
Friedrich-Alexander-Universität Erlangen-Nürnberg

Technische Fakultät, Department Informatik

FELIX MÜLLER

BACHELOR THESIS

UNI1 MONOLITH TO COMPONENTS

Submitted on 2 July 2021

Supervisor: Prof. Dr. Dirk Riehle, M.B.A.
Professur für Open-Source-Software
Department Informatik, Technische Fakultät
Friedrich-Alexander-Universität Erlangen-Nürnberg



Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen,
die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 2 July 2021

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 2 July 2021

i

https://creativecommons.org/licenses/by/4.0/


Abstract

This thesis discusses the refactoring of the pre-existing Uni1 application from a
monolith to multiple components. The refactoring results into two components,
one for the account management containing the login, registration and account
management and the other the old marketplace, where new projects can be cre-
ated. In addition to that, another completely new component called Campaigner
is implemented. This new component enables specific users to campaign their
projects via emails which are user created. Lastly continuous integration and
continuous deployment is added which deploys the application to Amazon Web
Services.

ii



Contents

1 Introduction 2
1.1 Uni1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Old Uni1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 New Uni1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Problem identification 4

3 Objective definition 5
3.1 Marketplace (Old application) . . . . . . . . . . . . . . . . . . . . 5

3.1.1 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1.2 Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2.1 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2.2 Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3 Campaigner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3.1 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3.2 Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4 Continuous integration & Continuous deployment . . . . . . . . . 8

4 Solution design 9
4.1 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2.1 Amplify . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2.2 VueJs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.3 Continuous integration & Continuous deployment . . . . . . . . . 13
4.3.1 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3.2 Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Implementation 15
5.1 Marketplace component . . . . . . . . . . . . . . . . . . . . . . . 15

iii



5.1.1 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1.2 Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2 Dashboard component . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2.1 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2.2 Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.3 Campaigner component . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3.1 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3.2 Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.4 Admin console component . . . . . . . . . . . . . . . . . . . . . . 31
5.5 Continuous integration & Continuous deployment (CI/CD) . . . . 31

5.5.1 GitLab-CI . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.5.2 CloudFormation . . . . . . . . . . . . . . . . . . . . . . . . 33
5.5.3 Amplify . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Demonstration 36
6.1 Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.1.1 Application navigation . . . . . . . . . . . . . . . . . . . . 36
6.1.2 Account management . . . . . . . . . . . . . . . . . . . . . 39

6.2 Campaigner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2.1 Campaign creation . . . . . . . . . . . . . . . . . . . . . . 42
6.2.2 Campaign details . . . . . . . . . . . . . . . . . . . . . . . 44

7 Evaluation 49
7.1 Marketplace (Old application) . . . . . . . . . . . . . . . . . . . . 49
7.2 Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.3 Campaigner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.4 Continuous integration & continuous deployment . . . . . . . . . 51

8 Conclusions 52

Appendices 53
Appendix A Backend new directory structure . . . . . . . . . . . . . 53
Appendix B Backend signup diagram . . . . . . . . . . . . . . . . . 54
Appendix C OOO handling diagram . . . . . . . . . . . . . . . . . . 55

References 60

1



1 Introduction

1.1 Uni1

1.1.1 Old Uni1

The application of this thesis builds upon a pre-existing NodeJs application with
a ReactJs frontend, both written by Philipp Eichhorn. The main relevant part of
the old system, is his marketplace component, which will be translated to another
framework and reused.

1.1.2 New Uni1

The main purpose of the newer version of Uni1 remains the same as for the previ-
ously mentioned older version. This purpose ”is to revolutionize how universities
and companies collaborate and conduct business with one another” (Eichhorn,
2016).

The newer version consists of more components than the old one, was developed
together with Nasser Eddin Nasser and is available at https://dashboard.uni1.de.
It has to be noted that, unlike this thesis, the frontend is in German, like it was
in the old application.

1.2 Thesis goal

The goal of this thesis can be split into three separate aims. The first is about
the refactoring of the old/pre-existing application from a monolith into separate
components for the Marketplace and the Account management, meaning the user
authentication/login.
The second is to create a new component and integrate it into the, now split,
application. This component should enable an authorized user to create a cam-
paign, which sends campaign emails to a selected group of contacts. Contacts are
a new model to be implemented, because it has to be possible to send campaign

2

https://dashboard.uni1.de


emails to email addresses even though this email address is not used by any user.
Of course, the recipient still has to be able to unsubscribe from these emails.
Lastly this component should also be able to receive and handle Out-Of-Office
replies in order to display them and make it possible to detect whether a contact
has changed its email address, for example due to change of employer, if a new
email address is provided in the reply.
The last goal is to implement continuous integration and continuous deployment
for the project, which tests the backend and deploys it to Amazon Web Services
(AWS), where the new application is hosted.

1.3 Thesis structure

This thesis is structured using the provided design inspired by ’Design Science’1.
After this introduction the thesis will begin with the problem identification
chapter, where a short explanation will be given, about the reason for this thesis,
or rather the application developed behind it.
This is then followed by the chapter listing the requirements for the new applic-
ation, which will be later used for the evaluation.
The fourth chapter contains the solution design, meaning how the problems from
the previous chapter are about to be solved. This includes the architecture of the
new application, as well as different technologies used.
Next comes the main chapter detailing the implementation. In here each com-
ponent that was implemented will be detailed as well as how the infrastructure
was set up. This also includes the setup of the pipeline, meaning the continuous
integration & continuous deployment.
The fifth chapter contains the demonstration, where four main workflows of the
new application are detailed. These workflows are all demonstrated using the
frontend, because that makes it easier to explain and understand.
In the sixth chapter the implemented solution, as detailed in chapter four, will be
evaluated against the requirements, as previously mentioned. It will also high-
light certain issues that stuck out after the implementation and propose future
adjustments.
After the evaluation the thesis will finish with the conclusion.

1https://www.jstor.org/stable/40398896?seq=1

3

https://www.jstor.org/stable/40398896?seq=1


2 Problem identification

The following chapter gives a short explanation concerning the circumstances,
which led to this thesis.
As previously mentioned, there already existed an Uni1 application, but this
application was purely for the discovery of interesting projects or creating own
project requests, lacking the possibility to promote these projects. This thesis
is supposed to change that with the implementation of a new component for
sending emails to a list of email addresses and, most importantly, manage Out-
Of-Office replies. This handling of the replies makes it easier for the creator, of
this so-called campaign, to detect if one of his contacts changed his email address
or if there is a new contact person, due to changes in the company/university.
Currently this also has to be done manually and is done, by Prof. Riehle as an
example, using a large excel file with multiple hundreds of emails, sorting through
the email inbox and updating outdated entries.
In addition to that some changes to the user were desired, mainly due to the un-
wanted strict separation between companies and university employees. Because
of this, and the new component, a refactoring of the old application was required,
in order to, firstly, apply the mentioned user changes. Secondly the new compon-
ent brought up the desire to split the existing monolith into separate components
for the user handling and the Marketplace in order to simplify the creation of
other, future, components.

4



3 Objective definition

This chapter contains the requirements for the new application and is split into
sections for each of the pre-defined resulting components, as well as a section for
the continuous integration & continuous deployment.

3.1 Marketplace (Old application)

The Marketplace, meaning the old application, is to be reused after some refact-
oring and updating.
For the refactoring, it is necessary to split the existing monolith into separate
components, such that it would be fairly easy to implement and integrate a new
component, or even split the application into multiple microservices in the future
without much additional effort.

3.1.1 Backend

The first requirement is the extraction of the account management, meaning the
login and account editing, as well as the refactoring of the authentication and
authorization, which will be detailed in the next section.
The next requirement is the removal of university and company logic, which
entails the deletion of the models for the database, refactoring of the user model,
as well as the removal of all related apis and filters.
Lastly the biggest requirement is, that the Marketplace works as well as it did
before and without any features removed, aside from previously mentioned ones,
like the removal of company and university.

3.1.2 Frontend

Analogue to the backend the first requirement is the extraction of all pages con-
cerning the account management as well as the authentication. These pages are
the login, the registration and the account management page, where the user can
edit himself.
Aside from that, the main requirement, that is to be done for the frontend of this

5



component, is the translation to VueJs, in order to match the other components.
This also requires research whether the old styling framework, called Semantic
UI, can be ported to Vue. If it can not be ported, an alternative has to be found
and used.
The next requirement is the merging of the different pages for university and
company employees, in order to accommodate the role changes in the backend.
This requires the identification of elements on both versions of these pages, that
are to be displayed on the new, merged, page.

3.2 Dashboard

The Dashboard is the new component, which houses the login, registration and
account management page and functions as a connection between all components.

3.2.1 Backend

The backend requirements start with the writing of the login, registration and
account editing logic in this new component that works for all components, mean-
ing the login and registration are only required once for all components. For this
the extracted logic can be used as a starting point.
The next one is to refactor the existing authentication and authorization used by
the api endpoints to work with the refactored logic.
The last requirement is the refactoring of the roles from university and company
to roles for each component, meaning user for Marketplace component access,
campaigner for Campaigner component access and admin for the Admin Console
component access. It has to be noted, that the last component is not a part of
this thesis, but rather of the master thesis by Nasser.

3.2.2 Frontend

The first requirement for this is the same as for the backend, meaning a working
login, which counts for all components, where a login in this component would
also count as a login in, for example, the Campaigner component.
Derived from this requirement, another one is a registration page that allows
users to create a new account. One important part is the fact, that the login as
well as the registration work based on a username, not the email of the user, in
order to make it unnecessary for the user to remember the changed login data.
Another depending requirement is the account editing page, which allows the
user to edit all of the important attributes of himself. These attributes are the
first name, family name, email, phone number, title, and the tags he wants to
receive campaign emails for, which is detailed in the section for that component.
In addition to that, he needs some way to manage his email addresses used for

6



the Campaigner, meaning he has to be able to delete them, create new ones and
disable campaign emails for one specific address.

3.3 Campaigner

3.3.1 Backend

Most of the following requirements are resulting from the frontend requirements.
For starters a new model is required in the database called contacts. These
contacts, more or less, only consist of an email, as well as the tags they have sub-
scribed to, and will be used by this component to send emails. The important
part is, that contacts can exist without any users they are assigned to, but each
user has at least one contact with the email the user uses for his account.
Along with the contact model the tags, which were stored inside a project request
of the Marketplace, need to be extracted into their own model, for the campaign
emails recipient selection.
After this the first big, and perhaps most important requirement, is the imple-
mentation of a service for sending batch emails using the chosen email provider.
This service has to send the emails to each recipient individually and not to a
group. Additionally the creation of a simple email template, which contains pre-
defined footer and a injectable body, is required.
The second, dependent on the first, requirement is the receiving and handling
of Out-Of-Office (OOO) responses. This api has to parse the incoming OOO,
save the relevant data, like sender, subject and body, and extract emails from
the body, which can then be used in the frontend to easily create new contacts
from the original contact which sent the OOO.
Due to the beforehand mentioned creation of new contacts, this component also
needs an api for creating these new contacts which differs only in email from its
original contact.
Last but not least, the next requirements are derived from the frontend and is
about the backend part of the api, with the first one being a create api for creating
a new campaign which saves it and initiates the email sending. The second one is
a preview api which returns the already mentioned template along with its user
provided body and the last one is the apis for retrieving one or all campaigns.
The last two requirements are about an additional attribute of the campaigns,
the status. The first one is the status itself, which is supposed to indicate whether
the campaign is still sending emails, finished sending or was closed by the user.
The next one is for the user to be able to start and stop the email sending.

