
Uni1 Application to Containers

MASTER THESIS

Nasser Eddin Nasser

Submitted on 13 July 2021

Friedrich-Alexander-Universität Erlangen-Nürnberg

Technische Fakultät, Department Informatik

Professur für Open-Source-Software

Supervisors:
Georg Schwarz, M.Sc.

Prof. Dr. Dirk Riehle, M.B.A.

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen,
die wörtlich oder sinngemäÿ übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 13 July 2021

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 13 July 2021

i

https://creativecommons.org/licenses/by/4.0/

Abstract

In the age of cloud computing, it is critical for software to handle any functionality
increase and run on di�erent platforms. Microservices architecture is the trend
right now since it allows the creation of expandable programs.

Most of the cloud-based solutions are using this architecture thanks to its be-
ne�ts in large projects. However, container technology is ideal for deploying
a microservices application because it simpli�es the process without sacri�cing
speed or e�ciency.

Furthermore, it is common in a microservices project to have frequent deploy-
ments where new features are being added regularly. Nevertheless, using a mi-
croservices architecture raises cloud costs because multiple applications (services)
must be deployed.

This thesis provides a new administration component for the existing Uni1 ap-
plication. Moreover, the current application components have been divided into
containerized components in preparation for a complete microservices switch. In
addition, it provides multiple deployment approaches to reduce the costs on the
cloud.

The result is a new cross-platform Uni1 version that supports multiple deployment
ways. Furthermore, the thesis describes the structure of Uni1 and the integration
concept, including the authentication and authorization concept.

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 1

1.2.1 Maintainability and Extensibility 1
1.2.2 Vendor Lock-in and Testability (similar environments) . . 2
1.2.3 Optimize Cloud Costs . 2

1.3 Purpose of the Thesis . 2
1.4 Methodology . 2
1.5 Structure of Work . 3

2 Background 4
2.1 Microservices . 4

2.1.1 Advantages and Disadvantages 4
2.2 Docker Container . 5

2.2.1 Advantages and Disadvantages 5
2.3 Uni1 application . 6

2.3.1 Uni1: Previous version (Marketplace) 6
2.3.2 Uni1: New version (Uni1Next) 6

3 Thesis Requirements 8
3.1 Authentication and Authorization Concept 8
3.2 Administration component . 9
3.3 Deployment Concept . 10
3.4 Integration, Communication and Extensibility Concept 11

4 Architecture and Design 12
4.1 Logical distinction between Processe, Container, and Microservice 12

4.1.1 De�nitions . 12
4.1.2 Logical Coherence and Development Stages 14

4.2 Evaluation of Containers and Virtual Machines 17
4.2.1 Structure Evaluation . 17
4.2.2 Performance and Creation Time Evaluation 18

iii

4.3 Container Technology and its Application 21
4.3.1 Container Technologies . 21
4.3.2 Container Application . 22

4.4 Design of Communication and Integration Mechanisms 22
4.4.1 Authentication and Authorization 22
4.4.2 Communication Technology 23
4.4.3 User Interface Integration Technology 24

4.5 Design of Admin Console component 25
4.6 Concept for a set-up in AWS . 27

4.6.1 Monolithic . 27
4.6.2 Microservices . 28

5 Implementation 29
5.1 Administration component . 29

5.1.1 Frontend . 29
5.1.2 Backend . 30
5.1.3 Authentication and Authorization 30
5.1.4 Mapping user data from Cognito and Database 31
5.1.5 Communication . 31

5.2 Database . 32
5.3 Container . 32

5.3.1 Production environment - Monolithic 33
5.3.2 Development environment - Microservices 34

5.4 Environment variable . 36
5.4.1 Development environment - Microservices 37
5.4.2 Production environment - Monolithic 38

5.5 Deployment . 38
5.5.1 Frontend . 38
5.5.2 Backend . 39

5.6 Integration . 41
5.6.1 Communication . 41
5.6.2 Authentication and Authorization 42
5.6.3 Backend Components . 44
5.6.4 Dev Tools . 45
5.6.5 UI Integration . 45

6 Evaluation 47
6.1 Authentication and Authorization Concept 47
6.2 Administration component . 47
6.3 Deployment Concept . 48
6.4 Integration, Communication and Extensibility Concept 49

6.4.1 Integration . 49
6.4.2 Communication . 49

iv

6.4.3 Extensibility . 49
6.5 Summary . 49

7 Conclusions 51
7.1 Summary . 51
7.2 Future Work . 51

Appendices 53
A REST API Overview of Admin-Console Service 54

A.1 Contact Route . 54
A.2 User Route . 54

B REST API Overview of Dashboard Service 55
B.1 Dev Route . 55
B.2 Users Route . 55
B.3 Contact Route . 55
B.4 Tags Route . 55

C REST API Overview of Campaigner Service 56
C.1 Campaigns Route . 56
C.2 Replies Route . 56
C.3 Bounces Route . 56
C.4 Tags Route . 56
C.5 Contacts Route . 56

References 57

v

Acronyms

AWS Amazon Web Services

IAM AWS Identity and Access Management

ECS Amazon Elastic Container Service

S3 Amazon Simple Storage Service

KID key ID

UI User Interface

URL Uniform Resource Locator

DB Database

API Application Programming Interface

JWT JSON Web Token

JS Java Script

MVVM Model View Viewmodel

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

OIDC OpenID Connect

vi

1 Introduction

The �nal goal of the Uni1 application is to switch the application from the ex-
isting monolith application to a fully microservices architecture. In this thesis,
the existing Uni1 components will be divided into containers, the containerized
components will be integrated, and a new containerized component will be added
to handle the access rights and user accounts.

1.1 Motivation

The improvement of innovation is related to strong and trusted collaborations.
Over recent decades, research and innovation in science, business, and society
have grown between the University and other organizations. Friedrich Alexander
University of Erlangen-Nuremberg (FAU) has a global network of large, small,
private, national, and global partners.1 That leads to a big challenge to organize,
customize and �lter the Interest of both sides. The group of Prof. Dr. Dirk Riehle
founded Uni1, which is a tool to organize, customize, and �lter the o�ers of the
Open Source chair in FAU and the other partners. Nowadays, it is important for
software to be able to treat any functionality increment and easily growth due to
business requirements. In other words, the Uni1 application should be extensible
and can be deployed on multiple operating systems and hardware platforms.

1.2 Problem Statement

1.2.1 Maintainability and Extensibility

In the age of digitalization, the number of applications is signi�cantly increased.
Today's apps are becoming increasingly complex and o�er numerous services. As
a result, adding new functions to an existing application is challenging. Especially
that today's applications are developed with agile methodology. In the agile

1https://www.fau.eu/outreach/innovation-and-start-ups/partnerships/

1

https://oss.cs.fau.de/person/riehle-dirk/
https://oss.cs.fau.de/

1. Introduction

world, the software must be prepared to gain new functions or eliminate existing
ones.

The existing Uni1 program will receive new features, such as sending emails and
managing user accounts. Uni1 is a monolithic application. When a new com-
ponent is required in the Monolithic architecture, the whole application structure
must be modi�ed. Microservices architecture provides the best solution for these
issues. Microservices architecture provides a functionality increment capability,
allowing new components with a single functionality to be added to the applica-
tion without restructuring the application.

1.2.2 Vendor Lock-in and Testability (similar environments)

Because of the success of cloud services, many applications are now hosted in
a public cloud system. As a result, the application deployment in a production
environment, which di�ers from the development environment, becomes problem-
atic. Furthermore, When switching from one cloud to another leads to a vendor
lock-in issue. Container technology is the ideal solution to this problem because
it provides a platform-independent deployment.

1.2.3 Optimize Cloud Costs

An application's deployment in a public cloud can be costly. Especially if it
is a microservices application consisting of numerous services, each service is
contained in a container and deployed on the cloud independently. Depending on
the predicted usage, multiple deployment set-ups will be possible to use in order
to reduce costs. The application can be deployed as microservices if a high level
of utilization and extensibility is required; otherwise, the application is deployed
as a monolithic application.

1.3 Purpose of the Thesis

The purpose of this engineering thesis is to expand the current Uni1 applica-
tion with a new administration feature, divide Uni1 components into containers,
integrate them, and provide multi-deployment approaches.

1.4 Methodology

The process of the implementation of the thesis requirements based on the agile
software development cycle. The participants in the development of the software
are listed below.

2

1. Introduction

Participants and Roles:

� Prof. Dr. Dirk Riehle: Sponsor and Product Owner

� Georg Schwarz: Supervisor

� Felix Müller: Software Developer

� Nasser Eddin Nasser: Software Developer

(Müller, 2021) worked in parallel on his bachelor thesis and contributed several
features in the next generation of Uni1. Some tasks were developed together due
to their overlap in scope. Joint tasks with Mr. Müller are labeled as such in this
thesis.

Materials:

� Software developers meetings: held twice a week for the software developers
to synchronize and discuss technical problems.

� Product owner and developers meetings: around once a month, all par-
ticipants get together. The software developers can describe their imple-
mentation process (discuss issues). The product owner can provide new
requirements.

� Communication channels: we utilized emails to schedule meetings or to
discuss the requirements.

� Software project management tool: GitLab Issue Board was used to plan,
organize, and visualize the implementation work�ow.

1.5 Structure of Work

In chapter 2 the principles of Microservices architecture and container technology
will be addressed �rst, followed by a discussion of the existing Uni1 application,
with an emphasis on its components and additional features. The prerequisites
are then speci�ed in chapter 3. The architecture and design of the program, as
well as container technologies and their application, will be described in chapter
4. The implementation will be discussed in caption 5. later, the implementation
will be assessed to con�rm that it meets the requirements in chapter 6. Finally,
a conclusion including the future improvement is addressed in chapter 7.

