Calculating the Costs of Inner Source Collaboration
by Computing the Time Worked

Stefan Buchner
Computer Science Department
Friedrich-Alexander University

Erlangen-Niirnberg, Germany
stefan.buchner @fau.de

Abstract

A key part of taxation, controlling, and management
of international collaborative programming workflows
is determining the costs of a supplied software artifact.
The OECD suggests the use of the Cost Plus method
for calculating these costs. However, in the past, this
method has been implemented using only coarse-grain
data from the costs of whole organizational units. Due
to the move to inner source software development, we
need a much more fine-grain solution for computing
the detailed time spent on programming specific
components. This is necessary, because a more accurate
work time distribution is required to fulfill the fiscal
and administrative challenges posed by collaborating
across organizational boundaries. In this article, we
present a novel method to determine the time spent on
an individual code contribution (commit) to a software
component for use within cost calculation, especially
for taxation purposes. We demonstrate the usefulness
of our approach by application to a real-world data
set gathered at a large multi-national corporation. We
evaluate our work through feedback received from this
corporation and from the German Ministry of Finance.

1. Introduction

In software developing companies, engineering
managers, the finance department, and human resources
all would like to know how long programming tasks
took in the past and may take in the future. The reasons
are manifold: An engineering manager may need this
information to develop a project plan, the finance
department may need this information to calculate the
cost of a software component, and the human resources
department may want to know this information to
determine performance.

Today’s common solution is to let software
developers self-declare by way of checking-in and
checking-out of certain work tasks, or simply by filling
in time-sheets. The introduction of inner source

Dirk Riehle
Computer Science Department
Friedrich-Alexander University

Erlangen-Niirnberg, Germany
dirk @riehle.org

software development by software vendors as a software
development approach that complements and extends
existing practices has made this insufficient.

Inner source software development is the use of
open source best practices inside companies. No open
source software is being developed, only its practices
are being used. For this, departments open up their
code base to the whole company, typically on an
internal forge like GitHub, advertise their components,
welcome visitors, and engage with them in the hope that
such visitors will find these components useful. The
goal is to get visitors to start using a component so
that they will eventually contribute to it, which leads
to cost reduction to both the original developers and
the visitor-turned-user-turned-collaborator [1]]. Other
demonstrated benefits of such inner source collaboration
are developing higher quality software components
within the company, better knowledge sharing, and
higher employee satisfaction, among others [2[][3]][4].

In this new world of inner source, developers
not only work on tasks that have been assigned
to them by their managers, they also work on
and contribute to software components across the
organization, often crossing organizational boundaries,
even tax boundaries. The number of components a
developer contributes to can increase significantly. In
this situation, it becomes impossible for a developer
to precisely track how they spend their time for
programming different components. The number of
possible components they contribute to is too large
for all practical purposes. It would be better if the
calculation of time spent on programming a particular
code contribution could be automated.

Being able to measuring time spend on commits
and assigning an economic value (e.g. costs) to it
helps companies mastering their financial challenges
posed by new cross-boundary software development. A
solution which is able to calculate the costs of inner
source might also be helpful for various accounting
and profit calculations (where costs play a central role,
see [S]]) as well as management related challenges (e.g.

To be published as: Buchner, S., & Riehle, D. (2022). Calculating the Costs of Inner Source Collaboration by Computing the Time
Worked. In Proceedings of the 55th Hawaii International Conference on System Sciences, HICSS ’22. Maui, US.

product management [4]] [6], risk management [7] or
KPI calculation [8]). Prospectively, economic inner
source assessment can help companies to manage and
introduce new organization forms, business processes,
information systems and developing their business
overall.

In this article, we present a method to compute
the time spent on programming a particular code
contribution (commit to a code repository) for usage
within cost calculation. It is robust towards the
developer switching gears and contributing to multiple
different components in short sequence.

With inner source being so closly related to
economic assessment and business processes, we asked
the following research question:

RQ: How can we calculate the time spend on code
contributions for usage within various cost related
business processes

We take a design science approach and motivate our
work through the use case of calculating transfer prices
for inner source contributions in globally distributed
software development for a client/supplier relationship.

The remainder of this article is structured as follows:
In section 2 we present related work, in section 3 we
present our research design, in section 4 we identify the
problem and define a research objective, in section 5 we
present a solution design and its implementation, and
in section 6 we first demonstrate and then evaluate our
solution. In section 7 we discuss the research limitations
and in section 8 we present our final conclusions.

2. Related Work

Our algorithm connects the topics inner source
software development and transfer pricing. Therefore,
we review research on these topics as related work.

2.1. Transfer pricing

Even though our solution might be applicable
to large variety of cost calculation purposes in
management and controlling, the main motivator when
designing the algorithm was to calculate transfer prices,
especially for taxation purposes.

