Automated Dependency Updates
for Dart Projects

BACHELOR THESIS

Johann Schramm

Submitted on 21 June 2021

Friedrich-Alexander-Universitdat Erlangen-Niirnberg
Technische Fakultit, Department Informatik
Professur fiir Open-Source-Software

Supervisor:
Georg Schwarz, M. Sc.
Prof. Dr. Dirk Riehle, M.B.A.

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
dahnlicher Form noch keiner anderen Priifungsbehérde vorgelegen hat und von
dieser als Teil einer Priifungsleistung angenommen wurde. Alle Ausfithrungen,
die wortlich oder sinngeméf iibernommen wurden, sind als solche gekennzeichnet.

Erlangen, 21 June 2021

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 21 June 2021

https://creativecommons.org/licenses/by/4.0/

Abstract

It is important to keep track of new dependency versions, in order to receive
security fixes and new features. Similar to other programming languages with
dependency mechanisms, libraries and frameworks for the Dart programming
languages get distributed as packages using its package manager Pub.

This thesis shows the steps needed to implement an automatic dependency update
tool for the Dart programming language. The implemented tool is an extension to
the Dependabot project, an application which automatically scans source code
repositories of various programming languages for outdated dependencies and
creates updates in the form of “Pull Requests” for them.

Finally, this thesis evaluates the impact an automatic dependency update tool
could have for the Dart programming language ecosystem and its community
by analyzing its performance on the 1020 most starred GitHub Dart repositories.
This showed that the tool was able to successfully process over 85% of the detected
dependencies. Around 40% of these detected dependencies were up to date, and
the tool was able to update the remaining 60% of dependencies to the latest
version.

11

Contents

1 Introduction

2 Requirements

2.1
2.2

Functional Requirements
Non-Functional Requirements

3 Fundamentals

3.1
3.2
3.3

Dependency management L.
Dart and its package manager Pub
Dependaboto

4 Architecture

4.1

4.2
4.3

Dependaboto
4.1.1 General Dependency Update Workflow
4.1.2 Dart Dependency Update Workflow
4.1.3 Dependabot Update Workflow
4.1.4 Dependabot Workflow Steps
4.1.5 Docker
Pubmodule
Pub update script

5 Implementation

5.1

5.2

Dependabot pub module
5.1.1 Pub Module Setup L.
5.1.2 Version and Requirement
5.1.3 Filefetcher
5.14 Fileparser
5.1.5 Update checker
5.1.6 Fileupdater
5.1.7 Metadata Finder
Testing the Dependabot pub module implementation
5.2.1 Linting

=~ W

~J ot gt O\

10
10
11
12
14
15
18

19
19
19
21
22
23
26
28
30
32
32

11

5.2.2 Unit tests
5.2.3 Test automation
5.3 Dependabot Pub Runner

6 Evaluation
6.1 Experiment
6.2 Requirements oo
6.2.1 Functional Requirements
6.2.2 Non-Functional Requirements
6.23 Results.

7 Conclusion

Appendices
A Dependabot Steps Modules Public APT
B Dependabot Language Ecosystem Module Implementation APT . .

References

36
36
39
40
41
42

43

45
46
49

51

v

1 Introduction

It is common for modern applications to depend on multiple third party packages.
These dependencies add components, helper libraries or entire frameworks to the
project. In most cases, they are developed and maintained by members of the
programming language community. Developers can publish and download these
packages, to and from their respective language registries.

Nowadays, nearly every popular programming language has an established form
of package management. Popular package managers for example include, npm
for the JavaScript ecosystem (npm, Inc., 2021a) or pip for the Python ecosystem
(PyPA, 2020).

This is also the case for the Dart programming language (The Dart project au-
thors, 2021b) and its package manager pub (The Dart project authors, 2021e).
The language is known for its popular Flutter framework (The Dart project au-
thors, 2021a), a UI toolkit for developing high performance and cross-platform
applications on mobile and desktop devices, as well as the web platform (The
Flutter authors, 2021a).

As Flutter and the Dart language itself are evolving rapidly, with new major
versions of the Dart language the Flutter framework releasing regularly (Google
Developers, 2021). The community has to adapt and keep up with that velocity
and publish new packages version to benefit from new language features like null
safety (Thomsen, 2021).

As projects get more and more complex, and the number of included packages
increases, it gets harder to track dependency updates. This is important, because
newer versions can deliver new features to aid developer and user experience, or
fix critical security issues.

Numerous tools exist to automate the update process. One of the more known
ones is Dependabot (Dependabot Ltd, 2019b), which regularly creates “version
update pull requests” for outdated dependency specifications in repositories. The
Dependabot tool is open source and can be used with major collaborative source
code platforms like GitHub or GitLab.

1. Introduction

Since June 2020, Dependabot is integrated directly into the GitHub system itself
(Mullans, 2020) and provides the service to every user free of charge. Currently,
the Dependabot tool does not support the Dart language, as there exists no
official language module. By implementing such a module, more than 400000
Dart repositories on GitHub (GitHub Search API, 2021) would be able to enable
Dependabot and receive automatic dependency updates.

This thesis describes the steps needed to monitor dependency updates and ex-
tend the Dependabot tool with a Dart language module, as well as the impact
automatic dependency updates could have on the Dart language community.

2 Requirements

2.1 Functional Requirements

This section describes the functional and non-functional requirements for this
thesis. Later in section 6.2 it will be evaluated if the requirements were met.

Fetch dependency specifications

Available dependency specification files should be fetched from the repository.
These files define each required dependency as well as its version, or possible
version range.

Unify dependency specifications

Fetched dependency metadata should be parsed into a common representation,
which simplifies further access and work with the data.

Update dependency specifications

Identified dependencies should each be checked for updates or security patches,
depending on given version constraints. If updates exist, the dependency declar-
ations in the original specification file will be patched with the new dependency
versions.

Provide upgrade pull-requests

A version upgrade for each outdated dependency should be provided as a separate
pull request. The user can then easily accept or reject these pull requests.

Repository-based Configurable

The system should be configurable using a configuration file located in the target
repository.

2. Requirements

2.2 Non-Functional Requirements

Multiple Source Platform Compatible

The implemented system should be compatible with different source code plat-
forms like GitHub or GitLab.

Working Standalone

The implemented module should be usable standalone without any other already
existing language modules.

Provide Upstream Pull-Request

A pull request for the official Dependabot repository which adds the implemented
module should be provided.

3 Fundamentals

3.1 Dependency management

To simplify complex patterns and speed up development, most modern program-
ming projects integrate external code. These pieces of external code are called
dependencies, as the program depends on them at compile- or runtime.

For most developers it is standard practice to install and use external depend-
encies, or also known as packages, in their projects. Around this practice entire
ecosystems and tools were developed.

One of the most known dependency management systems and the largest package
registry in the world might be npm, the node package manager (npm, Inc.,
2021a). It allows developers to easily install JavaScript modules, while keeping
track of project-wide installed dependencies and their installed version inside a
project specification file called package.json (npm, Inc., 2021b).

These dependencies are usually hosted in a public registry where developers can
upload their own packages for the community or download ones published by
other developers. Because of this community driven interaction, most dependen-
cies regularly receive improvements in the form of updates.

3.2 Dart and its package manager Pub

The Dart programming language is developed by Google (The Dart project au-
thors, 2021c). The Dart language is standardized as the standard ECMA-408
(TC52, 2015). Programs written in Dart can be easily transpiled into JavaScript
programs, however Dart also supports just-in-time compilation as well as ahead-
of-time compilation to run Dart programs natively on mobile and desktop devices
(The Dart project authors, 2019a).

In the recent years the Dart programming language started to gain traction again
with the release of the Flutter toolkit, which enables developers to easily write

3. Fundamentals

cross-platform mobile, web and desktop applications using Dart. The Flutter
toolkit is also developed by Google (The Flutter authors, 2021a).

Similar to other programming languages, Dart has its own dependency manage-
ment system. The central part of this ecosystem is the pub package manager,
which consists of the pub tool, as well as the online repository (The Dart project
authors, 2021e). Users can discover packages and import them from the plat-
form to use in their projects. Users can also publish the packages they created
themselves.

According to the pubspec.yaml documentation (The Dart project authors,
2021f), every Pub package must consist of at least one pubspec.yaml file, like
the one seen in listing 3.1. This file specifies the metadata for the current library
or application. The metadata must include the package name, current version,
Dart runtime version and description. Additionally, the file can optionally contain
the required dependencies, a homepage or repository URL.

The pub tool can then use these pubspec.yaml files to install the required
dependencies for a project.

name: dart—basic
description: A basic Dart project

publish to: ’none’
version: 1.0.0-+1

environment :
sdk: ">=2.7.0 <3.0.0"

dependencies:
http: ~0.13.1

Listing 3.1: A basic pubspec.yaml file.

Every declared dependencies need to specify a source, currently the Pub package

manager supports the following four source formats (The Dart project authors,
2020c).

e Hosted packages: This is the most common way to specify a dependency,
by just providing the dependency name and a version constraint. Using
this format, pub will fetch the dependencies by default from the pub.dev
platform. If available, developers can reference their own package registry
to pull the packages from.

e Git packages: Instead of providing a version constraint a package can also
be referenced using a Git URL. The packages to be pulled can be further

3. Fundamentals

specified with a Git ref and the actual path where the packages are located
inside the repository.

e Path packages: Local packages can be referenced using an absolute or
relative path in the package specification.

e SDK: Used for referencing packages which are bundled with another SDK.
Currently, this only applies for the Flutter SDK.

A common type of version declaration is needed to detect and interpret changes
in package version. Dart and pub use a modified version of SemVer 2.0.0-
rcl (Preston-Werner, 2011-2013) called pub_semwver (The Dart project authors,
2019b) to define, prioritize and sort versions.

According to this specification, versions are separated into major.minor.patch
additionally they can have a prerelease suffix, a build number suffix, or both.
The different parts of the version number define compatibility between other
versions, for example a higher major version indicates backwards incompatible
changes between the previous versions.

When specifying a Pub package inside a pubspec.yaml a specific, or a range
of versions can be required. The package manager will then select a compatible
version, taking the defined constraint and other dependencies into account. Valid
constraints are exact versions, a range between two versions or none at all. Version
ranges which allow all backward compatible versions according to SemVer can be
defined using caret syntaxr (The Dart project authors, 2020c).

The installed dependencies might also rely on further dependencies which will
have to be installed as well. As each dependency can require a different version
of a particular dependency, Pub uses a version constraints mechanism to choose a
compatible version of a dependency if multiple different dependencies depend on
it. This mechanism works by trying to combine the different version requirement
ranges and finding a version which is in every range and is only possible due to
the rules of SemVer (The Dart project authors, 2020d).