3

2 Background

The �rst section of this chapter discusses the microservices architectural style,
its de�nition, and its bene�ts and drawbacks. The second section explains the
term of Docker container and its bene�ts and drawbacks. In the end, the current
existing Uni1 application (the old and the new version) will be discussed.

2.1 Microservices

Microservice has no universal de�nition. One way to de�ne it is as an architectural
style in which an application is structured as a set of services. Each service has
a single function. That deployed, scaled, and tested separately with a highly
coupled loosely. (Thönes, 2015)

2.1.1 Advantages and Disadvantages

Microservices architecture style has grown in popularity in recent years. Speci�c-
ally, that is very useful in the age of containerization and cloud computing. Each
microservice can be developed and deployed on a di�erent platform, using dif-
ferent programming languages and developer tools. Microservices communicate
with one another through APIs and communication protocols, but they do not
depend on one another in any other way. (Monus, 2018)

Advantages
The most signi�cant advantage of microservices architecture is that development
teams can independently build, manage and deliver each microservice independ-
ently. This form of single responsibility has additional advantages. Microservice-
based applications scale faster since only a single service can be scaled independ-
ently if needed. Microservices also reduce the time to market and accelerate
the CI/CD pipeline. Microservices architecture style also brings higher agility.
Furthermore, isolated services have a higher failure tolerance. Overall, a light-
weight microservice is simpler to manage and debug than a complicated program.
(Monus, 2018)

4

2. Background

Disadvantages
However, while independent microservices are more fault-tolerant than monolithic
systems, the network is much less fault-tolerant than monolithic systems. Com-
munication between microservices can lead to poor performance because sending
messages back and forth incurs some overhead. After all, the development team
must handle the microservice's whole lifecycle, from beginning to end. (Monus,
2018)

2.2 Docker Container

A container is a software unit that packages code and dependencies to move from
one computing environment to another quickly and reliably. A Docker container
image is a small, standalone software package that contains everything needed to
run an application, including code, runtime, system tools, system libraries, and
settings. (`What is a Container?', 2021)

Docker is a tool for running applications inside isolated containers. Docker con-
sists of Docker image, Docker container and Docker engine. Docker image is a
small, independent, executable software package that contains everything needed
to execute an application. Docker image becomes a container when it executes
on a Docker Engine. (`What is a Container?', 2021)

2.2.1 Advantages and Disadvantages

Over the last few years, Docker has become more popular because of its bene-
�ts. The major reason for this is the reduction of software costs. Former software
were restricted to speci�c hardware or OS. Today's software can be cross-platform
through using container technology as it can be deployed on di�erent environ-
ments, operating systems, hardware, and cloud systems. Docker is not a magic
solution, and it also has disadvantages as well. In this paragraph, a few advant-
ages and disadvantages will be addressed.

Advantages
Based on (`What is a Container?', 2021) Docker technology bene�ts are:

� Standard: Docker containers can be transported anywhere.

� Lightweight: Containers share the machine's OS system kernel and elim-
inate the need for an OS per application, increasing server e�ciency and
lowering server and licensing costs.

� Secure: Containerized applications are more secure than deploying an ap-
plication directly on the host machine because Docker provides an isolation
environment feature.

5

2. Background

Disadvantages

� Missing features: Docker containers continue to lack features such as con-
tainer self-registration, self-inspection and copying �les from the host to
the container. (`Advantages and Disadvantages of Docker - Learn Docker',
2018)

� Data in the container: backup and recovery strategy is needed to avoid
data loss when the container goes down. (`Advantages and Disadvantages
of Docker - Learn Docker', 2018)

2.3 Uni1 application

The concept of the application is to simplify the process of how universities with
companies participate in projects with students, that both sides can perform
pro�t. Companies bene�t through recruiting, outsourcing, and innovation result-
ing from the projects. Universities win new partners, earn money on the projects,
and o�er more attractive teaching. (Riehle, 2016)

The next generation of the Uni1 app will have additional functions, such as
managing users' accounts, contacts, and emails.

2.3.1 Uni1: Previous version (Marketplace)

The Uni1 application is the core of the Marketplace component. That used to
simplify the process of how universities with companies participate in projects
with students. It has a client-server architecture and uses the following techno-
logies:

Frontend: the frontend of the Uni1 uses ReactJS with Redux5 for managing
the application state. ReactJS is a JavaScript framework designed by Facebook.

Backend: the backend is developed with js and a NodeJS framework. The
backend server is a CRUD server between the frontend and Database.

Database: MongoDB is used, which is a NoSql database.

2.3.2 Uni1: New version (Uni1Next)

Besides the marketplace, the next generation of Uni1 supports other functions;
they are all integrated together as a set of microservices. Some of the functions

6

2. Background

(i.e., managing users' accounts) will be implemented in this thesis (more about
the implementation in chapter 5). Uni1Next components are as following:

Marketplace components: is the old Uni1. The components will be re-
designed and adjusted to meet the new Uni1 logic since there were some changes
in the authentication administration, DB structure, and functionality. The Mar-
ketplace components contain a frontend and backend component.

Administration components: used to manage and monitor Uni1 users' ac-
counts and contacts. The Administration components contain a frontend and
backend component.

Dashboard components: used to log in, register, change user personal in-
formation and navigate between the di�erent services of Uni1. More about it
in (Müller, 2021). The Dashboard components contain a frontend and backend
component.

Campaigner components: used to create and monitor the campaign emails
and their replies. More about it in (Müller, 2021). The Campaigner components
contain a frontend and backend component.

Database: the backend(s) of the listed components are connected to a database
used to store the data. The database is MongoDB and hosted on AWS.

7

3 Thesis Requirements

This chapter lists the functional and non-functional requirements of Uni1.

3.1 Authentication and Authorization Concept

To make sure that the services are secured. Authentication and authoriza-
tion mechanism must be used to ensures that a user is whom its claim to be
(Authentication) and to check if the user has access rights to a service (Authorization).

Role Concept Uni1 provides three services which are Marketplace, Cam-
paigner and Administration, accordingly three roles are existing as the fol-
lowing:

User role: default role (base role), user can access the Marketplace com-
ponent.

Campaigner role: user can access the Campaigner component.

Administrator role: user can access the Admin-Console component.

The roles are independent. User type will not be considered for the roles. Sup-
pliers and consumers do not exclude each other (professor can be a business) and
can have Administrator role or/and Campaigner role or/and User role.

Requirement key points

� Authentication and authorization concept must work with monolithic and
microservices deployment.

� Authentication and authorization concept is valid for all Uni1 components.

� Only authenticated users can use Uni1 services.

� The corresponding component can only be accessed by a user who has a
valid access role.

8

3. Thesis Requirements

� Users can only see the available components and functions based on their
access rights (i.e., a user without a campaigner access right cannot see or
access the campaigner component).

� Independent access roles: a user can have many access roles.

� At least one access role must be assigned to an activated user.

� A newly established user account must be assigned as a user access role by
default.

User stories The following are some user stories that will help to clarify the
requirement.

1. As a marketplace user, I want to have access to the Marketplace services
in order to explore the available projects and propose new ones.

2. As a campaigner, I want to have access to the Campaigner services in order
to start and operate campaigns.

3. As an administrator, I want to have access to the Admin console in order
to allow and restrict users' access according to their needs.

4. As a user, I want to have multiple access roles in order to access di�erent
services.

3.2 Administration component

It is relevant for the admins to be able to control users' accounts and their con-
tacts. A new component must be implemented to simplify the monitoring and
managing process of users' accounts and their contacts.

Admin Console is a new Administration component added to Uni1 to manage
and monitor Uni1 users' accounts.

Requirement key points

� User interface shall be user friendly.

� User interface shall be in the German language.

� Admin Console must be integrated with the other Uni1 components.

� Only users with administration rights can access it.

� Admin-Console user is capable of assigning a role to a user.

� Admin-Console user is capable of dismissing a role from a user.

9

3. Thesis Requirements

� Admin-Console user is capable of releasing a contact from a user.

� Admin-Console user is capable of importing new contacts.

� Admin Console user is capable of exporting the contacts.

User stories The following are some user stories that will help to clarify the
requirement.

1. As an administrator, I want to monitor and manage users' accounts in order
to assign a role to a user or to dismiss a role from a user.

2. As an administrator, I want to monitor and manage users' accounts in order
to activate/deactivate and delete an account.

3. As an administrator, I want to monitor and manage the contacts in order
to add and remove a contact.

4. As an administrator, I want to monitor and manage the contacts in order
to let users without accounts receive campaigns.

3.3 Deployment Concept

The deployment concept speci�es how Uni1 deployment will occur, principally
that Uni1 should support multiple deployment setups.

Requirement key points

� Dependencies between components should work with monolithic and mi-
croservice deployment.

� Consistent and isolated environment: regardless of where the components
are deployed, everything remains consistent.

� Cost-e�ectiveness.

� Uni1 can be deployed as monolith and microservices.

� Ability to run anywhere: Uni1 components shall be able to run in di�erent
OS and clouds.

User stories The following are some user stories that will help to clarify the
requirement.

1. As a user, I shall be able to access the Uni1 at any time so that I can use
the application.

10

3. Thesis Requirements

2. As a project sponsor, I want to choose between di�erent deployment setups
in order to minimize costs depending on the expected usage.

3. As an operator (developer), I want to have a portable application in order
to run it on di�erent kinds of deployment environments.

3.4 Integration, Communication and Extensibil-

ity Concept

The integration concept is the way of bringing all Uni1 components together
into a single system that reacts as one. The communication concept involves
the process of the transmission of the data between the Uni1 components. The
concept of extensibility refers to Uni1's ability to gain additional components and
functions.

Requirement key points

� Integration: Uni1 components must be able to collaborate together in or-
der to give the impression of a monolithic application, even if it is a mi-
croservices application.

