
Systematic Literature Review:
Challenges of Open-Source Software

Distributions
MASTER THESIS

Abdul Waseh Khawaja

Submitted on 15 November 2021

Friedrich-Alexander-Universität Erlangen-Nürnberg
Technische Fakultät, Department Informatik

Professur für Open-Source-Software

Supervisor:
Dr.-Ing. Nikolay Harutyunyan
Prof. Dr. Dirk Riehle, M.B.A.

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen,
die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 15 November 2021

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 15 November 2021

i

https://creativecommons.org/licenses/by/4.0/

ii

Abstract

Open-source software (OSS) is one of the most debated phenomena in the soft-
ware industry today, both theoretically and empirically. OSS allows users to
modify, copy, distribute, and improve the software for any given purpose. It is
a method of sharing software through source code and open-source licenses. It
requires a high level of responsibility, and good configuration management prac-
tices are essential. An OSS can have multiple distributions, for example, a copy
of an OS project, designed and maintained independently from the main project
and other distributions. The OSS ecosystem is very critical for many technology
companies today. Although the OS industry has progressed, most open-source
distributions still face challenges, such as technical problems, development, secur-
ity, license, and performance. The fundamental purpose of this literature review
is to understand the challenges of OS distributions. The aim is to identify the
critical features in an OS project, the motive for adopting the strategies used,
and the challenges users face. This paper attempts to determine how organiza-
tions adopt and implement open-source distributions, focusing on configuration
management and other engineering challenges. To overcome these challenges, it
is necessary to understand the software components’ involved. Research on OS
distributions and their challenges will show how practitioners and researchers are
familiar with the open-source ecosystem and once it is clear how it works, or-
ganizations can learn from best practices and apply them to internal projects.
Finally, we examine the current state of the OS distributions and their process
through a systematic literature review that outlines OS distributions and their
performance in recent years.

iii

iv

Contents

1 Introduction 1
1.1 Types of software . 4
1.2 Classification of Distributions . 4

1.2.1 The early/growth stage . 5
1.2.2 The mature stage . 6
1.2.3 Importance of Commercial Distributions 7

2 Research Method 9
2.1 Research Questions . 9
2.2 Literature Review Plan . 10
2.3 Literature survey . 11

2.3.1 Search Process . 11
2.4 Qualitative Data Analysis (QDA) 13

2.4.1 Code System . 14

3 Results and Discussion 16
3.1 Challenges of OS Distributions . 16

3.1.1 Software . 16
3.1.2 Hardware . 19
3.1.3 Maintenance . 21
3.1.4 Reliability . 23
3.1.5 Organisational . 24
3.1.6 License . 27
3.1.7 Security . 29

3.2 Configuration Management . 30
3.2.1 Version Control . 30
3.2.2 Build Management . 31
3.2.3 Configuration Selection . 31
3.2.4 Workspace Management 31
3.2.5 Concurrency Control . 32
3.2.6 Change Management . 32

v

4 Conclusion 35

5 Future work 37

6 Limitations 38

7 Extension Chapter 39
7.1 Packages . 39
7.2 Linux kernel . 42

Appendices 44
A List of figures . 46

References 47

vi

Acronyms

OSS Open-Source Software

OS Open-Source

IT Information Technology

SLR Systematic Literature Review

GNU GNU not Unix

ROS Robotic Operating System

API Application Programming Interface

GUI Graphical User Interface

CM Change Management

Dpkg Debian Package Manager

CVS Concurrent Versions System

BSD Berkeley Software Distribution

SLA Service Level Agreement

OEM Original Equipment Manufacturer

RPM Red hat Package Manager

SCI System Call Interface

vii

viii

1 Introduction

There is currently no systematic literature review present of open-source software
(OSS) distribution challenges. However, we believe that a review can help prac-
titioners fully understand potential challenges and take appropriate actions to
address them. In addition, researchers can use the results to deliberate and dis-
cuss possible causes and appropriate strategies for the challenges identified. This
statement motivated us to undertake an in-depth literature review to identify
and incorporate the OSS distribution challenges.

In recent years, open-source software has become a key component, playing an
essential role in information technology for business and education, and providing
companies such as Red Hat, Novell, and IBM with billions of dollars in service
industries (Acuna et al., 2012). The increasing importance of OSS has prompted
researchers to start studying the differences between open-source processes and
traditional software development methods. This research includes many features
of open-source development, such as different engineering challenges, stakeholder
motivation, management style and requirements. In addition, the open-source
software community now has a vast number of members and users. For example,
the Linux/GNU operating system has multiple distributions, with millions of
users worldwide, and its developers can reach thousands (Stol & Ali Babar, 2010).

In this systematic literature review, our primary focus is on Linux, ROS, Apache,
Kubernetes and OpenStack software distributions. A distribution is a collection
of packages configured to work together as a single program. The OS movement
has been trying to downplay the fact that OS distributions usually do not charge
license fees, which is not always accurate as it depends on the type of distribu-
tion (Ven et al., 2008). This study clearly shows that lower costs help promote
OS distributions, and organisations appreciate that cost-effectiveness is a consid-
erable advantage. However, this view may be misleading as it may not always
be cheaper than proprietary software. Although OS project organisations may
seem a little anarchistic and generally considered complicated in configuration
management, there is no doubt that the OSS projects produce high-quality soft-
ware. However, because OS products are primarily free for users, and the OS
distributions encourage extensive collaboration, there are other costs and chal-

1

1. Introduction

lenges. One of the main features of open-source software distributions is how
diverse and extensive the developer community is, contributing to the project. It
is a compelling argument to prove the value of open-source to any organisation.
However, the larger the community and the larger the pool of contributors, the
more chance there exists for issues or potential security risks (Hauge et al., 2010).

The adoption of open-source development has increased, and many companies
have incorporated it into heterogeneous development, creating products by com-
bining software from many sources and creating many different processes (van
der Linden et al., 2009). To be more profitable, heterogeneous development must
close the gap between traditional industrial software and OS distributions. In
addition, the software ecosystem adds value by integrating projects related to
a specific domain, such as a Linux distribution that integrates open-source up-
stream projects or an Android ecosystem for mobile applications (Foundjem &
Adams, 2021). However, since each project in the ecosystem may have its release
cycle and road map, this puts a significant burden on users who have difficulty
manually identifying and installing project-supported versions. In terms of devel-
opment speed, the parallel collaboration of globally distributed code developers
makes many OS products’ development speed surpasses traditional software. In
terms of quality, many OS products are known for their high reliability, efficiency,
and strength standards (Asklund & Bendix, 2001). In open-source software de-
velopment, the source code, which is human-readable instructions of a computer
program, is publicly available and widely used on the Internet (Hertel et al.,
2003). Any internet user with sufficient knowledge can join the project at any
time, such as downloading the source code and working on extensions or correc-
tions. Software developers usually contribute to OSS projects for free, whether
as a hobby or during regular working hours, even if OSS development is not part
of their everyday work. However, some companies have recently started sponsor-
ing OS distribution development and paying developers to continue working on
OSS projects. Although this changes the voluntary nature of OSS development,
it does not affect the general OS principle that the source code is available to
everyone (Morgan & Finnegan, 2007).

In terms of organisational structure, membership, leadership, participation policies,
and quality assurance, open-source development projects are usually organised
differently from traditional software. Simple, distributed, and often informal pro-
cesses make it easier to start or participate in OS projects and isolate the projects
from market pressures, so many of them end or disappear. Behind the success of
the OS projects and distributions is its community, whose members range from
developers to passive users (Kaur et al., 2020).

The critical element that defines OS distributions is its license, which must meet
many essential requirements. The main difference between many software li-
censes is how they relate to derivative software, as some contain terms that make

2

1. Introduction

them available as open-source, while others allow greater flexibility. Therefore,
choosing a suitable license for a new open-source project is as crucial as studying
its license before integrating the open-source project into a proprietary system
(Androutsellis Theotokis, 2010).

Nowadays, many businesses are based on open-source distribution models. Whether
it is the provision of products or related services, revenue can be generated by
providing support, training, subscriptions and advertising. However, the shift to
OS hides opportunities related to marketing, innovation, the risks of lost profits
and lowered barriers to competition (Clark, 2004). It also requires a new or-
ganisational structure, increased investment in the short term, and the further
development of the OS ecosystem. Open-source distributions can be reused as
products, adaptive components or codes, and other elements converted into an-
other system. Open-source projects are increasingly forming a complete stack
and use it as an infrastructure for other applications. Like web applications,
the acceptance rate of operating systems is close to or even higher than that of
proprietary products. The impact and consequences of open-source implement-
ation affects the organisation’s productivity, management, software quality, and
development process (Cesar Brandão Gomes da Silva et al., 2017). The reuse
of software components, whether closed or open-source, is considered one of the
essential practices in software development because it reduces development costs
and improves software quality. The context of the OS distribution release allows
us to learn how to integrate into a multi-component OS environment (Napoleao
et al., 2020).

GNU/Linux-based distributions are created and managed by developers, whose
role is unparalleled in the traditional software development model (Mancinelli
et al., 2006). The distribution publisher is responsible for compiling the available
OS components and building a coherent and usable structure around them. Gen-
erally, software engineers track and compile the components, test them through
integration, and resolve all necessary relationships like in dependency manage-
ment (German et al., 2010). Such distributions are bundled with many upstream
software components, including operating system kernels, libraries, build tools,
and custom software such as desktop applications and web browsers (Adams,
2016). Therefore, many ecosystems, such as Linux distributions, provide com-
plex, well-integrated products to end-users. The reasons for choosing Linux as
one of the cores for our research according to (Yu, 2007) is:

• Linux is one of the most active OS projects and has released over 600
versions, providing extensive version history data.

• The availability of scientific, mathematical, and engineering functions in the
repositories of most distributions. The most academic software available is
written for Linux.

3

1. Introduction

• Linux runs almost all supercomputers, many of which are clusters of Linux
servers configured to run distributed parallel programs.

1.1 Types of software

According to (Stallman & Free Software Foundation (Cambridge, 2015), software
types can be classified as:

Proprietary or commercial software is usually distributed as closed source
and in binary form only, where it is not available to the public. Users need to
buy the product, and the terms are rigorous, and modification or redistribution
is strictly not allowed.

Public domain software is on the other end of the spectrum. However, there
is no copyright issue, and the source code can be modified or redistributed free
of charge and treated as own work (Riehle, 2009).

Free and shareware software do not require prepayment and can usually be
copied, but changes are not allowed because the source code is not distributed
with the product. The difference is that only limited product use is allowed
without payment for shareware, whether during a fixed period or with limited
functionality. Thus, it is often seen as a marketing concept and not a licensing
option.

Open-source software is the method of distribution and licensing relevant for
this study. The basic properties are described as being free of cost, as there is
usually no license fee for this type of software, and availability of source code, as
it is distributed with the product (Randhawa, 2008). Software users can modify
the source code to create derivative software products or reuse the source code for
another product. However, this may be subject to certain restrictions imposed
by the operating license used. OSS products are protected by copyright and
distributed under specific licenses that describe the conditions of use. There are
many ways to license OS distributions, which differ in terms of qualification levels
(Osterloh & Rota, 2007).

1.2 Classification of Distributions

There are several commercial Linux distributions available, such as Red Hat En-
terprise Linux and SUSE. These products include additional services for commer-
cial customers, such as Linux certification for specific hardware, software updates,
and access to support services (Weikert & Riehle, 2013).

Some organizations are satisfied with the free Linux distributions, while others
prefer the enterprise version. The enterprise version of the software provides

4

1. Introduction

technical support and updates. The term ’Enterprise Edition’ is mainly used
when a free version is available for students or individual users. Organizations
can make these decisions based on systems internal capabilities and the strategic
value of the target system. Some vendors may require commercial distributions,
for example, SAP (Systems, Applications and Products in Data Processing).
Therefore, to obtain support from SAP, companies must purchase one of these
Linux distributions. Another situation where one can charge for using OS dis-
tribution is to use software from a provider that uses a dual-licensing business
model, such as MySQL (Ven et al., 2008). In recent years, many OS distributions
have been developed professionally and released, which means that commercial
software companies are investing a lot of capital (Khan & UrRehman, 2012). The
following graphic displays the life-cycle based evolving stages of an open-source
distribution.

