
Profiling and Optimizing
Performance in the Cloud

MASTER THESIS

Oscar Rosner

Submitted on 12 October 2021

Friedrich-Alexander-Universität Erlangen-Nürnberg
Technische Fakultät, Department Informatik

Professur für Open-Source-Software

Supervisors:
Dr. Andreas Kaufmann

Prof. Dr. Dirk Riehle, M.B.A.

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen,
die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 12 October 2021

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 12 October 2021

i

https://creativecommons.org/licenses/by/4.0/

ii

Abstract

Internet users love fast websites and hate slow ones. They use, revisit and pay
for sites with good performance and abandon bad performing sites forever.

High responsiveness and optimized resource utilization are therefore essential
prerequisites for a website’s popularity and financial success.

In this thesis, we profiled and optimized performance in a cloud-based web applic-
ation. We improved the performance of 15 backend endpoints and doubled the
frontend’s overall performance score. Optimized usage of a database abstraction
framework, an aggressive caching strategy, increased batch calls, and bundle size
reductions had the most significant impact on performance.

We present detailed examples of performance bottlenecks in a complex web ap-
plication and show how we remedied them.

iii

iv

Contents

1 Introduction 1

2 QDAcity 3
2.1 Qualitative Data Analysis . 3

2.1.1 Coding . 4
2.2 Functional Overview . 5

2.2.1 Frontend Pages . 5
2.3 Technical Overview . 7

2.3.1 JS Client . 7
2.3.2 GAE Backend . 8
2.3.3 Real-time Collaboration Service (RTCS) 9
2.3.4 Source Code Distribution in QDAcity 10

3 Performance in the GAE Backend 11
3.1 Profiling Results . 12

3.1.1 The Cost of a Datastore Write 14
3.1.2 Taking Advantage of Transparent Persistence 15
3.1.3 Multiple Changes to Attached Object 16
3.1.4 Batch Operations . 18
3.1.5 Query Entities in Superclass Table 19
3.1.6 Datastore vs. Memcache 21
3.1.7 The Effect of Loading Requests 22

3.2 Quality Requirements . 23
3.2.1 Endpoints for Optimization 25

3.3 Implementation . 26
3.3.1 Core Refactorings . 27
3.3.2 Preventing User Facing Loading Requests 29
3.3.3 Cache Design . 31

3.4 Evaluation . 32
3.5 Additional Refactoring . 35

4 Performance in the RTCS 37

v

4.1 RTCS Infrastructure . 37
4.2 Migration to Cloud Run . 39

4.2.1 Profiling Resource Usage 40
4.3 Evaluation of Migration . 43

5 Performance in the Frontend 47
5.1 Creating a Baseline . 47

5.1.1 Results . 49
5.2 Quality Requirements . 50
5.3 Implementation . 51

5.3.1 Webpack 5 Upgrade . 51
5.3.2 Code-splitting . 51
5.3.3 Bundle-splitting . 54
5.3.4 Page Refresh During ServiceWorker Installation 56
5.3.5 Removing jQuery . 56
5.3.6 Omit Redundant Requests 57

5.4 Evaluation . 58

6 Conclusions 61

Appendices 63
A Formula: Percentage Increase or Decrease from One Value to An-

other . 65
B Warmup Service Prototype . 66

References 67

vi

Acronyms

CAQDAS Computer-Assisted Qualitative Data Analysis Software

CDN Content Delivery Network

CLS Cumulative Layout Shift

CRUD Create, Read, Update, and Delete

FAU Friedrich-Alexander-Universität Erlangen-Nürnberg

FCP First Contentful Paint

GAE Google App Engine

GCP Google Cloud Platform

JDO Java Data Objects

JSON JavaScript Object Notation

JS JavaScript

LCP Largest Contentful Paint

LOC Lines of Code

NYT Nailing your Thesis

PWA Progressive Web Application

QDA Qualitative Data Analysis

RPC Remote Procedure Call

RTCS Real-time Collaboration Service

SPA Single-Page Application

TBT Total Blocking Time

TTI Time To Interactive

vii

viii

1 Introduction

Scientific research has shown that users love fast websites (Kuan et al., 2005; Liu
& Arnett, 2000; Novak et al., 2000; Palmer, 2002). Numerous practitioner reports
give examples. Pinterest reduced the perceived loading times of their website by
40%, which increased search engine traffic and sign-ups by 15%1. Google Maps
decreased their homepage’s size from 100 KB to ∼75 KB and measured a traffic
increase by 25% in the following three weeks2. Vodafone (IT) reduced the load
time of their homepage’s most prominent visible element by 31% and measured
8% more total sales3. Swappie reduced the average load time of their website by
23% and saw a revenue increase of 42% in the following three months4.

Users hate slow websites (Abels et al., 1997; Egger et al., 2012; Zhang & Yang,
2009). A survey by Kissmetrics revealed that 79% of e-commerce customers
who had trouble with site performance were less likely to buy from the same
site again5. Additionally, Google’s SOASTA report from 2017 showed that the
probability of a bounce (user leaves the site) increases by 32% when page load
time goes from one second to three seconds6. These examples reveal that even
minor performance optimizations hold great opportunities and show the risks
that arise when performance is neglected.

Cost models of cloud providers have increased in number and are highly com-
plex (Buyya et al., 2011; Dutta & Dutta, 2019; Kavis, 2014; Mell & Grance,
2011). Choosing the right one can be difficult but is needed to avoid unnecessary
operational costs. Therefore, a company needs to analyze and understand its
application’s resource usage to select the appropriate cost model.

In this thesis, we profile performance in QDAcity, a cloud-based web application
for qualitative research, and use our findings to increase overall responsiveness
and optimize resource utilization.

1https://bit.ly/39ufiY2
2https://zd.net/3u4wxsz
3https://web.dev/vodafone
4https://web.dev/swappie
5https://bit.ly/3u3O1Fk
6https://bit.ly/3kvoMZd

1

https://bit.ly/39ufiY2
https://zd.net/3u4wxsz
https://web.dev/vodafone
https://web.dev/swappie
https://bit.ly/3u3O1Fk
https://bit.ly/3kvoMZd

1. Introduction

2

2 QDAcity

2.1 Qualitative Data Analysis

Qualitative Data Analysis (QDA) is a form of inquiry in which researchers look
to answer their question about a phenomenon of interest.

A phenomena of interest is something we want our research to under-
stand, predict, explain, or describe (Rappaport, 1987).

The analyzed data is qualitative, consisting of words, descriptions, expressions,
or concepts; any information that can’t be reduced to a numerical representation
and helps to answer the research question.

Researchers can gather qualitative data from various sources like face-to-face or
telephone interviews, focus or Delphi groups, observations, videos, internet sites,
and more (Bazeley, 2013; Grbich, 2013; Saldaña, 2013). The most common way
to collect qualitative data is through in-depth interviews with one or more people
that are or have been involved with the phenomenon of interest (Kaufmann &
Riehle, 2015).

QDA is commonly embedded in an iterative process, shown in Figure 2.1, in
which the researchers conduct interviews until the subsequent analysis yields no
new insights that could move the theory forward (e.g., when researchers hear the
same response again and again). At this point, data saturation is reached, and
the data collection ends.

Figure 2.1: Iterative research process of collecting and analyzing data

3

2. QDAcity

It can take numerous interviews until data saturation is reached, and researchers
can consequently end up with hundreds of pages of transcripts that require rigor-
ous analysis. Many software products support researchers with their inquiry by
assisting with data management, the coding process (explained in Section 2.2), or
project coordination (Wickham & Woods, 2005). These programs are commonly
referred to as Computer-Assisted Qualitative Data Analysis Software (CAQDAS).

2.1.1 Coding

Coding is a method to analyze and manage qualitative data and a fundamental
skill for qualitative analysis (Bazeley, 2013). During coding, researchers assign
codes to text chunks of varying sizes: words, phrases, sentences, or whole para-
graphs (Miles & Huberman, 1994). Codes are based on the researcher’s under-
standing of a text passage and describe a concept or theme in the collected data.

Supposing that we are interviewing a group of programmers, and a respondent
says, “I feel stressed all the time, and I keep missing sleep”. We might code this
as Programmer Burnout and annotate the passage accordingly (in QDAcity, such
an annotation is called a Coding). By applying Programmer Burnout in our
analysis, we group burnout-related text chunks, which helps us to

• see how symptoms and causes of burnout vary between different respondents
(data analysis),

• quickly find a quote to support a point we want to make later (data man-
agement).

4

2. QDAcity

2.2 Functional Overview

QDAcity is a CAQDAS and a cloud-based web application, that was developed
to support the dissertation of Kaufmann (2021). It’s currently developed by
the Professorship for Open Source Software at Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU)1. The application has two user groups: Research-
ers and students. While researchers use QDAcity for their qualitative research,
students are required to use QDAcity for their QDA related assignments when
attending courses like Nailing your Thesis (NYT)2 at FAU.

The app offers both user groups a wide range of functionality to assist with
qualitative research but, at its core, enables users to:

1. Create or join a project with other collaborators,

2. upload RTF and PDF documents (e.g., interview transcripts),

3. annotate the documents with codings that link text segments to codes which
are created and refined during the analysis to build the code system, a
hierarchical structure of categories and concepts (codes), and

4. from the code system and coded data synthesize a theory that answers their
research question.

2.2.1 Frontend Pages

QDAcity is accessible at https://qdacity.com. First-time visitors can create a new
QDAcity account with their email and password or sign in through a third-party
service such as Google or Facebook. Most functionality in QDAcity is accessible
through three main pages: Personal Dashboard, Project Dashboard, and the
Coding Editor. We introduce them here explicitly because they will reappear in
later chapters as the target of performance optimizations.

Personal Dashboard: After a successful login, this page welcomes the users and
displays their projects, courses, and notifications. The dashboard’s primary pur-
pose is to manage user projects. Users can create a project themselves or join an
existing one. The latter could be the case for an NYT student who received an
invitation from a teaching staff member.

Project Dashboard: Clicking on a project in the list of projects (Personal Dash-
board) opens the project dashboard. This page displays project properties such
as name, description, settings, members, and number of documents and codes.

1https://oss.cs.fau.de/
2https://oss.cs.fau.de/teaching/specific/nyt

5

https://qdacity.com
https://oss.cs.fau.de/teaching/specific/nyt

2. QDAcity

Coding Editor: This page is the heart of QDAcity; it’s where users analyze
qualitative data through coding (see Section 2.1.1). Project members maintain
their codes in a shared code system. A code in the code system resembles a code
book entry after MacQueen et al. (1998). It includes the code, a brief definition,
an extended definition (code memo), guidelines for when to use the code, and
guidelines for when not to use it. The code book makes the analysis process
more transparent and ensures that all researchers apply the codes in the same
way.

Figure 2.2 shows the coding editor. The page lists the code system’s entries on
the left sidebar and displays the annotated interview transcript on the right. This
particular transcript was used for practice in the NYT winter term of 2020/21.

Figure 2.2: Coding in QDAcity

6

2. QDAcity

2.3 Technical Overview

QDAcity is a Single-Page Application (SPA) with a JavaScript (JS) client that
communicates with two backend services for data storage and real-time collab-
oration. Figure 2.3 illustrates how these three components are wired together.
QDAcity is also a Progressive Web Application (PWA) because it installs a Ser-
viceWorker3 that intercepts and caches network requests making the frontend
fast and independent of the network (Majchrzak et al., 2018; Steiner, 2018).

Figure 2.3: Building block view of QDAcity’s components

2.3.1 JS Client

QDAcity’s frontend is made with React4, which has been the second most used
web framework, behind jQuery5, for the last two years67. React allows us to en-
capsulate application logic into reusable components and compose them to build
a complex UI. React components are written in JSX, an extension to JavaS-
cript, and can be implemented as a simple function or an ES6 class (ES6 is a
JavaScript specification released in 2015, often called ECMAScript2015). If the
component uses state, e.g., to remember its data has and its modifications, it
must be implemented as a class or a function with React Hooks8.

QDAcity has 265 such class components, written with modern JavaScript syntax.
During our build process, Babel9 transpiles these classes to browser-friendly ES5
functions, and webpack10 bundles the result together with all necessary depend-
encies to create a single, minified JavaScript file as the output. Figure 2.4 shows
this simplified version of the frontend build process in QDAcity.

3https://developers.google.com/web/fundamentals/primers/service-workers
4https://reactjs.org/
5https://jquery.com
6https://insights.stackoverflow.com/survey/2020
7https://insights.stackoverflow.com/survey/2019
8https://reactjs.org/docs/hooks-intro.html
9https://babeljs.io

10https://webpack.js.org

7

https://developers.google.com/web/fundamentals/primers/service-workers
https://reactjs.org/
https://jquery.com
https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2019
https://reactjs.org/docs/hooks-intro.html
https://babeljs.io
https://webpack.js.org

2. QDAcity

Figure 2.4: Frontend build process in QDAcity (simplified)

2.3.2 GAE Backend

A typical SPA like QDAcity has a heavy, feature-rich client that communicates
with a light backend whose primary purpose is to provide an interface to the
database, protected by user authentication. In QDAcity, this backend is a Java
8 application hosted on Google App Engine (GAE). GAE is an application-
hosting platform running on Google’s cloud infrastructure called Google Cloud
Platform (GCP).

