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Abstract

The JValue project group is developing a modeling ecosystem for Extract Trans-
form Load (ETL) processes. Part of this ecosystem is a description model for
those. This thesis suggests a conversion process from the description model into
an Apache Kafka runtime, described in a cloud-native format, like Docker Com-
pose. The conversion is implemented as a library and done in a multi-phase
approach as known from classical compilers. In the first step, the description
language is converted into a runtime independent intermediate description and
afterward in a description of a concrete runtime, in this case, Kafka. The multi-
phase approach minimizes the implementation work for additional runtimes and
allows runtime independent optimization and analysis. The goal for the gener-
ated runtime is to use existing Kafka components, which is only partially possible
due to the complexity of the description model.
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1 Introduction

Apache Kafka is used by 60% of the Fortune 100 companies. Therefore it is
one of the most popular open-source stream-processing software(‘Apache Kafka
powerby’, n.d.). Kafka allows reading and writing event streams, provides Application
Programming Interfaces (APIs) to extract or load data from other systems, and
provides APIs for data transformation. The process of data extraction, data
transformation, and data loading is often referred to as ETL.

The vision of the JValue1 project is to provide an open-source ETL pipeline
that extracts open data, optimizes it, and makes it available for developers. This
thesis introduces a library that converts an ETL process’s description into a Kafka
system’s concrete configuration.

As the domain of this conversion, a newly arising description model for ETL
processes, the so-called Kernel, was used. The Kernel is a description model,
similar to the class-object model of object-orientated programming languages,
developed by the JValue group. Features of the model are high flexibility in the
descriptive capabilities and easy extensibility via user-defined packages.

The conversion uses a multi-phase design as it is used for classical software com-
pilers. A process based on the multi-phase design of classical software compilers
is used for the conversion. The input description (Kernel) is converted into an in-
termediate description independent of the final runtime (Kafka). This description
allows optimization and analysis of the ETL process. The final phase converts
the intermediate description into a description of concrete Kafka components. A
design goal was to use existing components for Kafka and a cloud-native design.

An ETL package for the Kernel was created for the conversion implementation, as
no existing one was available. The package supports file and HyperText Transfer
Protocol (HTTP) sources, parsing of Comma Separated Values (CSV), trans-
formation via JavaScript, and output via HTTP and a Representational State
Transfer (REST) web server.

This thesis does not focus on the deployment, installation, and management
1https://jvalue.org/
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1. Introduction

of Kafka Components, only on the conversion process itself. For deployment,
installation, and management an already existing solution - Docker Compose -
was chosen with the flexibility to add support for other solutions in mind. This
flexibility was kept in mind for adding support to other streaming engines.

The final conversion library can load and enrich data in a real-world scenario.
This is shown with an example data source containing information of COVID-19
cases as a CSV list published on GitHub. This list is fetched and processed into
a well-defined JavaScript Object Notation (JSON) structure and published as a
REST endpoint.

Lastly, problems are shown that arise from the high flexibility the Kernel provides
and the chosen approach. An alternative approach that could solve those prob-
lems is suggested. The alternative one is the usage of components that are spe-
cially designed and implemented for the Kernel.
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2 Fundamentals

This chapter gives an overview of this thesis’s used technologies and concepts.
The first section introduces ETL, followed by an overview of the Apache Kafka
ecosystem, orchestration in the IT domain, and the JValue Open Data Service
(ODS) with its description component, the Kernel, at the end.

2.1 Extract Transform Load

ETL describes the process of data extraction, transformation, and loading. An
ETL system extracts data from one or multiple source systems. Examples of
those systems are databases, files, and the semantic web. The next step in the
ETL process is the transformation of the data. Typical transformation tasks
are data quality and consistency enforcement and the combination of different
data sources. Finally, the data is loaded into one or multiple target systems in
a presentation-ready format and can be easily used by application developers or
end-users (Kimball & Caserta, 2011, p. xxi).

2.2 Apache Kafka

Apache Kafka implements a publish/subscribe (pub/sub) messaging system. A
pub/sub messaging system is where a sender (producer, publisher) publishes mes-
sages not explicitly directed to a receiver (consumer, subscriber). The sender clas-
sifies its messages so that a receiver can subscribe to specific classes of messages.
The messaging system notifies the receiver of new messages in the subscribed
classes. An everyday use for pub/sub-system is the field of enterprise application
integration (Narkhede et al., 2017, p. 1).

2.2.1 The Basics of Apache Kafka

A message in Kafka consists of an array of bytes and can have an optional key
that also consists of bytes (Narkhede et al., 2017, p. 4).
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2. Fundamentals
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Figure 2.1: The structure of a message, of a topic, and a consumer group in
Kafka

Messages in Kafka are classified into topics. A topic is an append-only stream
of messages. Every topic has a name and is parted into at least one partition.
A partition is the smallest unit of a message stream in Kafka. Messages have a
strict order in a partition but not in a stream (topic). The message key is used to
sort the messages into a partition. Kafka achieves scaling by sharing partitions
across multiple servers (brokers) (Narkhede et al., 2017, p. 5).

The basic clients of Kafka are consumers and producers. A producer creates
messages in a topic (Narkhede et al., 2017, p. 43). An example for a producer
could be a temperature sensor that reports its measured temperature and location
in cyclic intervals into a topic "temps". Consumers are organized into groups and
read messages from a topic. Every member of the consumer group gets a fixed set
of partitions assigned which messages it consumes (Narkhede et al., 2017, p. 64).
For example, one consumer group can read the temperature values and publish
them on a website, another could send a notification if the value reaches a specific
threshold. A visual representation of this process can be seen in fig. 2.1.

Kafka provides persistent data retention and allows the definition of retention
rules per topic. A consumer group that goes offline because of a failure or main-
tenance will not miss any messages. The retention rules can specify a maximum
size or timespan the message is persisted (Narkhede et al., 2017, p. 10). If the
limit is reached, Kafka deletes those messages or performs compaction of the
topic. Compaction removes messages that share a key and only keeps the latest
message with this key available; this allows using Kafka as a data storage.

2.2.2 Kafka Connect

Kafka Connect provides a more sophisticated client and runtime. It covers the
extract and load steps of the ETL process and provides developer-friendly APIs
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2. Fundamentals

for scalable and failure-tolerant integration of other data sources. The core API
consists of two interfaces Connector and Task. The connector’s job is to break
down the work into tasks that multiple workers then execute. An example of a
task could be "fetch row with id 123 from the database". A worker picks up this
task and executes it (Narkhede et al., 2017, pp. 152–153). There are two types of
connectors sources and sinks. A source connector is responsible for moving data
into Kafka, a sink connector out of Kafka.

2.2.3 Kafka Streams

The Kafka Stream covers the missing transform part of the ETL process. It is a
library that allows developers to write applications for processing messages out
of Kafka and storing them back into Kafka.

The Streams API allows designing a topology in the form of a Directed Acyclic
Graph (DAG) that describes messages’ transformation. The topology can contain
different processors like filters, mapping, aggregates, and others (Narkhede et al.,
2017, pp. 272–273). In contrast to the Kafka Connect library, there is no runtime
provided.

2.2.4 Kafka Message Data Format

The Connect and Streams APIs of Kafka allows the developer to define a serial-
izer/deserializer for messages. Internally Kafka stores messages as a byte array,
but the format of those messages is often JSON or Avro1. A common approach
for messages in Kafka is to store the schema definition externally in a schema
registry and add a reference to the schema in the first bytes of the message. The
serializer and deserializer are aware of those bytes and can look up the schema
and validate the messages.

2.3 Mechanics of Software Compilers

A compiler is a piece of software that translates text written in a programming
language into a form that can be executed by a computer (Aho et al., 2007,
p. 1). Internally it is organized into different phases. The first one starts with
a character stream as input. The stream moves through multiple phases till
an intermediate representation is generated (front-end of the compiler). The
intermediate representation is a platform-independent program description that
can be used to apply optimizations. The compilation process continues with the
synthesis of the intermediate representation to the target-machine code (back-
end) (Aho et al., 2007, pp. 4–5)

1https://avro.apache.org/
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2.4 Orchestration

In IT, orchestration manages different resources like containers, volumes, and
networks. A system that fulfills this task is called an orchestrator. A container is
a bundle of software that is isolated. In contrast to a virtual machine, a container
shares the host’s operating system Kernel, resulting in less resource usage.

