
Friedrich-Alexander-Universität Erlangen-Nürnberg

Technische Fakultät, Department Informatik

JULIAN LEHRHUBER

MASTER THESIS

PDF SUPPORT FOR QUALITATIVE
RESEARCH IN THE CLOUD

Submitted on 20 May 2021

Supervisor: Prof. Dr. Dirk Riehle, M.B.A.; Julia Krause, M.Sc.
Professur für Open-Source-Software
Department Informatik, Technische Fakultät
Friedrich-Alexander-Universität Erlangen-Nürnberg

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen,
die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 20 May 2021

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 20 May 2021

i

https://creativecommons.org/licenses/by/4.0/

Abstract

Effective Qualitative Data Analysis (QDA) using software tools relies on the range
of supported document types to work with. The Portable Document Format
(PDF) standard is widely known and used because of its versatility. Therefore,
the support of PDF documents in QDA software is essential.

The cloud-based QDA tool ‘QDAcity’ only supports Rich Text Format (RTF)
documents. In this thesis, we design and implement PDF support for QDAcity.
Since the current state of QDAcity does not allow to easily extend the range
of supported document types, our implementation is required to allow this in
the future. The main challenge however is to design a coding mechanism, that
can handle different document types. Using the coding mechanism, researchers
annotate segments of the qualitative data to extract a theory. To implement such
a coding mechanism, we analyzed the implementation of different QDA tools and
evaluated various implementation strategies for the cloud.

Different types of documents require different types of codings, such as area
codings that can be used for image data. Our implemented coding mechanism
therefore can be extended by future coding types and already includes support
for area codings.

ii

Contents

1 Introduction 1

2 QDAcity 2

3 Previous work 4
3.1 Comparison with other QDA software 4

3.1.1 Analysis of coding mechanism design 4
3.1.2 Handling editable documents with an abstract coding mech-

anism . 5
3.2 Evaluation of different strategies to integrate PDF support 5

3.2.1 Backend based approach 6
3.2.2 Frontend based approach 7

3.3 Findings . 9

4 Requirements 10
4.1 Functional requirements . 10
4.2 Non-functional requirements . 11

5 Architecture 12
5.1 Document Support . 12

5.1.1 Backend . 12
5.1.2 Frontend . 13

5.2 Coding mechanism . 14

6 Implementation 16
6.1 Document Support . 16

6.1.1 Backend . 16
6.1.2 Frontend . 19

6.2 Coding mechanism . 21
6.2.1 Side-effects of new coding mechanism 24
6.2.2 Synchronizing coding updates across clients 26
6.2.3 Migration of existing text documents 27

iii

7 Unforeseen challenges 30
7.1 Use SUPERCLASS TABLE inheritance with DataNucleus 30
7.2 Use external codings with Slate 31

8 Evaluation 33
8.1 Functional requirements . 33
8.2 Non-functional requirements . 36

9 Future work 39
9.1 Remove embedded coding keys from RTF documents 39
9.2 Realtime-service integration for saving documents 39
9.3 Store documents externally . 40

9.3.1 Lazily fetch documents . 40
9.4 Coding previews for area codings 40

10 Conclusion 42

Appendices 44
Appendix A Evaluated Java PDF libraries 44
Appendix B Evaluated JavaScript PDF libraries 46

References 47

List of Figures 48

List of Code Snippets 49

iv

Acronyms

API Application Programming Interface.

DOM Document Object Model.

HTML Hypertext Markup Language.

ID Identifier.

JDO Java Data Objects.

JSON JavaScript Object Notation.

MIME-Type Internet Media Type.

PDF Portable Document Format.

PMF Persistence Manager Factory.

QDA Qualitative Data Analysis.

RE Requirements Engineering.

RTF Rich Text Format.

SDK Software Development Kit.

SVG Scalable Vector Graphics.

UI User Interface.

UML Unified Modeling Language.

v

1 Introduction

Qualitative Data Analysis (QDA) describes a process in which researchers com-
bine relevant data from different sources to uncover their essence (Bazeley, 2013;
Caudle, 2004). The sources consist of unstructured qualitative data like inter-
views, on-site observations, and even audio or image data. During data analysis,
researchers annotate segments of the data with information that abstracts the
meaning of the data.

To support the QDA process, various software tools are available. Since the
QDA process is not limited to certain types of documents, software tools have
to support several different document types. QDAcity, which is a cloud-based
QDA application, currently only supports Rich Text Format (RTF) documents.
As PDF documents are used in many environments, it is important to support
PDF documents in a QDA application. To enable PDF support for qualitative
research in the cloud, the goal of this thesis is to extend QDAcity with support
for PDF documents. From a software engineering perspective, the goal of this
thesis raises multiple questions:

• How can we integrate PDF support into QDACity?

• Can we reuse existing functionality from the RTF document support for
this feature?

• How can we implement support for multiple document types, that can be
extended in the future?

To answer these questions, we first present the current state of QDAcity in
chapter 2. In chapter 3, we analyze the implementation of PDF support in dif-
ferent software tools. The analysis allows us to develop concepts on how best to
integrate PDF support in a cloud application. With the findings of the analysis,
we formulate the requirements for our implementation (chapter 4). Afterward, we
present the software architecture (chapter 5) and implementation of our solution
(chapter 6). Before evaluating our solution in chapter 8, we point out unforeseen
challenges to help future developers (chapter 7). We close this thesis with inform-
ation about future work (chapter 9) before drawing a conclusion (chapter 10).

1

2 QDAcity

QDAcity-RE is a method for domain modeling in Requirements Engineering
(RE), which is based on QDA. The method is performed by sampling stakehold-
ers, interviewing them, correlating other materials, and performing QDA on the
materials to derive the code system. The code system represents an abstraction of
the qualitative data. This process is done iteratively, which incrementally refines
the code system until saturation is reached. The code system is a hierarchical
structure consisting of codes, that are defined by the user. Codes capture con-
cepts, categories, their properties, and interactions (Kaufmann & Riehle, 2015,
2019).

Figure 2.1 shows a screenshot of the coding editor of QDAcity, the tool that imple-
ments this method. Using this coding editor, a user can perform the QDAcity-RE
method. The view consists of three parts, which are numbered accordingly in the
screenshot:

1. Documents list: A project can consist of several documents, which are
accessed via this document list.

Figure 2.1: Coding editor view in QDAcity

2

Figure 2.2: Code system example by Kaufmann and Riehle (2019)

2. Code system view: Allows the user to build a tree-based structure of codes.
For each code, several properties as e.g. when to use the code can be
specified.

3. Editor with the so-called coding brackets on its left side: Allows the user to
code and edit a document.

The coding brackets visualize, where codes are applied in the document. Coded
document segments are called codings. Additionally, when clicking on a coding
bracket, the coded text gets highlighted.

The code system can be used to derive models describing different views on the
domain. Kaufmann and Riehle (2019) deducted a study in which they derived
a Unified Modeling Language (UML) class diagram from the code system. The
coding editor of QDAcity includes an UML editor for this purpose. Figure 2.2
shows, how the code system bridges the gap between natural language text con-
taining stakeholder information and an analysis domain model. The user builds
the code system by coding one or more text segments, therefore linking the text
segments to a code. The code system then can be used to derive analysis domain
models in e.g. UML.

3

3 Previous work

In a student project preceding this thesis, we analyzed multiple aspects of different
implementations for PDF support in QDAcity. This helped to determine the tasks
to accomplish the goals of this thesis. The following sections cover a comparison of
QDAcity with other QDA software tools and an analysis of their implementation
of PDF support. Afterward, we evaluate different strategies to implement PDF
support.

3.1 Comparison with other QDA software

MAXQDA1 is a commercially available program to perform QDA. It supports
various types of documents including PDF documents, which makes MAXQDA
a reference for a possible implementation of PDF support in QDAcity. However,
there are some key differences compared to QDAcity:

• QDAcity is a web application, while MAXQDA runs locally.

• QDAcity aims for collaborative editing. MAXQDA allows working in teams,
but project files have to be split and merged afterward to simultaneously
work on a single project (Gerson, 2016).

Despite these differences, the implementation of MAXQDA for supporting PDFs
is still interesting. In particular, the management for PDF codings in MAXQDA
can provide information for the implementation in QDAcity. The following sec-
tion outlines how a coding mechanism as integrated in MAXQDA could be im-
plemented.

3.1.1 Analysis of coding mechanism design

Since we do not have access to the source code of a QDA software tool that
supports PDF documents, we can only make assumptions about possible cod-
ing mechanism implementations. The supported document types of MAXQDA

1https://www.maxqda.com

4

https://www.maxqda.com

include various office document, image, audio, and video formats2. As these doc-
ument standards are very diverse, it is safe to assume that the coding data is
stored apart from the documents. Otherwise, QDA tools could either (1) alter
the document standards for the supported document types or (2) convert the
documents in a proprietary format in order to embed coding information. How-
ever, both options seem significantly more challenging than designing a coding
mechanism, whose data can be stored apart from the documents.

An abstract coding mechanism that can handle multiple different document types
would require the following information in every coding:

• A reference to the document in which the coding is applied

• A reference to the code to which the coding belongs.