The Java application uses Cloud Endpoints11 for generating a RESTful web API
that exposes Create, Read, Update, and Delete (CRUD) operations for our data
models. Cloud Endpoints routes an incoming request to the corresponding ap-
plication code and returns the response as JavaScript Object Notation (JSON).
The mapping between request and code is established with Java annotations on
classes, methods, and parameters. The generated API consists of 226 meth-
ods from 30 endpoint classes, each class named after the data model it controls
(e.g., ProjectEndpoint, CodeEndpoint, or UserEndpoint). To separate secur-
ity concerns from business logic and avoid always-repeating boilerplate code in
the endpoint methods, QDAcity installs a custom authentication interceptor that
sits between an incoming request and the destined endpoint. The interceptor ex-
tracts user credentials from the request header and injects them into the next call,
wrapped in a user object which is null if the credentials are invalid or missing.

Code 2.1 shows an endpoint class with Cloud Endpoints annotations in lines 1,
3, and 4. The code comes from the real QDAcity repository but was significantly
attenuated to make the point.

1 @Api(authenticators = {QdacityAuthenticator.class}, /* ... */)
2 public class ProjectEndpoint {
3 @ApiMethod(name = "getProject", path = "project")
4 public Project getProject(@Named("id") Long id, User user) {
5 // Authorize user; query for project; return project.
6 }
7 }

Code 2.1: Cloud Endpoints annotations in endpoint class

11https://cloud.google.com/endpoints

8

https://cloud.google.com/endpoints

2. QDAcity

For persistence, the GAE backend uses a NoSQL document database called
Firestore in Datastore mode12. The endpoints access the datastore in two ways:
through a low-level API from Google13 or with Java Data Objects (JDO).

JDO in QDAcity

The App Engine SDK includes an implementation of JDO, a data access interface
that provides three main features for QDAcity.

1. Automatic mapping between java objects and datastore entities,

2. consistent data schema and type safety for the schemaless NoSQL datastore,

3. abstraction of the datastore, making it easier to move to another cloud
provider and avoid vendor lock-in.

The App Engine SDKs implementation of JDO is based on the open-source soft-
ware called DataNucleus AccessPlatform14, which is installed in QDAcity as a
maven plugin.

2.3.3 RTCS

A unique selling point of QDAcity is the real-time collaboration feature that
allows multiple project members to work on the same document simultaneously
while having every change to the code system or the codings shared between
them.

Such real-time collaboration is a technical challenge as it requires full-duplex
communication between client and server and a connection that can last for
hours. Both of these requirements cannot be met by the GAE backend since
it communicates exclusively via HTTP and has a maximum request deadline
of 60 seconds. QDAcity uses a second backend service instead, the RTCS, a
NodeJS15 application running on a virtual machine on Compute Engine16.

When loading the coding editor, project members automatically initiate the com-
munication with the RTCS through a WebSocket connection that remains open
for the duration of the coding session. The RTCS doesn’t forward the incoming
messages to the other project members directly but instead publishes them to a
Redis Room17 which can be subscribed to by other RTCS instances. This indir-
ection is necessary to allow the RTCS to scale horizontally during times of high

12https://cloud.google.com/datastore/docs
13https://cloud.google.com/appengine/docs/standard/java/datastore/api-overview
14https://www.datanucleus.org/products/accessplatform_6_0/index.html
15https://nodejs.org/en/
16https://cloud.google.com/compute
17https://github.com/socketio/socket.io-redis-adapter

9

https://cloud.google.com/datastore/docs
https://cloud.google.com/appengine/docs/standard/java/datastore/api-overview
https://www.datanucleus.org/products/accessplatform_6_0/index.html
https://nodejs.org/en/
https://cloud.google.com/compute
https://github.com/socketio/socket.io-redis-adapter

2. QDAcity

traffic volume while maintaining the communication between project members
connected to different instances. Figure 2.5 illustrates the dynamic view of the
RTCS for the internal scenario: “Project member adds a code to the code system
with two collaborators and two RTCS instances”.

Figure 2.5: Dynamic view of the RTCS

2.3.4 Source Code Distribution in QDAcity

Although we have described the JS Client, GAE Backend, and the RTCS in
the previous sections in similar length, this does not reflect their share in the
repository and complexity. In Table 2.1, we aggregated the Lines of Code (LOC)
that each of the three parts contributes to the total size of the repositories source
code. We included this ratio to clarify where most of the working hours have
gone since the start of QDAcity.

Component LOC Rel. LOC

JS Client 56,155 (77% JSX, 22% JS) 68%
GAE Backend 25,122 (100% Java) 30%
RTCS 1,686 (100% JS) 2%

Note 1: LOC is the sum of lines from all files in “Directory”, including comments and blank lines.

Note 2: Percentage values were rounded to the nearest integer (5.92%→ 6%, 10.2%→ 10%).

Table 2.1: Lines of Code in QDAcity

The JS Client contains 68% of the total LOC, which emphasizes our point from
Section 2.3.2 that the complexity in QDAcity lies in the frontend.

10

3 Performance in the GAE Backend

We profiled the code of the GAE backend to identify existing performance bot-
tlenecks and build up a set of re-usable code-tuning strategies for optimization.
We present the results with the highest potential for performance improvements
in sections 3.1.1 - 3.1.7.

Building on the knowledge we gained from the profiling, we defined quality re-
quirements to optimize performance in the most frequently used endpoints. Sec-
tion 3.2 presents an overview of the optimizations we applied and describes a few
specific cases where we achieved significant performance improvements.

In Section 3.3, we compare the implementation results from 3.2 with the require-
ments from 3.1 and describe additional maintainability improvements which were
not directly related to performance.

11

3. Performance in the GAE Backend

3.1 Profiling Results

Method

We profiled an App Engine F1 instance located in Iowa (us-central1) that runs
Java 8 in the standard environment. We conducted the experiments in the qda-
city testing environment, a separate GCP project that mirrors the production
environment, including its GCP services (App Engine, Compute Engine, ...) and
its datastore entities.

We looked at two indicators to measure request performance: Latency and the
number and type of Remote Procedure Calls (RPCs) each endpoint makes during
execution. The latency is the request processing time on the instance, from when
the request was received until the response was sent. It does not include the time
it took for the request to travel back and forth from our Postman client1 to App
Engine and is therefore only a fraction of the round-trip time.

App engine logs the latency of every request and includes it in the request log
that contains other meta information such as the HTTP method or the status
code. Request logs are displayed in the Cloud Logging2 console from where they
can be examined, filtered, and eventually downloaded.

Figure 3.1: Example logs in Cloud Logging

To measure the execution time of individual lines, we wrote timestamps into
the standard output, from where App Engine picks them up and adds them to
the request log. We tried to use other instrumentation clients, such as Google’s
recommended solution, OpenCensus3. Still, it did not work because it uses gRPC4

to transmit tracing data to Cloud Logging, a framework not supported in the
standard environment5 of App Engine.

We did not include instrumentation code in the code snippets of the profiling
results but highlighted the lines to indicate such instrumentation. We use this
convention to make the code examples easier to understand while not neglecting
any methodological details (Code 3.1 shows this convention).

1https://www.postman.com/product/rest-client/
2https://cloud.google.com/logging
3https://opencensus.io
4https://grpc.io
5https://opencensus.io/integrations/google_cloud/google_cloud_appengine_standard

12

https://www.postman.com/product/rest-client/
https://cloud.google.com/logging
https://opencensus.io
https://grpc.io
https://opencensus.io/integrations/google_cloud/google_cloud_appengine_standard

3. Performance in the GAE Backend

Long start = System.currentTimeMillis();
/* code under test */
Long end = System.currentTimeMillis();
logToStdout("Time = " + (end - start));

/* code under test */

Code 3.1: Convention for shortening instrumented code

App Engine automatically creates a cloud trace6 for every nth request (the sample
rate is about 5% - 1 out of 20 requests gets traced). The trace contains every
remote procedure call made during endpoint execution (see Figure 3.2).

Figure 3.2: Example cloud trace with two remote procedure calls

The endpoints of the GAE backend typically made these requests to access dis-
tributed App Engine services such as the datastore. The traces helped us to
understand what was happening behind the scenes and improve the efficiency of
these RPCs based on this understanding.

Confounding Parameters

Latency Fluctuation:
To smooth out sample-to-sample fluctuation of request latencies, we increased
the sample size to 200 and took the median value to ignore above- and below-
average latency spikes caused by unexpected network issues. So when we present
the “request latency” or “response time” of an endpoint in the following sections,
we always mean the median time of 200 requests.

Loading Requests:
When a newly created instance receives a request, App Engine has to load the
necessary application code to process the request, leading to response times up
to 20 times higher than usual (see Section 3.1.7). To keep the response time of
the initial loading request out of our sample data, we sent an additional request

6https://cloud.google.com/trace

13

https://cloud.google.com/trace

3. Performance in the GAE Backend

prior to each test run to trigger the initialization tasks and make the instance as
ready as possible.

App Engine Auto Scaling :
If the GCP load balancer receives 200 requests in a short time, App Engine’s
auto-scaling mechanism will be triggered and create new instances to handle the
traffic spike. We limited the number of instances to 1, preventing any auto-scaling
and the resulting loading requests.

3.1.1 The Cost of a Datastore Write

This section shows that it takes longer to write entities to the datastore than to
read them. We will use the results to support our points in later sections.

Experiment

Code 3.2 uses our JDO implementation DataNucleus to load a project from the
datastore (the read operation) and updates its name (the write operation). We
measured the latency of these two operations and highlighted the responsible
lines below.
// Get PersistenceManager as 'pm'

Project project = pm.getObjectById(Project.class, /* id */); // Read entity.

project.setName(/* new name */); // Write entity.

Code 3.2: Datastore GET and PUT with DataNucleus

Table 3.1 shows that the second line, containing the write, takes more than twice
as long as the first one. Note: To calculate the Percentage Change we used the
formula in Appendix A.

Time to Read Time to Write Percentage Change

10 ms 23 ms 130% INCREASE

Table 3.1: Datastore write takes twice as long as a read

Financial Cost

A datastore write is also more expensive than a datastore read. A single write
to a datastore located in North America costs $0.0000018, which is three times
more costly than a datastore read7. The cloud computing industry is highly
competitive, so these prices and thresholds frequently change.

7https://cloud.google.com/datastore/pricing

14

https://cloud.google.com/datastore/pricing

3. Performance in the GAE Backend

3.1.2 Taking Advantage of Transparent Persistence

When a persistence manager loads an object from the datastore, the object be-
comes attached to that persistence manager. It remains in this state until it’s
actively detached with pm.detach(object) or until the persistence manager is
closed with pm.close(). When the application sets data on an attached object,
DataNucleus automatically saves these changes to the database without a previ-
ous explicit call to an output method like makePersistent(). This mechanism
is called transparent persistence8 and is essential for separating the application
layer from the database layer.

Experiment

In this section, we measure the overhead caused by an explicit call to
makePersistent(). Code 3.3 shows two request methods. The left one contains
the unnecessary call; the second one does not. Except for this slight difference,
both methods are identical. They obtain an instance of a persistence manager,
load a project, and set its name to a new value.

/* Get PersistenceManager
Load existing project */

project.setName(/* new value */);
pm.makePersistent(project);

/* Get PersistenceManager as 'pm'
Load existing project */

project.setName(/* new value */);

Code 3.3: Comparing: Calling makePersistent with an attached object.

Our profiling results show that the call to makePersistent() is unnecessary and
causes overhead that negatively impacts response time. By omitting the call,
we reduced the median request latency from 49.46 ms (N = 200) to 47.47 ms
(N = 200); this is a decrease of 4% (see Table 3.2).

Time Previous Time Optimized Percentage Change

49.46 ms 47.47 ms 4% DECREASE

Table 3.2: Optimized request latency without explicit makePersistent call

Taking 2 ms off a request will not impact the perceived response time. Still, the
optimization is justified because it takes advantage of transparent persistence to
eliminate unnecessary code.

8https://wiki.c2.com/?TransparentPersistence

15

https://wiki.c2.com/?TransparentPersistence

3. Performance in the GAE Backend

3.1.3 Multiple Changes to Attached Object

In the previous section we described transparent persistence, a mechanism that
automatically causes a datastore write whenever data is set to an attached object.
This implies that multiple succeeding data manipulations cause the same number
of datastore writes which are sent to the datastore one after the other. This
section proves that DataNucleus behaves exactly as described and presents an
optimization technique to avoid transparent persistence.

Experiment

Code 3.4 loads a project from the datastore and calls a setter method three times
with new values in each case.

// Load project as 'project' with persistence manager.

project.setName(/* new value */); // 1st datastore write.
project.setDescription(/* new value */); // 2nd datastore write.
project.setCodeSystemId(/* new value */); // 3rd datastore write.

