ASSISTED INTERVIEW
TRANSCRIPTION FOR QDAcity

MASTER THESIS

HUGO IBANEZ ULLOA

Submitted on 2 November 2021

Friedrich-Alexander-Universitdat Erlangen-Niirnberg
Technische Fakultit, Department Informatik
Professur fiir Open-Source-Software

Supervisor:
Dr. Andreas Kaufmann
Prof. Dr. Dirk Riehle, M.B.A.

s> = == = FRIEDRICH-ALEXANDER
= 4=—=== = UNIVERSITAT
= &= === ERLANGEN-NURNBERG

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ahnlicher Form noch keiner anderen Priifungsbehoérde vorgelegen hat und von
dieser als Teil einer Priifungsleistung angenommen wurde. Alle Ausfithrungen,
die wortlich oder sinngeméf} iibernommen wurden, sind als solche gekennzeichnet.

Nuremberg, 2 November 2021

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Nuremberg, 2 November 2021

https://creativecommons.org/licenses/by/4.0/

Abstract

Qualitative research deals with a wide array of unstructured input data. One
common technique for data gathering is performing interviews which are recorded
and subsequently transcribed for analysis. While QDAcity, a cloud-based solution
for qualitative data analysis (QDA), already supported the analysis stage of this
process, the transcription had to be performed either manually or with an external
tool or service.

Transcribing research data already involves crucial decisions, like deciding what
and how to transcribe (i.e., filler words, pauses). These decisions affect the fol-
lowing analysis, and consequently, the results. Therefore the researcher is often
well-advised to either transcribe the interview themselves or at least carefully
correct the transcription.

In this thesis, we present an extension of the current capabilities of QDAcity
focused on the automation and correction of transcription content based on in-
terview media.

In our approach, first, an automated transcription from cloud-based services is
obtained. This transcription output can be corrected with a user interface that
aids this task. Subsequently, as the last step, it can be exported into the data
format needed for further domain analysis.

1

Contents

1 Introduction
1.1 QDAcity e
1.2 The Role of Transcription in Qualitative Research and Data Analysis
1.3 Automatic Speech Recognition
2 Requirements
2.1 Functional Requirements
2.1.1 Speech to Text Process
2.1.2 Review, Correction and Approval of Transcription
2.1.3 Storage of Changes
2.1.4 Export of the Corrected Transcription
2.1.5 Authentication and Authorization
2.2 Non-functional Requirements
2.2.1 Quality Metrics o
3 Architecture and Design
3.1 Existing System
3.2 Selection of Storage Provider and Speech-to-text API
3.3 Evaluation of Transcription Correction Library
3.4 Transcription Formats
3.5 Supported Languages and Media Formats
3.6 System Architecture
4 Implementation
4.1 Overview of Use Cases
4.1.1 Media Upload
4.1.2 Creation of the Transcription Document
4.1.3 Storage of Changes and Deletion of the Transcription Doc-
ument L e e e
4.1.4 Export
4.2 Transcription Services Client

4.2.1 Components Hierarchy

1l

W N N =

—
OO O © 0O

—_

4.2.2 User Interface Changes
4.3 Transcription Services Server
CRUD operations
4.3.2 Media Upload and Connection with Speech-to-Text API

4.3.1

5 Evaluation

5.1 Functional Requirements
Speech to Text Process
5.1.2 Review, Correction and Approval of Transcription
5.1.3 Storage of Changes
5.1.4 Export of the Corrected Transcription
5.1.5 Authentication and Authorization
5.2 Non-functional Requirements

5.1.1

52.1
6 Conclusion

References

Quality Metrics

v

26

28
28
28
29
29
30
30
30
31

33

34

List of Figures

2.1 FunctionalMASTeR template based on Rupp et al. (2014) 4
2.2 PropertyMASTeR template based on Rupp et al. (2014) 10
2.3 EnvironmentMASTeR template based on Rupp et al. (2014) . . . 10
2.4 ISO/IEC 25010:2011 - Categories 11
3.1 High level system architecture 19
3.2 Component architecture 20
4.1 Upload sequence diagram 22
4.2 Transcription Document Class Diagram 23
4.3 Export of Corrected Transcription - Sequence Diagram 24
4.4 TImplemented React components hierarchy 25
4.5 Assisted interview transcription integration into QDAcity 25
4.6 Assisted interview transcription upload dialog 26
4.7 Example of the Google STT Format 27

List of Tables

2.1
2.2

3.1
3.2
3.3
3.4

Definition of the requirement keywords 5
Definition of the requirement terms 5
Comparison of transcription edition libraries 16
React Transcript Editor library characteristics 16
Required characteristics of transcription output format 17
Supported Languages L 18

vi

List of Acronyms and Abbreviations

API Application Programming Interface
ASR Automatic Speech Recognition
CRUD Create, Read, Update, and Delete
FLAC Free Lossless Audio Codec

GCP Google Cloud Platform

GAE Google App Engine

GCS Google Cloud Storage

HTML HyperText Markup Language
HTTP Hypertext Transfer Protocol
JSON JavaScript Object Notation

MP3 MPEG-1 Audio Layer III

QDA Qualitative Data Analysis

SLA Service Level Agreement
STT Speech To Text
Ul User Interface

UML Unified Modeling Language

vii

URL Uniform Resource Locator

WAV Windows Audio Waveform

viil

1 Introduction

Qualitative data analysis (QDA) methods focus on extracting the relevant inform-
ation from qualitative data, interpreting it, and abstracting it. These methods
consist of different steps. One of them is the transcription process.

The transcription process is a necessary process involving decision-making that
can impact the outcome of the research. Atkinson et al. (1984) stressed that
the production and use of transcripts are "research activities” and should not be
approached as merely a ”technical detail” that precedes analysis. The decision
on how to proceed already impacts the analysis. It is a critical stage yet time-
consuming. It is recommended that the researcher does it.

Currently, the transcription process is a very time-consuming task. What to
include in the transcription should always be driven by the research question, and
different ways to approach this problem exist. Researchers need more support to
make this process more efficient.

QDAcity, a web application for qualitative data analysis, integrates multiple dif-
ferent types of input data and handles the analysis of interviews that already have
been transcribed. The prevalence of interview transcription as a data source for
qualitative research has been extensively discussed in the literature (McLellan et
al., 2003). In this thesis, a module to automate part of the transcription process
and aid the researcher to produce an analyzable transcription is developed.