The above set of attributes could be extended by unambiguous references to the
coding start and end positions dependent on the coding type. For text codings,
additional attributes could be the index of the paragraph and the offset of char-
acters within the paragraph for both start and end positions. For image codings,
additional attributes could be the x and y coordinates as well as width and height
of the coding. For audio and video data, timestamps could be used.

3.1.2 Handling editable documents with an abstract cod-
ing mechanism

The major challenge of a coding mechanism as outlined in section 3.1.1 is hand-
ling editable documents. Since the coding references are stored apart from the
document, the application has to track coding positions when the user edits the
document. If codings were embedded in the documents, the coding positions
would automatically be adjusted by the user editing the document. However, we
consider extending the implementation of an abstract coding mechanism to be
less time-consuming and cleaner than to fit different document types to a specific
coding mechanism.

3.2 Evaluation of different strategies to integ-

rate PDF support

Based on the previous findings, we considered different implementation approaches
for PDF support in QDAcity. The following sections will evaluate these imple-
mentation approaches.

2https://www.maxqda.com/help-mx20/import/data-types

5

https://www.maxqda.com/help-mx20/import/data-types

3.2.1 Backend based approach

The idea is to use existing frontend code while extending the backend to con-
vert PDF documents to Hypertext Markup Language (HTML). Since QDAcity
already supports HTML documents, this would minimize the effort for changes
in the application. Furthermore, the existing coding mechanism could be reused,
which is closely tied to the HTML document. We analyzed various libraries for
PDF processing but found they lack the desired functionality. A brief overview
of all evaluated libraries can be found in appendix A.

Although many libraries allow the extraction of text and media, most of them
are not able to extract the layout of the document correctly. A promising library
is Apache PDFBox3 because it is open-source, feature-rich, actively developed,
and well documented. However, in an exemplary Java project, it shows that this
library has difficulties working with e.g. multi-column documents like scientific
papers.

Since Apache PDFBox provides several sample binaries for various functions such
as text extraction, the question arose whether these binaries could be easily im-
proved. The responsible class for the position of extracted text was found to be
TextPositionComparator.java4. The comparator uses the text position coordin-
ates to sort the found text in the order from top to bottom and from left to right,
analogous to how a human would read a single-column left-to-right document.
Consequently, it is possible to write a custom comparator that can handle multi-
column layouts by comparing e.g. pixel padding between words and lines. This
idea however was discarded because:

• Differentiating the columns may be feasible, but implementing a comparator
that can handle every possible layout seems unreasonable and perhaps not
even possible.

• Recognition of specific text passages relies on the text formatting, too.
Particularly in scientific papers, a wrong representation of the former block
set alignment makes it difficult to recognize certain text passages.

• Many PDFs embed tables or other figures as vector images or some kind
of non-pixel-images, in which text can actually be recognized as text. A
distinction between continuous text and text in these elements also seems
challenging.

Since all these aspects would be major drawbacks concerning our goals, the
backend-based approach was discarded.

3https://pdfbox.apache.org/
4https://github.com/apache/pdfbox/blob/trunk/pdfbox/src/main/java/org/apache/

pdfbox/text/TextPositionComparator.java

6

https://pdfbox.apache.org/
https://github.com/apache/pdfbox/blob/trunk/pdfbox/src/main/java/org/apache/pdfbox/text/TextPositionComparator.java
https://github.com/apache/pdfbox/blob/trunk/pdfbox/src/main/java/org/apache/pdfbox/text/TextPositionComparator.java

3.2.2 Frontend based approach

The second implementation strategy to support PDFs was to extend the frontend
implementation while also adjusting the backend application to support multiple
document types. The goal is to design a backend architecture that allows the
upload of supported documents and can be extended to support additional docu-
ment types. Furthermore, the frontend needs to be equipped with an additional
editor view to display PDFs and allow coding of such. However, most important
is to decouple the existing coding mechanism from the HTML documents, as we
will not be able to include the coding marks in the PDF document for several
reasons:

• The inclusion of coding marks in the PDF document would require to im-
plement a non-standard extension to the PDF standard.

• PDFs can become large. When storing coding data inside the document,
the entire document has to be sent to the server to issue an update. Since
QDAcity’s goal is to enable collaborative work on a document, this step
has to be performed as soon as coding data has changed. Additionally,
collaborative work on a document requires not only to send the document
to the server but also to all other users for them to see the changes.

• Inserting codings into the PDF leads to more processing work. This has to
be done on the client, as it would not only have to parse the PDF when it
was updated but also create a new PDF when changing codings.

A better alternative for the backend application is to provide an endpoint to
process codings for different document types, that could be designed similar to
the implementation outlined in section 3.1.

In order to display PDFs in the browser and work with them in the desired way,
the possibilities had to be analyzed. During the evaluation of JavaScript libraries
for PDF processing and rendering, we discovered that there are only a few options
for this task. All evaluated libraries are listed in appendix B. Eventually, the
decision to use PDF.js5 was made. It is provided under an open-source license,
is actively developed by Mozilla, and is also included in their browser (Firefox6).
Therefore, it can be considered reasonably stable and safe for use in a production
application. It is even used in larger projects such as Nextcloud7.

PDF.js is focused on rendering a PDF into a web page and not enabling to edit
it or create new PDF documents. Furthermore, PDF.js is not a pre-built and
ready-to-use PDF viewer, but a toolkit to build a custom PDF viewer. However,
a sample viewer implementation is also included, which is equipped with many

5https://mozilla.github.io/pdf.js/
6https://www.mozilla.org/de/firefox/
7https://nextcloud.com

7

https://mozilla.github.io/pdf.js/
https://www.mozilla.org/de/firefox/
https://nextcloud.com

(a) Example for good overlaying performance

(b) Example for worse overlaying performance

Figure 3.1: PDF.js overlays the text of a PDF transparently (highlighted blue
here) on top of the text that is rendered into the canvas

features such as zooming and displaying page thumbnails. PDF.js’ approach on
rendering PDFs can be split into at minimum 3 steps:

1. Create HTML container elements for the PDF pages.

2. Render each PDF page to a separate canvas and insert those into the page
containers. This includes the entire content of a PDF page (images as well
as text).

3. Extract text passages, create HTML elements for the passages and overlay
the canvases in the page containers with the text passages.

PDF.js modifies the overlaid text to be transparent because its format does not
perfectly match the text rendered in the canvas underneath. This way the text is
still selectable via mouse, but the user always sees the correctly formatted text.
Figure 3.1 shows a comparison of the performance of this mechanism by coloring
the transparent text overlay in blue.

8

A big advantage of PDF.js regarding this mechanism is that it can easily be
improved using an own implementation. The implementation used in figure 3.1
is the default implementation provided by Mozilla.

Additional but optional PDF.js rendering steps are to e.g. also extract PDF
annotations (notes) and overlay those on top of the canvas. During testing, the
clean HTML structure of the rendered PDF was found to allow easy modification
and extension with various features. The capabilities of PDF.js as well as the
easy customization of it gave it the advantage over other evaluated libraries.

3.3 Findings

With the insights from section 3.1 and section 3.2 we decided to extend QDA-
city so that PDF.js is used to display PDFs in the frontend. The backend will
be enabled to handle coding data similar to how the mechanism is outlined in
section 3.1. The reasons for this decision are:

• Other QDA software tools prove the approach to be viable by seemingly
implementing a coding mechanism using absolute references.

• Equipping the frontend as well as the backend with interfaces for easy
expandability increases the ability to support additional document types in
the future.

• No conversion of PDF documents into a different format has to be per-
formed. Therefore, this should result in the best possible user experience.

• The approach unifies the coding mechanism. Since all documents can use
the same coding mechanism, no special handling for PDF coding data has
to be implemented.

• The impact of the coding mechanism on network traffic can be reduced as
it will no longer be necessary to transmit the entire document.

• PDF.js allows easy customization. Therefore, it is possible to implement a
custom PDF viewer that contains only necessary features.

9

4 Requirements

This chapter defines the requirements that have to be implemented in this thesis.
We categorize the requirements into functional and non-functional requirements.
In order to define explicit, complete, and testable requirements, all requirements
were built using the templates by Rupp (2014).

4.1 Functional requirements

1. QDAcity shall provide the user the ability to code PDF documents collab-
oratively using the web browser.

(a) QDAcity shall provide the user the ability to import PDF documents.

(b) QDAcity shall be able to keep the layout of the PDF.

(c) QDAcity shall be able to synchronize codings across multiple clients,
in order to provide collaborative coding support.

2. The coding mechanism of QDAcity shall be able to handle current RTF
documents as well as PDF documents.

(a) The coding mechanism should be able to handle different coding types,
in order to e.g. enable coding of non-text areas of PDFs.

(b) The coding mechanism of QDAcity shall be able to handle editable
documents.

(c) The coding mechanism of QDAcity shall ensure coding references to
be unambiguous, to allow an external coding mechanism.

(d) The coding mechanism of QDAcity should not embed coding references
into the content of the documents, in order to be independent of the
document and be used for different document types.