7



3.3.2 Frontend

Due to the fact, that this is a completely new component, it will require a little
bit more work in terms of the number of requirements to fulfill.
The first requirement is a page where the user can create a new campaign. This
requires the input of at least a name, subject and body as well as a recipient
selection using the campaign tags, where empty selection means to send to all
available contacts. After inputting all of the above, there has to be a preview
before sending the emails.
The next requirement, or page, is the campaign details page, which displays all
important information about the campaign and has some method for finishing the
campaign as well as another for handling Out-Of-Office responses. Additionally
the creator should be able to start and stop the email sending here, as mentioned
in the backend subsection.
The received OOO can also be viewed in detail with its sender, subject as well as
its content body on their own details page. Additionally, there are some actions
available for the handling of the OOO, like deleting of the contact which sent the
response. Another is the creation of new contacts using the emails, that were
scrapped from the OOO response, and the last is to simply be able to tell the
application to ignore this OOO.
The last required page, is the campaign list page, where all campaigns are listed
and from which it is possible to open the previous two pages. The page itself is
a list with one entry for each campaign which can be used to open the details
page for the corresponding campaign. Each list entry has to show at least the
previously mentioned status of the campaign.

3.4 Continuous integration & Continuous de-

ployment

The requirement for the continuous integration is to adhere to the standard pro-
cedure of CI, meaning to test the code on every push to the repository.
Concerning the continuous deployment, the requirement is the designing of a
concept for the deployment of the application to Amazon Web Service (AWS)
and to implement it, such that the application gets deployed, when the code gets
pushed onto a certain branch. This of course applies to the backend, as well as
the frontend.

8



4 Solution design

The application uses the classic client/server architecture, meaning the fron-
tend/client and backend/server are separated from each other and communicate
using a REST Api.
It has to be mentioned, that Uni1 is dependent on AWS due to its usage of many
different services, all of which will be named and the integration of each will be
explained in the relevant subsections.

4.1 Backend

The backend is a NodeJs application using the Express1 framework, which is one
of the most frequently used NodeJs framework for Web-Applications.

The Database, used for storing the application data, is a MongoDB database
hosted in MongoDB Atlas2, setup by Nasser. The reason why Atlas was chosen,
is the fact that Atlas is one of the cheapest and, at the same time, reliable pro-
viders for MongoDB Cloud Storage, providing the possibility to distribute your
database cluster across multiple cloud storages and even providers. This means
that part of your database is stored within, for example, AWS and another within
Google Cloud.

For hosting, AWS ElasticBeanstalk3 (EB) is used, where the application runs as
a Docker4 container. The usage of Docker makes it easier to deploy the backend
outside of ElasticBeanstalk.
Additional AWS Services used by the backend are AWS CloudWatch5 for logging
of the application and AWS Simple Email Service6 (SES) as the email provider

1https://expressjs.com/
2https://www.mongodb.com/cloud/atlas
3https://aws.amazon.com/elasticbeanstalk/
4https://www.docker.com/
5https://aws.amazon.com/cloudwatch/
6https://aws.amazon.com/ses/

9

https://www.mongodb.com/cloud/atlas


for the Campaigner component, as well as every other email sending. Addition-
ally AWS Simple Notification Service7 (SNS) is used by SES for passing events
to the backend over a REST Api. The last AWS service is used by the backend
and frontend alike, called AWS Cognito8, and is used for storing the users as well
as authenticating and authorizing them in the frontend and backend.

Concerning the code, it has to be noted, that the original code architecture has
been reused, this means, that, for example, the error handling remains mostly
the same as before, using two middlewares9. One of these middlewares converts
the errors, that are not of the custom error type, to custom internal server errors,
while the other converts these custom errors into a REST error response using
their respective error messages and error codes. All in all, there are only a few
modifications that were made, like removing the now obsolete code, used for the
account management, login and registration, and refactoring the api authentica-
tion and authorization middlewares for Cognito.
The biggest change is the refactoring of the directory structure to support the
split of the backend into multiple components, which has been decided together
with Nasser.

The components are integrated with each other on the database level, meaning
they do not communicate with each other directly, using for example their REST
Apis. The reason for that is mainly the simplicity and thus quick and easy
implementation of this approach.

4.2 Frontend

This section will highlight the frontend, or rather frontends, which are implemen-
ted using the VueJs framework in combination with AWS Amplify10.

4.2.1 Amplify

When hosting a frontend from AWS, using Amplify can have numerous advant-
ages, like the built-in continuous deployment which detects pushes to a git repos-
itory and updates the running application. Another one is the fact, that Amplify
has its own little backend, where modules for other AWS services, like the Auth
module for connecting with AWS Cognito or the Api module for the AWS ApiG-
ateway11, can be added, simplifying the usage of those.

7https://docs.aws.amazon.com/sns/
8https://docs.aws.amazon.com/cognito/
9https://expressjs.com/en/guide/using-middleware.html

10https://aws.amazon.com/amplify/
11https://aws.amazon.com/api-gateway/

10

https://docs.aws.amazon.com/sns/
https://docs.aws.amazon.com/cognito/
https://expressjs.com/en/guide/using-middleware.html
https://aws.amazon.com/amplify/
https://aws.amazon.com/api-gateway/


This backend implementation can be further extended with the usage of so called
triggers provided by Amplify, like for example the Pre Sign-up trigger for the
Auth module. These triggers will be pushed to AWS as AWS Lambda func-
tions12 written in JavaScript (Lambda Triggers, 2021).

The Amplify backend of Uni1 uses three of these triggers which will be described
in the following. It is to be noted, that all of these triggers are Cognito triggers,
meaning they will be triggered by certain events sent by Cognito.
The first used trigger is a predefined trigger called Custom Message, which will
be added if the option Email Verification Link with Redirect is selected during
the setup of Amplify. The trigger gets executed after the sign-up and is, like
the name for the option suggests, for the sending of the verification code for the
email, that was provided during the sign-up.
The next trigger is also a predefined one, called Post Confirmation and is added
with the selection of the Add User to Group option. This trigger will be triggered
after the user was confirmed, which happens after the email verification code
from the previous trigger has been entered or an admin with access to Cognito,
manually marks the email as verified (Signing Up and Confirming User Accounts,
2021).
The last one uses the Pre Sign-up trigger and was implemented in order to ensure
that the given email is not already used. The reason why it was implemented
this way, is the fact, that as of time of writing, the Amplify CLI setup did not
support selecting the option Also allow sign in with verified email address which
would mark the email as an alias which has to be unique. In addition to that,
the alias also has the issue, that a new account with the same email can still be
created, but the verification will fail (Configuring User Pool Attributes, 2021).
Due to these issues, it was decided to implement the custom trigger which scans
the Cognito User Pool for a user with the same email and prevents the sign up
in case it finds one.

4.2.2 VueJs

While the frontends use VueJs13 as their framework, they do not do so in the
traditional way using JavaScript. Instead, it was decided, together with Nas-
ser, to use the TypeScript variant, as well as the Class-Style Vue Components14.
The reason for that, is the additional type safety, provided by TypeScript, which
makes the development easier, as well as simply preferring a Class-Style imple-
mentation.

12https://aws.amazon.com/lambda/
13https://vuejs.org/
14https://vuejs.org/v2/guide/typescript.html#Class-Style-Vue-Components

11

https://aws.amazon.com/lambda/
https://vuejs.org/
https://vuejs.org/v2/guide/typescript.html#Class-Style-Vue-Components


For the state management it was decided to use Vuex15. The reason, why a state
management was chosen at all, is mainly the fact, that the old implementation
used Redux16 and removing the state management would have resulted in ad-
ditional workload. Vuex specifically was chosen due to its feature richness and
community, as well as the TypeScript support, especially the last part which not
all Vue packages have.

In comparison to the backend, it was decided, together with Nasser, to already
split the frontends into separate VueJs applications and to follow the subdomain
structure.
The subdomain structure means, that each frontend has its own subdomain in-
stead of an path.

Figure 4.1: Subdomain vs subfolder using the new Uni1 application as an
example

The reason why this architecture was chosen is, that thanks to this, it will not be
necessary to refactor the frontend, should it be decided to switch to microservices,
because they already are as separated as possible (without adding a lot of unne-
cessary complexity).
But this causes an issue concerning the login, because of the fact, that each ap-
plication is its own separate VueJs application and thus cannot directly share
their data / state. This means, that the login state, and other data, has to be
shared using one of the browser storages, like the local storage or using cookies.
Thankfully Amplify provides the option to store the authenticated user either
in the cookie storage or a custom implemented one. Uni1 opted for the cookie

15https://vuex.vuejs.org/
16https://redux.js.org/

12

https://vuex.vuejs.org/
https://redux.js.org/


storage to share the Amplify data with all uni1.de subdomains, due to the easy
configuration.
This means, that Amplify will save the current authenticated user in the cookie
storage and will try to fetch him, before making a call to Cognito, in the case
that the user gets requested. Thanks to that, if one application fetches the user
from Cognito, all other application will use the user from the cookie store until
the cookie becomes invalid.

4.3 Continuous integration & Continuous de-

ployment

This section explains the software stack used for deploying the Uni1 application
using Continuous Integration / Continuous deployment (CI/CD).
Additionally, this section needs to be separated between frontend and backend,
due to the different methods CI/CD has been implemented for the frontend and
backend.

4.3.1 Backend

The CI/CD workflow of the backend is based upon the GitLab pipeline17, as well
as AWS CloudFormation18, which is used to manage the AWS services.

CloudFormation (CFN) is a service offered by AWS in order to help manage the
AWS resources used by a project. The resources are defined inside a template19

and CloudFormation will then create a so called CloudFormation stack which
includes all of the services and resources described inside this template. This
makes it easy to recreate these resources or duplicate them (using a different
stack name). In addition to the easy creation, this also simplifies the deletion,
because the deletion of the stack causes the deletion of all its resources (What is
AWS CloudFormation?, 2021).