Code 3.4: Three subsequent calls to setter method on an attached object

Figure 3.3 shows the network trace that this code generates. As expected, we see
three consecutive datastore writes, each of which lasts about 40 ms.

Figure 3.3: Network trace of multiple sets to attached object

These results are particularly problematic when combined with the results from
Section 3.1.1, which show that datastore writes are slower and more costly than
other operations.

16

3. Performance in the GAE Backend

Optimization

To stop transparent persistence and, as a result, reduce the number of sequen-
tial datastore writes, we detach the project from the control of the persistence
manager with makePersistent(). The method returns a detached copy of the
original project without any strings to an underlying persistence mechanism. We
can safely use the setter methods of the detached object and follow it up with an
explicit call to makePersistent() when we’re done (see Code 3.5).

// Load project as 'project' with persistence manager 'pm'.

Project detachedCopy = pm.detachCopy(project);

detachedCopy.setName(/* new value */); // No datastore write.
detachedCopy.setDescription(/* new value */); // No datastore write.
detachedCopy.setCodeSystemId(/* new value */); // No datastore write.

pm.makePersistent(detachedCopy); // 1st datastore write.

Code 3.5: Detaching an object before setting its data

The network trace in Figure 3.4 shows the desired result; a single datastore write
caused by the explicit call to makePersistent() instead of three.

Figure 3.4: Network trace of multiple sets to detached object

17

3. Performance in the GAE Backend

3.1.4 Batch Operations

DataNucleus allows us to persist and delete entities in batches which is a crucial
optimization technique to reduce the number of remote procedure calls made
during endpoint execution. This section shows their impact on efficiency.

Experiment

Code 3.6 fills a list with 500 new project objects and persists them with a call to
the batch version of makePersistent().
// Get persistence manager as 'pm'

List<Project> projects = new ArrayList<>();
// Fill the list with 500 new projects

pm.makePersistentAll(projects); // Persist all projects at once

Code 3.6: Batch call for persisting multiple projects

Our profiling results show an underwhelming result. It appears that the max-
imum batch size is limited to ten entities per RPC to /datastore_v3.Put and so
the batch call from above causes 50 (500/10) datastore writes (see Figure 3.5).

Figure 3.5: Batch version of makePersistent causes 50 RPC calls

For batch deletes, the limit is increased to 100, and deleting the entities above
with deletePersistentAll() therefore caused five (500/100) datastore writes.
The DataNucleus documentation mentions the batchLimit configuration para-
meter for changing the default batch sizes for RDMBS systems but such a para-
meter does not exist for the datastore. We ran the same experiment with the
batch APIs of the memcache but could not detect a similar limit for batch sizes.
Caching, retrieving, and deleting 500 objects from memcache in three separate
calls resulted in three RPCs.

18

/datastore_v3.Put

3. Performance in the GAE Backend

3.1.5 Query Entities in Superclass Table

With DataNucleus, the developers can decide how to persist classes of an in-
heritance tree by defining their inheritance strategy. For most classes, the GAE
backend used the new-table strategy where each class has its own table in the
datastore. Figure 3.6 illustrates the result of the new-table strategy with the
example of the BaseProject class and its derivatives.

Figure 3.6: Result of new-table inheritance strategy

To persist codings and documents, the GAE backend used a different inheritance
strategy called superclass. With superclass, DataNucleus stores the entities of all
subclasses in a single table with an additional discriminator column that identifies
the object type (see Figure 3.7).

Figure 3.7: Result of superclass inheritance strategy

This section shows that while executing a query on a superclass table, DataNuc-
leus makes a remote procedure call for every class in the inheritance tree of the
table’s entries.

19

3. Performance in the GAE Backend

Experiment

Code 3.7 uses a DataNucleus query to retrieve all coding entities with a particular
project id from a superclass table called “Coding”.

// Get persistence manager as 'pm'

Query query = pm.newQuery(BaseCoding.class, "projectId == :arg0");
List<BaseCoding> codings = query.execute(/* existing project id */);

Code 3.7: DataNucleus query to retrieve codings

Figure 3.8 shows the code’s trace, which lists six calls to /datastore_v3.RunQuery,
executed in sequential order.

Figure 3.8: Trace of DataNucleus query on superclass table

We repeated the experiment with a different superclass table which made us real-
ize that the number of RPCs was equal to the number of classes in the inheritance
tree. This explains why the above query made six calls: five coding subclasses
and one base class.

Making multiple separate calls to query entities from a single table is obviously
less efficient than a single call and slower because, as the trace shows, DataNucleus
doesn’t execute the calls in parallel. Additionally, the query’s RPC usage doesn’t
scale well either because it will execute another RPC for each new subclass added
to the tree.

Optimization: We rebuilt the above query with the low-level datastore API and
executed it on the same table. Instead of six, the new API only needed a single
call to retrieve the same entities from the superclass table. The substitution of
DataNucleus with the low-level datastore API is therefore a viable optimization
technique when searching superclass tables.

20

/datastore_v3.RunQuery

3. Performance in the GAE Backend

3.1.6 Datastore vs. Memcache

App Engine has a distributed memory cache service known as memcache, named
and modeled after the original memcached9. Memcache stores key-value pairs
in memory (RAM) to allow fast read and write access to objects. Because even
google servers can crash10, memory is volatile, and memcache is therefore not
meant for long-term storage like the datastore. Instead, it’s intended for short-
term storage of commonly queried datastore entities.

To test how fast memcache is, we measured the latency of a cache hit (value is
found) and compared it against a datastore read.

Code 3.8 loads the same project, first from the datastore and then from mem-
cache. The two calls differ because the memcache service requires a key that
must not be longer than 250 bytes. We created such a key for this example by
concatenating the project’s id with its class name.

/* Get persistence manager as 'pm'
Get memcache service as 'mc' */

Project p_ds = pm.getObjectById(Project.class, /* id */);
Project p_mc = (Project) mc.get(/* id.classname */);

Code 3.8: Loading a project from datastore and memcache

We ran this code 200 times and saw that with memcache, the project was retrieved
55% faster than with the datastore query (see Table 3.3).

Time with Datastore Time with
Memcache

Percentage Change

9 ms 4 ms 55% DECREASE

Note: Standard deviation was three times higher for the datastore read than for the cache hit (3.3→ 1).

Table 3.3: Comparing cache hit against datastore read

The results will be used in Section 3.2 to justify an aggressive caching strategy
in our optimizations.

9https://memcached.org
10https://en.wikipedia.org/wiki/2020_Google_services_outages

21

https://memcached.org
https://en.wikipedia.org/wiki/2020_Google_services_outages

3. Performance in the GAE Backend

3.1.7 The Effect of Loading Requests

The first request issued to a newly created instance typically takes significantly
longer than the subsequent requests handled by the same instance. Such a loading
request happens because the instance needs to perform app-specific initialization
tasks like loading application code or to establish connections to distributed ser-
vices.

Experiment

With our postman client, we sent four requests to a newly created instance,
issuing the first two requests to the project endpoint and the last two to the
project stats endpoint. Both endpoints belonged to two different Java classes,
Project.java and ProjectStats.java. The request logs in figure 3.9 show that in
each case, the first request took significantly longer than the next one, up to 20
times longer for the project endpoint.

Figure 3.9: Request logs with two loading requests

This result is concerning because it illustrates that a loading request happens
not only once per instance, but each time an endpoint from a new Java class
is executed. This means that the first user who uses a newly created instance
experiences loading requests for most endpoints resulting in horrific response
times.

22

3. Performance in the GAE Backend

3.2 Quality Requirements

Glossary:

• loading request: A request in which an App Engine instance performs ini-
tialization tasks that lead to significantly longer response times than sub-
sequent requests.

• attached object: A Java object that is managed by a DataNucleus persist-
ence manager.

• superclass table: A datastore table containing entities of different subclasses
belonging to the same inheritance tree. Such a table is the result of the
“superclass” inheritance strategy of DataNucleus.

Based on the knowledge we gained from the profiling results, we defined the
following six quality requirements to enhance the existing GAE backend:

GAE REQ 1: If a user sends the first request to a newly created instance, that
request shall not be a loading request.

The results in Section 3.1.7 show that a loading request can take up to 20 times
longer than subsequent requests handled by the same instance. To prevent a
real-user from experiencing these response times, the instance should perform
initialization tasks before handling user traffic.

GAE REQ 2: If an object exists in memcache and in the datastore, the endpoints
shall load that object from the memcache.

Memcache is a distributed cache service from which objects can be loaded 55%
faster than from the datastore (see Section 3.1.6). The memcache should therefore
be preferred over the datastore if an entity exists in both storages.

GAE REQ 3: The endpoints shall not call makePersistent() explicitly after
setting data to an attached object.

If data was set on an attached object, an explicit call to makePersistent() has
no effect and increases request latency by 4% (see Section 3.1.2).

23

3. Performance in the GAE Backend

GAE REQ 4: The endpoints shall detach an attached object from the persistence
manager before setting its data more than once in a row.

Setting data repeatedly to an attached object triggers an equal number of RPCs
that write the changes to the datastore. By detaching the object beforehand, we
can persist all changes with a single RPC.

GAE REQ 5: If the endpoints operate on independent entities, they shall use
the batch APIs of memcache and the datastore.

Although Section 3.1.4 shows that DataNucleus limits the batch size of datastore
writes to 10 and to 100 for deletes, combining individual calls into batches is still
beneficial for performance and efficiency. For the batch APIs of the memcache,
we did not find any size limitations.

GAE REQ 6: The endpoints shall use the low-level datastore API instead of
DataNucleus to query superclass tables.

We found that DataNucleus makes (1 + number of subclasses) RPCs when ex-
ecuting a query on a superclass table such as “Coding” or “Document”. After
replacing DataNucleus with the low-level datastore API, the query only caused
a single RPC (see Section 3.1.5).

24

3. Performance in the GAE Backend

3.2.1 Endpoints for Optimization

We narrowed our optimizations to the endpoints we thought would most fre-
quently be invoked by QDAcity users. We deliberately use the word would here
since the user base was too small to derive representative functional demands.
For example, if we only tracked the behavior of NYT students, who use QDAcity
for university assignments instead of independent qualitative research projects,
we would get a distorted picture of what other users do, want, or ignore.

We applied our optimizations to so-called hot endpoints that

• are automatically invoked by the frontend upon rendering the personal
dashboard, project dashboard, or coding editor,

• handle common operations in the coding editor, such as adding, modifying,
or deleting a code or the associated codings.

These two criteria were matched by 21 hot endpoints, which amounted to ∼9%
of total endpoints in the GAE backend. Optimizing only 9% of endpoints may
seem insufficient, but the code size says nothing about its share of the program’s
total execution time, as research has shown:

• In 1997, the Standish group11 analyzed 100 applications and found that
only 20% of the application features were used often, while the remaining
80% were rarely or never used (Standish Group, 2010).

• In his “Industrial software metrics top 10 list”, Boehm (1987) writes that
20% of a program’s modules consume 80% of the program’s entire execution
time, corresponding to the classic Pareto principle, which states that 80%
of the outcomes are due to 20% of causes (Pareto, 1897).

• In his paper “An empirical study of Fortran projects,” Knuth (1971) found
out that, on average only 4% of a program’s code was responsible for 50%
of its runtime.

11https://www.standishgroup.com/

25

https://www.standishgroup.com/

3. Performance in the GAE Backend

3.3 Implementation

Using the criteria from Section 3.2.1, we selected 21 endpoints for optimization,
which are shown in Table 3.4.