10

4.2 Non-functional requirements

1. The implementation should provide developers the ability to extend the
range of supported types of documents using pre-defined interfaces.

2. The introduced source code shall be documented extensively inside the
source code and the Gitlab wiki.

3. The implementation shall include tests for modified and added functionality
of QDAcity.

11

5 Architecture

This chapter outlines the software architecture. First, the necessary changes
to support different document types are highlighted. The architecture of the
overhauled coding mechanism is described afterward.

5.1 Document Support

5.1.1 Backend

As evaluated in section 3.2, the frontend-based approach requires changes in the
frontend as well as in the backend. To support different document types, the
backend must be extended to allow uploading and managing of these documents.
Additionally, the frontend has to include logic to handle all document types
accordingly.

Figure 5.1 outlines the architecture to support multiple types of documents. Pre-
viously, only RTF documents were supported by the implementation. As the
RTF files are converted to HTML, the class implementing the document type
was generically named TextDocument. We kept the name TextDocument for the
new document support architecture. The class to represent PDF documents is
called PDFDocument. Both types are represented by the abstract document type
BaseDocument.

In order to inform the client about which types are supported, the DocumentType
enum is advantageous. The enum lists constants for all document types and

BaseDocument

TextDocument PDFDocument

�enumeration�
DocumentType

has value in

Figure 5.1: Architecture of backend document support

12

EditorWrapper

CodingBrackets TextEditor

PDFEditor

Figure 5.2: Architecture of frontend file support

associates them with a Internet Media Type (MIME-Type) and the corresponding
document type implementation. Using this enum, the server provides the client
with a list of MIME-Types that can be used to filter the file picker dialog for only
supported documents.

The outlined architecture has many advantages:

• It allows to hide document type specific implementation details from the
client. While RTF documents are editable, PDF documents are not. This
difference is handled by the specific implementation of the document type
but abstracted through BaseDocument.

• Since every document that passes the Application Programming Interface
(API) is an instance of BaseDocument, the client can expect all objects to
have a certain set of minimum properties. This can be advantageous for
parts of the client, that only need e.g. the title of the document. To dif-
ferentiate between the document types, API objects carry a type property.
Using the type property, the editors can filter for the desired document type
in all received objects and access document type specific properties.

• Implementation of further document types is straightforward. After cre-
ating an additional document type class that extends from BaseDocument
and defining a new DocumentType enum constant, it can be handled by the
API. The API will not have to be changed, as basic document handling is
already in place.

5.1.2 Frontend

Figure 5.2 presents the architecture of the frontend document support feature.
Previously, only TextEditor existed that also held CodingBrackets. Because the

13

coding brackets will be necessary for every editor, CodingBrackets was moved
out of TextEditor. In order to abstract from all different document types, Editor-
Wrapper was introduced. The EditorWrapper follows the Facade design pattern
(Gamma, 1995) as it defines an interface that has to be implemented by all spe-
cific editors. If the application outside of EditorWrapper has to get data from the
editor, it will call the appropriate method on EditorWrapper. The EditorWrapper
then passes the call to the currently active specific editor implementation. The
Facade design pattern allows us to hide the complexity of the editors from the
application outside of the coding editor.

Analogous to the existence of different document type implementations in the
backend, the frontend will use different editor implementations according to the
type of the document. Which editor implementation is currently active is de-
termined by the type property of the document object.

In addition to document type handling, the EditorWrapper also implements logic
to display the coding brackets. The coding bracket feature is part of the interface
that has to be implemented by all editors. The CodingBrackets require values
for their height and offset in the vertical dimension. By including this feature
into the EditorWrapper interface, the specific editor is required to convert coding
data to the appropriate bracket values. Outsourcing the conversion logic into
the specific editor implementation allows every editor to define a different set of
coding properties.

When expanding the range of supported documents in the future, the outlined
architecture only requires the implementation of a new editor that implements
the interface of EditorWrapper.

5.2 Coding mechanism

Previously, the coding mechanism was closely tied to the documents. As QDAcity
only supported RTF documents that were converted to HTML, it was possible
to design a coding mechanism that embeds the codings inside the document.
Hence, codings inside the document were represented by pseudo HTML elements.
Embedding the codings inside the document had the following advantages:

• The coding positions were unambiguous by design.

• Editing the document did not have side-effects on codings. When adding
text in the range of an applied coding, the coding range was automatically
increased.

• Synchronizing the document across clients also synchronized the codings.

• No separate handling for codings on the backend was needed.

14

BaseCoding
�enumeration�
CodingType

TextCoding AreaCoding

SlateTextCoding PDFTextCoding PDFAreaCoding

has value in

Figure 5.3: Architecture of the coding mechanism

However, this coding mechanism also had major disadvantages:

• Non-HTML documents could not use the coding mechanism.

• Documents have to be parsed by the client to e.g. display the count of
applied codings in the code system.

• To get all codings for a project, e.g. to display the coding count in the code
system, all documents of the project have to be fetched from the server.

Because of the above disadvantages, we decided to implement a new coding mech-
anism that allows to handle the coding of different document types. Figure 5.3
shows the proposed coding mechanism architecture. The core idea is similar
to the architecture of supporting different document types. For every type of
coding, a coding class has to be implemented. Since both TextEditor and PDF-
Editor require text codings, a further abstraction level called TextCoding was
implemented. This allows the TextEditor, which is using the Slate editor, to use
its own coding object structure while the PDFEditor can do likewise. But PDFs
also require to allow codings based on area selections over e.g. images. For this
purpose, PDFAreaCoding was implemented based on AreaCoding, which allows
future codings to use AreaCodings as parent implementation.

All coding types are abstracted through BaseCoding, which allows managing all
kinds of coding objects by the backend. To differentiate between the coding types,
the objects include the type property, which holds the appropriate constant of
CodingType. The CodingType enum lists constants for every coding type and
maps it to the specific coding implementation.

The abstraction allows the client to always access shared coding properties like
e.g. its ID or the ID of the document the coding was applied to. At the same
time, the specific editor can access all document type specific coding properties
that are needed to work with the document.

15

6 Implementation

In this chapter we describe in detail, how the components outlined in chapter 5
are implemented. The key aspects of the components and their interaction will be
explained. Since QDAcity is a Java-based Google App Engine application that
uses JavaScript and React for the frontend, the necessary modifications were
implemented using these technologies.

6.1 Document Support

6.1.1 Backend

Figure 6.1 shows the class layout of the feature to support multiple document
types. Since all documents will be stored in a database, each type of document has
to be serializable. The abstract class BaseDocument implements the Serializable
interface and all shared properties between documents. These properties were
taken from the previously existing TextDocument, which was the only supported
document type. However, the text property was modified. The property’s data
type previously was Text1, as it only needed to contain HTML text. In order to
store the document data regardless of its form, the data type of the text property
was changed to Object. Thus, every document class can store its content data
inside text, as long as it is serializable.

The instance methods of BaseDocument were taken from the previous TextDocu-
ment, too. As the datatype of text changed, so were the return type of getText()
and the parameter type of setText(). Furthermore, BaseDocument implements
two abstract methods to be overwritten by child classes:

• isEditable(): This method allows to specify if documents of this type are
editable by the user. The return value will be output to the API, so that
the client can read this property and allow or deny editing of the docu-
ment accordingly. Hence, the control over which type of documents appear
editable to the user is in the backend.

1com.google.appengine.api.datastore.Text

16

https://cloud.google.com/appengine/docs/standard/java/javadoc/com/google/appengine/api/datastore/Text

�interface�
Serializable

BaseDocument

∼ id : Long
∼ title : String
∼ text : Object
∼ projectID : Long
∼ projectType : ProjectType
∼ exerciseID : Long
∼ positionInOrder : Long

+ BaseDocument()
+ getType() : DocumentType
+ isEditable() : boolean
+ getters/setters for instance properties

PDFDocument TextDocument

Figure 6.1: UML class diagram of the document architecture

• getType(): This method is required to return the enum value of Document-
Type according to the document class. Since the returned value will also be
output to the API, the client can easily differentiate between documents of
different types.

The DocumentType enum however serves more purpose than to just signal the
type of document to the client. Figure 6.2 shows the properties and values of the
DocumentType enum.

• mimeType: The MIME-Type is used to map uploaded documents to the
correct document class. Compared to specifying the filename ending, it
allows using the enum value for all filename endings belonging to the same
type of document.

• documentClass : This property is used to derive the desired document class
from the MIME-Type of the uploaded document.

• mimeTypes : This static map serves as a cache to quickly gather the enum
value corresponding to a given MIME-Type. This map is useful for when the
server e.g. receives a newly uploaded document to decide which document
implementation to use based on the MIME-Type of the document.

17

�enumeration�
DocumentType

+ mimeType : String
+ documentClass : Class<?>
− mimeTypes : Map<String, DocumentType>

TEXT
PDF

Figure 6.2: UML class diagram of the DocumentType enum

Consequently, every DocumentType enum value is bound to a MIME-Type and
a document class. Using the static property mimeTypes and the additional end-
point route getAllowedMimeTypes() for UploadEndpoint, the client is able filter
for supported files in the ‘open file’ dialog.