Chapter 1 of this thesis presents an introduction to the topic, followed by the
definition of the software requirements in chapter 2. The chapter 3 handles the
architecture and design of the developed component, and chapter 4 examines the
implementation. As a final part in chapter 5, the evaluation of the developed
tool draws upon the previous requirements and then in chapter 6, the conclusion
of this thesis.

1.1 QDAcity

Computer-assisted QDA software exists in a wide arrange of options such as At-
last/ti, The Ethnograph, QSR N4, QSR N5, to name a few. The Professorship for
Open Source Software at the Friedrich-Alexander-Universitat Erlangen Niirnberg
developed QDAcity, a cloud-based QDA software.

QDAcity runs powered by the Google Cloud Platform (GCP), and it has a
client-server architecture that communicates through Hypertext Transfer Pro-
tocol (HTTP) requests and WebSocket messages. Researchers can use QDAcity
to perform qualitative data analysis. QDAcity provides useful features like real-
time collaboration, a teaching platform and supports different data sources. The
extension proposed in this thesis aims to expand the current capabilities and
support the researcher during the transcription process.

A QDAcity project contains textdocuments which need to be analyzed. For
analysis of these textdocuments, a code system is used, consisting of the relevant
codes of the project’s domain. The code system can be defined and redefined
by the users of the project. A number of users act as raters, which means that
they individually apply the codes to specific text segments of the documents in a
project. This process is called coding. In the end of a project, users can write a
theory about the coded textdocuments, which is the result of the theory building
research (Schope, 2017).

1.2 The Role of Transcription in Qualitative Re-
search and Data Analysis

According to MacQueen and Milstein (1999), inappropriate or inadequate data
preparation decisions can delay or negatively affect the analysis process. This
sensitive step has challenges. Speech elisions (the omission of a sound between
two words, usually a vowel and the end of one word or the beginning of the next),
incomplete sentences, overlapping speech, a lack of clear-cut endings in speech,
poor audiotape quality, and background noises are just a few of the issues that
a transcriber encounters. In addition, he or she must carefully determine where
and when punctuation is required so as not to change the intent or emphasis of
an interviewee’s response or comment (MacQueen & Milstein, 1999).

The decision on what and how to transcribe may significantly affect and impact
the analysis; several decisions are involved, like the translation of content fillers,
semantics and even the decision to transcribe parts of the content. It is an
important part, and ideally, the researcher should do it instead of outsourcing
this step.

1.3 Automatic Speech Recognition

Automatic Speech Recognition (ASR) has a long history of being one of the com-
plex problems in artificial intelligence and computer science. Since speech is the
primary means of communication between people, the field has attracted a great
deal of attention over the last decades. Since the 1930s, when Bell Laboratories
proposed a system model for speech analysis and synthesis (Juang & Rabiner,
2005), small yet steady improvements have characterized the field.

The early versions of automatic speech recognition systems were able to identify
isolated words from small vocabulary datasets, moving forward to the identi-
fication of continuous speech by using pattern recognition. The recognition of
continuous speech progressed to the identification of spoken dialogue and the
adoption of machine learning models (Juang & Rabiner, 2005).

Today, speech technologies are commercially available for a wide arrange of use
cases. State-of-the-art accuracy and the most advanced deep learning neural net-
works algorithms for ASR can transcribe content with accurate captions provid-
ing a flexible deployment and integration. These speech technologies building
voice-powered applications can be open source and provide the code available
to download and use or commercial speech recognition systems with inaccessible
code and mechanisms.

To provide a practical example of the progress in the field, the Google API
(Application Programming Interface) is integrated into a broad range of Google
products like YouTube transcription, Translate and voice search. Google achieved
in 2015 an 8% error rate, which is a reduction of more than 23% from the year
2013 (Képuska & Bohouta, 2017). In recent years, Google has acquired several
deep learning companies over the years, including DeepMind, DNNresearch and
Jetpac.

2 Requirements

The main goal of the thesis is to integrate a speech-to-text API into QDAcity and
provide a user interface for correction of it. This integration shall enable users
to obtain an automated transcription based on interview media. Given that the
automated transcription will most likely contain errors, it is imperative to provide
a user-friendly interface to correct and approve the transcription. The detailed
requirements have been divided into functional and non-functional requirements.

2.1 Functional Requirements

The following functional requirements are expressed using the FunctionalMAS-
TeR template by Rupp et al. (2014). As shown below in figure 2.1. In this
illustration, the words in italic are used as a placeholder, and the dashed boxes
are optional.

F

SHALL

PROVIDE
actor
WITH THE
ABILITYTO

process
verb

system f— SHOULD

BE ABLE
TO

Figure 2.1: FunctionalMASTeR template based on Rupp et al. (2014)

The semantic definition of the keywords words shall, should and will can be found
in table 2.1. The used terms are semantically defined in table 2.2.

The requirements are divided into different sections based on their relationship
with these concepts. Accordingly, the requirements are divided into the following
sections:

Keyword | Semantic Definition of the Keyword

succeed.

Shall A requirement that has to be fulfilled for the project to

Should | A requirement that is important but not necessary for
the software to work correctly.

Will A requirement that is not necessary but desired.

Table 2.1: Definition of the requirement keywords

Term Semantic Definition of the Term
User In QDACcity, a user shall be defined as a phys-
ical person that is using the QDAcity applic-
ation.
Document In QDAcity, a document shall be defined as

a data structure that has the potential to be
used for qualitative data analysis.

Codeable format

In QDAcity, a codeable format shall be
defined as a type of document that allows
for parts of the data to be associated with a
code within the codesystem.

Code In QDAcity, code is a strategy of QDA in
which labels are assigned to parts of the ex-
amined data.

Codesystem In QDAcity, a codesystem shall be defined as

a a hierarchical set of codes.

Assisted transcription component

Assisted transcription component shall be
defined as the module developed in this
thesis.

Transcription document

In QDAcity, a transcription document shall
be defined as a type of document that is not
ready to be coded and its format is still an
STT (Speech-To-Text) format.

STT format

In QDAcity, a STT Format shall be defined
as a format that holds the transcription and
transcription metadata.