Once the dependency graph is resolved, the pub tool generates a pubspec.lock
file which contains the exact version of every installed dependency and transitive
dependency. If this file is shared with other users, their pub tool can replicate
the original dependency environment to ensure that the application works in the
same way as it does for the original author.

3.3 Dependabot

Outdated dependencies are a common problem in open source projects and soft-
ware projects in general. Developers who don’t use the latest version of their

3. Fundamentals

dependencies may miss out on new features and put themselves and their pro-
jects to potential security risks as newer versions might have fixed vulnerabilities.
Although most package managers provide some functionality to upgrade the in-
stalled dependencies, available updates are often missed by the user. This can
happen especially in older projects which are maintained only sporadically.

The Dependabot project (Dependabot Ltd, 2019b) solves this problem by creat-
ing an application that automatically scans source code repositories for outdated
dependencies and notifying the maintainers by creating pull requests, which up-
date these dependencies.

The application currently supports dependency updates for a set of package man-
agers, in the context of Dependabot called language ecosystems, including popu-
lar ones like bundler for Ruby, cargo for Rust, pip for Python, npm for JavaScript,
and other languages (GitHub, 2021a).

The Dependabot project is mainly written in Ruby (Ruby Community, 2021a)
and split into two parts, the core application and a client (or script) which uses
the modules implemented in the core to perform the actual update process.
The core project is open source, with the source code available on GitHub in
the dependabot-core repository for the core (Dependabot Ltd, 2021b), and a
sample client in the form of a simple script in the dependabot-script repos-
itory (Dependabot Ltd, 2021e). The dependabot-core repository is licensed
under The Prosperity Public License 2.0.0, a license that encourages free use and
modification and discourages direct commercial use of the software (License Zero,
2018). The dependabot-script repository is licensed under the MIT License.

At the time this thesis was written, no new language ecosystems got accepted
into dependabot-core due to internal lack of capacity and in-house expert-
ise. However, new ecosystems can still be developed and maintained as forks of
dependabot-core by the community (Dependabot Ltd, 2021h).

In early 2019 Dependabot has been acquired by GitHub, since then the applica-
tion has been integrated directly into the GitHub platform, with additional fea-
tures like automatic security issue fixing pull requests (Dependabot Ltd, 2019a).

4 Architecture

This chapter describes the architecture of dependency update workflows and a
Dart dependency update tool in the form of an extension to the Dependabot
project.

4.1 Dependabot

The Dependabot project consists of multiple Ruby modules, these modules can be
split into two categories, common modules and language modules. Each of these
modules are their own Ruby package. In the case of the Ruby ecosystem, packages
are called Ruby Gem or simply Gem (Silva, Gongalo and Ruby Community,
2021).

All these Dependabot Ruby Gems are published to the rubygems.org repository
(Dependabot Ltd, 2021d), a hosting platform for community Ruby Gems (Ruby
Community, 2021b). The Dependabot also specifies and publishes dependabot-
omnibus, a Ruby Gem package (Dependabot Ltd, 2021g), which depends on all
available Dependabot Gems and allows easy installation and use of the entire De-
pendabot source code (Dependabot Ltd, 2021c). To use the Dependabot modules
in an update task, a script can depend on and install these Gems.

In this thesis, the dependabot-core project is used as the base for the im-
plementation. It was chosen because the core modules already provide a lot of
relevant functionality for the use case of implementing a Dart package depend-
ency updater and to the large potential user base the Dependabot application
provides, due to it being already part of the popular GitHub platform. Addition-
ally, the project includes already implemented API interfaces for major source
code providers like GitHub and GitLab, resulting in a more flexible application
that is automatically available to a larger user group.

This section further describes the general workflow of a dependency update and
the Dependabot update workflow and the architecture of the separate classes
needed to build a new language ecosystem module.

4. Architecture

4.1.1 General Dependency Update Workflow

The process of updating a dependency in a project which uses a package manager,
can be simplified into four basic steps as described in the Dependabot architecture
documentation (Dependabot Ltd, 2021c) and in figure 4.1.

Fetching ﬁ Parsing % Checking ﬁ Updating

Figure 4.1: A basic dependency update workflow.

e Fetching: Collecting all required files for the update step. These might
include specification files or lockfiles.

e Parsing: Extracting the installed dependencies from the previously fetched
files.

e Checking: Fetching the latest versions of a or the detected dependencies
and checking if a newer version is available.

e Updating: Patching the fetched files with the newly detected dependency
updates.

It is common to directly apply the file updates after the process is complete, or
send them as a patch to a remote repository for further review.

4.1.2 Dart Dependency Update Workflow

The Dart dependency update workflow is similar to the theoretical dependency
update workflow. This pattern can even be applied to the manual workflow a
user would perform to update a dependency, which would look like the following.

e Fetching: The user opens the relevant pubspec.yaml file locally.

e Parsing: The user chooses the dependencies from the pubspec.yaml that
are to be updated.

e Checking: The user either looks at the official source of the package to
find the newest version, or uses the pub outdated tool to get a list of updates
for all installed versions.

e Updating: The user chooses the version he wants to use and replaces
the requirement for that dependency in the pubspec.yaml file. Finally, the
user runs the pub upgrade command to update the requirements in the
pubspec.lock file.

10

4. Architecture

Alternatively the pub upgrade command with the —major-versions argument can
be used to simplify this process and automatically use the latest resolvable ver-
sion. This however might still not update all available dependencies to the latest
version, as the latest version might be incompatible due to version requirement
conflicts with other installed dependencies (The Dart project authors, 2021d).

To easily automate the entire dependency update workflow, the described manual
steps have to be further broken down into smaller instructions and potential issues
that can occur have to be identified.

4.1.3 Dependabot Update Workflow

The actual, automatic dependency update workflow steps implemented by a De-
pendabot script is similar to the one described in section 4.1.1. It contains the
same steps as the basic once, however adds additional steps like creating a pull
request and selecting the file source (Dependabot Ltd, 2018).

e Describing: Specifying the dependency file source provider, repository,
directory and branch.

e Fetching: Collecting all required files for the update step. These might
include specification files or lockfiles.

e Parsing: Extracting the installed dependencies from the previously fetched
files.

e Checking: Fetching the latest versions of a or the detected dependencies
and checking if a newer version is available.

e Updating: Patching the fetched files with the newly detected dependency
updates.

e Submitting: Creating a pull request, merge request or other equivalent
with the updated dependency files on the specified source platform.

The Dependabot common modules of the dependabot-core project contain the
core logic and functionality. They are the modules that represent and simplify
the steps a dependency update workflow uses. Additionally, the common mod-
ule provides helper functions for common use cases like interacting with code
written in the language ecosystem modules native language or the file system.
Each language module then extend the functionality of the single workflow steps
from the common modules to adjust to the programming languages unique way
of processing dependency updates (Dependabot Ltd, 2021c). These language
ecosystems modules can also be described as plugins for the host Dependabot
application, in this case the core module acts as host for the plugin ecosystem.

To support a new language ecosystem, extensions for a specific set of the step

11

4. Architecture

modules, as well as some additional Dependabot specific components, have to be
implemented. The Dependabot project provides a basic guideline detailing the
implementation steps needed to implement a new language ecosystem module
which can be seen in appendix B.

The final workflow can then use all the previously described components to scan
the repository and publish pull requests for the outdated dependencies. The usual
way to implement a Dependabot update workflow is to link the outputs of the
previous components to the inputs of the next component.

4.1.4 Dependabot Workflow Steps

This section describes the existing modules for the steps (seen in section 4.1.3)
necessary for a dependency update workflow in the context of the Dependabot.
The Interfaces for these classes can be seen in appendix A.

Source

Instances of the Source class are data classes and the common representation of
the location of source code files for project. This file is used to pass the reference
to the required platform and repository to the other steps like the fetching step.

The data an instance of this class is created with includes for example the source
code platform, the name of the repository on that platform, the git commit and
branch that should be fetched and the directory the relevant files for the update
process are located relatively.

Currently, the Dependabot supports GitHub, GitLab, Bitbucket,
Azure DevOps Repos and AWS CodeCommit as one of the four source providers.

File fetcher

Using the previously defined Source reference, and if necessary the credentials
to access a private or restricted remote repository, the required specification files
can be fetched from the remote repository.

The file fetcher does not return plain files but instead puts the file content and
the metadata into an own instance of the Dependabot DependencyFile class. The
fetched files and the current HEAD commit can then be retrieved using the files
and commit methods.

File parser

This step extracts the relevant dependencies from the fetched specification files.
To easily access the data in further steps, the file parser extracts the identified

12

4. Architecture

dependencies and converts them into the common Dependabot Dependency in-
stance representation, which is also used in further steps.

The Dependency data class can contain, for example the name and version of a
dependency, as well as the current version requirements it specifies. In the De-
pendency class implementation the requirements field is an array that can contain
one or more hash data structures with information about the requirement. The
specific implementations of the file parser can specify themselves what require-
ment information is necessary for the current update workflow.

Finally, an array containing every detected dependency can be retrieved from the
parse instance method.

Update checker

The update checker step determines the most recent available and resolvable
versions for a given dependency. It has to be instantiated with a Dependabot
Dependency instance, most likely fetched from the previous file parser step.

For that dependency it was created with, the update checker provides a wide range
of methods. Most important are probably the up to date? method, a method
that checks if a dependency is already at the latest version, the can_update? a
method that checks if the dependencies is actually allowed to update, and the
updated_ dependencies method which returns a modified Dependabot Dependency
instance with the updated version constraints.

These methods depend on the individual language module extensions of the up-
date checker to add methods, which fetch the available versions of the current
dependency, using the specific APIs of the language’s package registry.

The update checker supports three unlocking modes “all”, “own” and “none”; each
regarding if the version constraints of one or more dependencies are allowed to
be updated.

In a update workflow this update checker has to be initialized once for every De-
pendency that should be updated, afterwards the up to_date? and can_update?
methods can be called to check if a dependency can actually be updated and fi-
nally the updated dependencies method to receive the data for the next step.

File updater

This step updates the version constraints of one or more dependencies in a de-
pendency specification files. A file updater instance has to be created with a list
of one or more Dependency instances and an array containing, most of the time
the previously fetched, DependencyFile instances. The file updater uses the ori-
ginal DependencyFile instances, creates a duplicate of that instance and modifies

13

4. Architecture

the content of the file directly using the implementation in a language ecosystem
module extension.

A workflow can then receive the updated DependencyFile instances using the
updated_ dependency_files method.

Metadata Finder

Although this class isn’t used directly in a dependency update workflow most of
the time, it is still used by the Dependabot PullRequestCreator.