While in an ordinary market, two market participants
determine the price of a product or (intellectual)
property in orientation to the overall market, for
transferring property within one organisation, no such
market exists. However, as those transactions are
often performed between tax boundaries, standards for
calculating the so called transfer price exist to ensure
fair pricing and taxation according to the function and
risk of each transfer [9] [10].

As an international standard, the OECD defined
five standard methods for calculation of transfer prices
[9]: The Comparable Uncontrolled Price Method,
Resale Price Method, Cost Plus method as Traditional
Transaction Methods or Transactional Net Margin
method and Transactional Profit Split Method as
Transactional Profit Methods. The exact method used
is determined by the function, risk and overall situation
a transaction is situated in [11].

With the growing importance of software and digital
business in the economy, problems in transfer pricing
are arising, which do not only affect the calculation
of prices themselves, but also the broader economic
influence on earnings of countries [12][13][14].
Therefore, the algorithm provided in this paper
contributes both to cost calculation for taxation (and
other business related cost and management problems)
and to solve more general taxation questions.

The algorithm presented in this paper calculates
work times for usage in cost calculation. From the
five standard transfer pricing methods we chose Cost
Plus for our implementation and demonstration as it is
based on cost calculation [9]. Cost Plus is a method,
where the transfer price is determined by calculating all
the costs occurring in producing the transferred good or
property. One commonly used way to calculate costs is
the full absorption costing, which differentiates all costs
of a business unit between costs directly assignable to a
product or service (in our case direct to the transaction)
or those who cannot be directly assigned to a product
(indirect costs) [15]. For Cost Plus, the sum of direct
and partial indirect cost is calculated, before a profit
margin is added on top. Our approach helps to split
the indirect costs of a business unit according to the real
work effort for each product, as the problem statement
will show more in detail (Section f.I). Therefore,
our solution targets calculating the work distribution
between certain projects and not the time spent on each
individual commit.

2.2. Inner source software development

Inner source is the use of open source best practices
inside a company [2]].

Like in open source, in inner source, developers lay
open all project or product artifacts for everyone to see
(only within the company, not publicly like in open
source) [16][17]. They want other developers to find
their code (open source typical self-selection) and start
using it. The hope is that users identify bugs and help the
code mature. Eventually, code contributions might flow
back to the original developers (through peer-reviews),
helping share development costs [3] [1].

As a literature review from Edison et al. [18]
showed, inner source and its research is deeply
integrated within a wide range of business aspects
including knowledge & business management, business
model design, and collaboration measurement. Being
able to determine costs and software related intellectual
property flow therefore is not only a matter of
traditional, already well defined costing, accounting and
management methods (e.g. [[19] [20] [5] [8]), but is also
important for inner source within industry [21]].

Use of, contribution to, and collaboration on inner
source projects is not apriori restricted. Thus it can
happen across organizational boundaries, as developers
begin to look past their silo. Such silo boundaries
might be the boundaries of legal entities and hence any
collaboration across these boundaries might be taxation
relevant and hence require the calculation (and payment)
of transfer prices.

3. Research Approach

We take a design science approach for our research.
Design science is a methodological research framework
that is used when researchers not only want to
empirically analyze a situation, but also want to
develop innovative solutions to real-world problems.
Of several defined design science methodologies, we
choose Peffers et al. [22]], because of its ease of use.

Design science, according to Peffers et al. [22] is
an iterative process, consisting of six main steps (plus
an additional communication step, omitted here). The
process centers on the creation and evaluation of an
innovative artifact. This design science artifact should
be a novel solution for an identified problem. The steps
correspond with the following activities:

1. Problem identification. The researcher identifies
and motivates a problem. In section 4, we present
our past work and current literature review to
identify the need for determining the (financial)
costs of inner source collaboration.

2. Objective definition. The researcher defines
the objectives for a solution to the identified
problem. Our objectives (presented in section
4) are building on the problem identification and
therefore are originating from the needs identified
with our partners.

3. Solution design. The researcher develops a novel
and innovative design science artifact according
to the objectives. The solution we developed
is based on statistical data gathered with our
industry partner. The result is a method including
an algorithm, presented in section 5.

4. Implementation. ~ The researcher implements
the solution for purposes of demonstration and
evaluation. Implementation in our case indeed is
the software implementation of the method and
the algorithm, also presented in section 5.

5. Demonstration. The researcher first demonstrates
the solution by applying the artifact to at least one
instantiated problem. From past work, we use a
real-world data set to demonstrate our solution,
and present it in section 6.

6. Evaluation. The researcher evaluates the artifact
using an appropriate method. We use member
checking to gather feedback on our novel method
and present the results in section 6.