Table 2.2: Definition of the requirement terms

e Section 2.1.1 (Speech to Text Process) defines requirements related to the
first step of the process, to upload the media object to Google Cloud Buckets

and transcribe it.

e Section 2.1.2 (Review, Correction and Approval of Automated Transcrip-

tion) defines requirements related to reviewing and correcting the content
from the Google API. Given that the transcription process is a sensitive
pre-processing step of the data analysis, the researcher will have complete
control over this process with the aid of tools to allow this process to be
easier and faster.

Section 2.1.3 (Storage of Changes) defines requirements related to data
storage. The revision and correction of transcription can be resumed in
different sessions, allowing the researcher to store the changes along the
transcription process.

Section 2.1.4 (Export of the Corrected Transcription) defines requirements
related to the last step of the process. After the transcription satisfies the
user, it can be parsed and exported for further analysis.

Section 2.1.5 (Authentication and Authorization) defines requirements re-
lated to the process of verifying who a user is and what elements should be

allowed to access.

2.1.1 Speech to Text Process

The outcome of the transcription process using an API will be a transcription

text based on interview media. For this process, the following requirements have
been defined:

FR-1: The assisted transcription component shall allow the user to upload and

transcribe single-channel (mono) audio files in wav format up to a maximum
file size of 500 MB.

FR-2: The assisted transcription component shall allow the user to upload and

transcribe single-channel (mono) audio files in mp3 format up to a maximum
file size of 500 MB.

FR-3: The assisted transcription component shall allow the user to upload and

transcribe single-channel (mono) audio files in flac format up to a maximum
file size of 500 MB.

FR-4: A selected and visually highlighted position in the transcript shall be
synchronized with the corresponding temporal position in the audio file.

FR-5: The assisted transcription component shall provide the ability to tran-
scribe audio in German or English.

FR-6: The assisted transcription component shall provide the ability to visu-
alize the speaker diarization of the automated transcription.

FR-7: In the event of any error during the transcription process, the assisted
transcription editor shall delete the media object from the cloud storage and
provide user feedback.

FR-8: The assisted transcription component should provide the ability to
transcribe audio in other languages supported by the API beyond the scope
of FR-5.

FR-9: The assisted transcription component should provide the user with the
ability to visualize the accuracy of the confidence value of the algorithm on
the accuracy of the automatically transcribed words.

FR-10: QDAcity document list viewer should provide the user with the ability
to differentiate visually when a transcription document is still not ready to be
coded.

FR-11: The assisted transcription component will transcribe video files in
mp4 format up to a maximum file size of 500 MB.

FR-12: As long as there are no transcription documents, QDAcity shall not
display the transcription editor.

2.1.2 Review, Correction and Approval of Transcription

The users need the ability to correct the transcription provided by the API.
These corrections will include particular characteristics. On this basis, these
requirements can be defined:

FR-13: The assisted transcription component shall provide the user with the
ability to modify the text output of the automated transcription.

FR-14: The assisted transcription component shall provide the user with the
ability to customize the names of the speakers.

FR-15: The assisted transcription component shall display the speaker code
and timestamp next to the text paragraph.

FR-16: The assisted transcription component shall be integrated within the
layout of the current editors of QDAcity.

FR-17: The assisted transcription component shall provide the user with the
ability to jump 15 seconds backward in the media.

FR-18: The assisted transcription component shall provide the user with the
ability to insert exact the time position for the media player to reproduce the
audio.

FR-19: The assisted transcription component should provide the user with
the ability to jump to the position of the audio by selecting a position on the
text transcription.

FR-20: The assisted transcription component will provide the user with the
ability to reproduce the interview media at different speeds.

FR-21: The assisted transcription component will provide the user with the
ability to mute the reproduction of the audio.

FR-22: The assisted transcription component will provide the user with the
ability to use keyboard shortcuts to interact with the media player.

2.1.3 Storage of Changes

The corrections to the automated transcription will have to be stored. To achieve
that, the following requirements are defined:

FR-23: QDAcity shall provide the user with the ability to store changes during
the correction of the transcription.

FR-24: As soon as a user modifies the transcription, QDAcity should persist
the change.

FR-25: As soon as a user removes a part of the transcription, QDAcity should
persist the change.

FR-26 QDAcity shall provide the user with the ability to delete the automated
transcription.

FR-27: As soon as a user removes a transcription, QDAcity should persist
the changes and delete the interview media.

2.1.4 Export of the Corrected Transcription

Users need to be able to code the automated transcription; therefore, the following
requirements have been defined:

FR-28: QDAcity shall provide the user with the ability to export the correct
transcription to a codeable format.

FR-29: QDAcity shall provide the user with the ability to export the correct
transcription to an editable format.

FR-30: QDAcity should provide the user with a confirmation prompt to avoid
accidental export.

FR-31: As soon as the user confirms the export of the transcription, QDAcity
shall provide the user with the ability to further code the document.

2.1.5 Authentication and Authorization

On a document level, authentication and authorization are already implemented
into QDAcity. Now QDAcity will also be handling media objects. To achieve
this, the following requirements have been delimited:

FR-32: The authorization mechanism shall allow the user to upload and
interact with interview media only for the members of the concerning QDAcity
project.

FR-33: The authentication mechanism shall allow the upload and interaction
with interview media to only authenticated and authorized users.

FR-34: The authentication mechanism shall allow upload and interaction
with interview media even if the user does not have a Google account.

FR-35: The authentication mechanism should be handled by service account
keys.

2.2 Non-functional Requirements

The delimitation of the non-functional requirements is based on the Proper-
tyMASTeR and the EnvironmentMASTeR templates by Rupp et al. (2014) as
shown in Figures 2.2 and 2.3.

"“IFI_“'_“I“\')

p o riogieal SHALL

| expression

N e e ’ -/

{ AS SOON AS subject () " qualifying |
!] characteristicH) f— SHOULD BE] q 4 X 9 ; value
i event matter | expression |
N e e ’ -/ N e 7
£ AS LONG AS ()

P o WILL

i time period

N e e ’ -/

i ; b,
SHALL o IF Ioglcgl i
\ expression |

subject BEDESIGNED || fASSOONAS: \ . CAN BE characteristic ! value
matter INAWAY |\ | event | | °” OPERATED

..............

['
WILL { ASLONGAS
i time period

Figure 2.3: EnvironmentMASTeR template based on Rupp et al. (2014)

The non-functional requirements are assembled in the following section called
Quality Metrics. To verify that the implementation achieves quality metrics of
software, the requirements are grouped following the guidelines of the ISO-25010
Estdale and Georgiadou (2018).