� Connection: Uni1 component must be able to communicate with other Uni1
components and with the outside.

� Extensibility: Uni1 shall be able to gain new components easily.

User stories The following are some user stories that will help to clarify the
requirement.

1. As a user, I shall have the feeling of using one application, even if it's a
microservice application, in order to get a good user experience.

2. As a project sponsor, I want to have an extensible application in order to
expand it with new features.

11

4 Architecture and Design

This chapter presents the architecture and design of Uni1. The �rst section of
this chapter covers the logical di�erence between process, container, and mi-
croservice. The second section contains di�erent technology for virtualization
that can be used in Uni1. The methods of communication and integration will
then be examined. However, the design of an administration component will be
investigated. Finally, the concept of AWS setup employing microservices and
monolithic architecture will be investigated.

4.1 Logical distinction between Processe, Container,

and Microservice

4.1.1 De�nitions

Process: in computing is an instance of a program that is being executed by
one or more threads. It includes the software code as well as the program's op-
eration. Depending on the operating system (OS), a process can be composed
of multiple threads of execution that execute instructions concurrently. (Silber-
schatz & Galvin, 2013)

Microservice: there is no universal de�nition of a microservice. One way to
think of it is as a small application with a single responsibility that can be de-
ployed, scaled, and tested independently (Thönes, 2015).

As shown in �gure 4.1, if a new component is required in the Monolithic Architec-
ture, the entire structure must be updated. In Microservices Architecture, a new
component can be simply added and integrated with the entire system. Another
advantage is that if one application service is in great demand, it can scale and
be updated independently of the others.

12

4. Architecture and Design

Figure 4.1: Monolithic vs Microservices

Docker container image: is a small, standalone software package that con-
tains everything needed to run an application, including code, runtime, system
tools, system libraries, and settings. (`What is a Container?', 2021)

Figure 4.2: Containers architecture. (Riehle, 2020)

As illustrated in �gure 4.2, containers encapsulate distinct components of applic-
ation logic that are only given the resources they need.

13

4. Architecture and Design

4.1.2 Logical Coherence and Development Stages

Software development has three primary phases: Design time, Compile-time, and
Runtime. The initial step is the design time, where a developer writes a source
code. The second step is the compile-time, which compiles this code into the
machine code to turn it into an executable program. The third stage is when the
executable code is running. The table below shows the main building steps of the
docker container and Microservice. Each development step will be discussed in
this section for the Docker container, Microservice and Microservice with Docker.

Development
Stage

Microservice Docker Con-
tainer

Microservice with Docker
Container

Design Time Codebase Docker�le Codebase with a docker�le
Compile Time Microservice

as artifact
Docker Image Docker Image

Runtime Microservice
Instance

Docker Con-
tainer

Docker Container

Design Time

Codebase The developer writes the code of the software as a codebase. The
codebase of a microservice depends on the programming language of the service.
It can be Java, C++, JS, or any other programming language.

Docker�le The developer writes the code structure of a container in the dock-
er�le. A Docker�le is a text document that explains how a Docker image is
built. The layers have a pyramid shape, where the new layer is created on top of
the previous layer. The following are the fundamental instructions for writing a
docker�le. Each instruction will create one new layer. More instructions can be
found in docker docs (`Best practices for writing Docker�les', 2021).

� FROM: the de�nition of the base image.

� WORKDIR: creates a directory for the application.

� COPY: copy �les inside the container.

� EXPOSE: declare ports used inside a container. For the external access,
another port must be set using "-p" in the docker run command.

� CMD/ENTRYPOINT: the executed command(s), when running the im-
age.

Compile Time

The second step in the software building is Compile-time, which refers to the time
of transforming the programming code into machine code (i.e., binary code).

14

4. Architecture and Design

Microservice as an artifact (Executable code) The codebase will be con-
verted to executable code using a corresponding compiler. The executable code
can be, i.e., a �le with .exe format or a jar �le.

Docker Image Building a Docker�le executes a Docker image. A Docker image
contains application code, libraries, tools, dependencies and other necessary �les
for running an application.

Runtime

The run-time is when an executable code runs.

Microservice Instance After running the artifact of a microservice, a running
instance of that microservice will be created.

Docker Container After running a Docker image by the Docker engine, a
running instance of the image will be created, which is the Docker container. A
container is an instance built according to the image as a guide at the runtime.

Microservice and Container The microservices term is an architectural style,
whereas the container is a mechanism to build and run an application e�ciently.
A Microservice (with a docker container) is a deployment artifact of the docker
image. Containers exist without microservices, even though containers provide
an excellent way to deploy microservices. A Microservice may run with a con-
tainer, but it could also run as a fully provisioned VM. Nevertheless, building
microservices with containers (Docker containers) is a great �t. At the same
time, Microservices is about self-contained systems. A Docker container provides
the ideal environment for this approach. Containers secure the microservices by
isolating them from one another and the underlying infrastructure. Containers
are not restricted to any particular infrastructure that can operate on any device,
infrastructure, or cloud. A container is an instance of a microservice (built ac-
cording to the image as a guide at runtime).

In the runtime environment of a docker container, the host operating system can
access computing resources and essential services such as IO and Network.

15

4. Architecture and Design

Figure 4.3: Multiple Docker containers on the same host. (`What is a Con-
tainer?', 2021)

As shown in the 4.3, many containerized applications (i.e. microservices) can run
on the same host. All containers share the host operating system's resources. As
a result, resources are reduced and the build/run process is accelerated (because
the environment packages only need to be installed once).

Process and Container It is good for the rule of thumb to limit each con-
tainer to one process, but it is not a restricted rule. It makes it easier to scale
horizontally and reuse containers when applications are decoupled into multiple
containers. Containers, for example, can be spawned not only with a single pro-
cess, but some programs may also spawn additional processes on their own. (`Best
practices for writing Docker�les', 2021)

� A process represents a running program; it is an instance of an executing
program.

� A process consists of memory and a set of data structures.

� It is possible to run many processes in a container, but It is not always a
good idea.

As a summary: while the concept of the microservice is about a single func-
tionality. Moreover, a container should only contain a single process, which leads
to a single container should contain only one microservice.

16

4. Architecture and Design

4.2 Evaluation of Containers and Virtual Machines

Moving software from one computing environment to another can be very di�-
cult. As a result, an appropriate container or virtualization technology should be
used to ensure that the Uni1 application moves smoothly and reliably from one
computing environment to another and from monolithic to microservices archi-
tecture.

First, we will contrast the structure of container and virtual machine technology.
Second, we will compare their performance based on experiments done by (Am-
aral et al., 2015), where the performance was explored of two Container-based
environments (Master-slave and nested) and traditional virtual machines.

4.2.1 Structure Evaluation

Virtualization technology is about using a virtual machine, as shown in �gure
4.4, the VM includes an entire operating system as well as the application. On
the other side, container technology shares the operating system with the applic-
ations. (Riehle, 2020)

Figure 4.4: Virtual Machines vs Containers. (Riehle, 2020)

As a result: the container technology improves the deployment speed, provides
a faster reboot, less resource overhead, and more lightweight in comparison with
a virtual machine.

17

4. Architecture and Design

4.2.2 Performance and Creation Time Evaluation

The purpose of the experiments done by (Amaral et al., 2015) is to explore the
e�ciency and overhead of containers, which can be critical in the deployment of
a microservices system.

Figure 4.5: The stack of network of bare-metal, container, nested-container and
virtual-machine. (Amaral et al., 2015).

The performance of the components in �gure 4.5 will be compared in the exper-
iments.

� Bare metal: the pure physical server.

� Regular containers: the master-slave architecture is made up of one con-
tainer acting as the master and other containers acting as slaves that will
operate the application process.

� Nested containers: subordinates' containers (children) are hierarchically
created into the main container in the nested container (parent). The ap-
plication process runs by the children, who are constrained by parental
boundaries.

� Virtual machines.

18

4. Architecture and Design

CPU Performance Evaluation

The experiment is executed to determine the average execution time of Sysbench1

while increasing the number of concurrent Sysbench instances from 1 to 64 of dif-
ferent kinds of environments: bare-metal, regular containers, nested-containers,
and virtual machines. The multiple containers and virtual machines are executed,
each one running a single Sysbench instance. Since there are no resource limita-
tions in the set of containers and virtual machines, the scalability is expected to
increase linearly with the number of available CPU cores.

Figure 4.6: The slowdown of Sysbench with increasing number of instances
relative to running a single Sysbench instance in bare-metal. (Amaral et al.,
2015).

Figure 4.6 shows how the execution time of a single Sysbench decrease as the
number of instances increases. As shown, the result is that all environments
exhibit similar behavior, con�rming that running CPU-intensive executions on
containers or virtual machines has no noticeable performance e�ect compared to
bare-metal. Containers are similar to bare-metal in that they run in the operating
system natively and are covered by a lightweight layer. However, due to enhanced
virtualization support in modern processors, virtual machines can now perform
as much.

Conclusion: there is no signi�cant impact on CPU performance.

1https://linuxtechlab.com/benchmark-linux-systems-install-sysbench-tool/

19

https://linuxtechlab.com/benchmark-linux-systems-install-sysbench-tool/

4. Architecture and Design

Comparing the Creation Time of Virtual Machine and Container

This experiment aims to assess the scalability of various virtual container types
by comparing the creation times under di�erent environments.

For standard containers, the elapsed time between container startup and exit is
measured. For nested containers, the amount of time it takes to start and exit a
nested container will be calculated, which involves loading a locally stored child
image as well as starting and exiting a single child container. Lastly, the time for
creating a virtual domain, starting the domain, and removing the domain will be
measured for a virtual machine.