Based on a source code URL a language ecosystem module extension provides, the
metadata finder can gather metadata information about the dependency it was
instantiated with like, git commits, releases, changelog and more. This metadata
is then accessible using the respective functions of that instance.

Pull Request Creator

This last step creates a pull requests with the updated files. The creator has to
be instantiated with one or more Dependency and DependencyF'ile instances, the
source repository, the base commit, if necessary a set of credentials and optionally
a flag if the pull request should have the language label assigned.

Using the create method of the instance, the pull request against the base commit
and with the updated files, will be created for the repository at the source pro-
vider. Additionally, the Dependabot PullRequestCreator uses the MetadataFinder
to fill the pull request description with metadata like the dependencies commit
history and changelog.

4.1.5 Docker

The Docker documentation (Docker, 2021) describes Docker as a platform and
application for developing and running container based applications. It allows
users to define application environments in the form of images. These images
can then be used to start containers, a secure and efficient way of executing the
predefined images.

The dependabot-core project uses Docker to assemble standardized images
of the dependabot-core application environment. Currently, three different
images exist, all three can be built using Docker image specification files, called
Dockerfiles, located inside the dependabot-core repository.

e Dockerfile: The main Dockerfile, which installs all dependencies needed
to run the Dependabot common module, as well as all the native helper
applications needed for other language ecosystem modules. This image

14

4. Architecture

doesn’t include the actual Dependabot language modules, and is not able
to perform the dependency update process by itself.

e Dockerfile.ci: This docker image is based on the core image and includes
the dependabot-core source. This image is intended to be used inside
the official continuous integration (CI) workflows.

e Dockerfile.development: This docker image is also based on the core im-
age and includes the dependabot-core source as well as some adjustment
to improve the debugging experience. This image is intended for debugging
and testing new features locally.

4.2 Pub module

Language ecosystem modules are the main method of adding support for new
programming languages and their dependency management systems to the De-
pendabot project (Dependabot Ltd, 2021c). They represent the unique update
flow for a specific dependency manager. Each language ecosystem module is a sep-
arate Ruby module that depends on the common framework of the Dependabot.
Additionally, language modules can be partially written in other programming
languages to simplify steps of the update process. The language module extends
the core components described in section 4.1.4, these core components handle
most of the required 10 for the language module.

Each component that is to be extended needs to overwrite a set of public and
private class functions. These have to be implemented, otherwise the components
can’t interact with each other, as the functions in the base classes often depend
on these extended functions.

When initializing the module, the classes have to register their own implement-
ations for the package manager they implement. Through this, the core module
can then fetch the required classes for the update process of a specific package
manager. In a workflow the implementation can then be retrieved by using the
for_package manager(package manager) getter, as seen in listing 4.1.

15

4. Architecture

<file fetcher.rb>
Dependabot :: FileFetchers.
register ("pub", Dependabot::Pub:: FileFetcher)

<workflow .rb>
Fetch File Fetcher
fetcher = Dependabot:: FileFetchers.
for package manager("pub").new(
source: source,
credentials: credentials

)

Listing 4.1: Registering a FileFetcher for the "pub" package manager and re-
trieving it later.

This section further describes the architecture decisions made for the Pub lan-
guage ecosystem module.

Version and Requirement

The version and requirement classes represent the Pub version and requirement
rules defined in the pub__semver specification (The Dart project authors, 2019b)
and the Pub dependencies documentation (The Dart project authors, 2020c).

The two possible architecture approaches that could be pursued to implement
the version and requirement representations are:

e Reimplement in Ruby: The version and requirement classes would be
reimplemented in Ruby according to the specifications. This could easier
lead to potential errors and bugs if the specification is not followed closely
or implemented in the wrong way.

e Delegate to native code: A wrapper around the official pub semver
implementation could be used to quickly verify version and requirements.
However, working with the native code would add additional complexity,
as a lot of data has to be passed between the Ruby class and the native
Dart implementation.

For this work the approach to reimplement the specification in Ruby was chosen,
to keep as much of the implementation in Ruby as possible. To mitigate the issue
of potential programming errors a huge amount of unit tests for the version and
requirement classes had to be planned and implemented.

16

4. Architecture

File fetcher

The Pub file fetcher simply extends the Dependabot file fetcher and searches for
the required files in the given directory. In this case for the Dart programming
language these are the pubspec.yaml and optionally the pubspec.lock.

File parser

The Pub file parser extends the Dependabot file parser. It receives the fetched
pubspec files and parses the detected dependencies from the pubspec.yaml
directly into a set Dependabot dependency instances.

Update checker

The Pub update checker will fetch the latest version information for the depend-
encies it was created with from the pub API. The implemented tool is designed
to only operates using the “own” unlocking mode, meaning that a dependency
update can only update its own requirements.

Similar as it was the case for the version and requirements classes, the update
checker could be implemented partially with native code, especially the pub out-
dated command (The Dart project authors, 2020a). However, to keep it simple, as
there is only one network call for each dependency necessary, the update checker
was implemented in Ruby.

File updater

The Pub file updater will apply the updated requirement information of one
dependency to the pubspec.yaml and generate a new pubspec.lock file.

This step is partially implemented in Ruby and partially uses a native helper
to update all files. The pubspec.yaml file will be edited using a regex on the
content of the file directly, while to update the pubspec.lock file the updater will
write the updated pubspec.yaml and the old pubspec.lock files to a temporary
directory where the pub upgrade (The Dart project authors, 2021d) command will
be executed.

Metadata Finder

The Pub metadata finder also simply extends the Dependabot metadata finder
and performs an API request to lookup the associated source code repository of
the dependency.

17

4. Architecture

4.3 Pub update script

Finally, a separate Ruby script, similar to the dependabot-script (Depend-
abot Ltd, 2021e), can then use the old and newly implemented modules of the
dependabot-core project to connect the dependency update workflow steps and
perform the actual dependency update for the specified source.

In the case for the Pub module, this will work by depending on the implemented
Pub module and the Dependabot common module. The script itself will then
fetch the dependency update step implementations for the pub package manager.
The input and outputs of the different steps are then chained together to fetch
the files, parse the dependencies, update them and create pull requests with the
updated files.

18

5 Implementation

This chapter addresses the concrete implementation steps needed to build an ap-
plication which automatically updates dart package specifications. As described
in chapter 4 this implementation will be a new language ecosystem module for
the existing Dependabot application.

5.1 Dependabot pub module

In the concrete case of implementing a Dependabot language module, the
dependabot-core common module README.md files provide a basic imple-
mentation guideline for writing new language modules, as for example the guide
for a file fetcher (Dependabot Ltd, 2019¢). The modules implemented in this
thesis are mainly implemented in the Ruby programming language.

Each module extends the common Dependabot classes or other Ruby classes and
overwrites different public and private functions, as seen in Appendix B.

The final implementation will be able to update the most common form of re-
quired dependencies in the Dart ecosystem, which are hosted dependencies on
the pub.dev registry, to the latest available stable version, each single dependency
with have an own pull request. Projects with path dependencies and conflicting
resolvability won’t be supported.

5.1.1 Pub Module Setup

To develop the Pub language ecosystem module, the official dependabot-core
repository was forked on GitHub. The implementation of the module was done
publicly on the wip/pub git branch.

In an effort to keep the implementation of the Dependabot Dart language ecosys-
tem module clean and similar to the other ecosystem modules, a separate folder
with a new Ruby gem that contains the implementation was created.

19

5. Implementation

Pub Gem

The Ruby Gem for the Pub module is in a separate folder, at the root of the
repository next to the other modules and the common modules. The folder of
the Gem is named pub and consist of the following files and directories:

lib/dependabot/: The directory that contains the Dart language ecosys-
tem module implementation Ruby files.

script /ci-test: A shell script which executes the tests for the implement-
ation during the CI pipeline run.

spec/dependabot/: The directory that contains the Ruby test files for
the Dart language ecosystem module implementation.

spec/fixtures/: The directory that contains the data of HTTP calls and
sample pubspec.yaml files to support the test files.

.rubocop.yml: A configuration file for the RuboCop Ruby linter that is
used in the dependabot-core project.

dependabot-pub.gemspec: The specification file for the Ruby Gem that
defines metadata for the Pub language ecosystem module.

Gemfile: The specification file for Bundler that defines the Ruby Gems
required for the implementation.

Additionally, a reference to the new Pub Gem had to be created in the specific-
ation of the dependabot-omnibus Gem.

Pub Entrypoint

As seen in listing 5.1, the Pub module has an entry point named pub.rb, this
file requires all implemented Pub module implementation files and registers the
pub package manager for the PullRequestLabeler class with the name and color
of the label as well as for the Dependency class.

require "dependabot/pub/file fetcher"

...

|

require "dependabot/pub/version"

require "dependabot/pull request creator/labeler"
Dependabot :: PullRequestCreator :: Labeler.
register label details(

)

"pub", name: "pub", colour: "0175C2"

require "dependabot/dependency"

20

5. Implementation

Dependabot :: Dependency .
register production check("pub", —>(_) { true })

Listing 5.1: The entrypoint for the Pub module.

Docker

Because the Pub language module file updater, as seen in section 5.1.6, depends
on the pub tool included in the Flutter SDK, the main dependabot-core Dock-
erfile had to be adjusted to additionally install the Flutter SDK.

Install Flutter SDK

RUN git clone —branch stable $GIT PATH /opt/flutter
ENV PATH="$PATH: /opt/flutter /bin"

RUN flutter precache

Listing 5.2: Installing Flutter in the dependabot-core Dockerfile

This clones the latest stable version of the Flutter SDK, which includes the Dart
SDK, from the Flutter GitHub repository into the /opt/flutter directory (The
Flutter authors, 2021b). The flutter binaries will now be put into the list of
executables by appending /opt/flutter/bin to the PATH variable. The final step is
precaching Flutter specific development binaries, as these are required to execute
the pub upgrade command.

5.1.2 Version and Requirement

In contrast to the other classes that have to be implemented, the version and re-
quirement classes extend their respective implementations from the Ruby::Gems
module, instead of a class from the Dependabot module.

The version and requirement classes are essential for most of the other dependency
update step classes that have to be implemented, as they contain the logic and
rules of Dart dependency versions and requirement structure and operations.

The implemented Dart and Pub version and requirement classes follow the rules
defined in the pub semwver documentation (The Dart project authors, 2019b),
which in turn is based on Semantic Versioning 2.0.0-rc.1 (Preston-Werner, 2011-
2013).

Version

In the case of the version class, a regex was added to accept the format of pub
version numbers like the one seen in listing 5.3, as it differs from the one imple-
mented by default in the Gem::Version class.