Page Endpoint URL Optimizations

Personal Dashboard GET /user [0, 2]
Personal Dashboard GET /projects [0, 1]
Personal Dashboard GET /validationproject [0, 2]
Personal Dashboard GET /usergroup.listUserGroups [0, 1]
Personal Dashboard GET /todos [0]*
Personal Dashboard GET /notification.listNotifications [0, 1, 2]*
Personal Dashboard GET /listTermCourseByParticipant -
Personal Dashboard GET /userTutorialState -
Personal Dashboard GET /courses -

Project Dashboard GET /projectstats/{p-id}/{p-type} [0, 3]
Project Dashboard GET /validationreport/{p-id} [0]
Project Dashboard GET /userlist?projectID={p-id} [0, 1, 2]
Project Dashboard GET /projectrevision/{p-id} [0]
Project Dashboard GET /project?id={p-id}&type={p-type} [0, 2]

Coding Editor GET /collectionresponse_code/{cs-id} -
Coding Editor GET /collectionresponse_textdocument/

{p-id}/{p-type}
-

Coding Editor GET /listCodingsForProject?projectId=
{p-id}&projectType={p-type}

-

Coding Editor POST /batchProcess [0, 1, 2]
Coding Editor POST /code/{pc-id} [0, 5]
Coding Editor PUT /code [0, 4, 5]
Coding Editor DELETE /code/{c-id} [0, 5]

[0]: Refactoring and cleanup without noteworthy performance improvements

[1]: Increased usage of memcache and datastore batch APIs (GAE REQ 5)

[2]: Improved utilization of memcache (GAE REQ 2)

[3]: Query superclass table with low-level datastore API instead of DataNucleus (GAE REQ 6)

[4]: JDO-object detached before multiple changes (GAE REQ 4)

[5]: Omitted explicit call to makePersistent after changing jdo-object (GAE REQ 3)

[*]: We applied these optimizations indirectly via code review on GitLab

Table 3.4: Overview of applied optimizations to 21 hot endpoints

26

/user
/projects
/validationproject
/usergroup.listUserGroups
/todos
/notification.listNotifications
/listTermCourseByParticipant
/userTutorialState
/courses
/projectstats/{p-id}/{p-type}
/validationreport/{p-id}
/userlist?projectID={p-id}
/projectrevision/{p-id}
/project?id={p-id}&type={p-type}
/collectionresponse_code/{cs-id}
/collectionresponse_textdocument/{p-id}/{p-type}
/collectionresponse_textdocument/{p-id}/{p-type}
/listCodingsForProject?projectId={p-id}&projectType={p-type}
/listCodingsForProject?projectId={p-id}&projectType={p-type}
/batchProcess
/code/{pc-id}
/code
/code/{c-id}

3. Performance in the GAE Backend

3.3.1 Core Refactorings

In this section, we describe two endpoint optimizations in detail; both are prime
examples of the significant performance benefits of the implementation of GAE
REQ 5 and GAE REQ 6.

CodingEndpoint → batchProcess

This endpoint is responsible for persisting a list of codings in the datastore. To
reiterate: A coding is an annotation applied to a document and a central part of
the QDA process (see Section 2.2). Therefore, batchProcess is one of the most
important and most frequently used endpoints in the GAE backend.

In the previous implementation, batchProcess iterated over the list of codings
to:

1. Load the document to which the coding was applied (1 datastore read).

2. Authorize the user for the document (1 memcache get, assuming that the
user was found in memcache).

3. Persist the coding (1 datastore write or delete).

Our optimization made two changes:

• Because documents and codings have a 1 - N relationship, the codings
passed to batchProcess typically belonged to the same document. The
previous implementation, therefore, loaded and authorized the same docu-
ment multiple times. To prevent this redundancy, we only retrieved distinct
documents and moved the authorization before the actual processing.

• We used both batch APIs of DataNucleus to insert and delete all codings
at once and comply with GAE REQ 5.

Table 3.6 shows the savings in outgoing datastore or memcache requests as a
result of the optimized version. For this experiment, we passed 17 codings to
batchProcess, all belonging to the same text document.

Outgoing Request Calls Previous Calls Optimized

/datastore_v3.Get 17 1

/datastore_v3.Put 17 2

/memcache.Get 17 1

Table 3.5: Optimized datastore and memcache call frequency in batchProcess

27

/datastore_v3.Get
/datastore_v3.Put
/memcache.Get

3. Performance in the GAE Backend

Although the optimized version persists the codings with a single call to the batch
API of DataNucleus, we saw two datastore writes in our traces (marked with blue
in Table 3.6). This is because the upper size of batch inserts is limited to 10 by
DataNucleus (profiling result from Section 3.1.4).

ProjectStatsEndpoint → getProjectStats

This endpoint returns the number of documents, codings, and other project stat-
istics that are displayed on the user’s project dashboard (Figure 3.10).

Figure 3.10: Project stats displayed on the project dashboard

The previous implementation used DataNucleus to query the “Coding” and “Doc-
ument” datastore tables that hold entities of different subclasses. Section 3.2.1
shows that executing a query on a superclass table results in (1 + number of
subclasses) datastore reads that are not performed in parallel.

To comply with GAE REQ 6, we refactored the endpoint to use the low-level
datastore API. Additionally, because both queries run on independent tables,
we used Java’s executor service12 to run them in parallel. We implemented the
counting of entities and the parallel execution of queries as facade methods that
hide the complexity of the low-level datastore API from the endpoint.

Using queries of the low-level datastore API that run in parallel and only return
entity keys, we achieved a 78% decrease in request latency (see Table 3.6). We
also reduced the number of datastore reads on the superclass tables from 10 ((1
+ 5 coding subclasses) + (1 + 3 document subclasses)) to 2.

Time Previous Time Optimized Percentage Change

301 ms 67 ms 78% DECREASE

Table 3.6: Optimized request latency of getProjectStats

12https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html

28

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html

3. Performance in the GAE Backend

3.3.2 Preventing User Facing Loading Requests

This section describes our attempts to preload application code into a newly
created instance, thereby protecting users from experiencing loading requests
(see Section 3.1.7) and fulfilling GAE REQ 1.

User-facing loading requests are such a common problem that App Engine offers
a feature called warmup requests. If this feature is enabled, App Engine issues a
request to /_ah/warmup immediately after a new instance was created.

In QDAcity, we respond to this request with a custom warmup servlet that ini-
tializes and calls the most frequently used endpoints with dummy data (see Code
B.2).

if (requestUrl.startsWith("/_ah/warmup") {
UserEndpoint userEndpoint = new UserEndpoint();
userEndpoint.getUser("fake-id", null);
/* ... */

}

Code 3.9: Custom servlet responding to a warmup request

Our goal with this servlet was to load the application code into the fresh instance,
establish connections with distributed App Engine services such as the datastore
or memcache, and perform App Engine specific meta data validation for all classes
managed by DataNucleus. This is an excellent solution on paper, but in practice,
it does not prevent the first user request request from being a loading request.
Figure 3.11 shows the logs of an experiment in which we created a fresh instance,
triggered our custom servlet, and sent three user requests afterward to the same
endpoint.

Even though the warmup servlet called the same method that handled the sub-
sequent requests, it did not prevent the first user request from taking significantly
longer than the second and third request.

Figure 3.11: Custom warmup servlet does not prevent loading request

29

/_ah/warmup

3. Performance in the GAE Backend

Send Warmup Requests from Distributed Service

This section presents an alternative to the ineffective warmup servlet. Instead of
calling the endpoints directly, the servlet issues a “warmup-qdacity” request to a
distributed warmup service. Immediately after receiving the request, the warmup
service issues a handful of user requests to essential QDAcity endpoints such as
/user or /project. Figure 3.12 shows the communication between App Engine,
the GAE backend, and the warmup service.

Figure 3.12: Communication of App Engine, GAE backend, and warmup service

To prove that this could work, we implemented a prototype of the warmup service
as an Express13 handler function hosted on Cloud Functions14. The prototype
listened to GET requests at /warmup-qdacity and issued its own request to the
user endpoint. The logs in Figure 3.13 show that this request was indeed a loading
request with a significantly higher latency than the subsequent requests sent from
a local Postman client. This prototype is not currently used in QDAcity and is
not yet documented in a merge request on GitLab. We, therefore, added the
servlet’s code and the cloud function to Appendix B.

Figure 3.13: Loading request issued by warmup service

13https://expressjs.com/
14https://cloud.google.com/functions

30

/user
/project
/warmup-qdacity
https://expressjs.com/
https://cloud.google.com/functions

3. Performance in the GAE Backend

3.3.3 Cache Design

To encapsulate caching functionality and hide its complexity from the endpoint
classes, the GAE backend used a facade15 for accessing memcache. As a prerequis-
ite for implementing GAE REQ 5 (increased memcache usage) and GAE REQ
2 (usage of memcache batching capabilities), we improved the facade’s usability,
increased its functionality, and enforced its consistent use across all endpoints
that previously had accessed memcache directly. During code review, project
management fittingly referred to these changes as establishing an infrastructure
for future work.

Usability

We merged multiple overloaded methods that differed in the type of the id para-
meter into a single method that accepted a general object as id. Additionally, we
updated the getter methods to return objects with generic types, thus eliminating
the need for the caller to cast the retrieved objects explicitly. Code 3.10 shows
an example where both of these changes come into play.

// Cache.java
Object get(String id, Class type) { }
Object get(Long id, Class type) { }

// Endpoint
Project p = (Project) Cache.get(1L,

Project.class);

// Cache.java
<T> T get(Object id, Class<T> type) { }

// Endpoint
Project p = Cache.get(1L,

Project.class);

Code 3.10: Comparison between old and new cache API

Functionality

We added four methods to the facade that provide a simple interface to the
batching capabilities of memcache:

• <T> List<T> getOrLoadAll(List<?> ids, Class<T> type): Tries to get the
objects from Memcache. Every object that isn’t found in Memcache, is
loaded from the Datastore and cached afterward.

• void cacheAll(Map<Object, ?> idToObject, Class<?> type)

• void invalidateAll(List<?> ids, Class<?> type)

• void invalidateUserLoginsAll(List<User> qdacityUsers): The same user
object can be cached with different keys, depending on the service the
current user logs in with (Google, Twitter, or Facebook). This method
deletes every instance of the same user object from memcache.

15https://wiki.c2.com/?FacadePattern

31

https://wiki.c2.com/?FacadePattern

3. Performance in the GAE Backend

3.4 Evaluation

GAE REQ 1: If a user sends the first request to a newly created instance, that
request shall not be a loading request.

(7) We did not satisfy this requirement.

Although App Engine’s warmup request feature is a seemingly optimal solution
to perform application-specific initialization tasks, we couldn’t prevent the first
user-facing request from being a loading request. Facing this problem became in-
creasingly frustrating since it felt as if we were fighting against an entirely intrans-
parent mechanism that prevented any actual initialization from being triggered
from inside the warmup request. App Engine launched in April 2008, more than
half a year earlier than Stack Overflow (November 2008). We believe that most
companies who faced this problem back then either gave up or solved it internally
without bothering to document the solution online.

Currently, QDAcity only has a handful of active users. The probability that a
user experiences a loading request is therefore much higher than if hundreds of
users accessed the instance every day. This rationale is not to downplay the
problem but to note that loading requests will naturally occur less frequently
once the userbase grows.

We presented a distributed warmup service as an alternative solution in Section
3.1.7, which would have to be implemented, maintained, and eventually paid for,
making it an unsatisfactory solution.

GAE REQ 2: If an object exists in memcache and the datastore, the endpoints
shall load that object from the memcache.

(3) We satisfied this requirement.

We increased the number of datastore entities loaded from memcache in 6 hot
endpoints, replacing DataNucleus queries with calls to our improved memcache
facade (see Section 3.3.3). We limited our optimizations to objects that were
frequently read and already existed in memcache, such as user or project entit-
ies. Using memcache instead of the datastore increased performance (see Section
3.1.6) but introduced new complexity because object states now had to be syn-
chronized between both storage services. While implementing GAE REQ 2, we
fixed multiple instances of missing or incorrect entity synchronization in different
“cold” endpoints such as /removeProject.

32

/removeProject

3. Performance in the GAE Backend

GAE REQ 3: The endpoints shall not call makePersistent() explicitly after
setting data to an attached object.

(3) We satisfied this requirement.

Fulfilling this requirement was trivial. With transparent, persistence the explicit
call to makePersistent() had no effect, and we could safely remove it without
any fear of regression. We applied this optimization to three hot endpoints and
removed four occurrences of the unnecessary call.

GAE REQ 4: The endpoints shall detach an attached object from the persistence
manager before setting its data more than once in a row.

(3) We satisfied this requirement.

We applied the optimization to one endpoint that was responsible for updating a
code with a list of new values. In the previous implementation, the endpoint called
11 setter methods on the attached code. In our optimization, we detached the
code before the set operations, which decreased request latency by 74% (562ms
→ 144ms), and reduced the number of datastore writes from 11 to 1.

GAE REQ 5: If the endpoints operate on independent entities, they shall use
the batch APIs of memcache and the datastore.

(3) We satisfied this requirement.

We increased the use of memcache and datastore batch APIs in three hot end-
points. Table 3.7 shows the additional uses of the batch APIs.

Storage Service Batch API Additional Uses

Datastore DataNucleus → makePersistentAll 2

Datastore DatastoreFacade.java → delete 1

Memcache Cache.java → getOrLoadAll 2

Note: getOrLoadAll was a custom facade method described in Section 3.3.3.

Table 3.7: Additional use of memcache and datastore batch APIs

33

3. Performance in the GAE Backend

GAE REQ 6: The endpoints shall use the low-level datastore API instead of
DataNucleus to query superclass tables.

(37) We satisfied this requirement partially.

Three hot endpoints used DataNucleus to query a superclass table, which made
them candidates for this optimization. Two of these endpoints, DocumentEnd-
point → getTextDocument and CodingEndpoint → listCodingsForProject, re-
turned domain objects such as codings and documents.

A query executed with the low-level datastore API returns an instance of the En-
tity16 class, which is essentially a hash map of key-value pairs that can get and set
using the instance’s getProperty() and setProperty() methods. DataNucleus
maps the Entity instance to the domain object behind the scenes, but with the
low-level datastore API, this would have to be done manually (see Code 3.11).