Figure 4.7: The time to create a growing number of instances of (regular and
nested) containers and virtual machine. Where the nested-container is a fully
initialized parent plus one child. (Amaral et al., 2015).

The result of this experiment, as shown in Figure 4.7, regular containers are the
fastest solution, followed by nested containers and virtual machines. Although
creating a single nested container is nearly eight times above creating a single
regular container, creating nested containers is still more than twice as quick as
creating virtual machines.

The extra overhead for nested containers comes from the parent container's
Docker initialization, including loading a locally stored image and creating the
child container. The loading of an image takes an average of 6.2s. The loading
time can be reduced to 1.7s by sharing a read-only preloaded volume from parents
to children that contains the child-loaded image.

20

4. Architecture and Design

Conclusion: creating a regular container is the fastest approach, then nested
container and lastly, virtual machine. Creating a regular container is sixteen
times faster than creating a virtual machine and eight times faster than creating
a nested container.

4.3 Container Technology and its Application

Many people mistakenly assume that Docker is synonymous with container. How-
ever, container technology is available decades before Docker. Docker is a Linux
container-based extension (LXC). (Riehle, 2020)

4.3.1 Container Technologies

Based on the result of the previous section 4.2, Docker container technology
was chosen as a container technology for Uni1. Furthermore, Docker has a vast
community and is compatible with AWS.

Operating system (Base Image)
The backend components are all built with node JS framework. Docker provides
several images of Node, which are the full Node version or a light version (i.e.,
alpine). As shown in �gure 4.8, the size of Node 12 is 918 MB and the alpine is
only 88.9 MB. That leads to that the size of the Admin-console container with
Node 12 is 1.06 GB, and with alpine is only 219 MB. After comparing both
versions, we decided to use the alpine version.

Figure 4.8: Size comparison between container built with node:12 and built
with node:12-alpine

Environment variable
The usage of environment variables provides a convenient way to set application
execution parameters without rebuilding the application. The backend compon-
ent(s) requires variables such as the DB URL, Cognito pool ID, and AWS (con�g-
uration and credential variables). Some variables are optional, like the listening
port.

There are several ways to set an environment variable to a containerized applic-
ation:

21

4. Architecture and Design

� Pass a variable in the run command with -e parameter.

� De�ne environment variables in Docker�le with ENV.

4.3.2 Container Application

Depending on the computing environment, two container technologies will be
used. Only the backend will be containerized in both environments, while the
frontend components and database will not be containerized. The frontend com-
ponents will be deployed on AWS Amplify. The Amplify will be connected with
the master branch of the Gitlab repository. The frontend components will be
built and run on AWS Amplify automatically after modifying a component in
the master branch.

Development environment - Microservices
It meets the microservices architecture. Each backend service is dockerized in a
docker container. The services can run separately from the corresponding dock-
er�le, or all services can run together through docker-compose. This technology
can be used to run backend component(s) locally when developing/running the
frontend components locally. However, the database is hosted by AWS, and it is
connected to the backend components.

Production environment - Monolithic
All backend services are dockerized in one docker container that will be deployed
on AWS Elastic Beanstalk.

4.4 Design of Communication and Integration Mech-

anisms

In a microservice application, it's critical that all parts of the application interact
with one another to provide the best performance and the expected data to users.

4.4.1 Authentication and Authorization

To ensure the services of Uni1 are secured, an authentication and authorization
mechanism is used. That mechanism is independent of the protocol or program-
ming language. Uni1 application will be deployed on AWS. Thus AWS Cognito
will be used for authentication and authorization. AWS Cognito is a user man-
agement, authentication, and access control service, that uses OpenID Connect
(OIDC) 2.

2https://openid.net/connect/

22

https://openid.net/connect/

4. Architecture and Design

Authorization Amazon Cognito uses user pools, where the users are stored
(with their roles), and the access groups (roles) are de�ned.

Authentication When a registered user login, a web token will be stored in
the browser, and it will be sent by each request to the received service.

Roles concept As required 3.1, Uni1 provides three access roles that are com-
pletely independent and are not based on a hierarchy relationship. User type
would not be considered for the role, i.e., vendors and customers do not preclude
each other, and they can have Administrator position or/and Campaigner role
or/and User role.

User role: default role (base role), user can access the Marketplace com-
ponent.

Campaigner role: user can access the Campaigner component.

Administrator role: user can access the Admin-Console component.

4.4.2 Communication Technology

The services in Uni1 use a RESTful API request/response communication. The
communication technology and protocol used in a development environment vary
from those used in a production environment.

Development environment - Microservices
Each backend service (server) is compact inside a Docker container, which has an
external port (host port) and an internal port (container port). The external port
uses for communication outside the container and the internal port can be used
to communicate with the other components inside the container if they exist.
The outside port will be mapped to the inside port. As shown in �gure 4.13.
In our design, each service is containerized in a single container, and thus the
communication is available only by the external port.

Production environment - Monolithic
The backend services (servers) are deployed as one docker container application
on AWS Elastic Beanstalk and use a single port "to save costs". In order to
improve the connection security and ensure that the data are not easily stolen,
HTTPS will be used for the external connections, which will encrypt the data
through SSL. As shown in �gure 4.12. In our design, the backend services are not
communicated together, but if needed, the backend components can communicate
together using the internal port.

23

4. Architecture and Design

4.4.3 User Interface Integration Technology

The user interface is the space where physical and digital worlds meet. It is a
critical component of any interactive application. Designing this interface can be
a di�cult task because it needs to re�ect the nature of the app and its target
users. In an ever-growing microservices application, the challenge of building a UI
becomes more complex. Di�erent techniques to integrate the UI in a microservices
application will be covered in this section based on (Newman, 2015).

Figure 4.9: UI integration approaches: API and Fragment composition. (New-
man, 2015).

API composition

The �rst way is to have a single user interface. As shown in �gure 4.9, the user
interface is connected directly with the services. The services provide the data
needed by the UI. It is easy to implement but hard to deal with new services or
a change in a service.

Fragment composition

Another way to integrate the UI of microservices is by sending the UI components
from the services to the UI. As shown in �gure 4.9, a single UI exists, and the
services provide their UI components to the UI. This approach provides a dynamic
UI. Having a new microservice or change in a microservice can be easily integrated
with the UI. But it also gives the impression of a heterogeneous application.

Backends for frontends

The third way to integrate the UI of microservices is by having di�erent user
interfaces regarding the client type or target device (mobile application or web
application). As shown in �gure 4.10 each UI has a backend. The backend of

24

4. Architecture and Design

a corresponding UI deals as a middleware between the services and its UI. This
approach can be mixed with one of the approaches mentioned above. However, it
gives the impression of a homogeneous application. However, it is also complex
and more components (backends and frontends) must be developed.

Figure 4.10: UI integration approaches: Backends for frontends. (Newman,
2015).

Uni1 User Interface

In order to win the impression of a homogeneous application, backends for fron-
tends will be used with API Composition, where each service got its own UI and
its backend. Each UI of a service uses the "API composition" to get the data
from the corresponding service. At the same time, the UI of the Dashboard com-
ponent is used for integrating the various user interfaces where each component
has a separate interface interacting with its respective backend component.

4.5 Design of Admin Console component

The architecture of the administration component is a traditional client/server
model, as shown in �gure 4.11. The website serving as the client and interacting
with the backend server. The two components are completely separate and can be
developed and deployed separately. A RESTful API is used for communication
between the two components.

25

4. Architecture and Design

Figure 4.11: Admin-Console Component Architecture

Frontend
The frontend of Admin-Console is a website application, uses Vue.Js with Vuex
for managing the application state. Vuex acts as a centralized storage area for
all Admin-Console components that ensure that the state can only be changed
in predictable ways. Vue.Js is an MIT-licensed open-source Model view view
model(MVVM) frontend JavaScript framework for creating single-page applica-
tions and user interfaces.

Backend
The backend of Admin-Console is a NodeJS/ExpressJS application. ExpressJS is
a routing library that is used to build a RESTful API on top of NodeJS. NodeJS
is a Javascript framework for writing server-side applications.

Database
The shared DB will be connected to the backend component of the Admin Con-
sole. Important user account data, such as user contacts and user title, will be
saved in collections in the Uni1 database cluster. The database is MongoDB,
which is hosted on AWS. The connection is made using native MongoDB drivers.
The database's URL must be con�gured as an Environment variable.

26

4. Architecture and Design

4.6 Concept for a set-up in AWS

The concept of the deployment phase will be addressed in this section for both
architectures (Monolithic and Microservices). The backend is where the deploy-
ment di�ers in the two architectures. Only the monolithic architecture is deployed
in this thesis, while the second will be partially implemented (not deployed on
AWS). The frontend components (Admin console, Dashboard, Campaigner and
Marketplace) will be deployed on AWS Amplify, and the backend component is
deployed on AWS Elastic Beanstalk.

The key di�erence in deployment between architectures (Monolithic and Mi-
croservices) is in the backend components. Based on the deployment concept
requirement 3.3, that declares the possibility to have many deployment possibil-
ities in order to decrease costs.

4.6.1 Monolithic

All Backend components (Admin console, Dashboard, Campaigner and Market-
place) are containerized in one docker container, which will be deployed on AWS
Elastic Beanstalk 3. In order to ensure that our backend server is well protected,
HTTPS protocol is used for the communication. The �gure 4.12 shows how Uni1
backend components will be deployed as a Monolithic application.

Figure 4.12: Uni1 deployment as a Monolithic application

3https://aws.amazon.com/elasticbeanstalk/

27

https://aws.amazon.com/elasticbeanstalk/

4. Architecture and Design

4.6.2 Microservices

There are several ways to deploy the backend components as microservices on
AWS. In my opinion, the easiest way is by deploying the Backend components as
a Multicontainer Docker on one single Elastic Beanstalk instance.