The ISO/TEC 25010: 2011 - Systems and software Quality Requirements and
Evaluation (SquaRE)— System and software quality model present the leading
quality models for software products and computer systems known as ‘software-
intensive computer systems’ (Estdale & Georgiadou, 2018).

2.2.1 Quality Metrics

According to the standard [SO-25010, the characteristics to which a high-quality
software system should adhere are divided into eight categories and their cor-

10

responding subcategories as expressed in the figure 2.4. The characteristics are
described in the following sections.

Software
Product
/ Quality
Functional e Performance Operabili . Maintain- | Transfer-
Suitability Reliability efficiency (Sseablluyt)y Seourity Compatibility ability ability
Appropriateness Availability Time- Appropriateness- Confidentiality Replace- Modularity Portability
Accuracy Fault tolerance behaviour recogniseability Integrity ability Reusability Adaptability
Compliance Recoverability Resource- Learnability Non-repudiation Coexistence Analyzability Installability
Compliance utilisation Ease-of-use Accountability Inter- Changeability Compliance
Compliance Helpfulness Authenticity operability Modification
Attractiveness Compliance Compliance stability
Technical- Testability
accessibility Compliance
Compliance

Figure 2.4: ISO/IEC 25010:2011 - Categories

Functional Suitability

This characteristic indicate that the implemented features should be fully func-
tional. The main objectives should be achieved, and the user should be able to
perform the designated task.

Reliability

This subsection indicates that QDAcity should be operative under normal con-
ditions all the time. Error handling should be implemented, and the operation
of the software should run without interruptions. To fulfill and expand on this
characteristic, the following requirements have been defined:

NFR-1: The assisted transcription component should be designed in a way
that it can be operated via the current Google Cloud Console.

NFR-2: Transcription services should be able to resume the upload if the
connection is not stable.

11

Performance Efficiency

Performance efficiency is composed of three sub-characteristics. Time behaviour,
resource utilization and capacity. To achieve this, in the context of this thesis,
QDAcity performance should not be affected, the software should keep working
without any drastic increase in the earlier mentioned parameters.

Operability and Usability

In the context of this thesis, this characteristic focuses on following the implemen-
ted color schemes, Ul guidelines and localization strategies. The user experience
of the new component should be aligned with the previously implemented ele-
ments. The deliverable should provide a similar quality and ease of use. To
accomplish this, the following requirements have been defined:

NFR-3: The assisted transcription component user interface elements that
contain text shall comply with the app localization strategies.

NFR-4: The assisted transcription component user interface elements shall
be designed in a way that follows the current color scheme for QDAcity.

NFR-5: The assisted transcription component user interface elements shall
be designed in a way that complies with the current UI guidelines for QDAcity.

NFR-6: As soon as the upload begins, the assisted transcription component
should provide visual feedback to the user.

NFR-7: As soon as the transcription begins, the assisted transcription com-
ponent should provide visual feedback to the user.

NFR-8: The assisted transcription component will be designed in a way that
it can provide real-time collaboration to multiple users.

Security

This characteristic indicates that only authorized and authenticated users should
be allowed access to the resources.

Compatibility

Compatibility refers to the degree to which a product, system or component can
exchange information with other products, systems or components, and perform
its required functions while sharing the same hardware or software environment.
In the context of QDAcity, the new features should be compatible with the pre-
viously existent elements.

12

Maintainability

This characteristic addresses the future maintainability of the created compon-
ents. The proposed way to achieve this is to create tests; therefore, the following
requirement has been defined:

NFR-9: All API methods in the new endpoint classes should be covered with
unit tests.

Transferability

In the context of this thesis, this characteristic focuses in the ability to use QDA-
city in different browsers and operating systems. The assisted transcription mod-
ule, should be compatible with the previously supported browsers and operating
systems.

13

3 Architecture and Design

Based upon the defined requirements in Chapter 2, this chapter introduces the
architecture of the assisted interview transcription component. The first part
states the current system design, moving forward to elaborate on some aspects of
the implemented architecture in more detail. Furthermore, there is a description
of the client-side, composed of an overview of the library and the components
hierarchy. As a conclusion of the chapter, a description of the services server-side
can be found.

3.1 Existing System

QDAcity has a client-server architecture that communicates through HTTP re-
quests and Web-socket messages. QDAcity runs on GCP.

The backend is mainly responsible for the persistent storage, authentication and
authorization; moreover, it provides services of a typical web backend in the form
of REST endpoints written in Java.

The frontend is using React, which is a declarative, component-based framework.
React allows the creation of complex Uls.

3.2 Selection of Storage Provider and Speech-
to-text API

With the focus on increasing maintainability and reducing implementation time,
the products of GCP ! are being used. By using this first choice, the application
can also have a plethora of other benefits, such as the simplification of monitor-
ing and administration and easier handling of authentication and authorization
processes.

Thttp://cloud.google.com

14

Using the Google speech-to-text API 2, the app has access to Google’s most ad-
vanced deep learning neural network algorithms for automatic speech recognition.
It supports more than 125 languages and variants and can handle noisy audio
from many environments without requiring additional noise cancelation.

The API provides as a beta feature two features that will be implemented: auto-
matic punctuation and speaker diarization.

Regarding the cloud storage provider, Google Cloud Storage (GCS) ? enables
reliable and secure object storage with scalability and reliability. Given that we
will be storing interview media that should be available during the correction
process, GCS provides safe methods for upload and download of the media. The
authentication and authorization to the media will be handled by GCP and our
backend.

Both cloud services provide documentation and code examples to kickstart im-
plementations.

3.3 Evaluation of Transcription Correction Lib-
rary

To fulfill the task of correction of the automated transcription, 3rd party libraries
were considered. Implementing a new component from the ground up was also
considered, but this option was discarded, given the possibility of reasonable
existing solutions.

The criteria presented in table 3.1. was considered when evaluating the use of the
libraries. Two main options were selected and evaluated. Both libraries provide
a license model compatible with QDAcity, are open source and provide react
support.

Considering the last three parameters, the option taken was the library named
React Transcription Editor due to the fact that offers more documentation, the
UI was better aligned with the current interface, and the health status of the
library reflects more activity.

In Table 3.2. a detailed overview of the library is provided. It uses an MIT
License, it is free, provides documentation and the dependencies are compatible
with previously implemented ones. The main features of the library will enhance
the transcription process and provide a good user experience.