DatastoreService ds = DatastoreServiceFactory.getDatastoreService();
Key k = KeyFactory.createKey("Project", 1L);
Entity e = datastore.get(k); // Entity is retrieved

Project p = new Project(); // Domain object from com.qdacity
p.setName(e.getProperty("name")); // Manual mapping of properties
p.setDescription(e.getProperty("description"));
// ...

Code 3.11: Manual mapping from entity to domain object

We decided not to optimize these two endpoints because the performance im-
provements did not justify the increased complexity of mapping entities to domain
objects on our own.

We optimized the third candidate, ProjectStatsEndpoint→ getProjectStats().
The endpoint was better suited to use the low-level datastore API since it only
required meta-information about a query, such as the number of returned entities
and not the fully mapped domain objects. By replacing DataNucleus with the
low-level batch API described in Section 3.3.1, we reduced the endpoint’s response
time by 78% (301 ms → 67 ms).

16https://cloud.google.com/appengine/docs/standard/java/javadoc/com/google/
appengine/api/datastore/Entity

34

https://cloud.google.com/appengine/docs/standard/java/javadoc/com/google/appengine/api/datastore/Entity
https://cloud.google.com/appengine/docs/standard/java/javadoc/com/google/appengine/api/datastore/Entity

3. Performance in the GAE Backend

3.5 Additional Refactoring

In addition to the quality requirements for performance, some parts of the code
were also refactored for better maintainability.

Project Authorization

QDAcity has four project types: Project, Revision, ValidationProject, and Exer-
ciseProject, all of them are derivatives of the abstract BaseProject class. There
are different security requirements for all of these types. For example, to access
a regular project, users need to own that project, but they have to be validation
coders to access a validation project and so on. Most endpoints handled this
problem in a similar way. A switch statement was used to determine the project
type, load the appropriate project instance, and call the proper authorization
method (see Code 3.12).

switch(projectType){
case PROJECT:

/* load project from "Project" table,
check if user is owner */

case VALIDATION_PROJECT:
/* load project from "ValidationProject" table,

check if user is validation coder */
// ...

}

Code 3.12: Switch statement to determine project type

Because project authorization was necessary for almost every endpoint, this struc-
ture was repeated throughout the system and was the cause for some repeated
boilerplate code. We made the refactoring in two steps. First, we removed the
switch statement from the endpoints and buried it in the memcache facade, where
it acted as a factory that loaded the appropriate project from the datastore or
memcache. Secondly, we added a template method17 to the abstract BasePro-
ject class. The template method executed the default authentication steps and
delegated the operations dependent on the project type to the subclasses.

With the refactored solution, endpoints obtained the project from the memcache
facade and dispatched the authorization method polymorphically through the
template method of the BaseProject class.

Even though code maintainability is a quality aspect, it’s not directly related to
our thesis goal performance. Therefore, we could have ignored this opportunity
to repay technical debt and moved on to other tasks. But we believe in the boy

17https://wiki.c2.com/?TemplateMethodPattern

35

https://wiki.c2.com/?TemplateMethodPattern

3. Performance in the GAE Backend

scout rule that says to “leave the campground cleaner than you found it,” and so
we paid some of QDAcity’s technical debt with this refactoring (Martin, 2008).

Code Coverage and Good Test Quality

During implementation, which mainly consisted of enhancing existing code, it be-
came apparent that high code coverage and good test quality were a prerequisite
for any non-trivial refactoring. Without enough unit tests that captured an end-
point’s previous behavior, we could not make significant changes without risking
functional regression. The GAE backend had a code coverage of 60%, which is
decent, but coverage does not reflect the quality of individual tests, which were
sometimes difficult to adjust.

To improve test maintainability, we used the builder18 pattern to implement a
builder for constructing complex project entities populated with test data. Ad-
ditionally, we introduced a new naming convention for test methods and docu-
mented it in the GitLab wiki, allowing the QDAcity team to reference it in code
reviews.

Old naming convention: test{method-under-test}

New naming convention: {method-under-test}_{expected-behavior}_{condition}

18https://wiki.c2.com/?BuilderPattern

36

https://wiki.c2.com/?BuilderPattern

4 Performance in the RTCS

4.1 RTCS Infrastructure

The RTCS is one of the three major components in QDAcity and acts as a
proxy to the GAE backend. It enables real-time collaborative coding of the same
document for multiple project members.

Real-time collaboration requires WebSockets for full-duplex communication and a
server that can keep a coding session open for an extended period. The standard
environment of App Engine doesn’t support these features, and so the RTCS isn’t
part of the GAE backend but runs on a virtual machine (VM) on Compute En-
gine instead. Compute Engine satisfies both functional requirements from above
but, because its infrastructure needs to be self-managed, comes with significant
downsides regarding the following quality aspects:

• Maintainability : Keeping a custom VM up to date requires the maintainers
to connect via SSH and install dependencies manually with the shell. That’s
why the VM’s operation system, critical packages, NodeJS, and the direct
dependencies of the RTCS were not updated regularly.

• Versioning : Compute Engine did not store previously deployed versions of
the RTCS, making it difficult to roll back to a previous revision or gradually
roll out a new version by splitting traffic between multiple revisions, which
could open up the possibility of A/B testing.

• SSL Certificate: For the frontend to establish connections via HTTPS, an
SSL certificate had to be manually created with Let’s Encrypt and installed
on the NGINX reverse proxy.

• Monitoring : The RTCS sent logs to Cloud Logging with a third-party client
called winston1, which required all RTCS developers to create a Service
Account with “Logging Admin” permissions. The account’s credentials had
to be stored in a local configuration file making the already tricky setup
more complicated.

1https://github.com/winstonjs/winston

37

https://github.com/winstonjs/winston

4. Performance in the RTCS

These were the main reasons why QDAcity searched for a serverless solution for
the RTCS, which could satisfy the following eight requirements:

• RTCS REQ 1: A QDAcity developer shall be able to deploy the RTCS to
the serverless solution from a local machine and from the CI/CD pipeline.

• RTCS REQ 2: The serverless solution shall support WebSockets.

• RTCS REQ 3: The serverless solution shall not have a maximum request
timeout making long coding sessions possible.

• RTCS REQ 4: The serverless solution shall automatically scale instances
horizontally to handle all incoming requests.

• RTCS REQ 5: The serverless solution shall “scale to zero” when it handles
no traffic enabling usage-based pricing.

• RTCS REQ 6: The serverless solution shall automatically provide an HT-
TPS endpoint through which the frontend can access the RTCS.

• RTCS REQ 7: The serverless solution shall store previously deployed ver-
sions of the RTCS to enable traffic splitting and rollbacks (versioning).

• RTCS REQ 8: The serverless solution shall automatically send all logs of
the RTCS to Cloud Logging without using a third-party logging client.

Google Cloud offers four serverless solutions: Kubernetes Engine2, App Engine
Flex, App Engine Standard, Cloud Functions, and Cloud Run3. We decided
against the first four solutions due to the following deal-breakers (see Table 4.1).

Serverless Solution Deal-breaker (the main reason against)

App Engine Flex Instances do not scale to zero during low traffic, which
means at least one instance is always running — a
sub-optimal cost model for QDAcity’s inconsistent
traffic (primarily accessed during EU daytime).

App Engine Standard No support for WebSockets and a maximum request
timeout of 60 seconds.

Kubernetes Engine High complexity of container orchestration;
unnecessarily high level of configurability.

Cloud Functions No support for WebSockets and a maximum request
timeout of 9 minutes.

Table 4.1: Deal-breakers of Google Cloud serverless solutions

2https://cloud.google.com/kubernetes-engine
3https://cloud.google.com/run

38

https://cloud.google.com/kubernetes-engine
https://cloud.google.com/run

4. Performance in the RTCS

The other serverless solutions were eliminated due to the above deal-breakers,
making Cloud Run the most suitable solution for the RTCS given our require-
ments. The rest of this chapter will show the performance characteristics of the
RTCS on Cloud Run and its migration from Compute Engine.

4.2 Migration to Cloud Run

Cloud Run was released in November 2019 by Google and is a serverless solu-
tion for hosting backend applications. Cloud Run allows us to deploy and run
containerized code written in any language with any dependencies. By using
containers, Cloud Run overcomes the limitations of other cloud services such as
App Engine that only offer a limited set of programming languages and runtimes.
After Google added support for WebSockets to Cloud Run in February 20214, the
service became a suitable serverless solution for the RTCS.

Containerizing the RTCS

We containerized the RTCS with the Dockerfile shown in Code 4.1. It used
alpine5 as a base image which is a minimal Linux distribution, and defined steps
for installing Node, NPM and all direct dependencies of the RTCS.

FROM alpine:latest
WORKDIR /usr/src/app
COPY package*.json ./
RUN apk add --update nodejs npm
RUN npm ci --only=production
COPY . ./
CMD ["node", "index.js"]

Code 4.1: Dockerfile of the RTCS

The subsequent deployment of the RTCS was simple and only consisted of two
steps. First, we built an image from the Dockerfile and published it to Google’s
Container Registry6. Then, we deployed the RTCS to Cloud Run by specifying
the target project and the previously created image via its URL (see Code 4.2).

gcloud builds submit --tag gcr.io/$GCLOUD_PROJECT_ID/rtcs

gcloud run deploy rtcs --image=gcr.io/$GCLOUD_PROJECT_ID/rtcs

Code 4.2: Commands for building and deploying the RTCS

4https://cloud.google.com/blog/products/serverless/cloud-run-gets-websockets-http-2-and
-grpc-bidirectional-streams

5https://hub.docker.com/_/alpine
6https://cloud.google.com/container-registry

39

https://hub.docker.com/_/alpine
https://cloud.google.com/container-registry

4. Performance in the RTCS

4.2.1 Profiling Resource Usage

Cloud Run allows the limitation of a container’s resource usage by setting limits
for the number of CPUs and amount of memory a container shall use (see Table
4.2).

Resource Description Value Range

CPU Number of vCPUs given to the container instance [1 - 4]

Memory Amount of RAM given to the container instance [128 MiB - 8 GiB]

Table 4.2: Cloud Run resource limits

Finding the optimal limit for CPU and memory is challenging given the wide
range of options. To better understand the RTCS’ hardware usage, we conducted
an experiment that we present in this section.

In the experiment, we incrementally increased the number of concurrent web-
socket connections from 0 to 250 to determine the thresholds at which the in-
stance needed additional hardware to handle the load. We picked 250 as an
upper boundary because it’s the maximum number of connections a container
can maintain, limited by the concurrent requests7 setting.

Based on these thresholds, we can determine the resource limits necessary to
handle the expected number of connections and configure the container accord-
ingly thus saving money for unnecessary container resources.

Simulating Traffic

To simulate the actual traffic that an active coder would create, we had each
WebSocket connection emit a message to the RTCS in a 30-second interval. A
connection would therefore emit ∼20 messages throughout a 10-minute experi-
ment. The messages consisted of an identifier for a common coding activity, the
payload, and a callback function for the RTCS to call after successfully processing
the message. The connection emitted the messages alternately in a round-robin
fashion.

We used the cluster mode of PM28 to distribute the Node processes across five
CPUs of our testing machine, each process handling a fifth of the total amount of
connections. Because a single instance of NodeJS runs in a single thread, this was
the only option to emit messages in parallel. Figure 4.2 illustrates the simulation.

7https://cloud.google.com/run/docs/about-concurrency
8https://pm2.keymetrics.io/docs/usage/cluster-mode/

40

https://cloud.google.com/run/docs/about-concurrency
https://pm2.keymetrics.io/docs/usage/cluster-mode/

4. Performance in the RTCS

Figure 4.1: Profiling the RTCS with multiple node instances

For each message, we measured the time from the initial emit until the RTCS used
the callback. In the callback, passed to the emit function as a third argument,
we used a NodeJS PerformanceObserver9 to calculate and save the message’s
response time.

Confounding Parameter : Cloud Run auto-scaling

With this experiment, we aimed to analyze the resource consumption of one
container. We, therefore, disabled Cloud Run’s auto scaling mechanism by setting
max-instances to 1. Without this settings, the load balancer would distribute
the connections across multiple instances, making it impossible to trace which
connections belong to which container.

Confounding Parameter : GAE Backend Response Times

So that the GAE backend would not become a bottleneck, we started three of
the fastest instances (F4_1G) and warmed them up before the experiment. We
removed any business logic from the endpoints to not fill the datastore with test
data or accidentally delete existing entities. To simulate realistic response times,
we let each endpoint sleep for 50 milliseconds before sending the response.

Results

We started the experiment by deploying a container with the least possible hard-
ware resources, 128 MiB and 1vCPU. We increased the number of active connec-
tions while monitoring the container’s resource consumption with the Cloud Run
Dashboard. 128 MiB were enough to handle 0, 25, 50, and 75 connections, but
after we added another 25 connections, totaling 100, the instance exceeded its

9https://bit.ly/3ogg17R

41

https://bit.ly/3ogg17R

4. Performance in the RTCS

memory limit and was terminated by Cloud Run. We doubled the memory limit
to 256 MiB and re-deployed the instance, starting with 100 active connections.
No other re-deploy was necessary since the new instance could handle subsequent
increases up to 250 concurrent connections, as Table 4.3 shows.