The design science process allows for iteration, and
this is also how we performed our work. In our case,
we statistically analyzed gathered data, implemented
prototypes and doing interim evaluations for ourselves
in iterations. The presentation in the following sections
is mostly linear, however, and focuses on the results.

4. Problem and Objective

The first and second step of the design science
approach are the problem identification and objective
definition, which will be explained in detail in the
following two section.

4.1. Problem Identification

The problem identification was done in cooperation
with our partners who later evaluated our approach with
us. Additional literature research finalizes the problem
identification. We saw, that inner source development
can be taxation relevant (See [2.2). As inner source
collaboration happens between business units, a need for
calculating costs of transferred work between these units
exist.

In the past it was sufficient to calculate costs
of business entities coarse-grain, as no fine-grain
differentiation between different projects of one
business unit was needed. This changes with inner
source, as contributions to software owned by different
organizational and business units might be made.
Moreover, the contributions are by the minute and
not only once in retrospect for a larger period of
time. Additionally, inner source contributions cannot
be determined in advance (in cost and size). Three
interviews conducted with industry partners through
the data gathering process in previous work confirmed
that these problems do occur in daily business. One
interviewee was a software architect, one interviewee

was a (Scrum) product owner, and one other interviewee
was an engineering manager. The interviews showed
that calculating transfer prices is up to now solved by
roughly estimating the costs rather than determining
them more exactly through an algorithm. This leads
to insecurities in terms of fiscal correctness and
management acceptance.

In addition to calculating transfer prices, our solution
might contribute to improving team management,
utilizing inner source advantages (e.g. [23]] [24] [1]) and
handle organizational challenges coming with software
development: For instance, functional organization
is considered harmful for software engineering [25]
and platform-based teams are still bringing many
implementation barriers with it, as middle managers fear
to not reach personal performance goals, if contributions
to outside units are made [4]. Future research must
show, how this paper can best be used to help
introducing inner source within companies.

Finally, measuring working time for commits helps
splitting indirect costs (e.g. personnel costs of
developers) for usage within full absorption costing (see
section [2.1)) more exactly, as such a measurement is only
coarse-grain up to now (see sections [I|and [2).

4.2. Objective Definition

Our literature review and industry interviews,
as presented in the problem identification section,
showed an unresolved mismatch between the need
for correctly pricing software supply relationships and
the demands of inner source software development
and high-frequency code contributions across taxation
boundaries. To that end, we define the objective for our
research:

To develop a new implementation of the Cost Plus
method that

* can correctly determine transfer prices for code
contributions in client-supplier relationship, and

e can handle high frequency code collaboration
between client and suppliers,

where “high frequency” means many times daily as
it is common in inner source software development
collaboration. As we have the goal to develop an
algorithm for cost calculation we want to find a way
how to measure the distribution of the working time per
project rather than measuring the exact time spent on
each commit.

5. Design and Implementation

The third design science step is to present the
solution design (section [5.1). After that (fourth step,
section[5.2)) the implementation will be explained.

5.1. Solution Design

Developing the solution design was done in several
iterations by repeatedly analyzing commit data gathered
in cooperation with our industry partners and improving
the algorithm proposed in the previous iteration. The
idea of the solution in this paper is to calculate working
times from commits, which then might be used in
different use cases. As this paper focuses on the use case
of calculating transfer prices (using Cost Plus) for inner
source development, the main result to be calculated
is the cost share. Therefore, the basic solution design
targets more an exact cost share for each organizational
unit, then exact working times per commit. This
also means, that organizational overhead will not be
excluded in the calculation as the assumption is, that the
overhead for each project is distributed equally to the
work effort put into the project.

The concept was developed using commit data of
a large multi-national corporation containing commits
to a software platform from about 400 developers
organized in 94 organizational units spreading over
four hierarchy levels. The data-set was gathered
continuously over one and a half years containing
230,000 file changes of 29,000 commits from 13 inner
source projects/components. Due to the large amount
of available data we assume, that the commit behavior
(e. g. commit times, intervals between commits, LOC
per commit) is representative for development work
happening in companies. In future research we want to
verify data and concept by conducting further studies in
other multinational companies.

Required data. The following information are
needed to design and implement our algorithm:

e Commit data (e.g. from Git): Author, Lines of
Code (added, modified, deleted), timestamp, file
path, commit identifier, project identifier

* Organizational hierarchy, incl. headcount
* Project list incl. owning organization
* Developer list and their organizational unit

Development process. We developed the concept by
iteratively performing statistical analysis of the commit
data and interim evaluations of implemented prototypes.