21

5. Implementation

major.minor. patch—prerelease+buildnumber

1.2.3—test+1
Listing 5.3: The format of a Pub version number.

The default sort operator was also overwritten with a custom sorting method
which operates according to the pub semwer specification. Additionally, as re-
quired by the specification a priority order sorting function was added, which
gives prerelease versions a lower priority than any other version. This priority
order sorting function is used when selecting the latest version for an update.
The pub_ semwver specification states that this is because prerelease versions, also
referred to as unstable versions, should be opt-in for the user, by using a con-
straint that specifically allows a prerelease version (The Dart project authors,

2019b).

Requirement

In the case of the requirement class, the available Gem::Requirement operators
and logic were overwritten with the requirement operators, < > <= >= " and
any, that are available in the Dart ecosystem (The Dart project authors, 2020c¢).
Additionally, the requirements parser had to be adjusted to allow Dart require-
ments and parse them correctly.

As seen in listing 5.4, a satisfied by? method was implemented as well, which
returns true if a given version satisfies the requirements of that current instance.

req = Dependabot ::Pub:: Requirement .new("~1.0.0")

req.satisfied by ?(Dependabot::Pub:: Version .new("1.0.0"))
—> True

req.satisfied by ?(Dependabot::Pub:: Version.new("1.1.0"))
—> True

req.satisfied by ?(Dependabot::Pub:: Version.new("2.0.0"))
—> False

Listing 5.4: The format of a Pub version number.

5.1.3 File fetcher

The file fetcher implementation for the pub module fetches two relevant files from
the target repository.

e pubspec.yaml: The main specification of all metadata and dependencies
e pubspec.lock: Additional detailed machine generated specification of all

current direct and transitive dependencies

22

5. Implementation

The file fetcher base class provides multiple functions to easily load the file directly
from the source repository.

According to the specification the three methods .required_ files in?,
-required_ files_message and #fetch_files have to be implemented. The
required_ files * methods are basic helpers to simplify error handling.

As it can be seen in listing 5.5, the method #fetch_files calls the actual file fetch-
ing methods for the two files described above. If the pubspec.yaml file can not
be found the implementation will abort and raise an error. The pubspec.lock
file on the other hand is optional, and will only be fetched if it is available in the
repository.

def fetch files
files = []
files << pubspec if pubspec

if files .empty?
raise Dependabot :: DependencyFileNotFound ,
Pathname
.new(File.join (directory , "pubspec.yaml"))
.cleanpath .to_ path
end

files << pubspec lock if pubspec lock
files
end

def pubspec
@pubspec ||= fetch file if present("pubspec.yaml")
end

def pubspec lock
@pubspec_lock ||= fetch file if present("pubspec.lock™")
end

Listing 5.5: The fetch files implementation.

To read the actual files from the specified source code repository, the FileFetch-
ers::Base class defines the fetch file if present(filename) method.

5.1.4 File parser

The file parser implementation reads the fetched dependency files from the pre-
vious file fetcher step and creates a requirements data structure for each detected

23

5. Implementation

dependency.

The method parse creates and returns a DependencySet instance containing all
parsed Dependency instances. This method reads every value under the depend-
ency and dev__dependency keys and extracts the name and requirement string
to fill into the custom requirements data structure. This data structure can then
be used by further modules to perform the actual update process.

At first the file parser has to parse the pubspec.yaml specification file, this is
done in the method seen in listing 5.6. As the file is in the .yaml format, the
Ruby YAML module can be used to convert the file content into a Ruby Hash,
a map data structure which allows easy access to the Key-Value structure of the
YAML file. Inside the pubspec.yaml file the dependencies are located under
the dependencies and dev_ dependencies keys, in the context of this method these
different keys were called group. Once the current group is fetched from the hash,
every pub.dev hosted dependency gets selected and mapped into another hash
with name, requirement and group information. Git and path dependencies are
ignored as they are not assigned any version constraints in the pubspec.yaml
file. Finally, the mapped result will be returned for further processing in the
parse method.

def dependency strings from yaml(yaml, group)
data = YAML. safe load (yaml.content, aliases: true)

return [| if data.nil?

dependencies = data.fetch (group, {})

return || if dependencies.nil?
dependencies.
select { |_, value| value.is_a?(String) }.

map { |key, val]|
{ name: key, requires: val, group: group }
}

rescue Psych:: SyntaxError
raise Dependabot :: DependencyFileNotParseable, yaml.name
end

Listing 5.6: The method which extracts the dependency declaration strings
from the pubspec.yaml file.

As it can be seen in listing 5.7, the main pubspec parsing method then calls the

previous mentioned pubspec.yaml parsing method with the dependencies and
dev_dependencies as group argument. The results will then be combined and

24

5. Implementation

flattened, as it is irrelevant for the further steps under which key the dependen-
cies were originally defined. Finally, the method will iterate over each identified
hosted dependency and create a new Dependabot Dependency with the parsed
information, that gets added to the dependency set.

def pubspec file dependencies(file)

set = DependencySet .new

dependencies = dependency strings from yaml(file ,
"dependencies")

dev dependencies = dependency strings from yaml(file ,
"dev dependencies")

all = [dependencies, dev dependencies]|. flatten

all .each do |dependency |
set << Dependency .new (
name: dependency |:name]
version: mnil,
package manager: "pub",
requirements: |[{
requirement: dependency [: requires|,
groups: [dependency |:group]],
source: nil
file: "pubspec.yaml"

H
)

end

set
rescue Gem:: Requirement :: BadRequirementError

raise Dependabot:: DependencyFileNotParseable, file .name
end

def exact version?(req)
Dependabot : : Pub:: Requirement .new (req). exact?
end

Listing 5.7: The creation process for a Dependabot::Dependency in the file
parser.

The Dependency instance then contains the dependency name, if available the
exact version, used package manager and one requirement containing the specified
requirement string, the dependency group and original filename.

As the pubspec.lock file is only relevant for the lockfile updating process in the

25

5. Implementation

file updater step, it will not be parsed in the file parser step, regardless if it is
available or not.

5.1.5 Update checker

The main task of the update checker implementation is to fetch and create up-
dated requirements for a dependency. Every parsed dependency is assigned a
unique update checker instance.

According to the specification the update checker has to implement multiple
methods. These are latest version, latest resolvable wversion, updated_ requirements
and latest resolvable wversion with no_unlock.

Additionally, the methods latest wversion_resolvable_with_ full unlock? and
updated_ dependencies_after full unlock can be implemented, these are optional
and not required to build a functional dependency updater for single dependen-
cies, and as such were not implemented in this thesis.

These methods depend on external version information about the specific de-
pendency. To fetch the latest version information of a dependency, the update
checker uses the pub.dartlang.org API. Although it is only partially officially doc-
umented (The Dart project authors, 2020b), unofficial community projects like
pub_api_ client (Farias, 2021) document all known endpoints and features.

Due to simplicity, the essential API endpoint the update checker uses is the
/packages/{name}.json endpoint. As it can be seen in listing 5.8, the endpoint
returns the basic metadata of an on pub.dev hosted dependency called name.
This metadata includes the dependency name, the uploaders and all published
versions sorted ascending.

GET https://pub.dartlang.org/packages/pub_ semver.json

{

"name": "pub semver",
"uploaders": |[],
"versions": |

"2.0.0 —nullsafety.0","1.0.0","1.1.0" ,"1.2.0" ,"1.2.1",
[]

”'1..‘4.1" "1.4.2" "1.4.3")"1.4.4" "2.0.0"

Listing 5.8: The pub.dev API response for pub_semver package.

As seen in listing 5.9, a helper method named all_package versions was written,
which initiates a HT'TP GET request to the previously described API endpoint

26

5. Implementation

with the name of the dependency the update checker was initialized with. If the
request is successful, the JSON response will be parsed, cached and returned as
a list of available Pub::Version instances, otherwise the method will return an
empty list.

def all package versions
return @Qall versions unless @all versions.nil?

res = Excon.get (
"https://pub.dartlang.org/packages/
#{dependency .name}. json"
idempotent: true,
xxDependabot :: SharedHelpers.excon defaults

)

return || unless res.status =— 200

@all _versions = JSON.parse(res.body)["versions"|.
map { |v| Dependabot::Pub:: Version .new(v) }
end

Listing 5.9: Fetching all available versions of the current dependency.

This method is then used by the latest wversion and latest resolvable wversion
methods, which can be seen in listing 5.10. The first method returns the latest,
and if possible stable, version of that dependency. The second method returns
the latest, also if possible stable, version that matches all the given requirements
of that version.

def latest version
all package versions.max { |a, b| a.priority b }
end

def latest resolvable version
all package versions.
select { |ver| pub requirements.
all? { |req| req.satisfied by7?(ver) }
}.

max { |a, b| a.priority b }
end

Listing 5.10: The latest version and latest resolvable wversion implementa-
tion.

Both versions pick the latest stable version using priority sorting. As described
previously in section 5.1.2, priority sorting is similar to comparison sorting, with

27

5. Implementation

the exception that prerelease versions, also referred to as unstable versions, are
always avoided if possible, and therefore less prioritized when sorting.

requirement = "~1.0.0"
versions = ["1.0.0", "1.1.0", "2.0.0", "2.1.0—test"|

latest version => 2.0.0
latest resolvable version => 1.1.0

Listing 5.11: An example for both latest wversion methods.

Finally, as seen in listing 5.12, the update checker implements the

updated_ requirements method, which updates the requirements of the depend-
ency to the latest found version with caret syntax. This requirement constraint
was chosen to automatically allow a relatively large range of compatibility with
other potential future versions.

def updated requirements
dependency . requirements.map do |req|
next req if latest version.nil?

new requirement = ""#{latest version.version}"
req.merge(requirement: new_requirement)
end

end

Listing 5.12: The updated_ requirements method implementation.

The method latest resolvable wversion_with _mo_unlock is similar to the
latest resolvable wversion, and simply redirects the method call to the latter one.

Additionally, although not required by the implementation guide, the method
up_to_date?, which normally acts a short-circuit for already updated depend-
ency, was implemented as well. This is because otherwise dependencies which
have an any version constraint would be updated in a dependency update work-
flow, which is not intended because dependencies with an any version constraint
don’t care about the installed version (The Dart project authors, 2020c).

5.1.6 File updater

The file fetcher implementation updates the specification files with the new re-
quirements of a single version. Similar to the update checker, there is one instance
for each parsed dependency.