A famous container runtime is the Docker Engine2. In the case of Docker, a
container is created from an image. An image defines the filesystem, environment
variables, and startup command of the container. Docker images use a layered
design, which means a docker image can extend an already existing image. The
layered design simplifies the packaging of applications. A Java application, for
example, maybe based on a Java runtime image, which may be based on an image
containing a Linux distribution like Ubuntu.

A prominent orchestrator for the Docker Engine is Docker Compose3. It takes a
description of resources as input and creates, updates, or removes resources based
on this file. It supports managing a single node docker installation and cluster
configuration based on Docker Swarm4.

2.5 The Kernel

A topic of the current research of the JValue project group is a generic framework
for data representation and data processing. The framework contains multiple
components. One of them is a description model for data representation and
processing, the so-called Kernel. When this thesis was written, the Kernel was
undergoing rapid development and changes, so the following section covers the
state of the Kernel in March 2022.

The Kernel defines itself by providing three base objects MetaType, Element, and
ElementType. ElementType allows defining polymorphism by a field called ex-
tends. An extended object defines all the properties the object it extends from
defines. This concept is equivalent to the concept known in object-orientated
programming, where you can extend a class. Element defines a relation type,
which stores the type an element has. Figure 2.2 shows the UML diagram of
Element and ElementType in the TypeScript implementation of the kernel. An
object can/must specify values for properties/relations its type defines. A valid
object for the type relation is every object that extends from ElementType, in-
cluding ElementType itself. ElementType extends Element, so an ElementType
also has an type. The type ElementType has is the MetaType, which extends

2https://docs.docker.com/engine/
3https://docs.docker.com/compose/
4https://docs.docker.com/engine/swarm/
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Element

+name: Value<string> | undefined
+type: ElementType | undefined
+path: string | undefined

+onPathChanged(): void
+onPathReset(): void
+updateFromTypeChange(): void

ElementType

+subTypes: Set<ElementType>
+implementation: Constructor<Element> | undefined
+superType: ElementType | undefined

+createInstance(): T
+createSubType(): ElementType

Figure 2.2: UML Diagram of Element and ElementType in the TypeScript
implementation of the Kernel.

ElementType. The extension of ElementType is needed, as types need to be an
ElementType. As MetaType extends ElementType, which extends Element, Meta-
Type also needs to have a type. MetaType now can use itself as its type, as it is an
ElementType. Element is of type ElementType, as ElementType extends Element
it also needs a type, which is ElementType. These self-referencing definitions of
the base elements are the foundation of the Kernel. A visual representation of
this can be seen in fig. 2.3.

type
Element

defines type type

extend ElementType 
defines extend

extend
MetaType type

Figure 2.3: Schema of the self-referencing definitions of MetaType, ElementType,
and Element

Looking from the perspective of an object-orientated language at the Kernel is
not intuitive at the beginning. In an object-orientated language like Java, there
is no way to use the type relation as in the Kernel. A developer creates a class
model based only on the extension of a particular object, like in the case of Java:
java.lang.Object. The analogy of objects of ElementType are classes in Java,
exposed via Reflection or the getClass() method of an object. At runtime, there
are only instances of those objects (classes). In the Kernel model, the developer
needs to think of the type relation in multiple layers.

To clear up the understanding of the Kernel model, the following contains a
simplified graph-orientated description of the Kernel, as the relations type and
extends can be seen as edges of a directed graph. In graph theory, the Kernel
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2. Fundamentals

can be considered as the following graph:

K = (N,E, T ) (2.1)

where N are all elements of the Kernel, E are the edges of the extension/inher-
itance tree (created by the extends relation), and T are the edges of the type
tree (created by the type relation). Every Kernel contains a special element, the
so-called MetaType M .

{M} ⊆ N (2.2)

The set T , which contains the type tree, can be defined as following:

T ⊆ {(x, y) | x, y ∈ N and x ̸= y} ∪ {(M,M)} (2.3)
∀(x, y) ∈ T ∃(x′, y′) ∈ T : (y = x′) (2.4)
∀n ∈ N ∃(x, y) ∈ E : y = n (2.5)
∀(x, y), (x′, y′) ∈ E : y = y′ → x = x′ (2.6)

eq. (2.3) defines the set T as tuples of elements in N . An entry (x, y) can be
read as y is of type x or y is an instance of x. Equation (2.8) enforces that the
top-most type is always M . Equation (2.5) enforces that every element of N has
a type and eq. (2.6) prevents elements from having multiple types.

The set E which defines the extensions/inheritance of elements can be defined as
following:

E ⊆ {(x, y) | x, y ∈ N and x ̸= y} (2.7)
∀(x, y), (x′, y′) ∈ E : y = y′ → x = x′ (2.8)

The rules for extensions are less strict. There is no topmost element every element
must extend from, and there can be elements that extend nothing. Although
it is not enforced, all elements should extend from Element, from a semantic
perspective.

Based on this definition of the Kernel, we can define additional properties. One of
those properties is the model level a node is located in: meta-language, language,
model, and instances. Every time an instance of an element is created, the node
steps down in its level. Table 2.1 shows all model levels and the distance the
nodes have to the MetaType. The instance-level is the lowest level, as a type
must be of type ElementType, which are objects located in the model-level.

Compared to an object-orientated programming language, the programming lan-
guage works on the model-level. The developer describes and creates its applica-
tion only at this level. At runtime, instances are created of the developer’s model
objects (classes).

Knowledge of the level of element in the Kernel is helpful for troubleshooting
during development as most converted elements are located on the model layer.

8



2. Fundamentals

Level d(n,M)
meta-language 0

language 1
model 2

instance 3

Table 2.1: Model-level of Kernel elements based on the distance to the Meta-
Type, given by the type relation.

Currently, a reference implementation of the Kernel exists in the form of a
Typescript library. The reference implementation allows the import and export
of the Kernel in JSON format.

The reference implementation of the Kernel also provides a Kernel package, the
so-called system-package with the following build-in elements:

• MetaType: The topmost type in the type tree. Its type is itself. It extends
the ElementType.

• ElementType: The type a type has. Itself is of type MetaType. It extends
the Element.

• Element: A Kernel element; provides basic properties of an element as a
path it is located in and a name. Every element that can be added to a
Package needs to extend from Element.

• Package: A Kernel package; provides a list of child elements and packages.
Allows the organization and storage of other elements and packages.

• ValueType: The type a value has; contains a schema of the value and a
list of child value types. It extends from an element.

• (Int|String|...)Value: Represents a concrete value, is of type ValueType.
Defines a concrete schema of the value it defines and does not extend from
an element.

9



2. Fundamentals

MetaType

ElementType

Element

Package ValueType

Value

BoolValue IntValue FloatValue CharValue StringValue ComplexValueAnyValue

AnyBoolValue AnyIntValue AnyFloatValue AnyCharValue AnyStringValue AnyComplexValue

HttpUrlValue CartesianCoordinate2dValue Area2dValue

Figure 2.4: Overview of the Kernel elements of the system package, colored by
their level: blue is meta-language, red is language, yellow is model, and green
refers to instance level. A red arrow specifies the extends relation a green the
type relation.

10



3 Requirements

This thesis provides a library that converts a Kernel from the ODS into a runnable
configuration of components related to the Kafka ecosystem. As there are many
ways to achieve a conversion, some requirements were defined to specify goals
and non-goals of the library. Those requirements can be categorized into non-
functional and functional requirements.

3.1 Non Functional Requirements

A non-functional requirement affects the whole architecture of the system and
constrains the development of its components(Roman, 1985).