After all, we were able to identify two points of
view: 1) Looking at the time difference between two

commits of the same author and 2) Looking at the
commit timestamps. As first analysis we plotted the
time differences of two commits from the same author.
The results show, that most of the commits were made
frequently within minutes or hours (mostly within 12
hours/720 minutes), but also significant number of
commits are made once a day (culminating at about
1440 minutes/24hours). The same pattern can be
observed for larger time differences (mostly commits
with up to seven days in between). Moreover we found
out (through analyzing the Lines of code committed
and number of files changes) that committing at least
once a day is the usual commit behaviour and that
commits longer apart were e.g. mostly weekends or
holidays. For the timestamp analysis, the commits were

Number of commits per timestamp

D
o O o

Number of commits
= N w iy w
o o

o o

Figure 1. Number of commits per timestamp

grouped and counted by its commit time. Figure[T|shows
the plot. Most commits are made during the day, but
the sample data also contain commits made during the
night. The data show, that developers are having flexible
working times, which must be considered during further
calculations.

Additionally performed analysis steps during will be
described at the appropriate chapter.

Concept design. This chapter is about how working
times are calculated. Cost calculation is done in the
implementation step. The working time calculation
concept is based on the time difference and timestamp
distributions. Our previous results showed, that most
commits are made at least daily. Resulting from that
insight, the commits are mainly differentiated by time
difference into two groups.

The first group are those, which are one working
day (36 hours/2160 minutes, resulting from the previous
analysis) or less in time difference. This time difference
also includes commits being done in the evening with
the previous commit being in the morning of the
previous day. In short, all commits that belong to this

group are those that regularly contribute to the software
on a daily basis.

The second group of commits are all those, which are
irregular. This is either the case if the time difference to
the previous commit is longer than 36 hours apart or if
the commit has no time difference at all (single commits
by one author). Consequently, this group for example
is suited for all first commits after weekends, holidays
or long time without contribution, before beginning
frequent development again.

Regular working time assignment. All regular
commits (time difference <2160 minutes) are
differentiated again by the time difference, as our
previous analysis results have shown, that different
use-cases are given, depending on the commits
timestamp and the time difference. Additionally, it is
more likely that commits with a small time difference
are having a longer working times than those covering a
night with larger time differences. In detail, three cases
are differentiated:

1. <360 min. time difference
2. >=360 min. & <= 720 min. time difference
3. >720 min. & <= 2160 min. time difference

<360 minutes: The first group of commits (26%
of all commits) are those with time difference less
than 6 hours. These commits (mostly made within a
matter of minutes) are getting working time equally
to their time difference assigned, as there is a close
timely relationship between the previous and the current
commit.

>720 minutes & <= 2160 minutes time difference:
The second group (mentioned third above, 22.7% of the
commits) are all commits being 12 to 36 hours after the
previous one. These commits are most likely to cover
at least one night as they span a greater range of time
as our analysis have confirmed. Consequently, these
commit cannot have working time assigned in height of
their time difference.

Commits belonging to this group are calculating
working time proportional to the typical commit time
distribution. Basis for the calculation is are the number
of commits per timestamp (See Figure [T). The idea is
to calculate the number of commits made betweeen the
timestamps of the current and previous commit. The
number of commits are summed up and set in proportion
to the overall number of commits recognized. This ratio
is then set into proportion to the length of a typical
workday. Putting the algorithm into an equation, results
in:

Ztlmestampm,e,u
i=timestamp,.,,,.

Whprop = ‘ * Whaay)

Noverall

wt represents the working time (of a working day
day/ the result prop), calculated by iterating over the
timestamp of the current (cur) until previous (prev)
commit, with being n the number of commits.

The effect of applying the working time proportional
to the number of commits is, that commits having a time
difference of exact 24 hours, get a whole typical working
day assigned. If the time difference is larger (e.g.
1 1/2 working days), the commit gets more working
time. Additionally, this formula also minds, that some
developers prefer working into the night by calculating
the night time as working time as it is typical over all
commits.

>=360 minutes & <= 720 minutes: The
third group (mentioned secondly above, 4.7% of the
commits) are all commits between 6 and 12 hours
after the previous commit. This means, that there is
not necessarily a night between these commits with
developers either having a long work day or having
a shorter night. The data set showed, that commits
between both variants are not unusual and hence must
be differentiated.

Commits belonging to the 6 to 12 hours group are
treated differently depending on the share of the night
they are covering. For this calculation, at first, it must
be calculated how many minutes of the night are covered
by the commit(nightshare = ns):

Ztimestampprev

i=timestamp,,,,. Ty * 1

ns = o 7
Z 1MESLAMPy, jght End 1
1=timestamp, ;ontBegin

2)
1, if i € nighttime,
T = .

