
Automate Everything
Guest lecture at FAU Erlangen-Nürnberg

22.06.2022 | AMOS



► About ESE & me

► Is there anything outside pipelines?

► A journey from the requirements engineering to the customer and back

Start station: Requirements Engineering

Stopover: Developer environment

Gaining speed: Continuously driving through pipelines

Destination Station: At the customer

The return: Maintenance

► Time to talk

Agenda

Öffentlich



► My name is Ralf Spengler.

► Studied at FAU

in the beginning molecular science for 4 semesters

switched to computer science in 2010 (one of the best decisions of my life)

finished my master thesis in 10/2015

► First worked at HEITEC AG while studying and afterwards

► Since 2018: ESE – Engineering and Software-Entwicklung GmbH in Erlangen

► I‘m

Software Engineer with high experience in agile development of safety critical products

Have broad knowledge (ISTQB® CT-ALTM, iSAQB® CPSA-FL, Scrum.org™ PSM I, IREB® CPRE-FL)

About ESE & Myself

Öffentlich



► 144 million new versions of malicious software

► Critical infrastructure such as institutions of the public healthcare have 
been attacked (e.g. a university clinic in Germany could not treat new 
emergencies for 13 days)

► Many companies were blackmailed by attackers using ransomware (e.g. 
Colonial Pipeline Company)

► Coordinated-Vulnerability-Disclosure: Many companies have troubles to 
determine, whether they are affected by a security vulnerability and if so, 
to patch it. (e.g. Microsoft Exchange: after about 2 months still 9% were 
vulnerable)

► Heavy Supply-Chain-Attacks (SolarWinds)

BSI Lagebericht Cybersicherheit 2021 (BSI Report on Cybersecurity 2021)
Why am I here?

Öffentlich

We cannot prevent all vulnerabilities – especially in 3rd party software – but we can be prepared to rollout bug fixes ASAP.



Data and Facts

Öffentlich

founded

1997

Headquarters

Braunschweig

Employees 

2021: 387

Certificates

CPPM according to iSQI®/ PMI®

DIN EN ISO/IEC 17020

FRA-Consultants

ISO 9001:2015

IRIS (ISO TS 22163:2017)

iSTQB® -Tester

TISAX Certificate

Locations

Berlin / Hennigsdorf

Braunschweig

Erlangen

Frankfurt am Main

Hannover

Kiel

München

Wolfsburg

Revenue

2021: 33 Mio. Euro 

2020: 31 Mio. Euro 

2019: 29,5 Mio. Euro

2018: 27 Mio. Euro



Sectors ProjectsServices

Testing & 
Verification

Project support

Project realization

IT /Industry

Our Competences

Öffentlich



Is there anything outside pipelines?



Projectmanagement

Konfigurations- und Fehlermanagement

Q
u

al
it

ät
sm

an
ag

em
en

t

C
o

n
su

lt
in

g 
/ 

C
o

ac
h

in
g

Le
ve

l o
f

D
et

ai
l 

Requirements-
management

Architecture

Detailed Design

Implementation

Module Testing

Integration and 
Test

Validation / 
Assessment

Configuration- und Failuremanagement

Q
u

al
it

y 
m

an
ag

e
m

e
n

t

Although it might look strange from an agile point of view.
Let‘s look at the V-Model!

Öffentlich



► It‘s the team that must decide what to automate and how to realize it.

► If you are insecure what to do:

 Do not ask what fits to a process framework.

 Read the agile manifesto and discuss it inside the team.

 Automation must bring value: Get trusted with the product quality model defined by ISO/IEC 25010.

 Use empiricism

► Most important drivers for the slides you will see:
 Feedback culture: Agile development is about collecting all kind of feedback in short cycles.

 „Simplicity – the art of maximizing the amount of work not done – is essential.“ : Be smart – be lazy

Keep in mind …

Öffentlich



A Journey from the Requirements 
Engineering to the Customer and Back



Start Station: Requirements Engineering



► Requirement Management 

 Use tools to automate the impact analysis.

 Fast first feedback what a change would mean.

 Less manual work.

► Very helpful if you need to satisfy some regulatory standards and laws

Covers the whole lifecycle but starts right here
Traceability

Requirement

Architecture & 
Design

Code

Configuration

Test 
Documentation

Unit Tests

Integration 
Tests

System Tests

Öffentlich



► Design usable GUI together with the relevant stakeholders, e.g. using Qt Design Studio or QtCreator

 Get immediate feedback from stakeholders.