Due to the usage of CloudFormation it is not necessary to manually create, for
example, the ElasticBeanstalk (EB) instance, or AWS SES, because they will be
setup by the first pipeline.
Unfortunately, it is not possible to remove all manual work, some things still have

17https://docs.gitlab.com/ee/ci/pipelines/
18https://aws.amazon.com/cloudformation/
19https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/gettingstarted.

templatebasics.html

13

https://docs.gitlab.com/ee/ci/pipelines/
https://aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/gettingstarted.templatebasics.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/gettingstarted.templatebasics.html


to be done manually, like the creation of the IAM users20 and roles21, which the
pipeline uses for CloudFormation.

4.3.2 Frontend

The reason why the frontend has to be discussed separately, is the fact that it
does not use the GitLab-CI for deployment, but rather the in Amplify built-
in git-based deployment22. This means that Amplify will detect pushes to the
specified branch on the git repository and start its pipeline on its own.
After Amplify is finished, the application will be served using the in amplify
defined url from S3, similar to how the old application was hosted, but using
Amplify instead of CloudFront23.

20https://docs.aws.amazon.com/IAM/latest/UserGuide/id users create.html
21https://docs.aws.amazon.com/IAM/latest/UserGuide/id roles create.html
22https://docs.amplify.aws/guides/hosting/git-based-deployments/q/platform/js
23https://aws.amazon.com/cloudfront/

14

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
https://docs.amplify.aws/guides/hosting/git-based-deployments/q/platform/js
https://aws.amazon.com/cloudfront/


5 Implementation

In this chapter the implementation of each component will be explained in further
detail. It will focus on the components implemented by me, but due to the close
cooperation between Nasser and myself, there are some overlaps, which will be
mentioned as well.
First the refactoring of the old application into the new Marketplace component
will be detailed, followed by the extracted auth component and closing with the
new Campaigner component.

5.1 Marketplace component

This section discusses the porting and setup of the application using the existing
NodeJs application as a starting point.

5.1.1 Backend

This part was mostly done by Nasser, but will be described, due to it being the
ground work on which the other backends build upon.

Old auth removal
The first thing that was done for the backend was the removal of the old auth
implementation, which was done by Nasser, but needs to be addressed for the
sake of completeness.
This included the removal of the old authentication and authorization middle-
ware, of the whole old user api which was used to register new user, delete and
edit them, and much more. All of this was no longer required due to the switch
to Cognito, which will be detailed later.
The next things this refactor entailed, was the refactoring of the MongoDB user
model. During this refactoring all attributes were removed, that were either no
longer required, or moved to Cognito, with most of them moved to Cognito.
Examples are the ’firstName’, ’lastName’, ’sex’, ’phoneNumber’, ’email’ and

15



’password’ using their Cognito equivalents ’given name’, ’last name’, ’gender’,
’phone number’, ’email’ and of course the password. The only really removed
attribute was the ’studentInfo’ caused by the removal of the student user type
and the fact, that this did not cause any major issues.
Newly added was the ’usersub’ attribute which stores the ’sub’ attribute of the
Cognito user and is used to unambiguously reference one of them, thus their
equivalent of an id and used in many api calls.

Directory restructuring
The next refactoring that was done, also by Nasser, was the refactoring of the
directory structure to support the split of the backend into multiple components.
There are now subdirectories for each component in the root of the backend, as
well as a directory called ’shared’ where, for example, the main database mod-
els, like the user, as well as utils, like the error utils, reside. This folder would
have to be included into each component, should the backend be separated into
microservices.
Here it was also decided to remove the separate ’uni1-api-clients’ package, mainly
because the frontend would be written in TypeScript anyway. Instead, the REST
Api has been built analogous to the file structure, meaning that the main server
script file loads the api from the main router files inside each component and
these router files contain the api for the corresponding component.
In addition to that, each component has a similar main server script, whose only
difference is, that it only loads the router file of component it is part of, making
it possible to start each of them on its own. The new directory structure is visu-
alized in the appendix here.

Dockerization
The last thing Nasser did on the backend, was to dockerize it, because it was de-
cided to run the backend as a Docker application in AWS, unlike the old backend
as a Node application.
This was another of the reasons, why it was decided to scrap the ’uni1-api-clients’
package, due to problems getting ’npm link ’ to work inside the Docker files.

Marketplace refactoring
The last point, which was supposed to be done by me, was to refactor the existing
Marketplace backend to fit the changed roles and the decision to remove the
user dependence on either a company or an educational unit (edu)/university.
Unfortunately, there was not enough time and it was decided to focus on the
Campaigner and because of that this is still missing.
This means, that the company and edu models are still present and the backend
has to be refactored, removing all company and edu dependency.

16



5.1.2 Frontend

Style porting research
The main thing that was done for the marketplace frontend, was the porting of
the look and feel of the old application from ReactJs to VueJs, which used the
SCSS package of Semantic UI.
This entailed, first and foremost, researching about the feasibility of reusing Se-
mantic UI as the styling framework with VueJs. The results of that were, that
for once it would be possible to use the so called semantic-ui-sass package, which
would allow for the implementation of Semantic UI components using SCSS. This
would have three drawbacks, the first being the fact, that the package has been
depreciated, as of time of writing. The second is, that it only includes the default
theme of Semantic UI and the last is, like the name suggests, it only contains
SCSS files, meaning the functional part of advanced elements like dropdown have
to be implemented separately.

Other than the scss powered package, there is also a package called semantic-ui-
vue, but this is still in development and would make some styling modifications
difficult that were done to, for example, the navigation bar, due to it being a com-
ponent package. However, being a component package in comparison to a SCSS
package, it has the advantage of included functionality in the form of JavaScript.

Comparing both packages we opted for the scss package due to the old application
also using a scss package, which made it easy to port. But the official package is
also used whenever a component, like a dropdown, with JavaScript was needed.
In order to be able to use the packages, a custom type declaration file was written
that allows the plugin to work with TypeScript. One example where the package
was used is for the dropdowns in the Dashboard.

After it was decided to use the scss package, all Semantic UI components that
were implemented in the old application, were translated from ReactJs to VueJs,
which also included the translation from JavaScript to TypeScript. The last part
was caused by the decision to use VueJs with TypeScript and with its Class-Style
Components.

Component porting
The next step was to identify all non Semantic UI components, that would have
to be translated, in order to style the new application the same way. These
components are, for example, the main header of the application, its left sided
navigation bar, or the details page using the project details page as an example.

17



Marketplace porting
The last thing to do was the porting of the main Marketplace UI, meaning all
pages and functionality. Due to the before mentioned changes made to the user
roles and the removal of company and edu models, it was necessary to merge the
existing pages, which were split into separate pages for company and edu users
containing different functionality, into a single page for all users.
Unfortunately, again, this was not possible time wise and because of the decision
to focus on the Campaigner component.

5.2 Dashboard component

In this next section, the implementation of the Dashboard component will be
detailed. This component contains the logic that connects all components and,
due to that, has the highest overlap between Nasser and myself. Amplify was
also setup and initialized during the implementation of this component, which is
caused by the fact, that Amplify also initializes Cognito and this component is
the central authentication component.

5.2.1 Backend

New auth middleware
The central point of this, was the implementation of a new express middleware
(StrongLoop & other expressjs.com contributors, 2017) which authenticates and
authorizes the user. This middleware was implemented by Nasser and validates
the signature and claim of the JWT Token sent by the frontend (Verifying a
JSON Web Token, 2021). Additionally, this middleware also appends the data-
base user entry, of the user which sent the request, to the express request object,
like the middleware of the old application did. This makes it unnecessary to
afterwards readout the user again from the token should he be needed during the
handling of the request and was an addition to the middleware made by me.
The last thing this middleware does, is to verify, that the requester is authorized
to execute the given api. For this the middleware gets an array of authorized
roles, which are authorized to execute the api and compares them to the groups
the user belongs to, according to Cognito. Should the user belong to at least one
of these roles/groups, the middleware will pass the request to the actual endpoint.

Registration endpoint
Next was the endpoint for registering users, which was necessary because of the
fact, that not everything could be saved in Cognito without any issues, one such
attribute are the contacts, that are assigned to a user.
Theoretically Cognito allows the creation and saving of custom attributes, but
this unfortunately would make it a little bit harder to retrieve connected data, for

18



example all users together with their contacts. In addition to that, these custom
attributes can neither be required (Configuring User Pool Attributes, 2021) nor
can the users be queried with them (Managing and Searching for User Accounts,
2021), but each user has to have at least one contact.
This api will create a user in the database after some checks concerning the con-
tacts saved in the database. Should one of these checks fail, the user will be
deleted in Cognito (and the database if the api fail afterwards). These checks
are necessary because the fact, that contacts can exist without any users and will
now be further detailed.
First the api will check, whether there already exists a contact which uses the
same email as the new user would use for his account. Should this not be the
case, the api will simply create a new contact before creating the new user, and
assign this contact to the new user. Otherwise, the api will check if this contact is
already assigned to a user, in which case the api will throw an error, thus deleting
the user in Cognito and return the error. But should the contact be unassigned,
the only thing the api will do is to update the contact, if the user has entered a
phone number during registration and the contact has none saved, because the
fact, that this is an optional attribute. After this the user will be created in the
database and the registration, in the backend, was a success. A more detailed
flow of the whole registration/signup api can be found in the activity diagram in
the appendix here.

Account management endpoint
The last important thing to do for this component in the backend, was the cre-
ation of an api, that would allow the user to edit his account attributes, like his
name, email, title and so on. In this case, unlike for the signup, everything is
done via the backend api, which is responsible for updating the user in Cognito.
After some assertion that the given data is valid, like that the user even exists
or that at least the required attributes for a user are given, the api will assert
again, that the email is not used. For this it will first query Cognito for a user
with the given email and if one is found, assert that the username of this user
does not equal the user who is editing himself (in case there was no update of the
email). Unfortunately, this has to be done like that, because Cognito does not
support queries with more than one condition (Managing and Searching for User
Accounts, 2021). Should the usernames not match, an error will be thrown and
the editing will be rejected, because the email is already used by another user.
In case no user was found, it will be checked, whether any contact uses this email
and if that is not the case, the assert function will return a value indicating, that
a new contact has to be created. But if a contact was found, the api will check
whether this contact is assigned to any user and if it is, either throw an error in
case the user is a different one that the user that initialized the request, or return
stating that nothing needs to be done. If the contact is unassigned the function

19



will return saying that there is an assignment needed.
After this assertion, either a new contact will be created, or the existing is as-
signed to the user followed by the actual update of first the user in the database
and then of the Cognito user. Should the email be updated, Cognito will also
send a new verification email to this new email, but this will be discussed further
in the frontend section of this component.

Additional endpoints
Other than the points listed above, the Dashboard backend also contains some
fundamental apis and utils, which are not that important. One example of a such
an api is the one, which serves all tags to the frontend and is used by the account
management page for the tag dropdown.