0, otherwise

This formula counts for a commit, how many of the
total minutes of a night (denominator) were covered
(numerator). The result (a percentage) is used to
calculate the working time:

Wtys = NS * Wiprop + (1 — ns) * daycoverage

timestamp,,,..,,
daycoverage = E T;
i=timestamp,,,,. (3)
if i € daytime,
otherwise

The logic behind calculating with nightshare is, that
a commit gets as much proportional working time
(see Formula E]) as it covers the night (ns). This
ensures, that commits covering large parts/the whole
night get working time typical for the night assigned.
The minutes belonging to the day (daycoverage,

sum of minutes during the day), are fully assigned.

Example: The night is 10pm - 7am. Commit 1
is at 8am, the previous one at 9pm. As it covers
the full night (ns = 1), it is fully proportional
calculated. Commit 2 is at 4pm, the previous one
at 6am. Commit 2 covers only 11% of the night
(ns = 0.11), consequently this amount is calculated
proportional. The minutes during the day (7 am to 4
pm) are calculated to 89%.

Comparing these two examples, we can see, that
Commit 1 (done early in the morning) got less working
time. Commit 2 (rarely goes into the night) got almost
regular working time assigned.

For the calculation, we need to set two timestamps
as the beginning and end of the night. For the
implementation, this might be done by setting those
as a fix value (depending on the dataset/ business
entity) or by calculating a meaningful start of the
day automatically. The latter was chosen in our
implementation by calculating it dynamically through
looking at the number of commits per timestamp (Figure
and setting the night begin/end to a certain percentage
(15% in our case) of the highest number of commits.

Irregular working time assignment. All commits
without time difference (1.4% of the cases) or not daily
committed (45% of the cases) need a different handling
as they don’t have any (close) timely relationship to
other commits, on which the calculation can be made.
As part of the earlier described development process,
additional analysis where done in later iterations to dive
deeper into the commit behavior of developers.

Building on the previously described development
steps, the relationship of working times, time differences
and LOC of all regular commits were plotted. Figure
[2] shows, that the number of LOC is exponentially
rising, but the time differences and working times are
linear. Consequently, we can conclude, that it is not
possible, to assign working time just by looking at the
LOC of a commit. For every LOC, a wide range of
time differences & working times are possible, and for
every time difference or working time, a wide range
of LOC are possible. Thereafter, average and quartile
working times for each LOC where plotted (Figure
[B). This gives a deeper look into the working time
distribution and LOC relationship. Through calculating
linear regression lines, the overall trend is visible more
easily, resulting into close median and average working
times per LOC. Assuming, that the data representative,
the median regression line can now be taken to estimate
the working time for all irregular commits. Using this
method, the irregular commits also get working time

LOC - time difference - working time correlation
980

2040 o
gig 1870 .§
770 1700 5 .,
700 1530 3 &
630 1360 o 2

© 560 1190 g 'g

Q490 1020 € ¢
420 (S
350 850 5 g
280 680 £ E
210 510 T B
140 340 ¢
70 170 5

0 —LOC —time difference —working time 0
Figure 2. LOC, time difference and working time
correlation

working time & LOC - comparison
900

800
o 700
£600
EDSOO |
g 400
2300 g il 1
*200 1yl ""M !

100 i (l "n [‘ |‘ ‘ |\

0 TP ! g

LoC 0@0@6@0@\%@&\“’Q’cbbi‘é%,%@i%%‘é\pﬁ&g

—Average —First quartile - Second quartile —Third quartile

AT

Figure 3. LOC and working time comparison

assigned based on the results of the regular commits:
Wiinear = 0.04267525 * loc + 258.58249058 (4)
5.2. Implementation

For the implementation, the commit data (available
in CSV format) where parsed and uploaded to a
PostgreSQL database alongside all other information
needed (See section [5.I). To make the data easier
reusable in the future, a REST API was developed
in PHP, returning the transfer price in JSON format,
running on an Apache Webserver. The steps not only
represent the processing order, but also the development
process of the implementation.

The first step in the process was to upload the
CSV commit data into the database. In this step,
preprocessing was done to eliminate invalid data.

The second step was to receive cost data for each
business entity (cost centre view). In our sample
implementation no real-life data but dummy costs were
used to show the basic cost calculation procedure.

The third step was to load the commit data from the
database, process them (e.g. calculate time difference)

and calculate the algorithm presented in the solution
design section (Section [5.1). The result after this step
is a list of commits, on which every commit has its
working time assigned according to our solution design.

As already said, for our sample use case, share of the
workload between all contributed projects of entity is
important. Therefore, the fourth step was to aggregate
the list of working times to the needed organizational
level. We aggregated our sample data on a team-level,
as this hierarchy level is the lowest available cost centre
level. For each entity, the sum of working times per
projects are calculated. Out of the sum of working times,
the work share distribution can be calculated (e.g. 30%
to Project A, 60% to Project B, 10% to Project C).

