency of the application, a
basic component has been implemented to measure time expenditure within searching. Five
different operations are measured and the focus is set on their scaling. The five operations are:

• index_prep: The preparation of indexing including the processing of information from
EDITIVE. Each operation represents collecting values from EDITIVE resource
changes for commits.

• index: The indexing as executed by the SolrJ client. Every index operations executes a
commit operation on the SolrJ client.

• search: The searching as executed by the SolrJ client.

• unpack: The unpacking of search results into a result format expected by EDITIVE
backend services.

• extract_commit: The extracting of commit information required for indexing. Each op-
eration represents an add or update resource change within EDITIVE.

The tests are performed on a local machine using the implemented Git-importer-service to
generate test data. For these tests to provide meaningful results regarding scalability, they
should be performed on a dedicated infrastructure instead. The tests on the local machine are
influenced by other running applications. This test simply showcases the required duration for
Solr to index test data. The test data is generated from the Microsoft Windows calculator
project on GitHub. On the 2021-05-17, the calculator repository contains 654 commits and
has a size of 32 505 kilobytes. The Solr instance as well as the EDITIVE service instance is
running on the same machine, reducing the time of HTTP calls. Importing this repository ten
times into different Eddys and performing a subsequent search, the duration in table 6.1 is
measured.

Measure Total duration in nanoseconds Total operation count

index_prep 1 099 947 71590

index 12 495 980 71590

search 38 845 588 1

unpack 341 054 1

extract_commit 106 100 71580

Table 6.1: duration of search functionality during
ten Microsoft calculator imports within EDITIVE

The discrepancy between the number of index operations and extract_commit operations can
be explained by the number of ten indexed Eddys. This test showcases the measures of the
simple profiling implementation. Additionally, it validates the performance efficiency of the

34

implementation even though it has a high margin of error. Taking 38 ms, the searching of rele-
vant resources is the longest. The indexing of data is performed within less than a third of that
time.

Compatibility: Integration and unit tests are implemented covering the search functionality.
All components of the search functionality are directly integrated within the EDITIVE back-
end. All Java interfaces make use of EDITIVE data types. Changes to the code passed suc-
cessful deployment builds and were merged through a Git merge request from a fork reposi-
tory.

Usability: User protection is established by escaping search strings. The search bar is simple
to use and currently provides no additional possibility of configuration. The Java interfaces
are easy to use and utilize the EDITIVE internal data types.

Security: Only basic security measures are applied. All user access and project visibility set-
tings are checked before transferring any information from the backend. Additionally, search
strings are escaped to prevent harmful modification or unintended access to indexed data.

Maintainability: The implementation is mainly split in two parts. One part is the adapter to-
wards any existing EDITIVE functionality, the second part abstracts the Solr specific imple-
mentation. This enables switching between or comparing different search platform implemen-
tations. Additionally, most code is covered through automatic tests, commented where neces-
sary and basic logging is performed. The code is structured similarly to the EDITIVE archi-
tecture and is therefore easier to maintain by EDITIVE team members.

Portability: The portability of the search platform implementation to a different content col-
laboration system than EDITIVE is not straight forward. The architecture can be used across
multiple platforms, but the implementation is EDITIVE specific. The adapter on top of the
search platform implementation should be portable to different search platform logics imple-
menting the SearchRepository interface.

35

7 Outlook

The implementation fulfills its requirements concerning the handling of forks and versioning,
utilizing commit data. EDITIVE enables the user to create tags, which version’s contents
should be searchable as well. The handling of tags can be implemented similarly to the
forking logic implementation.

Several Solr features have been implemented to provide further features during querying and
indexing. But for future users this might not be sufficient. Several Solr features could be used
within the proposed microkernel architecture. Faceting can be implemented if required by
users. The Java interfaces might require to change for that implementation, but can still rely
on the classes used for the return values and method parameters of the search implementation.
These result and parameter classes can be extended without changing the Java interfaces.
Another feature to optimize the search functionality by is pagination. The current
implementation only displays one page containing up to 50 search hits ordered by their
relevance. Additionally, a text representation of Eddy documents can be further detailed. The
XML support of Solr can be utilized to quickly index Eddy documents in a WOM
representation. The requirement to enable performing searches, restricted to document titles,
abstracts or the whole document, was discarded in order to focus on the more difficult
implications of a search functionality within EDITIVE. The WOM documents can be indexed
without applying major changes to their structure utilizing Solr’s XML support. The result
could be compared to the performance of an existing WOM search implementation (Miller,
2018).