Figure 1.1: The evolving stages of a software distribution (Riehle, 2021)

Distributions generally can be classified into ‘Growth’ and ‘Mature’ stages and
further classified into complex products, commercial, and non-commercial dis-
tributions. The commercial distribution is usually not free of cost, whereas the
non-commercial distribution, on the other hand, is primarily free. The difference
between the two instances is the configuration and not their functional program-
ming codes. A commercial distribution can be a complex product, but a complex
product may not always be a distribution and can be found in any of the stages,
growth or mature (Riehle, 2021).

1.2.1 The early/growth stage

An open-source project in an early stage is often not mature enough to be turned
into a distribution. A project has to be in its mature stages to be classified as a
distribution.

5

1. Introduction

When a distribution is in its growth stages, it is usually a commercial distri-
bution, with few exceptions like ROS (Robotic Operating System). ROS has
multiple distributions released today, such as ROS Noetic Ninjemys and ROS
Melodic Morena. Once a distribution enters the mature stage, distributions may
become non-commercial. This paper also discusses challenges of non-commercial
distributions such as Debian, OpenSUSE and Fedora by Linux, along with other
python and OpenJDK distributions (Riehle, 2021).

In addition, when it comes to commercial distributions in growth stages, there
are Kubernetes and OpenStack with multiple distributions. For example, some
of the most known Kubernetes distributions are Mesosphere Kubernetes Engine
(D2IQ), Docker Kubernetes Service (DKS), and OpenShift (Red hat). Likewise,
some known OpenStack distributions are Red Hat OpenStack (RHOPS) and
Mirantis OpenStack (MOS).

Figure 1.2: Examples of distributions in growth and mature stages (Riehle,
2021)

1.2.2 The mature stage

When it comes to distributions in the mature stage, the most common com-
mercial distributions are Red Hat Enterprise Linux (Red Hat) and SUSE Linux
Enterprise Server (SUSE). However, open-source projects like Linux, OpenJDK
and Python have both commercial and non-commercial distributions. Examples
of these non-commercial distributions are Debian by Linux, Oracle JDK and
Python Anaconda.

Moreover, some projects started as open-source, but due to limited component
configuration complexity became just regular products, for example, Kafka and
Lucene from the Apache software foundation. They are usually free but have

6

1. Introduction

paid versions from which earnings are made. Another example of such a product
is Apache Hadoop, with multiple distributions such as Cloudera, MapR and Hor-
tonworks, but in mature stages (Riehle, 2021).

1.2.3 Importance of Commercial Distributions

This section discusses the importance of commercial distributions when compared
with free of cost, non-commercial distributions.

Commercial distributions offer guaranteed, tested and proven quality construc-
tions for the business. There is much passion on the part of the developers
working on a particular OS project. However, those working on the project are
not interested in the specific issues related to business and its needs. Further-
more, commercial vendors often provide that added value to make OS work for
the business. Commercial distributions are quality assured, examined and veri-
fied. The following reason to consider commercial distributions is the service
level agreements (SLAs) you get with them. While a user can often turn to the
OS community for help, if a critical application is running, a user may need ur-
gent support, which is always provided by commercial distributions. A user may
not always get it with the OS community, which is one reason to partner with
commercial distribution.

Commercial distributions are pre-built and ready to use, with a one-click solu-
tion. Often with OS distributions, you can find repositories, but there are many
different branches of information to digest and include for your project. It is not
easy to consume, and often businesses need a straightforward way to consume
OS support and maintenance of previous versions. Commercial distributions also
support and maintain older versions to avoid any complications. They do not
want to be updated with the latest and fastest like the community does. Thus,
a commercial distribution will provide this support on previous versions. For
example, when the HeartBleed bug hit, several companies used an older version
of ActivePerl and ActivePython, and as they were commercial distributions, they
were immediately able to deal with it very quickly (Copeland, 2016). The non-
commercial distribution communities also fixed the issue but within a longer time
frame. Finally, large companies have many servers and wish to standardise on a
single distribution that works on the different platforms with which they work.

Another reason why organisations prefer commercial distribution is that many
companies have compliance requirements. If they use OS internally, they must
have a third-party commercial vendor providing support. For example, finance,
health, government sectors have mandatory rules in this regard. As a result,
they cannot run OS distributions on critical applications without third party
assistance. Integrating distributions into their products can help them reach
the market faster and provide the risk-free reliability their customers demand.

7

1. Introduction

However, ignoring the OS license terms can be dangerous. This can cost lawsuits
for intellectual property infringement, heavy legal bills and damage to reputation.
Partnering with a commercial supplier helps them obtain turnkey redistribution
licenses and eliminate legal risks (Copeland, 2016).

8

2 Research Method

In order to identify all relevant research studies, we performed a comprehensive
literature search based on guidelines for conducting a systematic literature review
(SLR), as presented by Kitchenham (Kitchenham & Charters, 2007). This section
outlines the procedure of the review protocol consisting of the research questions,
literature review plan, selected digital libraries, and the qualitative data ana-
lysis techniques. The protocol development was performed under the supervision
of a professor and researcher at Professorship for Open Source Software at the
Friedrich-Alexander University of Erlangen-Nurnberg.

2.1 Research Questions

In this section, we define our research questions. As explained in the introduction,
the goal is to analyse the theoretical framework and to answer this, we study the
following research questions in relation to OS distributions.

RQ1: What are state-of-the-art engineering challenges of open-source
software distributions?

The OSS ecosystem is very critical for many technology companies today, as it
helps developers become more productive and structured in how they manage
the software their businesses rely on. Therefore, understanding the software
ecosystem, its engineering challenges and the elements of each software can help
companies create and optimise organisational products.

RQ2: What are the issues organisations face when implementing open-
source distributions, and how does configuration management play a
role?

According to the survey in (Hecht & Clark, 2018), OSS plays an important role
in how best practices are adopted by organizations. This research question helps
understand those practices, configuration management and the complexity or-
ganisations face when adopting OS distributions.

9

2. Research Method

2.2 Literature Review Plan

Research method and strategy is the key to any systematic literature review.
This section discusses the method and tools used to perform the survey, collect
literature, and perform qualitative data analysis (QDA) to write a systematic
literature review.

The whole SLR process is summarised in Figure 2.1 below, thus presenting a
general idea of the adopted process. In addition, it provides a comprehensive
view of the general stages of SLR. There are three main stages of the literature
review: Planning the review, conducting the review, and reporting the review
(Staples & Niazi, 2006).

Figure 2.1: Phases and steps of a SLR on the (Kitchenham & Charters, 2007)
guideline by (Nasserifar, 2016).

The choice of the correct scientific databases and the modification of the search
string are also documented. The inclusion and exclusion criteria help authors
through the selection stages and, therefore, the identification of relevant literature
may be less unbiased. Subsequently, the design of quality assessment and data

10

2. Research Method

extraction according to the research objectives and questions is also carried out
in the planning phase. In planning, the external validity is mainly respected
by the authors and the protocol. The other problem is finding the appropriate
answers to research questions and is known as internal validity. It can happen
during document selection and rating in the quality assessment activity or data
extraction processes (Nasserifar, 2016).

2.3 Literature survey

Collection of literature was performed using search strings or keywords. Following
is the list of different digital libraries and databases used:

• Google Scholar

• Web of Science

• ACM Digital Library

• ScienceDirect

• SpringerLink

• Scopus

• IEEE Xplore

The digital libraries and database mentioned above were chosen because they
are related to the source of software engineering publications and are the most
known scientific libraries due to their credibility in information technology and
computer science.

2.3.1 Search Process

At this step, we search for literature based on the databases and digital libraries
and search string had to be modified accordingly for better results. However,
many papers or journals are not accessible, so we used the university (Friedrich
Alexander University Erlangen-Nurnberg) VPN to access these digital libraries.

Starting with an automated search, then manual search to identify potentially
relevant papers and grey literature, and then apply the inclusion/exclusion cri-
teria. The search is performed using the specific syntax, considering only the
title, keywords, and abstract. In addition, each repository is configured with a
search to select only the journals completed in a particular period to ensure rel-
evance and quality. Manual search supplements automatic search to obtain grey
literature and scientific journals.

11

2. Research Method

Figure 2.2: SLR search process proposed by (Unterkalmsteiner et al., 2011).

Grey literature is the material and research produced by organisations outside
traditional or academic publishing. Common examples of grey literature include
reports, government documents, white papers, and presentation reviews.

The literature search was done using a forward and backward reference search
method. Forward reference search is when a researcher identifies an article of
interest that cites an original journal. Links are provided to get access to the
article from the database. It helps the researcher expand knowledge on a topic
by looking at follow-up studies and identifying new developments. Whereas,
backward referencing search method works in the opposite direction. Starting
with an article of interest, and straight away go to the references cited and use
them to further look for appropriate literature. It helps understand the origins
and development of a theory or model of interest. It can also assist in identifying
institutions or organisations that specialise in a topic of research (Library, 2021).
This research process yielded around 90 papers in total. As the scope was defined,
few papers were excluded in the initial stages. In the end, after performing

12

2. Research Method

qualitative data analysis and refining the scope, we shortlisted approximately 70
research papers and grey literature for this literature review.

In data extraction process, all relevant information for each study is documented
as it helps aggregate the data and link it to the source. For example, reading
the title and abstract to identify potentially relevant literature. It is based on
the analysis of the title, abstract and conclusion. Not so relevant literature is
then discarded. If there is any doubt about whether a paper or journal is relev-
ant to the topic, it is then considered later on if needed. The selection criteria
were relatively straightforward. The publication must be a scientific journal or
any grey literature. The work suggests empirical research related to our topic
of open-source distributions. The most recent one was considered if multiple
journals, articles, or reports on the same study were found. To make the search
more precise, literature directly around at least one research question was tar-
geted. Similarly, exclusion criteria consisted of not paying attention to tutorials
and ensuring that the research is based only on expert opinions and there is no
convincing evidence, except for when looking for grey literature. Any publication
of an earlier version of a recently published work was also excluded.

As this is not a very well researched topic, the focus was on the grey literature,
particularly after publications and academic papers. Nevertheless, some exciting
blogs, white papers and presentation reviews were found on the challenges of
various distributions. The following data was extracted from the research:

• Name and Author

• Article type (journals, articles, white papers)

• Research question and purpose

• Results and conclusions

• Limitations

2.4 Qualitative Data Analysis (QDA)

As qualitative data analysis was performed, the quality standard of the literature
was also a key element, especially when looking for grey literature. For example,
analysing whether the article is based on research or just a report based on expert
opinion. It was integral that the research objective was defined with a complete
description of the investigation’s background.

The next step was preparing tools for data collection and analysis, for which
software MAXQDA was practised. It enables researchers to conduct research
using various analytical methods, such as those used in evidence-based theory,
qualitative data analysis, and case studies (MAXQDA, 2021).

13

2. Research Method

2.4.1 Code System

MAXQDA is a tool that also helps classify the literature into different categories,
as it is imperative to make sure that the research is headed in the correct direction.
Therefore, the next step was creating a code system on MAXQDA.

Next, the research identified and targeted open-source software distributions and
made a list of them. The following step was to find out and look for literature con-
cerning each distribution to decide whether to include or exclude it from research.
Being one of the most common and popular open-source software with multiple
distributions, Linux was the first automatic choice, followed by ROS. During this
time, some other open-source software distributions were also discovered, like
Kubernetes, Apache, Eclipse and OpenStack.

Figure 2.3: Initial code system with respect to distributions.

A broader approach was employed, to begin with, and literature was classified into
different categories and sub-categories. The analysis began with going through
different challenges concerning different distributions. Similarly, a code system
was built of distributions in the first phase with its engineering challenges and
limitations. As it was done for all the distributions, phase two was about studying
those challenges of individual distributions and verifying if there was any common
element between all distributions.

14

2. Research Method

Figure 2.4: Code system of different challenges found.