The fifth step was the calculation of the transfer
prices, in our example using the Cost Plus method. This
means, that for each entity, a value must be calculated
which flows to other entities. The result of step four
(work share distribution) is used for the calculation.
As we also have the costs per business entity, we can
now split all costs which are not directly assignable to
one transaction (indirect costs e.g. developers salary)
according to the work share spend on it. On top of all
the costs, a profit margin is added (5% flat in our case as
an demonstration example).

The end result is a list of organizational units and
their costs per project they are developing. These data
are returned in the sixth step over the REST API in
JSON format and may be used in various use cases like
controlling or taxation.

6. Demonstration and Evaluation

The last two steps in design science are the solution
demonstration and evaluation.

6.1. Demonstration

We demonstrate our solution using the real world
data on which the algorithm is based on. Before the
cost calculation itself will be demonstrated, the work
time assignment for each of the four cases (3 regular
commits, 1 irregular without time difference) will be
shown. The first example shows part of a JSON output
from the API belonging to Case 1 (time difference <360
min.):

{"module": "Module A",

"commit_date": "2015-01-02 15:18:02",
"owner": "Person A",
"time_difference": "23",

"loc": "462",

"working_time": "23"}

As the commit was done close after the previous

commit, it gets its time difference as work time assigned.
The implemented API returns not only the working
time of the commit, but also additional data (e.g.
time difference, name of committer, the module and
LOC). Additionally, organizational data for the later cost
calculation are included (not shown here).

Case 2 (360 - 720 min. time difference) can be
shown with a commit, which was done in the morning
after covering large parts of the night (previous commit
was at 10:40 pm). Consequently, the commit does get
less work time assigned for the night time. In our
demonstration we can see, that the algorithm works
exactly like desired: Commits covering the night get not
the full night as work time:

{"module": "Module B",

"commit_date": "2016-02-15 09:35:27",
"owner": "Person B",
"time_difference": "655",

"loc": "70",

"night_share": 1,

"working_time": 50}

In this example, the commit covers 655 minutes, mostly
over night. Due to the calculations of our algorithm, it
gets 50 minutes of work time assigned, which means the
developer effectively started programming (according to
the statistical correlation to other commits) at 8:45 AM.

Case 3 (720-2160 min. time difference) is shown
on a commit covering part of two work days (covering
16 hours through the night). Therefore, work time
proportional to the statistical typical commits covering
that time is assigned:

{"module": "Module C",

"commit_date": "2016-04-08 11:07:01",
"owner": "Person C",
"time_difference": "953",

"loc": "684",

"working_time": 154}

In this example, the previous commit was done at 7:14
PM and therefore covers not only the night, but also
parts of the current work day. Our algorithm assigns
the commit working time of 154 minutes, which (if
the developer stopped working at 7:14 PM) effectively
means the committer started working on the module at
8:33 AM.

Case 4 (Irregular commit) shows, that commits with
no or to large time difference get reasonable work
time based on the other commits by using the median
regression line from the Solution section:

{"module": "Module D",
"commit_date": "2015-01-06 17:58:19",
"owner": "Person D",

"time_difference": null,

"loc": "227",

"working_time": 268}

In this case, the commit to module D was made by
Person D, which only made a single commit to the
software platform. The commit got work time (268
minutes) assigned in height of the median value of all
regular commits (demonstrated with case 1 to 3) with
equal LOC.

All working times are aggregated for each cost
centre. In our second demonstration, the lowest
organizational level with dedicated cost centres was
taken. All commits belonging to this organization
(committer is located there) are aggregated according to
the target organization (owner of the module). Based
on the total work times per organization, a working
time share is calculated, which represents the amount
of work every module the organization worked on. The
percentage share is then used for splitting the indirect
costs in that respective ration. After adding the profit
margin (5% flat in our case), the transfer price can be
calculated:

{"org_name": "Organisation-A-A-A",
"parent_org": "Organisation-A-A",
"transfer_data": {

"2015": {

"Organisation-A-A": {

"share": 84.96,

"costs": 47701.28,

"transfer_price": 50086.34

} 4

"Organisation-A-A-A": {

"share": 7.31,

"costs": 4106.04,

"transfer_price": 4311.34

} 4

"Organisation-B-A": {

"share": 6.53,

"costs": 3669.06,

"transfer_price": 3852.51

Pl 1311

This example transfer prices for the rather small
sample entity show that in 2015 most of the commits
(92.27%) are still within the same organization
(Organisation-A-A-A) or for the parent business unit
(Organisation-A-A). A smaller part (in sum 7.73%) is
crossing tax boundaries to other business units (B-A,
etc.) and therefore might be taxation and accounting
relevant.

Commits to projects, which were labelled by the
company as not relevant to the analysis where excluded
in the analysis and consequently also not included in the
transfer price calculation.

