
Managing collaborators on QDAcity
MASTER THESIS

Bharathwaj Ravi

Submitted on 3 June 2022

Friedrich-Alexander-Universität Erlangen-Nürnberg
Technische Fakultät, Department Informatik

Professur für Open-Source-Software

Supervisor:
Dr. Andreas Kaufmann

Prof. Dr. Dirk Riehle, M.B.A.

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen,
die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 3 June 2022

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 3 June 2022

i

https://creativecommons.org/licenses/by/4.0/

ii

Abstract

Collaborative software allows people to work together to achieve a common goal.
However, users might be distracted from their goals when such an application
evolves with more functionalities. Moreover, when multiple users collaborate in
the same session, the action of one user might confuse and come as a surprise to
other users. These potential unexpected interactions between the users and the
system contribute to the dynamic nature of the collaborative software.

For effective collaboration, a system should be able to minimize such unexpected
interactions and enforce the expected behavior among the users. Access control is
a standard data security practice that implements certain rules over the resources
and users, thereby controlling the interaction.

In this thesis, We demonstrate an architectural refactoring of the access control
for better collaboration in the example of QDAcity. QDAcity is a web application
for conducting Qualitative Data Analysis (QDA) of text data. Researchers and
students use this software to analyze qualitative data (such as interview data)
gathered for scientific studies. In addition, it enables them to work on their
research and share their findings collaboratively.

For QDAcity, being a collaborative application, resource management and data
security is very important. Currently, QDAcity provides the same access rights to
all the users of a project. In this thesis, we extend QDAcity’s access control cap-
abilities within a project by implementing a Role Based Access Control (RBAC)
mechanism with fine-grained permission levels on the resources.

iii

iv

Contents

1 Introduction 1
1.1 QDAcity . 1
1.2 Problem statement . 2
1.3 Objective . 2

2 Information Security and Access Control 3
2.1 Terminology . 3
2.2 Types of access control . 4

2.2.1 Discretionary Access Control (DAC) 4
2.2.2 Mandatory Access Control (MAC) 4
2.2.3 Attribute Based Access Control (ABAC) 4
2.2.4 Role Based Access Control (RBAC) 5

3 Requirements 11
3.1 Functional Requirements (FR) . 11

3.1.1 Member management . 11
3.1.2 Access control . 13

3.2 Non Functional Requirements (NFR) 14

4 Architecture 17
4.1 Member management . 17

4.1.1 Backend . 17
4.1.2 Frontend . 20

4.2 Access control . 22
4.2.1 Backend . 23
4.2.2 Frontend . 23

5 Implementation 25
5.1 Member management . 25

5.1.1 Backend . 25
5.1.2 Frontend . 37

5.2 Access control . 38

v

5.2.1 Backend . 38
5.2.2 Frontend . 39

6 Evaluation 41
6.1 Functional Requirements . 41

6.1.1 Member management . 41
6.1.2 Access control . 45

6.2 Non Functional Requirements . 45

7 Future Work 49
7.1 Extending RBAC to other entities 49
7.2 Custom roles . 49
7.3 RTCS integration . 49

8 Conclusion 51

References 53

vi

List of Figures

2.1 Flat RBAC model (Sandhu et al., 2000) 6
2.2 Hierarchical RBAC model (Sandhu et al., 2000) 7
2.3 Hierarchical role tree . 7
2.4 Constrained RBAC model with SSoD (Sandhu et al., 2000) 8
2.5 Constrained RBAC model with DSoD (Sandhu et al., 2000) 8
2.6 Symmetrical RBAC model with SSoD (Sandhu et al., 2000) 9
2.7 Symmetrical RBAC model with DSoD (Sandhu et al., 2000) 9

3.1 FunctionalMASTeR template . 11
3.2 ISO/IEC 25010 - Categories . 14
3.3 PropertyMASTeR template . 14

4.1 Phases in member management of project 17
4.2 Unified Modelling Language (UML) class diagram of Role inherit-

ance . 18
4.3 UML class diagram of Member inheritance 19
4.4 Member factory UML diagram . 19
4.5 Presentation and container components 21
4.6 Provider - Consumer pattern by React Context 24

5.1 UML class diagram of Role . 26
5.2 UML class diagram of the permission enums 27
5.3 UML class diagram of Member . 28
5.4 UML class diagram of the role enums 29
5.5 Project roles hierarchy . 29
5.6 Member builder UML diagram . 31
5.7 Additive role model . 34
5.8 Migration workflow of data to RBAC model 37
5.9 Components hierarchy of container and presentation components . 38
5.10 Authorization flowchart for RBAC 38
5.11 Polymorphic authorization methods 39

6.1 Add User dialog . 42

vii

6.2 Add user group dialog . 43
6.3 RBAC project members list User Interface (UI) 43

viii

List of Tables

3.1 Project permissions and it’s description 12
3.2 Access control matrix of project roles 12

5.1 Properties of BaseRole class . 27
5.2 Properties of BaseMember class . 30
5.3 RBAC properties of Project class . 32
5.4 Permission and bitmask value . 35
5.5 Access control matrix roles with effective permission 35