3.1.1 Usage of existing Kafka Components

One of those requirements is the usage of existing Kafka Components. The most
straightforward approach to execute the Kernel with Kafka would be the usage of
Kafka as a simple database. The application would implement a consumer and
producer and handle all the work internally. The problem with this approach
is that many benefits that the Kafka ecosystem provides are not used. This
approach would lose the main benefit of Kafka Connect and Kafka Streams’
scalability. Another problem will be the high implementation and maintenance
work required if all logic is implemented from scratch. One design goal was to
use existing established components available in the Kafka ecosystem to address
the mentioned problems.

3.1.2 Extensibility to Other Runtimes

The Kernel is designed to be a universal description of ETL processes. Kafka
may only be one runtime that is used to implement the Kernel. To keep the work
needed to add support for other runtimes low, the library should be designed so
that adding other runtimes is easy. Possible future runtime could, for example,

11
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be Spark1 or Flink2.

3.1.3 Providing an Example Project

Another goal is to provide an example project that uses the library. The purpose
of the example project is to evaluate the practicability of the library and provide
a usage example.

3.2 Functional Requirements

A functional requirement is a requirement that specifies a function of the system
by describing the input and the expected output(Roman, 1985).

3.2.1 Cloud-Native Application Design

A cloud-native approach simplifies the deployment of applications. A core feature
of cloud-native applications is the usage of containers. A container is an image
of an operating system with an installed and pre-configured application. At
runtime, it shares the Kernel of the host system. It simplifies the deployment
and update of an application (Pamidi & Vasudeva, 2015). An ETL pipeline may
include many different services with complex configurations, so a container-based
approach allows a steep learning curve.

3.2.2 Providing a full Data Flow

The goal of this thesis is to be able to convert a full "Data-Flow" into a Kafka en-
vironment. The Data Flow should contain an Extract of data, a Transformation,
and the Loading of the data.

1https://spark.apache.org/
2https://flink.apache.org/
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4 Solution Design

This chapter gives a general overview of the software design behind the kernel-to-
kafka library. A more detailed description of components follows in chapter 5. In
the subsequent multiple terminologies are used that may not be clear and have
multiple meanings. To clarify, the following provides an explanation of those
words with examples:

• Component: An application, library, or specification.

• Ecosystem: Components provided by companies or persons related to a
specific component as Kafka Connect for Kafka.

• Runtime: Components of a specific ecosystem like Kafka configured to
fulfill an ETL task.

• Platform: The used platform to run the components, in the context of
this thesis an orchestrator like Docker Compose.

An important design decision is whether to use an online or offline configuration
approach of the runtime. An online approach would be starting a defined set of
Kafka components and configure them while they are running. This may happen
by changing configuration files or triggering APIs that support online configur-
ation. The problem of online configuration is the need for an existing Kafka
Connect server that has all needed connectors installed, and a Kafka Streams
application is needed that supports online configuration. Installing a new Kafka
Connect connector requires a restart of the Kafka Connect server. In contrast, an
offline configuration approach requires restarting the runtime for changes. The
need to restart the complete runtime for changes can be remedied by running
Kafka Connect components, and Kafka Streams components in separate contain-
ers that are restartable individually. The platform typically supports a partial
update of the runtime, which results in similar behavior as an online configura-
tion approach. For the upper reasons an offline configuration approach was chosen
for the kernel-to-kafka library, but it is possible to add an online configuration
functionality in the future.
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4.1 Data Structures

The core of the kernel-to-kafka engine are three data structures that stepwise
reduce the descriptive capabilities and generality to get a runtime- and platform-
specific configuration of an ETL process. The design model is orientated at the
design of a software compiler, as mentioned in the fundamentals chapter.

4.1.1 Kernel

The input data structure for the conversion is the Kernel. In the terminology
of compilers, the Kernel represents the source language. A difference is that
there is no need to tokenize and parse the Kernel as it is already present in
a machine-readable, structured format. The application provides classes that
allow navigation through the Kernel and allows querying implicit properties like
inheritance and type relations.

4.1.2 Intermediate Representation Description

The Kernel is converted into the Intermediate Representation Description (IRD).
The IRD is designed as a generic abstraction of typical components involved in
an ETL process. In the terminology of compilers, this is the equivalent to the
intermediate language. It removes abstractions from the Kernel such as packages
and inheritances. The IRD allows runtime independent optimization and modi-
fication of the ETL process. The data structure itself is designed as a cycle-free
tree that allows forward and backward navigation through the ETL process.

4.1.3 Concrete Representation Description

The IRD is converted into a runtime dependent data structure, the so-called
Concrete Representation Description (CRD). The CRD represents a concrete
configuration of a Kafka environment. In the terminology of compilers, this would
be the assembly language. It uses a defined set of Kafka components to describe
the ETL process. The data structure itself is designed as a list of components
with no links and navigation properties. In the case of Kafka, the data structure
defines configuration files of components.

4.1.4 Platform

Given the CRD as input, the last step is the conversion to a specific platform. In
the terminology of compilers, this refers to the machine language. An example
of a target platform is Docker Compose. The output is platform-dependent, for
example, a directory on the filesystem containing a Docker Compose file and
additional configuration files.
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concrete
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Kafka Ecosystem

Configuration

Intermediate Representation
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The IRD contains a superset of components that
should be available in all Ecosystems. It removes
abstractions from the Kernel such as packages,
inheritance, and extensions. It describes the data flow
and allows forward navigation. It aims to be as simple
as possible, without losing information. Optimizations
can be reapplied in the translation to the CRD.

Concrete Representation
Description (CRD)
The CRD is influenced by the concrete runtime. It
should be translatable to an configuration with low
effort. Elements from the IRD are translated to CRD
elements. Multiple IRD components can be mapped
to a single CRD component.

Configuration Process

Figure 4.1: Schematic of the steps of a configuration/conversion process

4.2 Conversion Pipeline

The complexity of the different conversion steps is hidden behind a conversion
pipeline. The conversion pipeline contains a list of steps executed one by one and
result in the configured output. The pipeline handles the conversion between the
different data-structures and contains the optimization steps.

The conversion starts with the Kernel as input, stored in its output format as
a JSON file. Using the Kernel, a Kernel Reader is constructed which allows
navigation through the data structure. The Reader is passed to a converter that
scans the Kernel for elements that support conversion into the IRD and starts
the conversion. The output of this phase is the IRD describing the ETL process.

On this representation, transformations and optimizations are applied. The next
step is the conversion of the IRD to the CRD. The CRD is a list of Kafka
components and their configuration. It may already contain configuration files
and other additional resources.

The last step is mapping to a concrete environment. The only supported concrete
environment at the moment is Docker Compose. A VFS is provided for the
configuration, allowing the in-memory creation of the environment configuration,
which can be stored on the target system, like the local filesystem, a remote
server, or an archive.
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4.3 Runtime Architecture

Every data source, transformation, and data sink is mapped to a distinct service
at runtime. This allows individual scaling of services as needed by the use case.
The services are packed as Docker Images for the Docker Compose platform.
The images are based on existing components of the Kafka ecosystem and are
extended to fulfill specific tasks specified originally by the Kernel.
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The following chapter describes the design and implementation of the data struc-
tures presented in the previous chapter and explains the conversion process
between those data structures. It also presents the design and implementation of
additional Kafka Components that where needed to run ETL processes.

5.1 Technology Stack

The core language of the project is Typescript1. TypeScript was chosen as the
primary language for the project for multiple reasons. It provides great flexib-
ility in its execution range. Typescript can be transpiled into Javascript which
can be executed by a Web Browser or server-side with NodeJS. It also provides
compatibility with existing projects for the Kernel.

For Kafka Components like Connectors, Java 8 was chosen as language, and for
the development of Kafka Stream Components Java 11. The reason for this is
that the Kafka Connect and Kafka Stream API is provided for the Java Runtime
Environment (JRE). Maven manages the build process of those components. All
Kafka Components are published as container images.

Licenses of third-party dependencies used in the project are compatible with the
Apache 2 license.

The library and all components related to it are provided at GitHub in the form
of a monorepo, which is managed by Nx2. The build process of the Java projects
and container images is integrated with Nx.