Zhttps://cloud.google.com /speech-to-text/
3https://cloud.google.com /storage

15

Criteria React Transcription | Slate Transcript Ed-
Editor itor
License model MIT License MIT License
Open source Yes Yes
React support Yes Yes

Documentation

Demo project, code ex-
amples, documentation.

Demo project, code ex-
amples, documentation.

Ease of use and personalization

Clear and clean UI, does
not allow theming out-
side the box.

User interface allows
theming, more complex

UL

Health status of the library

338 stars, 112 forks.
Latest release on June
28, 2021. Latest commit
on Jun 28, 2021.

34 stars, 17 forks. Never
released. Latest commit
on Oct 14, 2021.

Table 3.1: Comparison of transcription edition libraries

Criteria

itor V. 1.4.0

BBC/ React transcript ed-

Open source.

Is the project
open source? Which license is be-

MIT License (MIT)

ing used?

Costs. Are there any costs for | Free

use?

Documentation. Is there | Demo project, code samples.

enough documentation?

Overview of basic use case and
advanced use cases

Main dependencies.

Fortawesome, draft-js, mousetrap

Main features.

Advanced player controls, key-
board shortcuts, interactivity fea-
tures to support transcript cor-
rection, supports speaker diariz-
ation.

Table 3.2: React Transcript Editor library characteristics

3.4 Transcription Formats

GCP provides the google-stt format. This format contains different fields depend-
ing on the needs of the implementation. The characteristics of the needed output
can be seen on table 3.3. The first characteristic, namely speaking diarization
assigns values to paragraphs in correspondence to the speakers. Each word comes

from the API with a confidence value that reflects the accuracy of the algorithm
towards the selection. As a last parameter, we have the spoke punctuation which
is the ability to identify parts of the speech and assign punctuation to them.

Characteristic Summary

Speaker Diarization The characteristic to automatic-
ally detect different speakers.

Word-level confidence The measured degree of accuracy

of the response. It is a number
between 0.0 to 1.0.

Spoken punctuation The ability to detect spoken
punctuation.

Table 3.3: Required characteristics of transcription output format

17

3.5 Supported Languages and Media Formats

For best results 4, the audio source should be captured and transmitted using a
lossless encoding (FLAC or LINEAR16). The accuracy of the speech recognition
can be reduced if lossy codecs are used to capture or transmit audio, particularly
if background noise is present. FLAC (Free Lossless Audio Codec) is the recom-
mended encoding because it is lossless— therefore recognition is not compromised;
however it is worth mentioning that FLAC files are comparatively bigger than
for example an MP3 file. The supported formats by the app are: FLAC, WAV
and MP3.

Regarding the supported languages ® , the chosen API service currently supports
the ones in table 3.4. There is indeed support for more languages; however at
the moment, Google doesn’t provide diarization for them therefore the assisted
transcription component will be limited to those that fulfill all the requirements.

Supported Languages
Chinese, Mandarin (Simplified, China)
English (India)
English (Singapore)
(
(

English (United Kingdom)
English (United Kingdom)
English (United States)
French (France)

German (Germany)
Italian (Italy)

Japanese (Japan)
Portuguese (Brazil)
Russian (Russia)

Spanish (Spain)

Table 3.4: Supported Languages

4https://cloud.google.com /speech-to-text /docs/best-practices
Shttps://cloud.google.com /speech-to-text /docs/languages

18

3.6 System Architecture

As a result of the previous decisions, a high level illustration of the system archi-
tecture can be drawn. Figure 3.1 illustrates the position of the new module in
regards to the current QDAcity application.

Google API

Client
Google Cloud Speech-to-Text
Client Google
Cloud

Endpoints
XML HTTP
Client
Google Cloud Storage
Client
Web Browser Google Cloud

Figure 3.1: High level system architecture

In figure 3.2, a Unified Modeling Language (UML) component diagram can be
found. At first glance, the four main components can be observed. The QDAcity
frontend and backend and two Google services. The frontend with its HTTP
methods is divided into two sub-components, the Google API and an XML HTTP
client.

The QDAcity backend provides 4 endpoints:

e generateUploadSignedURL creates a signed URL for the upload of
the media object. The upload will then be performed by the XML HTTP
Client directly.

e getTranscriptionDocument starts the transcription process. Receives
the object media name stored in GCS, stablishes connection with the Google
Cloud Speech-to-text component and receives the JSON transcription ob-
ject.

e deletelnterviewMedia retrieves the information of the object and
communicates with GCS directly to delete the interview media.

19

e getSignedURL generates a signed URL for interview media retrieval dur-

ing the correction process.

2]

2]

Google API Client /O: uploadEndpoint
generateUploadSignedURL
«Component»
QDAcity Backend

transcriptionEndpoint

deleteinterviewMedia
N—o1

O

L

'e!SignedURL

O
S
getTranscriptionDocument

«Compgonent»
QDAcity Frontend

v
XML HTTP Client \9
| L0 Upload l {l
upload Deletion
R Retrieval
QRsuiwal «Component»
Google Cloud Storage
Deletion
IongRunningRTcognizeAsync

O

2]

«Component» Transcription
Google Cloud Speech-to-Text

Figure 3.2: Component architecture

20

4 Implementation

This chapter describes the most important details about the components of the
assisted interview transcription. It starts with an overview of the implement-
ation of the primary use cases. This overview encompasses the media upload,
the creation of the transcription document, followed by the storage of changes,
deletion and export. Furthermore, there is a description of the server-side which
is composed by the CRUD operations, signed URLs generation and interactions
with the transcription API.

4.1 Overview of Use Cases

This section describes the behavioral view of the assisted interview transcription
component.

4.1.1 Media Upload

In order to comply with the security requirements delimited on the Authentic-
ation and Authorization section of the functional requirements (Cf. FR-32 to
FR-36 in section 2.1.5), the usage of signed URLs was implemented. This up-
load method allows the system to perform a seamless upload of objects to GCP
without the need for the user to have a Google account. The frontend is in charge
of uploading directly to the bucket, and the backend is used only to re-retrieve
an authorized upload signed URL.

At first, the alternative of going through the backend was considered but dis-
carded after some performance tests. A timeout was reached while uploading
bigger files due to limits imposed by the app’s infrastructure.