Active
WebSocket
Connections

Memory
Allocation

Utilization of 1
vCPU

Resource Limits
(Memory,
vCPUs)

0 106 MiB (83%) 0.95% 128 MiB, 1 vCPU
25 115 MiB (90%) 1.95% 128 MiB, 1 vCPU
50 118 MiB (92%) 2.95% 128 MiB, 1 vCPU
75 122 MiB (95%) 3.95% 128 MiB, 1 vCPU
100 136 MiB (53%) 5.95% 256 MiB, 1 vCPU
150 148 MiB (58%) 10.95% 256 MiB, 1 vCPU
200 161 MiB (63%) 13.95% 256 MiB, 1 vCPU
250 179 MiB (70%) 17.95% 256 MiB, 1 vCPU

Note 1: With col 1 and 2, we can calculate the average memory size of a single connection: ∼500 KiB

Note 2: Row 1 shows that the container uses 83% of memory for the RTCS alone, without connections

Note 3: 250 is the limit for concurrent connections, so resource limits above 256 MiB, 1 vCPU are pointless

Table 4.3: RTCS resource usage

For 50, 150, and 250 connections, median response times ranged from 224 ms to
234 ms and are illustrated for all four message types in Figure 4.2. We attribute
the “drop” in the middle due to the fact that we switched to a more powerful
instance after 75 connections (see above).

Figure 4.2: RTCS response times for 50, 150, and 250 connections

42

4. Performance in the RTCS

4.3 Evaluation of Migration

In this section, we compare the RTCS infrastructure requirements from section
4.1 with the result of the Cloud Run migration.

RTCS REQ 1: A QDAcity developer shall be able to deploy the RTCS to the
serverless solution from a local machine and from the CI/CD pipeline.

(3) We satisfied this requirement.

The configuration for Compute Engine consisted of 452 lines within ten files,
ranging from deployment scripts that uploaded the latest RTCS version to the
VM, over custom configuration for the NGINX10 reverse proxy, to scripts for
generating an HTTPS certificate with Let’s Encrypt11. We replaced the existing
configuration with 57 lines in three files, reducing the total RTCS configuration
by 87%. The updated deployment configuration consisted of two files for local
deployment from Windows or Linux and an additional file for deploying via the
CI/CD pipeline on GitLab.

RTCS REQ 2: The serverless solution shall support WebSockets.

(3) We satisfied this requirement.

Cloud Run has supported WebSockets since February 2021.

RTCS REQ 3: The serverless solution shall not have a maximum requests timeout
making long coding sessions possible.

(37) We satisfied this requirement partially.

In Cloud Run, WebSockets are treated as long-running HTTP requests, making
them subject to a request-timeout policy, which automatically disconnects the
WebSocket after 60 minutes. We could mitigate this problem by taking advantage
of the auto-reconnect feature of Socket.IO v2.x12, which causes the client socket
to attempt a reconnect immediately after Cloud Run disconnected the socket.
However, the socket will not reconnect automatically in later versions of Socket.IO
(e.g., v3.x), which the developers need to be aware of when upgrading the library.

10https://www.nginx.com/
11https://letsencrypt.org/
12https://socket.io/docs/v2/client-api

43

https://www.nginx.com/
https://letsencrypt.org/
https://socket.io/docs/v2/client-api

4. Performance in the RTCS

RTCS REQ 4: The serverless solution shall automatically scale instances hori-
zontally to handle all incoming requests.

(3) We satisfied this requirement.

Cloud Run scales each revision automatically to the number of instances required
to handle the incoming requests.

Using the method from Section 4.2.1, we profiled Cloud Run’s auto-scaling mech-
anism by establishing 25 WebSocket connections with the RTCS while monitoring
the amount of newly created instances. We found that the number of newly cre-
ated instances depended heavily on whether an already active instance existed
prior to the experiment.

For a “cold start,” without an active instance, Cloud Run initially started 13
instances, which were then scaled back to 5 active instances after about 5 minutes
(see Figure 4.3).

Figure 4.3: Cloud Run auto-scaling for 25 connections (cold start)

For a “warm start,” with an existing active instance, Cloud Run did not create
any new instances and let the existing one handle all 25 connections.

In App Engine, the paste in which instances are created can be controlled via
the max-pending latency parameter, which defines the maximum time that App
Engine allows a request to wait in the request queue before starting a new instance
to handle it. In Cloud Run, this parameter does not exist, which gives us less
control over auto-scaling.

RTCS REQ 5: The serverless solution shall ”scale to zero“ when it handles no
traffic.

(3) We satisfied this requirement.

This is the default behavior of Cloud Run - instances are shut down approximately
15 minutes after handling the last request. We can change this default to keep
one or many instances idle with the minimum-instances setting.

44

4. Performance in the RTCS

RTCS REQ 6: The serverless solution shall automatically provide an HTTPS
endpoint through which the frontend can access the RTCS.

(3) We satisfied this requirement.

By adding the allow unauthenticated access flag in the deploy command, we told
Cloud Run to create a unique HTTPS endpoint through which the RTCS can be
accessed from the public internet (see Figure 4.4).

Figure 4.4: RTCS HTTPS endpoint on Cloud Run

RTCS REQ 7: The serverless solution shall store previously deployed versions of
the RTCS to enable traffic splitting and rollbacks (versioning).

(3) We satisfied this requirement.

Cloud Run stores the last 50 RTCS deployments, including the RTCS image and
the container configuration in the revision history. We can use this history to
define traffic percentages received by a revision, making it easy to roll back to a
previous revision or split traffic between multiple revisions. As shown in Figure
4.5, where we split traffic evenly between the last two RTCS deployments.

Figure 4.5: Cloud Run versioning

RTCS REQ 8: The serverless solution shall automatically send all logs of the
RTCS to Cloud Logging without using a third-party logging client.

(3) We satisfied this requirement.

With Compute Engine, collecting the VM’s logs required a third-party client
library called winston. With Cloud Run or App Engine, everything written
into the standard output gets picked up automatically by Cloud Logging, so we
removed winston from the RTCS and replaced it with calls to console.log().

45

4. Performance in the RTCS

46

5 Performance in the Frontend

This chapter describes the effects of six optimizations on the response time and
resource utilization of the frontend. We measured their impact against a per-
formance baseline which we describe in the following section.

5.1 Creating a Baseline

We established a baseline to measure the effects of subsequent changes; a snap-
shot of the frontend’s current response time and bundle size. To create the
response time baseline, we used Lighthouse, an open-source tool for auditing
websites1. Typically, Lighthouse is run manually from the developer tools of
chromium-based browsers, but we used it as a Node module which enabled us to:

• Run audits automatically, thus making it easy to increase sample size and
decrease fluctuation between test runs,

• throttle device settings such as bandwidth and device type,

• get access to metrics not displayed in the UI, such as the execution and
download times of specific JavaScript bundles.

We used a network profile with 10240 Kbps bandwidth which corresponds to
the download speed of a slow 4G/LTE mobile connection2. Device CPU and
memory were throttled to a lighthouse benchmark index of 2000 which resembles
the hardware specification of a 2019 16" Macbook Pro (6-Core Intel Core i7,
AMD Radeon Pro 5300M, 16 GB RAM)3.

After each run, we reset the headless chrome browser to not influence subsequent
runs with previously cached resources.

1https://github.com/GoogleChrome/lighthouse
2https://www.opensignal.com/reports/2018/02/state-of-lte
3https://github.com/GoogleChrome/lighthouse/blob/master/docs/throttling.md

47

https://github.com/GoogleChrome/lighthouse
https://www.opensignal.com/reports/2018/02/state-of-lte
https://github.com/GoogleChrome/lighthouse/blob/master/docs/throttling.md

5. Performance in the Frontend

Lighthouse Performance Score

For each run, lighthouse calculates a performance score between 0 - 100, which
is the weighted average of the following six performance metrics:

Metric Weight Description

TBT (Total Blocking Time) 30% The total time the main thread was
blocked from handling input events.

LCP (Largest Contentful Paint) 25% Time until the page rendered its main
content (e.g., the landing page image).

CLS (Cumulative Layout Shift) 15% Time that the page’s elements moved
around during load.

FCP (First Contentful Paint) 10% Time until the page rendered the first
visible element.

TTI (Time To Interactive) 10% Time until the page became fully
interactive.

Speed Index 10% Average time at which visible parts of
the page are displayed.

Table 5.1: Lighthouse performance metrics

TBT, LCP, and CLS are weighted higher by lighthouse because they are core web
vitals - a set of performance metrics that, according to Google, are best suited
for quantifying user experience4. We used TBT as a substitute for the official
core web vital FID (First Input Delay), to which it has a positive correlation5.
In the following sections, we focus on these three metrics (TBT, LCP, and CLS).

Bundle Analysis

We used Source Map Explorer6 to visualize the frontend’s minified JavaScript
bundle as a treemap (see Figure 5.1). The treemap was an essential tool to
understand the bundle’s internal structure and measure the size of specific React
components or third-party libraries.

Figure 5.1: Treemap of frontend bundle; generated with Source Map Explorer

4https://web.dev/vitals
5https://web.dev/fid
6https://github.com/danvk/source-map-explorer

48

https://web.dev/vitals
https://web.dev/fid
https://github.com/danvk/source-map-explorer

5. Performance in the Frontend

5.1.1 Results

Frontend Performance Baseline

Table 5.2 shows the median values of 200 Lighthouse runs. The performance
score was color-coded based on the following thresholds by Google7:

• 0 to 49 (red): Poor

• 50 to 89 (orange): Needs Improvement

• 90 to 100 (green): Good

Row four shows the time it took for the browser’s JavaScript engine (V88) to
parse, compile and execute the frontend’s main bundle index.dist.js. Details such
as the execution time of a specific bundle are only accessible with Lighthouse’s
Node module.

Metric Value

TBT (Total Blocking Time) 401 ms
LCP (Largest Contentful Paint) 3491 ms
CLS (Cumulative Layout Shift) 0 ms
Parse, Compile, Execute index.dist.js 1118 ms

Performance Score 47 (poor)

Table 5.2: Frontend performance baseline

Frontend Bundle Size Baseline

The frontend consisted of the main bundle, a CSS stylesheet, code for two service
workers, and other web resources such as images and fonts (see Table 5.3).

File Size

index.dist.js (main bundle) 4538 KB
styles.css 142 KB
pdf.worker.dist.js 619 KB
service-worker/sw.dist.js 181 KB
Others (Images, Fonts) 213 KB

Table 5.3: Frontend bundle size baseline

7https://web.dev/performance-scoring
8https://v8.dev

49

https://web.dev/performance-scoring
https://v8.dev

5. Performance in the Frontend

5.2 Quality Requirements

We defined the following quality requirements to improve frontend performance:

FE REQ 1: The frontend shall receive a lighthouse performance score of at least
90 (“good”) when measured using the method described in Section 5.1.

FE REQ 2: The frontend’s main pages (Personal Dashboard, Project Dashboard,
Coding Editor) shall make no redundant network requests on load.

The frontend sent several requests during page load, although they did not differ
in their payload nor in the response which they received from the backend. Figure
5.2 shows how the coding editor loads the same code system three times in a row
during page load.

Figure 5.2: Three redundant network requests during page load

To improve resource utilization, bandwidth being the resource, the frontend shall
omit these unnecessary requests.

FE REQ 3: The frontend shall be bundled with version 5 of webpack.

This requirement was based on a note in the webpack 5 documentation that
an upgrade may reduce bundle size due to improved tree shaking, a dead-code
elimination technique9.

9https://webpack.js.org/guides/tree-shaking

50

https://webpack.js.org/guides/tree-shaking

5. Performance in the Frontend

5.3 Implementation

5.3.1 Webpack 5 Upgrade

We upgraded webpack v4.28.4 to v5.48.0. The upgrade required a babel version
of at least 7; QDAcity was using v6.23.3. We used the open-source tool babel-
upgrade10 to automatically upgrade seven babel dependencies and the .babelrc
configuration file. Overall, we deleted 14 node modules, added nine, and bumped
versions of 6 already existing packages.

The upgrade decreased the size of the main bundle by 172 KB, a 4% reduction.
A positive side effect was that the amount of unmapped code in the bundle was
reduced by 329 KB and could therefore be visualized with source map explorer.
The upgrade negatively impacted the frontend’s total build time which increased
by ∼146% (28s → 69s).

5.3.2 Code-splitting

Code-splitting is a technique for splitting an application’s main JavaScript bundle
into various smaller files, called chunks. The app can then lazy-load these chunks
on-demand, commonly based on user activity, e.g., page navigation. Code-
splitting doesn’t reduce the overall bundle size but reduces the amount of code
needed during the initial load and, therefore, can lead to faster initial load times
for first-time visitors. The feature is supported by bundlers like browserify11,
rollup12, or webpack.

This section presents two approaches for splitting the frontend’s main bundle
with webpack.