 Helps to gain a common understanding of the workflow.

 Helps to gain a common understanding of the expected design.

 Can be directly integrated into your application.

► Generate code from models, e.g. database schema, e.g. Enterprise Architect

 Models help to get feedback whether you understood all attributes and
relationships you must be aware of.

 Generate a script to setup your database: Makes switching between databases
easier.

 Understand bad documented 3rd-party systems ---------------------------------------------->
(Screenshot of
https://almdemo.polarion.com/polarion/sdk/doc/database/FullDBSchema.pdf)

Modeling

Öffentlich

https://almdemo.polarion.com/polarion/sdk/doc/database/FullDBSchema.pdf
https://almdemo.polarion.com/polarion/sdk/doc/database/FullDBSchema.pdf


► Use Behavior-Driven-Development to get requirements in an ubiquitous language that can be used to 
automate testing  (e.g. Gherkin-Syntax and Cucumber)

 Sentence templates help to reduce the ambiguity of natural language.

 It is still natural language that can be understood by all stakeholders. Scenarios enable them to give you and each 
other feedback.

 Defining the initial context, an event and the expected outcome:
That‘s what you formally do when writing test cases

 Just to give you two small examples:

Testability

Given that we write a scenario together
When stakeholders read it
Then they will be able to understand it

Given a user enters 1 divided by 0 into a 
calculator
When the user presses the „=“-button
Then „ERR“ will be shown on the display

Öffentlich



Stopover: Developer Environment



► Virtual environments, e.g. python venv, nodeenv, …

► Dependency management, e.g. npm, pip, nuget, …

► Virtual machines

► Containers (e.g. docker, podman, k8s)

► Scripts to setup developer environment, e.g. bash

„But it works at my machine!“
Unify the Development Environment

Öffentlich



► Ideal world: All members of a team have the same level of knowledge.

► Real world: People come and go, sometimes you need rare, expensive expert knowledge of different 
categories

 T-Shaped people

 nobody knows everything

► Automation of complex tasks that need expert knowledge as living documentation of how some things 
needs to be done, e.g. using containers, invoke, scripts

 Must be documented => Knowledge written down

 Can be peer-reviewed => Knowledge being spread

Cross-functional team – bridging the knowledge gap
Expert Knowledge

Öffentlich



Gaining Speed: Continuously driving 
through Pipelines



► Build your artifacts

 They must work. There is no value in testing something that does not fulfill the minimum requirement to be 
executable. Don’t waste time on running time-consuming test cases.

 Which artifacts must be retained how long? (Memory = Money)

► Bundle what you need for rollout & debugging:

 SBOM (Software bill of materials)

 Changelog

 Configs

 Documentation

 Logfiles from test case execution

 …

Building

Öffentlich



► Is your license compatible with those of your dependencies? Are you hurting e.g. export restrictions?
 Not a trivial task

 Can change with sub dependencies or by activating plugins

 Collect feedback about your license compliance right from the start. Exchanging libraries at a late point in 
development costs much time and money.

 Use tools, e.g. FOSSology, Black Duck, Apache Rat, Barista, liccheck, Eclipse SW360, …

 Get trusted with OSS-licenses: (e.g. using https://tldrlegal.com/)

►GPL

► LGPL

►MIT

►BSD

►CC

►MPL

►Apache

►…

Compliance Checking

Öffentlich

https://tldrlegal.com/


► Problem: How do I assign version numbers to my software?

 Time: (e.g. by month/year) can be misleading if 04/2022 is the first release of year 2022.

 Sequentially: 1, 2, 3, 4, …  Are there important changes to interfaces? Is it worth to dig into Changelogs?

 Arbitrarily: Throw a coin and decide whether the result makes you happy. Seriously? All interfaces may have 
changed and some manager might decide to increase a version number 1.0.0 to 1.0.1, just because no new
features have been implemented.

 …

► To efficiently communicate the contents of a version, they should be more than a number.

Problem
Versioning

Öffentlich



► Semantic Versioning: MAJOR.MINOR.PATCH
 MAJOR = BREAKING CHANGE

 MINOR = Downward compatible new features

 PATCH = Bug fixes, internal refactoring, non-functional changes

► Conventional Commits: Structured, human, and machine readable commit message
 refactor: switch version request to REST API from POST to GET

The REST-API now enables users to fetch the current API-version via a simple GET-call instead of
the previously used POST-call.