As depicted in steps 1, 2 and 3, the frontend prepares a request for a signature.
This GET call retrieves an authorized URL from the frontend to proceed with the
upload. Steps 4 to 7 are being done from the frontend directly to GCS. The first
one is a POST request, and the following is a PUT request sending the object to
upload. In figure 4.1, a UML component diagram can be found. At first glance,

21

the four main components can be observed. The QDAcity frontend and backend
and two Google services. The frontend with its HT'TP methods is divided into
two sub-components, the Google API and an XML HTTP client.

DocumentsToolbar.jsx UploadEndpoint.js UploadEndpoint.java GCS

1: uploadWithSignedURL (fileName, fileData)
P >

2: generateUploadSignedURL(objectr:lame)

[E 3: SignedURL 1_|

| 4: getUploadURL('éOST', signedURL)

:|: 5: SignedURL for Upload

8: Response I Z-??g L
ST 1 : :

Figure 4.1: Upload sequence diagram

4.1.2 Creation of the Transcription Document

As soon as the upload is performed, a request to the endpoint getTranscrip-
tionDocument is performed. This endpoint is in charge of the communication
with the Google speech-to-text service. The implementation is written in Java
using the provided Google libraries and packages. The endpoint contains some
mandatory parameters as well as parameters to improve the output of the tran-
scription.

The class TranscriptionDocument is an extension of BaseDocument as can
be seen in Figure 4.2. The extension expands two new fields: gcsUri (String)
that stores the path where the media file will be and sttType (String), which
stores the format of the current transcription. The rest of the fields that comprise
BaseDocument are reused in the same way as other documents inside the app.

22

BaseDocument

+id :Long

+ projectiD :Long

+ title :String

+ text :Object

+ exerciselD :Long

+ positioninOrder :Lon

+ projectType :ProjectType

I

PDFDocument TextDocument TranscriptionDocument

+ gesUri :String
+ sttType :String

Figure 4.2: Transcription Document Class Diagram

4.1.3 Storage of Changes and Deletion of the Transcrip-
tion Document

Building upon the previous structure, the already existing endpoints handle the
changes within the documents. Since TranscriptionDocument is an extension of
the previous document objects, these methods were found to be highly reusable
and are in place.

Regarding the deletion of interview media, the process starts with deletion request
of the transcription document on the frontend, an endpoint handles the removal
of the object in Google cloud storage and the data stored in Google datastore.
Within the class TranscriptionEndpoint, the endpoint deleteInter—
viewMedia retrieves the object’s name to be deleted and proceeds with the
interaction with Google Storage Services.

4.1.4 Export

An export of the transcription can be triggered by the user at any point. This
export converts the transcription information into a regular QDAcity document.
This process can be seen in detail in figure 4.3. After the parsing in step
one, a removal of the previous transcriptionDocument happens and a new
TextDocument is created in steps 4 to 13. Since this is an irreversible process,

23

a prompt is being shown to the user so he can double check if the action should
proceed.

TextTranscriptEditor.jsx TranscriptionEditor.jsx DocumentsView.jsx DocumentsEndpoint.js DocumentEndpoint.java
|:':| 1: dransToTexlDocumen\'(uanscliptData, seed)
2: props.createTextDoct romTr ipti 1scription)
hd » H
3: convertTr iptionToTextD: iment, newText)

.—’:-4 insertTextDocument(doc) |

5: insertTextDocument(doc) i

! . 6: document
| 7: newTextDocument :

8: removeTextDocument(docid) |
—— »~9: removeTextDocument(doc) |

l€———10: void()
11: RemoveDocument(docID)
12: addDocument(newTextDocument)
N 13: retum. - - J_l

Figure 4.3: Export of Corrected Transcription - Sequence Diagram

4.2 Transcription Services Client

4.2.1 Components Hierarchy

The entry point to the transcription editor is the component called Codin-
gEditor; inside this previously existing component, the new implementation
begins. In this way, there is an integration of the new editor to the previously
implemented editors.

Figure 4.4. illustrates the main components of the assisted transcription fron-
tend. The component TextTranscriptEditor aggregates the sub-elements
and handles exporting and storage methods. It is the core of the component.
The media player is embedded into the Header and provides the media player Ul
and interaction with the media object. The VideoPlayer is a hidden compon-
ent that deals with the reproduction of the media, and the TimedTextEditor
component houses the slate components of the text editor.

24

@ videoPlayer

@ rlaybackrate @ select

@ Header @ PlayerControls
CodingEditor @ @ TranscriptionEditor @ TextTranscripteditor

@ VediaPlayer @ TimeBox

@ ProgressBar
@ TimedTextEditor

Figure 4.4: Implemented React components hierarchy

4.2.2 User Interface Changes

As it can be observed in figure 4.5. The TranscriptionEditor component
is embedded and very well integrated into the place of previously implemented
editors, blending in and providing a seamless interaction with the rest of QDAcity
functionalities.

QDAcity ofiine A Heb Account ~
Project ~ :) - B
QDacity Interview Transcription demo
4 Project Dashboard Q search Project
00:00:00:00 | 00:11:51:07 '0 4« ’ » MaE D)
No collaborators .
Documents <
7~ & HANSEL I'm here.
s+ W o1

&, GRETEL Hi, I'd like to buy a Chrome Cast and | was wondering whether you could help me with that.

Interview Hansen and Gretel
&, HANSEL) Also, who, which color would you like? We have you block and Brooke?

Interview John Appleseed

Code System &, HANSEL Let's get the black one.
+ 8 = © & Q S8 2 GRETEL Okay, good. Would you like the new concur fault remodel o the regular Kroger??
Code System 0 Bl o, GRETEL Regular Chrome, Cast assign

& HANSEL 3 Okay. Short, would you like to ship it regular or Express?
&, GRETEL Express, please.
&, HANSEL Tenrific. It's on the way. Thank you very much. Thank you.
&, GRETEL Bye.

Figure 4.5: Assisted interview transcription integration into QDAcity

Following on figure 4.6, we can appreciate an example of how user interface
elements have been adapted to comply with the color and user interface guidelines
of QDAcity. An adaptation to styled-components ! was also in place to
comply with the user interface guidelines on a visual and implementation level.

Thttps://styled-components.com

25

Select language: English (United States) ~

Choose File |timferris.mp3

Upload in progress: 12%

[|) Cancel

Figure 4.6: Assisted interview transcription upload dialog

4.3 Transcription Services Server

The server-side component is built upon the previous structure and architecture
with a few expansions mainly to support the new TranscriptionDocument
and to hold the authorization towards Google Cloud Buckets and generate the
Signed URLs.