First Approach: Multiple Small Chunks

We set up route-based code-splitting for the components PersonalDashboard,
ProjectDashboard, and CodingEditor, which contain the frontend’s primary func-
tionality. Route-based code-splitting means that the component will be lazy-
loaded when the user navigates to a specific page. This resulted in four files, the
main bundle, and three chunks, one for each component.

While loading the currently requested component, the frontend displayed a blank
page or a loading animation. We concluded that these repeated loading breaks in-
terrupted the expected workflow from a UI perspective. We, therefore, discarded
this initial prototype.

10https://github.com/babel/babel-upgrade
11https://github.com/browserify/factor-bundle
12https://rollupjs.org/guide/en/

51

https://github.com/babel/babel-upgrade
 https://github.com/browserify/factor-bundle
 https://rollupjs.org/guide/en/

5. Performance in the Frontend

Second Approach: Single Chunk for Core Functionality

In a second approach, we extracted core components, only accessible to the user
after successful sign-in, from App.jsx, which is the root of the component tree.
We moved such components into a new component, called Core.jsx, which we
then split from the main bundle based on a route. The frontend loaded Core.jsx
as a single chunk after the user accessed the core functionality, e.g., navigated
away from the frontend’s landing page.

Figure 5.3 illustrates the initial composition of App.jsx and the addition of the
lazy-loaded Core.jsx component. We attenuated the number of components in
Core.jsx to make the point (it contained more than 20 components).

Figure 5.3: Extraction of core components from App.jsx

52

5. Performance in the Frontend

Effects on Bundle Size:

The newly created chunk of Core.jsx was 3902 KB, shrinking the main bundle to
682 KB. Together, the two files were 46 KB larger than the previous main chunk
because webpack required some overhead to manage the extracted chunk.

Effects on Performance:

With code-splitting, the frontend no longer had to load the app’s entire JavaScript
but only 682 KB necessary to display the loading page. This increased the overall
performance score by 82% (see Table 5.4).

Metric Baseline Optimized Percentage Change

TBT (Total Blocking Time) 401 ms 67 ms 83% DECREASE

LCP (Largest Contentful Paint) 3491 ms 1247 ms 64% DECREASE

CLS (Cumulative Layout Shift) 0 ms 0 ms -

Parse, Compile, Execute index.js 1118 ms 342 ms 69% DECREASE

Performance Score 47 86 82% INCREASE

Table 5.4: Frontend performance after code-splitting

53

5. Performance in the Frontend

5.3.3 Bundle-splitting

The previous optimizations focused on improving the performance of the initial
page load, which primarily benefits first-time visitors. In this section, we optim-
ize for long-term engagement by improving performance for QDAcity users who
regularly visit the site.

The code in the frontend changes at different paces. While application code (e.g.,
code in our own React components) changes with almost every release, vendor
code in our node modules only changes rarely. This dynamic resembles the water
speed in a river where the friction with the riverbed decreases the velocity causing
the water to flow faster near the surface and slower near the ground. However,
the river seems to be flowing at the same pace from the outside (see Figure 5.4).

Figure 5.4: Water flows faster near the surface and slower near the riverbed

When QDAcity releases a new version, the version number is added to the name
of the new bundle (e.g., index-89.dist.cache.js). This is a common cache-busting
strategy that causes the browser to discard its current bundle and load the new
one. This means that the user must download a new bundle for each release,
which can be very inefficient if only a few lines are changed while everything else
remains the same.

We reduced the amount of code a user has to download by moving large and
rarely changing vendor code into separate chunks. This technique is a lesser-
known feature of webpack and is called bundle splitting. For each vendor chunk,
we added a hash of its content to bust the cache if the code inside ever happened
to change. We extracted 328 KB of vendor code from the frontend’s main bundle,
including libraries like react or react-dom. Additionally, we extracted a vendor
chunk with 2862 KB from the lazy-loaded core components chunk, which we
added in Section 5.3.2.

Table 5.5 shows the long-term effects of bundle splitting in a hypothetical example
in which QDAcity releases every week and only changes code within the main

54

5. Performance in the Frontend

bundle or the core chunk. With bundle splitting, the user has to download 11800
KB less over five weeks.

File Week 1 Week 2 Week 3 Week 4 Week 5

B
as

el
in

e

index-v.dist.js 682 KB 682 KB 682 KB 682 KB 682 KB

core-v.dist.js 3902 KB 3902 KB 3902 KB 3902 KB 3902 KB

B
u
n
d
le

-s
p
li
tt

in
g index-v.dist.js 354 KB 354 KB 354 KB 354 KB 354 KB

index.vendor.[hash].js 328 KB 0 KB 0 KB 0 KB 0 KB

core-v.dist.js 1232 KB 1232 KB 1232 KB 1232 KB 1232 KB

core.vendor.[hash].js 2862 KB 0 KB 0 KB 0 KB 0 KB

Table 5.5: Long-term effects of bundle-splitting

An alternative we considered was to load vendor code from a Content Delivery
Network (CDN), which could decrease load times if popular libraries like React,
jQuery, or Bootstrap13 were already stored in the visitors’ browser cache. We
found the probability that visitors have a library with the same version (e.g.,
Bootstrap v3.4.2) and from the same CDN in their cache too small to justify the
downsides of using a CDN such as:

1. Each CDN becomes an additional point of failure.

2. Difficult offline development unless resources already exist in the browser
cache.

3. For the first request to a new CDN, the browser has to establish a connection
which causes overhead (see Figure 5.5). If many different CDNs are used,
this could become a performance bottleneck.

Figure 5.5: Overhead of the first request to a new CDN

4. No deprecation warnings for outdated and broken libraries.

13https://github.com/twbs/bootstrap

55

https://github.com/twbs/bootstrap

5. Performance in the Frontend

5.3.4 Page Refresh During ServiceWorker Installation

By default, an activated service worker only starts controlling a page after a
second refresh and doesn’t handle messages or intercept requests until then. We
avoided the refresh by allowing the worker to control the page with clients.claim()
and by sending messages asynchronously (see Code 5.1).

// Old: Service worker is called directly.
navigator.serviceWorker.controller.postMessage(message);

// New: Service worker is called asynchronously via callback.
navigator.serviceWorker.ready.then(({active}) => active.postMessage(message));

Code 5.1: Sending a message to a service worker via callback

Without the refresh, the performance score increased by 38% (see Table 5.6).

Metric Baseline Optimized Percentage Change

TBT (Total Blocking Time) 401 ms 102 ms 75% DECREASE

LCP (Largest Contentful Paint) 3491 ms 2981 ms 15% DECREASE

CLS (Cumulative Layout Shift) 0 ms 0 ms -

Parse, Compile, Execute index.js 1118 ms 501 ms 55% DECREASE

Performance Score 47 65 38% INCREASE

Table 5.6: Frontend performance after optimizing service worker installation

5.3.5 Removing jQuery

The frontend was initially built with jQuery and has been gradually refactored
into a React app since then. The library was still used in five components and
therefore remained in the bundle with 83 KB. We removed jQuery from these
components primarily to decrease bundle size but also to improve maintainability.

In React, data “flows down,” meaning that parent components can pass data or
functions via props to their children but not vice versa. Child components can
emit events by calling functions on their props but can’t access the components
above them directly. With jQuery, we can bypass this one-way information flow
by directly selecting UI elements and applying modifications to them even though
they belong to the output of a parent component. This increases coupling and
makes it challenging to track UI changes because any component in the entire
hierarchy could have triggered them.

Because jQuery bypassed the regular communication between components, we
had to build the communication from the ground up, making refactoring difficult.

56

5. Performance in the Frontend

We removed jQuery from five components, making the library disappear from the
entire application and decrease bundle size by 83 KB.

5.3.6 Omit Redundant Requests

The following components issued redundant requests to the GAE backend:

• CodeSystem.jsx (Coding Editor) requested the project’s code system 10 -
12 times during page load.

• AgreementModal.jsx (Project Dashboard) initiated an infinite loop of re-
quests, which could only be broken by navigating to another page.

• Navbar.jsx (Global Component) issued a request to the user endpoint each
time a modal was opened or closed anywhere in the frontend.

• Navbar.jsx (Global Component) requested the current user five times during
page load.

The root cause was the same in all four cases. React re-renders a component if its
props or state change which is very often the case. This becomes a performance
problem if the component performs CPU-heavy tasks during the re-rendering or
issues network requests to initialize state in the case of the components above.

We optimized the re-render behavior of Navbar.jsx by moving the user state up
to a parent component (App.jsx at the top of the hierarchy) which meant that it
no longer had to be initialized by the re-rendering Navbar.jsx through a network
request.

In CodeSystem.jsx and AgreementModal.jsx, we moved any initialization tasks
from the render method into a life cycle hook guarded by appropriate conditionals
to prohibit multiple executions. This optimization caused CodeSystem.jsx to
load the project’s code system only once instead of 10 - 12 times and prevented
AgreementModal.jsx from initializing an infinite loop of requests.

57

5. Performance in the Frontend

5.4 Evaluation

FE REQ 1: The frontend shall receive a lighthouse performance score of at least
90 (“good”) when measured using the method described in Section 5.1.

(3) We satisfied this requirement.

Table 5.7 shows the final measurement after all applied optimizations.

Metric Baseline Optimized Percentage Change

TBT (Total Blocking Time) 401 ms 51 ms 87% DECREASE

LCP (Largest Contentful Paint) 3491 ms 1127 ms 68% DECREASE

CLS (Cumulative Layout Shift) 0 ms 0 ms -

Parse, Compile, Execute index.js 1118 ms 97 ms 91% DECREASE

Performance Score 47 95 102% INCREASE

Table 5.7: Frontend performance after all optimizations

FE REQ 2: The frontend’s main pages (Personal Dashboard, Project Dashboard,
Coding Editor) shall make no redundant network requests on load.

(37) We satisfied this requirement partially.

Component Previous Behavior Optimized Behavior

CodeSystem.jsx Requested the code system
10 - 12 times during load

Was reduced to a single
request

AgreementModal.jsx Started an infinite loop of
requests when opened

Does not initiate a loop and
initializes state with a single
request

Navbar.jsx Loaded the current user five
times during page load, and
whenever a user opened or
closed a modal anywhere in
the frontend

Does not manage the user
state anymore (we moved its
state up to App.jsx), so it is
unnecessary to initialize it.

Table 5.8: Frontend optimizations to reduce redundant requests

App.jsx still loads the current user, previously managed by Navbar.jsx, five times
during page load, which is why this requirement was only partially satisfied.

58

5. Performance in the Frontend

FE REQ 3: The frontend shall be bundled with version 5 of webpack.

(3) We satisfied this requirement.

Webpack was successfully upgraded from v4.28.4 to v5.48.0, which caused the
bundle to shrink by 4%, improved visualization but increased build times by
169%. As a prerequisite for the webpack upgrade, we also bumped babel from
v6.26.3 to v7.14.8.

59

5. Performance in the Frontend

60

6 Conclusions

In “Performance in the GAE Backend,” we have shown that

• entities can be retrieved faster from memcache than from the datastore,

• ignoring JDO’s transparent persistence mechanism leads to higher request
latency and unnecessary RPCs,

• a DataNucleus query on a superclass tables issues (1 + number of sub-
classes) RPCs, which can be reduced to a single one with the low-level
datastore API,

• using the batch APIs of datastore and memcache decreases latency and the
number of RPCs,

• the first user request issued to a new App Engine instance faces high latency
due to initialization tasks performed by the instance.

We drew on these findings to optimize performance in the most frequently used
(“hot”) endpoints and achieved significant performance improvements in the case
of batchProcess (51 → 4 RPCs) and getProjectStats (78% latency decrease). In
addition, we presented a prototype for a distributed warmup service that can
prevent loading requests.

In “Performance in the RTCS,” we have described the successful migration of the
RTCS from Compute Engine to Cloud Run. We evaluated the migration result by
comparing it against QDAcity’s requirements for a serverless infrastructure. We
backed the migration by our profiling results showing that a Cloud Run instance
with the lowest resource limits (1vCPU, 128 MiB Memory) could already handle
up to 75 concurrent WebSocket connections.

In “Performance in the Frontend,” we have described six optimizations through
which the frontend’s performance score increased by 102% (47 → 95). We
achieved the most-significant reduction of initial load time by splitting core func-
tionality into separate JavaScript chunks, which the frontend then loaded on-
demand. We measured our optimizations’ impact against a baseline that we
created with the lighthouse node module and a bundle analyzer.

61

6. Conclusions

62

Appendices

63

Appendix A: Formula: Percentage Increase or Decrease from One Value to
Another

A Formula: Percentage Increase or Decrease from
One Value to Another

In this thesis, we used the following formula to calculate the increase or decrease
from an original value to a final value in a percent:

∣∣∣∣original value− final value
original value

∣∣∣∣× 100 = percent change

The percent change of the formula will be

• an increase if the original value is less than the final value,

• a decrease if the original value is greater than the final value.