As the results suggest, there were quite a few common challenges, and few were
quite distribution-specific, with challenges arising due to the software architecture
of a particular distribution or any changes found in the newly released version.
Following this procedure, a much deeper approach was adopted in the next phase,
and the code system was adapted to classify common challenges and divide them
into further sub-categories. All the challenges in grey literature, case studies and
academic journals were studied.

15

3 Results and Discussion

Before discussing the challenges, it would be interesting to know why organisa-
tions would be inclined towards adopting open-source software distributions.

Straightforward to acquire. The procurement process is not too long and re-
latively straightforward to adopt open-source distribution and can be integrated
into an organisation. However, although it is easy to obtain, organisations gener-
ally do not want to integrate OS distributions into their applications unless they
follow the appropriate procedures within the company (Copeland, 2015).

Quality of the software. The quality of the open-source software distribution
is constantly improving, as anyone in the software community can improve the
code, so this ripple effect works. The code is constantly worked on, and it does not
get stagnant. Furthermore, when there are any specific code issues or challenges,
the open-source community can be called for help.

3.1 Challenges of OS Distributions

This section answers the research questions and discusses our literature review’s
state-of-the-art engineering challenges and configuration management framework.

3.1.1 Software

The major problem with numerous open-source distributions is that there is no
unified configuration system for device management. This issue could be solved
manually in network settings, but no installer/package manager is tracking the
overall distribution from development to release (Boender, 2012). The distri-
bution repository does not contain all the open-source software available when
installing any software by downloading the required package. Furthermore, dif-
ferent distributions can use different versions of the library and different com-
piler flags, which results in much confusion for the organisations and their users
(Silakov, 2008). For instance, in Linux distributions, the two most popular open-
source desktops, KDE and Gnome, can only configure some settings themselves,

16

3. Results and Discussion

so each release builds its manual application to configure bootloader or firewall
and group services. As a result, firms can enforce uniform distribution for every-
one in the organisation, but it will never be possible if the customers are free to
choose (Diener, 2018).

Support

Open-source distributions alone can not make a difference until different servers,
and operating system supports are not present and compatible with every release.
When talking about Linux distributions, we find many different servers that
should work efficiently for new releases. Similarly, the X.org server is one of
the most popular servers around. It is a desktop infrastructure that provides an
interface between the hardware and graphical software (Wikipedia: Xorg, 2021).
Unfortunately, the X.org server is outdated for modern-day PCs and multiple
packages. It can be precarious, with no standard API for growing graphical user
interface.

When discussing software support as a challenge for many open-source distribu-
tions, the X.org server no longer guides unique scaling modes for special monitors
and presently has no manner of completely storing and restoring settings modified
with the aid of the consumer. Moreover, X.org does not transfer high resolutions
in laptops when complete display software with custom editing is available for the
video and gaming industry. X.org server is not multi-threaded either and does
not control multiplied brightness settings and permits programs to solely take
hold of keyboard and mouse input. If such programs are not efficient enough, a
user is left with an unmanageable device that can not transfer to textual content
terminals. Keyboard management is also a unique challenge for virtual machine
packages with the X.org server as it does not support some keys in the latest
versions (Tashkinov, 2021).

After introducing the impact of the server, the following vital support comes
from drivers. The NVIDIA Driver is used to install GPU on the PC and commu-
nicate from the operating system to the device. This driver is required in most
cases for the hardware device to function correctly. In addition, it designs graph-
ics processing units (GPUs) for video editing, the gaming industry, mobile and
automotive market (Wikipedia: NVIDIA, 2021). These proprietary drivers each
require custom utilities and specific packages with extensive graphical operations
that can also cause older version laptops to hang at times (Tashkinov, 2021).

Font rendering is also another issue noticed in few OS distributions. As we dis-
cussed different software challenges, we encountered some font rendering issues,
mainly in Linux distributions. For example, ClearType is a font smoothing tech-
nology designed to smooth the fonts on the screen to be more readable on LCDs.
Unfortunately, ClearType fonts (through GUI libraries) are not supported quite

17

3. Results and Discussion

well in a few Linux distributions. Moreover, even though the font rendering
technology is now supported, there is no approach of well tuning it, and as a con-
sequence, ClearType fonts from Windows appear not so good. Quite regularly,
default fonts also do not appear the best because of default font configuration
settings.

Quite often, distributions are unusable because they do not support new hard-
ware, mainly GPUs (in addition to Wi-Fi adapters, NICs, sound cards, and
external drivers). Furthermore, because of previous libraries, one cannot use a
new software program in specific distributions. Another drawback is that most
distributions are made so that their core components (like kernels, Glibc, Xorg
and Mesa drivers) can not be improved without upgrading the entire system.
Also, modern-day hardware typically can not deploy the latest version of distri-
butions since most do not contain the kernel release. In order to fix this and
deploy kernel, it is required to appoint numerous hacks (Tashkinov, 2021).

HWInfo64 is a simple application that scans the components of a PC and dis-
plays basic information about the operating system, memory size, and RAM. It
also displays other technical data such as logical processors, memory speed, and
battery consumption rate. In most open-source distributions, hardware sensor
support is not enough. For instance, HWiNFO64 detects and suggests hardware
sensor assets on a standard laptop and over multiple sensors. This scenario does
not work too well on laptops, as now and then, the best readings from sensors are
CPU cores’ temperatures (Tashkinov, 2021). There is no idea of drivers in Linux
distributions, for instance, other than proprietary drivers for NVIDIA or AMD
GPUs that are separate packages. Furthermore, nearly all drivers are already
both withinside the kernel or numerous complimentary packages. Thus, the con-
sumer cannot recognise whether or not the hardware is undoubtedly supported
or not all of the required drivers are indeed established and operating well.

Numerous open-source distributions today do not have adequate documentation
and lack appropriate supporting manuals. Furthermore, no unified broadly used
device for applications signing and verification; as a result, it becomes an increas-
ing number of intricate to verify applications that are not covered. Furthermore,
most OS distributions are no longer audited due to this. As a result, the quality
of an OS distribution is compromised. To summarise, there is no unified config-
uration system and no backwards and forward compatibility due to volatile and
continuously developing kernel APIs (Kahani et al., 2016).

18

3. Results and Discussion

Installation Challenges. For instance, deploying some of the distributions,
such as OpenStack and Kubernetes, is not very straightforward and could be
challenging if a user experiences it for the first time. Moreover, it is particularly
complex during the installation phase because it is a series of packages, involves
much manual scripting, and each of these applications must be configured ac-
cording to the user’s needs (Lehmann, 2017). For example, an engineer should
create a Kubernetes script in YAML or JSON format and write commands to
configure an application. However, it becomes a daunting task when the goal is to
run multiple configurations per day (Tozzi, 2020). It means that the installation
should be carried out by a specialist, or ideally by a company of several special-
ists to cover the range of additional skills required for an optimum configuration
(Thomas, 2019). As a result, more often than not, organisations end up using
scripts and commands that slow deployment. The simplest way to overcome this
problem is to find a vendor who can provide a complete package, including soft-
ware, hardware, and initial configuration. It reduces the need for companies to
hire more technical and qualified staff, making the process more straightforward,
but it is still essential to do due diligence to make sure experts know as much as
they say they know (Constantinescu, 2019).

Upgrade. The upgrade process is one of the most interesting catches in modern
hosting. One of the primary goals of the cloud-based infrastructure is to provide
both high reliability and availability. Unfortunately, updating a distribution is
not always easy. In fact, due to its complex nature and approach to multi-project
development, downtime is sometimes unavoidable. Unfortunately, this process
usually relies on installing updates regularly, but developers do not have much
incentive to provide support and updates for an open-source project. To make
matters worse, OpenStack, for example, has officially discontinued support for
some of its versions. As a result, it can make updating OpenStack more complex
than updating an alternative (Shiozaki, 2016).

3.1.2 Hardware

One of the critical challenges of open-source distributions can be classified under
the heading of hardware challenges. In order to make organisations adapt to
open-source distributions, it is essential to eliminate these hardware challenges.
In many versions of OS distributions, peripheral devices and gadgets are either
poorly supported or not supported at all. For example, hardware such as Broad-
com wifi adapters can not be used without a running Internet connection and
must be manually configured. Thus, it can be understood that it is not the easi-
est of tasks to integrate hardware to open-source distributions as new hardware
constantly requires support. Furthermore, specialised software to manage gad-
gets like printers, scanners, cameras, webcams, audio players, and smartphones
does not exist or must be manually set up. To sum it up, hardware is incom-

19

3. Results and Discussion

patible with a few open-source distributions, so it needs to rely upon third-party
applications.

Software regression is a type of software error in which a previously working
function stops working. This may happen after an event, such as after a system
update. The fix is often included in the software patch. Regression is a user-
visible change in kernel behaviour between two versions or releases. Regression
testing is significant to evaluate the functionality of the new program code. It
ensures that the new code will not disrupt the existing code functionality and
guarantee no defects after installing the software update. In addition, it allows
retesting of existing software after changing the application. Hence, regressions
were also noticed in the kernels when some hardware stops working in the new
version, which is a big problem for users and organisations.

Peripheral Devices

When users decide to switch to a new OS distribution, they assume everything will
work out well, but they do not research, and a lot of the time, printers, scanners
and other devices face compatibility issues. The latest problem users face in the
tech industry was setting up hardware like ’touchpads’ alongside wifi cards or
USB wifi adapters (based on Realtek chips) as not all versions are supported
under a few distributions. It was also noticed that few power-saving modes did
not work too efficiently, and battery life was not the same under numerous OS
distributions. Moreover, new portable devices can not be used as compatibility
packages take time to install under different distributions (Tashkinov, 2021).

Video Accelerators

Most machines use the NVIDIA technology that does not work too well in open-
source distributions. Users struggle with screen tearing and new kernel releases.
NVIDIA driver is comparatively slower due to power and fan speed manage-
ment, as it does not provide the required firmware. Most of the complex game
releases are accompanied by a matching driver release from AMD or NVIDIA,
as the open-source community does not have the resources. Most of the time,
drivers in these OS distributions require manual configuration for non-standard
and very high display resolutions. In industries, it is noted that setting up multi-
monitor configurations with multiple GPUs running can be a significant task as
well (Tashkinov, 2021).

Audio Subsystem

It is also noticed that advanced configuration is available only by editing some
text files in the console under a root session in the audio subsystem environment.
PulseAudio is not suitable for multiplayer mode, and there is no reliable echo

20

3. Results and Discussion

cancellation. In addition, various audio effects like volume normalisation are not
included or enabled by default in most OS distributions (Tashkinov, 2021).

3.1.3 Maintenance

Maintenance is key to any open-source platform, be it a commercial or non-
commercial distribution, and distributions must be maintained and improved in
new releases or updates.

Implementing peer review. Peer review evaluates the work done by people
with similar abilities as the developer and qualified professionals. With the devel-
opment of open-source projects, it has become increasingly difficult for a limited
number of senior contributors to review each code request. This becomes the
bottleneck of the entire project and slows down the progress and growth of the
software distribution. Peer review is the most common way to solve this bot-
tleneck. In addition, this process requires other developers to understand the
mission of the project and the quality that everyone should achieve (Hurley,
2014).

Development dependency. Complexity in managing dependencies between
large amounts of modules or packages that make up the distribution. Editors
need to be updated with recent source code changes by developers, which is to be
done manually and is an error-prone task. This could be very time consuming,
as it leads to backtracking to cater changes to the modules. Users expect to
find an upgrade path that does not disrupt the system when moving from an old
version to a new distribution version. Binary compatibility is a huge challenge,
as differences between distribution versions mean that every application should
be recompiled for every particular system (Silakov, 2008).

Unstable API and lack of compatibility. It is challenging to adapt older
versions of OS software in the latest distributions. In addition, backward compat-
ibility makes building closed source applications for most open-source distribu-
tions extremely difficult and expensive. Open-source distributions without active
developers and maintainers are discarded when their dependencies cannot be sat-
isfied because the old library is outdated or unavailable. For example, for this
reason, many applications are not available on modern distributions. WinSxS is
a folder that stores main components and keeps older versions if the user has to
switch back to the previous Windows version and multiple distributions today
have no WinSxS equivalent, so there is no easy way to install conflicting libraries
(Tashkinov, 2021).