5.2 Kernel

As already mentioned in section 4.2 the Kernel is the input for the first phase.
The library allows specifying the Kernel as a path to a file or an object containing

1https://www.typescriptlang.org/
2https://nx.dev/
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Figure 5.1: UML Diagram of the Kernel Reader

it in its export format. If the Kernel is specified as a path, the file is opened and
parsed into an object containing the Kernel.

5.2.1 Kernel Reader Components

The object containing the Kernel now allows the creation of a Kernel Reader
object, which is the first component of the library. Its purpose is reading and
navigating through the Kernel. The core of it consists of two classes ElementInfo
and PackageInfo, fig. 5.1 contains a UML description of this component. A Pack-
ageInfo object allows to query ElementInfo objects from the Kernel by providing
the name and path of the elements; thus, it is possible to access known kernel
elements. The Kernel Reader was created because at the time this thesis started
no existing library supported reading the Kernel.

ElementInfo allows querying of related elements based on the inheritance and
extension trees. The type of the element is exposed via getBaseType() and the
object the element extends from via getParent(). Navigation in the other dir-
ection is also supported by the methods getChildren() and getInstances(). The
implementation of those methods simply checks every element for its type or par-
ent. A more sophisticated implementation was not chosen as a standalone library
for reading the Kernel will be available in the future.
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MetaType

ElementType

Element

Package

FlowType

Flow SingleTableFlowType

SingleTableFlow

JavascriptFlowType

JavascriptFlow

DataSinkType

DataSink

HttpPostDataSink HttpRestDataSink

DataSourceType

DataSource

HttpGetDataSource FileDataSourceDatabaseDataSource

Figure 5.2: Overview of the Kernel elements introduced by the ETL extensions
package, colored by their level: blue is meta-language, red is language, yellow is
model, and green refers to instance level.

5.2.2 Visualize the Kernel

As shown in section 2.5 the Kernel is complex. The next section presents a newly
designed kernel package for data flow. For the design of this kernel extension, a
visualization was created which helps understanding the objects and structure.
The kernel visualization was created with the help of the graphviz3 library. The
library provides a description language, called dot, which allows to describe dir-
ected graphs and render them as an image.

The algorithm for visualization adds every kernel element as a node, colored by
the model level it is placed on. The level an element is placed on is calculated by
evaluating the element’s distance to the MetaType in the type tree. Also, edges
are added based on the type and extend relations colored by the source relation
it results from. A result of the visualization can be seen later in fig. 5.2. The
visualization component is also included in the example web interface introduced
in chapter 6.

5.2.3 Data Flow Extensions

When this thesis was created, there was no stable and feature full package for
the Kernel that allows the modeling of ETL processes. To solve this problem,
a Kernel package was designed to provide basic building blocks for a full ETL
description, that gets converted into Kafka. The ETL extension of the Kernel
contains nodes of three types: sources that represent different ways to extract

3https://graphviz.org/
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data, flows that describe the transformation of data, and sinks that load the data
into the target datastore.

During the development of the Kernel to Kafka library, the JValue project group
published a new library in the modeling ecosystem that allows to define data
schemas and exports them as JSON-Schema. This library was integrated into
the ETL extension, which allows data sources and flows to store information
about the output schema.

The design of the data flow package is not complete, it is the start of a structure
that needs to be expanded and implemented further.

The following components are available in the data flow extension package:

Language Level Components

• FlowType: Currently has no behavior, should be used to restrict the sup-
ported sinks and sources.

• JavascriptFlowType: Stores the Javascript function, the input data schema,
and the output data schema

• DataSinkType: Currently has no behavior, should be used to restrict the
supported sources.

• SingleTableFlowType: Stores the information relevant for parsing a file
containing a table

• DataSourceType: Currently has no behavior, should be used to restrict
the supported sinks.

Model Components

• Flow: Stores sources, sinks, and output data schema

• DataSink: Stores the sources

• DataSource: Stores the sinks and output data schema

• HttpRestDataSink: Stores the path, host, and port of the provided en-
dpoint

• HttpPostDataSink: Stores the endpoint the data is posted to

• JavascriptFlow: Currently has no behavior

• SingleTableFlow: Currently has no behavior

• HttpGetDataSource: Stores the endpoint the data is gathered from
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DataSinkIrd
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StreamIrd
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+addTarget(): void
+accept(): R
+successors(): IterableIterator<IrdNode>

Figure 5.3: Overview of the base classes the IRD is built on.

• DatabaseDataSource: Stores the connection information for the data-
base

• FileDataSource: Stores the path the data is gathered from

The full package in its output format can be found in appendix section A.

5.3 Intermediate Representation Description

This section presents the design and implementation of the next data structure in
the conversion process. The IRD is a description model free of packages, inherit-
ance, and extensions, describing a semantically equivalent ETL process. For the
Kafka runtime, relevant elements are located in the instance level in the Kernel
(the green nodes in fig. 5.2). The elements located in this level are not enough to
build the Kafka runtime. There is also relevant information stored at the model
level. In the case of the JavaScript flow, the IdentityJsFlow elements contain
the function text of the JavaScript function used for the transformation. The
Kernel requires complex navigation to get all information needed to implement
an ETL-element. The IRD reduces this complexity.

5.3.1 Components

The structure of the IRD is orientated at the different ETL steps. A base type
is provided for every step, which provides the linking logic for the data flow.

• DataSinkIrd: A node that represents a load operation of data. Supports
a single source.

• DataSourceIrd: A node that represents a extract operation of data. Sup-
ports a single target.

• FlowIrd: A node that represents a transformation of data. Supports mul-
tiple sources and a single target.

• StreamIrd: A node that allows multicasting of data. Supports a single
source and multiple targets.
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• DataSchemaIrd: A node that stores a data schema.

Based on those based types the following components are available:

• FileDataSource: A node that represents a data extraction out of a file.
The file is read line by line, the output format is of type string.

• HttpDataSink: A node that represents data loading by performing a
HTTP request. The data format is defined by its input.

• HttpDataSource: A node that represents a data extraction by performing
a HTTP request. The response is read line by line, the output format is of
type string.

• JavascriptFlow: A node that represents a data transformation by execut-
ing a provided javascript function. The input format is defined by its input.
The output format is specified explicitly.

• Multicast: A node that represents a multicast operation on data. It shares
data with multiple outputs.

• RestDataSink: A node that represents data loading by providing an
REST endpoint. The data format is defined by its input.

• SingleTableFileFlow: A node that represents a data transformation that
parses a string into an array of values.

• JsonDataSchema: A node that represents a JSON schema definition,

• StringDataSchema: A node that represents a string data schema.

The goal of the IRD is to provide an easy way for navigating through the data
flow. This is achieved by a function of every IRD node that allows iteration over
its successors. A successor is a node where data flows to.

The root object of the IRD contains a list of data sources. All relevant nodes can
be reached by starting the navigation from the data sources.

5.3.2 Conversion from the Kernel

For the Kernel conversion into the IRD an extensible approach was chosen. A
converter has two methods: canHandle and convert.

1 export class JavascriptFlowConverter extends
KernelIrdNodeConverter {

2 canHandle(element: ElementInfo): boolean {
3 ...
4 }
5 async convert(element: ElementInfo , manager: ConvertManager):

Promise <Result <IrdNode >> {
6 ...
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7 }
8 }

For the conversion, every kernel element is iterated, and every converter is asked
if handing of this node is possible. In most cases canHandle checks if the node is
an instance of a model level Kernel element it supports.

1 canHandle(element: ElementInfo): boolean {
2 return element.isInstanceOf(KernelReferences.JavascriptFlow);
3 }

The convert function gets the element it should convert to an IRD node and
a context object as input. The context allows the converter to wait for the
conversion result of other Kernel elements.

The first step in the conversion is extracting the payload attached to the Kernel
element. The payload is all of the kernel element’s data, like a name or connected
sinks. The payload type information is provided by the Data Flow Extensions
package, as the payload equals the export type definitions.

