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Abstract

Over the past years, TypeScript has increasingly been gaining popularity due to
its nature of providing functionalities to ease the development of scalable and
robust applications whilst syntactically being a superset of JavaScript. With the
growing complexity of data-driven environments, it is essential for programming
languages to cope with value types beyond their primitive data types to capture
the semantics of intangible data, such as systems of measurement, thus increasing
readability and solidity across the codebase. By creating a test-driven framework
in TypeScript, this thesis lays out different methods to efficiently implement value
types, discusses their benefits as well as drawbacks, and ensures the reliability of
the framework by integrating it into an existing data-driven service.
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1 Introduction

Objects and Values are fundamentally different concepts. (Bäumer et al., 1998)
Values are intangible data that have meaning in their domain. Conceptually,
they are identity-less and live beyond the boundaries of time. Thus, two expres-
sions of values are equal when they semantically represent the same meaning in
their domain (Riehle, 2006). Contrarily, objects are often not characterized by
their semantics; they often are defined ‘by a thread of continuity and identity’
(Evans, 2014). They usually express entities that can be created and deleted
when needed. Consequently, they often describe tangible, meaning existing and
feasible, components of the real world.

Values, when reasonably used, enrich the design of software. They help us un-
derstand complex real-world data by breaking information down to their logical
represetations. Furthermore, depending on their implementation, they can en-
force the use of an immutable programming paradigm, which is characterized by
its read-only behavior on values. (Riehle, 2006)

Despite the many benefits that value types bring with them and the mental
conception of them being around since the dawn of time, many programming
languages lack the concept for creating custom values beyond their primitive
ones. This, however, can be overcome with the use of design patterns that allow
the creation and definition of new value types on top of a language’s existing
value types. (Bäumer et al., 1998)

One of the languages that fall into that category is TypeScript. Despite providing
a magnitude of functionalities and tools that are built on top of JavaScript, the
language still lacks support for creating custom values. The absence of such a
concept in TypeScript can be especially blatant since one of JavaScript’s forte’s
lies in creating data-driven applications and APIs.

From the given occasion, this thesis implements an object-oriented framework
that allows the creation of custom value types on top of TypeScript’s existing
value types. Key functionalities are applying predefined constraints to values
but also creating custom ones. Transformer functions allow for the conversion
between two types given a transformation strategy. Furthermore, inferring the
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1. Introduction

type of custom value types and verifying concrete values are essential capabilities.

Chapter 2 discusses the differences between value types and object types and
gives a brief introduction to TypeScript. Chapter 3 defines the objectives of
the framework and encompasses the requirements that should be met and eval-
uated with the use of later in Chapter 6. Chapter 4 lines out the framework’s
architecture, followed by the implementation in Chapter 5.
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2 Problem Identification

2.1 Value Types and Object Types

Generally, when modeling a software architecture, it is common to implement
real-world abstractions as Entities ‘(a.k.a. Reference Objects)’ (Evans, 2014).
Entities are objects that have distinct identifiers. They often are distinguished
by a single property of the object. Other properties, generally referred to as
attributes, further describe the object at hand. Since they serve no classification
purpose, they can be changed throughout the Objects lifecycle.

class User {
constructor(private readonly id: number,

private name: string) {}
setName(name: string) {

this.name = name;
}
equals(other: User): boolean {

return other.id == this.id
}

}
let user1 = new User(1, "John")
let user2 = new User(2, "John")
// false, not the same id
console.log(user1.equals(user2))

Code 2.1: A common use case for entities is creating models for database
schemas. The class on hand serves as a model for a User table schema. The
equality between two instances solely is determined by their identifier.