4.3.1 CRUD operations

The previous structure for CRUD operations is being re utilized with some exten-
sions to interact with the added fields of the class TranscriptionDocument.
As expressed in figure 4.2, since the transcription document is an inherited class
from BaseDocument, the previous methods are simply reused.

4.3.2 Media Upload and Connection with Speech-to-Text
API

The upload is handled by the frontend as explained better in the section 4.1.1;
however the backend generates the signed URL for the upload since the credentials
for authentication are stored on the server-side.

Once the upload is performed, the endpoint getTranscriptionDocument
inside the transcriptionEndpoint proceeds with the connection to the API,

26

gathers all the necessary parameters and retrieves the transcription.

The Google STT Format received from the Google Speech-to-text API can be
found on Figure 4.7. It provides different alternatives, the last one being the one
with a higher confidence value and the one used inside the transcription editor.
It provides a confidence value per sentence and metadata by word.

"alternatives": [
{
"transcript": "How old is the Brooklyn Bridge?",
"confidence": 0.9821618,
"words": [
{
"startTime": {
"seconds": 0,
"nanos": @
}I
“"endTime": {
"'seconds": 0,
"nanos": 300000000
}I
"word": "How",
"confidence": 0,
"speakerTag": 1

}

]I

"languageCode": "en-us"

Figure 4.7: Example of the Google STT Format

27

5 Evaluation

In this section, a review of the requirements from Chapter 2 is performed. Build-
ing on this review a comparison of the requirements and the implementation
described in chapter 4 takes place. The evaluation is grouped into functional
requirements and non-functional requirements. The main goal of this chapter is
to provide an assessment of their fulfillment.

5.1 Functional Requirements

This section evaluates the functional requirements. These requirements focus
on the speech to text process, modification, storage, export and authorization
processes.

5.1.1 Speech to Text Process

The requirements regarding the files’ upload, formats, and size FR-1 to FR-3
have been successfully accomplished. The user can now upload interview media
with the formats stated in the requirements and get the transcription text. FR-4
highlights a connection between the text editor and the media player and has
also been accomplished. The editor has a visual element that highlights the text
in relation to the interview media.

Requirements FR-5 and FR-8 have also been implemented. The user can tran-
scribe interview media in German and English. Support for Mandarin Chinese,
French, Italian, Japanese, Portuguese, Russian and Spanish is also available.

The transcription API supports diarization for the previously mentioned lan-
guages; therefore, FR-6 was also completed. The output from the API provides
the diarization, and the transcription text editor showcases clearly the different
paragraphs and speakers.

User feedback in the case of an error with the transcription as stated in FR-7 is

also in place, prompting an alert in the frontend with proper error handling in
the backend.

28

In regards to word-level confidence values as expressed in FR-9, unfortunately,
this requirement has not been achieved. The word-level confidence is stored in
the transcription metadata, but the user interface does not interact with these
values. These requirements are not prerequisites to any other requirement, and
they are not necessary for the main tasks of the tool.

Requirement FR-10 has been achieved; the current document list viewer makes
a visual differentiation for transcription documents.

The requirement FR-11 has not been achieved; support for transcription of videos
is not implemented due to limitations with the speech-to-text API.

As the last requirement in this section, we have FR-12 that hides the transcrip-
tion editor and the transcription editor selector button. This requirement was
achieved successfully. If there are no transcription documents in the permanent
storage, the transcription editor and its components remain hidden.

5.1.2 Review, Correction and Approval of Transcription

The correction of the API output is a critical component of the deliverable. It
has to provide features that enhance and facilitate the process.

Requirements FR-13 to FR-14 have been successfully developed. The user can
assign personalized names to the speakers. FEvery section of the interview is
editable, text can be added or removed and new paragraphs can be created.

Concerning the integration within the layout and the information contained in the
text editor, requirements FR-15 and FR-16 have been successfully implemented.
The speaker code, timestamp and speech text are organized within the editor
and the whole editor is well integrated into the UI of QDAcity.

Requirements that concern the interaction with media and the behavioral rela-
tionship between the text and the media player FR-17 to FR-22 have all suc-
cessfully been achieved. Actions that facilitate the navigation within the media
object like keyboard shortcuts, media playback at different speeds, or having a
one-click jump backwards are well integrated and in place. The synchronization
between the media player and the text on the text editor works, and the user can
select a word in the transcript to jump to that moment in the media player.

5.1.3 Storage of Changes

The storage of changes during the editing allows the user to perform corrections
in different correction sessions. The whole transcript is a work in progress until
the user decides to export it. These corrections are being stored immediately to
the permanent storage and retrieved on demand.

29

Requirements FR-23 to FR-25 have been successfully implemented. The changes
during the transcription correction process are stored onto the permanent storage.

The requirements FR-26 and FR-27 were also successfully developed. The user
can delete the whole transcription document. This deletion of the transcription
document will also delete the interview media from the Google Cloud Bucket.

5.1.4 Export of the Corrected Transcription

When the user decides, an export of the transcription can take place. This export
parses the transcription from a transcription format to a HyperText Markup
Language (HTML) for further analysis.

Requirements FR-28 and FR-29 have been implemented successfully. The user
can export the transcription to a codeable, editable format.

As stated in FR-30, since this is an irreversible step, the user will be prompted
for confirmation. This requirement was also accomplished.

Requirement FR-31 concerning the flow between the transcription editor to the
coding editor was also achieved successfully. As soon as the user exports the
transcription, the coding editor is shown and the transcription editor is hidden.

5.1.5 Awuthentication and Authorization

Requirements FR-32 and FR-33 have been successfully achieved. The upload and
download of interview media are allowed to only the authorized user; furthermore
the media is only available to users that belong to the project assigned to the
document.

Requirement FR-34 has also been successfully achieved. With the implement-
ation of signed URLs, the user can upload and download objects from Google
Cloud Storage even if the user does not hold a Google account. The current
implementation allows the same level of security to both Google and non Google
users.

The last functional requirement, FR-35 was also achieved successfully. The au-
thentication is handled by the backend. A proper authentication mechanism
towards Google Cloud Buckets was implemented, and the keys remain safe on
the server-side.