Based on AWS docs (`Using the Multicontainer Docker platform (Amazon Linux
AMI) - AWS Elastic Beanstalk', n.d.), the standard Elastic Beanstalk's pre-
con�gured Docker platforms support only a single Docker container per Elastic
Beanstalk environment. Although Elastic Beanstalk allows to set up an envir-
onment in which the Amazon EC2 instances can run Docker containers concur-
rently. Elastic Beanstalk uses Amazon Elastic Container Service (Amazon ECS)
to organize container deployments to multi-container Docker setups. Amazon
ECS provides capabilities for managing a cluster of Docker-enabled instances.
Elastic Beanstalk handles Amazon ECS functions such as cluster creation, task
de�nition, and task execution. The environment's instances all run the same set
of containers. The �gure 4.13 shows how Uni1 components can be deployed as
Microservices applications.

Figure 4.13: Uni1 deployment as a Microservice application

28

5 Implementation

This chapter presents the implementation of the Uni1 application. The imple-
mentation is based on the architecture and design discussed in the previous
chapter 4. Because some parts of the system were intertwined, some parts of
the uni1 were implemented by (Müller, 2021) and some parts were implemented
by me. We also tried to make the most use of each one's knowledge to deliver
the best implementation. The �rst section of this chapter explains the new Ad-
ministration component. The second section provides the database. Then the
implementation of the containers will be discussed. The �fth section provides
the way to set the credential keys. However, then the deployment process will be
explored. In the end, the integration mechanism will be covered.

5.1 Administration component

This section provides an overview of the technologies used to implement the
Administration component and goes over a few implementation issues. The com-
ponents are reachable under https://console.uni1.de.

5.1.1 Frontend

The frontend is a website application, uses Vue.Js1 with Vuex2 for managing the
application state. Vue.Js is an MIT-licensed open-source Model�View�ViewModel
(MVVM) frontend JavaScript framework for creating single-page applications and
user interfaces. To improve code quality and make it more reliable and easier to
refactor, Typescript3 is used. Typescript is an open-source programming lan-
guage developed and maintained by Microsoft. Admin-Console provides several
administration services to mange user accounts as following:

� List all users.

1https://vuejs.org/
2https://vuex.vuejs.org/
3https://www.typescriptlang.org/

29

https://console.uni1.de
https://vuejs.org/
https://vuex.vuejs.org/
https://www.typescriptlang.org/

5. Implementation

� List all contacts (including users from the old DB).

� Export all contacts (as CSV and XLSX).

� Import new contacts.

� Delete a contact.

� Disable user account.

� Enable user account.

� Delete user account.

� Assign a role to a user.

� Remove a role from a user.

� Release contact from a user.

5.1.2 Backend

The backend is a nodeJS4 server, that uses the open-source software, under the
MIT License, Express.js5 framework. The backend server only reacts if the fron-
tend triggers it by sending a valid request. It works as a middleware (interface)
between the Admin-console frontend and users' data in AWS Cognito6 and DB.
For instance, to get all users' data, the backend will �rst collect users' data from
AWS-Cognito and DB; second, it will merge the data and send it to the frontend.

5.1.3 Authentication and Authorization

Administration backend component uses Aws Cognito 7 to ensures that users are
who they claim to be (Authentication), and to check the access rights to the
administration functions (Authorization).

The main part of the credential veri�cation (Authentication) is done in the
frontend (by the Dashboard component) via the Login function. After a successful
login, a JWT 8 will be generated by Cognito and stored in the client browser.
The JWT will be sent to the backend in the header for each API request. The
backend will check its validation (by the middleware 5.6.2) through its included
Key ID. If it is valid, the access right will be checked by the included roles, then
grants or denies permission will be given to continue the process that the frontend
requested (authorization).

4https://nodejs.org/
5https://expressjs.com/
6https://aws.amazon.com/cognito/
7https://aws.amazon.com/cognito/
8https://jwt.io/

30

https://nodejs.org/
https://expressjs.com/
https://aws.amazon.com/cognito/
https://aws.amazon.com/cognito/
https://jwt.io/

5. Implementation

5.1.4 Mapping user data from Cognito and Database

To prevent data replication, only a portion of the data is stored in the database,
while the remainder is obtained directly from Cognito through AWS SDK 9.
Indeed, via this Cognito, Admin-Console obtains the users' name, email, roles,
status, phone number and gender. The rest information is stored in the database,
including the users' title, contacts and tags. The data will be merged together.
The database connection will be described later in section 5.2.

5.1.5 Communication

The interactive mechanism between the frontend and backend established through
REST API. Rest API is an application programming interface that conforms to
speci�c architectural constraints. Because the Admin console provides two dif-
ferent data types, two routes are de�ned based on the requested data (user and
contact). All the currently available endpoints of Uni1 components are listed in
the appendix A B C. The database connection will be described later in section
5.2.

The following resources are available:

. /contact/releaseUserContact

. /contact/addEmailsToContacts

. /contact/deleteContact

. /contact/getAllContacts

. /user/listAllUsersInGroup

. /user/removeUserFromGroup

. /user/adminAddUserToGroup

. /user/adminEnableUser

. /user/adminDeleteUser

. /user/adminDisableUser

. /user/getAllUsers

9https://aws.amazon.com/tools/

31

https://aws.amazon.com/tools/

5. Implementation

5.2 Database

In order to store data (i.e., user contacts), we used MongoDB Atlas10 to create a
new database and we deployed it on AWS as a NoSQL database, which provides
a 512MB storage free of charge and can be scaled up to 5GB11. The connection
between the backend component(s) with the database established using native
drivers. Other options to connect the database with our backend(s) are MongoDB
Compass and Mongo shell. In other words, the connection to the DB executed
by setting the DB (cluster) URL as an environment variable, more about it in
section 5.4.

The previous version of Uni1 included user's contacts. The contacts stored in the
Marketplace database have been imported to the new database to avoid losing
them.

The �gure 5.1 shows how the DB is connected with Uni1. In monolithic archi-
tecture, the connection will be created once. While in the microservices, each
component connects with the DB.

Figure 5.1: Database connection in Monolithic and Microservices

5.3 Container

In this section, we will present the implementation of the containers of Uni1
backend components. Because one of the requirements mentioned that the Uni1
backend could be used as a Monolithic and as a microservice, two implementations
were implemented. The implementation of the Monolithic has been deployed on
AWS as the architecture 4.12. The microservices architecture has been used in the

10https://www.mongodb.com/
11https://www.mongodb.com/pricing

32

https://www.mongodb.com/
https://www.mongodb.com/pricing

5. Implementation

development environment. In section 5.5, we will present how the microservices
can be deployed on AWS.

As discussed in the previous chapter 4, the use of containers will provide many
bene�ts. The backend containerized in order to win the bene�ts that containers
provide, such as �exibility, lightweight, and easy deployment.

Depending on the previously discussed container technologies in the Architecture
and Design chapter 4.3.1, the Docker container will be used.

Docker is a (PaaS)-based OS-level virtualization platform for delivering applica-
tions in containers. Containers are self-contained from one another and bundle
their own set of applications, libraries, and con�guration �les. Containers use
fewer resources than virtual machines because they all share the services of a
single operating system kernel. (Riehle, 2020).

5.3.1 Production environment - Monolithic

All backend services are dockerized in one docker container. The Docker�le is
in the backend directory in the repository. Listing: 5.1 shows the Docker�le
of the backend that used in the deployment on AWS elastic beanstalk. The
Marketplace component is included but does not work in this Docker�le because
it will be rewritten in the future after changing some logical functions in Uni1,
so we decided to exclude it from the Production environment. In the following
subsection 5.3.2 a solution to run Marketplace on Docker will be spotted.

FROM node:12-alpine

Create app directory

WORKDIR /usr/src/app

Copy both package.json and package-lock.json

COPY package*.json ./

RUN npm ci --silent

Bundle app source

COPY . .

Set NODE_ENV to production

ENV NODE_ENV production

EXPOSE 5000

CMD ["node", "./app.js"]

Listing 5.1: Docker�le of Uni1 backend

33

5. Implementation

5.3.2 Development environment - Microservices

Each backend service has its own Docker container. The docker�le of each service
is located inside the backend directory in the containers branch in the Gitlab
repository.

Admin Console & Dashboard & Campaigner
The three services have the same structure, as a result, the docker �les of them
have the same steps with some di�erences in the copied �les and run command.
The following Listing is the Docker�le of Campaigner backend component.

FROM node:12-alpine

WORKDIR /usr/src/app

COPY package*.json ./

RUN npm ci --silent

Bundle app source && Copy shared libraries (i.e. Cognito middleware)

COPY ./campaigner ./campaigner

COPY ./shared ./shared

EXPOSE 5002

CMD ["node", "campaigner/app.js"]

Listing 5.2: Docker�le of Campaigner backend server

Marketplace
The Marketplace component has its own structure because it's built with a tech-
nology, which uses a linked library between the frontend and backend. Symlink
cases problem with Docker, in order to avoid it, the shared library will be copied,
then installed and then linked, as shown in the following Docker�le 5.3.

FROM node:12-alpine

WORKDIR /usr/src/app

COPY package*.json ./

RUN npm ci --silent

COPY ./marketplace ./marketplace

COPY ./shared ./shared

COPY ./uni1-api-clients ./uni1-api-clients

RUN cd uni1-api-clients \

npm install \

npm link \

cd .. \

npm link uni1-api-clients

EXPOSE 5004

CMD ["node", "marketplace/app.js"]

Listing 5.3: Docker�le of Marketplace backend server

34

5. Implementation

As it is notable in the Docker�le of Marketplace, the RUN command contains
multiple commands instead of writing RUN for each command. The reason
is that each RUN command creates a new layer, which leads to more layers
containing information that are no longer exists and thus increase the size of the
image. Writing the docker�le as shown in 5.3 (single RUN command) reduces
the image size from 223MB to 221MB.