5.2.2 Frontend

Amplify
The main point here, was the setup of Amplify, which includes Cognito, using
the Amplify CLI1. Cognito can also be setup separately and then imported into
Amplify, but because both had to be setup at that time, this was the easier
choice. Only the most important settings will be highlighted in the following,
because, for example, the name of the Cognito User Pool, which is more or less
the database that saves the user, is not really important.
The first important option is during the initialization of Cognito, and is the se-
lection about how users are able to sign in. Here ’Username’ was chosen, which
restricts user, such that they are only able to sign in using their username, not
their email. The reason why username was chosen, is that a user might change
their email, if, for example, they switch university or company, and thus have to
remember the new log in. The technical reason for that was, that allowing users
to sign in with their email, would mark the email attribute in Cognito as a so
called ’alias’ and requiring the email to be somewhat unique. The reason why
it is somewhat unique instead of unique is, that this type of uniqueness is not
checked during the registration, but rather during the email verification. This
means that Cognito would still allow a new user to be created with an already
used email, but fail in the second step during account validation in which case
the user would be forced to abandon the new account creation and start anew
(Configuring User Pool Attributes, 2021).
After this came the creation of the groups for the Cognito users. Here the three
groups/roles were created for the different applications. The ’User’ for users with
access to the Marketplace component, the ’Campaigner’ group for access to the
Campaigner and ’Administrator’ for the Admin console.
The next important option is concerning the user attributes for Cognito, more

1https://docs.amplify.aws/cli

20

https://docs.amplify.aws/cli


precise, the attributes that are stored in Cognito for each user and this app can
access. Here all attributes were selected that were removed from the old applic-
ation and moved to Cognito, meaning ’Email’, ’Family Name’, ’Given Name’,
’Gender’ and ’Phone Number’, in addition to the meta data ’Email Verified’ and
’Phone Number Verified’ which indicate whether the email or the phone num-
ber has been verified using one of the available verification methods. The latter
option was selected in case of future expansion with, for example, two-step au-
thentication using SMS, and because of its low additional effort.
This is also part of the next important option, where the capabilities were selec-
ted, that are wanted to be enabled. Here ’Email Verification Link with Redirect’
was chosen for the email verification and ’Add User to Group’ in order to add a
user to a default group after sign up.
The last important options are concerning the Lambda Triggers for Cognito. First
it has to be selected that it is wished to configure them and then the ’Pre Sign-
up’ was enabled in addition to the already enabled ’Custom Message’ and ’Post
Confirmation’. ’Custom Message’ is used for the ’Email Verification Link with
Redirect’ option and ’Post Confirmation’ for ’Add User to Group’. ’Pre Sign-up’
will be a custom written NodeJs function for AWS Lambda and detailed in the
following.

Pre Sign-up Lambda
Next the custom NodeJs Lambda was implemented, which is used to verify, that
the email inputted during the registration is not used by any other Cognito user.
The reason why this lambda was used for this, is that the only way to mark the
email as unique in Cognito, is to mark it as a so called alias. An alias can be used
as a substitute for the username during the log in, but unfortunately, aside from
the previously mentioned technical issues, the Amplify CLI does not support the
creation of alias up to now (“How do you want users to be able to sign in when
using your Cognito User Pool? Username + email + phone”, n.d.).

Now the main Amplify backend has been setup and is ready to be used by this
Amplify application. In order to use the same Amplify backend with other ap-
plications, the other applications simply have to follow the official Amplify guide
for applications with multiple frontends, that uses ’amplify pull ’ to ’import’ the
backend (Multiple frontends, 2020). This is necessary, because otherwise each
application would have their own lambdas and, in worst case, their own Cognito
instance which is used for the log in.

After this it was time to finally implement the frontend itself using the ported
Semantic UI components mentioned here.

21



Auth UI
The first and most important thing, was the implementation of the log in UI, as
well as sign up and everything related.
There is an official VueJs package for Amplify which contains UI components
for this use case, in fact there are two, a legacy and a latest version (Amplify
UI Components, 2020), but unfortunately it turned out to be very difficult, up
to impossible, to customize them. The customization was needed in to differ-
ent cases, the first was to style the log in UI in the same style as the rest of
the application. This is in fact possible, because the newer of these packages
offers a way to customize the CSS styles. The other reason was, that the sign up
needed some custom logic after the Amplify sign up succeeded (backend sign up
as discussed in previous section), which, by itself, is also possible with the newer
package, but there was also the requirement of certain backend only attributes,
like the title, to be entered on sign up and the Amplify api uses a certain model
that is passed to it. This together with the CSS customization made it easier
to just create own Vue components inspired by the legacy components found on
GitHub (“amplify-js/packages/aws-amplify-vue/”, 2020) and the log in compon-
ents of the old ReactJs application. The reason why the legacy components were
used as inspiration instead of the newer ones, is the fact, that the newer package
only consists of a statement, that is transcompiling the new ReactJs components
(“amplify-js/packages/amplify-ui-vue/”, 2020).
It has to be mentioned that not all components were implemented, that exist
in the Amplify-Vue package, for the simple reason, that not all are needed for
this application. The only components implemented are the ’SignIn’, ’SignUp’,
’ConfirmSignUp’, ’ForgotPassword’ and a new one which is not a part of the leg-
acy package but only of the latest, the ’VerifyEmail’ (’VerifyContact’ in official
Amplify package).

Homepage
Next was the homepage which contains the links to the other applications. This
one mainly consists of a dynamically generated list of buttons which are described
inside the config located inside ’src/config’ and each adhering to the following json
schema2.

1 {
2 "$schema": "https://json -schema.org/draft/2020-12/

schema",

3 "$id": "/ config/applicationButton/schema.json",

4 "title": "Application Button",

5 "description": "An application button for the

Dashboard homepage",

2https://json-schema.org/

22

https://json-schema.org/


6 "type": "object",

7 "properties": {
8 "name": {
9 "description": "Name of the application",

10 "type": "string"

11 },
12 "url": {
13 "description": "Url of the homepage, e.g. ’https:

// campaigner.uni1.de ’",

14 "type": "string"

15 },
16 "description": {
17 "description": "A short description about the

application",

18 "type": "string"

19 },
20 "icon": {
21 "description": "The Semantic UI icon used,

excluding ’icon ’ suffix and color, size

variation, e.g. ’clipboard list ’",

22 "type": "string"

23 },
24 "groups": {
25 "description": "Array of user roles, that are

allowed to see/access the component for this

button",

26 "type": "array",

27 "items": {
28 "type": "string"

29 },
30 "minItems": 1,

31 "uniqueItems": true

32 }
33 },
34 "required": ["name", "url", "icon", "groups"]

35 }

This makes it very easy to add new components to the Dashboard, because it
does not require any direct HTML or TypeScript/JavaScript changes.
In addition to that, this page currently also contains a button, implemented by
Nasser, called ’Entwicklerwerkzeuge (Dev Tools)’ enabling an admin to create a
new tag. This is temporary and only due to the time-related inability to imple-

23



ment the whole Marketplace frontend, as already mentioned, where new tags are
to be created in the future on the fly during project creation.

Account management page
The last thing to do for this component, was the account management. This
page was more or less ported from the old application with minor adjustments.
One adjustment was the addition of the tags input where the user can select
tags, he wants to subscribe to, using a dropdown with included search bar. An-
other change was a new tab for contacts, where the user can manage all contacts
assigned to himself. Here it is possible to create new contacts, delete them or
disable them for campaign emails.

5.3 Campaigner component

This section is about the Campaigner component, the new component that was
implemented as a part of this thesis.

5.3.1 Backend

Email provider
The first thing was the implementation of the email provider, which was the main
part of this component and also where most problems occurred. The main prob-
lem was, that the first chosen email provider lacked the requirement to receive
Out-Of-Office (OOO) replies and only supported the receiving of manual/normal
responses. Unfortunately, this was not completely clear at the time, due to the
lack of knowledge that there is a fundamental technical difference between these
types of responses.
After this it was decided to switch to AWS Simple Email Service (SES), mainly
because of the fact, that it can at least detect OOOs according to its bounce doc-
umentation for the bounce type ’Transient’ and its sub type ’General’ (Amazon
SNS notification contents for Amazon SES, 2021). In addition to that, the other
reason why SES was chosen is simply because the application already builds heav-
ily upon AWS and this way it is at least centralized.
Additionally, to SES there is another AWS service needed, if the application is to
be notified about anything concerning SES, like bounces, replies, complaints and
more. This additional service is called Simple Notification Service (SNS) and is a
basic subscription service, meaning that services can send a message to a certain
topic in SNS and it will send this message to all clients subscribed to this topic.
SNS is highly integrated into SES and thus the setup was fairly simply due to
the extensive documentation and the usage of CloudFormation in this project.
After starting with SES it became clear, that there is a problem caused by the
fact, that the ’Email receiving’ feature would also be needed, but this feature is

24



only supported in three regions, with Ireland (eu-west-1) being the only European
region among them (Amazon Simple Email Service endpoints and quotas, 2021).
Due to this it was decided to split the application into two parts, closer detailed
in this section, but luckily SNS supports cross-region subscriptions and they are
very easy to setup using CloudFormation (AWS::SNS::Subscription, 2021).
At this point the main structural problems were solved and it was time to setup
SES and implement the logic to send and receive emails in the backend.

SES basic setup
First SES has to be setup in AWS, but unfortunately only a small fraction of this
is possible with CloudFormation, due to the fact, that SES requires setup with
the domain that is to be used3, and none of these things that are possible with
CloudFormation alone, is strictly needed for email sending4.
First the domain had to be registered, which took some time due to some issues
with the configuration of the domain, which prevented AWS from accessing it
(Setting up a custom MAIL FROM domain, 2021). This got resolved after the
transfer of the domain to Ionos, which was done by Professor Riehle.
Next SES was moved out of sandbox in order to increase the sending limit and
to be able to send emails to non-verified recipients (Moving out of the Amazon
SES sandbox, 2021).
Lastly DKIM was setup, in order to authenticate the sent emails, because oth-
erwise almost all emails would be caught in most SPAM filters (Setting Up Easy
DKIM for a Domain, 2021).
Now it is finally time to implement the emails sending and receiving using SES.

SES sending
The sending part was implemented first because of the fact, that this is a lot
easier to implement thanks to the official AWS SDK provided for NodeJs5.
The other requirement connected to the email sending, the implementation of
an email template, also does not pose any problem thanks to SES providing the
possibility to upload and use email templates. The email template used is a
very simple template loosely based upon an old GitLab notification email for its
layout, because the text itself is one injectable parameter. This email also con-
tains an unsubscribe link in the footer that the user can use to disable campaign
emails for the corresponding contact6. This email template is created in SES
using CloudFormation7.