The DocumentType enum also helps to deserialize a JavaScript Object Nota-
tion (JSON) object sent by the client into the correct document implementation.
As mentioned earlier, all document objects exchanged through the API are in-
stances of BaseDocument. The received JSON objects could therefore be easily
deserialized into a BaseDocument. But as BaseDocument is an abstract class, no
instances of it can be created. Furthermore, the dynamic type of these deserial-
ized objects would also be BaseDocument. Hence, we would lose the information
about which type of document was sent.

For deserialization of abstract objects into the correct child instance, a custom
TypeIdResolver is needed. Figure 6.3 shows that DocumentTypeIdResolver and
CodingTypeIdResolver are children of the abstract OwnTypeIdResolver. This pre-
vented code duplication for the custom TypeIdResolver that is also necessary for
deserializing codings which will be addressed later. The purpose of Document-
TypeIdResolver is to derive the corresponding document class from the value of
the type property of the received JSON document object. Afterward, the docu-
ment class is used to deserialize the received JSON into an object of this document
class.

With the DocumentType enum, the addition of a future document type is seam-
less:

1. Create a new child class of BaseDocument

2. Add an additional enum value for that document type, mapping a MIME-
Type and the document class.

18

�interface�
TypeIdResolver

OwnTypeIdResolver

baseType : JavaType

+ OwnTypeIdResolver()
+ init(bt : JavaType)
+ getMechanism() : JsonTypeInfo.Id
+ idFromValue(o : Object) : String
+ idFromValueAndType(o: Object, aClass : Class <?>) : String
+ idFromBaseType() : String
+ getDescForKnownTypeIds() : String

CodingTypeIdResolver DocumentTypeIdResolver

Figure 6.3: Custom TypeIdResolvers help to deserialize JSON objects of a
common base type into the correct child implementation

6.1.2 Frontend

To support multiple document types in the frontend, we decided to implement
the EditorWrapper facade. The EditorWrapper has many purposes:

• Abstracts from different editor implementations. The facade implements
necessary methods for QDAcity to interact with documents

• Handles the coding brackets across different editors

• Triggers the request to save a document.

For the application outside the coding editor to interact with a document, the
EditorWrapper implements the following methods:

• getDocumentContent : This method can be used by QDAcity to get the
content of the currently active document.

• addCodingForSelection: When the user presses the button to add a coding
in the code system toolbar, this method is called.

• removeCodingForSelection: When the user presses the button to remove a
coding in the code system toolbar, this method is called.

19

• activateCodingInEditor : When the user triggers a function that is supposed
to highlight the coding in the document, this method is called. QDAcity
e.g. provides the user with a table of codings that are present in a project.
If the user clicks on a coding in this list, the appropriate document with
the highlighted coding will be displayed.

All of these methods act as bridges between QDAcity and the specific editor
implementations. Hence, the EditorWrapper expects the editor implementations
to implement these methods. This allows every editor implementation to handle
calls to these methods differently, depending on the type of document.

In order to handle the coding brackets, the EditorWrapper expects the edit-
ors to implement one more method: emitCodingBracketData. As outlined in
section 5.2, each document may require different kinds of coding objects. To
calculate the height and top offset of all coding brackets for the active document,
the EditorWrapper calls this method from the active editor. The specific editor
will then calculate the coding bracket properties and emit them to the Editor-
Wrapper. Then, the EditorWrapper can pass the list of coding brackets to the
CodingBrackets component, which will render the coding brackets.

The EditorWrapper registers event listeners that will trigger a re-evaluation of
the coding bracket data:

• When a different document is selected

• When codings are changed

• When entering the edit-mode of a document (the editor might render a
toolbar on top of the document, which requires the top offset of the coding
brackets to be adjusted properly)

• When the window size is changed, as text then might flow differently.

In the case of editable documents, the coding bracket should reflect changes in
the codings immediately. If a user e.g. adds or modifies text that affects a
coding in its position and/or length, this should be immediately reflected by the
coding bracket. We decided not to send an update request every time a coding
has changed, because it would increase the number of database transactions and
network traffic. Also, intermediate coding updates are not of use for the server
as long as the document is not yet saved. Instead, we implemented a caching
functionality into the EditorWrapper shown in figure 6.4.

When the user edits the document, the editor is supposed to pass changed codings
to the EditorWrapper. The EditorWrapper saves these changed codings in a local
list. The EditorWrapper then passes the original list of codings merged with the
local list of updated codings to the editor (step three in figure 6.4). As shown in
the diagram, this results in steps three through four being the same as steps one

20

EditorWrapper Editor

1
Pass coding data

Request calculation of coding bracket data

2
Emit coding bracket data

Emit updated codings when document is edited
E

Cache updated codings

3
Pass merged coding data

Request calculation of coding bracket data

4
Emit coding bracket data

Figure 6.4: Sequence diagram of EditorWrapper coding caching functionality

through two. Hence, we are able to re-use existing logic of the editors to calculate
the coding bracket data. The cache will be flushed when the document is saved.

When to save a document is also controlled by the EditorWrapper. Previously, the
document was only saved when switching documents, leaving the edit-mode, or
leaving the coding editor. Concerning usability, this implementation was flawed
because users had to know how to trigger a save of the document. For example,
it could happen that a user closed the browser tab or window expecting QDAcity
to have saved the document, but it has not. In the current implementation,
the EditorWrapper registers a listener for the blur -event on the current editor’s
Document Object Model (DOM) node. The blur -event will be triggered every
time the editor loses focus. When the EditorWrapper receives the blur -event,
it will trigger a request to save the document and possibly changed codings.
Hence, a document will be saved every time the user might stop working on a
document. In order to save all changed codings alongside the updated document,
the EditorWrapper just attaches the cached list of codings to the save request.

6.2 Coding mechanism

The coding mechanism is inspired by the findings in section 3.1. Building a
coding mechanism using external, but unambiguous references allows to design
a coding mechanism to support multiple different type of documents. External
references are those that are not embedded as e.g. marks in the document itself.
Figure 6.5 shows the structure of several coding classes.

21

�interface�
Serializable

BaseCoding

∼ id : Long
∼ projectId : Long
∼ projectType : ProjectType
∼ codeId : Long
∼ documentId : Long
∼ author : String
∼ preview : Object

+ BaseCoding()
+ getType() : CodingType
+ applicableDocumentTypes() : List<Class<?>>
+ getters/setters for instance properties

AreaCoding

∼ x : Float
∼ y : Float
∼ width : Float
∼ height : Float

...

TextCoding

∼ pos1 : Integer
∼ pos2 : Integer

...

Figure 6.5: UML class diagram of the coding architecture

Since each coding object will be stored in a database, it has to be serializable.
Apart from the Serializable interface, BaseCoding also implements properties and
methods to be used by all codings. Every coding needs:

• id : Unique identifier

• projectId : Reference to the project

• projectType: The type of the project

• codeId : Reference to the code to which the coding belongs

• documentId : Reference to the document in which the coding was applied

• author : The name of the user who created the coding

• preview : Attribute to hold a preview of the coded document segment.

22

Since the projectId and projectType would be indirectly specified through the
documentId, because each document belongs to a project, the properties could
be omitted. However, we decided to include the properties in the coding data, as
filtering for specific codings is easier if the properties are directly accessible.

Because a specific coding type is only applicable to certain type of documents,
BaseCoding implements the abstract method applicableDocumentTypes(). A
child implementation is required to overwrite this method and return a list of
applicable document classes. In the current scenario, each coding class will only
apply to a single document type. However, we decided to define this method to
return a list of document types, as a more abstract coding type might be used
for multiple document types.

For PDF support in QDAcity, two types of codings are needed: text codings and
area codings. Text codings are used for user-selectable HTML text, while area
codings are used for rectangular selections that can be created over e.g. images.
This enables the user to code both text and areas inside a PDF. The AreaCo-
ding and TextCoding classes in figure 6.5 represent these two types of codings.
However, they are not directly used for PDFs. Because PDFs are paginated doc-
uments, we instead decided to build a more granular structure of coding classes.
This enables to derive further coding classes from direct children of BaseCoding.
Hence, the AreaCoding and TextCoding are used as parent implementations for
RTF codings and PDF codings of both types.

The AreaCoding consists of four properties: x and y coordinate, width, and
height. These properties are stored as floating-point values because they are re-
lative to the document. Depending on e.g. the width of the rendered PDF, an
area coding is placed in a certain spot. Using absolute pixel values for position-
ing would render the area coding in another spot when the document width is
changing. This applies to all other properties of area codings. Concerning area
codings in PDFs, the single additional property required is the page number.

The TextCoding consists of two properties: pos1 and pos2. These properties
describe the start and end position of a coding. They were named generically
because they are supposed to be used by different child implementations which
might have different naming conventions for these properties. The library Slate
for example, which is used in QDAcity to work with RTF documents, uses the
naming convention ‘anchor’ and ‘focus’ to describe the start and end position of
a text selection.

23

TextCoding

∼ pos1 : Integer
∼ pos2 : Integer

...