The current implementation ensures, that user access rights and project visibility settings are
taken into account. This leads to the resolving of all resources from search hits within the
current EDITIVE implementation. It can be further optimized by only loading a resource after
a user selects the corresponding search hit. User authorization should be validated beforehand,
based on the resources’ IDs retrieved from the search index. Additionally, the
EddyServiceImpl class uses the SearchService interface for searching. The ResourceLogic
class could instead directly access the SearchService interface. Currently, this implementation
is necessary because of the system’s conditions.

The search implementation could be tested against the proposed search architecture of Robert
Miller (Miller, 2018). An implementation could be added as a separate SearchRepository
instance utilizing Elasticsearch. By utilizing the Git-importer-service, a sufficient set of test
data can be generated. Additionally, the generated test data can be used to further validate the
work from Robert Miller as well as this implementation independently.

The logic for the Git-importer-service is functional and sufficient to generate test data for
EDITIVE. The expenditure of resources has to be considered when designing the algorithm.
By utilizing recursion, objects within each recursion could be kept in memory, therefore
resulting in a stack overflow depending on the program logic and hardware it is executed on.
The GitServiceImpl, responsible for the import of Git projects, utilizes a recursion strategy
based on the available JGit interface and is unable to import torvalds/linux into EDITIVE on a
desktop computer due to the large size of data and the large number of commits.

36

8 Conclusion

In this thesis the development of a search functionality for the multi-level content collabora-
tion platform is presented. The development of this functionality is not complete and remains
a task for the future. The presented implementation provides a search functionality on the
HEAD commits of EDITIVE projects. It doesn’t distinguish between document titles or ab-
stracts but always treats the document content as one field. It is embedded within the EDI-
TIVE backend and respects the project’s visibility settings and the user’s permissions. The re-
sulting implementation includes a utility to generate test data and a basic logic to measure per-
formance of the search functionality. The evaluation of the requirements verifies the imple-
mentation.

This work outlined the importance of requirements for an architecture and implementation.
An evaluation scheme was proposed to verify the resulting architecture and implementation
according to its requirements. The categories for the evaluation scheme are chosen from the
ISO/IEC 25010 standard for software quality. Subsequently, the currently popular technology
Apache Solr and the reason behind choosing it for this thesis’s implementation are described.
The proposed reference architecture, its implementation and evaluation are described. Based
on architectural patterns we present an architecture for the search functionality. The handling
of the commit-based workflow within EDITIVE represents the greatest challenge including
forking, branching and tagging. Additionally, the importance of interoperability of software is
stressed. Subsequently, the evaluation is performed based on the evaluation scheme described
within the first part of this thesis. Lastly, we propose several future development cases, in-
cluding a Solr configuration, facilitating the functionality for the user, as well as optimizations
to the current implementation.

There is some room left for further optimization of a search functionality within EDITIVE.
Apache Solr as a power search platform facilitates an efficient implementation for many use
cases. The main challenges were the integration within the EDITIVE and the reduction in
complexity of the collaboration workflow of EDITIVE to enable an efficient search.

All implemented code can be accessed with appropriate rights at the EDITIVE project in Git.