Implements #1234

BREAKING CHANGE: The program will no longer respond to a call POST to https://myprogram.abc/api/version. Use 
GET instead. 

Solution – Part 1
Versioning

Öffentlich

https://myprogram.org/api/version


► Tools such as semantic-release will

 automatically calculate a version number for you based on the commit messages in the repository

 add version tags to your repository

 support you in writing the version number to files and committing it to the repository

 generate a changelog for the version

Solution – Part 2
Versioning

Öffentlich



► Shorten pipeline runtimes by reusing e.g. the same container images used by developers. You do not 
have to spend much time on installing dependencies.

► Enforce usage of local tools by using them inside the pipeline.

► Testing built artifacts is more important than single lines of code.

 Example: Unit tests executed on code may succeed because in the context of the repository everything is available, 
but when testing it „outside“, you can detect e.g. resources such as images that have not been bundled.

General
Testing

Öffentlich



► Run static tests to speed up reviews and make them more efficient:

 Teach yourself: 

►How can things be done in a better way using new language features?

► Learn about common mistakes.

 Prevent bike shedding: code formatting, name of variables, order of imports

 Detect careless mistakes: if-statements followed by „;“, unused variables, … this list is endless…

 Expert knowledge: Vulnerabilities, Anti-Patterns

Static testing
Testing

Öffentlich



► Unit tests:
 Easy to write and quick to execute.

 Good for testing algorithms and error handling.

► Integration tests:
 If integration tests are hard to write, you should consider whether your architecture fits your needs.

► System tests: although they are formally not the same, see acceptance tests

► Acceptance tests:
 Acceptance test-driven development (e.g. Cucumber)

 Very powerful, especially when doing automated deployment.

 Depending on the system, automation can be complex (e.g. when hardware components are involved).

Dynamic testing
Testing

Öffentlich



► Do you have projects depending on the one your pipeline is currently building?

 If you release a new version, try to auto-upgrade. (e.g. depending on how strict you pin versions by just running 
the affected pipeline or using something like npm update, pip-tools, …)

► Run pipelines regularly – even if you do not work on a project – to

 early detect updates of dependencies that make maintenance necessary

 ensure that those projects still build while the build environment maybe changed

Triggering

Öffentlich



Destination Station: At the Customer



► Built-In Interview: 

 Ask the user questions (e.g. video/audio quality)?

 Find out whether users like new functionality.

 Do they have troubles?

 Ask users for suggestions on how to improve the program.

► Monitoring user behavior:

 Which functions are used how often?

 How does a user navigate through a GUI?

► Collecting device information:

 Average consumption of resources (e.g. CPU, RAM)

 Information about the OS the system is running on

“Dangerous” (GDPR, regulated by laws)
Collecting User Feedback

Öffentlich



► Collect notifications about critical events:

 How often per day and installation is a version of an application going down?

 How often and how long are important connections lost?

 …

► Input for maintaining multiple versions:

 Which version is used how often?

 Under which license is the application running?

► Provide the possibility to report errors and provide log files (GDPR, laws, anonymization, passwords).

 Logging guidelines can help to reduce risks (e.g. logging passwords, reviews)

 Test with controlled personal data (e.g. IP, username) and search logs automatically to prevent being not compliant 
to laws.

Collecting Notifications

Öffentlich



The Return: Maintenance



► Automate evaluation of user-feedback to get alerted if something strange happens.

 Is a new version going down more often than the last one?

 Are users uninstalling the latest version and switch back to an older one?

 Keep it simple: Trend Charts often are enough. You don’t need AI for everything!

► Know your dependencies (SBOM):

 Automonitoring of available updates of 3rd-party-software

 Automonitoring of vulnerabilities in and patches for 3rd-party-software

Monitoring

Öffentlich



Remember the first thing we talked about in the beginning: Traceability

Here we go again
Impact Analysis

Öffentlich



Summary



► Automate to gain fast and valuable feedback.

► You can automate much more than “just” building, testing and deploying.

► Automation that‘s not part of CI/CD-pipelines can bring a high return on invest.

► Use automation for proactive maintenance.