Docker Compose
Running each Docker container manually becomes time-consuming and di�cult
to manage. Docker-compose 12 is a powerful tool to start all Uni1 backend services
together or separately, which uses a YAML �le to con�gure the services. Then
with a single command, all services can run. The docker-compose �le is located
in Containers 13 branch in Gitlab repository.

version: "3.9" # docker compose version

services:

adminconsole:

image: adminconsole

build:

context: . # the path to the directory containing the Dockerfile

dockerfile: adminconsole.Dockerfile

ports:

- "5001:5001" # Host port : Container port

env_file:

- .env # set the environment variables from .env file

campaigner:

image: campaigner

build:

context: .

dockerfile: campaigner.Dockerfile

ports:

- "5002:5002"

env_file:

- .env

dashboard:

image: dashboard

build:

context: .

dockerfile: dashboard.Dockerfile

ports:

12https://docs.docker.com/compose/
13https://gitlab.com/profoss/uni1/uni1next/-/tree/containers

35

https://docs.docker.com/compose/
https://gitlab.com/profoss/uni1/uni1next/-/tree/containers

5. Implementation

- "5003:5003"

env_file:

- .env

marketplace:

image: marketplace

build:

context: .

dockerfile: marketplace.Dockerfile

ports:

- "5004:5004"

env_file:

- .env

Listing 5.4: Docker Compose of all backend components for a development
environment

Another way to pass the environment variables will be discussed in the next
section 5.4.

5.4 Environment variable

It is never a good idea to set a password and credential keys directly in a con�g-
uration �le in the codebase. Instead, reference the credential keys to an environ-
ment variable. The following are the primary advantages of using environmental
variables:

� Easy con�guration: worry only once when the variable set for the �rst time.
We only have to update the environment variable when we need to change
a key.

� Better security.

� Easy to change the value of the variable without rebuilding the app.

The following Environment variables must be de�ned to run the Uni1 backend:

� DATABASE_URL: the URL of the Database.

� USER_POOL_ID: the user pool Id of Cognito, it can be set automatically
after setting amplify.

� AWS_REGION: the region of the AWS provider, it can be set automatic-
ally after setting amplify.

� AWS_ACCESS_KEY_ID: AWS IAM Access Key ID.

36

5. Implementation

� AWS_SECRET_ACCESS_KEY: AWS IAM Secret Access Key.

The following Environment variables can be de�ned in the backend; otherwise,
they have a default value:

� PORT: the port number that the service(s) will be using.

� NODE_ENV: set the environment of the backend: testing or production.
By default, it's development.

5.4.1 Development environment - Microservices

In the development environment, the environment variables can be set directly
by the OS or in a .env �le. A .env �le is essentially a plain text document. It
should be located at the root of the project. It has the structure of a key-value
pair to specify the variables and their corresponding values.

Docker Compose
The .env �le can be used inside a docker-compose as it shown in the docker-
compose �le 5.4. Since Docker compose 3.4, the environment variables can be
de�ned at the top of the docker-compose �le, then can be shared with the services
as it is shown in the docker-compose �le 5.5. It is also possible to de�ne a non-
common variable direct for a speci�c service.

version: "3.9"

x-common-variables: &common-variables # define common variables

DATABASE_URL: mongodb+srv://XXXXXXX

USER_POOL_ID: XXXXXXX

AWS_REGION: XXXXXXX

AWS_ACCESS_KEY_ID: XXXXXXX

AWS_SECRET_ACCESS_KEY: XXXXXXX

services:

adminconsole:

image: adminconsole

build:

context: .

dockerfile: adminconsole.Dockerfile

ports:

- "5001:5001"

environment: *common-variables # pass the common variables to this

service

Listing 5.5: Docker Compose: setting common environment

37

5. Implementation

5.4.2 Production environment - Monolithic

Because the deployment on AWS executed in CI, it is essential to pass the pass-
words and the credential keys to the Pipeline. Gitlab o�ers CI/CD variables.
Through Gitlab CI/CD variables, we can de�ne environment variables that can
be used inside the Pipeline and avoid hard-coding variables in the .gitlab-ci.yml
�le.

5.5 Deployment

The implementation of the deployment phase is addressed in this section for both
architectures (Monolithic and Microservices). The backend is where the deploy-
ment di�ers in the two architectures. Only the monolithic architecture is deployed
on AWS14. While the second is not fully implemented. In this section, a guide
on how to deploy Uni1 as Microservices on AWS will be addressed. The frontend
components will be deployed on AWS Amplify, and the Backend Component is
deployed on AWS Elastic Beanstalk. The deployment of the Uni1 Monolithic ap-
plication and frontend components is done by (Müller, 2021), while the network,
database setup, and the set of environment variables are executed in this thesis.

5.5.1 Frontend

Each Frontend component of Uni1 application (Admin console, Dashboard, Cam-
paigner and Marketplace) is deployed on AWS using Amplify. AWS Amplify15 is
a collection of tools and services that help to build scalable full-stack applications.
Amplify works with common web frameworks like JS, React, Angular, Vue.

Deliver
Amplify provides a fully managed Continuous Deployment service, which allows
Amplify to connect with the Gitlab repository. By updating the master branch
on Gitlab, the CI/CD from Amplify will run.

Protocol
To improve the security for frontend components, only HTTPS is permissible,
which means that all frontend components requested and responded data is con-
veyed via HTTPS protocol.

14https://aws.amazon.com/
15https://aws.amazon.com/amplify/

38

https://aws.amazon.com/
https://aws.amazon.com/amplify/

5. Implementation

5.5.2 Backend

The key di�erence in deployment between architectures (Monolithic and Mi-
croservices) is in the backend components. Based on the deployment concept
requirement 3.3, which declares the possibility to have many deployment possib-
ilities in order to decrease costs. The backend components will be deployed as a
single docker container; in other words, the components will be merged together in
one application. This article will discuss the implementation of backend deploy-
ment as a monolithic application, as well as a suggestion of a possible technique
to deploy backend components as microservices.

Monolithic

All Backend components (Admin console, Dashboard, Campaigner and Market-
place) are containerized in one docker container, which will be deployed on AWS
Elastic Beanstalk 16. AWS CloudFormation 17 is used to generate an Elastic
Beanstalk instant. AWS CloudFormation is a service that assists in modelling
and setting up the AWS resources and environment variables, i.e., S3 Bucket,
Cognito User Pool ID, Database URL. We de�ne all the resources in our backend
template (cfnBackendTemplate.json) in git repository inside aws folder.

� Deliver
The delivery of the backend executed by the GitLab CI service. The CI
will be triggered by modifying the backend code in the master branch. The
CI will run the following steps:

� uploadBackendS3: upload the Backend application to S3.

� cfnBackend: create Elasticbeanstalk using CloudFormation. Cloud-
Formation will take care of storing and con�guring the resources.

� createEbVersion: create new app version.

� deployEb: deploy on Elastic beanstalk as one docker container.

After the CI �nish, the backend components will be deployed on Elastic
Beanstalk, run as one docker container, and stored in the Amazon S3
bucket.

� Protocol
In order to ensure that our backend is well protected, HTTPS protocol
is used for the communication. We requested a trusted certi�cate for our
domain *.uni1.de with AWS Certi�cate Manager 18. Then we set the
certi�cate in the CloudFormation template.

16https://aws.amazon.com/elasticbeanstalk/
17https://aws.amazon.com/cloudformation/
18https://aws.amazon.com/certi�cate-manager/

39

https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/certificate-manager/

5. Implementation

The protocol for routing tra�c to the backend instances is HTTP. On the
other hand, the protocol of the listener is HTTPS. As shown in Figure
4.12 the communication with the backend components from outside is only
available via HTTPS, while the Elastic beanstalk will convert the HTTPS
request to HTTP.

Microservices

As it has been discussed in the Architecture and Design chapter 4.6.2. There are
several ways to deploy the backend components as microservices on AWS. One
way to deploy Microservices on AWS is by deploying the Backend components
as Multicontainer Docker on a single Elastic Beanstalk instance. Amazon Elastic
Container Service19 (ECS) should be used to run and manage Docker applications
across the logical group of EC2 instances.

Create a cluster Before the ECS task de�nition, a cluster in ECS must be
created. It can be created directly from the ECS website.

Create ECS task de�nition ECS task de�nition can be set directly from the
ECS website or a Docker-compose �le.

As it has been shown before, a docker-compose is used in the development en-
vironment to run all the backend components (each component as a docker con-
tainer). Docker Compose can be used to create the ECS task de�nition �le. ECS
task de�nition speci�es each container's properties(i.e., CPU, memory require-
ment, network, and port settings).

Using container-transform20 tool, the Docker-Compose �le can be converted to a
Dockerrun.aws.json de�nition �le.

Deploy to Elastic beanstalk
Before deploying the containers, the following pre-request are needed:

� AWS Docker con�guration: the �le that describes how to deploy the
Docker containers as one Elastic Beanstalk applicationDockerrun.aws.json.

� Load Balancing: con�gure multiple Elastic Load Balancing listeners on a
multi-container Docker to harmonize inbound tra�c with HTTPS protocol.

� Docker images

The backend folder should contains the following �les:

19https://aws.amazon.com/ecs/
20https://github.com/micahhausler/container-transform

40

https://aws.amazon.com/ecs/
https://github.com/micahhausler/container-transform

5. Implementation

backend

|

|-Dockerrun.aws.json

|

|-adminconsole

| |-app.js

|

|-marketplace

| |-app.js

|

|-campaigner

| |-app.js

|

|-dashboard

| |-app.js

The platform branch in the .gitlab-ci.yml �le must be con�gured. Inside the
.gitlab-ci.yml �le, in the deployEB step, the Platform as Docker and Platform
branch as multi-container Docker running on 64bit Amazon Linux must
be set. A step by step tutorial can found on the AWS website 21.