Lack of collaboration. There is no primary authority to organize the devel-
opment of different parts of the open-source stack, which often leads to changes
made by one project disrupting other projects. Although the open-source move-
ment lacks a workforce, various OS distributions seek sufficient resources to

21

3. Results and Discussion

branch projects. Most distributions have a short update/release cycle (in some
cases only six months), which keeps changing. Moreover, due to applying re-
tention policies and there is usually no officially approved method for installing
advanced applications, long-term support distribution is not suitable for desktop
users in most cases (Adams, 2016).

Appropriate IT Support. Like any server-dependent content, OS distribution
requires hosting and maintenance of the code, platform, version control, and re-
lated software engineering tools. While often overlooked, IT support is crucial
for maintaining the new versions, running scheduled backups and recovery when
necessary, and hardware maintenance (Martin & Hoffman, 2007). Not surpris-
ingly, most OSS members are classified as active or passive users. They publish
bug fixes and inquiries from time to time, subscribe to mailing lists, read news,
and mainly use the software (Hauge et al., 2007).

Data Loss. For instance, few Apache and Kubernetes distributions indicate
that some arguments are under-replicated. The data is not replicated, and these
warnings indicate a potentially serious problem as the likelihood of data loss
increases. It can happen entirely unexpectedly, even if the user does not do
anything on his end. It usually happens when clients affect the data volume,
and a spike in the data volume causes the package broker to save the message
conversion (D2iQ, 2021).

If working with large data sets, using some distributions to archive them can
cause several problems. The main problem is that some distributions, for ex-
ample, Kafka by Apache, store redundant copies of data. As a result, it can af-
fect performance, but more importantly, it dramatically increases storage costs.
The best solution would be to use Kafka only to store data for a short period
and migrate the data to a relational or non-relational database, depending on
specific needs. As we discuss the issues with the long term storage solution, we
highlight an additional issue related to it. Downstream customers often have
completely unpredictable data demand patterns, and as a result, settings are a
bit of a problem. For example, distributions stores messages, which can take up
a lot of disk space and download the data; one must set the retention period or
configurable size. If data retention settings are not correctly adjusted, there is a
risk of rendering data useless or paying too much for storage.

The volume of data flows can go in both directions, and that is why it is essential
to choose a distributed messaging platform that is easy to scale. With some dis-
tributions, this is a problem due to balancing things manually to reduce resource
bottlenecks. The user has to do this whenever there is a significant change in the
data flow.

22

3. Results and Discussion

3.1.4 Reliability

Coding standards are a set of guidelines or rules that open-source projects expect
from all code submissions. Code standards are usually simple procedures to
ensure that any code submitted looks the same and the system feels like one
piece of software when combined (Ven et al., 2008).

Lack of stability, bugs, and regressions. There are many regressions in kernel
and userspace applications that somehow ruin the initial code, due to which kernel
at times does not support new hardware. Some regressions can even cause data
loss, as discussed earlier. Unfortunately, most open-source distribution projects
have almost no regression testing. For example, Microsoft reports that Windows
8 has undergone 1.24 billion hours of testing, while the new Linux kernel, to be
specific, has less than 10,000 hours of testing, and each version of the Linux kernel
is comparable to the new version of Windows. As a result, the staging version
of the kernel usually regresses, although most distribution developers insist that
such a version be updated immediately (Tashkinov, 2021).

Lack of standardisation. Many open-source distributions are incompatible
with different configurations, packaging systems and libraries (Ansari & Chaubey,
2014). A console application is used to configure computer settings. If we
talk about Linux, Debian-based distributions use the plain text utility ‘dpkg-
reconfigure‘ to perform specific system maintenance tasks, which can be challen-
ging for a new user. Dpkg is a tool to install, build, remove and manage Debian
packages. It is the software package management system in Debian distribution
and its numerous derivatives (Boender, 2012).

Automation. Application-oriented companies strive to automate repetitive net-
work operations and eliminate manual operations that may cause errors. To
achieve flexibility through continuous integration and continuous delivery, firms
must deliver applications quickly (Rajagopalan, 2020). First, the application web
service must be an API because storage in a hybrid cloud environment is com-
plex, and many different products or tools can implement storage management
in this environment. Secondly, because each application has different business
requirements, it is not always adequate to apply templates to other applications
(Pritchett, 2020).

The reliability of the software requires release delays to allow sufficient time for
testing (Cesar Brandão Gomes da Silva et al., 2017). The lack of a transparent
business model that is attractive to a broader range of industries has not been
widely known or valued. The critical issue also involves the standardisation of
OS distributions. Many participants believe that this is urgently needed, but it
may be too early. The main disadvantage of these distributions is that it is not
very easy to get accustomed to. There is a lack of applications that run both on
open-source and proprietary software; therefore, switching to open-source involves

23

3. Results and Discussion

a compatibility analysis of all the other software used that run on proprietary
platforms (Agerfalk et al., 2005).

Time complexity. Some distributions present challenges, not in cash flow, but
in the developer experience and the time required to quickly and seamlessly de-
ploy the first system without spending too much effort. In addition, once the OS
repository reaches a specific size, finding and browsing various items and person-
nel details becomes time-consuming (Shiozaki, 2016). Therefore, proper search
and navigation infrastructure is critical to the success of OS distributions. In
addition, a short reporting cycle and shorter running time mean less time for
testing. Application service resilience is more critical in container-based applic-
ations because containers can be activated or deactivated faster than traditional
infrastructure. Applications in the cloud or data centre can take advantage of this
flexibility at the computing level, but network services can still cause bottlenecks
(Rajagopalan, 2020). The service dependencies of applications migrated to the
hybrid cloud need to be modified to support these applications. For example, if
a single service in a particular location becomes a bottleneck, all hybrid cloud
applications will depend on that service. Therefore, a single-site failure mode is
introduced (Pritchett, 2020).

3.1.5 Organisational

Today, most companies have a hierarchical organisational structure, making it
difficult to share code and product release plans with different stakeholders. This
section answers our second research question, discussing challenges and issues
faced by organisations when adopting open-source distributions.

Implementation. Incompatible platforms, as discussed before, are a significant
challenge, and due to the lack of support for new technologies and hardware,
this is one of the major reasons why industries even today are reluctant when it
comes to migrating to OSS distributions. A study concluded that the traditional
separation between operators and developers seen in many organisations is the
main obstacle to launching applications quickly and frequently (Tozzi, 2020).

Developer briefing. The most crucial aspect of software development is the
skills of each developer. This requires developers to understand the tools that
adopt established coding standards concerning the source code. It is one of the
main organisational and management issues (Ven & Mannaert, 2008).

Leadership. The open-source model is based on at least one product owner
of specific software modules and a team of developers. For example, a system
provides good guidance for a given software module in the open market, and the
problem occurs when a software module manager decides to leave, and several
projects rely heavily on this module. Alternatively, even worse, when there is no
specific conductor for a specific module.

24

3. Results and Discussion

Adoption of open-source distributions

The adoption of open-source distributions in organisations represents a significant
paradigm shift in improving and managing fundamental structures (Chau & Tam,
1997). However, for organisations, many technologies are too large and complex
to be understood using human cognitive abilities or typically deployed in the
arbitrary jurisdiction of the organisation (Dedrick & West, 2004).

When considering open-source software distributions, there are significant differ-
ences from the previously more traditional platforms. First, the research and
development, sales, revenues, and support are the liabilities of a clearly defined
commercial business to profit from its products. Open-source uses collaborat-
ive research and development and cooperation with companies whose roles are
less relevant or much less described. Second, the fundamental difference between
open-source software is that the provided code is widely available to everyone, and
thus the deployment teams have a chance to tailor the program to the individual
needs (Morgan & Finnegan, 2007).

What are the main factors influencing the use of the open-source platform? Or-
ganisations use open-source distributions for various functions. However, the size
of the equipment and the costs to install makes it a rare choice to choose a new
platform. Furthermore, one of them resulted in a vast search overhead to choose
the best alternative. Therefore, we observed two models when considering to
adopt OS distributions:

• Organisations that choose specific hardware first.

• Organisations that prefer operating systems, that suit their business needs.

Some organisations are open to adopting everything that comes with an OS
distribution, whereas some are more reluctant and can not afford to compromise.
As the models suggest, some organisations are dependent on the hardware, so
they want to choose any distribution that it would support easily. On the other
hand, the other model suggests some prefer operating systems based on API
support and check if business-critical applications run on a specific operating
system.

25

3. Results and Discussion

Figure 3.1: The impact of OSS adoption in technological context (Morgan &
Finnegan, 2007).

Here in the graphic above, we notice the impact of the benefits and drawbacks
on OSS adoption in a technological context. It is observed that the adoption of
OS distributions has both, drawbacks and benefits. Many technical and business
benefits can influence compatibility, and it can also increase complexity which is
a significant drawback.

Figure 3.2: The impact of OSS adoption in organisational context (Morgan &
Finnegan, 2007).

When discussing the impact in an organisational context, we again observe many
advantages, but at the same time, a few drawbacks and challenges, which are
essential for our research and this paper. It is observed that these benefits can
also cause considerable challenges in organisations. When adoption of OS dis-
tributions encourages spanning boundaries and promotes management support,
this can also be transformed into a drawback where it may harm the company’s
relevance and increase the total cost of ownership.

An organisation can choose to use OS distribution without further development.
Alternatively, free software becomes more efficient if the organisation actively
participates in developing a community. However, this requires additional re-
sources.

26

3. Results and Discussion

The amount of resources required depends on the level of involvement and the
types suggested by (Bonaccorsi et al., 2007):

• Project coordination

• Code delivery

• Development

A realistic concern that organisations have is regarding the future or longevity
of OS distributions. For example, if a particular OS distribution is adopted,
users do not like to find themselves in a situation where the community that
supports that product disappears. If this happens, it means that there is no
support or update for that particular product. In this case, an organisation can
decide to take care of the maintenance of the project. However, this would involve
additional maintenance efforts and could distract the organisation from its core
business (Stol & Ali Babar, 2010).

3.1.6 License

Open-source software distribution is a method by which software is available
through source code and open-source licenses. Here, the owner grants the right
to modification and distribution of the software for any purpose. The number
of people using or implementing open-source software in the public sector is in-
creasing. The use of open-source software needs to be understood from different
angles. It is essential to understand different terms that refer to or have the same
meaning but are used in different contexts. This chapter will focus on licensing
issues and address their challenges.

Some OS licenses only allow the reuse of the software when the derivative works
are also under the same license, but the definition of the derivative works may
not always be clear enough to specify how to use the OS distribution. Therefore,
a part of the generated software product is based on the operating system code
of other parties, and the first one is used as the operating system license, and
the second one is used as a proprietary license (Perens et al., 1998). Developers
pay more attention to the functional features of the code rather than the user
interface and usability. They usually have no training in handling such issues,
and the various licensing options of different software and the risks of combining
them present challenges for application developers. Choosing an open-source
software licensing program is a significant issue that requires a deeper technical
understanding of various licensing types. First, the user should know the rights
to the source code that is used. The software license is not necessarily a contract,
but there is still copyright to protect the user’s work (Kogut, 2001).

Accepting general licenses. Open-source software distribution can be used,
modified or redistributed for free but is subject to certain restrictions on copyright

27

3. Results and Discussion

and its status protection (von Krogh & von Hippel, 2006). OS projects must
always have software licenses. It defines the distribution strategies and methods
by which other people can use the software. A vital step to consider when allowing
developers to contribute to the code is the license applied to the proposed code. It
is important because the developer must know and agree with the type of license
chosen by the project stakeholders. For example, some open-source projects
require signatures to identify the license type of any code submitted (Peters,
2004).

The software license embodies these rights and restrictions, which is the con-
tract between the proprietary software (the licensor) and its potential users (the
licensee). OSS licenses come in many different types, but they usually aim to
provide source code. Thus, the OSS licensor (usually the owner or author) can
be an individual developer, development team or organisation, and owns copy-
righted software. On the other hand, the licensee is the end-user of the operating
system or the person who integrates it into their product or application and then
distributes (Androutsellis Theotokis, 2010).