3In the case of this application uni1.de registered with Ionos
4Only for email receiving, logs, or email templates
5https://aws.amazon.com/sdk-for-javascript/
6Note: this has been temporarily removed few weeks before submission date for real life

testing of application
7CloudFormation chapter

25



The sending itself was implemented in a utils file and supports the sending of
bulk emails with the created template and separate template data for each of the
recipients.
After creating an email sending job, the api will return a json containing an array
with the recipient and a messageId for the sent email. These message ids will
be saved in the campaign, in order to be able to draw a connection between a
bounce or OOO reply and a campaign.

SES receiving
The receiving was a little bit more to setup because of the fact, that this required
the setup of SNS subscription handling.
This included the setup of SNS itself within AWS, consisting of the SNS topic,
in the AWS region of SES, to which SES publishes the new messages, and a
SNS subscription for the backend, in the AWS region of the backend. Because of
the usage of CloudFormation, this was not done manually, but rather using the
CloudFormation template, further detailed here.
After a SNS subscription is created, it has to be confirmed using the confirmation
message which is sent to the specified endpoint afterwards. Luckily this also is
fairly easy thanks to the AWS-SDK, which provides a function that has to be
called with the TopicArn, the unique AWS identifier for that specific topic, and
the token received in the confirmation message (ConfirmSubscription, 2021). Of
course this means, that the endpoint that handles the OOO replies, also has to
be able to confirm the subscription first.
In addition to the SNS setup in AWS, SES also needs some adjustments for email
receiving as well as bounce handling.
For the bounce handling a so called ’Configuration Set’ has to be created. Un-
fortunately this is only partly possible using CloudFormation, because while the
creation itself is support, it is not supported to select a SNS topic as its destina-
tion (AWS::SES::ConfigurationSet, 2021) and thus this has to be done manually
after the first pipeline has finished and the AWS resources have been created (Set
up an Amazon SNS event destination for event publishing, 2021). This configur-
ation set, then has to be passed to each api call of the AWS-SDK that sends an
email like this Step 3: Specify your configuration set when you send email (2021).
Next the pass through of received emails was implemented using a ’Receipt Rule
Set’. This can be setup completely with CloudFormation and only requires ac-
tivation because only one of these rule sets can be active at a time (Creating a
receipt rule set for Amazon SES email receiving, 2021). This rule set was con-
figured, such that it sends all received emails to the same, previously created,
SNS topic as the bounces, in order to minimize the number of AWS resources.
Finally, all AWS services are setup, ready to go and emails can be received.

Out-Of-Office handling

26



After the emails receiving was setup it was time to implement the handling of
the SES messages, which was split into the handling of bounces and of the replies
itself, because they are received using the same endpoint.
This means, that the first thing the endpoint does with SES messages, is to check
whether the message is a bounce or an OOO reply and if the message is none of the
two, it will return a 400 error with message ’Unknown event-/notificationType’.
In the case of a bounce, the system will first try to retrieve the campaign that sent
the email which caused the bounce using the stored messageId. If no campaign
is found, the endpoint returns a ’ResourceNotFound’ error, but if a campaign
was found, it will extract the necessary data from the message and create a new
bounce document in the database, containing the data and referencing the cam-
paign.
In the other case, namely in the case of an incoming email, the endpoint will first
check the virus and spam header and abort if one of these checks done by SES
failed. If the two headers are fine, the endpoint will continue with the check,
whether the message contains an auto-submitted email, meaning an OOO reply,
or a normal email, because normal emails will be ignored.
After this it is finally time for the data extraction, which depends on the multiple
factors like the type of the ’auto-submitted’ header and currently implemented/-
tested are OOO replies from Gmx, Gmail and Outlook. The reason for that is,
the fact that each provider implements their OOO reply differently, which will be
highlighted using Gmail and Outlook (Gmail and Gmx are fairly similar to each
other).
The first big difference is the type of the auto-submitted header8 for which Gmail
uses ’auto-replied’ while Outlook uses ’auto-generated’. This is relevant, be-
cause from my observation with Gmx and Gmail, which use the same header
type, OOO with the ’auto-replied’ header also trigger bounces and the bounce
then sends the OOO. This results into the issue, that the sender of Gmail OOO
replies is an AWS internal mailer demon, in my case ’MAILER-DAEMON@eu-
west-1.amazonses.com’ and not the real sender. Because of this, the sender of the
OOO reply has to be extracted from the corresponding bounce, while in the case
of ’auto-generated’ there is no bounce and the sender can be extracted directly.
The second difference is the ’Content-type’ header of the body. Gmail for ex-
ample only sends the HTML which is how the application stores them in the
database. Gmx meanwhile sends a simple text with the content type ’text/plain’
and because of that is then converted into a very simple HTML with the whole
text content wrapped inside a ’div’ tag. Outlook on the other hand, does it even
different and sends both of these types inside a multipart body. This multipart
body then has to be split into its parts and the HTML part is extracted and
used.

8https://www.iana.org/assignments/auto-submitted-keywords/auto-submitted-keywords.
xhtml

27

https://www.iana.org/assignments/auto-submitted-keywords/auto-submitted-keywords.xhtml
https://www.iana.org/assignments/auto-submitted-keywords/auto-submitted-keywords.xhtml


These two differences make it very difficult to guarantee a complete support of
all OOO replies.
The last things left for the endpoint to do, are again uniform for all different
replies and simply entail the extraction of emails from the body, ignoring duplic-
ates caused by clickable mailto links, the creation of a new reply document for
the database, containing the data, and the updating of the bounce, if existing,
with the new reply id in order to create a relation between one bounce and one
reply of the same campaign.
A detailed activity diagram displaying the above mentioned OOO handling can
be found here in the appendix.

5.3.2 Frontend

This frontend uses the same ported Semantic UI components as the Dashboard
component as well as the same Amplify backend, which will be further highlighted
in the first subsection.

Amplify
The first thing that had to be done after the initial VueJs setup, was the Amplify
setup. Fortunately Amplify supports to have multiple frontends for the same
Amplify backend, which is mainly used in the case, that the application has a
web frontend and a separate app for Android and/or IOS.
In general, this is very easy to setup and only requires initializing Amplify for the
project using ’amplify init’, to generate the basic aws-exports.js, and afterwards
running ’amplify pull’ to pull the backend of another application (Multiple fron-
tends, 2020).
The only things that have to be setup during ’amplify pull’ is to select the type
of this application, in case of the before mentioned use case of web app and An-
droid/IOS app, but in this case is also VueJs. Additionally, it will be asked,
whether the Amplify backend will be modified, which can be answered with no,
because all modifications will be done using the Dashboard Amplify app, where
it was originally setup.
This was everything needed for the setup of the frontend, aside from the CI/CD
part detailed in the last section of this chapter.

Campaigns list page
After this it was time to start with the frontend itself and the first page is the
campaign list page, being the homepage for the component, which lists all cam-
paigns. It also has some simple filters for filtering the shown campaigns to, for
example, only show campaigns created by oneself, whose title or description con-
tain certain words, by the tags that were used for recipient selection or to only
display ongoing campaigns.

28



The details page of a campaign can be opened by selecting one entry of this list
and is explained further down this section.
Lastly this page also contains the button which opens the campaign creation page
detailed next.

Campaign creation page
This page is used for creating a new campaign and consists of two steps. The first
step is to enter all data about this new campaign, like the title and a short descrip-
tion, both are only used as meta data and have no influence on the emails being
sent. There are two inputs for the email, containing the subject of the email and
its body, which is inputted inside a textarea and thus supports newlines. The last
input is a dropdown with a search bar where the tags are to be selected, which
determine who will receive the campaign email. An empty tag dropdown will
cause the email to be sent to all contacts, that have the email receiving enabled.
After all required fields have been filled, it is possible to advance to step two,
otherwise the fields will show an error. In the next step the preview of the email
is shown inside a box with the subject above it. Here it has to be noted, that this
might look different to how the email will really look, due to differences concerning
how certain email provider and email applications interpret and support HTML
emails. For example, many desktop email clients have problems with the ’border-
radius’ CSS property see here for a list “CSS Guide/Email Clients/border-radius”
(n.d.). If the preview looks fine, the user can start the campaign using the cor-
responding button, but if some changes are wanted it is possible to go back to
the input using the cancel button.

Campaign details page
Next is the before mentioned details page for the campaigns and it contains the
most important information and also enables the user to close this campaign, if
he deems it finished. It has to be noted, that finished campaigns can still be
edited, this status is mainly for the filtering at the moment.
This page is split into three tabs with the first one containing the mentioned
information about the title and description that were entered during creation,
the status of the campaign, the creator, subject and tags, which were also input-
ted by the creator. This tab also contains a small statistics element at the top,
which displays the number of bounces and OOO replies, that were received for
this campaign.
If these numbers are higher than zero, the bounces and replies can be seen in the
second and third tabs, which otherwise display an empty table.
Both of these tables contain the most important information about the corres-
ponding bounce or reply and open the details page if a row was selected. The
only noteworthy thing is, that the bounce table also contain a tooltip which can
be open by hovering over the info icon in a cell of the bounce type column. This

29



tooltip contains the short description about the bounce type. The details pages
itself are further detailed next, beginning with the bounce details page.

Bounce details page
The bounce details page contains the most important information about the cor-
responding bounce, similar to the campaign details page. Here the receiver of
the email that caused the bounce is listed, as well as the bounce type, defined by
SES, and a short description of this type of bounce, that is also displayed in the
tooltip of the before mentioned bounces list.
Additionally, there is another entry which is only displayed if this bounce was
caused by an OOO reply and this entry contains a button that links to the reply
details page of the related reply.
Lastly this page also contains two action buttons. The first of these buttons
causes the contact, that caused this bounce, to be deleted, but is only enabled, if
this contact is not a main contact, which means its email is used as the account
email of a user. The second button causes the bounce flag, that was set due to
this bounce, to be removed again. This essentially means, that the bounce will
be ignored and is mainly intended for temporary bounces like ’Mailbox full’.

Reply details page
The reply details page has the same action buttons for deleting the contact or
ignoring the bounce flag (if there is a bounce for this OOO). It also has a fairly
similar layout with the information displayed at the top, this time containing the
sender of the OOO, the receiver, which is the campaigner email, as well as the
subject and content of the reply.
The major difference is the second part, where a list of email addresses is dis-
played, that were scrapped from the body of the OOO reply. Of course, this list
is empty if none were found, but if at least one was found, the list contains this
email address together with an indicator, whether this email is used by a contact
stored in the application. If this indicator indicates, that the email address is not
yet used, the list entry will also contain a button, with which the email address
can be added, in the form of a new contact, using the contact of the OOO sender
as a basis for the tags and other data. Additionally, there is also a button next to
the section headline of the list, that makes it possible to add all scrapped email
address at once. This button is only displayed if at least one entry is in the list.