PDFTextCoding

∼ startPage : Integer
∼ endPage : Integer
∼ startKey : String
∼ endKey : String

...

SlateTextCoding

∼ anchorKey : String
∼ focusKey : String

...

Figure 6.6: UML class diagram of TextCoding

Figure 6.6 shows the class structure for PDFTextCoding and SlateTextCoding. A
coding in Slate requires two properties per start and end position of a coding:

• Coding start: anchorKey & anchorOffset

• Coding end: focusKey & focusOffset.

The keys are used to reference a specific text node in the document. Combined
with the offset values, it is possible to reference an exact position in the document.
Pos1 and pos2 from TextCoding are reused as anchorOffset and focusOffset.

The PDFTextCoding defines startKey and endKey, too. As with Slate, these keys
reference certain text segments within a PDF. However, PDF.js does not apply
keys to the HTML text elements by default. Therefore, the implementation of
PDF.js for generating the HTML text overlay layer had to be extended. Each
HTML element that directly contains PDF text is assigned a key stored in the
properties of the coding. The keys are numeric and increment for each text
element.

6.2.1 Side-effects of new coding mechanism

Because the new coding mechanism no longer uses HTML elements that are
embedded into the documents to describe codings, coding boundaries are more
difficult to compare. However, we need to compare coding boundaries when the
user applies a new coding or removes a coding. When adding a coding, the coding
could be merged with an existing coding of the same code if their ranges overlap.
Merging codings allows the user to extend the range of an existing coding. When
removing a coding, an existing coding of the code could be split or shrunk. These
operations require comparing the boundaries of existing codings with the range of

24

Existing Coding New Coding Other Coding

Merged Coding Other Coding

(a) Codings are merged when adding a coding if they belong to the same code (denoted
through border color) and are overlapping.

Existing Coding Selection

Shrunk Coding

(b) A coding is shrunk when removing a coding if the existing coding overlaps the
selection and the selection is set to the same code as the existing coding.

Existing Coding SelectionHelper Helper

Split Coding Split Coding

(c) A coding is split when removing a coding if the existing coding surrounds the
selection and the selection is set to the same code as the existing coding.

Figure 6.7: Illustration of coding merging and splitting mechanism

the selected text. Figure 6.7 illustrates the different scenarios for coding merging,
shrinking, and splitting.

We use the DOM Range API2 to get the current text selection and to construct
codings based on it. As the API provides the method compareBoundaryPoints,
we can implement a frontend utility class to compare codings with the current
text selection. For this purpose, the implemented class TextCodingUtils requires
following parameters:

• code: The code of the coding to apply/remove

• range: The DOM range of the current text selection

• allCodings : All codings of the document

• allRanges : A key-value mapped list of coding IDs to the DOM range of the
coding.

The specific editors are by design not required to hold the DOM range repres-
entation of the codings for the editor to work. However, the editors must now
convert the codings to DOM range objects before passing them to TextCoding-

2https://developer.mozilla.org/en-US/docs/Web/API/Range

25

https://developer.mozilla.org/en-US/docs/Web/API/Range

Utils. But since this conversion is the opposite of when a new coding object is
created from the current selection’s DOM range, every editor must be able to
handle this conversion.

The code parameter was primarily introduced to prevent code duplication. The
parameter is used by the utility class to filter for affected codings in the allCodings
list. This filtering would have to be done by every editor if it was not included in
TextCodingUtils. By filtering for affected codings in allRanges, the utility class
will get the coding IDs of all codings whose boundary points have to be compared.
With the list of coding IDs, the utility class now can get all DOM ranges from
allRanges, that were converted by the editor beforehand.

The comparison that takes place in TextCodingUtils checks for the cases illus-
trated in figure 6.7 using the compareBoundaryPoints method. During the com-
parison process, the utility class will construct three lists of DOM ranges:

• codingsToCreate: List of DOM ranges of codings to create. If the detected
case requires new codings to be created, this list gets populated.

• codingsToUpdate: List of DOM ranges of codings to update. If the detected
case requires existing codings to be updated, this list gets populated.

• codingsToDelete: List of DOM ranges of codings to delete. If the detected
case requires new codings to be removed, this list gets populated.

Depending on the detected case, TextCodingUtils computes the resulting DOM
ranges based on the given DOM ranges of the codings. The utility class will
then insert the new DOM range with the codings ID in the appropriate list. The
three lists are used to construct a single batch, where every item is assigned
with a constant of CREATE, UPDATE, DELETE. This batch is returned to the editor
instance afterward. The editor loops over the batch and handles the creation
of new coding objects as well as update and deletion of existing coding objects.
Since every returned item holds the new DOM range, each editor can re-use logic
that is already present to convert a DOM range into a coding object. With the
TextCodingUtils relying on DOM range objects, the utility class is usable for
every future editor implementation.

6.2.2 Synchronizing coding updates across clients

In order to collaboratively code a document, QDAcity implements a realtime-
service. The realtime-service acts as a man-in-the-middle that forwards requests
from connected clients to the server. After receiving the answer from the server,
the realtime-service broadcasts this answer to all connected clients. In the legacy
coding mechanism, the realtime-service was already able to synchronize coding
changes across clients. Because the codings were embedded in the document, the
entire document had to be serialized and sent through the realtime-service.

26

The new coding mechanism no longer embeds coding data in the documents.
To handle the new coding mechanism, the realtime-service had to be refactored.
Since we implemented an endpoint method that can receive coding batches to
process, the realtime-service has to handle this method. The refactored code
consists of the addition of:

• CODING.BATCH message

• CODING.BATCHED event.

The CODING.BATCH message is used to send coding updates from the client to
the realtime-service. These updates can include the creation, update, and deletion
of codings. The realtime-service uses the message to decide how to proceed
with the request, as other parts of QDAcity might need additional steps to be
performed. In our case, the realtime-service forwards the request to the server
without performing additional steps. The received answer will be broadcasted to
all connected clients using the CODING.BATCHED event. In the event listener
for the CODING.BATCHED event, the client will merge the processed coding
batch into its local state. Hence, every user will receive coding updates performed
by a different client.

6.2.3 Migration of existing text documents

To use the new coding mechanism with existing documents, the documents had
to be migrated. The implemented migration routine had to solve the following
issues:

• Extract codings from text documents

• Create new coding entities with appropriate properties in the database

• Build a new text document that no longer includes coding HTML elements.

We used JSOUP3 to parse the HTML of original text documents. Extracting
coding data and building a new document using an iterative approach proved to
be complex and challenging to implement. The main problem using this approach
was to keep track of the applied codings for a given text segment. As coding
HTML elements could be deeply nested, an upward search inside the DOM tree
would be necessary to gather the applied codings. If codings were overlapping,
the HTML coding elements were split in order to (1) describe the part of the text
that only has one of the codings applied and (2) describe the part of the text
that has both codings applied. However, the new coding entities that have to be
created have to describe the entirety of a coding. Hence, a coding that is split
into many parts in HTML should be detected and stored as one single coding.

3https://jsoup.org

27

https://jsoup.org

1 <coding id=”8” code id=”2” t i t l e=” Test22 ” author=”JL”>
2 <coding id=”7” code id=”3” t i t l e=” Test ” author=”JL”>
3 Lorem ipsum do lo r s i t amet , con s e t e tu r s a d i p s c i n g

e l i t r , sed diam nonumy eirmod tempor inv idunt
ut l abo r e et do lo r e . . .

4 </ coding>
5 </ coding>

Code (6.1) Excerpt of original text document DOM tree

1
2 Lorem ipsum do lo r s i t amet , con s e t e tu r s a d i p s c i n g

e l i t r , sed diam nonumy eirmod tempor inv idunt ut
l abor e et do lo r e . . .

3

Code (6.2) Excerpt of migrated text document DOM tree

Figure 6.8: Visualization of original and migrated text document HTML ex-
cerpts

A better approach proved to be the Visitor design pattern (Gamma, 1995) that is
already implemented in JSOUP4. The Visitor design pattern allows us to traverse
the DOM tree of the text documents. Therefore, JSOUP requires to implement
two methods in our visitor:

• head : This method is called when an HTML node is first visited (when
traversing down the DOM tree).

• tail : This method is called when an HTML node is last visited (when
traversing up the DOM tree).

Using these methods, we were able to implement a very compact and easy-to-
understand algorithm to migrate existing documents. To handle codings that
were split into many parts in the HTML structure, we used a hashmap that
maps coding IDs to temporary coding entities. When a coding element with an
unmapped coding ID is visited, we create a new empty coding entity and store it
in the hashmap. We decided to store an empty coding because there still could
be a nested coding that we have not visited yet. Hence, the direct child of an
HTML coding element cannot be used to set the properties of the entity. Instead,
we extend the empty coding entities every time a text node is visited.