Characteristics

They are free licenses for software distribution, and they include the condition
that the source code must be provided to the licensee. Thereby giving up any
concept of ownership and being free from copyright issues. Open-source licenses
can be extended to ’copyleft’ licenses. It refers to a license that permits to copy
any work and requires that the work use the same license as the primary work.
Copyleft is open-source licensing that grants the right to copy, adapt, or distribute
software. However, it restricts all derivative works from being published under
the same license. Thus, it shows how software and the freedom that comes with
it becomes inseparable (Alam & Soomro, 2016).

Concerns and risks

One of the concerns about the adoption of various OSS licensing systems is that
the use of licenses that combine open-source and proprietary software effectively
undermines the concept felt by the supporters of the OSS movement. In addition,
commercial software development firms may feel that there is a risk of including
OS distribution codes in their products due to the ambiguity of specific definitions
(Sardina, 2019). Free and open-source software is the same as long as they serve
their purpose, but the license terms are different. Any software that uses free
code should also be free, but not the same as open-source distribution is not
necessarily free.

28

3. Results and Discussion

The most popular licenses according to (Khan & UrRehman, 2012) are:

• GNU General Public License

• Free BSD License

• Mozilla Public License

• Apache License

• X11 License (also known as MIT License)

Several studies have pointed to the complex OS licensing situation as a prob-
lem. For example, studies have reported a lack of consistency between license
agreements and little guidance on the interpretation of open-source licenses. It is
therefore not surprising that OS licensing is seen as a complex issue. As a result,
research efforts have been made to resolve this problem (Stol & Ali Babar, 2010).

3.1.7 Security

More contributors means more risks. This is a severe problem as the com-
munity of developers who contribute code and solve problems, continues to grow
and there is a need to develop some guidelines for everyone involved. For example,
developing a presenting code requires a standard license, and introducing peer
review is a good practice in projects. Some believe that the larger open-source
projects are, the more vulnerable they are to security threats and dangers posed
by different participants. However, in the unique and controllable environment of
closed source companies, the benefits of open-source far outweigh the perceived
risks. In addition, through thoughtful community organization methods, these
risks can be managed (Hurley, 2014).

Visibility. Application visibility is significant for container-based applications.
Both application developers and operations teams need to see the interactions
between services to identify false interactions, security breaches, and potential
delays (Rajagopalan, 2020). Developers can unintentionally access the product’s
internal structure, that is, the source code and design. Usually, they at least want
to know who is accessing their source code and for what purpose. It depends on
the project, from fragile security requirements to very confidential company in-
formation. Therefore, open-source requires proper authentication, authorization,
and verification mechanisms to control access to source code, which is in contrast
to OS mechanisms that may be accessible to everyone (Kohgadai, 2020).

29

3. Results and Discussion

3.2 Configuration Management

Configuration management is the art of classifying, organizing, and managing
software changes during the development process. This chapter talks about the
importance of configuration management in open-source distributions from the
development to the release phase (Mockus et al., 2000). The list of protocols
that are the most relevant in configuration management suggested by (Asklund
& Bendix, 2001) are:

Version control. Versions with different document parameters are stored, so
they can be retrieved later on when needed. Therefore, it is essential to make a
comparison with the latest versions.

Build management. It is used to collect all the original modules of the system
and helps build and update the system with released modules.

Workspace management. Developers usually want to use configuration trans-
parently without worrying about version control or viewing changes made by
others who use the same configuration.

Change management. It revolves around support management of change re-
quests, error reporting, implementation of these changes, technical documenta-
tion of problems and solutions.

Release management. Identification and organization of all included files and
assets. The assembly manager is responsible for the correct settings and functions
of the packaged products.

3.2.1 Version Control

The CVS tool is mainly used for version control in most OS projects to track
all changes to project source code files. CVS is widely regarded as the best free,
full-featured version control tool. It is the most popular tool for configuration
management, which is constructed on a client-server architecture. Its repository
stores a complete copy of files and directories, which are supposedly under version
control. Usually, all these files can be copied to the working directory, which only
can be accessed with CVS commands. In the change-log, the version can be
marked symbolically. Typically, write access to the CVS repository is extensive,
allowing hundreds of developers to add new versions. One can also submit regular
patches for moderators to add to the repository. However, in this case, Linux is
an exception because it does not use version control tools. Instead, it puts the
code for each version in a separate directory and adds the correct one in the
latest directory. The moderator can only make additions to the repository, and
version history is not kept because they violate the immutability principle in
version control. When a new version is created, the latest version will be copied

30

3. Results and Discussion

to the new version directory to keep it as development continues, which means
the version is immutable. Meanwhile, Linux kernel development has only two
branches: stable release branch and development branch. In projects that use
CVS, the version is rarely used to roll back to the previous version. Instead,
the version is used for historical tracking, describing how the file was developed
by reading log comments and comparing versions using the different functions.
Most projects target multiple platforms with significant differences. They seem
to deal with changes by breaking the code into different files or directories or
using conditional compilation (Raymond, 2000).

These days, each software program inside corporations generally consists of a
model management system, that debugs, reports malicious programs, and that
helps migrating current source code to an interface, each from a user and company
perspective (Di Cerbo et al., 2007).

3.2.2 Build Management

The fact that a local workspace is created containing all the required files makes
build management easier. The system model is present in these files, and all
projects use or make similar compilation tools. The reconstruction project is not
very time consuming as in the changed local workspace, but the initial build is
an entirely new process and hence, very time-consuming. Nevertheless, it can
be achieved if the object code is considered when creating the workspace. The
disadvantage is that the workspace creation speed is much slower.

3.2.3 Configuration Selection

The latest version of all files is almost always used to create the configuration,
so the selection is trivial. Since only one (latest) version is saved, you do not
have to revert to other settings. In supporting both the staging version and the
production version, they work as two separate projects. Branches are rarely used
for contemporary work; therefore, no configuration selection is required. For new
versions, a new configuration link is created by adding tags to the configuration
version. In some projects, a large number of possible configuration options cause
problems for developers. Specific changes disrupt the configuration and need
feedback to solve the problem. The obvious solution is to have limited security
settings instead of all possible combinations.

3.2.4 Workspace Management

The version control tool (CVS) used is optimised to support the accessibility
of OSS projects. It supports a project concept that enables a single operation
of creating a workspace and synchronizing the workspace with the repository.

31

3. Results and Discussion

However, the most crucial feature of CVS is that it can run in a client-server
model, which reduces the burden on developers. To transfer files over the Internet,
one needs to stay connected at all times. CVS can disconnect and make all
changes offline and reconnect only when synced and added to the repository. In
some cases, developers do not have to write access to CVS and some distribution
repositories. In these cases, regular corrections are required. First, manually
create and send to the host or coordinator, and then they must apply it to the
repository.

3.2.5 Concurrency Control

CVS optimizes concurrency control as the file lock function is not used when
copying from the repository. CVS can detect when parallel changes are made to
the same file and force the final developer to add changes to resolve the conflict.
In most cases, it is sufficient to use the update process to automatically merge the
first change into the workspace of the second developer. Then he can ensure that
the changes made before will not harm his work, as CVS cannot automatically
merge. Despite the rapid development and many developers with write access
to the repository, update conflicts are infrequent. It is used to raise awareness
and reduce the risk of conflicts that are difficult to integrate. With concurrency
control, when the host reviews the received posts, they are sorted, and if later post
conflicts with an earlier change, the post will be returned, and the contributor will
be prompted to resubmit the patch. Moderators only make necessary changes if
the conflict can be quickly resolved.

3.2.6 Change Management

In OSS, the evaluation of proposed changes is not precise. Anyone can propose
changes, and in most cases, they will not even be proposed until they are submit-
ted directly. Thus, the project cannot give developers any tasks, and everyone
is doing what they want. There are two slightly diverse methods, depending on
whether there is a need to send content to the moderator or write permissions to
write changes directly to the repository. However, the same general procedure is
followed. The change is conceived, implemented, tested, and submitted as a fix or
directly applied to the repository and finally implemented. The evaluation may
result in the facilitator rejecting the fix or the coordinator checking the changes
into the repository (Feller & Fitzgerald, 2000).

When we talk about open-source distributions, Linux is the best example of an
OS project that has been audited. It receives submitted patches and is processed
by a moderator. The fix is checked in several stages before testing and then
transferred to the repository or rejected in the initial stages. If the idea is good,
but the code is terrible, the post usually goes through several verification steps

32

3. Results and Discussion

before testing.

Projects like Apache, Kubernetes and OpenStack use a much hybrid approach of
direct-write access by module owners and developers. The owner of the module
has the right to reject the patch. In most cases, any developer with write access
to the repository can change most of the code. There are no hard and fast
rules; instead, each module owner sets its module’s addition and modification
strategy. Sometimes, the module owner can become a bottleneck when editing a
post. However, in projects that work entirely through coordination, most changes
seem to be accepted immediately, and few, if any, are rejected (Kafka, 2121).

Most change management problems seem to fall into the review phase. Codes
are usually verified through code reviews and quick run-time tests. However,
formal evidence is not always used. Sometimes developers continue to use new
code after making changes. Developers who have submitted many good fixes are
much more reliable, and their contributions enter the repository faster. Although
change requests and error lists are supported, errors and suggested changes seem
to be fixed casually.

Important CM Factors

This section will analyze some change management factors and how they affect
the OS and its distributions. We divide the analysis into two categories: tools
and process (Asklund & Bendix, 2001).

Tools. As with all software projects, many tools are used. CVS is used as a
configuration management tool in a typical OS project and standard tools such as
mail and web browsers. One server has many clients, so the server does not need
to be synchronized, only the client workspace. Since all developers must learn
the tool themselves, it must be easy to use and manage rather than prescribe a
specific process. Tools that support this model and make it easier to update the
workspace from the server are essential. Unfortunately, many tools use one model
when the client is online and another when the client is offline, complicating the
developer’s work.

Process. The process must be simple and easy to follow. An overly rigid pro-
cess may increase personal investment without increasing the developer’s profits,
making the whole process complex. A good example is the lengthy transaction
model, which encourages frequent commitments, reduces merger conflicts, and in-
creases awareness. Frequent submissions also mean short iterations, which seems
to be a good strategy. The key is to identify the weakest link in the process so
that any developer can bear social pressure to follow the process and guidelines
provided for the project. The process should be suitable for the task. Instead,
all development, including bug fixes and new requirements, is passed directly.
Otherwise, multiple branches must be maintained, which can now be avoided.

33

3. Results and Discussion

The combination of self-directed tasks, simple processes, stimulating discussions,
direct communication, and group awareness is essential for educating and mo-
tivating developers. In addition, they often find it exciting and challenging to
discuss technical solutions with other well-trained developers.

34

4 Conclusion

To summarise the entire process, the OSS distribution system is distributed in
software packages, such as RedHat/Fedora or Debian, which are built from source
code, distributed under various licenses that require the installation of libraries or
components (Attilio et al., 2006). An essential part of this research is to improve
the conceptual framework and demonstrate the elements shown by these studies
that will lead to the successful emergence of OS distributions in organisations
and technology development.

Understanding the development of open-source distributions is essential, and so
the author has classified distributions in different stages and types. They are
followed by different challenges, such as software and hardware issues. Further
challenges are related to performance, license and security risks. When we talk
about software challenges, the biggest drawback of OS distributions is server and
driver support. There is no unified configuration system for development and re-
lease management and no standard API. Many settings are to be done manually,
and there is no package manager taking care of these things, which is challenging
for a new user. In the case of organisations wanting to adopt OS distributions,
the most significant resistance is that different distributions can use different ver-
sions of library and compiler flags, resulting in much confusion for organisations
and their users. Even if there is the desired support, the next challenge is the
compatibility issue, which is an essential factor in why many organisations are
still reluctant to adopt OS distributions. This compatibility issue is one of the
most critical challenges, as many peripheral devices, gadgets and tools are either
poorly supported or not supported at all. In order to overcome these technical
challenges, it is essential to learn from them and come up with solutions that
may have a positive impact on the production of open-source projects (Reffell,
2021).