Unsubscribe page
The last page to be mentioned is the public unsubscribe page, that the unsub-
scribe link in the email opens. This page only calls the unsubscribe endpoint for
the corresponding contact in the backend and displays the result, meaning either
something like ’Success’ or ’Error’.

30



Dashboard link
Lastly the newly written frontend has to be made accessible from the Dashboard,
which is fairly simple and described in detail here. For this component the
following entry was added to the Dashboard config:

1 {
2 "name": "Campaigner",

3 "url": "https:// campaigner.uni1.de",

4 "description": "Applikation für Marketing",

5 "icon": "envelope",

6 "groups": ["Campaigner"]

7 }

5.4 Admin console component

This component was mainly implemented by Nasser and the section only mentions
some modifications and refactoring done by myself, but generally it is not a part
of this thesis and can be looked up here Nasser (2021).
The main thing done by me, was in the frontend the main structure with the
ported Semantic UI components, as well as the authentication which is using the
Dashboard component as login.
The only thing done in the backend by me, were some bugfixes related to the
contact api, the first being an assertion, that the main contact of a user cannot
be deleted. The other thing was adding the missing unassignment to the delete
contact api because otherwise a user would reference a nonexistent contact which
would crash certain apis, like the account management which would fail during
the changing of the account email.

5.5 Continuous integration & Continuous de-

ployment (CI/CD)

In this last section, the implementation of the continuous integration and con-
tinuous deployment will be detailed. It is split into the three main subsections
containing the different technologies used to achieve CI/CD.

5.5.1 GitLab-CI

The first subsection is about the main technology, used for continuous integra-
tion, the GitLab-CI which is used as the main pipeline for the backend.

31



The pipeline uses four different Docker images for the different stages, due to
different requirements for each stage. These images are listed in the following.

� node:latest9:
This is the standard NodeJs Docker image and it is used for all jobs during
the ’test’ stage.

� banst/awscli:latest10:
The next most used image is the most commonly used one for the AWS
CLI and is used in the application for the upload to S3 and for the creation
of a new ElasticBeanstalk application version.

� meteogroup/cfn-create-or-update:latest11:
This one is not a big one and is only a wrapper for the cfn-create-or-update
npm package from widdix12. This image is used for the two CloudFormation
stages in order to make the deploy process easier due to the missing native
create or update feature of AWS CloudFormation.

� coxauto/aws-ebcli13:
This last one is used for the deployment stage of the backend, due to the
need for the AWS EB CLI, which the first image did not have.
Note: This image also contains the AWS CLI and thus could replace the
first image, unfortunately this was not noticed by me until the writing of
this thesis.

All necessary variables have been stored inside the variables section of the gitlab-
ci.yml, except for the variables that are required for the AWS authentication
in the AWS CLI. These variables, namely the AWS ACCESS KEY ID and the
AWS SECRET ACCESS KEY were moved by Nasser, along with the DATA-
BASE URL, into the variables inside the repository settings in order to avoid
them from being stored in the code in plain text.

Now for the general workflow of the pipeline.
The pipeline was configured to first test each backend component separately, if
there were any code changes in the component. After this comes the upload stage,
which contains two separate jobs with the first one being the more important one.
This first one uploads the backend to S3, because ElasticBeanstalk requires the
code to be either pushed to S3 or CodeCommit (“create-application-version”,
2021). The second is only executed, if the email template has been changed,

9https://hub.docker.com/ /node
10https://hub.docker.com/r/banst/awscli
11https://hub.docker.com/r/meteogroup/cfn-create-or-update
12https://github.com/widdix/cfn-create-or-update
13https://hub.docker.com/r/coxauto/aws-ebcli

32

https://hub.docker.com/_/node
https://hub.docker.com/r/banst/awscli
https://hub.docker.com/r/meteogroup/cfn-create-or-update
https://github.com/widdix/cfn-create-or-update
https://hub.docker.com/r/coxauto/aws-ebcli


causing the template to be uploaded to S3, which will be further detailed in
the next subsection about CloudFormation. Next are the two CloudFormation
stages, the first one creating or updating SES and SNS topic followed by the
ElasticBeanstalk and the SNS subscription. The reason for the separation into
two stages, was the SNS subscription which needs the SNS topic that will be
created it the first CloudFormation template and as such have to run sequential.
The last two stages are the deployment stages for the backend and only run as
long as the CloudFormation job for the backend did not, because in the case
of the first deployment this would deploy the backend a second time. The first
of these two stages builds the backend by creating a new application version of
ElasticBeanstalk using the zipped backend upload to S3 earlier. The second will
then deploy the new version using eb deploy.

Figure 5.1: All stages of the GitLab pipeline

5.5.2 CloudFormation

Now the implementation of the CloudFormation in Uni1 will be detailed.
As mentioned in the previous chapter the reason for CloudFormation is to reduce
the need for manual creation of AWS resources. For this application, Cloud-
Formation was split into two separate CloudFormation templates and the reason
for that is the issue, that the ElasticBeanstalk instance runs in the AWS region
eu-central-1, which corresponds to Frankfurt, but SES is only partial available in
that region. The important part for this chapter is the fact, that CloudFormation
does not support SES in Frankfurt at the time of writing, which, unfortunately,
is not well documented and only clearly visible when using the template designer
from AWS (or when CloudFormation fails).

33



Figure 5.2: Available CloudFormation resources for SES in eu-west-1 (left) and
eu-central-1 (right) according to template designer

Because each CloudFormation template is for one region, there are two for this
project, one for eu-west-1 which creates everything for SES and SNS, except for
the SNS subscription. This includes the email template, the Configuration Set
and the Recipient Rule, together with its set, for SES, as well as the SNS topic for
the connection to the backend. The only noteworthy thing here is, that in order
to create an email template with CloudFormation it is necessary to previously
upload this email template to S3 and reference the S3 url in the CloudFormation
template. The only way to get around that, is to use a third-party preprocessor
like cfn-include14. These make it possible to split CFN templates into separate
files and merge them before usage, but in this case the max size limit of CFN
templates has to be considered. If a template succeeds 51200 bytes, it has to
be uploaded to S3 when using the CLI commands CreateStack, UpdateStack or
ValidateTemplate (AWS CloudFormation endpoints and quotas, 2021). At the
moment this limit would not be exceeded, but it was deemed easier to just upload
the email template separately because it makes up the majority of the full size.
The second template is for eu-central-1 and creates the ElasticBeanstalk instance
with its basic configuration, including HTTPS which was added by Nasser, as
well as the SNS subscription for the SNS topic created in the first. As previously

14https://www.npmjs.com/package/cfn-include

34

https://www.npmjs.com/package/cfn-include


mentioned, the SNS subscription is the reason why these two templates have
to be separate in the pipeline as well and the reason for that is the fact, that
the subscription has to be created in the region that hosts the target of this
subscription.

5.5.3 Amplify

This subsection is about how Amplify was used for the continuous deployment of
the frontends. There is not much to say, because it was decided to use Amplify’s
’Git-base deployment’, mainly because of the easy setup thanks to the document-
ation from AWS (Git-based deployments, 2020).
The only reason why additional modifications were necessary is because of the
fact, that this application consists of multiple frontends inside a monorepro, but
luckily there is also a documentation for that. In case of monorepro project, a
repository with multiple amplify apps, it is necessary to specify the code location
of each amplify app. For Uni1 it was decided to use an amplify.yml file in the
project root, which specifies each application together with the repository path
to its corresponding code and all other build settings Amplify needs and Config-
uring build settings (2021) can be used for this. In this file, it is also possible to
change what script Amplify uses for deployment and this was the main reason
why this solution was used. The reason why it was necessary to change the script
is a bug inside the Amplify Auth module that causes the pipeline to crash due
to missing environment variables and can be fixed by adjusting the default script
as described in this GitHub issue.

35

https://github.com/aws-amplify/amplify-console/issues/1271


6 Demonstration

This section contains four short demonstrations displaying different use cases of
the application, located in the section for the corresponding component.

6.1 Dashboard

In this first section two demonstrations are shown, concerning the frontend of the
Dashboard component.
Both of these demos start on the homepage of the Dashboard at https://dashboard.
uni1.de, which the user will be redirected to, after a successful login.

6.1.1 Application navigation

The first demonstration is displays how to navigate between the different applic-
ations, like the Campaigner or Marketplace.

On the homepage of the Dashboard the user is greeted with two segments below
the header. The first segment contains the, for now, static placeholder and, in
case the user is an administrator, it also contains a temporary button labeled
’Entwicklerwerkzeuge (Development Tools)’. As mentioned here this button is
currently only a temporary solution for creating new tags.
The buttons, that link to each application, are located in the second segment
and vary depending on the permissions of the user. Below are two examples, the
first one showing the Dashboard how it looks for a user with all possible roles,
and therefore permission, and the second for a user with the least permission,
meaning only access to the Marketplace.

36

https://dashboard.uni1.de
https://dashboard.uni1.de


Figure 6.1: Dashboard home for admins

Figure 6.2: Dashboard home for normal users

In order to navigate to another application of Uni1, like the Campaigner, it is pos-
sible to either use the url, with the subdomain corresponding to the application,
or the before mentioned button. In this example the button will be used to open
the Campaigner, which is accessible using the url https://campaigner.uni1.de.

37

https://campaigner.uni1.de


Figure 6.3: Opening of Campaigner using the button

Afterwards the user will see the homepage of the Campaigner.
From here the easiest way to return to the Dashboard is to use the Dashboard
button in the upper left, as shown below.

Figure 6.4: Campaigner homepage with marked dashboard button

After returning to the Dashboard, it is possible to open another application the
same way.

38



6.1.2 Account management

The next demonstration revolves around the new account management, how to
edit values of the own user and manage the contacts assigned to oneself for the
Campaigner.

The Account management can be reached from every component in the same
way, by opening the user dropdown in the upper right of the header and selecting
the ’Konto Einstellungen (Account Settings)’ option.

Figure 6.5: Dashboard homepage navigation to account management

This will open the page in the Dashboard as seen below. On this page it is possible
to edit the main values like your first name (’Vorname’), last name (’Nachname’),
email, phone number (’Telefonnummer’), title (’Title’), gender and also manage
the tags you are interested in and are used for the emails of the Campaigner.

39



Figure 6.6: Account management main page

In general, nothing more is required from the user after pushing the save button
(’Speichern’) to update his user. The exception to that is, if you change your
email address, which causes Cognito to send another verification email to this
new address, as explained in the implementation chapter.
Due to this you will see the dialog below, where you are required to either input
the sent verification code, or to log out.

Figure 6.7: Verify email dialog after email change

Pressing ’Abmelden (Log out)’ has no major effect, because then the user will be
asked to enter the verification code immediately after the next log in, similar to

40



after the sign up.