Figure 6.8 shows an excerpt of an original text document and the equivalent
migrated document excerpt. To keep track of the codings applied to a given text

4https://jsoup.org/apidocs/org/jsoup/select/NodeVisitor.html

28

https://jsoup.org/apidocs/org/jsoup/select/NodeVisitor.html

segment, we use a stack. While traversing down the DOM tree, every time a
coding element is visited we push its ID to the stack. Analogous we pop coding
IDs from the stack when traversing up the DOM tree. With the stack, we are
able to collect all coding IDs of applied codings for a certain text segment. Hence,
when a text node is visited, we modify all coding entities referenced by the stack
to include the current text segment.

To build the migrated text document, we have to remove all coding elements.
The new text document is built as a copy while traversing the original document.
Every visited node except coding elements is added to the new text document.
As our introduced codings for text documents (SlateTextCoding) require coding
keys for text segments, the text nodes are wrapped in a single SPAN element
containing the coding key. Effectively, this results in a copy of the text document
where text nodes are unwrapped from any coding elements. Instead, text nodes
are surrounded by single SPAN elements containing the coding key for the text
segment.

29

7 Unforeseen challenges

During implementation, some unforeseen challenges had to be overcome. To
help future developers extend QDAcity, this chapter highlights the implemented
solutions to these challenges.

7.1 Use SUPERCLASS TABLE inheritance with Data-

Nucleus

For the implementation of BaseDocument, BaseCoding and their child imple-
mentations, we required to use the Java Data Objects (JDO) inheritance strategy
SUPERCLASS TABLE. This inheritance strategy allows to store all objects of a com-
mon supertype in a single table. It is necessary to use a single table for all objects
because scattering them into separate tables would require extensive queries to
e.g. get a list of all documents or codings. With this inheritance strategy, how-
ever, we noticed unexpected behavior of QDAcity. When accessing the applic-
ation for the first time after it was booted, no documents would show in the
documents list. But after uploading a document, all existing documents of the
same type were visible again.

As we could not find a reason for this behavior in any documentation, we de-
bugged the server application in depth. We were able to find the problem in Data-
Nucleus1, which is used as a middleware to persist JDO objects in the Google
Datastore. DataNucleus caches the child types of a supertype by remembering
the relationship in a hashmap. For each supertype, a child type is added to this
hash map after it was first instantiated2.

Therefore we have to instantiate each child type that is persisted via SUPERCLASS

TABLE once to force DataNucleus to add it into its hashmap. Because every child
type is mapped in the DocumentType and CodingType enums, we can loop over
the enum values to instantiate a dummy object of every child type. We decided
to implement this loop statically in our Persistence Manager Factory (PMF)

1https://www.datanucleus.org
2MetaDataManager.java#L1704 & MetaDataManager.java#L1734

30

https://www.datanucleus.org
https://github.com/datanucleus/datanucleus-core/blob/datanucleus-core-3.2.11/src/java/org/datanucleus/metadata/MetaDataManager.java#L1704
https://github.com/datanucleus/datanucleus-core/blob/datanucleus-core-3.2.11/src/java/org/datanucleus/metadata/MetaDataManager.java#L1736

1

2

3

(a) Before inserting new paragraph

1

4

2

3

(b) After inserting new paragraph

Figure 7.1: Slate paragraph keys

singleton class, which we use to retrieve persistence manager instances for the
database. Hence, the fix will be applied before the first database transaction
occurs. Additionally, using the enums will apply the fix for future document and
coding types. When however extending QDAcity with a new feature that also
uses SUPERCLASS TABLE, the code in PMF has to be extended to include all child
types of the feature.

7.2 Use external codings with Slate

As mentioned in section 6.2, Slate uses keys to identify text nodes in a text
document. The simplest form of a text node is a paragraph. But when e.g.
applying text formatting, the formatted region is represented by a separate text
node. We use the node keys in SlateTextCoding as reference to the start of the
concerning text node. In order to enable editable documents, the key of a text
node must not change. But when implementing the coding handling for editable
documents, we found that Slate’s keys for text nodes are not persistent. If e.g. a
text document has three paragraphs, Slate numbers them with keys one through
three. When the user now inserts a new paragraph after text node one by pressing
enter, the new paragraph will be assigned key four. Figure 7.1 shows the resulting
scenario.

After storing the modified document and reloading it, Slate will assign all keys
in incremental order again. Hence, text node four will be text node two, text
node two will be text node three et cetera. This inconsistency in keys introduces
problems to our coding objects, that are stored separately. In this case, all
codings of the former text node two will be shown in text node four. An attempt
to modify our implementation of Slate’s (de)serializer showed that our version of
Slate did not allow full recursive control over all Slate nodes. Hence, we were
not able to get the generated keys and persist them to the generated HTML, nor
load keys from the HTML into Slate.

31

Updating Slate to the newest version (0.60) enabled full control over the doc-
ument (de)serialization. The updated version however no longer uses keys to
reference a text node inside the document. Instead, Slate nodes are referenced
using paths. Although we could use paths instead of keys in SlateTextCoding,
we decided against it. When using paths, every subsequent coding to a newly
created paragraph would require an update. A mass update of codings could
quickly introduce large requests and many database updates, depending on the
document size and coding count. Therefore we decided to stick with the idea of
persistent keys for text nodes. To implement this feature, it was necessary to
extend Slate’s (de)serialization mechanism and implement a plugin for Slate.

Our implementation initializes the next assignable text node ID of our plugin by
parsing the highest text node ID from the HTML document. If a new text node
is inserted, we hook into Slate’s apply function and assign new text node IDs
incrementally. The apply function is called by Slate when any operation is going
to be applied to the document. During document serialization, every assigned
text node key is persisted into a SPAN element that wraps the text of the node.
During deserialization, we load the text node keys again and assign them to the
appropriate text node.

32

8 Evaluation

In chapter 4, functional and non-functional requirements that have to be imple-
mented in this thesis were defined. In this chapter, we evaluate the implemented
solutions based on these requirements.

8.1 Functional requirements

Req 1: QDAcity shall provide the user the ability to code
PDF documents collaboratively using the web browser

Req 1.a: QDAcity shall provide the user the ability to import PDF
documents
This requirement is fulfilled. In order for the user to import PDF documents into
QDAcity, some features had to be extended:

• The backend must support PDF documents.

• The upload modal must allow the user to pick PDF documents.

As described in section 6.1, an extensive class hierarchy was implemented for the
backend to support PDF documents. The class hierarchy consists of BaseDocu-
ment, TextDocument and PDFDocument. BaseDocument was implemented as an
abstract class for other document types to inherit from. BaseDocument already
defines the main properties and methods that are shared by each document type.
The former TextDocument was refactored to comply with the new class hierarchy.

To support PDF documents in QDAcity, the PDFDocument class was added.
Using the DocumentType enum, the document class to instantiate is determined
by the MIME-Type of the uploaded document. The enum is also used to pass a
list of supported MIME-Types to the client. The list of MIME-Types is used to
filter the file-picker dialog for supported files. Before this thesis, no filtering was
used for the file-picker dialog.

33

Req 1.b: QDAcity shall be able to keep the layout of the PDF
This requirement is fulfilled. Our implementation does not alter the PDF docu-
ment. Since the frontend uses PDF.js to render the content of the document on
HTML canvases, the layout of the PDF is kept. Figure 8.1 shows the layout of a
complex PDF in QDAcity compared to the Evince1 PDF viewer.

Figure 8.1: PDF layout in QDAcity (left) vs. Evince PDF viewer (right)

Req 1.c: QDAcity shall be able to synchronize codings across multiple
clients, in order to provide collaborative coding support
This requirement is fulfilled. In order for QDAcity to synchronize codings across
multiple clients, parts of the realtime-service had to be refactored. Now, the
realtime-service forwards a batch of codings to create, update and delete to the
server. The realtime-service broadcasts the answer of the server to all connected
clients. Hence, every client receives coding updates that were issued from a
different client.

Req 2: The coding mechanism of QDAcity shall be able to
handle current RTF files as well as PDF files

Req 2.a: The coding mechanism should be able to handle different
coding types, in order to e.g. enable coding of non-text areas of PDFs
This requirement is fulfilled. For the coding mechanism to support different cod-
ing types, an extensive class hierarchy was implemented. The class hierarchy
consists of BaseCoding, TextCoding, AreaCoding, SlateTextCoding, PDFTextCod-
ing and PDFAreaCoding. Intermediate coding types were implemented to provide
a base implementation for future codings types to inherit from.

1https://wiki.gnome.org/Apps/Evince

34

https://wiki.gnome.org/Apps/Evince

Figure 8.2: Visualization of support for different coding types

BaseCoding implements all main properties and methods that are shared by child
implementations. Using this class hierarchy allows for every document type to use
multiple different types of codings. Hence, both text, as well as area codings, can
be used for PDF documents. Since the new coding mechanism replaces the old
coding mechanism, RTF documents were migrated to support the new coding
mechanism. Figure 8.2 shows a text coding (red) and an area coding (green)
applied to a PDF document.

Req 2.b: The coding mechanism of QDAcity shall be able to handle
editable documents
This requirement is fulfilled. The new coding mechanism no longer embeds cod-
ing marks into the document. Hence, we implemented an endpoint that can
receive the updated document as well as updated codings. Currently, only RTF
documents are editable in QDAcity. Our implementation requires the client to
keep track of codings to update. We used built-in functionality of Slate to keep
track of codings to update during user interaction.