Several other issues must be considered when adopting OS in an organisation,
such as licenses and security risks. Other topics include standardisation, improv-
ing good business practices, and acquiring the skills to communicate effectively in
developing OSS projects. A large number of licenses, the accompanying restric-
tions, and the complex dependencies between packages create a situation in which

35

4. Conclusion

it is difficult to understand the conditions under which packages can be used and
distributed. Although software distributions such as GNU Linux distributions
perform their license checks, this is usually not enough.

All these technical challenges enhance the role of a unified configuration system
from development to release of open-source distributions. We understand the
configuration management of OS distributions, with the following goals (Panda,
2021):

• Make the change management procedures more project-specific and easy to
understand.

• Communication of developers with clients simultaneously and work in a
distributed and autonomous manner, rather than separate servers.

• The project coordinator protects the codebase, and the task is to have the
ability to reduce the risk of bottlenecks in distribution delivery methods.

This research paper attempts to illustrate the importance of reasonable security
measures, especially when releasing open-source distributions. Distributed open-
source applications are very vulnerable to attacks due to poor development and
configuration errors. In addition, many external threats and their attack fre-
quency significantly impact the overall security footprint. This research provides
an updated and structured understanding of software development methods and
engineering challenges in OSS projects based on systematically collected literat-
ure.

36

5 Future work

We have identified some possible research areas for future work. First, this re-
search needs to be repeated on a larger sample of projects, which will help increase
the quality and verify these results. Finally, based on this literature review, the
direction could be exploring other fields beyond the operating systems, such as
large-scale commercial configurators, and comparing the results with open-source
projects. This comparison could be fascinating. In addition, configuration man-
agement tools could also be integrated into more distributions and improving the
current framework, such as turning it into a more integrated and user-friendly
tool. As future work, we aim to apply our research results to future OSS pro-
jects and verify the proposed configuration management process from a practical
perspective, including the activities of OS distributions, their characteristics, and
the entire OS ecosystem.

Apart from laying down the principles of performing qualitative data analysis us-
ing MAXQDA, this paper also shares the entire literature survey method, which
could support future studies regarding systematic literature review. A good un-
derstanding of OS distribution challenges can help professionals prepare to take
the appropriate steps to address them. This article presents the results of our
study to systematically identify and summarise the challenges that come with
open-source distributions. We believe these findings can be equally valuable for
practitioners and researchers. Professionals will become more aware of the poten-
tial challenges, and the research community can deliberate and discuss potential
causes and solutions to the challenges summarised. In addition, references to the
literature may benefit researchers interested in future research on this topic.

37

6 Limitations

Like every other research, this thesis is also subject to limitations and constraints.
From the start, the central focus has been set on analysing the literature and
discuss the findings. However, as an open-source phenomenon is still new to
many people and firms, this topic is not very well researched, due to which many
dependencies were on the grey literature. Moreover, most of the literature on
this topic is very ’distribution’ specific, and there are cases where challenges of
every distribution differ due to their architectural framework or development of
packages. As this thesis is not supposed to be about any particular software dis-
tribution, we decided to go with distributions with the most literature available.
Therefore, labelling these as common challenges for all open-source distributions
will not be entirely correct as some could easily differ. Instead, the author has
tried to lay down a framework and knowledge to get into the topic and understand
why it is necessary to dive deeper and explore the field of open-source software
and its distributions.

Although we have performed a rigorous literature search, we may have inad-
vertently excluded studies due to the subjectivity of our inclusion and exclusion
criteria. Our classification of challenges is necessarily subjective. However, our
intention is not to present a definitive ranking; instead, we intend to present
our findings in a structured way that can help practitioners using open-source
distributions in product development and software engineering.

38

7 Extension Chapter

This chapter is the extension of this thesis, where we discuss the role of integrating
packages in OS distributions and a summary of the Linux kernel. As Linux
distributions being the primary focus of our research, it is essential to understand
the Linux kernel and its characteristics.

7.1 Packages

This section discusses the role of packages in developing open-source distributions
and the challenges they bring along. As the scale and scope of many open-source
distributions continue to grow, variable software and hardware make it very com-
plex and non-trivial to reuse the code. Additionally, the size of the code can also
be intimidating, as the user must have in-depth knowledge of the code. Further-
more, software architectures must also support large-scale software integration
efforts. To meet these challenges, many researchers have already created an ex-
tensive framework to manage complexity and facilitate rapid software prototyping
for experiments, resulting in many software systems currently used in academia
and industry (Breiling et al., 2017).

We see that the work of developers is substantial, so attempts to automate some
of these tasks, such as automated dependency extraction tools or getting source
code updates from developers, can be crucial. In our example, we consider a
distribution based on Debian, with two maintainers and an RPM-based distri-
bution with one maintainer. This consideration is since RPM-based distribution
allows simultaneous installation of several packages, whereas Debian distribution
does not and works in a binary manner. This distribution is divided into one or
more units, compiled for the different architectures supported by the distribution
and grouped into packages. Control files and data specify how the product is
divided into units, how each unit should be compiled and packaged, architectures
with information on dependencies, and their classification. These packages are
then downloaded by this distribution’s user package management software. Some
users may prefer to download the sources directly from the developers, in which
case they will usually run a sequence of commands like /configure to install and

39

7. Extension Chapter

compile the software. However, they lose many of the benefits of a package man-
agement system, such as monitoring the files and automated updates (Di Cosmo
et al., 2006).

Integrating a package

We studied some in-depth analysis of package integration for any open-source dis-
tribution. Integrating a package is not as easy as integrating any other software.
For some users, it could be pretty challenging. First, the user has to download,
for example, the Debian based operating systems package from the repository,
which is the default build tool. The package must then be installed, configured
and launched. Next, parameters, nodes, device identifiers, and different features
must be defined to start the service successfully. Finally, once the project is run-
ning, the user can monitor the data flow and status, deciding whether the new
package behaves as expected or should be reconfigured or removed (Estefo et al.,
2019).

An analysis of the information gathered revealed the following challenges with
regards to packages. These challenges affect the resilience of any open-source
distribution:

• Package could be for an outdated version or package available for a newer
version that was not compatible with the current device.

• Users could not figure out how to use it properly as reusing packages is not
as easy as it seems. Bugs and lack of essential documentation is a significant
drawback.

• The package is not compatible with the particular hardware, and many
packages end up being abandoned by their developers due to a lack of
support.

• The absence of an active package maintainer affects the normal flow of
contributions.

• Many package developers are unaware of the workflow contribution.

To address these challenges, (Estefo et al., 2019) suggests some recommendations.
The purpose of these guidelines is to minimise the consequences of package bot-
tlenecks.

1. Identify and predict abandoned packages

The reuse of packages is one of the most popular assets of open-source distri-
butions. However, according to the survey (Estefo et al., 2019), the majority of
users do not reuse packages. In many cases, this is because their maintainers have
discontinued packages. As a result, users can waste a lot of time and effort trying
to install or configure such a package before realising it has been abandoned.

40

7. Extension Chapter

When users find packages that cannot be reused and contributions ignored, the
open-source distribution ecosystem becomes less reliable.

2. Provide a repository of information packages

Popular and mature software ecosystems such as the LATEX, or programming
languages such as R and JavaScript, rely on a comprehensive and informative
catalogue of packages available for reuse. According to a survey (Estefo et al.,
2019), users are looking for the following information about packages that can be
reused:

• Purpose and characteristics of the package

• Installation process and dependencies

• Package development status

• The maintainer of the package

• Package configuration guidelines

Users also want more information about the packages available, such as troubleshoot-
ing experiences, recent development and usage activities, or alternative packages.
As a result, the user will be able to make a more informed decision in choosing
which packages to rely on in their projects.

3. Recommend contribution opportunities to qualified members

Recommendation systems in software engineering can help deliver information
from significant data sources that one person cannot perform due to the size, het-
erogeneity, and processing complexity. Referral systems can designate community
members who are particularly best suited to make some contribution to the eco-
system. For example, they can identify experts to answer a popular unanswered
question, confirm bugs associated with hardware, or handle specific maintenance
tasks from a discontinued package. However, since the open-source community is
relatively minor, it is more susceptible to information scarcity issues. In addition
to finding a qualified community member to suggest a contribution, we suggest
fragmenting a regular contribution (e.g. bug fix, bug report, and documenta-
tion update). Such micro-tasks would cost less time and effort by reducing the
barriers for contributors. A system similar to a problem tracker could track the
contribution status, inform about the effort estimate, and the current status of
the distribution (Estefo et al., 2019).

4. Limit substantial changes

In recent times, we consider the example of ROS Kinetic, which is a ROS dis-
tribution. It resulted in substantial changes in the build system API and some
core functions that needed to be updated by maintainers. The result was that
one-third of the Packages available in the previous version, ROS Jade, no longer

41

7. Extension Chapter

worked on ROS Kinetic. Such noticeable changes can seriously affect any pack-
ages already available. This situation is hazardous for packages that have already
been dropped because someone is unlikely to update them. Maintainers will take
a while to respond or may not respond at all. A side effect is that packages that
depend on discontinued packages may be out of date if their dependencies cannot
be upgraded. The need to use outdated packages was the most common reason
the survey respondents could not reuse a package. Another possible scenario is
the other way round, where a user is stuck with an older version, possibly because
a discontinued package prevents them from upgrading to a newer version and can
not use a package that works (Mancinelli et al., 2009).

Quality control. Let us now come to the problem of ensuring the quality of
a distribution and its packages. This can be divided into three main tasks (Di
Cosmo et al., 2006):

• Upstream monitoring ensures that the distribution package closely follows
the evolution of software development.

• Testing and integration, so the program works as expected in conjunction
with other packages in the distribution.

• Dependency management ensures that packages can be installed and up-
graded when new versions are produced, respecting the constraints imposed
by dependency metadata.

The lack of continuous quality support also leads to a decline in distribution
releases, which results in users and organisations not wanting to adopt new OS
distributions.

7.2 Linux kernel

A lot of the software related issues discussed in the Results chapter, are found
in Linux distributions. For instance, in Linux distributions, the two most pop-
ular open-source desktops, KDE and Gnome, can only configure some settings
themselves, so each release builds its manual application to configure settings.
As Linux is the most commonly used, it is essential to discuss the Linux kernel as
it is the fundamental component of the Linux operating system and the interface
between computer hardware and its processes. It exchanges data between them
and manages resources most effectively. A lot of challenges in Linux distributions
are dependent on the kernel due to the architecture type of how Linux is build.

Much research has been done to study the evolution mode of Linux, including
size growth, changes in kernel structure, and community characteristics. Linux
is a UNIX-like operating system that provides computer users with a free system
comparable to traditional UNIX systems like IBM AIX or Sun Solaris (Phillips,

42

7. Extension Chapter

2003). The script is mainly based on a selection of proprietary solutions and
suitable implementation tools. Linux kernel performs the job of memory man-
agement, process management, device drivers, and system security calls (IBM,
2021). The kernel runs on its own, where it allocates memory and keeps track
of where everything is stored. The applications interact with the kernel through
the system call interface (Hertel et al., 2003). Since every Linux distribution
contains core packages and can be compiled to meet almost any requirement, the
user needs to determine if the distribution is supported by other software, and
will run on the hardware. Linux also works on new Macs, but not possible to use
it for some of the older ones with bus technology. Some Linux distributions can
be extraordinarily tough and bulky to debug, even for those who develop them.
Several regressions occur in the kernel due to the lack of ability of developers to
check their modifications and test them on all viable software programs along
with their updates (RedHat, 2019).

Eventually, it would have been incomplete to discuss challenges of OS distribu-
tions without understanding Linux kernel. It is also critical to understand the
role of packages in development and release of open-source distributions.