37

Appendix A Bill of Materials

Artifact Version License Date last checked

Apache Solr 8.5.2-slim Apache 2.0 2021-05-08

Apache Solr SolrJ 8.7.0 Apache 2.0 2021-05-09

Apache ZooKeeper 3.5 Apache 2.0 2021-05-08

Dagger 2.30 Apache 2.0 2021-05-09

Jackson core 2.11.3 Apache 2.0 2021-05-09

Jakarta inject 1.0.3 EFSL v1.0 2021-05-09

Jakarta validation 2.0.2 EFSL v1.0 2021-05-09

Jetbrains annotations 20.1.0 Apache 2.0 2021-05-09

slf4j 1.7.30 MIT 2021-05-09

Testcontainers Solr 1.15.1 MIT + Apache 2.0 2021-05-09

JGit 5.9.0 EDL v1.0 2021-05-09

Table 8.1: Bill of materials

38

References

Abdullah, Z. H., Yahaya, J. H., Mansor, Z., & Deraman, A. (2017). Software Ageing Preven-
tion from Software Maintenance Perspective–A Review. Journal of Telecommunication,
Electronic and Computer Engineering (JTEC), 9(3-4), 93-96.

Aliannejadi, M., Zamani, H., Crestani, F., & Croft, W. B. (2018). Target apps selection: To
wards a unified search framework for mobile devices. The 41st International ACM SI-
GIR Conference on Research & Development in Information Retrieval, 215-224.

Apache. (n.d.). Welcome to Apache Solr – Apache Solr. https://solr.apache.org

Dohrn, H., & Riehle, D. (2011). Wom: An object model for wikitext.

EDITIVE. (n.d.). Enterprise Multi Level Content Collaboration und Diff – EDITIVE. https://
editive.com

GitHub. (n.d.). Search – GitHub Docs. https://docs.github.com/en/rest/reference/search

GitHub. (2017). Github search sucks (and how it could be better). https://github.com/isaacs/
github/issues/908

GitHut. (2021). Github Language Stats. https://madnight.github.io/githut/#/pull_requests/
2021/1

Gupta, D., & Khanna, A. (2017). Software usability datasets. International Journal of Pure
and Applied Mathematics, SCOPUS, 117(15), 1001-1014.

ISO. (n.d.). ISO 25010. https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Lohr, S. (2012). For impatient web users, an eye blink is just too long to wait. New York
Times.

Lown, C., Sierra, T., & Boyer, J. (2013). How users search the library from a single search
box. College & Research Libraries, 74(3), 227-241.

Miller, R. (2018). A search for Sweble Hub – Indexing structured data for a commit based
search.

More, N. T., Sapre, B. S., & Chawan, P. M. (2011). An insight into the importance of Require-
ments Engineering. International Journal of Internet Computing, 1(2), 34-36.

Niu, N., Da Xu, L., & Bi, Z. (2013). Enterprise information systems architecture—Analysis
and evaluation. IEEE Transactions on Industrial Informatics, 9(4), 2147-2154.

Office of Public Affairs (2020). Justice Department Sues Monopolist Google For Violating
Antitrust Laws. Justice News.

Robillard, M., Walker, R., & Zimmermann, T. (2009). Recommendation systems for software
engineering. IEEE software, 27(4), 80-86.

Roshdi, A., & Roohparvar, A. (2015). Information retrieval techniques and applications. In-
ternational Journal of Computer Networks & Communications Security.

Zhou, S., Cheng, K., & Men, L. (2017). The survey of large-scale query classification. AIP
conference proceedings.

39

	1 Introduction
	2 Requirements
	2.1 Purpose of search in a multi-level content collaboration platform
	2.2 Requirements for the search component
	2.2.1 Functional requirements
	2.2.2 Non-functional requirements

	2.3 Evaluation scheme for requirements

	3 Technology and state of the art
	3.1 Apache Solr
	3.2 A look at the GitHub Search
	3.3 Wiki Object Model (WOM)
	3.4 Difficulties in designing search functionality

	4 Architecture and design
	4.1 Systems architecture
	4.1.1 Architecture patterns
	4.1.2 Search component embedded within EDITIVE
	4.1.3 Indexing and searching sequence within EDITIVE
	4.1.4 Testing

	4.2 Search functionality design
	4.2.1 EDITIVE actions
	4.2.2 Collections and Fields
	4.2.3 Java interfaces for an implementation

	5 Implementation
	5.1 Java implementation and integration
	5.2 Indexing
	5.3 Querying

	6 ISO/IEC 25010 evaluation
	7 Outlook
	8 Conclusion