1 /* Stores the source and sink of the flow */
2 const jsFlowPayload = element.getPayload <JavascriptFlowJsonExport

>();
3

4 /* Stores function and schema definition */
5 const jsFlowTypeElement = element.getBaseType ();
6 const jsFlowTypePayload = jsFlowTypeElement.getPayload <

JavascriptFlowTypeJsonExport >();

Component-specific information is directly extracted out of the payloads and
transferred to the IRD node. This includes the data schema if the Kernel node
provides a data schema.

As the IRD stores forward data flow information, a reference to all succeeding
nodes needs to be acquired. For this, the ConvertManager can query the result
of the conversion of those elements.

1 const targets: StreamTargetIrd [] = [];
2 for (const sink of jsFlowPayload.sinks) {
3 const ele = element.getPackage ().getRootPackage ().

getElementByReference(new SimpleReference(sink));
4 const nodeResult = await manager.waitForNode(element , ele);
5 // error handling
6 targets.push(nodeResult.data as StreamTargetIrd);
7 }

If the conversion result of the requested element is already available, it is returned
as a resolved promise. If an element is not available yet, a promise for the
conversion result is returned, and the current element is entered in a waiter graph
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as waiting for the other kernel element. If the waiter graph contains a cycle, an
exception is thrown as the conversion isn’t going to finish.

1 waitForNode(requester: ElementInfo , target: ElementInfo): Promise
<Result <IrdNode >> {

2 ...
3 this.waiterGraph.addEdge(requester , target);
4 const cycle = this.waiterGraph.isCyclic(true);
5 if (cycle) {
6 // throw error
7 }
8 return targetFuture.toPromise ();
9 }

The additional check of the waiter graph simplifies the development of new con-
verters as in case of a deadlock concrete feedback is given where the cycle is
located.

The order of the conversion is implicitly managed by the JavaScript runtime.
For this, an completable future type, as available in Java, is implemented, which
allows resolving a promise as soon as a value is available. If the conversion
depends on the result of another node, the JavaScript runtime will continue the
conversion of other nodes till the result is available. This method allows the
conversion to make efficient use of asynchronous operations. The usage of those
operations may be necessary if the kernel is read asynchronous.

During the conversion, all generated nodes that are a data source are collected,
as they provide the entry point into the IRD tree structure. Converted nodes
that are not connected to a data source are collected by the garbage collector
and are not accessible after the conversion into the IRD.

For every created IRD a reference to the source of the Kernel is stored. This allows
giving the user precise error locations in case of failures in the optimization or
later conversion processes.

1 const jsFlowIrd = new JavascriptFlowIrd (...,
SingleNodeKernelSource.from(element));

5.3.3 Optimizations

For the support of optimization on the IRD several helping data classes are im-
plemented. Depending on the optimizer’s goal, the two most essential helper
classes are a Visitor and a ForwardIterator. The ForwardIterator uses the suc-
cessors property of the IrdNode class to acquire a list of successors and recursively
iterates over the returned elements.

1 private *traverseNode(node: IrdNode): IterableIterator <IrdNode > {
2 yield node; // return the current node
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3 const successors = node.successors ();
4 let successor: IteratorResult <IrdNode >;
5 while (!( successor = successors.next()).done) {
6 yield* this.traverseNode(successor.value); // depth first

traversal
7 }
8 }

The provided visitor is an extension of the visitor provided by the Gang of
Four(Patterns, 1995, pp. 331). It supports a prolog and epilog that is executed
before every node and has virtual members that are called before a child is vis-
ited and after a child is visited. An example that uses those helper functions can
be found in the MulticastIrdOptimizer, which ensures that all flow nodes output
their results in a multicast node.

1 export class MulticastIrdOptimizer extends BaseIrdVisitor <void ,
void > implements IrdOptimizer {

2 protected prolog(node: IrdNode): void {
3 if (node instanceof FlowIrd) {
4 if (!( node.target instanceof MulticastIrd)) {
5 node.target = new MulticastIrd ([node.target], node.

kernelSource);
6 }
7 }
8 }
9 }

This optimizer uses the prolog called before a node is further processed and checks
if the node that is currently visited is of type FlowIrd. For the case the target
is is a multicast node nothing is done else the target is replaced by a multicast
node.

5.4 Concrete Representation Description

The next data structure in the conversion process is the CRD. The CRD is spe-
cific to the target ecosystem but contains a generic base class for every node. This
would be equivalent to the assembly language in the classical compiler model. All
relevant information for an ecosystem component is already present, like config-
urations. Still, it is not directly executable until converted into a platform output
(the machine language in the compiler analogy). The generated CRD depends
on the IRD and an additional configuration that manages aspects that are not
stored in the IRD, such as the generation of additional debugging components.

The CRD itself should not be considered as graph data structure. The creation
of a node in the list may depend on another node for the creation, but this
dependency should be implicit as the conversion to a platform does not ensure a
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Figure 5.4: UML structure showing the base classes of the CRD

processing order of CRD nodes.

There is no one-to-one mapping of an IRD node to a CRD node. There are cases
where one CRD node may handle the task of multiple IRD nodes or the other
way round.

5.4.1 Generic Components

The base class defines a property for tracking the IRD origin of the node. This
property is helpful for the error handling of the conversion abstraction presented
later.

1 export abstract class CrdNode <T extends CrdType > {
2 readonly irdSource: IrdSource;
3

4 protected constructor(irdSource: IrdSource) {
5 if (! irdSource) {
6 throw new Error(’irdSource must be defined ’);
7 }
8 this.irdSource = irdSource;
9 }

10 }

Also, a class CRD holds the list of nodes and an additional configuration used to
build the CRD.

1 export class Crd <TCrd extends CrdType > {
2 constructor(
3 public readonly nodes: CrdNode <TCrd >[],
4 public readonly config: TCrd
5 ) {}
6 }
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5.4.2 Kafka Specific Components

For the Kafka-specific CRD two main base classes exist: one for Kafka Streams
component and one for Kafka Connect components. The Kafka Connect base
class declares the worker and connector configuration needed for the component.
For this, a data structure that represents the configuration files was introduced.
Kafka configuration files are key-value files.

1 export class Properties {
2 store = new Map <string , string >();
3 public get(key: string): string | undefined {
4 return this.store.get(key);
5 }
6 ...
7 public asString () {
8 return Array.from(this.store.entries ())
9 .map(( entry) => ‘${entry [0]}=${entry [1]}‘)

10 .join(’\n’);
11 }
12 }

The Kafka Connect node declares one Properties instance for the worker config-
uration and one for the connector configuration and exposes common properties
via getter and setters.

1 export abstract class KafkaConnectCrd extends CrdNode <
KafkaCrdType > {

2 protected workerProperties = new Properties ();
3 protected connectorProperties = new Properties ();
4

5 set bootstrapServers(value: string) {
6 this.workerProperties.set(’bootstrap.servers ’, value);
7 }
8 ...
9 }

Concrete connectors use those setters to configure the basic configuration and
expose specific setters for connector-specific configurations.

1 export class CastormKafkaConnectHttpCrd extends KafkaConnectCrd {
2 constructor(name: string , target: TopicCrd , ...) {
3 super(irdSource);
4 this.name = name;
5 this.bootstrapServers = kafka.serverUrl;
6 ...
7 }
8 set topic(topic: string) {
9 this.connectorProperties.set(’kafka.topic’, topic);

10 }
11 ...
12 }
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Figure 5.5: UML structure of the Kafka specific nodes available in the CRD
structure

Sink Connectors and Stream components always get their data out of topics,
Source Connectors and Stream components always store their data into topics.
In the CRD topics are represented by a node that stores the format of the data
in the topics and provides the according converter for the data format to the
components. If supported CRD nodes are provided the output schema of the
data to perform a validation.