6.2. Evaluation

We evaluated our approach using member checking
for our demonstration data and feedback from experts
on the subject matter. In total, we conducted
interviews with six people having three different views
on transfer pricing in inner source: Two people form
the German Ministry of Finance, one person from a
large international account firm and three people from
our industry partner (previously involved in problem
identification). Our goal was to evaluate two main
aspects: 1) Evaluated the basic usage of Cost Plus for
transfer pricing within inner source. 2) Evaluate the
algorithmic suitability of the algorithm itself.

Throughout our interviews and further collaboration
with the German Ministry of Finance, we were able to
analyze the different possible transfer pricing methods
and its prerequisites to be met when applied to
inner source development. A result is that Cost
Plus is applicable (and first choice) for inner source
development, when a client-supplier relationship is
given [26]. Our interview with the large international
accounting firm confirmed that, even though they
emphasized, that choosing a method strongly depends
on the individual case. We consider our evaluation
objectives to be fulfilled, as we specifically targeted Cost
Plus.

Our second main evaluation goal (suitability of the
algorithm for calculating cost plus) was also evaluated
with our interview partners at the German Ministry of
Finance. The head of education for the department
confirmed that our solution is not only a valid way
of calculating Cost Plus for transfer pricing, but also
offers a significant advantage compared to the way of
determining the Cost Plus transfer price up to now. This
confirmed the usability of our algorithm from a tax
officials point of view.

Evaluating the algorithmic suitability from an
industry point of view was done again with the three
industry interview partners already involed in data
gathering and problem identification (member checking,
details to interviewed persons see section f.1). As
original data source they knew the data, its structure, and
its corporate context. They confirmed that our results
fit the real world. Additionally, they attest to us that
the working time share was useful and fits the internal
work flows. They challenged the algorithms ability
to correctly calculate the time spent on an individual
commit. However, in the context of calculating the
Cost Plus method, we only care about the working
time distribution (percentage-shares) and not individual
commits. Hence, their general confirmation of the
usefulness of our approach stands.

7. Discussion and Limitations

We present a novel algorithm and its implementation
for more precise Cost Plus calculation. The
method is defined by the OECD and is commonly
used in calculating transfer prices in client supplier
relationships. We move past current practice, which
takes a coarse-grain approach, by basing our algorithm
on the actual code contributions. Using our algorithm,
we can calculate the time and associated labor costs to
determine transfer prices between a supplier and their
client. The demonstration and evaluation show that we
succeeded on both our defined objectives: A new and
correct algorithm that performs well when faced with
a large amount of individual (but high-frequency) code
contributions.

Additionally, our demonstration and evaluation also
scopes this research: We do not move into acceptance or
analyzing wide-spread use of our work (yet). Hence,
empirical evaluation criteria like trustworthiness for
qualitative research [27] or reliability and validity for
quantitative research do not apply. We therefore limit
our discussion to general aspects of our work.

The most obvious limitation is that on the one
hand, we aim to provide a new algorithm for precisely
calculating labor costs in software development. Yet,
towards this general goal, we are missing the final step,
which is to determine the error of the time spent on an
individual code contribution. This error is most likely
a distribution around the value we calculate, but we
have yet to determine this. For the specific purposes
of our research, as set out in the objective section, this
missing piece does not matter: For calculating Cost Plus
precisely, the percentage relationships are sufficient so
that we don’t need the absolute values.

In terms of computational efficiency, the algorithm
scales linearly with the number of transactions
(commits). Given that it is our goal to be precise and
fine-grain, we have to go down to the level of accessing
each individual commit, and hence a linear performance
is the best we can get.

8. Conclusions

As already shown in the discussion and limitations
section, we developed a new algorithm to determine
working times spend on commits for usage within cost
calculation, especially Cost Plus in transfer pricing.

Even though, the algorithm and its implementation is
limited to calculate work distribution for organizations,
it sets the basis to enable exact work time calculation
per commit. Therefore, future research can focus on
improving the accuracy of individual commits, which

enables more application fields for the algorithm.
Moreover, future research needs to show which
additional areas can benefit from our algorithm, what
adjustments need to be made. From an inner source
perspective it is worth finding out, how the results of
this paper can best be used to improve acceptance of
inner source and bring economic advantages with it.

9. Acknowledgment

We would like to acknowledge El¢in Yenisen Yavuz,
Thomas Wolter and the anonymous reviewers for their
valuable feedback that helped us improve the paper
significantly.

References

[1] M. Capraro and D. Riehle, “Inner source definition,
benefits, and challenges,” ACM Comput. Surv., vol. 49,
Dec. 2016.

[2] K.-J. Stol and B. Fitzgerald, “Inner source—adopting
open source development practices in organizations: A
tutorial,” IEEE Software, vol. 32, no. 4, pp. 60-67, 2015.