Instances of Object types normally have a lifecycle. After creating them, they
will eventually be deleted if the reference is no longer needed. It is possible that
when a component deletes an instance, that another entity still could have a
reference to it. This, and the fact that instances of object types are generally
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2. Problem Identification

type MoneyType = { readonly amount: number,
readonly currency: "USD" | "EUR" }

let a: MoneyType = { amount: 10, currency: "USD" }
let b: MoneyType = { amount: 10, currency: "USD" }
// true
console.log(JSON.stringify(a) == JSON.stringify(b))

Figure 2.1: The equality between value types is determined by their structural
equality.

mutable, can make developing software, especially in larger-scale systems, very
error-prone. (Bäumer et al., 1998)

Value types in programming languages generally encompass only primitive types,
such as numbers or strings. However, when working in a domain-driven environ-
ment, it can be of crucial help to capture the semantics of data. Not only does
it allow to tackle down the complexity of the codebase by grouping cohesive to
simple descriptive representations, but it also can make the development process
less error-prone due to dealing with immutable values. The value object pattern
aims to achieve this by creating domain-specific value types, which behave like
built-in values.

Value objects, or values, are instances of value types. The latter defines a schema
and criteria that their instances need to satisfy. When implementing this pattern,
habitually, the schema is built on top of the language’s existing primitive types.

Value Objects, unlike entities, don’t have unique identifiers. Their identity only
is determined by the values that their properties own so that two instances are
equal when their internal values are structurally the same.(Bäumer et al., 1998)
Values also have no lifecycle. Even though their concrete instances can be created
or deleted, conceptually, they don’t exist in time; they’re intangible and given.
Since values don’t have identifiers, hence it’s easy to serialize them since there’s
no need to implement a hash method to get unique identifiers for the objects.

2.1.1 Benefits and drawbacks of Value Types

Value Types and values can help to break down complexity across the codebase.
They can help prevent errors and give the programmer a better understanding of
the code. That is a result of the mental shift from changing the state of an object
and thus having to validate a new internal state across different components to
not modifying the state but returning a new value instance that already has to
exist according to the schema provided by the ValueType.

Other benefits of typing custom values are the ability to port the defined value
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2. Problem Identification

types to other domains, to be able to serialize values simply by recursively seri-
alizing their internal structure, and that they’re not bound to a lifecycle and are
interchangeable, thus not having to keep track of references to them. (Riehle,
2006)

The main drawback of the Value Object pattern is the performance penalty, which
ensues by creating heavyweight value types. Named value types, such as postal
addresses (2006), cause a proliferation of values that are mostly unique and share
little to no properties with other values of their type. The use of the Value Object
pattern could also lead to ‘more complicated code’(Riehle, 2006), which is a result
of the read-only programming paradigm, that a developer, first, would have to
get accustomed to. Generally, it is advised to use the Value Object pattern if
the resulting values are lightweight and if the concept at hand represents a value.
(2006)

2.2 The TypeScript language

The programming language JavaScript was first released more than two decades
ago. Initially, the purpose of the language was to allow the dynamic manipulation
of static web pages. Since then, JavaScript has evolved rapidly and is now the
most popular programming language on GitHub1. That is partly due to the
versatility of the language. JavaScript finds its use-cases in creating dynamic
web pages, creating server-side applications with node.js, building Desktop apps
with Electron, and so forth.

However with JavaScript’s dynamic typing system, developing large-scale applic-
ations can be very complex and error-prone. To combat this, TypeScript, a
syntactic superset of JavaScript, was introduced by Microsoft in 2012.

TypeScript allows developers to add type annotations to their code, thus mak-
ing the codebase more readable, scalable and maintainable. With its roaring
open-source community and popular JavaScript frameworks, such as AngularJS,
migrating their codebase to to TypeScript, it has gained enormous popularity
within the last few years.

As of the current version of TypeScript2, it, like other languages, does not provide
a built-in concept to create custom value types. Nonetheless, it gives a solid basis
to create a value type framework.

1https://madnight.github.io/githut/
2https://www.typescriptlang.org/docs/handbook/release-notes/typescript-4-4.html
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3 Objective Definition

3.1 A framework for ValueTypes

The primary goal of this thesis is to design an object-oriented framework for the
purpose of providing custom value types.