The updated_ dependency files is the main function that has to be implemented
when writing a Dependabot file updater. This method returns an array of up-
dated file instances, using the updated dependency requirements. The function

28

5. Implementation

checks if the requirement have actually changed and detects the old requirement
string in the pubspec.yaml using a regex. Once the string is detected, a new
dependency string will be built using the Requirement implementation class.

name = "http"
requirement = "1.0.0"

regex = [(#{name}:)\ sx((#{requirement})|(’#{requirement}’)
| ("#{requirement}"))/m. freeze

This will result in the following regex

regex = /(http:)\sx((1\.0\.0)[(11.0\.07)
[("1\.0\.0"))/m. freeze

Listing 5.13: The RegEx to detect the old dependency for the file updater.

If a pubspec.lock file was detected by the file fetcher and passed to the file
updater, the file updater implementation will also update the pubspec.lock file
if possible. To achieve this, the file updater passes this task to the native pub
tool by executing the 'pub upgrade’ command (The Dart project authors, 2021d).
The pub tool will then generate a matching new pubspec.lock for the file fetcher
to read.

As it can be seen in listing 5.14, the method will at first open a new temporary
directory. Inside this directory, the pubspec.yaml specification file that was
updated in the previous step will be written. The method will then run the shell
command flutter pub upgrade [dependency], this instructs the Flutter binary
to generate a lockfile update for the current dependency while trying to avoid
the other dependencies as much as possible. Once the command completes, the
method reads the content of the newly generated lockfile and returns an updated
file instance.

The upgrade process can fail, one reason might be that the version solver fails
to find a version of a transitive dependency that is compatible with every other
required dependency, or that a git or path dependency can not be found.

This implementation uses the Flutter SDK to run the pub upgrade command.
If a project wants to use the Flutter framework, specified by the Flutter sdk
source inside the dependencies array of the pubspec.yaml file (The Dart project
authors, 2020c), and therefore depend on the Flutter SDK to successfully run the
upgrade command. With only the Dart SDK and without the Flutter SDK to
installed on the machine, the pub upgrade command can not be executed for
such a project. Plain Dart projects which don’t use the Flutter SDK on the other
hand, work just fine with the pub tool bundled with the Flutter SDK.

The method uses the SharedHelpers class, a module implemented by Depend-

29

5. Implementation

abot to provide different helper functions for language modules which interact
with binaries or code for the respective language they intend to support.

def updated lockfile for pubspec dependency (spec,
dependency)
SharedHelpers.in _a temporary directory
(spec.directory) do
File.write ("pubspec.yaml" | spec.content)
File.write ("pubspec.lock", lockfile.content)

SharedHelpers.run_ shell command (
"flutter _pub_upgrade_#{dependency .name}"

)

updated file (
file: lockfile |,
content: File.read("pubspec.lock")

end
end

Listing 5.14: The method to update the pubspec.lock file.

The resulting updated pubspec.yaml and pubspec.lock files can then be used
to create a new update pull request.

5.1.7 Metadata Finder

The primary function of the Metadata Finder implementation is to fetch the
URL for additional metadata of a source repository of a current dependency, if
available. In contrast to the previous modules, the metadata finder is not used
by the actual Dependabot Runner script directly. It is however used by the pull
request creator to fill pull requests with rich data. This data includes for example
the commit history and release information (Dependabot Ltd, 2019f).

According to the pubspec file documentation (The Dart project authors, 2021f),
the repository field contains a URL to the package’s source code repository and
the homepage field a URL to the package’s homepage or source code repository.
Although most Pub packages on pub.dev are open source, due to the fact that
the source code is available publicly on pub.dev anyway, a definite reference to
a source code repository in packages is not required. This limitation makes it
hard to reliably discover the source code repository. To mitigate this issue, the
implemented Metadata Finder will first look up the repository field for a valid
URL and otherwise fall back to the value in the homepage field.

30

5. Implementation

def look up source

pubspec = package info["latest"|["pubspec"|
repo = pubspec|"homepage" |
unless pubspec|"homepage" |. nil?
repo = pubspec|"repository"|
unless pubspec|"repository"|. nil?
Source . from url(repo)
end

Listing 5.15: The implementation of the metadata look up source function.

Package Metadata Statistics

To validate the hypothesis that a valid source code reference can be found in the
homepage field, the pubspec.yaml metadata of all 21111 valid published pub.dev
packages (as of 6.5.2020) was fetched from the pub.dev API and scanned using
a custom script. As seen in table 5.1, only a small fraction of 1.54% of packages
contained neither the homepage or repository field, and are therefore unavailable
to get rich metadata support for pull requests updating them.

] Category \ Count \ Percentage ‘

Total 21111 100.00%
Homepage | 19975 94.62%
Repository | 3031 14.36%
Both 2220 10.52%
None 325 1.54%

Table 5.1: Amount of packages on pub.dev that include the homepage or re-
pository fields in their pubspec.yaml file.

After running the analysis, it turned out that the assumption that the homepage
field most of the time contains references to source code repositories is indeed
true. As seen in table 5.2, the analysis of the 19975 packages containing a
homepage field, shows that over 80% of these packages actually lead to the pop-
ular source code platform www.github.com or github.com, with similar platforms
like gitlab.com and bitbucket.org following. Most of the remaining homepages
lead either to the actual project website or other source code hosting platforms.

Of the 16426 URLs that lead to GitHub, a total of 14550 are in the format of
https://github.com/{owner} /{repository}, which is a reference to a source code
repository hosted on GitHub.

31

5. Implementation

’ Hostname ‘ Count ‘ Percentage ‘
github.com 16426 82.23%
(www.github.com)
gitlab.com 253 1.27%
bitbucket.org 112 0.56%
Other 3184 15.94%

Table 5.2: Most common homepage hostnames of packages on pub.dev that
include the homepage field in their pubspec.yaml file.

5.2 Testing the Dependabot pub module imple-
mentation

Testing the implementation and therefore insuring the proper functionality of
the implemented work, is an important part of software development. The
dependabot-core modules use unit tests to ensure their implementation ac-
tually work the way they are intended. For this project RSpec (The RSpec
Team, n.d.) testing framework is used to implement and run the unit test. Addi-
tionally, the source code files are being checked by the RuboCop linter (Batsov,
2012-2020).

5.2.1 Linting

Linters like the RuboCop tool (Batsov, 2012-2020) used in the dependabot-
core project, help developers and maintainers to ensure a consistent code style
in their projects. This includes source code style checks like line length and
preferred quote type for string literals, as well as basic checks for the program
logic.

The files that were implemented in this thesis for the dependabot-core Pub
module were all scanned using RuboCop, the tool finished without errors or
warnings.

5.2.2 Unit tests

Every implementation file of the Pub module has a corresponding unit test file
was created and implemented. The tests strive to reach the highest possible line
coverage, meaning source code lines that were passed during the test runs, and
highest possible branch coverage, meaning conditional branches in the source
code that were passed during the test runs. As seen in table 5.3, nearly 100% of
lines and branches are covered by the implemented unit test.

32

5. Implementation

| Filename | Lines | Cov. | % | Branches | Cov. | % |
pub.rb 12 11 | 91.67% 0 0 100%
pub/file fetcher.rb 22 22 | 100% 6 6| 100%
pub/file parser.rb 38 38 | 100% 8 6 75%
pub/file_updater.rb 50 50 | 100% 10 8 80%
pub/metadata_finder.rb 16 16 | 100% 6 6| 100%
pub/requirement.rb 51 51| 100% 22 22 | 100%
pub/update checker.rb 36 35 | 97.22% 8 8| 100%
pub /version.rb 82 82 | 100% 48 | 47] 97.92%

| Total | 307] 305]99.35% | 108 | 103 | 95.37% |

Table 5.3: The line and branch coverage of the individual Pub module imple-
mentation files.

To support the unit tests multiple fixtures were defined that contain sample
pubspec.yaml files or resemble basic network requests to several APIs like the
GitHub API or the pub.dev API.

For nearly every function a corresponding unit test was written to confirm that
the targeted behavior is correctly implemented.

As an example, the tests for the version and requirement implementations from
section 5.1.2 assert that the rules of the pub__semver (The Dart project authors,
2019b) specification.

Tests for the file fetcher implemented in section 5.1.3 control the correct execution
of network requests for a source and assert that the available required files in
scenarios with different directory contents are returned.

The tests for the file updater, described in section 5.1.6, assert that the imple-
mentation actually properly updates the pubspec.yaml and pubspec.lock spe-
cification files for a set of different requirements and calls the flutter pub upgrade
command with the correct arguments.

5.2.3 Test automation

The original dependabot-core repository uses GitHub Actions Workflows (Git-
Hub, 2021c) as an automated CI environment (Dependabot Ltd, 2021f). The
workflow ci.yml automatically runs a set of quality assurance tests on the branch.
Currently, these are configured to run for every branch that matches “main”, “ac-
tions/**” and “wip/**” as well as for every branch that is currently part of an

open pull request.

The Dependabot Pub module was developed publicly as a fork of the main

33

5. Implementation

dependabot-core repository. To enable the CI functionality the branch
“wip/pub” was chosen for the development of the pub module.

The workflow uses a matrix strategy to run the test suite simultaneously for every
implemented package manager module. It then builts the Dependabot Core and
Dependabot CI docker images. Once the CI image is built, the workflow will
spin up the container image and run the ci-test script inside the script directory
of the current package manager module. This ci-test script, as it can be seen
in listing 5.16, will install the current dependencies of the ruby implementation
using the bundle install command. Once the dependencies are fully installed,
the RuboCop linting tool will lint the Pub module codebase for any style errors
or bad patterns. The RuboCop linting rules for the module are located in the
.rubocop.yml file, which in turn inherits from the root .rubocop.yml intended for
all Dependabot modules. Finally, the unit tests in the spec directory of the
current module will be run using the rspec tool.

#1/bin /sh

bundle install
bundle exec rubocop
bundle exec rspec spec

Listing 5.16: The implemented Cl-test script file for the Pub module.

If no linting errors are found and the unit tests run successfully the current
matrix will be marked as completed. To avoid accidentally breaking other package
manager modules, the entire workflow run will only be marked as completed if
all matrix runs complete successfully.

5.3 Dependabot Pub Runner

To test and actually use the implementation in real projects a Dependabot pub
runner was implemented. The runner uses the public API of the different classes
needed to complete the update process.

In this project the runner is a basic Ruby script which chains the separate classes
together. To allow easy access for external projects the runner was published as
a GitHub Dockerfile Action.

Every time the action is executed, a docker container based on a simplified
dependabot-core image (see section 5.1.1), and the source of the Dependabot
pub implementation will be built. Afterwards the container entry point will run
the basic Ruby update script implementation which will scan the specified pub-
spec.yaml file for outdated dependencies and create a new pull request for each
outdated dependency in the defined repository.