43

Appendices

44

Appendix A: List of figures

A List of figures

Figures Caption Page

Figure 1.1 The evolving stages of a software distribution 5

Figure 1.2 Examples of distributions in growth and ma-
ture stages

6

Figure 2.1 Phases and steps of a SLR 10

Figure 2.2 SLR search process 12

Figure 2.3 Initial code system with respect to distribu-
tions

14

Figure 2.4 Code system of different challenges found 15

Figure 3.1 The impact of OSS adoption in technological
context

26

Figure 3.2 The impact of OSS adoption in organisa-
tional context

26

46

References

Acuna, S., Castro, J., Dieste, O. & Juristo, N. (2012). A systematic mapping
study on the open source software development process. 16th International
Conference on Evaluation & Assessment in Software Engineering (EASE
2012), 42–46. https://doi.org/10.1049/ic.2012.0005

Adams, B. (2016). An empirical study of integration activities in distributions of
open source software, 42.

Agerfalk, P. J., Deverell, A., Fitzgerald, B. & Morgan, L. (2005). Assessing the
role of open source software in the european secondary software sector:
A voice from industry [Please cite as:Agerfalk, P, Deverell, A, Fitzger-
ald, B and Morgan L (2005) Assessing the Role of OSS in the European
Secondary Software Sector, 1st International Conference on Open Source
Software, Genoa, Italy, July 2005]. 1st International Conference on Open
Source Software. https://mural.maynoothuniversity.ie/6641/

Alam, K. & Soomro, T. R. (2016). SINDH UNIVERSITY RESEARCH JOURNAL
(SCIENCE SERIES), 5.

Androutsellis Theotokis, S. (2010). Open source software: A survey from 10,000
feet. Foundations and Trends® in Technology, Information and Opera-
tions Management, 4 (3), 187–347. https://doi.org/10.1561/0200000026

Ansari, M. S. & Chaubey, A. K. (2014). Library automation & open source soft-
ware, 15.

Asklund, U. & Bendix, L. (2001). Configuration management for open source
software, 14.

Attilio, F., Di Nunzio, P., Di Gregorio, F. & Meo, A. R. (2006). A graphical in-
stallation system for the GNU/linux debian distribution [Series Title: IFIP
International Federation for Information Processing]. In E. Damiani, B.
Fitzgerald, W. Scacchi, M. Scotto & G. Succi (Eds.), Open source systems
(pp. 337–338). Springer US. https://doi.org/10.1007/0-387-34226-5_35

Boender, J. (2012). A formal study of free software distributions, 141.
Bonaccorsi, A., Lorenzi, D., Merito, M. & Rossi-Lamastra, C. (2007). Business

firms’ engagement in community projects. empirical evidence and further
developments of the research. First International Workshop on Emerging

47

https://doi.org/10.1049/ic.2012.0005
https://mural.maynoothuniversity.ie/6641/
https://doi.org/10.1561/0200000026
https://doi.org/10.1007/0-387-34226-5_35

Appendix References

Trends in FLOSS Research and Development, FLOSS’07, 13–13. https:
//doi.org/10.1109/FLOSS.2007.3

Breiling, B., Dieber, B. & Schartner, P. (2017). Secure communication for the
robot operating system. 2017 Annual IEEE International Systems Con-
ference (SysCon), 1–6. https://doi.org/10.1109/SYSCON.2017.7934755

Cesar Brandão Gomes da Silva, A., de Figueiredo Carneiro, G., Brito e Abreu, F.
& Pessoa Monteiro, M. (2017). Frequent releases in open source software:
A systematic review. Information, 8 (3), 109. https://doi.org/10.3390/
info8030109

Chau, P. Y. K. & Tam, K. Y. (1997). Factors affecting the adoption of open
systems: An exploratory study. MIS Quarterly, 21 (1), 1. https://doi.org/
10.2307/249740

Clark, B. (2004). Distribution of software. https : / /docplayer . net / 10534571 -
Distribution-of-software.html

Constantinescu, M. (2019). The enterprise challenge to OpenStack adoption and
how to address it, 2.

Copeland, B. (2015, December 15). Enterprises and open source: The important
role of commercial distributions. https : //www.activestate . com/blog/
enterprises-and-open-source-important-role-commercial-distributions/

Copeland, B. (2016, January 6). Enterprises and open source: The important role
of commercial distributions. https ://thenewstack . io/enterprises - open-
source-important-role-commercial-distributions/

D2iQ. (2021). Limitations of kubernetes. https://docs.d2iq.com/mesosphere/
dcos/services/kubernetes/2.4.9-1.15.10/limitations/

Dedrick, J. & West, J. (2004). An exploratory study into open source platform
adoption. 37th Annual Hawaii International Conference on System Sci-
ences, 2004. Proceedings of the, 10 pp. https://doi.org/10.1109/HICSS.
2004.1265633

Di Cerbo, F., Scotto, M., Sillitti, A., Succi, G. & Vernazza, T. (2007). Toward a
GNU/linux distribution for corporate environments: In S. K. Sowe, I. G.
Stamelos & I. Samoladas (Eds.), Emerging free and open source software
practices (pp. 215–236). IGI Global. https ://doi .org/10.4018/978- 1-
59904-210-7.ch010

Di Cosmo, R., Durak, B., Leroy, X. & Mancinelli, F. (2006). Maintaining large
software distributions: New challenges from the foss era.

Diener, D. (2018, September 18). How to upgrade fedora linux. https://www.
addictivetips.com/ubuntu-linux-tips/upgrade-fedora-linux/

Estefo, P., Simmonds, J., Robbes, R. & Fabry, J. (2019). The robot operating
system: Package reuse and community dynamics. Journal of Systems and
Software, 151, 226–242. https://doi.org/10.1016/j.jss.2019.02.024

Feller, J. & Fitzgerald, B. (2000). A FRAMEWORK ANALYSIS OF THE OPEN
SOURCE DEVELOPMENT PARADIGM, 13.

48

https://doi.org/10.1109/FLOSS.2007.3
https://doi.org/10.1109/FLOSS.2007.3
https://doi.org/10.1109/SYSCON.2017.7934755
https://doi.org/10.3390/info8030109
https://doi.org/10.3390/info8030109
https://doi.org/10.2307/249740
https://doi.org/10.2307/249740
https://docplayer.net/10534571-Distribution-of-software.html
https://docplayer.net/10534571-Distribution-of-software.html
https://www.activestate.com/blog/enterprises-and-open-source-important-role-commercial-distributions/
https://www.activestate.com/blog/enterprises-and-open-source-important-role-commercial-distributions/
https://thenewstack.io/enterprises-open-source-important-role-commercial-distributions/
https://thenewstack.io/enterprises-open-source-important-role-commercial-distributions/
https://docs.d2iq.com/mesosphere/dcos/services/kubernetes/2.4.9-1.15.10/limitations/
https://docs.d2iq.com/mesosphere/dcos/services/kubernetes/2.4.9-1.15.10/limitations/
https://doi.org/10.1109/HICSS.2004.1265633
https://doi.org/10.1109/HICSS.2004.1265633
https://doi.org/10.4018/978-1-59904-210-7.ch010
https://doi.org/10.4018/978-1-59904-210-7.ch010
https://www.addictivetips.com/ubuntu-linux-tips/upgrade-fedora-linux/
https://www.addictivetips.com/ubuntu-linux-tips/upgrade-fedora-linux/
https://doi.org/10.1016/j.jss.2019.02.024

Appendix References

Foundjem, A. & Adams, B. (2021). Release synchronization in software ecosys-
tems, 52.

German, D. M., Di Penta, M. & Davies, J. (2010). Understanding and auditing
the licensing of open source software distributions. 2010 IEEE 18th Inter-
national Conference on Program Comprehension, 84–93. https://doi.org/
10.1109/ICPC.2010.48

Hauge, Ø., Ayala, C. & Conradi, R. (2010). Adoption of open source software in
software-intensive organizations – a systematic literature review. Inform-
ation and Software Technology, 52 (11), 1133–1154. https://doi.org/10.
1016/j.infsof.2010.05.008

Hauge, Ø., Sørensen, C.-F. & Røsdal, A. (2007). Surveying industrial roles in open
source software development [Series Title: IFIP — The International Fed-
eration for Information Processing]. In J. Feller, B. Fitzgerald, W. Scacchi
& A. Sillitti (Eds.), Open source development, adoption and innovation
(pp. 259–264). Springer US. https://doi.org/10.1007/978-0-387-72486-
7_25

Hecht, L. E. & Clark, L. (2018). Survey: Open source programs are a best practice
among large companies. https : // thenewstack . io/ survey - open - source -
programs-are-a-best-practice-among-large-companies/

Hertel, G., Niedner, S. & Herrmann, S. (2003). Motivation of software developers
in open source projects: An internet-based survey of contributors to the
linux kernel. Research Policy, 32 (7), 1159–1177. https://doi.org/10.1016/
S0048-7333(03)00047-7

Hurley, D. (2014, June 24). 12 challenges for open source projects. https : / /
opensource.com/life/14/6/12-challenges-open-source-projects

IBM. (2021). Major linux problems on the desktop. https://www.tech- insider.
org/linux/research/acrobat/010321

Kafka, A. (2121, April 6). Top 10 problems when using apache kafka. https :
//pandio.com/blog/top-10-problems-when-using-apache-kafka/

Kahani, N., Bagherzadeh, M., Dingel, J. & Cordy, J. R. (2016). The problems
with eclipse modeling tools: A topic analysis of eclipse forums. Proceed-
ings of the ACM/IEEE 19th International Conference on Model Driven
Engineering Languages and Systems, 227–237. https://doi.org/10.1145/
2976767.2976773

Kaur, R., Kaur Chahal, K. & Saini, M. (2020). Understanding community parti-
cipation and engagement in open source software projects: A systematic
mapping study. Journal of King Saud University - Computer and Inform-
ation Sciences, S1319157820305139. https://doi .org/10.1016/j . jksuci .
2020.10.020

Khan, M. A. & UrRehman, F. (2012). Free and open source software: Evolution,
benefits and characteristics. 1 (3), 7.

Kitchenham, B. A. & Charters, S. (2007). Guidelines for performing systematic
literature reviews in software engineering (tech. rep. EBSE 2007-001).

49

https://doi.org/10.1109/ICPC.2010.48
https://doi.org/10.1109/ICPC.2010.48
https://doi.org/10.1016/j.infsof.2010.05.008
https://doi.org/10.1016/j.infsof.2010.05.008
https://doi.org/10.1007/978-0-387-72486-7_25
https://doi.org/10.1007/978-0-387-72486-7_25
https://thenewstack.io/survey-open-source-programs-are-a-best-practice-among-large-companies/
https://thenewstack.io/survey-open-source-programs-are-a-best-practice-among-large-companies/
https://doi.org/10.1016/S0048-7333(03)00047-7
https://doi.org/10.1016/S0048-7333(03)00047-7
https://opensource.com/life/14/6/12-challenges-open-source-projects
https://opensource.com/life/14/6/12-challenges-open-source-projects
https://www.tech-insider.org/linux/research/acrobat/010321
https://www.tech-insider.org/linux/research/acrobat/010321
https://pandio.com/blog/top-10-problems-when-using-apache-kafka/
https://pandio.com/blog/top-10-problems-when-using-apache-kafka/
https://doi.org/10.1145/2976767.2976773
https://doi.org/10.1145/2976767.2976773
https://doi.org/10.1016/j.jksuci.2020.10.020
https://doi.org/10.1016/j.jksuci.2020.10.020

Appendix References

Keele University and Durham University Joint Report. https : //www.
elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf

Kogut, B. (2001). Open-source software development and distributed innovation.
Oxford Review of Economic Policy, 17 (2), 248–264. https://doi.org/10.
1093/oxrep/17.2.248

Kohgadai, A. (2020, October 1). Four container and kubernetes security risks
you should mitigate. https ://www.stackrox.com/post/2020/10/four-
container-and-kubernetes-security-risks-you-should-mitigate/

Lehmann, R. (2017). 4 OpenStack monitoring challenges, tips & tricks, 4.
Library, B. U. (2021).Guide to searching. https://libguides.brown.edu/searching/

citation
Mancinelli, F., Boender, J., di Cosmo, R., Vouillon, J., Durak, B., Leroy, X. &

Treinen, R. (2006). Managing the complexity of large free and open source
package-based software distributions. 21st IEEE/ACM International Con-
ference on Automated Software Engineering (ASE’06), 199–208. https :
//doi.org/10.1109/ASE.2006.49

Mancinelli, F., Boender, J., di Cosmo, R., Vouillon, J., Durak, B., Leroy, X. &
Treinen, R. (2009). Managing the complexity of large free and open source
package-based software distributions. 21st IEEE/ACM International Con-
ference on Automated Software Engineering (ASE’06), 199–208. https :
//doi.org/10.1109/ASE.2009.49

Martin, K. & Hoffman, B. (2007). An open source approach to developing software
in a small organization. IEEE Software, 24 (1), 46–53. https://doi.org/10.
1109/MS.2007.5

MAXQDA. (2021). Maxqda in research. https://www.maxqda.com/
Mockus, A., Fielding, R. T. & Herbsleb, J. (2000). A case study of open source

software development: The apache server. Proceedings of the 22nd inter-
national conference on Software engineering - ICSE ’00, 263–272. https:
//doi.org/10.1145/337180.337209

Morgan, L. & Finnegan, P. (2007). How perceptions of open source software
influence adoption: An exploratory study, 13.