A framework is an ‘object-oriented’ design that usually ‘covers one particular
technical domain’ and ‘can be reused’ (Riehle, 2021). Since the concept of value
types is relatively abstract and they can be used in many domains, it makes sense
to build a framework for creating and validating such types.

3.2 Requirements analysis

The majority of the items on the following list were composed before starting
working on the framework. They create an outline of the desired outcome and
will be used to evaluate the framework in chapter 6.

1. The framework should be extensively testedIt’s highly important to
test every little aspect of the framework. After all, it is designed to deal with
complex values that could potentially be falsely manipulated and therefore
become unusable.

2. Providing an interface so that custom ValueTypes can be defined
Since the purpose of this framework is to allow potential developers to
define their custom Value Types, this framework must provide easy and
understandable methods to do so. The framework should limit the prim-
itive types one can use to create a schema. This is because, when using
some types, such as the top types, any and unknown, as base types in the
framework, it could lead to loosely typed schemas.

let personType = new ObjectType({
firstName: new StringType(),
middleName: new StringType().makeOptional()
lastName: new StringType()
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3. Objective Definition

})

3. The ability to infer static types from value type instances It should
be possible to retrieve the static type of a value type instance, which would
help immensely when validating value objects. The inferred type for the
example above should be:

let a: inferValueType<typeof personType>;
typeof a === {

firstName: string,
middleName?: string,
lastName: string

}

4. Constraints to be used on Value Types It should be possible to add
constraints on value types to restrict the range of values a value type can
take. There should be multiple predefined rules that a developer could use
on predefined value types.

let personType = new ObjectType({
firstName: string.withMinLengthRestriction(2),
middleName?: string,
lastName: string

}

5. Implementing distributable domain packages One of the many be-
nefits to value types is that once they’re defined, they can be reused. The
framework should allow for a developer to register custom-created value
types, rules, and transformations.

6. Implementation of a reusable domain package With the previously
defined domain-registration mechanism, the provided framework should at
least have the following domain with its value types implemented: Quant-
ityUnitType

3.3 Reference Projects

3.3.1 jvalue/value-objects

The jvalue/value-objects1 project is a framework that implements Value Types
in Java and was the main source of reference for this framework.

1https://github.com/jvalue/value-objects
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3. Objective Definition

3.3.2 jvalue/kernel

My first attempt to create a value type framework in TypeScript was with the
heavy usage of TypeScript’s compiler API to implement a reflection API and
optimized evaluation characteristics for ValueTypes. This, however, resulted in
unstable and unpredictable behavior so that it never went past the experimental
phase. With pointers on how to parse value objects from the jvalue/kernel2 team,
the current version of the framework doesn’t rely on the compiler API.

2TBR.
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4 Architecture

4.1 Using the Meta-Object Protocol

Since TypeScript’s objects generally provide little to no meta-information or in-
herited serialization or equality methods, it is best to make use of the Meta-Object
Protocol design pattern for the framework.

The Meta-Object Protocol provides an internal typing system in the framework
on top of TypeScripts’ existing type system. As a result, classes that inherit the
MetaType or the MetaObject class share consistent functionality between them,
which is very useful when it comes to abstract frameworks and produces unified
behavior among the inheriting subclasses.

One of the functionalities that every value object should provide is to check if
they’re equal to another value object. Furthermore, subclasses should provide
their serialization strategy.

export abstract class MetaObject {
abstract serialize(): String;
abstract equalTo(other: MetaObject): boolean;

}

Figure 4.1: The MetaObject enforces subclasses to implement the serialize and
equalTo methods.