34

5. Implementation

The action can be further configured to adjust for a specific project configuration,
the configuration options can be seen in table 5.4.

’ Input \ Description \ Default ‘
token | Persornal access token used to modify the re- | github.token
pository.
project | The repository one wants to create pull re- | github.repository
quests for.
path The path of the pubspec.yaml. A

Table 5.4: Available configuration options for the GitHub Action Dependabot
pub runner.

If a Dart project hosted on GitHub should use this implemented Dependabot
Pub Runner GitHub Action in a workflow, a YAML file has to be created inside
the .github/actions/ directory. An example configuration can be seen in listing
5.17, which represents a scheduled workflow (GitHub, 2021b) which runs every
day at 6AM UTC, on an Ubuntu Linux host runner and executes the update
script for the pubspec specification files in the frontend directory. The created
pull requests can then be merged into the repository. It is still recommended
using a CI pipeline in the project, which automatically test the compatibility
of the current code with the new version to prevent accidentally merging an
incompatible dependency version.

name: Dependabot Pub

on:
schedule:
— cron: ‘0_6_%x_x_%x’

jobs:
pub:
name: Dependabot Pub
runs—on: ubuntu—latest
steps:
— uses: actions/checkout@v2
— name: Update
uses: JohannSchramm /dependabot—pub—runner@main
with :
path: /frontend
Listing 5.17: A GitHub Workflow configuration file for the .

35

6 FEvaluation

6.1 Experiment

To test the pub language ecosystem module developed in the previous chapters
in a real world scenario, an experiment to validate the implementation and to
gather stats about the Dart/Pub ecosystem was set up.

The test sample chosen for this test are the 1020, publicly available GitHub
repositories, which list Dart as their primary programming language and have
the highest amount of GitHub stars for that category. The key metrics that were
recorded and later analyzed are:

e Stability of the implementation on different projects

e Quantity of outdated dependencies that were identified

Building the test sample

The GitHub Search API (GitHub, 2021e) can be queried for the relevant test
samples using the GET request seen in listing 6.1. Each response will return
30 results, to gather the full amount of results required for the test sample, the
request has to be performed 34 times, every time with a modified page para-
meter, as the API will only return the first 1020 results for this type of query.
The language query parameter set Dart as the required primary programming
language for the search results. This request automatically sorts by the amount
of “GitHub Stars” descending.

https://api.github.com/search/repositories?q=language: Dart
&page=1

Once all requests are done, the results can be merged into a single array to
simplify further processing.

To collect the actual raw test data, the Dependabot Pub Runner implemented
in section 5.3 was slightly modified to run the dependency update process in

36

6. Evaluation

sequence on every of the previously collected projects. The modification to the
runner were the replacement of the File Fetcher and the removal of the Pull
Request Creator.

The file fetcher had to be replaced, as it normally uses the API of the source
repository hosting platform to fetch directories and file content, which has in the
case of the GitHub API, a rate limit of just 60 requests per hour for unauthentic-
ated requests and 5000 per hour for authenticated requests (GitHub, 2021d). As
the file fetcher implemented in section 5.1.3 uses at least one to three API re-
quests, one for the directory listing and another one or two for the pubspec.lock
and pubspec.yaml files, per directory with a pubspec.yaml file, the application
can quickly reach the unauthenticated rate limit when performing bulk requests
for more than 1000 repositories containing sometimes more than 50 pubspec.yaml
files. As an alternative the script performs a git clone of the source code repos-
itory into a temporary directory, from which the replacement File Fetcher will
read the required files.

Instead of creating pull requests, the script will record if the update process
was successful and if so, save the detected and updated dependencies as well as
the exact changes made to the pubspec.yaml and pubspec.lock to a new file.
Additional the script will record metadata about the current HEAD commit, and
the date the analysis was performed.

Analyzing the test data

To analyze the test data two scripts were implemented using the JavaScript pro-
gramming language. The first one merges the distributed test results into a single
results.json output file. The second script then uses this combined results.json
file to extract statistics about the quality and performance of the implemented
Dart dependency updater.

Results

As seen in table 6.1, during the evaluation a total of 1020 project were down-
loaded and analyzed, which worked for all except one project which could not
be completely analyzed due to private git dependencies. In these successfully
fetched projects, a total of 3702 pubspec.yaml files were found and analyzed.

37

6. Evaluation

’ Category ‘ Count ‘ Percentage ‘
Total projects analyzed 1020 100%
.. successfully 1019 > 99.9%
.. unsuccessfully 1 < 0.1%
Total pubspec.yaml files analyzed | 3702 100%

Table 6.1: A summary of the projects analyzed for the evaluation.

As seen in table 6.2, in these 3702 pubspec.yaml files a collected total of 17670
project dependencies were found. Of these dependencies 1543 are unique, in the
sense of that they can occur in multiple projects, but every one of the 17670
dependency is part of the unique dependencies set.

The implementation tried to update every of the 17670 listed dependencies to
the latest versions. The update was successful for a large majority of 15368 of
the listed dependencies, with 9445 of them being updated to the latest version
by the tool, as 5923 of them are already up to date. The update failed for 2302
or around 13.03% of all listed dependencies.

’ Category \ Count \ Percentage ‘
Total dependencies 17670 100%
.. update failed 2302 13.03%
.. update successful 15368 86.97%
...... update done 9445 61.46%
...... already up to date 5923 38.54%
Total unique dependencies 1543 100%

Table 6.2: A summary of the dependencies analyzed for the evaluation.

Possible reasons for the observed dependency update failures could be:

e Not resolvable due to version constraints: The pubspec.lock file
could not be updated for this dependency, as updating the version of this
dependency would create a conflict with a transitive requirement of another
installed dependency. To fix this issue the conflicting dependencies would
have to be updated at the same time. This however is not a guarantee to
solve the conflict as newer versions of the updated dependencies might still
be incompatible. This is currently not supported by the implementation.

e Path dependencies: The pubspec.lock file could not be updated for this
dependency, as the pubspec.yaml contains references to path dependen-
cies which could not be located. This is currently not supported by the
implementation.

38

6. Evaluation

e Invalid SDK constraints: The pubspec.lock file could not be up-
dated for this dependency, as the pubspec.yaml contains invalid SDK
constraints. This in the pubspec.yaml has to be fixed manually by the
maintainer of the project.

e Unable to fetch external git dependency: The pubspec.lock file
could not be updated for this dependency, as the pubspec.yaml contains
references to git dependencies that could not be downloaded.

e Other errors: The two others errors are one instance where a version could
not be parsed correctly and another instance where the pub tool exited with
the exit code -9.

’ Category \ Count \ Percentage ‘
Total Exceptions 2302 100%
... Not resolvable due to version constraints 1298 56.38%
... Path dependencies 554 24.07%
... Invalid SDK constraints 429 18.64%
... Unable to fetch external git dependency 19 0.82%

. Other errors 2 0.09%

Table 6.3: A summary of the errors and exceptions that occurred during the
evaluation test run.

The implementation is stable and able to update the dependencies of most pro-
jects. The evaluation showed that a huge amount of dependencies of the top 1020
most started Dart GitHub repos don’t use the latest available version and are
able to be updated.

6.2 Requirements
This section reviews the functional and non-functional requirements defined in
chapter 2.

The experiment seen in section 6.1 showed that the implemented Dart depend-
ency application can update the majority of the most popular Dart and Flutter
projects.

39

6. Evaluation

6.2.1 Functional Requirements
Fetch dependency specifications

The available dependency specification files should be fetched from the repos-
itory. These files define each required dependency as well as its version, or
possible version range.

The file fetcher implemented in section 5.1.3 fetches both files that are relevant
to complete the Dart dependency update process.

Unify dependency specifications

The fetched dependency metadata should be parsed into a common represent-
ation, which simplifies further access and work with the data.

The file parser implemented in section 5.1.4 creates a common representation in
the form of a collection of Dependabot Dependency instances from the depend-
ency specification file. These instances were then used to complete the further
steps.

Update dependency specifications

The identified dependencies should each be checked for updates or security
patches, depending on given version constraints. If updates exist, the depend-
ency declarations in the original specification file will be patched with the new
dependency versions.

The update checker and file parser implemented in section 5.1.5 and section 5.1.6
respectively, search and replace the old version in the specification file with the
latest stable one from the pub.dev hosting site.

Provide upgrade pull-requests

A version upgrade for each outdated dependency should be provided as a
separate pull request. The user can then easily accept or reject these pull
requests.

The Pub Dependabot Runner implemented in section 5.3 uses the updated files
and the already existing Dependabot pull request creator to create pull request
for the source code repository.

Repository-based Configurable

The system should be configurable using a configuration file located in the
target repository.

40

6. Evaluation

The Pub Dependabot Runner implemented in section 5.3 has to be configured
as a GitHub Action workflow using a file in the target repository. This workflow
can then pass additional configuration parameters to the runner.

6.2.2 Non-Functional Requirements
Multiple Source Platform Compatible

The implemented system should be compatible with different source code plat-
forms like GitHub or GitLab.

As seen in section 4.1.4, due to the fact that the implemented module is an
extension of Dependabot, it automatically is compatible with all source code
platform sources supported by Dependabot. This includes fetching the files and
sending pull request or the other platforms equivalent.

Working Standalone

The implemented module should be usable standalone without any other
already existing language modules.

The Pub Dependabot Runner implemented in section 5.3 is independent of all
the other language modules. It only installs itself and the Dependabot common
module as the only dependency.

Provide Upstream Pull-Request

A pull request for the official Dependabot repository which adds the imple-
mented module should be provided.

During the time this thesis was written, the dependabot-core repository up-
dated the contribution guidelines to mention that currently additional language
ecosystem modules cannot be accepted, due to lack of internal capacity and in-
house expertise. Although in the meantime, other community members started
to work on a similar Dart language module implementation which was proposed
as a pull request to the GitHub repository of dependabot-core.

As an alternative the contribution guidelines recommended maintaining new lan-
guage ecosystem modules as a separate fork and provide a Dependabot runner,
like the one implemented in section 5.3. As this is the only requirement with
external dependencies, only the alternative solution was fulfilled. Both the fork
and the runner for the pub language ecosystem are publicly available on GitHub.

41

6. Evaluation

6.2.3 Results

As presented in this section, all set requirements are fulfilled. The implemented
Dart dependency update tool is working and although not the way originally
intended, available for the public to use in their projects.

42

7 Conclusion

Keeping dependencies updated is a necessary but time-consuming task. However,
projects like the Dependabot have allowed developers to easily track new version
of dependencies and keep them updated.