Napoleao, B. M., Petrillo, F. & Halle, S. (2020). Open source software develop-
ment process: A systematic review. 2020 IEEE 24th International Enter-
prise Distributed Object Computing Conference (EDOC), 135–144. https:
//doi.org/10.1109/EDOC49727.2020.00025

Nasserifar, J. (2016). Open source software ecosystem: A systematic literature
review (Doctoral dissertation). https://doi.org/10.13140/RG.2.1.2254.
1049

Osterloh, M. & Rota, S. (2007). Open source software development—just another
case of collective invention? Research Policy, 36 (2), 157–171. https://doi.
org/10.1016/j.respol.2006.10.004

Panda, D. (2021). The top challenges of implementing continuous delivery with
kubernetes, 5.

50

https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://doi.org/10.1093/oxrep/17.2.248
https://doi.org/10.1093/oxrep/17.2.248
https://www.stackrox.com/post/2020/10/four-container-and-kubernetes-security-risks-you-should-mitigate/
https://www.stackrox.com/post/2020/10/four-container-and-kubernetes-security-risks-you-should-mitigate/
https://libguides.brown.edu/searching/citation
https://libguides.brown.edu/searching/citation
https://doi.org/10.1109/ASE.2006.49
https://doi.org/10.1109/ASE.2006.49
https://doi.org/10.1109/ASE.2009.49
https://doi.org/10.1109/ASE.2009.49
https://doi.org/10.1109/MS.2007.5
https://doi.org/10.1109/MS.2007.5
https://www.maxqda.com/
https://doi.org/10.1145/337180.337209
https://doi.org/10.1145/337180.337209
https://doi.org/10.1109/EDOC49727.2020.00025
https://doi.org/10.1109/EDOC49727.2020.00025
https://doi.org/10.13140/RG.2.1.2254.1049
https://doi.org/10.13140/RG.2.1.2254.1049
https://doi.org/10.1016/j.respol.2006.10.004
https://doi.org/10.1016/j.respol.2006.10.004

Appendix References

Perens, B., Sroka, M. & Stu, M. (1998). The open source definition, 9.
Peters, T. (2004). Distribution of software. https : / / docplayer . net / 7506702 -

Choosing-an-open-source-license.html
Phillips, D. (2003). Computer music and the linux operating system: A report

from the front. Computer Music Journal, 27 (4), 27–42. https://doi.org/
10.1162/014892603322730488

Pritchett, B. (2020). What we’ve learned using OpenShift container platform in
a hybrid cloud environment for red hat IT, 3.

Rajagopalan, R. (2020, July 18). Challenges and requirements for container-
based applications and application services. https://cloud.redhat.com/
blog/challenges-and-requirements-for-container-based-applications-and-
application-services

Randhawa, S. (2008). Open source software and libraries, 10.
Raymond, E. S. (2000). The cathedral and the bazaar, 59.
RedHat. (2019). What is the linux kernel? https://www.redhat.com/en/topics/

linux/what-is-the-linux-kernel
Reffell, C. (2021, March 23). 10 business sectors where top open source plat-

forms have an impact. https://crowdsourcingweek.com/blog/10-business-
sectors-where-top-open-source-platforms-have-an-impact/

Riehle, D. (2009). The commercial open source business model [Series Title: Lec-
ture Notes in Business Information Processing]. In M. L. Nelson, M. J.
Shaw & T. J. Strader (Eds.), Value creation in e-business management
(pp. 18–30). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-
642-03132-8_2

Riehle, D. (2021, May 29). Open source distributions by life-cycle. https : / /
dirkriehle . com/2021/05/29/open- source - distributions - by- life - cycle/
#more-14848

Sardina. (2019, April 16). The enterprise challenge to openstack adoption and how
to address it. https://faun.pub/the-enterprise-challenge-to-openstack-
adoption-and-how-to-address-it-dae983bbb1de

Shiozaki, M. (2016, October 14). The top 3 openstack benefits and challenges.
https ://www.stratoscale . com/blog/openstack/the - top- 3 - openstack-
benefits-and-challenges/

Silakov, D. (2008). Linux distributions and applications analysis during linux
standard base development. https://doi.org/10.15514/SYRCOSE-2008-
2-2

Stallman, R. & Free Software Foundation (Cambridge, M. (2015). Free software
free society: Selected essays of richard m. stallman [OCLC: 927962245].

Staples, M. & Niazi, M. (2006). Experiences using systematic review guidelines.
https://doi.org/10.14236/ewic/EASE2006.9

Stol, K.-J. & Ali Babar, M. (2010). Challenges in using open source software in
product development: A review of the literature, 17–22. https://doi.org/
10.1145/1833272.1833276

51

https://docplayer.net/7506702-Choosing-an-open-source-license.html
https://docplayer.net/7506702-Choosing-an-open-source-license.html
https://doi.org/10.1162/014892603322730488
https://doi.org/10.1162/014892603322730488
https://cloud.redhat.com/blog/challenges-and-requirements-for-container-based-applications-and-application-services
https://cloud.redhat.com/blog/challenges-and-requirements-for-container-based-applications-and-application-services
https://cloud.redhat.com/blog/challenges-and-requirements-for-container-based-applications-and-application-services
https://www.redhat.com/en/topics/linux/what-is-the-linux-kernel
https://www.redhat.com/en/topics/linux/what-is-the-linux-kernel
https://crowdsourcingweek.com/blog/10-business-sectors-where-top-open-source-platforms-have-an-impact/
https://crowdsourcingweek.com/blog/10-business-sectors-where-top-open-source-platforms-have-an-impact/
https://doi.org/10.1007/978-3-642-03132-8_2
https://doi.org/10.1007/978-3-642-03132-8_2
https://dirkriehle.com/2021/05/29/open-source-distributions-by-life-cycle/#more-14848
https://dirkriehle.com/2021/05/29/open-source-distributions-by-life-cycle/#more-14848
https://dirkriehle.com/2021/05/29/open-source-distributions-by-life-cycle/#more-14848
https://faun.pub/the-enterprise-challenge-to-openstack-adoption-and-how-to-address-it-dae983bbb1de
https://faun.pub/the-enterprise-challenge-to-openstack-adoption-and-how-to-address-it-dae983bbb1de
https://www.stratoscale.com/blog/openstack/the-top-3-openstack-benefits-and-challenges/
https://www.stratoscale.com/blog/openstack/the-top-3-openstack-benefits-and-challenges/
https://doi.org/10.15514/SYRCOSE-2008-2-2
https://doi.org/10.15514/SYRCOSE-2008-2-2
https://doi.org/10.14236/ewic/EASE2006.9
https://doi.org/10.1145/1833272.1833276
https://doi.org/10.1145/1833272.1833276

Appendix References

Tashkinov, A. S. (2021). Major linux problems on the desktop. https://itvision.
altervista.org/why.linux.is.not.ready.for.the.desktop.current.html

Thomas. (2019, February 19). The benefits and challenges of building an openstack
based cloud. https://www.eurovps.com/blog/openstack-cloud-benefits-
challenges/

Tozzi, C. (2020, August 5). 8 problems with the kubernetes architecture. https://
www.itprotoday.com/hybrid-cloud/8-problems-kubernetes-architecture

Unterkalmsteiner, M., Gorschek, T., Islam, A., Cheng, C., Permadi, R. & Feldt, R.
(2011). Evaluation and measurement of software process improvement—a
systematic literature review. IEEE Transactions on Software Engineering,
38, 398–424. https://doi.org/10.1109/TSE.2011.26

van der Linden, F., Lundell, B. & Marttiin, P. (2009). Commodification of in-
dustrial software: A case for open source. IEEE Software, 26 (4), 77–83.
https://doi.org/10.1109/MS.2009.88

Ven, K. & Mannaert, H. (2008). Challenges and strategies in the use of open
source software by independent software vendors. Inf. Softw. Technol.,
50 (9–10), 991–1002. https://doi.org/10.1016/j.infsof.2007.09.001

Ven, K., Verelst, J. & Mannaert, H. (2008). Should you adopt open source soft-
ware? IEEE Software, 25 (3), 54–59. https://doi.org/10.1109/MS.2008.73

von Krogh, G. & von Hippel, E. (2006). The promise of research on open source
software. Management Science, 52 (7), 975–983. https://doi.org/10.1287/
mnsc.1060.0560

Weikert, F. & Riehle, D. (2013). A model of commercial open source software
product features. Software business. from physical products to software
services and solutions (pp. 90–101). Springer.

Wikipedia: NVIDIA. (2021). Nvidia — Wikipedia, the free encyclopedia [[Online;
accessed 10-October-2021]]. https://en.wikipedia.org/w/index.php?title=
Nvidia&oldid=1048769084

Wikipedia: Xorg. (2021). X.org server — Wikipedia, the free encyclopedia [[On-
line; accessed 10-October-2021]]. https://en.wikipedia.org/w/index.php?
title=X.Org_Server&oldid=1048715352

Yu, L. (2007). Understanding component co-evolution with a study on linux.
Empirical Software Engineering, 12 (2), 123–141. https : / /doi . org / 10 .
1007/s10664-006-9000-x

52

https://itvision.altervista.org/why.linux.is.not.ready.for.the.desktop.current.html
https://itvision.altervista.org/why.linux.is.not.ready.for.the.desktop.current.html
https://www.eurovps.com/blog/openstack-cloud-benefits-challenges/
https://www.eurovps.com/blog/openstack-cloud-benefits-challenges/
https://www.itprotoday.com/hybrid-cloud/8-problems-kubernetes-architecture
https://www.itprotoday.com/hybrid-cloud/8-problems-kubernetes-architecture
https://doi.org/10.1109/TSE.2011.26
https://doi.org/10.1109/MS.2009.88
https://doi.org/10.1016/j.infsof.2007.09.001
https://doi.org/10.1109/MS.2008.73
https://doi.org/10.1287/mnsc.1060.0560
https://doi.org/10.1287/mnsc.1060.0560
https://en.wikipedia.org/w/index.php?title=Nvidia&oldid=1048769084
https://en.wikipedia.org/w/index.php?title=Nvidia&oldid=1048769084
https://en.wikipedia.org/w/index.php?title=X.Org_Server&oldid=1048715352
https://en.wikipedia.org/w/index.php?title=X.Org_Server&oldid=1048715352
https://doi.org/10.1007/s10664-006-9000-x
https://doi.org/10.1007/s10664-006-9000-x

	Introduction
	Types of software
	Classification of Distributions
	The early/growth stage
	The mature stage
	Importance of Commercial Distributions

	Research Method
	Research Questions
	Literature Review Plan
	Literature survey
	Search Process

	Qualitative Data Analysis (QDA)
	Code System

	Results and Discussion
	Challenges of OS Distributions
	Software
	Hardware
	Maintenance
	Reliability
	Organisational
	License
	Security

	Configuration Management
	Version Control
	Build Management
	Configuration Selection
	Workspace Management
	Concurrency Control
	Change Management

	Conclusion
	Future work
	Limitations
	Extension Chapter
	Packages
	Linux kernel

	Appendices
	List of figures

	References