[3] M. Capraro, Measuring Inner Source Collaboration.
PhD thesis, Friedrich-Alexander-Universitit
Erlangen-Niirnberg (FAU), 2020.

[4] D. Riehle, M. Capraro, D. Kips, and L. Horn,
“Inner source in platform-based product engineering,’

IEEE Transactions on Software Engineering, vol. 42,
pp- 1162-1177, 12 2016.

[5] The International Federation of Accountants, Evaluating
and Improving Costing in Organizations. 2009.

[6] C. Ebert, “Software product management,” I[EEE
Software, vol. 31, no. 3, pp. 21-24, 2014.

[7] C. Ebert, B. K. Murthy, and N. N. Jha, “Managing
risks in global software engineering: Principles and
practices,” in 2008 IEEE International Conference on
Global Software Engineering, pp. 131-140, 2008.

[8] T.-H. Cheng, S. Jansen, and M. Remmers, “Controlling
and monitoring agile software development in three
dutch product software companies,” in 2009 ICSE
Workshop on Software Development Governance,
pp. 29-35, 2009.

[9] OECD, OECD Transfer Pricing Guidelines for
Multinational Enterprises and Tax Administrations
2017. 2017.

[10] United Nations, United Nations Practical Manual on
Transfer Pricing for Developing Countries. United
Nations, 2014.

[11] Y. Holtzman and P. Nagel, “An introduction to transfer
pricing,” The Journal of Management Development,
vol. 33, 02 2014.

[12] OECD, Aligning Transfer Pricing Outcomes with Value
Creation, Actions 8-10 - 2015 Final Reports. 2015.

[13] O. Mazur, “Transfer pricing challenges in the cloud,”
Boston College Law Review, vol. 57, no. 2, pp. 643-693,
2016.

[14] M. Olbert and C. Spengel, “International taxation in
the digital economy : challenge accepted?,” World Tax
Journal : WTJ, vol. 9, no. 1, pp. 3-46, 2017.

10

[15]

(16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

(25]

(26]

(27]

B. B. C. Aurora, “The Cost Of Production Under Direct
Costing And Absorption Costing — A Comparative
Approach,” Annals - Economy Series, vol. 2,
pp. 123-129, April 2013.

Open Source Initiative, “The open source definition,”
2007.

K.-J. Stol, P. Avgeriou, M. A. Babar, Y. Lucas, and
B. Fitzgerald, “Key factors for adopting inner source,”
ACM Trans. Softw. Eng. Methodol., vol. 23, Apr. 2014.

H. Edison, N. Carroll, L. Morgan, and K. Conboy, “Inner
source software development: Current thinking and an
agenda for future research,” Journal of Systems and
Software, vol. 163, p. 110520, 05 2020.

B. B. C. Aurora, “The cost of production under direct
costing and absorption costing — a comparative
approach,” Annals - Economy Series, vol. 2,
pp. 123-129, 2013.

M. Kornberger, D. Pflueger, and J. Mouritsen,
“Evaluative infrastructures: Accounting for platform
organization,” Accounting, Organizations and Society,
vol. 60, pp. 79-95, 2017.

G. Gruetter, D. Fregonese, and J. Zink, “Living in a
biosphere at robert bosch,” in Adopting InnerSource:
Principles and Case Studies (D. Cooper and K.-J. Stol,
eds.), 06 2018.

K. Peffers, T. Tuunanen, M. Rothenberger, and
S. Chatterjee, “A design science research methodology
for information systems research,” Journal of
Management Information Systems, vol. 24, pp. 45-77,
01 2007.

N. Carroll, L. Morgan, and K. Conboy, “Examining the
impact of adopting inner source software practices,” in
Proceedings of the 14th International Symposium on
Open Collaboration, OpenSym *18, (New York, NY,
USA), Association for Computing Machinery, 2018.

D. Cooper and K.-J. Stol, Adopting InnerSource:
Principles and Case Studies. 06 2018.

R. Fuller, “Functional organization of software groups
considered harmful,” in 2019 IEEE/ACM International
Conference on Software and System Processes (ICSSP),
pp. 120-124, 2019.

A. Neumann, “Transfer pricing in inner source software
development,” Master’s thesis, Hochschule des Bundes
fiir 6ffentliche Verwaltung, Bruhl, Germany, 2019.

E. G. Guba, “Criteria for assessing the trustworthiness of
naturalistic inquiries,” ECTJ, vol. 29, p. 75, Jun 1981.

	Introduction
	Related Work
	Transfer pricing
	Inner source software development

	Research Approach
	Problem and Objective
	Problem Identification
	Objective Definition

	Design and Implementation
	Solution Design
	Implementation

	Demonstration and Evaluation
	Demonstration
	Evaluation

	Discussion and Limitations
	Conclusions
	Acknowledgment