5.2 Non-functional Requirements

The evaluation of non-functional requirements is performed in this section. The
implementation of the features which were developed during this thesis is meas-

30

ured against the eight quality metrics introduced in section 2.1.1.

5.2.1 Quality Metrics

Functional Suitability

This criteria has been met. Manual tests were performed on QDAcity and
everything works as expected. Furthermore, unit tests are in place and reporting
no issues.

Reliability

Given that QDAcity runs inside Google App Engine, a metric to use and validate
the compliance with this requirement is the App Engine Service Level Agreement
(SLA). Google provides a montly uptime percentage of 99,95% (Google, 2020).

Furthermore, the requirement NFR-1 has been succesfully achieved. Given that
the transcription module relies on Google, all its components can be operated
within the scope of the Google Cloud Console.

Requirement NFR-2 has unfortunately not been achieved due to time constraints;
however, performance tests have been meet, and files upload has not reported any
issues.

Performance Efficiency

The three sub-characteristics of this section, time behaviour, resource utilization
and capacity, have not been modified by the improvements provided in this thesis.
The usage of signed URLs to upload and download objects situates the heavy
tasks of the transcription process in the user browser.

Operability and Usability

Requirements NFR-3, NFR-4 and NFR-5 have been succesfully achieved. The
components presented in this thesis comply with previous localization strategies
and color and Ul guidelines.

Requirements NFR-6 and NFR-7 have also been achieved. The user receives
feedback during upload and transcription.

The last non-functional requirement concerning the real time correction collab-
oration, NFR-8, has not been achieved.

31

Security

The usage of service account keys and proper validation methods inside the en-
dpoints ensures that the security characteristics are achieved. The authorization
and authentication checks for all new API methods confirm that this criteria is
met.

Compatibility

All the components presented in this thesis are compatible with previously ex-
isting components within QDAcity. The successful implementation of them can
attest to their compatibility.

Maintainability

Requirement NFR-9 has been achieved, the new endpoints are covered with unit
tests and the good test coverage ensures that any breaking changes will be po-
tentially identified.

Transferability

The new features have been tested on different operating systems (OSX and
Windows) and different browsers (Google Chrome, Firefox, Safari).

32

6 Conclusion

The transcription process is a vital but time consuming aspect of qualitative
research, this process helps the researcher make sense and understand the inter-
viewees. It very much influences the whole analysis process. By augmenting the
capabilities of QDAcity to support the transcription process, the researcher can
benefit from seamless integration into our QDA software tool, allowing a more
efficient and smoother process from data gathering to analysis and expanding the
boundaries of computer-assisted QDA software.

The functional and non-functional requirements lay the ground of the proposed
architecture and further implementation. According to the previously detailed
evaluation, out of 35 functional requirements, 33 have been successfully achieved.
All the requirements with the keyword shall and should, required for the project to
succeed and not necessary but important have been achieved. The requirement
FR-9 concerning the visualization of the confidence value on the transcription
editor has been partially accomplished, and the requirement FR-11 has not been
accomplished given the complexity of transcribing video files. Out of nine non-
functional requirements, seven have been successfully achieved. Requirement
NFR-2 in the matter of upload re-connection and NFR-8 concerning real-time
collaboration correction have not been achieved. They were not necessary but
desired requirements.

Through the use of an automated transcription service integrated into QDAcity,
we have sped up a tedious part of the research process, making it more time and
cost-efficient, while eliminating the need for another third party tool or service
in order to get from recording interviews to analyzing them.

Researchers can use QDAcity to obtain an automated transcription using state-
of-the-art Google deep learning neural network algorithms for automatic speech
recognition and partake in the correction process with proper software tools.

33

References

Atkinson, J. M., Heritage, J. & Oatley, K. (1984). Structures of social action.
Cambridge University Press.

Estdale, J. & Georgiadou, E. (2018). Applying the iso/iec 25010 quality models
to software product. In X. Larrucea, I. Santamaria, R. V. O’Connor &
R. Messnarz (Eds.), Systems, software and services process improvement
(pp. 492-503). Springer International Publishing.

Google. (2020). App Engine Service Level Agreement (SLA) [[Online; accessed
27-October-2021]].

Juang, B.-H. & Rabiner, L. R. (2005). Automatic speech recognition—a brief his-
tory of the technology development. Georgia Institute of Technology. At-
lanta Rutgers University and the University of California. Santa Barbara,
1, 67.

Képuska, V. & Bohouta, G. (2017). Comparing speech recognition systems (mi-
crosoft api, google api and cmu sphinx). Int. J. Eng. Res. Appl, 7(03),
20-24.

MacQueen, K. M. & Milstein, B. (1999). A systems approach to qualitative data
management and analysis. Field Methods, 11(1), 27-39.

McLellan, E., MacQueen, K. M. & Neidig, J. L. (2003). Beyond the qualitative
interview: Data preparation and transcription. Field methods, 15(1), 63—
84.

Rupp, C. et al. (2014). Requirements-engineering und-management: Aus der prazis
von klassisch bis agil. Carl Hanser Verlag GmbH Co KG.

Schope, M. (2017). Qdacity quality metrics. [Master’s thesis|. Friedrich-Alexander-
Universitat Erlangen-Niirnberg (FAU).

34

	Introduction
	QDAcity
	The Role of Transcription in Qualitative Research and Data Analysis
	Automatic Speech Recognition

	Requirements
	Functional Requirements
	Speech to Text Process
	Review, Correction and Approval of Transcription
	Storage of Changes
	Export of the Corrected Transcription
	Authentication and Authorization

	Non-functional Requirements
	Quality Metrics

	Architecture and Design
	Existing System
	Selection of Storage Provider and Speech-to-text API
	Evaluation of Transcription Correction Library
	Transcription Formats
	Supported Languages and Media Formats
	System Architecture

	Implementation
	Overview of Use Cases
	Media Upload
	Creation of the Transcription Document
	Storage of Changes and Deletion of the Transcription Document
	Export

	Transcription Services Client
	Components Hierarchy
	User Interface Changes

	Transcription Services Server
	CRUD operations
	Media Upload and Connection with Speech-to-Text API

	Evaluation
	Functional Requirements
	Speech to Text Process
	Review, Correction and Approval of Transcription
	Storage of Changes
	Export of the Corrected Transcription
	Authentication and Authorization

	Non-functional Requirements
	Quality Metrics

	Conclusion
	References