Aside from the default page ’Ihr Konto (Your Account)’, there are two more tabs,
the first one being called ’Ihre Kontakte (Your Contacts)’.

Figure 6.8: Account management contact management page

Here it is possible to create new contacts using the button in the upper left, or
to use the action menu for each contact to delete this contact, dis- or enable it
for campaign emails or to remove the temporary bouncing flag. The last action
is needed, if, for example, at one point the inbox of this email address is full and
thus it can no longer receive any emails, returning a temporary bounce to the
sender. After you have cleaned up the inbox you can clear the flag and again
receive campaign emails (if this was the only reason why it failed before).

The last tab is the ’Einstellungen (Settings)’ tab, where it is possible to change
the password.

41



Figure 6.9: Account management settings page

6.2 Campaigner

This section is all about demonstrations concerning the Campaigner compon-
ent. Both demos start on the homepage of the Campaigner located at https:
//campaigner.uni1.de.

6.2.1 Campaign creation

In this first subsection it will be shown, how a new campaign is created.

In order to create a new campaign, the user has to push the ’Neue Kampagne
erstellen (Create new campaign)’ button in the upper right of the Campaigner
homepage.
After this a new page will open were all necessary information about the new
campaign have to be inputted.
The first two input fields of this page are for meta data of the campaign with the
first being called ’Titel der Kampagne (Title of campaign)’, where a short title
which describes the campaign in a few words has to be entered. The next field,
’Kurze Beschreibung (Short description)’, is where a short description is to be
entered that further details the purpose of this campaign for other users.
Next are the inputs, that are relevant for the sent email. The first is labeled
’Betreff der Email (Subject of email)’ and has to contain the subject, that the
campaign emails are supposed to have. This is followed by the ’Text der Email
(Body of email)’, a textarea input containing the body of the emails, including
newline support. At last comes the ’Tags der Kampagne (Tags of campaign)’

42

https://campaigner.uni1.de
https://campaigner.uni1.de


dropdown, where it is possible to restrict the recipients using the tags, which
each user can subscribe to.
Shown below is the page with exemplary data filled into each field.

Figure 6.10: Campaign creation part, where the data has to be inputted, with
exemplary data

After everything has been inputted, it is possible to advance the creation with
the pushing of the green button labeled ’Vorschau anzeigen (Show preview)’.
After this the page below will be shown, detailing how the email will look like for
each recipient (ignoring differences caused by different email provider and email
applications).

Figure 6.11: Preview of the email

43



It is possible to go back to the input page of the campaign creation, should the
user wish to edit, for example, the body of the email, for which it is simply
necessary to press the red ’Abbrechen (Cancel)’ button.
After pressing the green ’Kampagne erstellen (Create campaign)’ button, the
new campaign will be created, including the start of the email sending, and the
creator will be redirected to the campaign list page, which now features his new
campaign at the top.

Figure 6.12: Campaign list after creation of new demo campaign

6.2.2 Campaign details

After a campaign has been created, it is possible to open its details page which
shows the most important data. This data contains the meta data given dur-
ing the creation, namely the ’Titel (Title)’, and the ’Kurzbeschreibung (Short
description)’. Meta data not inputted during the creation includes the ’Status
(Status)’ indicating whether the creator has closed this campaign or not, as well
as the ’Besitzer (Owner)’, meaning the creator of the campaign. The last things
the page displays are the ’Betreff (Subject)’ of the campaign email and the tags,
which were used to determine the recipients.

44



Figure 6.13: Campaign details page for the campaign, created during the cam-
paign creation demonstration

This page also shows the number of bounces and Out-Of-Office (OOO) replies
that were received for this campaign, but because none were received for this
campaign they both show the number zero. Because of this, the other two tabs
only contain empty lists, after all nothing was received and because of that a new
campaign was created with bounces and OOO replies, that will be used for this
demonstration from now on and whose details page can be seen below.

Figure 6.14: Campaign details page for a new campaign which received bounces
and OOO replies

45



As you can see, the statistics show two bounces and three OOO responses, mean-
ing that we can now show the tab ’Bounces’ with actual data. If there are no
bounces, this page will only contain the header of this list.
This list has one entry for each bounce and displays the ’Empfänger (Recipient)’
of the email that returned the bounce, so essentially the email that caused the
bounce, the bounce type, as classified by AWS SES, and the ’Datum (Date)’ the
bounce was received. The bounce type column also has a little info icon and
hovering over it with the mouse opens a little tooltip with a short description
about the bounce type.

Figure 6.15: Bounces list for campaign with two bounces created due to OOO
responses

Selecting an entry of the list opens the bounce details page for this bounce.
Here all the details about the bounce are displayed, like the ’Empfänger (Re-
cipient)’ and the bounce type from the table, as well as a description about the
bounce type.
In addition to that there are a few actions available. Two of these actions are
in the upper right, with the first one allowing the deletion of the contact which
caused the bounce. This action is primarily for the case, that this is a permanent
bounce caused, for example, the fact that the email address does not exist. In
this case the button is disabled, because this contact is the main contact for a
user, meaning the account of a user is using this email address. The next ac-
tion is labeled ’Bounce Flag entfernen (Remove bounce flag)’ and pressing this
button essentially tells the backend to ignore this bounce. This button is for the
opposite type of bounce than the previous one, meaning for temporary bounces
like ’Mailbox full’.
The last action ’Abwesenheitsmitteilung öffnen (Open OOO reply)’ is part of the

46



table which displays the bounce information and is only shown, if this bounce
was caused by an OOO reply. This allows the user to quickly open the details
page of the corresponding OOO reply.

Figure 6.16: Details page for a OOO bounce

The other tab ’Abwesenheitsmitteilung (OOO reply)’ on the campaign details
page is analogue to the bounce list with the difference, that it contains the OOO
replies. This list also has different columns, namely ’Sender (Sender)’, ’Betreff
(Subject)’ and again the ’Datum (Date)’.

Figure 6.17: OOO replies list for campaign with three OOO replies

47



This page too allows the opening of the OOO reply details page on entry select
and it also displays the general information.
Aside from the ’Sender (Sender)’ and the ’Betreff (Subject)’ from the list page
before, it also contains the recipient, which is always the official Uni1 campaigner
email, and the content of the OOO reply.
Another thing that is identical, are the actions in the upper right for deleting the
contact or removing the bounce flag.
The one additional thing that this page has, but the bounce page does not, is
linked to the content of the OOO reply. If the OOO reply contains an email in
its body, this email can be seen in the list at the bottom, together with an icon
to its left and sometimes a button to its right. The icon on the left is either a
green check mark, indicating that a contact with the corresponding email already
exists, or a red cross, indicating the opposite. The button, labeled ’Hinzufügen
(Add)’ will only be display, if no contact for the email was found and allows the
user to create a new contact with the given email address on the fly. This new
contact will use the same tags for the Campaigner as the contact which replied
with the OOO and is assigned to the same user, if the other contact is assigned
to one. In the case that there is at least one email in this list, there will also be
a button to the right of the header ’Email Addressen’, labeled ’Alle hinzufügen
(Add all)’, which will create new contacts for all email addresses in the list at
once.

Figure 6.18: Details page for OOO reply sent by main contact (Note: The
sender of the campaigns has been changed a few weeks before the submit date of
this thesis to ’dirk.riehle@uni1.de’)

48



7 Evaluation

In this section, the new Uni1 application will be evaluated and the known issues.
and suggestions on how to fix them, will be highlighted.
Lastly it, again, has to be noted, that this application relies even more heavily
on AWS than the previous one, meaning that it would be very hard, up to
impossible, to switch to a self-hosted solution, or even to other cloud providers
like Azure1. The main reason for that is the usage of Cognito, whose removal
would require extensive refactoring. Same accounts for the changing of the email
provider, because the handling of the OOO replies would have to be refactored.

7.1 Marketplace (Old application)

For the old application it has to be noted, that unfortunately it was not possible
to port the old application, due to the lack of time and the decision to focus on
the Campaigner. Because of this, the old backend merely had the old authen-
tication and authorization disabled as well as everything, that would refrain the
application from compiling, as described in the implementation section.
What was possible, was the porting of the Semantic UI implementation, such
that the new VueJs applications have the same style as the old one.

7.2 Dashboard

In case of the authentication/Dashboard component, all major requirements have
been fulfilled. The account management works with the same features as the old
one and has some additional ones caused by the Campaigner component. However
it has to be mentioned, that there are some issues concerning the relation between
the backend implementation and Cognito, caused by the fact mentioned in the
implementation, that not everything can be saved inside Cognito, causing an
issue during registration. As long as the registration succeeds, or fails because of
Cognito, everything works fine. The problem arises when it fails during the user

1https://azure.microsoft.com/en-us/

49

https://azure.microsoft.com/en-us/


creation of the backend, at which point the api will cleanup and delete the already
created Cognito user. The reason why the Cognito user was already create, is the
fact, that the Cognito sign up is executed before the backend signup. The issue
now is, that after its signup, Cognito also sends the email with the verification
code, causing the verification code email to be received by the user, even though
the registration failed. This is obviously not wanted, but unfortunately it was
discovered too late. One suggested solution would be to customize the Lambda,
Cognito uses to send the verification email, and to integrate the backend signup
into it. This however has first to be tested, concerning feasibility, because this
Lambda would have to be able to send HTTP requests, and cost wise, because
this would increase the runtime of the lambda and thus the price.

7.3 Campaigner

The Campaigner is similar to the Dashboard, in the case that all major require-
ments have been implemented with some impossible/impractical parts or issues.
The impractical part was about the status, caused by the fact, that it is not
possible to know for sure if all emails have been sent. The reason is the fact,
that SES only tells you that your request for the sending of the emails has been
received and accepted, but not when it is finished. In order to detect that, it
would be required to enable the email received notifications, analogous to the
bounce notification, and then log these events for each email. This would mean
too much workload for the backend, in my opinion, because it is possible to cre-
ate multiple campaigns for all contacts, which can be hundreds if not thousand
emails. Because of that, the only status implemented are an equivalent of ’open’
and ’closed’. The next one is the impossible part and more or less also concerning
the status, to be exact about the start and stop the email sending functionality.
The reason why this is not possible, is the fact that SES does not have any func-
tionality to stop sending emails.
Concerning the issue, there are two and the first one is potentially a major one.
This first is about the handling of OOO replies and has been addressed a few
time throughout the thesis. More precise, it is unfortunately not possible to
guarantee, that the current OOO handling will work with all OOO replies, due
to differences between each email provider. This is the part of the Campaigner
with the potentially highest maintenance effort.
The second issue is only a small oversight, which should be mentioned either
way, and is the fact that the public unsubscribe page still displays the ’Kampag-
nien (Campaigns)’ tab in the navigation bar on the left. Trying to open it will
only display the insufficient permission page, but this navigation bar should be
removed either way.