5.6 Integration

The dashboard is in charge of the integration of the frontend components. In this
section, the term "backend integration" refers to the capacity of the backend com-
ponents to run as a single unit and how to run a single component of the backends.
However, the app.js in the root backend folder used to integrate backend com-
ponents, and it can be con�gured from package.json. This section also addressed
the communication between the components as well as the implementation of
authentication and authorization.

5.6.1 Communication

The communication of the heterogeneous components implemented through the
standard Restful API. Where the frontend components communicate with the
backend component(s) through HTTPS over a Rest API.

The communication between the backend component(s) executed through the
database.

21https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_docker_
v2con�g.html

41

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_docker_v2config.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_docker_v2config.html

5. Implementation

5.6.2 Authentication and Authorization

Nodejs provides a function called 'Middleware' which can access the request
object, the response object, and the following function. A middleware (called
Cognito-middleware) has been implemented and attached to each route (path) in
the backend servers, which has access to each HTTP request and response and
is used to verify authentication and authorization for each incoming request.

As shown in �gure 5.2 the middleware can either terminate the HTTP request
or pass it to the following middleware or function.

Figure 5.2: Cognito middleware

Use Case
The diagram in �gure 5.3 visualizes the sequence of a message �ow in the Uni1
system between the Admin-console frontend and Uni1 backend (regardless of the
backend architecture). This sequence diagram captures a user's behaviour with
administrator access rights and successfully logs in and accesses the admin console
UI. When a user logs into the user interface dashboard, a JWT will be stored in
the browser's cookie. The JWT contains the Cognito user's initial information,
as well as their access groups, as shown in 5.6. Each request will include a token
that will be sent to the backend. The backend's middleware will verify the token's
validity using the Key ID it has included. If it is legitimate, the included positions
will verify the access rights; if grant permission granted and the request will be
processed; if refused, permission refused, the request will terminate and an error
will be sent back.

42

5. Implementation

Figure 5.3: SD: the Authentication and authorization in Uni1

"header":{

"kid": "XXXXXXX/XXXXXXXXXXXXXXXXXXXXXXXXXXXXX/XXXXXX",

"alg": "RS256"

},

"payload:"{

"sub": "53eb85f3-24f2-4f39-8bcd-XXXXXXXXX",

"cognito:groups": [

"Campaigner",

"Administrator",

"User"

],

"event_id": "c2260145-05f7-4cc3-8e92-b8c475a47476",

"token_use": "access",

"scope": "aws.cognito.signin.user.admin",

43

5. Implementation

"auth_time": 1618775114,

"iss": "https://cognito-idp.eu-central-1.amazonaws.com/...",

"exp": 1618933792,

"iat": 1618930192,

"jti": "7c5ea677-14fd-4d7a-960d-f29f194b4ffa",

"client_id": "4io7r9u2o1etb2172qhilimjgf",

"username": "Max" }

Listing 5.6: Cognito JWT

5.6.3 Backend Components

Each of the Backend components can run as a single unit or as a part of one com-
ponent. The backend components can run through Docker and docker-compose
(as explained in 5.3), or directly from npm, as package.json illustrated in Listing
5.7. Multiple "run" and "test" instructions are executable.

{

"name": "uni1next",

"version": "1.0.0",

"description": "REST API",

"main": "app.js",

"scripts": {

"start": "node app.js",

"start:dev": "nodemon app.js",

"startadmin": "node adminconsole/app.js",

"startadmin:dev": "nodemon adminconsole/app.js",

"startcamp": "node campaigner/app.js",

"startcamp:dev": "nodemon campaigner/app.js",

"startdash": "node dashboard/app.js",

"startdash:dev": "nodemon dashboard/app.js",

"startmp": "node marketplace/app.js",

"startmp:dev": "nodemon marketplace/app.js",

"test": "cross-env NODE_ENV=testing mocha",

"testadmin": "cross-env NODE_ENV=testing mocha

↪→ \"adminconsole/test/\"",

"testcamp": "cross-env NODE_ENV=testing mocha

↪→ \"campaigner/test/\"",

"testdash": "cross-env NODE_ENV=testing mocha

↪→ \"dashboard/test/\"",

"testshared": "cross-env NODE_ENV=testing mocha \"shared/test/\""

},

"dependencies": {...},

"devDependencies": {...} }

Listing 5.7: package.json

44

5. Implementation

Through the multiple commands, we were able to set multiple environments.
The �rst environment is development, where compiling with errors was allowed,
and without the need to manually (re)start the node server, the node server
will be restarted automatically. The second environment is production, where
errors are forbidden. That improved the production environment and signi�cantly
decreased the developer's time and e�ort necessary to execute the program.

5.6.4 Dev Tools

A simple tool has been implemented to create "Tags". It can be accessed on the
Dashboard UI. It can only be seen and used by users with administration rights.
The dev tools should be removed once the Marketplace is rebuilt.

5.6.5 UI Integration

As discussed in the design and architecture chapter, there are multiple ways to
integrate the UI of microservices. The implementation of the UI integration
of Uni1 is similar to "Backends for frontends" with "API composition", where
each service got its own UI and its backend. Each UI of a service uses the
"API composition" to get the data from the corresponding service. At the same
time, the UI of the Dashboard component is used for integrating the various
user interfaces. Where each component has a separate interface interacting with
its respective backend component. As illustrated in �gure 5.4, each component
appears on the dashboard as a button; the user is brought to the corresponding
URL component "which is a subdomain of uni1.de" by clicking the component.
The accessible component will be displayed, depending on the logged-in user
access right. The URL con�guration of each frontend component can be found
in a JSON con�guration sheet under the con�g folder on the Gitlab repository.

45

5. Implementation

Figure 5.4: A screenshot of the Dashboard UI for a user with fully access right

46

6 Evaluation

This chapter evaluates the implementation of the thesis requirements in chapter
3 and discusses whether they are met.

6.1 Authentication and Authorization Concept

The �rst requirement was to set an authentication and authorization mechan-
ism. Authentication and authorization both are critical components of system
security. They validate the user's identity and grant access to the Uni1 applica-
tion. As shown in the authentication and authorization section 5.6.2, a Cognito
middleware was attached to each backend route that checks validation of the
authentication and authorization for each incoming request. On the other side,
the major part of the credential veri�es (Authentication) executed in the fron-
tend by the Dashboard UI component via the Login function. The dashboard is
connected with AWS Cognito, which veri�es the inserted username and password
from the user. If it's valid (Authentication), the corresponding components will
appear on the dashboard as shown in 5.4. Furthermore, a user must have at least
one role. Summary the �rst requirement is met.

6.2 Administration component

The second requirement was to create a new component to manage and control
user accounts and contacts. The new component has been developed and in-
tegrated with the other Uni1 components. As speci�ed in the implementation
section 5.1 the component has been built with the architecture and technology,
which have been discussed in 4.5. The new component is called Admin Console
(Admin Konsole). Admin Console has the ability to list all the accounts and
contacts. Furthermore, it has the ability to release contact from an account, re-
move a contact, and import email(s) to contacts. Admin Console, in addition,
provides the capability to assign roles to users or to dismiss roles from a user and
to manage account status (active and deactivate). The user interface of Admin

47

6. Evaluation

Console is in German and is user-friendly. Summary the second requirement is
met.

6.3 Deployment Concept

The third requirement was to have the ability to deploy the application as mono-
lithic and as a microservices. It also mentions that it must be a cross-platform
application to execute it in various environments.

Following the result of the comparison between the Docker container and a vir-
tual machine in chapter 4. Docker containers were picked as speci�ed in the con-
tainer implementation 5.3 for Uni1 backend components. The run of the backend
component (as a monolithic and Microservice app) was successfully tested on
Windows 10, Linux (Debian and Kali), and AWS Elastic beanstalk.

Figure 6.1: Uni1 deployment as Microservices

In the architecture and design 4.6, the concept of the deployment of Uni1 as
monolithic and as Microservice were discussed. In the implementation 5.5, the
implementation of monolithic backend and an example of the implementation
of microservices were speci�ed. The microservices architecture is not deployed
yet, as shown in �gure 6.1 some elements "coloured in red" are not implemen-
ted, but the approach to implementing them is mentioned. Summary the third
requirement is met, but the microservices deployment still needs to set up.

48

6. Evaluation

6.4 Integration, Communication and Extensibil-

ity Concept

The fourth requirement was to have the feeling that the user is using a monolithic
application despite if its microservices. It also speci�es that components must
have the capacity to communicate together. Moreover, it is easy to add a new
component.

6.4.1 Integration

As illustrated in �gure 5.4, all the frontend components are integrated together
in the Dashboard UI. The user cannot notice if the application is monolithic or mi-
croservices. Also, the backend components can each run as a single unit(microservice),
or all the components can run as a single unit (monolithic).

6.4.2 Communication

The communication between the frontend and backend components is executed
with RESTful API over HTTPS. In contrast, there is no real connection between
the backend components. The backend components communicate together through
the database.

Based on the thesis (Schwarz, 2019), which listed some common pitfalls of a
system based on microservices, that leads to a hidden monolith.

Sharing the same collection data on the same database between di�erent mi-
croservices is dangerous because no explicit data ownership is stated. Further-
more, even if responsibilities are established, if one service modi�es the format of
stored data, other services may crash if they access the modi�ed data. This can
be avoided by using distinct databases.

6.4.3 Extensibility

It is possible to add a new component to the Uni1 by adding the new compon-
ent UI (if it has a frontend) to the Dashboard UI and specify the access rights
from Cognito by Amplify. At the same time, the backend component must use
the backend's shared library and connect to the shared database. According to
(Schwarz, 2019), having a shared library leads to a hidden monolith.