This thesis explained the architecture of the Dependabot Core module ecosystem
and showed the steps necessary for implementing automatic dependency updates
as a new extension to the project in form of a language ecosystem module for the
Dart programming language.

For a total of over 17000 installed direct dependencies in 1019 of the most starred
Dart GitHub projects, the implementation was able to successfully analyze over
15000 of them. Of these successful runs, about 60% were updated to a newer
version, while only about 40% were already at the latest version.

Around 15% of the dependency runs failed due to exceptions during the execu-
tion. This was most of the time due to invalid specification files and missing
support for further dependency source formats. In the future the automatic de-
pendency update application can be further improved by supporting multiple
dependency updates over different dependencies in one pull request, which would
allow dependencies to be updated that are currently ignored due to unresolvable
version constraints. And path dependencies sources by building temporary path
structure for these dependencies.

Additionally, the hosted packages metadata that was analyzed revealed that a
huge amount of projects, while according to the official documentation allowed,
still use the homepage metadata field to refer to the project source code repository
instead of the made for that use available repository metadata field. In the future,
the tool could be updated to send recommendations for the project specification
files as well. Or specifically in the case of the homepage metadata field, the
problem could be fixed directly at the source, by updating the Pub package
publishing tool to send a hint to the uploaders if they use the wrong metadata
field.

The evaluation showed that a huge amount of dependencies were able to be

43

7. Conclusion

updated automatically, which helps developers to keep their projects updated
and secure. The application implemented and described in this work, is publicly
available and easy to set up for everyone to use in their projects. In the future a
Pub module could even be implemented into the Dependabot by default.

44

Appendices

45

Appendix A: Dependabot Steps Modules Public API

A Dependabot Steps Modules Public API

Relevant public API parts of the different step modules implemented in the
dependabot-core common modules, needed for the Pub update script imple-
mentation. This API documentation is based on the source code of the different
classes and the documentation of the dependabot-core common module (De-
pendabot Ltd, 2021a).

Source

’ Type ‘ Name ‘ Description ‘

Input | provider | The name of the source code provider for this
source. Possible options include for example
"github", "gitlab", "bitbucket" and "azure".
Input | repo The name of the target repository.

Input | directory | The directory the relevant files for the work-
flow are located in.

Input | branch The target branch of the git repository.
Input | commit | The target commit of the git repository.

File fetcher

’ Type \ Name \ Description ‘

Input source A Dependabot::Source reference to the pro-
ject source code repository.

Input credentials | An array of credentials to access the source
code repositories and platforms.

Method | files An array of Dependabot::File with the relev-
ant files for the current package manager.

Method | commit The HEAD commit.

46

Appendix A: Dependabot Steps Modules Public API

File parser

’ Type ‘ Name ‘ Description ‘

Input dependency _files | An array of Dependabot::File with the relev-
ant files for the current package manager.

Input source A Dependabot::Source reference to the pro-
ject source code repository.

Input credentials An array of credentials to access the source
code repositories and platforms.

Method | parse An array containing the parsed Depend-
abot::Dependency objects.

Update checker

’ Type

‘ Name

Description

Input

dependencies

The Dependabot::Dependency in-
stances the Update Checker In-
stance should be created for.

Input

dependency _files

An array of Dependabot::File in-
stances with the relevant files for
the current project.

Input

credentials

An array of credentials to access
the source code repositories and
platforms.

Method

up_to_date?

Returns if the current dependen-
cies are up to date.

Method

can_ update?(level)

Returns if the current dependen-
cies can be updated when unlock-
ing different constraint levels.

Method

updated dependencies(level)

Returns an array of updated De-
pendabot::Dependency instances
for different unlocking constraint
levels.

The constraint level are also referred to as requirements to update. Possible
constraint levels are :all, :own and :none. In the implemented runner only :own

is used.

A7

Appendix A: Dependabot Steps Modules Public API

File updater

’ Type ‘ Name ‘ Description

Input dependencies An array of Dependabot::Dependency
the File Updater Instance should be
created for.

Input dependency _files An array of Dependabot::File with the
relevant files for the current package
manager.

Input credentials An array of credentials to access the

source code repositories and platforms.

Method | updated dependency files | An array of modified Dependabot::File
instances containing the data of the
provided dependencies.

Pull Request Creator

’ Type \ Name \ Description

Input source A Dependabot::Source reference to the project
source code repository.

Input base commit The parent commit for the pull request.

Input dependencies An array of updated Dependabot::Dependency in-
stances.

Input files An array of modified Dependabot::File instances
containing the data of the provided dependencies.

Input credentials An array of credentials to access the source code
repositories and platforms.

Input label language | If the pull request should have a language label.

’ Method \ create \ Creates the pull request on the source platform. ‘

48

Appendix B: Dependabot Language Ecosystem Module Implementation API

B Dependabot Language Ecosystem Module Im-
plementation API

This describes the functions that have to be implemented when writing a language
ecosystem module. This API documentation is based on the documentation of
the dependabot-core common module (Dependabot Ltd, 2021a).

File fetcher

required files in?

Checks if the required filenames for the up-
date process are in an array.

required files message

Static error message if required files are not
present.

#fetch files

Fetch and select the required files from the
source.

(Dependabot Ltd, 2019¢)

File parser

#parse

Return an array of parsed dependency in-
stances.

#check required files

Raise an error unless all required files are
present.

(Dependabot Ltd, 2019d)

49

Appendix B: Dependabot Language Ecosystem Module Implementation API

Update checker

#latest version

The latest available version for the depend-
ency.

#latest resolvable version

The latest version that allows the full de-
pendency set to resolve.

#latest resolvable version
~with no_unlock

The latest version within the current con-
straints that allows the full dependency set
to resolve.

#updated requirements

Updated set of requirements that should re-
place the current requirement in the manifest
file.

#latest version resolvable
_with full unlock?

Only needed for multi dependency updates.

#updated dependencies
_after full unlock

Only needed for multi dependency updates.

(Dependabot Ltd, 2019g)

File updater

.updated files regex

An array of regexes matching the filenames
the updater will update.

#updated dependency fileg

An array of updated DependencyFile in-
stances.

(Dependabot Ltd, 2019¢)

Metadata Finder

#look up_source

Return the source instance for the current
dependency.

(Dependabot Ltd, 2019f)

20

References

Batsov, B. (2012-2020). RuboCop. website. Retrieved June 20, 2021, from https:
/ /rubocop.org/

Dependabot Ltd. (2018). update-script.rb. source code. Retrieved June 21, 2021,
from https:/ /github.com /dependabot / dependabot- script / blob / main /
update-script.rb

Dependabot Ltd. (2019a). Dependabot is joining GitHub. homepage. Retrieved
June 20, 2021, from https://dependabot.com/blog/hello-github/

Dependabot Ltd. (2019b). Dependabot Ltd. homepage. Retrieved June 19, 2021,
from https://dependabot.com/

Dependabot Ltd. (2019¢). File fetchers. documentation. Retrieved June 21, 2021,
from https:/ / github.com / dependabot / dependabot - core / blob / main /
common/lib/dependabot /file _fetchers/ README.md

Dependabot Ltd. (2019d). File parsers. documentation. Retrieved June 21, 2021,
from https:/ / github.com / dependabot / dependabot - core / blob / main /
common/lib/dependabot /file_ parsers/ README.md

Dependabot Ltd. (2019e¢). File updaters. documentation. Retrieved June 21, 2021,
from https:/ / github.com /dependabot / dependabot - core / blob / main /
common/lib/dependabot /file_updaters/README.md

Dependabot Ltd. (2019f). Metadata finders. documentation. Retrieved June 21,
2021, from https://github.com/dependabot/dependabot-core/blob/main/
common/lib/dependabot /metadata_finders/ README.md

Dependabot Ltd. (2019g). Update checkers. documentation. Retrieved June 21,
2021, from https://github.com /dependabot /dependabot-core /blob /main /
common/lib/dependabot /update checkers/README.md

Dependabot Ltd. (2021a). Dependabot Common. repository. Retrieved June 21,
2021, from https://github.com/dependabot /dependabot-core/tree /main /
common/lib/dependabot

Dependabot Ltd. (2021b). Dependabot Core. repository. Retrieved June 19, 2021,
from https://github.com/dependabot/dependabot-core

Dependabot Ltd. (2021¢). Dependabot Core. documentation. Retrieved June 21,
2021, from https://github.com/dependabot/dependabot-core#architecture

o1

https://rubocop.org/
https://rubocop.org/
https://github.com/dependabot/dependabot-script/blob/main/update-script.rb
https://github.com/dependabot/dependabot-script/blob/main/update-script.rb
https://dependabot.com/blog/hello-github/
https://dependabot.com/
https://github.com/dependabot/dependabot-core/blob/main/common/lib/dependabot/file_fetchers/README.md
https://github.com/dependabot/dependabot-core/blob/main/common/lib/dependabot/file_fetchers/README.md
https://github.com/dependabot/dependabot-core/blob/main/common/lib/dependabot/file_parsers/README.md
https://github.com/dependabot/dependabot-core/blob/main/common/lib/dependabot/file_parsers/README.md
https://github.com/dependabot/dependabot-core/blob/main/common/lib/dependabot/file_updaters/README.md
https://github.com/dependabot/dependabot-core/blob/main/common/lib/dependabot/file_updaters/README.md
https://github.com/dependabot/dependabot-core/blob/main/common/lib/dependabot/metadata_finders/README.md
https://github.com/dependabot/dependabot-core/blob/main/common/lib/dependabot/metadata_finders/README.md
https://github.com/dependabot/dependabot-core/blob/main/common/lib/dependabot/update_checkers/README.md
https://github.com/dependabot/dependabot-core/blob/main/common/lib/dependabot/update_checkers/README.md
https://github.com/dependabot/dependabot-core/tree/main/common/lib/dependabot
https://github.com/dependabot/dependabot-core/tree/main/common/lib/dependabot
https://github.com/dependabot/dependabot-core
https://github.com/dependabot/dependabot-core#architecture

Appendix References

Dependabot Ltd. (2021d). Dependabot Ltd. rubygems profile. Retrieved June 20,
2021, from https://rubygems.org/profiles/dependabot

Dependabot Ltd. (2021e). Dependabot Update Script. repository. Retrieved June
20, 2021, from https://github.com/dependabot/dependabot-script

Dependabot Ltd. (2021f). dependabot-core workflows. repository content. Re-
trieved June 20, 2021, from https://github.com/dependabot /dependabot-
core/tree/main/.github /workflows

Dependabot Ltd. (2021g). dependabot-omnibus. Retrieved June 20, 2021, from
https:/ /rubygems.org/gems/dependabot-omnibus