1

2 export class TopicCrd extends CrdNode <KafkaCrdType > {
3 name: string;
4 valueType: ValueTypes;
5 ...
6 getValueConverter (): string {
7 switch (this.valueType) {
8 case ’json’:
9 return ’org.apache.kafka.connect.json.JsonConverter ’;

10 case ’json -schema ’:
11 return ’io.confluent.connect.json.JsonSchemaConverter ’;
12 case ’string ’:
13 return ’org.apache.kafka.connect.storage.StringConverter ’

;
14 }
15 }
16 ...
17 }

The following other nodes exists in the CRD:

• CastormKafkaConnectHttp: Combines the HttpDataSource and Sing-
leTableFile into one Kafka Connector

• EmbeddedKafkaInstance: Represents a Kafka Instance. The creation of
this node depends on the additional configuration used for CRD creation.

• FileConnectSource: Represents a source file that is imported line by line
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from file system.

• CamelPostgresConnectSource: Represents a source that gathers data
by executing a Structured Query Language (SQL) query.

• HttpConnectSink: Represents a sink where data is posted to.

• JsTransformation: Represents a JavaScript transformation.

• CsvTransformation: Represents a String to JSON array transformation.

• RestConnectSink: Represents a sink that provides the data as an REST
endpoint.

5.4.3 Conversion from the IRD

The next phase in the conversion process is the CRD conversion. It takes as
input the IRD and additional configuration hints for the target environment and
produces a description of all resources in Kafka. The challenge in this phase is
that not all IRD nodes can be directly mapped to a CRD node. A simple example
of this problem is the import of a CSV file from a web server. The IRD contains a
HttpDataSource and a SingleTableFileFlow node, in Kafka a single Kafka Connect
source can do the work. The following two solutions for converting the IRD to
the CRD are presented. Both of them have benefits and problems. It is unclear
how the benefits and problems are weighed as it depends on the future use of this
library.

Responsibility Based Conversion

The responsibility-based converter uses a similar interface used in the Kernel to
IRD conversion. The converter has a list of converters that provide a method
canHandle, getDependencies, and convert. The selection of a converter to a part
of the IRD works like pattern matching. The canHandle checks if a node pattern
it supports occurs at a specific location in the IRD. If it can convert a subtree of
the IRD to the CRD it tells the conversion manager the exact part it is able to
handle.

1 canHandle(irdNode: IrdNode): CanHandleResult {
2 if (!( irdNode instanceof SingleTableFileFlowIrd))
3 return CanHandleResult.No();
4 const httpDataSourceIrd = irdNode.sources [0];
5 if (!( httpDataSourceIrd instanceof HttpDataSourceIrd)) {
6 return CanHandleResult.No();
7 }
8 return CanHandleResult.Yes([irdNode , httpDataSourceIrd ]);
9 }
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The example checks if the IRD contains the following pattern HttpDataSourceIrd
−→ SingleTableFileFlowIrd. If so, it returns that it can handle both nodes’
conversion. The convert method will be called with the same IRD node as a
parameter where the yes result was returned.

The conversion manager tries to find converters for the whole IRD tree. For this
a list of all nodes in the IRD is generated using the ForwardIterator.

1 const irdNodes: IrdNode [] = Array.from(new ForwardIrdIterator(
input));

If it cannot apply a converter at any subtree of IRD the conversion is aborted.

The next step in the conversion is the building of a dependency tree. For this,
every converter is asked to provide its dependencies. A dependency can be an
IRD node that needs to get converted first or a particular object, like the Kafka
server.

1 getDependencies(
2 context: CrdDependencyContext ,
3 node: HttpDataSourceIrd
4 ): (IrdNode | NamedCrdNode <CrdNode <KafkaCrdType >>)[] {
5 return [node.target , DefaultKafka ];
6 }

The example shows the dependencies of the HttpDataSource node. It depends on
the target, as it needs to know in which topic the data is output and the Kafka
instance it works on. The conversion manager checks if there are any cycles in
the dependency tree and, if so, cancels the conversion as it is impossible.

The IRD nodes are converted it the topological order acquired from the depend-
ency tree.

1 const nodes = depGraph.getTopologicalSort ();

This ensures that all dependencies are ready for every converter when the node
is converted. As a result, the conversion returns a primary CRD node and an
optional list of secondary nodes. The primary result is linked with the original
IRD node, which allows other converters to query those CRD by the IRD node.

Visitor Based Conversion

Another strategy for converting the IRD to the CRD is using a visitor-based
approach. The IRD visitor executes a method, based on the node type, for
every node of the IRD in a depth-first manner. The method is responsible for
passing all successor nodes to the visitation. This implies that at the conversion
of an IRD node, the conversion result for the whole subtree starting at a node
is available but not necessarily the conversion of the parent node. The pattern
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matching approach described in the upper conversion strategy is also possible
in the visitor-based strategy. For this, at the visitation of the first node in the
pattern, it is checked if the pattern matches.

1 visitHttpGetDataSource(node: HttpDataSourceIrd): CrdNode <
KafkaCrdType > {

2 const conversionStep = node.target;
3 ...
4 if (conversionStep instanceof SingleTableFileFlowIrd) {
5 const target = conversionStep.target;
6 ...
7 target.accept(this , undefined);
8 }

If the other nodes in the pattern are not convertible on their own, error handling
can be done by simply throwing an error if the node is visited.

1 visitSingleTableFileFlow(node: SingleTableFileFlowIrd): CrdNode <
KafkaCrdType > {

2 this.errors.push(‘SingleTableFileFlowIrd should have
HttpDataSourceIrd as source ‘);

3 return null;
4 }

If the pattern matches, the visitation of the node is skipped.

Comparison of the Conversion Strategies

Benefit of the responsibility based conversion presented in section 5.4.3 is the
extensibility. The conversion library can be easily extended by plugins which
only need to register new converters in the conversion manager. The benefit of
the visitor-based conversion presented in section 5.4.3 is the simplicity, and the
needed implementation effort is much lower. An example of this is the omitted
topological sort of the nodes.

A problem that occurs with both conversion strategies is the generation of names.
Names are needed for Kafka Components, streams, and services created by the
orchestrator. A simple naming strategy is the generation of random names. This
approach has the problem that the generated output is not deterministic, which
prevents partial updates executed by the orchestrator and results in a regener-
ation of streams every time the runtime is updated. This problem is solved by
using a pseudo random generator that uses the nodes source as input.

1 nextPseudoRandomName(seed: T, prefix = ’’, postfix = ’’): string
{

2 let prng = this.randomProvider.get(seed);
3 ...
4 let name: string;
5 do {
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6 name = prefix + prng().toString (36).substring (2, 7) + postfix
;

7 } while (this.generatedNames.has(name));
8 this.generatedNames.add(name);
9 return name;

10 }

5.5 Platform

The last phase in the conversion of the Kernel to Kafka is the configuration of
a concrete platform. The input for this phase is a list of Kafka resources, the
so-called CRD. One way of creating Kafka components would be to start the
services directly. Problems that may arise are replication of services, updating
services, including data persistence, and supporting different operating systems
and their configurations. Luckily, orchestrators have already solved this problem,
as presented in the fundamentals section. The output of this phase is the input for
an orchestrator. The library includes an implementation for the Docker Compose
orchestrator.

5.5.1 Virtual File System

An orchestrator usually takes files located in the file system as input. The usage
of the file system in a library comes with three major problems:

• The machine the library runs on may not be the same the orchestrator runs
on.

• In specific environments, like a web browser, no file system is available.

• Additional error handling is needed for file system interaction.

An abstraction of the file system was designed to solve those problems, the VFS.
The VFS is a tree structure consisting of two node types: folders and files. Folder
nodes have a name and a list of child nodes, whereas file nodes are leaves and only
have a name and a buffer with the file’s content. This allows the creation of all
files needed by the orchestrator without depending on outputting them directly.
Figure 5.6 provides a visualization of the VFS’s class structure.