50



7.4 Continuous integration & continuous deploy-

ment

Lastly for the CI/CD there is not much to evaluate. The pipeline itself works and
deploys the code on merge to the master branch, while testing on all branches,
as long as changes were detected in that component. The only thing that can be
noted is the fact, that, as mentioned, the pipeline currently uses four different
Docker images for the stages. Here it would be possible to create a custom image
for the pipeline, such that only one would be required for all stages. This image
could then be uploaded to the GitLab Container Registry (GitLab, n.d.).

51



8 Conclusions

This thesis discussed and detailed how the pre-existing Uni1 application was
refactored into multiple components as well as the implementation of such a
component. Furthermore, it detailed the implementation of an application with
multiple frontends hosted on different subdomains using Cognito and Amplify for
authentication. In addition to that, it highlighted how a complex email system
with Out-Of-Office reply handling can be achieved using SES as the email pro-
vider. Lastly the thesis demonstrates, how such an application can be deployed
to AWS using continuous integration and continuous deployment.

52



Appendix A Backend new directory structure

Figure 8.1: New directory structure of backend with separate subdirectories for
each component. A more detailed explanation can be found here

53



Appendix B: Backend signup diagram

Appendix B Backend signup diagram

Figure 8.2: Activity Diagram of complete signup flow, including backend and
Cognito signup

54



Appendix C OOO handling diagram

Note: For simplicity most of the error handling has been removed and
only the most important checks remained!.
Removed were, for example, the error handling if one helper function, like the
header extraction, returns nothing.

Figure 8.3: Root diagram where the OOO-handling starts

55



Appendix C: OOO handling diagram

Figure 8.4: Diagram for handling of bounces

56



Figure 8.5: Diagram for handling of inbound emails with references to other
functions displayed in the following diagrams

57



Appendix C: OOO handling diagram

Figure 8.6: Diagrams for the different sub-process of data extraction depending
on the autoSubmittedHeader

58



Figure 8.7: Diagrams of small helper functions used in the upper diagrams

59



References

Amazon simple email service endpoints and quotas. (2021). Amazon Web Services,
Inc. https://docs.aws.amazon.com/general/latest/gr/ses.html

Amazon sns notification contents for amazon ses. (2021). Amazon Web Ser-
vices, Inc. https://docs.aws.amazon.com/ses/latest/DeveloperGuide/
notification-contents.html

Amplify ui components. (2020). Amazon Web Services, Inc. https://docs.amplify.
aws/ui/q/framework/vue

Amplify-js/packages/amplify-ui-vue/. (2020). https://github.com/aws-amplify/
amplify-js/tree/master/packages/amplify-ui-vue

Amplify-js/packages/aws-amplify-vue/. (2020). https://github.com/aws-amplify/
amplify-js/tree/master/packages/aws-amplify-vue

Aws cloudformation endpoints and quotas. (2021). Amazon Web Services, Inc.
https://docs.aws.amazon.com/general/latest/gr/cfn.html

Aws::ses::configurationset. (2021). Amazon Web Services, Inc. https://docs.aws.
amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ses-
configurationset.html

Aws::sns::subscription. (2021). Amazon Web Services, Inc. https ://docs .aws .
amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sns-
subscription.html

Configuring build settings. (2021). Amazon Web Services, Inc. https://docs.aws.
amazon.com/amplify/latest/userguide/build-settings.html

Configuring user pool attributes. (2021). Amazon Web Services, Inc. https : //
docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-
attributes.html

Confirmsubscription. (2021). Amazon Web Services, Inc. https : / / docs . aws .
amazon.com/sns/latest/api/API ConfirmSubscription.html

Create-application-version. (2021). Amazon Web Services, Inc. https://docs.aws.
amazon.com/cli/ latest/reference/elasticbeanstalk/create - application-
version.html

Creating a receipt rule set for amazon ses email receiving. (2021). Amazon Web
Services, Inc. https://docs.aws.amazon.com/ses/latest/DeveloperGuide/
receiving-email-receipt-rule-set.html

60

https://docs.aws.amazon.com/general/latest/gr/ses.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/notification-contents.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/notification-contents.html
https://docs.amplify.aws/ui/q/framework/vue
https://docs.amplify.aws/ui/q/framework/vue
https://github.com/aws-amplify/amplify-js/tree/master/packages/amplify-ui-vue
https://github.com/aws-amplify/amplify-js/tree/master/packages/amplify-ui-vue
https://github.com/aws-amplify/amplify-js/tree/master/packages/aws-amplify-vue
https://github.com/aws-amplify/amplify-js/tree/master/packages/aws-amplify-vue
https://docs.aws.amazon.com/general/latest/gr/cfn.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ses-configurationset.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ses-configurationset.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ses-configurationset.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sns-subscription.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sns-subscription.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sns-subscription.html
https://docs.aws.amazon.com/amplify/latest/userguide/build-settings.html
https://docs.aws.amazon.com/amplify/latest/userguide/build-settings.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-attributes.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-attributes.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-attributes.html
https://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html
https://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/create-application-version.html
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/create-application-version.html
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/create-application-version.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/receiving-email-receipt-rule-set.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/receiving-email-receipt-rule-set.html


Css guide/email clients/border-radius. (n.d.). https://www.campaignmonitor.
com/css/box-model/border-radius/

Eichhorn, P. (2016). The uni1 immune system for continuous delivery (Master’s
thesis). Professorship for Open Source Software - Friedrich-Alexander-
Universität.

Git-based deployments. (2020). Amazon Web Services, Inc. https://docs.amplify.
aws/guides/hosting/git-based-deployments/q/platform/js

GitLab. (n.d.). Gitlab container registry. https : / / docs . gitlab . com / ee / user /
packages/container registry/

How do you want users to be able to sign in when using your cognito user pool?
username + email + phone. (n.d.). https://github.com/aws- amplify/
amplify-cli/issues/1546

Lambda triggers. (2021). Amazon Web Services, Inc. https://docs.amplify.aws/
cli/usage/lambda-triggers

Managing and searching for user accounts. (2021). Amazon Web Services, Inc.
https://docs.aws.amazon.com/cognito/latest/developerguide/how-to-
manage-user-accounts.html

Moving out of the amazon ses sandbox. (2021). Amazon Web Services, Inc. https:
//docs.aws.amazon.com/ses/latest/DeveloperGuide/request-production-
access.html

Multiple frontends. (2020). https://docs.amplify.aws/cli/teams/multi-frontend
Nasser, N. E. (2021). Uni1 application to containers (Master’s thesis). Professor-

ship for Open Source Software - Friedrich-Alexander-Universität.
Set up an amazon sns event destination for event publishing. (2021). Amazon Web

Services, Inc. https://docs.aws.amazon.com/ses/latest/DeveloperGuide/
event-publishing-add-event-destination-sns.html

Setting up a custom mail from domain. (2021). Amazon Web Services, Inc. https:
//docs.aws.amazon.com/ses/latest/DeveloperGuide/mail-from.html

Setting up easy dkim for a domain. (2021). Amazon Web Services, Inc. https:
/ / docs . aws . amazon . com / ses / latest / DeveloperGuide / send - email -
authentication-dkim-easy-setup-domain.html

Signing up and confirming user accounts. (2021). Amazon Web Services, Inc.
https://docs.aws.amazon.com/cognito/latest/developerguide/signing-up-
users-in-your-app.html

Step 3: Specify your configuration set when you send email. (2021). Amazon Web
Services, Inc. https://docs.aws.amazon.com/ses/latest/DeveloperGuide/
event-publishing-send-email.html

StrongLoop, I. & other expressjs.com contributors. (2017). Using middleware.
https://expressjs.com/en/guide/using-middleware.html

Verifying a json web token. (2021). Amazon Web Services, Inc. https://docs.aws.
amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-
using-tokens-verifying-a-jwt.html

61

https://www.campaignmonitor.com/css/box-model/border-radius/
https://www.campaignmonitor.com/css/box-model/border-radius/
https://docs.amplify.aws/guides/hosting/git-based-deployments/q/platform/js
https://docs.amplify.aws/guides/hosting/git-based-deployments/q/platform/js
https://docs.gitlab.com/ee/user/packages/container_registry/
https://docs.gitlab.com/ee/user/packages/container_registry/
https://github.com/aws-amplify/amplify-cli/issues/1546
https://github.com/aws-amplify/amplify-cli/issues/1546
https://docs.amplify.aws/cli/usage/lambda-triggers
https://docs.amplify.aws/cli/usage/lambda-triggers
https://docs.aws.amazon.com/cognito/latest/developerguide/how-to-manage-user-accounts.html
https://docs.aws.amazon.com/cognito/latest/developerguide/how-to-manage-user-accounts.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/request-production-access.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/request-production-access.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/request-production-access.html
https://docs.amplify.aws/cli/teams/multi-frontend
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/event-publishing-add-event-destination-sns.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/event-publishing-add-event-destination-sns.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/mail-from.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/mail-from.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/send-email-authentication-dkim-easy-setup-domain.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/send-email-authentication-dkim-easy-setup-domain.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/send-email-authentication-dkim-easy-setup-domain.html
https://docs.aws.amazon.com/cognito/latest/developerguide/signing-up-users-in-your-app.html
https://docs.aws.amazon.com/cognito/latest/developerguide/signing-up-users-in-your-app.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/event-publishing-send-email.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/event-publishing-send-email.html
https://expressjs.com/en/guide/using-middleware.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-verifying-a-jwt.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-verifying-a-jwt.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-verifying-a-jwt.html


REFERENCES

What is aws cloudformation? (2021). Amazon Web Services, Inc. https://docs.
aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html

62

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html

	Introduction
	Uni1
	Old Uni1
	New Uni1

	Thesis goal
	Thesis structure

	Problem identification
	Objective definition
	Marketplace (Old application)
	Backend
	Frontend

	Dashboard
	Backend
	Frontend

	Campaigner
	Backend
	Frontend

	Continuous integration & Continuous deployment

	Solution design
	Backend
	Frontend
	Amplify
	VueJs

	Continuous integration & Continuous deployment
	Backend
	Frontend


	Implementation
	Marketplace component
	Backend
	Frontend

	Dashboard component
	Backend
	Frontend

	Campaigner component
	Backend
	Frontend

	Admin console component
	Continuous integration & Continuous deployment (CI/CD)
	GitLab-CI
	CloudFormation
	Amplify


	Demonstration
	Dashboard
	Application navigation
	Account management

	Campaigner
	Campaign creation
	Campaign details


	Evaluation
	Marketplace (Old application)
	Dashboard
	Campaigner
	Continuous integration & continuous deployment

	Conclusions
	Appendices
	Appendix Backend new directory structure
	Appendix Backend signup diagram
	Appendix OOO handling diagram

	References