Dependabot Ltd. (2021h). Feedback and contributions to Dependabot. project
documentation. Retrieved June 20, 2021, from https://github.com/dependabot/
dependabot-core/blob/main/CONTRIBUTING.md

Docker. (2021). Docker Overview. project documentation. Docker. Retrieved June
17, 2021, from https://docs.docker.com/get-started /overview /

Farias, L. (2021). pub_api_ client. project readme. Retrieved June 15, 2021, from
https://github.com/leoafarias/pub_api_client/blob/main/README.md

GitHub. (2021a). Configuration options for dependency updates. documentation.
Retrieved June 20, 2021, from https://docs.github.com/en/code-security /
supply-chain-security /keeping-your-dependencies-updated-automatically /
configuration-options-for-dependency-updates

GitHub. (2021b). Events that trigger workflows. documentation. Retrieved June
20, 2021, from https://docs.github.com /en/actions/reference/events-that-
trigger-workflows

GitHub. (2021c). Introduction to GitHub Actions. documentation. Retrieved
June 20, 2021, from https://docs.github.com /en /actions /learn-github-
actions/introduction-to-github-actions

GitHub. (2021d). Resources in the REST API. documentation. Retrieved June
20, 2021, from https://docs.github.com /en /rest /overview /resources-in-
the-rest-api

GitHub. (2021e). Search. documentation. Retrieved June 20, 2021, from https:
//docs.github.com/en /rest /reference /search

GitHub Search API. (2021). Public GitHub Repositories using the Dart language.
api response. Retrieved June 19, 2021, from https://api.github.com /search/
repositories?q=language:Dart

Google Developers. (2021). Announcing Flutter 2. blog. Retrieved June 20, 2021,
from https:/ /developers.googleblog.com /2021 /03 / announcing- flutter-
2.html

License Zero. (2018). The Prosperity Public License 2.0.0. homepage. Retrieved
June 20, 2021, from https://prosperitylicense.com /versions/2.0.0.html

Mullans, A. (2020). Keep all your packages up to date with dependabot. GitHub
Blog. Retrieved June 19, 2021, from https://github.blog/2020-06-01-keep-
all-your-packages-up-to-date-with-dependabot /

52

https://rubygems.org/profiles/dependabot
https://github.com/dependabot/dependabot-script
https://github.com/dependabot/dependabot-core/tree/main/.github/workflows
https://github.com/dependabot/dependabot-core/tree/main/.github/workflows
https://rubygems.org/gems/dependabot-omnibus
https://github.com/dependabot/dependabot-core/blob/main/CONTRIBUTING.md
https://github.com/dependabot/dependabot-core/blob/main/CONTRIBUTING.md
https://docs.docker.com/get-started/overview/
https://github.com/leoafarias/pub_api_client/blob/main/README.md
https://docs.github.com/en/code-security/supply-chain-security/keeping-your-dependencies-updated-automatically/configuration-options-for-dependency-updates
https://docs.github.com/en/code-security/supply-chain-security/keeping-your-dependencies-updated-automatically/configuration-options-for-dependency-updates
https://docs.github.com/en/code-security/supply-chain-security/keeping-your-dependencies-updated-automatically/configuration-options-for-dependency-updates
https://docs.github.com/en/actions/reference/events-that-trigger-workflows
https://docs.github.com/en/actions/reference/events-that-trigger-workflows
https://docs.github.com/en/actions/learn-github-actions/introduction-to-github-actions
https://docs.github.com/en/actions/learn-github-actions/introduction-to-github-actions
https://docs.github.com/en/rest/overview/resources-in-the-rest-api
https://docs.github.com/en/rest/overview/resources-in-the-rest-api
https://docs.github.com/en/rest/reference/search
https://docs.github.com/en/rest/reference/search
https://api.github.com/search/repositories?q=language:Dart
https://api.github.com/search/repositories?q=language:Dart
https://developers.googleblog.com/2021/03/announcing-flutter-2.html
https://developers.googleblog.com/2021/03/announcing-flutter-2.html
https://prosperitylicense.com/versions/2.0.0.html
https://github.blog/2020-06-01-keep-all-your-packages-up-to-date-with-dependabot/
https://github.blog/2020-06-01-keep-all-your-packages-up-to-date-with-dependabot/

Appendix References

npm, Inc. (2021a). Npm. homepage. Retrieved June 19, 2021, from https://www.
npmjs.com/

npm, Inc. (2021b). Using npm packages in your projects. documentation. Re-
trieved June 21, 2021, from https://docs.npmjs.com /using-npm-packages-
in-your-projects

Preston-Werner, T. (2011-2013). Semantic Versioning 2.0.0-rc.1. homepage. Re-
trieved June 15, 2021, from https://semver.org/spec/v2.0.0-rc.1.html

PyPA. (2020). pip. homepage. Retrieved June 20, 2021, from https://pip.pypa.
io/en/stable/

Ruby Community. (2021a). Ruby. homepage. Retrieved June 20, 2021, from https:
/ /www.ruby-lang.org/en/

Ruby Community. (2021b). RubyGems. homepage. Retrieved June 20, 2021, from
https://rubygems.org/?locale—en

Silva, Gongalo and Ruby Community. (2021). STRUCTURE OF A GEM. doc-
umentation. Retrieved June 20, 2021, from https://guides.rubygems.org/
what-is-a-gem/

TC52. (2015). ECMA-408. ecma specification. Retrieved June 19, 2021, from
https://www.ecma-international.org/publications-and-standards/standards/
ecma-408/

The Dart project authors. (2019a). Dart FAQ. homepage. Retrieved June 19,
2021, from https://dart.dev/faq

The Dart project authors. (2019b). pub_semver README.md. project readme.
Retrieved June 15, 2021, from https://github.com/dart-lang/pub_semver/
blob /master/ README.md

The Dart project authors. (2020a). dart pub outdated. documentation. Retrieved
June 21, 2021, from https://dart.dev/tools/pub/cmd/pub-outdated

The Dart project authors. (2020b). Hosted pub repository specification version
2. project documentation. Retrieved June 16, 2021, from https://github.
com /dart-lang/pub/blob /master/doc/repository-spec-v2.md

The Dart project authors. (2020c). Package dependencies. dart.dev documenta-
tion. Retrieved June 20, 2021, from https://dart.dev/tools/pub/dependencies

The Dart project authors. (2020d). Package versioning. dart.dev documentation.
Retrieved June 20, 2021, from https://dart.dev/tools/pub/versioning

The Dart project authors. (2021a). Dart overview. documentation. Retrieved
June 20, 2021, from https://dart.dev/overview

The Dart project authors. (2021b). Dart programming language. homepage. Google.
Retrieved June 19, 2021, from https://dart.dev/

The Dart project authors. (2021c). Dart programming language specification 5th
edition. homepage. Retrieved June 19, 2021, from https://dart.dev/guides/
language /specifications /DartLangSpec-v2.10.pdf

The Dart project authors. (2021d). dart pub upgrade. documentation. Retrieved
June 21, 2021, from https://dart.dev/tools/pub/cmd/pub-upgrade

23

https://www.npmjs.com/
https://www.npmjs.com/
https://docs.npmjs.com/using-npm-packages-in-your-projects
https://docs.npmjs.com/using-npm-packages-in-your-projects
https://semver.org/spec/v2.0.0-rc.1.html
https://pip.pypa.io/en/stable/
https://pip.pypa.io/en/stable/
https://www.ruby-lang.org/en/
https://www.ruby-lang.org/en/
https://rubygems.org/?locale=en
https://guides.rubygems.org/what-is-a-gem/
https://guides.rubygems.org/what-is-a-gem/
https://www.ecma-international.org/publications-and-standards/standards/ecma-408/
https://www.ecma-international.org/publications-and-standards/standards/ecma-408/
https://dart.dev/faq
https://github.com/dart-lang/pub_semver/blob/master/README.md
https://github.com/dart-lang/pub_semver/blob/master/README.md
https://dart.dev/tools/pub/cmd/pub-outdated
https://github.com/dart-lang/pub/blob/master/doc/repository-spec-v2.md
https://github.com/dart-lang/pub/blob/master/doc/repository-spec-v2.md
https://dart.dev/tools/pub/dependencies
https://dart.dev/tools/pub/versioning
https://dart.dev/overview
https://dart.dev/
https://dart.dev/guides/language/specifications/DartLangSpec-v2.10.pdf
https://dart.dev/guides/language/specifications/DartLangSpec-v2.10.pdf
https://dart.dev/tools/pub/cmd/pub-upgrade

Appendix References

The Dart project authors. (2021e). pub.dev. homepage. Google. Retrieved June
19, 2021, from https://pub.dev/

The Dart project authors. (2021f). The pubspec file. dart.dev documentation.
Retrieved June 15, 2021, from https:/ /dart.dev /tools /pub / pubspec #
supported-fields

The Flutter authors. (2021a). Flutter. homepage. Google. Retrieved June 19,
2021, from https://flutter.dev/

The Flutter authors. (2021b). Flutter. repository. Retrieved June 21, 2021, from
https://github.com /flutter/flutter

The RSpec Team. (n.d.). RSpec. homepage. Retrieved June 19, 2021, from https:
//rspec.info/

Thomsen, M. (2021). Announcing Dart 2.12. medium article. Retrieved June
20, 2021, from https://medium.com /dartlang /announcing- dart-2-12-
49926e689c87

o4

https://pub.dev/
https://dart.dev/tools/pub/pubspec#supported-fields
https://dart.dev/tools/pub/pubspec#supported-fields
https://flutter.dev/
https://github.com/flutter/flutter
https://rspec.info/
https://rspec.info/
https://medium.com/dartlang/announcing-dart-2-12-499a6e689c87
https://medium.com/dartlang/announcing-dart-2-12-499a6e689c87

	Introduction
	Requirements
	Functional Requirements
	Non-Functional Requirements

	Fundamentals
	Dependency management
	Dart and its package manager Pub
	Dependabot

	Architecture
	Dependabot
	General Dependency Update Workflow
	Dart Dependency Update Workflow
	Dependabot Update Workflow
	Dependabot Workflow Steps
	Docker

	Pub module
	Pub update script

	Implementation
	Dependabot pub module
	Pub Module Setup
	Version and Requirement
	File fetcher
	File parser
	Update checker
	File updater
	Metadata Finder

	Testing the Dependabot pub module implementation
	Linting
	Unit tests
	Test automation

	Dependabot Pub Runner

	Evaluation
	Experiment
	Requirements
	Functional Requirements
	Non-Functional Requirements
	Results

	Conclusion
	Appendices
	Dependabot Steps Modules Public API
	Dependabot Language Ecosystem Module Implementation API

	References