5.5.2 Docker Compose Platform

The output for the Docker Compose platform is a directory VFS node containing
the docker-compose.yaml file, which is the main input for the orchestrator, and
additional nodes containing configuration files. For writing the VFS into the
native file system, the user can use the existing FsVfsWrite, visible in fig. 5.6 or
provide an own implementation of an VfsWriter.
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DirectoryVfsNode

+name: string
+children: DirectoryVfsNode | FileVfsNode[]

+dir(): DirectoryVfsNode
+file(): void
+addChild(): void
+findChild(): DirectoryVfsNode | FileVfsNode
+removeChild(): void
+hash(): string

FileVfsNode

+name: string
+content: Buffer

+hash(): string

VfsNode

+name: string

+hash(): string

FsVfsWriter

-baseDir: string

+write(): Promise<void>
-writeDir(): Promise<void>
-writeFile(): Promise<void>

VfsWriter

+write(): Promise<void>

Figure 5.6: UML graph showing classes of the VFS.

5.5.3 Conversion from the CRD

The conversion from the CRD to the Docker Compose platform is a straightfor-
ward process. For every type of node that occurs in the CRD, a configurator
class exists, which adds services, networks, and files to the Docker Compose
Platform. The configurator class has access to the VFS, which is used to write
configuration files and an object with the Docker Compose specification (the
docker-compose.yaml file). As the services may have volumes containing the con-
figuration files, a hash of those files is appended to the service’s labels. This causes
the orchestrator to recreate the service every time the configuration changes. Last
step of the conversion is the output of the Docker Compose specification in the
VFS.

The implementation of a new ecosystem requires writing new configurator classes.
As the conversion depends on the CRD, the conversion needs to be implemented
for every platform-runtime combination.

It would also be possible to implement an conversion process that directly con-
figures the host system’s services. This would represent an online configuration.

5.5.4 Kafka Streams - CSV Transformation

For the SingleTableFileFlow IRD no existing Kafka component fitted. To support
this node a custom implementation of an application using the Kafka Streams
API is provided. The application takes a Kafka Topic as input and output and
reads the messages in string format. The string message is processed using the
opencsv library4 and returned as an JSON array.

4http://opencsv.sourceforge.net/
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5.5.5 Kafka Streams - JavaScript Transformation

For the JavascriptFlow IRD aswell no existing Kafka comonent fitted and a Kafka
Streams application was implemented.

A JavaScript function is triggered in the map step in the topology of the Streams
application.

1 final StreamsBuilder builder = new StreamsBuilder ();
2 builder
3 .stream(this.config.getInputTopic (), Consumed.with(Serdes.

String (), jsonSchemaSerde))
4 .map((key , value) -> {
5 /* call JavaScript function */
6 })
7 .to(this.config.getOutputTopic (), Produced.with(Serdes.String ()

, jsonSchemaSerde));
8 this.topology = builder.build ();

The provided JavaScript function is executed by the Nashorn5 engine. The func-
tion gets the key and value of the message as input and must return a new key
and value for the message.

1 function transform(key , value) {
2 return [
3 key ,
4 {
5 continent: value [1],
6 total_cases: Number(value [4]) || -1,
7 total_deaths: Number(value [7]) || -1
8 }
9 ];

10 }

5.5.6 Kafka Connect - Http Data Source

The Kafka Connect HTTP Connector used for the library is based on an open-
source connector published by castorm6 on GitHub.

The connector is internally uses a two layer architecture. The first layer parses
the HTTP response into a object consisting of a key and a value. The next layer
transforms the key value object into the message for Kafka.

By default the library supports reading JSON data sources. As the Kernel Data
Flow package also supports CSV, the library was expanded to support reading
CSV sources. This extension happens on the first layer of the connector.

5https://openjdk.java.net/projects/nashorn/
6https://github.com/castorm/kafka-connect-http
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The first layer outputs a key of type string and a JSON string value. As the
Kernel allows to pass a schema for output object, the second layer was extended
to support the validation of this schema.

5.5.7 Kafka Connect - Rest Sink

The Kafka Rest Sink is a connector that collects the data and provides a REST
interface to query the data. The goal of this sink is to provide a simple way to
see result of the ETL pipeline. The Rest Sink implements the Kafka Connector
API and Java Servlet API together with a Jetty web server. If a new message
is published it is stored in an in memory data structure. The rest server serves
messages based on the messages key. If a new message arrives the old message
with this key is superseded.
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6 Evaluation

The evaluation reflects upon the requirements defined earlier. The first require-
ment was the usage of existing Kafka Components. This was partially possible.
It was possible to use existing HTTP and file data sources components. The
HTTP needed to be extended to support non JSON values. Implementation of
additional data sources is also possible. There exists an extensive variety of con-
nectors for Kafka, for example, the Apache Camel1 connectors. Those connectors
often have limitations. For example, the File Transfer Protocol (FTP) connector
of the Camel project looks for new files and passes the content of those into mes-
sages but does not support watching a single file on an FTP server. Fetching
data from structured data sources like databases is usually no problem. A more
complex problem is the implementation of the transformation with existing com-
ponents. No flexible open-source solution was found, and the transformations
were self-implemented.

The following requirement was the extensibility of the library to other runtimes.
This is possible through the layered design. A new runtime can be added by
implementing a new CRD and platform. Optimizations and transformations of
the ETL process can be shared between different CRDs by applying them to
the IRD. Kafka, for example, does not support a direct connection between two
components; there needs to be a stream in-between always. An IRD optimizer
solves this. If other runtimes have the same restriction, the optimizer can be
reused. Also, the emulation of not supported transformation could be done on
the IRD layer. If a target platform supports no native CSV transformation but
a JavaScript transformation, the CSV step could be replaced by a slower but
working JavaScript step.

Another requirement was to provide a sample project that uses the library. A
project was implemented with an Angular-based frontend and a NestJS based
backend. The backend application provides API endpoints to manage projects
consisting of a name, Kernel, and CRD configuration. The application can ex-
ecute the projects internally. It performs a conversion into the platform output
and then calls Docker Compose to start the project.

1https://camel.apache.org/camel-kafka-connector/1.0.x/reference/index.html
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1 // simplified start process of a project
2 ird = await project.createIrd ();
3 crd = project.createCrd ();
4 platform = await converter.build(crd);
5 const writer = new FsVfsWriter(projectDir);
6 await ecosystem.write(writer);
7 await this.projectService.startProject(project);

Also, endpoints are available that return visualizations of the Kernel and CRD.
The frontend provides a convenient way of using those API endpoints. This shows
that the library can be used in an application. An screenshot of the example
application is available in appendix section B.

The cloud-native design requirement was achieved by creating a cloud-native
output. The library itself is independent of resources as a file system, this allows
the library to be used in many kinds of applications, for example, web browsers,
serverless computing, or classical applications. For that reason, the library is also
runnable in cloud environments.

The last requirement was to provide a full data flow. For this, a COVID 19 data
set in CSV format is imported and transformed into JSON objects, which are
loaded into a web server that provides those via REST endpoints. An examples
library provides the Kernel describing this process as part of the monorepo. The
generated Docker Compose file can be found in appendix section C.
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7 Conclusions

The conversion of a Kernel into a Kafka runtime is possible by mixing existing
and newly created Kafka components. The practicability of the implemented
conversion process with existing components out of the Kafka ecosystem depends
on Kernel’s final design of the data flow package.

If the Kernel allows high configuration flexibility, it may be hard to use existing
components. The thesis was based on a small data flow package without high
configuration flexibility and already needed to extend existing libraries to support
the small set of operations. This was visible in the extract and transform steps.
No existing connector could read non JSON data via an HTTP request. Also,
there is no flexible solution for building the transform steps. The CSV transform-
ation was as well implemented for the library. kSQL1 may provide a solution for
the transformation problem but is not released under an Open Source license.

A reason for this is that Kafka is designed to be integrated into existing applic-
ations and micro-services. It is easier and more flexible to program a specialized
Kafka adapter in those applications than with a configuration-based method.

Another approach for a Kafka runtime would be using specialized Components
that natively understand the Kernel. The benefits of this approach are complete
control over the components and a Kernel-orientated design that reduces the
complexity of the configuration variants and thus possible errors and unsupported
descriptions. The design of such runtime could provide a generic interface for
producing and consuming messages. This would allow the support of additional
runtimes by implementing the generic interfaces.