Example 1: original value = 20, final value = 30

∣∣∣∣20− 30

20

∣∣∣∣× 100 = 50% INCREASE

Example 2: original value = 45, final value = 15

∣∣∣∣45− 15

45

∣∣∣∣× 100 = ∼66, 6% DECREASE

65

Appendix B: Warmup Service Prototype

B Warmup Service Prototype

Java servlet at /src/com/qdacity/servlet/WarmupServlet.java

import com.google.appengine.api.urlfetch.*;

public class WarmupServlet extends HttpServlet {

@Override
void doGet(HttpServletRequest req, HttpServletResponse resp) {

if (!req.getRequestURI().startsWith("/_ah/warmup")) {
resp.sendError(404);

return;
}

HTTPRequest doWarmupRequest = new HTTPRequest(
new URL("https://<warmup-service>.net/warmup-qdacity"));

URLFetchService fetcher = URLFetchServiceFactory.getURLFetchService();
fetcher.fetch(doWarmupRequest);

}
}

Code B.1: Custom servlet responding to a warmup request

Warmup service as a Express handler function on Cloud Functions

const axios = require('axios');
const url = require('url');

exports.warmupQdacity = (req, res) => {
/* Send the response immediately, issue the requests afterwards */
res.end();

const userEndpointUrl = `${getFullUrl(req)}user`;

axios.get(userEndpointUrl, {
// Trigger token validation in QdacityAuthenticator.
headers: { Authorization: 'Bearer ABCD' },

});
};

function getFullUrl(req) {
return url.format({ protocol: req.protocol,

host: req.get('host'),
pathname: req.originalUrl});

}

Code B.2: Warmup Service on Cloud Functions

66

/src/com/qdacity/servlet/WarmupServlet.java

List of Figures

2.1 Iterative research process of collecting and analyzing data 3
2.2 Coding in QDAcity . 6
2.3 Building block view of QDAcity’s components 7
2.4 Frontend build process in QDAcity (simplified) 8
2.5 Dynamic view of the RTCS . 10

3.1 Example logs in Cloud Logging 12
3.2 Example cloud trace with two remote procedure calls 13
3.3 Network trace of multiple sets to attached object 16
3.4 Network trace of multiple sets to detached object 17
3.5 Batch version of makePersistent causes 50 RPC calls 18
3.6 Result of new-table inheritance strategy 19
3.7 Result of superclass inheritance strategy 19
3.8 Trace of DataNucleus query on superclass table 20
3.9 Request logs with two loading requests 22
3.10 Project stats displayed on the project dashboard 28
3.11 Custom warmup servlet does not prevent loading request 29
3.12 Communication of App Engine, GAE backend, and warmup service 30
3.13 Loading request issued by warmup service 30

4.1 Profiling the RTCS with multiple node instances 41
4.2 RTCS response times for 50, 150, and 250 connections 42
4.3 Cloud Run auto-scaling for 25 connections (cold start) 44
4.4 RTCS HTTPS endpoint on Cloud Run 45
4.5 Cloud Run versioning . 45

5.1 Treemap of frontend bundle; generated with Source Map Explorer 48
5.2 Three redundant network requests during page load 50
5.3 Extraction of core components from App.jsx 52
5.4 Water flows faster near the surface and slower near the riverbed . 54
5.5 Overhead of the first request to a new CDN 55

67

Appendix List of Figures

68

List of Tables

2.1 Lines of Code in QDAcity . 10

3.1 Datastore write takes twice as long as a read 14
3.2 Optimized request latency without explicit makePersistent call . . 15
3.3 Comparing cache hit against datastore read 21
3.4 Overview of applied optimizations to 21 hot endpoints 26
3.5 Optimized datastore and memcache call frequency in batchProcess 27
3.6 Optimized request latency of getProjectStats 28
3.7 Additional use of memcache and datastore batch APIs 33

4.1 Deal-breakers of Google Cloud serverless solutions 38
4.2 Cloud Run resource limits . 40
4.3 RTCS resource usage . 42

5.1 Lighthouse performance metrics 48
5.2 Frontend performance baseline . 49
5.3 Frontend bundle size baseline . 49
5.4 Frontend performance after code-splitting 53
5.5 Long-term effects of bundle-splitting 55
5.6 Frontend performance after optimizing service worker installation 56
5.7 Frontend performance after all optimizations 58
5.8 Frontend optimizations to reduce redundant requests 58

69

Appendix List of Tables

70

List of Codes

2.1 Cloud Endpoints annotations in endpoint class 8
3.1 Convention for shortening instrumented code 13
3.2 Datastore GET and PUT with DataNucleus 14
3.3 Comparing: Calling makePersistent with an attached object. . . . 15
3.4 Three subsequent calls to setter method on an attached object . . 16
3.5 Detaching an object before setting its data 17
3.6 Batch call for persisting multiple projects 18
3.7 DataNucleus query to retrieve codings 20
3.8 Loading a project from datastore and memcache 21
3.9 Custom servlet responding to a warmup request 29
3.10 Comparison between old and new cache API 31
3.11 Manual mapping from entity to domain object 34
3.12 Switch statement to determine project type 35
4.1 Dockerfile of the RTCS . 39
4.2 Commands for building and deploying the RTCS 39
5.1 Sending a message to a service worker via callback 56
B.1 Custom servlet responding to a warmup request 66
B.2 Warmup Service on Cloud Functions 66

71

Appendix List of Codes

72

References

Abels, E. G., Domas White, M. & Hahn, K. (1997). Identifying user-based criteria
for web pages. Internet Research, 7 (4), 252–262. https://doi.org/10.1108/
10662249710187141

Bazeley, P. (2013). Qualitative data analysis: Practical strategies. SAGE Public-
ations Ltd.

Boehm, B. (1987). Industrial software metrics top 10 list. IEEE Software, 4 (5),
84–85. https://doi.org/https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=1695831

Buyya, R., Broberg, J. & Andrzej, G. (2011). Cloud computing: Principles and
paradigms. Wiley.

Dutta, P. & Dutta, P. (2019). Comparative study of cloud services offered by
amazon, microsoft and google. International Journal of Trend in Scientific
Research and Development, Volume-3 (Issue-3), 981–985. https://doi.org/
10.31142/ijtsrd23170

Egger, S., Reichl, P., Hossfeld, T. & Schatz, R. (2012). ‘‘time is bandwidth”?
narrowing the gap between subjective time perception and quality of ex-
perience. 2012 IEEE International Conference on Communications (ICC),
1325–1330. https://doi.org/10.1109/ICC.2012.6363769

Grbich, C. (2013). Qualitative data analysis: An introduction. SAGE Publications
Ltd.

Kaufmann, A. (2021). Domain modeling using qualitative data analysis (disserta-
tion). Friedrich-Alexander-Universität Erlangen-Nürnberg. https://opus4.
kobv.de/opus4-fau/files/16736/AndreasKaufmannDissertation.pdf

Kaufmann, A. & Riehle, D. (2015). Improving traceability of requirements through
qualitative data analysis. Gesellschaft für Informatik eV.

Kavis, M. J. (2014). Architecting the cloud: Design decisions for cloud computing
service models. John Wiley; Sons.

Knuth, D. E. (1971). An empirical study of fortran programs. Software: Practice
and Experience, 1.

Kuan, H.-H., Bock, G.-W. & Vathanophas, V. (2005). Comparing the effects of
usability on customer conversion and retention at e-commerce websites.

73

https://doi.org/10.1108/10662249710187141
https://doi.org/10.1108/10662249710187141
https://doi.org/https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1695831
https://doi.org/https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1695831
https://doi.org/10.31142/ijtsrd23170
https://doi.org/10.31142/ijtsrd23170
https://doi.org/10.1109/ICC.2012.6363769
https://opus4.kobv.de/opus4-fau/files/16736/AndreasKaufmannDissertation.pdf
https://opus4.kobv.de/opus4-fau/files/16736/AndreasKaufmannDissertation.pdf

Appendix References

Proceedings of the 38th Annual Hawaii International Conference on Sys-
tem Sciences. https://doi.org/10.1109/hicss.2005.155

Liu, C. & Arnett, K. P. (2000). Exploring the factors associated with web site
success in the context of electronic commerce. Information and Manage-
ment, 38 (1), 23–33. https://doi.org/https://doi.org/10.1016/S0378-
7206(00)00049-5

MacQueen, K. M., McLellan, E., Kay, K. & Milstein, B. (1998). Codebook devel-
opment for team-based qualitative analysis. CAM Journal, 10 (2), 31–36.
https://doi.org/10.1177/1525822x980100020301

Majchrzak, T. A., Biørn-Hansen, A. & Grønli, T.-M. (2018). Progressive web
apps: The definite approach to cross-platform development? Proceedings
of the 51st Hawaii International Conference on System Sciences. https:
//doi.org/10.24251/hicss.2018.718

Martin, R. C. (2008). Clean code: A handbook of agile software craftsmanship.
Prentice Hall.

Mell, P. M. & Grance, T. (2011). The nist definition of cloud computing. https:
//doi.org/10.6028/nist.sp.800-145

Miles, M. B. & Huberman, A. M. (1994). Qualitative data analysis: An expanded
sourcebook. Sage.

Novak, T., Hoffman, D. & Yung, Y.-F. (2000). Measuring the customer experi-
ence in online environments: A structural modeling approach. Marketing
Science, 19, 22–42. https://doi.org/10.1287/mksc.19.1.22.15184

Palmer, J. W. (2002). Web site usability, design, and performance metrics. In-
formation Systems Research, 13 (2), 151–167. https://doi.org/10.1287/
isre.13.2.151.88

Pareto, V. (1897). Cours d’économie politique. The ANNALS of the American
Academy of Political and Social Science, 9 (3), 128–131.

Rappaport, J. (1987). Terms of empowerment/exemplars of prevention: Toward a
theory for community psychology. American Journal of Community Psy-
chology, 15 (2), 121–148. https://doi.org/10.1007/bf00919275

Saldaña, J. (2013). The coding manual for qualitative researchers. SAGE.
Standish Group. (2010). Modernization: Clearing a pathway to success [https:

//www.standishgroup.com/sample_research_files/Modernization.pdf
last visited 28th of September, 2021].

Steiner, T. (2018). What is in a web view? an analysis of progressive web app
features when the means of web access is not a web browser.

Wickham, M. & Woods, M. (2005). Reflecting on the strategic use of caqdas to
manage and report on the qualitative research process. The Qualitative
Report, 10. https://doi.org/10.46743/2160-3715/2005.1827

Zhang, Q. & Yang, Y. (2009). A study of positive effects on user experience in
navigation. 2009 IEEE 10th International Conference on Computer-Aided
Industrial Design Conceptual Design, 444–447. https://doi.org/10.1109/
CAIDCD.2009.5375365

74

https://doi.org/10.1109/hicss.2005.155
https://doi.org/https://doi.org/10.1016/S0378-7206(00)00049-5
https://doi.org/https://doi.org/10.1016/S0378-7206(00)00049-5
https://doi.org/10.1177/1525822x980100020301
https://doi.org/10.24251/hicss.2018.718
https://doi.org/10.24251/hicss.2018.718
https://doi.org/10.6028/nist.sp.800-145
https://doi.org/10.6028/nist.sp.800-145
https://doi.org/10.1287/mksc.19.1.22.15184
https://doi.org/10.1287/isre.13.2.151.88
https://doi.org/10.1287/isre.13.2.151.88
https://doi.org/10.1007/bf00919275
https://www.standishgroup.com/sample_research_files/Modernization.pdf
https://www.standishgroup.com/sample_research_files/Modernization.pdf
https://doi.org/10.46743/2160-3715/2005.1827
https://doi.org/10.1109/CAIDCD.2009.5375365
https://doi.org/10.1109/CAIDCD.2009.5375365

	Introduction
	QDAcity
	Qualitative Data Analysis
	Coding

	Functional Overview
	Frontend Pages

	Technical Overview
	JS Client
	GAE Backend
	RTCS
	Source Code Distribution in QDAcity

	Performance in the GAE Backend
	Profiling Results
	The Cost of a Datastore Write
	Taking Advantage of Transparent Persistence
	Multiple Changes to Attached Object
	Batch Operations
	Query Entities in Superclass Table
	Datastore vs. Memcache
	The Effect of Loading Requests

	Quality Requirements
	Endpoints for Optimization

	Implementation
	Core Refactorings
	Preventing User Facing Loading Requests
	Cache Design

	Evaluation
	Additional Refactoring

	Performance in the RTCS
	RTCS Infrastructure
	Migration to Cloud Run
	Profiling Resource Usage

	Evaluation of Migration

	Performance in the Frontend
	Creating a Baseline
	Results

	Quality Requirements
	Implementation
	Webpack 5 Upgrade
	Code-splitting
	Bundle-splitting
	Page Refresh During ServiceWorker Installation
	Removing jQuery
	Omit Redundant Requests

	Evaluation

	Conclusions
	Appendices
	Formula: Percentage Increase or Decrease from One Value to Another
	Warmup Service Prototype

	References