Going a level down from the MetaObject class, the ValueObject defines basic
functionality,
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4. Architecture

<<abstract>>
MetaObject

+ serialize(): string
+ equalTo(other: MetaObject) :
boolean

<<abstract>>
MetaType

serialize(): string

<<abstract>>
ValueObject

# readonly value: Readonly<any>

+ constructor(Value: unknown)
+ equalTo(other: ValueObject) :
boolean

<<abstract>>
ValueType

#optional = false

+ makeOptional(): IsOptional-
Type<this>
+ isOptional(): boolean
+ isValidValue(value: unknown):
boolean
verifyEquality(v1: unknown, v2: un-
known): boolean

The Value Object class is an abstract class that extends the MetaObject and
should handle equality checks to other value objects. It may or may not hold a
reference to its type. The reference to its value type is not necessary. A value
can theoretically hold an infinite amount of representations, just like integers in
the real world. It is the type, that determines, whether or not a value is valid in
its schema.

The Value Type, on the other hand, is the core element of this framework. It is
abstract by design, so that concrete value types can create instances by extending
the class. All of the framework’s logic regarding, whether a value is valid or not
or whether or not a rule is applicable on a type should be handled through
this specific class. Subclasses extending this class should only have to set a few
abstract members.
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4. Architecture

<<abstract>>
ValueType

#optional = false

+ makeOptional(): IsOptional-
Type<this>
+ isOptional(): boolean
+ isValidValue(value: unknown):
boolean
verifyEquality(v1: unknown, v2: un-
known): boolean

NumberType

isValidValue(value: unknown): re-
turn typeof value === "number"

The framework should provide typical types1 as core value types, which can then
be used to implement more complex value types such as objects or union types
on top of them. Rules should be chainable to the Value Types, so that custom
and modified value types can be instanciated fairly easily.

To allow the creation of custom value schemas, it is necessary to define the base
types first. These include: With these types, it is possible to build safe and

type TypicalTypes = number | string | boolean | bigint
| TypicalType<TypicalTypes>[];

reliable schemas. Top types like any or unknown or bottom types are too loosely
or respectively too tightly bound so that the behavior of otherwise well-typed
schemas could be undetermined.

Furthermore, it suggests itself creating a container for all the typical types listed.
That is because these base types can hold their own rules and have their validation
mechanism.

export class BooleanType extends TypicalType<boolean> {
/** Own logic and validation */

}

When trying to implement constraints on the previously designed value types,
one could go about different ways. An obvious way to implement rules on value
types is to have the rules defined directly in the extended value types class.

The benefit of this implementation would be, that rules are easily chainable and
properties could easily be accessible by the linter. A disadvantage is the pollution
of the class itself by many restrictions and properties. Another disadvantage of
that method is that rules, which can be applied to different value types have to
be redefined in each value type again.

1https://www.typescriptlang.org/docs/handbook/2/everyday-types.html
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4. Architecture

export class NumberType extends TypicalType<number> {
// ...
public withLowerBoundRestriction
(l: number, i: boolean = false) : NumberType {

this.lowerBound = i ? l - 1 : l
this.validationChainAdd((value: number) => number < this.lowerBound)
return this

}
}

export class StringType extends TypicalType<string> {
// ...
public minimumLength(l:number) : StringType {

this.minLength = l;
this.validationChainAdd((value: string)
=> value.length > this.minLength) ----- repeating
return this;

}
}
export class ArrayType<T extends TypicalTypes>

extends TypicalType<TypicalType<T>[]> {
// ...
public minimumLength(l:number) : StringType {

this.minLength = l;
this.validationChainAdd((value: string)
=> value.length > this.minLength) ----- repeating
return this;

}
}

Since this framework aims to provide methods that let users declare their own
rule, this approach won’t suffice. Next, it is plausible to divide value types and
rule classes from each other and provide an interface that lets value types add
rules to their instances. The common approach to do so would be like this:

interface IRule {
evaluate(value: unknown) : boolean;

}
----
class MinLengthRule<T extends string|TypicalTypes[]> implements IRule {

constructor(protected readonly minLength: number) {
super()