1https://github.com/confluentinc/ksql

39



7. Conclusions

40



Appendices

41





Appendix A: Kernel Output of Data Flow Extension Package

A Kernel Output of Data Flow Extension Package
1 {
2 "Flow": {
3 "elements ": {
4 "MetaValue ": {
5 "schema ": {
6 "type": "object",
7 "allowAdditionalProperties ": [
8 {
9 "type": "union",

10 "elements ": [
11 {
12 "type": "string",
13 "restrictions ": []
14 },
15 {
16 "type": "number",
17 "restrictions ": []
18 }
19 ]
20 }
21 ],
22 "properties ": {}
23 },
24 "type": "#/ System/ValueType",
25 "extends ": "#/ System/Value"
26 },
27 "AnyMetaValue ": {
28 "schema ": {
29 "type": "object",
30 "allowAdditionalProperties ": [
31 {
32 "type": "union",
33 "elements ": [
34 {
35 "type": "string",
36 "restrictions ": []
37 },
38 {
39 "type": "number",
40 "restrictions ": []
41 }
42 ]
43 }
44 ],
45 "properties ": {}
46 },
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47 "type": "#/ System/ValueType",
48 "extends ": "#/ Flow/MetaValue"
49 },
50 "FlowType ": {
51 "name": "FlowType",
52 "type": "#/ System/MetaType"
53 },
54 "Flow": {
55 "name": "Flow",
56 "type": "#/ Flow/FlowType"
57 },
58 "SingleTableFlowType ": {
59 "extends ": "#/ Flow/FlowType",
60 "name": "SingleTableFlowType",
61 "type": "#/ System/MetaType"
62 },
63 "SingleTableFlow ": {
64 "columnTypes ": [],
65 "extends ": "#/ Flow/Flow",
66 "name": "SingleTableFlow",
67 "type": "#/ Flow/SingleTableFlowType"
68 },
69 "JavascriptFlowType ": {
70 "extends ": "#/ Flow/FlowType",
71 "name": "JavascriptFlowType",
72 "type": "#/ System/MetaType"
73 },
74 "JavascriptFlow ": {
75 "extends ": "#/ Flow/Flow",
76 "name": "JavascriptFlow",
77 "type": "#/ Flow/JavascriptFlowType"
78 },
79 "DataSinkType ": {
80 "extends ": "#/ System/ElementType",
81 "name": "DataSinkType",
82 "type": "#/ System/MetaType"
83 },
84 "DataSink ": {
85 "extends ": "#/ System/Element",
86 "name": "DataSink",
87 "type": "#/ Flow/DataSinkType"
88 },
89 "HttpPostDataSink ": {
90 "extends ": "#/ Flow/DataSink",
91 "name": "HttpPostDataSink",
92 "type": "#/ Flow/DataSinkType"
93 },
94 "HttpRestDataSink ": {
95 "extends ": "#/ Flow/DataSink",
96 "name": "HttpRestDataSink",
97 "type": "#/ Flow/DataSinkType"
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98 },
99 "DataSourceType ": {

100 "extends ": "#/ System/ElementType",
101 "name": "DataSourceType",
102 "type": "#/ System/MetaType"
103 },
104 "DataSource ": {
105 "extends ": "#/ System/Element",
106 "name": "DataSource",
107 "type": "#/ Flow/DataSourceType"
108 },
109 "HttpGetDataSource ": {
110 "extends ": "#/ Flow/DataSource",
111 "name": "HttpGetDataSource",
112 "type": "#/ Flow/DataSourceType"
113 },
114 "FileDataSource ": {
115 "extends ": "#/ Flow/DataSource",
116 "name": "FileDataSource",
117 "type": "#/ Flow/DataSourceType"
118 },
119 "DatabaseDataSource ": {
120 "extends ": "#/ Flow/DataSource",
121 "name": "DatabaseDataSource",
122 "type": "#/ Flow/DataSourceType"
123 }
124 },
125 "packages ": {},
126 "name": "Flow",
127 "type": "#/ System/Package"
128 }
129 },
130 "name": "#",
131 "type": "#/ System/Package"
132 }
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Appendix B: Screenshot of the Example Web Application

B Screenshot of the Example Web Application
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Appendix C: Docker Compose File of the COVID-19 Example

C Docker Compose File of the COVID-19 Example
1 version: "3.4"
2 services:
3 zookeeper:
4 image: wurstmeister/zookeeper:latest
5 labels:
6 ods -ems.source -node: EmbeddedKafkaInstanceCrd
7 kafka:
8 image: wurstmeister/kafka :2.13 -2.8.1
9 depends_on:

10 - zookeeper
11 environment:
12 KAFKA_CREATE_TOPICS: d5yuy :1:1,7 v89h :1:1
13 KAFKA_ZOOKEEPER_CONNECT: zookeeper :2181
14 KAFKA_LISTENERS: INSIDE ://:9092
15 KAFKA_ADVERTISED_LISTENERS: INSIDE :// kafka :9092
16 KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: INSIDE:PLAINTEXT
17 KAFKA_INTER_BROKER_LISTENER_NAME: INSIDE
18 labels:
19 ods -ems.source -node: EmbeddedKafkaInstanceCrd
20 ports:
21 - target: 9092
22 published: 9092
23 kafka -ui:
24 image: provectuslabs/kafka -ui
25 environment:
26 KAFKA_CLUSTERS_0_NAME: local
27 KAFKA_CLUSTERS_0_BOOTSTRAPSERVERS: kafka :9092
28 KAFKA_CLUSTERS_0_ZOOKEEPER: zookeeper :2181
29 KAFKA_CLUSTERS_0_SCHEMAREGISTRY: http :// karapace -registry

:8081
30 ports:
31 - target: 8080
32 published: 8080
33 karapace -registry:
34 image: ghcr.io/aiven/karapace
35 entrypoint:
36 - /bin/bash
37 - /opt/karapace/start.sh
38 - registry
39 environment:
40 KARAPACE_ADVERTISED_HOSTNAME: karapace -registry
41 KARAPACE_BOOTSTRAP_URI: kafka :9092
42 KARAPACE_PORT: 8081
43 KARAPACE_HOST: 0.0.0.0
44 KARAPACE_CLIENT_ID: karapace
45 KARAPACE_GROUP_ID: karapace -registry
46 KARAPACE_MASTER_ELIGIBILITY: "true"
47 KARAPACE_TOPIC_NAME: _schemas
48 KARAPACE_LOG_LEVEL: WARNING
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49 KARAPACE_COMPATIBILITY: FULL
50 ports:
51 - target: 8081
52 published: 8081
53 http -connect -source -2i9dm:
54 image: jvalue -connect
55 depends_on:
56 - kafka
57 volumes:
58 - type: bind
59 source: ./http -connect -source -2i9dm/worker.properties
60 target: /worker.properties
61 - type: bind
62 source: ./http -connect -source -2i9dm/connect.properties
63 target: /connect.properties
64 labels:
65 ods -ems.source -node: CastormKafkaConnectHttpCrd
66 ods -ems.config -hash: 2491 d1630bf1a9449ea297a26c2d67a ...
67 js-trafo -m49s1:
68 image: kafka -js-trafo
69 depends_on:
70 - kafka
71 environment:
72 START_CLASS: de.jvalue.kafka.JsTransform
73 volumes:
74 - type: bind
75 source: ./js -trafo -m49s1/stream.properties
76 target: /stream.properties
77 labels:
78 ods -ems.source -node: JsTransformationCrd
79 ods -ems.config -hash: 0dc45992c59e265053e9de40a971f2a59 ...
80 rest -connect -sink -2oibb:
81 image: kafka -rest -sink
82 depends_on:
83 - kafka
84 ports:
85 - 1234:1234
86 volumes:
87 - type: bind
88 source: ./rest -connect -sink -2oibb/worker.properties
89 target: /worker.properties
90 - type: bind
91 source: ./rest -connect -sink -2oibb/connect.properties
92 target: /connect.properties
93 labels:
94 ods -ems.source -node: RestConnectSinkCrd
95 ods -ems.config -hash: 4c707a9b0f6627d76fccd96dcac98a57c ...
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