Summary

Öffentlich



ESE GmbH – Technology to trust!

Öffentlich

Was erwartet Dich bei uns?   

Was bringst Du idealerweise mit?   

Teamgeist

MINT-Studium

WeiterbildungMentoring

Events Projektvielfalt

Technisches 
Interesse

Programmier-
kenntnisse

Interesse an Safety 
oder Security

Wie kannst Du starten?  

Direkteinstieg

Deutsch 
& Englisch

Wer sind wir?

Saskia Wieting
0174 6217336
jobs@ese.de
www.ese.de

Werkstudenten-
tätigkeit

http://www.ese.de/


Werkstudent Softwareentwicklung (m/w/d) 

Öffentlich

Deine Aufgaben Dein Profil Wohlbefinden bei der ESE

Unterstützung bei Konzeption, 
Implementierung und Verifizierung 
von Softwaremodulen

Du beherrschst mindestens eine 
Programmiersprache

Mentoring

Mithilfe in verschiedenen 
Softwareentwicklungs- und -
Testteams 

Interesse an strukturierter 
Softwareentwicklung und -architektur 

Bezahlter Urlaub + flexible 
Arbeitszeiten

Erstellung von 
Machbarkeitsstudien, Analysen etc.

Teamfähigkeit, Eigenmotivation, 
fließende Deutsch- und sehr gute 
Englischkenntnisse 

Offene Kommunikation und
Kooperation

Und viele weitere spannende 
Themen …

Interesse oder Vorwissen über Safety
oder Security

Mobile Working



Saskia Wieting
Recruiting
Phone: +49 531 23880 52
jobs@ese.de

Karsten Raddatz
Branch Manager Erlangen
Phone: +49 9131 6102-984
Mobile: +49 172 41 200 80 
Karsten.Raddatz@ese.de

Ralf Spengler
Lead Specialist - Software Engineer
Phone: +49 9131 6102-984
Ralf.Spengler@ese.de

Get in Contact with us

mailto:vorname.nachname@ese.de
mailto:vorname.nachname@ese.de
mailto:vorname.nachname@ese.de


Time to Talk

Thank you for Listening



► „Die Lage der IT-Sicherheit in Deutschland 2021“ - Bundesamt für Sicherheit in der Informationstechnik (BSI),
Artikelnummer: BSI-LB21/51

► Agile Manifesto: https://agilemanifesto.org/

► Starke, G. (2020). Effektive Softwarearchitekturen: Ein praktischer Leitfaden. Carl Hanser Verlag GmbH & Co. KG.

► Pohl, K., & Rupp, C. (2015). Basiswissen Requirements Engineering: Aus- und Weiterbildung nach IREB-Standard zum
Certified Professional for Requirements Engineering Foundation Level (4th ed.). dpunkt.

► Spillner, A., & Linz, T. (2012). Basiswissen Softwaretest: Aus- Und Weiterbildung Zum Certified Tester Foundation Level Nach
Istqb-Standard. dpunkt.

► Spillner, A., Roßner, T., Winter, M., & Linz, T. (2014). Praxiswissen Softwaretest - Testmanagement: Aus- und Weiterbildung
zum Certified Tester - Advanced Level nach ISTQB-Standard. dpunkt.

► https://iso25000.com/index.php/en/iso-25000-standards/iso-25010 retrieved on March 3, 2022

► https://www.aquasec.com/cloud-native-academy/vulnerability-management/open-source-vulnerability-scanning/ retrieved 
on March 3, 2022

► https://oss-compliance-tooling.org/Tooling-Landscape/OSS-Based-License-Compliance-Tools/ retrieved on March 3, 2022

► https://tldrlegal.com/ retrieved on March 3, 2022

► https://semver.org/ retrieved on March 3, 2022

► https://www.conventionalcommits.org/ retrieved on March 3, 2022

References

Öffentlich

https://agilemanifesto.org/
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://www.aquasec.com/cloud-native-academy/vulnerability-management/open-source-vulnerability-scanning/
https://oss-compliance-tooling.org/Tooling-Landscape/OSS-Based-License-Compliance-Tools/
https://tldrlegal.com/
https://semver.org/
https://www.conventionalcommits.org/


All images that are used without providing additional information have been created, or are licensed by the
ESE Engineering und Software-Entwicklung GmbH.

Picture Credits

Öffentlich