6.5 Summary

The �rst requirement, the Administration component, is met. The second re-
quirement, the authentication and authorization requirement, is met. The third

49

6. Evaluation

and fourth requirements are not entirely met. Since the implementation contains
a hidden monolith, the shared database and shared library must be avoided to
transition to a complete microservice design. The reason for it is that while the
microservices concept was being established, di�erent programmers were devel-
oping other components. Due to time constraints, we chose the simplest option
to share the database to complete the implementation and ensure that our ap-
plication works consistently. However, the shared database must be avoided in
the future.

50

7 Conclusions

7.1 Summary

In this thesis, we addressed the problems of building an extensible application
in the age of the cloud. The purpose of this thesis was to split the existing
Uni1 application into containerized components, construct a new administration
component, integrate all components, prepare for a full microservices switch, and
reduce deployment costs.

The new administration component was built using the traditional client-server
architecture. For the frontend, the Vue.js framework with typescript used. For
the backend, Nodejs used. For the connection, a RESTful API used.

All the frontend components were deployed on AWS Amplify, where the backend
components were deployed on AWS Elastic Beanstalk and the database is hosted
on AWS.

We compared two virtualization solutions to improve Uni1's scalability and de-
ployment procedure (Virtual machine and Docker Container). After demonstrat-
ing that the docker container is better suited to our application, we chose it as
virtualization technology, allowing us to avoid vendor lock-in and environment
dependency.

To reduce the hosting costs, two deployment methods were created; depending
on the expectational usage need, the backend components of the Uni1 can be
deployed as a monolithic application or as microservices applications.

7.2 Future Work

From a technological standpoint, a full transition to complete microservices must
involve some points. Multi databases should be used instead of a shared data-
base. Remove shared libraries by copying them into each backend component.
A method for deploying the backend components as microservices is mentioned
in the implementation. Furthermore, several deployment functions are not yet

51

7. Conclusions

set up, as shown in �gure 6.1 some components "colored in red" has not been
implemented yet. As a result, when Uni1 is deployed as microservices, some work
must be done to set up the missing elements.

52

Appendices

53

Appendix A: REST API Overview of Admin-Console Service

A REST API Overview of Admin-Console Service

A.1 Contact Route

Methode Endpoint Description
GET /getAllContacts Get all contacts
POST /releaseUserContact Relase an email from

users account
POST /addEmailsToContacts Add emails to the con-

tacts
DELETE /deleteContact Delete a contact by

email

A.2 User Route

Methode Endpoint Description
GET /getAllUsers Get all users
POST /listAllUsersInGroup Get all users in a

group
POST /adminAddUserToGroup Give a user an ac-

cess right based on the
group

POST /adminEnableUser Enable a user account
POST /adminDisableUser Disable a user account
DELETE /removeUserFromGroup Remove user from a

group
DELETE /adminDeleteUser Delete user account

54

Appendix B: REST API Overview of Dashboard Service

B REST API Overview of Dashboard Service

B.1 Dev Route

Methode Endpoint Description
GET /tag Get all tags
POST /createTag Create a tag with a

tag name

B.2 Users Route

Methode Endpoint Description
GET /me Get my account data
POST /signup Create new user
POST /me Edit user data

B.3 Contact Route

Methode Endpoint Description
POST / Create contact
POST /{contactId} Update contact
POST /{contactId}/subscribe Subscribe an email
POST /{contactId}/unsubscribe Unsubscribe an email
DELETE /{contactId} Delete contact

B.4 Tags Route

Methode Endpoint Description
GET /{tagId} Get tag by id
GET / Get all tages
POST / Create new tag

55

Appendix C: REST API Overview of Campaigner Service

C REST API Overview of Campaigner Service

C.1 Campaigns Route

Methode Endpoint Description
GET / Get all campaigns
GET /{campaignId} Get campaign by Id
POST /{campaignId}/�nish Set �nish to a cam-

paign by Id
POST / Create new campaign
POST /preview Get an HTML pre-

view of the campaign

C.2 Replies Route

Methode Endpoint Description
GET /{replyId} Get reply by Id
GET / get all replies
GET /{replyId}/emails Get if reply handled
POST /{replyId}/emails Set reply handled

C.3 Bounces Route

Methode Endpoint Description
GET / Get all bounces
GET /{bounceId} Get bounce by Id

C.4 Tags Route

Methode Endpoint Description
GET /{tagId} Get Tag by Id
GET / Get all tages
POST / Create new tag

C.5 Contacts Route

Methode Endpoint Description
GET /email/{email} Get contact by email
POST /{contactId}/resetBounce Reset bouncing �ag
POST /{contactId}/unsubscribe Unsubscribe a contact
DELETE /{contactId} Delete contact

56

References

Advantages and disadvantages of docker - learn docker [DataFlair]. (2018, Novem-
ber 22). Retrieved June 27, 2021, from https://data-�air.training/blogs/
advantages-and-disadvantages-of-docker/

Amaral, M., Polo, J., Carrera, D., Mohomed, I., Unuvar, M. & Steinder, M.
(2015). Performance evaluation of microservices architectures using con-
tainers. 2015 ieee 14th international symposium on network computing and
applications (pp. 27�34). https://doi.org/10.1109/NCA.2015.49

Best practices for writing docker�les [Docker documentation]. (2021, May 3).
Retrieved May 6, 2021, from https://docs.docker.com/develop/develop-
images/docker�le_best-practices/

Monus, A. (2018). What are microservices? the pros, cons, and how they work
[Raygun blog]. Retrieved May 22, 2021, from https://raygun.com/blog/
what-are-microservices/

Müller, F. (2021). Uni1 monolith to components.
Newman, S. (2015, February 2). Building microservices: Designing �ne-grained

systems. "O'Reilly Media, Inc."
Riehle, D. (2016). Das uni1 projektkonzept (2016) (tech. rep. CS-2016-04). Tech-

nische Fakultät.
Riehle, D. (2020). Advanced design and programming. Retrieved May 24, 2021,

from https://github.com/dirkriehle/adap-course/blob/master/Generated/
Lecture%20slides/ADAP%20B01%20-%20Containerization.pdf

Schwarz, G.-D. (2019). Migrating the jvalue ods to microservices, 18�19.
Silberschatz, A. & Galvin, P. B. (2013). Operatings system concepts, 23�24.
Thönes, J. (2015). Microservices. IEEE Software, 32 (1), 116�116. https://doi.

org/10.1109/MS.2015.11
Using the multicontainer docker platform (amazon linux AMI) - AWS elastic

beanstalk. (n.d.). Retrieved May 15, 2021, from https://docs.aws.amazon.
com/elasticbeanstalk/latest/dg/create_deploy_docker_ecs.html

What is a container? | app containerization | docker. (2021). Retrieved May 12,
2021, from https://www.docker.com/resources/what-container

57

https://data-flair.training/blogs/advantages-and-disadvantages-of-docker/
https://data-flair.training/blogs/advantages-and-disadvantages-of-docker/
https://doi.org/10.1109/NCA.2015.49
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://raygun.com/blog/what-are-microservices/
https://raygun.com/blog/what-are-microservices/
https://github.com/dirkriehle/adap-course/blob/master/Generated/Lecture%20slides/ADAP%20B01%20-%20Containerization.pdf
https://github.com/dirkriehle/adap-course/blob/master/Generated/Lecture%20slides/ADAP%20B01%20-%20Containerization.pdf
https://doi.org/10.1109/MS.2015.11
https://doi.org/10.1109/MS.2015.11
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_docker_ecs.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_docker_ecs.html
https://www.docker.com/resources/what-container

	Introduction
	Motivation
	Problem Statement
	Maintainability and Extensibility
	Vendor Lock-in and Testability (similar environments)
	Optimize Cloud Costs

	Purpose of the Thesis
	Methodology
	Structure of Work

	Background
	Microservices
	Advantages and Disadvantages

	Docker Container
	Advantages and Disadvantages

	Uni1 application
	Uni1: Previous version (Marketplace)
	Uni1: New version (Uni1Next)

	Thesis Requirements
	Authentication and Authorization Concept
	Administration component
	Deployment Concept
	Integration, Communication and Extensibility Concept

	Architecture and Design
	Logical distinction between Processe, Container, and Microservice
	Definitions
	Logical Coherence and Development Stages

	Evaluation of Containers and Virtual Machines
	Structure Evaluation
	Performance and Creation Time Evaluation

	Container Technology and its Application
	Container Technologies
	Container Application

	Design of Communication and Integration Mechanisms
	Authentication and Authorization
	Communication Technology
	User Interface Integration Technology

	Design of Admin Console component
	Concept for a set-up in AWS
	Monolithic
	Microservices

	Implementation
	Administration component
	Frontend
	Backend
	Authentication and Authorization
	Mapping user data from Cognito and Database
	Communication

	Database
	Container
	Production environment - Monolithic
	Development environment - Microservices

	Environment variable
	Development environment - Microservices
	Production environment - Monolithic

	Deployment
	Frontend
	Backend

	Integration
	Communication
	Authentication and Authorization
	Backend Components
	Dev Tools
	UI Integration

	Evaluation
	Authentication and Authorization Concept
	Administration component
	Deployment Concept
	Integration, Communication and Extensibility Concept
	Integration
	Communication
	Extensibility

	Summary

	Conclusions
	Summary
	Future Work

	Appendices
	REST API Overview of Admin-Console Service
	Contact Route
	User Route

	REST API Overview of Dashboard Service
	Dev Route
	Users Route
	Contact Route
	Tags Route

	REST API Overview of Campaigner Service
	Campaigns Route
	Replies Route
	Bounces Route
	Tags Route
	Contacts Route

	References