Req 2.c: The coding mechanism of QDAcity shall ensure coding refer-
ences to be unambiguous, to allow an external coding mechanism
This requirement is fulfilled. In order for external codings to work, coding ref-
erences have to be unambiguous. Our implementation for unambiguous codings
uses multiple properties for different coding types. For text codings, every para-

35

graph is assigned a key. We use this key in combination with an offset to specify
the exact start and end positions of a coding. The implementation is similar to
the Range Web API2 that is used to describe ranges of text (e.g. a user selection)
on a website.

For area codings, we use floating-point values to describe height, width, x and y
coordinates relative to the document. The use of floating-point values is import-
ant, as all properties have to be described using percentages. With percentage-
based values, area codings are going to be shown in the same location even if the
displayed width of the document changes.

Additionally, PDF codings include a page index property. For PDF text codings,
a page index has to be stored for the start and end positions of the document.
Since area codings cannot span multiple pages, only a single page index is re-
quired.

Req 2.d: The coding mechanism of QDAcity should not embed coding
references into the content of the files, in order to be independent of
the document and be used for different document types
This requirement is fulfilled. As outlined in section 6.2, all coding properties
are stored in a database using an extensive class hierarchy. However, we still
had to embed some coding information in the document for RTF documents.
In section 7.2, we justified the decision not to reference paragraphs using their
index or the path provided by Slate, as this would require coding mass updates
when editing the document. Instead, we assign keys to the paragraphs of an
RTF document and use these keys in the text codings. Hence, when editing the
document, only minimal coding updates have to be performed.

If resources allow in the future, embedding these keys could be replaced by e.g.
using paragraph indexes. Afterward, coding references are truly no longer em-
bedded in documents.

8.2 Non-functional requirements

Req 1: The implementation should provide developers the
ability to extend the range of supported types of documents
using pre-defined interfaces

This requirement is fulfilled. To support different types of documents as well
as different types of codings, extensive class hierarchies were implemented. For
documents, the BaseDocument class serves as parent class for future document
types. Analogous, the BaseCoding class serves the same purpose for codings.

2https://developer.mozilla.org/en-US/docs/Web/API/Range

36

https://developer.mozilla.org/en-US/docs/Web/API/Range

Additionally, the enums DocumentType and CodingType were implemented. For
new document and coding types, those enums have to be extended by a single
value. Afterward, all common issues like e.g. (de)serializing child types for use
by the API are already handled.

In the frontend, the EditorWrapper that follows the Facade design pattern can
be extended by new editor implementations. Hence, the EditorWrapper defines
an interface to be implemented by all editors. Using the EditorWrapper facade,
complex editor logic is hidden from the application outside of the editors. Ad-
ditionally, there are multiple but limited methods available for the application
outside of editors to communicate with the current editor.

The EditorWrapper also handles the coding bracket, that is used by all editors.
Hence, not every editor has to render its own coding bracket. Instead, the Edit-
orWrapper will receive normalized coding bracket data from the editors via the
defined interface.

All above solutions were implemented targeting the ease to extend these features.

Req 2: The introduced source code shall be documented
extensively inside the source code and the Gitlab wiki

This requirement is fulfilled. All newly added code is documented in the source
code. For Java source code, the Javadoc3 documentation style is used. For JavaS-
cript source code, the JSDoc4 documentation style is used. The issues addressed
in chapter 7 were documented extensively including references to e.g. online
sources. Furthermore, complex code snippets include explanatory comments.

Documentation of the implemented features was added to the Gitlab wiki of the
code repository. We created a wiki page for the document support and coding
mechanism feature.

Req 3: The implementation shall include tests for modified
and added functionality of QDAcity

This requirement is partly fulfilled. Since the goal of this thesis was to extend
existing functionality, most tests were already existing. The existing tests were
refactored to comply with the new implementation. However, we were not able
to fully refactor tests in some cases as they involve the calculation of complex
metrics that are not part of this thesis. These tests have to be refactored in the
future.

3https://www.oracle.com/java/technologies/javase/javadoc.html
4https://jsdoc.app

37

https://www.oracle.com/java/technologies/javase/javadoc.html
https://jsdoc.app

In order to use existing documents with the new backend architecture and coding
mechanisms, the documents had to be migrated. We implemented a migration job
using the Visitor design pattern. A parameterized JUnit test was implemented
to check the migrator for edge cases and bugs. The parameterized test allowed us
to test against multiple different documents and compare the migrated document
to the expected document. Additionally, the input parameters can be adjusted
to force the handling of edge cases like:

• Dismissing of codings that belong to already deleted codes

• Dismissing of legacy HTML snippets in documents like Scalable Vector
Graphics (SVG) containers

The test consists of 9 documents to migrate:

• 1 document of which all codings should be dismissed

• 1 document of which only part of the codings should be dismissed

• 1 document of which the legacy SVG container should be stripped

• 2 documents that include extensive and overlapping use of font styling
(bold, italic, underline, font family, and font size)

• 4 anonymized documents from the QDAcity production application.

An anonymized document has all text contents replaced with random charac-
ters of the same length. Only metadata stored in HTML attributes was left
unchanged.

38

9 Future work

Although QDAcity now supports PDF documents, there are still aspects to im-
prove. This section highlights milestones for future work on QDAcity.

9.1 Remove embedded coding keys from RTF

documents

As noted in section 7.2, we still embed some coding information in RTF docu-
ments. If resources allow in the future, the embedded coding keys can be removed
in favor of storing e.g. paragraph indexes in the codings. We expect this change to
have minor impact on the new coding mechanism. Regarding the SlateTextCod-
ing class, the anchorKey and focusKey properties will have to be refactored.
The TextEditor in the frontend also has to be modified to work with the chosen
paragraph references instead of the coding keys.

9.2 Realtime-service integration for saving doc-

uments

When handling editable documents, the new coding mechanism requires attach-
ing updated codings to document update requests. These coding updates will
currently not be synced with other users, as the document is also not synced
upon saving. In the future, document modifications synced across multiple users
would improve collaborative work.

Because of this missing feature, the backend currently has to perform integrity
checks for coding add, update, and delete requests. Without these integrity
checks, users working on the same document could store incompatible codings. If
e.g. user1 and user2 work on the same document, while user1 edits the document
and user2 changes codings, the codings modified by user2 could be incompatible
with the updated document.

39

9.3 Store documents externally

Before this thesis, documents were stored inside the Google Datastore1. This has
not changed for the support of PDF documents. However, the Google Datastore
only allows storing entities with a maximum size of 1MB2. Especially for PDF
Documents, this limit can be exceeded easily. Hence, the new backend architec-
ture for handling different documents has to be adjusted to e.g. store files in
Google Cloud Storage3.

We expect this change to have no impact on the new coding mechanism. However,
the BaseDocument class will have to be refactored in order to use a different
storage for documents. The frontend will also have to be refactored in order to
fetch the documents from a different storage.

9.3.1 Lazily fetch documents

Currently, all documents of a project are fetched from the server when opening
the coding editor. In the past, this was necessary to parse the number of codings
and the coding previews out of the documents. With the new coding mechanism,
it is no longer required to fetch all documents at once. Instead, documents could
be fetched on-demand, e.g. when the user opens a document. We consider this
milestone to be a sub-task of migrating documents to a different storage, since
both tasks involve changes considering document handling.

9.4 Coding previews for area codings

QDAcity provides users with a list of coding previews. For text codings, this
feature was migrated to the new coding mechanism. For area codings, this feature
is currently missing.

To implement coding previews for area codings, more research is needed on how
to get a screenshot of the coded area. Since the backend architecture for the
new coding mechanism already supports storing different kinds of previews, no
backend modifications are expected. However, the previews must not exceed
1MB in size, as they are stored inside the Google Datastore. For very large area
codings, this could be a limitation. Since coding previews are not intended to
include the entirety of a coding, we see no advantages in storing coding previews in
a separate storage. Therefore, you could either compress or crop coding previews
to meet the 1MB limit.

1https://cloud.google.com/datastore/
2https://cloud.google.com/datastore/docs/concepts/limits
3https://cloud.google.com/storage/

40

https://cloud.google.com/datastore/
https://cloud.google.com/datastore/docs/concepts/limits
https://cloud.google.com/storage/

The coding preview list in the frontend of QDAcity will require some changes to
handle different coding preview types. Since the preview list shows all codings of
a code across multiple documents, it has to know how to handle different preview
types by itself. This issue could be resolved in multiple ways:

1. Let the preview list convert the coding previews into HTML snippets by
comparing the type property of the coding. This however requires extending
the logic of the preview list every time a new coding type is added to
QDAcity.

2. Implement coding classes in JavaScript and use the Factory design pattern
(Gamma, 1995) to cast the received JSON objects into specific coding in-
stances. The coding classes could all implement a method to convert the
coding-specific preview into HTML snippets that can directly be inserted
into the preview list.

3. Already store HTML representations of the coding preview in the coding
entity. This strategy however might not be possible with every coding type
that might be added in the future.