14



4. Architecture

}
evaluate(value: T): boolean {

return value.length >= this.minLength;
}

}
----
abstract class ValueType {

protected validation: (value: unknown) => boolean[] = []
withRule(r: IRule) {

validation.push(r)
return this;

}
}

This approach allows users to define their own rules. The greatest shortcoming
of it, however, is that one no longer can apply rules to a value type by accessing
it directly by it’s member.
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5 Implementation

The implementation of the value types framework was pretty straightforward.
The first step was to implement the base types. A generic TypicalTypes container
holds all primitive types. This has the advantage that, when trying to infer the
type from a value object, it’s easier to infer the base types extending the container
themselves.

Here, with the static type schemaType<u> it is easily possible to create a type
for an object by simply inferring the value type itself. That is especially useful,
when testing the framework and statically creating new values.

type schemaType<u> = u extends ObjectType<infer y> ? schemaTypeHelper<y> : never

type getTypeHelper<A> = A extends TypicalType<infer l> ? l : never

type schemaTypeHelper<T extends {}> = {
[K in keyof T]: T[K] extends
IsOptionalType<TypicalType<infer u>> ? Partial<u> :

T[K] extends
UnionType<infer u> ? getTypeHelper<u[number]> :

T[K] extends
TypicalType<infer u> ? u :

T[K] extends
ObjectType<infer y> ? schemaTypeHelper<y> : never;

}

5.1 Implementation of the QuantityType class

Quantities are complex representations of intangible data. Hence, it suggests
itself modeling it as a value type. A QuantityType describes how different units
correlate with each other. For instance, when dividing distance with time, we
get a new composed unit of speed. To implement Quantity Type, first, it was

17
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mandatory to create the SIUnit value object and respectively the SIUnit value
type.

Since SIUnits consist of different units, it is of help to first create a static supply
of base units.

public static readonly None: Units = { l: 0, w: 0, t: 0,
a: 0, te: 0, s: 0, lu: 0 }

public static readonly l: SiUnit = new SiUnit({ l: 1 })
public static readonly t: SiUnit = new SiUnit({ t: 1 })
public static readonly w: SiUnit = new SiUnit({ w: 1 })
public static readonly a: SiUnit = new SiUnit({ a: 1 })
public static readonly te: SiUnit = new SiUnit({ te: 1 })
public static readonly s: SiUnit = new SiUnit({ s: 1 })
public static readonly lu: SiUnit = new SiUnit({ lu: 1 })

To perform arithmetic operations on these units, it, according to the core concept
of value objects, must a new SIUnit.

multiply(other: SiUnit): SiUnit {
let tmp = { ...SiUnit.None };
Object.getOwnPropertyNames(tmp).forEach(key => {

tmp[key as keyof typeof tmp] = this.getValue()[key as keyof typeof tmp]
+ other.getValue()[key as keyof typeof tmp]

});
return new SiUnit(tmp as Units);

}

18



6 Evaluation

1. The framework should be extensively tested The framework was
thoroughly tested with the Jest testing suite.

2. Providing an interface so that custom ValueTypes can be defined
Users of the interface can use already defined value types or they can create
new ones if they like.

3. The ability to infer static types from value type instances It is
possible to infer static types from type schemas.

4. Constraints to be used on Value Types Values can be restricted with
rules.

5. Implementing distributable domain packages While a user can add
their own rules and it to their custom domain, it is not possible to create
custom domain packages as of now

6. Implementation of a reusable domain package The
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7 Conclusion

Value Types help make codebases more readable while also reducing complexity.
They should be used, when dealing with complex environments that have domain-
specific data in the foreground. While modeling every single component in the
codebase would be an anti-pattern, one should consider the benefits of having a
more universal language if the resulting objects are not too heavyweight. While it
is very much possible to implement the value objects to programming languages
that do not provide any concepts to create value types, a naive implementation
could bring enhancements, such as compiler optimizations.
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