41

10 Conclusion

QDAcity now allows users to upload and do qualitative research with PDF docu-
ments in the cloud. Analogous to the already supported RTF documents, codings
are synced across multiple browser sessions to allow collaborative coding. To en-
able users to code text as well as non-text areas of PDF documents, text and
area codings were implemented.

To successfully implement this feature in QDAcity, we first had to analyze how
to integrate a PDF viewer in QDAcity. In chapter 2, we described the purpose of
QDAcity and how it already enables users to do qualitative research with RTF
documents. We showed the frontend layout and explained all components of the
coding editor, which is the central component to do qualitative research.

Before designing our implementation architecture, we compared QDAcity with
other QDA software tools in chapter 3. Additionally, we researched available
libraries to process PDF documents and compared their pros and cons. We used
the gathered implementation details to evaluate different strategies on how to
integrate PDF support in QDAcity.

In chapter 4, we formulated functional as well as non-functional requirements.
These requirements were used in chapter 8 to evaluate our implementation against
them. The requirements were built using the templates by Rupp (2014) in order
to define explicit, complete, and testable requirements.

We described the planned implementation architecture in chapter 5. For both
supporting multiple document types as well as multiple coding types, we designed
extensive class hierarchies that can be easily extended in the future. In the
implementation chapter (chapter 6), we explained the implemented classes and
methods in detail. Since the original coding mechanism of QDAcity was not
usable with PDF documents, we had to design a new coding mechanism. The new
coding mechanism now no longer relies on coding information that is embedded in
the content of the documents. Instead, the new coding mechanism stores coding
data separate from the document. Since this change involved side-effects and the
need for a document migration, we also addressed these topics in section 6.2.1
and section 6.2.3 respectively.

42

As we were facing some unforeseen challenges during implementation, we in-
cluded chapter 7 in this thesis. This chapter is supposed to help future QDAcity
developers that e.g. might extend the range of supported document or coding
types. Additionally, we justified the previously unplanned step of updating the
Slate text editor. After evaluating our implementation against the defined re-
quirements, we highlighted milestones for future work on QDAcity in chapter 9.

The resulting PDF support was implemented using widely adopted design pat-
terns. In order to extend the range of supported document types in the future,
extensive class hierarchies were designed. Future document and coding types can
inherit from the pre-defined base classes and do not need changes in the endpoint
implementations. To render different document types in the frontend, the Facade
design pattern was used. Using the Facade design pattern, we implemented dif-
ferent editors to handle a specific document type.

43

Appendix A Evaluated Java PDF libraries

Lib License Pro Con
Adobe PDF
Library1

Proprietary,
non-free

“Adobe Quality”
(Compatibility,
Features, etc.)

Needs license
agreement, which
is granted on a
case-by-case basis

Apache
PDFBox2

Apache Feature rich (pdf
creation, text
extraction, signing,
printing, preflight,
form filling, save as
image, split &
merge)

License

Actively developed
(latest release late
2019)

None in respect to
the usage of the
library

iText3 Proprietary/AGPL Feature rich PDF
Software
Development Kit
(SDK)

Actively developed

License: AGPL is
based on GPL2,
which is
incompatible with
Apache. Apache is
only compatible
with GPLv3, if the
final product is
licensed under
GPLv34

Data extraction is
closed source and
needs a license
(pdf2Data)

1https://www.adobe.com/devnet/pdf/library.html
2https://pdfbox.apache.org
3https://itextpdf.com/en
4http://www.apache.org/licenses/GPL-compatibility.html

44

https://www.adobe.com/devnet/pdf/library.html
https://pdfbox.apache.org
https://itextpdf.com/en
http://www.apache.org/licenses/GPL-compatibility.html

Appendix A: Evaluated Java PDF libraries

JPedal5 Proprietary/GNU
LGPL

Actively developed

Feature set seems
equal to Apache
PDFBox

Full version only
available through
commercial license

OpenPDF6 GNU LGPLv3 /
MPLv2.0

Fork of iText 4.2

extensive JavaDoc
documentation

“good” license

Presents itself as
not as big of an
library as e.g.
PDFBox, as the
only reference is
the Git repository

PDFTron
Systems7

Proprietary Tailored for
enterprise PDF
software, hence
comprehensive
PDF SDK

Needs a license
agreement

5https://www.idrsolutions.com
6https://github.com/LibrePDF/OpenPDF
7https://www.pdftron.com

45

https://www.idrsolutions.com
https://github.com/LibrePDF/OpenPDF
https://www.pdftron.com

Appendix B Evaluated JavaScript PDF librar-

ies

Lib License Pro Con
PSPDFKit8 Proprietary Very full featured

and easy to use
PDF editor for the
browser

Needs license

PDF-LIB9 MIT Free to use, can
edit PDFs

active project

PDFs can only be
created/modified
programmatically,
as there is no User
Interface (UI) for
integrated for
those tasks

PDF.js10 Apache 2.0 Free to use (by
Mozilla), can parse
and render PDFs

active project

PDF-reassembly
obviously not
possible (hence the
need of
PDFassembler), no
editor included.
Library is called
“terrific” by
PDFassembler

PDFTron
WebView
(PDFNet)11

Proprietary Seems to have an
extensive
documentation
and to be very
feature rich

No demo available,
needs license

8https://pspdfkit.com
9https://pdf-lib.js.org

10https://mozilla.github.io/pdf.js/
11https://www.pdftron.com/api/web/PDFNet.html

46

https://github.com/DevelopingMagic/pdfassembler
https://pspdfkit.com
https://pdf-lib.js.org
https://mozilla.github.io/pdf.js/
https://www.pdftron.com/api/web/PDFNet.html

References

Bazeley, P. (2013). Qualitative data analysis: Practical strategies. Sage.
Caudle, S. L. (2004). Qualitative data analysis. Handbook of practical program

evaluation, 2 (1), 417–438.
Gamma, E. (1995). Design patterns: Elements of reusable object-oriented soft-

ware. Pearson Education India.
Gerson, J. (2016). Work as a team - Understanding MAXQDAs Teamwork op-

tions. Retrieved November 4, 2020, from https://www.maxqda.com/work-
as-a-team-understanding-maxqdas-teamwork-options

Kaufmann, A. & Riehle, D. (2015). Improving traceability of requirements through
qualitative data analysis. Gesellschaft für Informatik eV.

Kaufmann, A. & Riehle, D. (2019). The QDAcity-RE method for structural do-
main modeling using qualitative data analysis. Requirements Engineering,
24 (1), 85–102. https://doi.org/10.1007/s00766-017-0284-8

Rupp, C. (2014). Requirements Templates — The Blueprint of your Requirement,
6.

47

https://www.maxqda.com/work-as-a-team-understanding-maxqdas-teamwork-options
https://www.maxqda.com/work-as-a-team-understanding-maxqdas-teamwork-options
https://doi.org/10.1007/s00766-017-0284-8

List of Figures

2.1 Coding editor view in QDAcity 2
2.2 Code system example by Kaufmann and Riehle (2019) 3

3.1 Demonstration of PDF.js text overlaying accuracy 8

5.1 Architecture of backend document support 12
5.2 Architecture of frontend file support 13
5.3 Architecture of the coding mechanism 15

6.1 UML class diagram of the document architecture 17
6.2 UML class diagram of the DocumentType enum 18
6.3 UML class diagram of custom TypeIdResolvers 19
6.4 Sequence diagram of EditorWrapper coding caching functionality 21
6.5 UML class diagram of the coding architecture 22
6.6 UML class diagram of TextCoding 24
6.7 Illustration of coding merging and splitting mechanism 25
6.8 Visualization of original and migrated text document HTML excerpts 28

7.1 Slate paragraph keys . 31

8.1 PDF layout in QDAcity vs. Evince PDF viewer 34
8.2 Visualization of support for different coding types 35

48

List of Code Snippets

6.1 Excerpt of original text document DOM tree 28
6.2 Excerpt of migrated text document DOM tree 28

49

	Introduction
	QDAcity
	Previous work
	Comparison with other QDA software
	Analysis of coding mechanism design
	Handling editable documents with an abstract coding mechanism

	Evaluation of different strategies to integrate pdf support
	Backend based approach
	Frontend based approach

	Findings

	Requirements
	Functional requirements
	Non-functional requirements

	Architecture
	Document Support
	Backend
	Frontend

	Coding mechanism

	Implementation
	Document Support
	Backend
	Frontend

	Coding mechanism
	Side-effects of new coding mechanism
	Synchronizing coding updates across clients
	Migration of existing text documents

	Unforeseen challenges
	Use SUPERCLASS_TABLE inheritance with DataNucleus
	Use external codings with Slate

	Evaluation
	Functional requirements
	Non-functional requirements

	Future work
	Remove embedded coding keys from rtf documents
	Realtime-service integration for saving documents
	Store documents externally
	Lazily fetch documents

	Coding previews for area codings

	Conclusion
	Appendices
	Appendix Evaluated Java pdf libraries
	Appendix Evaluated JavaScript pdf libraries

	References

	List of Figures
	List of Code Snippets