6.1 Lines of Code (LoC) coverage for unit test 47

ix

x

List of Codes

4.1 Explict access control for Owner role 22
4.2 Implicit access control for permission A 22
4.3 Explicit access control for Owner and Editor roles 22
5.1 Access control in frontend without containment component 39
5.2 Access control in frontend with containment component 40

xi

xii

Acronyms

FR Functional Requirements

NFR Non Functional Requirements

QDA Qualitative Data Analysis

MAC Mandatory Access Control

DAC Discretionary Access Control

ABAC Attribute Based Access Control

RBAC Role Based Access Control

PoLP Principle Of Least Privilege

SoD Separation of Duties

SSoD Static Separation of Duties

DSoD Dynamic Separation of Duties

RA Role Assignment

PA Permission Assignment

RH Role Hierarchies

SoC Separation of Concerns

IP Internet Protocol

API Application Programming Interface

MVC Model View Controller

DOM Document Object Model

UI User Interface

APD Access Permission Data

xiii

JDO Java Data Objects

UML Unified Modelling Language

CUD Create, Update, Delete

CRUD Create, Retrieve, Update, Delete

MA Member Assignment

DB Database

CI Continuous Integration

RTCS Real-Time Collaboration System

GAE Google App Engine

LoC Lines of Code

E2E End-to-End

xiv

1 Introduction

Collaborative software has become an integral part of our daily personal and
professional life. However, Edwards (1996) stated that "collaborative systems are
potential chaotic environments". Compared to single-user systems, multi-user
collaborative systems have potential uncertainty and unpredictability because
of the dynamic interaction between the users and the system. Furthermore, as
the application evolves, users might get overwhelmed with the functionalities
and get distracted from their intended goals. Therefore, a system should be
able to control collaboration by ensuring the data is accessible only to users
who need it, thereby minimizing chaos, unpredictability, and distraction of the
users. One common way to control collaboration is by adopting the Principle Of
Least Privilege (PoLP), according to which users should only be given minimum
required access to accomplish their work.

In this thesis, chapter 1 presents the current state of QDAcity and the objective.
Chapter 2 discusses information security and access control, followed by chapter 3,
which discusses functional and non-functional requirements. In chapter 4, the
architectural design of the backend and frontend is proposed, while chapter 5 de-
scribes how to put the design and architecture into practice. Chapter 6 evaluates
the requirements. Finally, in chapter 7, we lay out potential future works before
deriving the conclusion of this thesis in chapter 8.

1.1 QDAcity

Mezmir (2020) stated that QDA is "concerned with transforming raw data by
searching, evaluating, recognizing, coding, mapping, exploring and describing pat-
terns, trends, themes and categories in the raw data, in order to interpret them
and provide their underlying meanings". The outcome of such an analysis is usu-
ally a theory about the studied phenomenon. QDAcity is a web application for
conducting QDA. Projects can be created in QDAcity, where the data is gathered
along with codes which are categorical labels to represent the data. Codes can
be arranged in a hierarchical structure to form a code system. The process of
assigning codes to data is called coding. Several researchers can collaborate on

1

1. Introduction

projects to analyze and evaluate the data by coding it. Projects can have revi-
sions which are a snapshot of all data, the code system, and all codings applied
to the segments of data. A clone of the revision can be created with all the data
and code system except for the coding applied. Researchers can recode in their
cloned version of the project’s revision. The project owner can create agreement
reports to evaluate the inter-coder agreement between the recoded project and
the associated project revision.

1.2 Problem statement

Currently, all project users in QDAcity can perform any actions within the pro-
ject. It empowers them with too many privileges even if they are not intended
to have them.

1.3 Objective

The following defines the main objective of this thesis.

Design and implement PoLP for effective controlled collaboration in
QDAcity

2

2 Information Security and Access
Control

This chapter discusses the concepts of information security, access control and
their associated models.

According to the Computer Security Resource Center of NIST1, information se-
curity is "the protection of information and information systems from unauthor-
ized access, use, disclosure, disruption, modification, or destruction in order to
provide confidentiality, integrity, and availability".

2.1 Terminology

Common terminology related to information security is described below.

Access

Access is the ability of a subject to do an action on a particular object.

Authentication

Authentication is a technique by which the user’s identity is verified. It can be
performed in many ways and the most widely used methods are password-based
and token-based authentication. Using such methods, when a user’s identity is
verified correctly, the user is said to be an authenticated user. In simple words,
authentication answers, "who are you?".

Authorization

Authorization is a process that determines whether authenticated users can access
or do an action on a given object. When access is given, the user is said to be
an authorized user. In simple words, authorization answers, "what resources are
you allowed to access?".

1 https://csrc.nist.gov/glossary/term/INFOSEC

3

https://csrc.nist.gov/glossary/term/INFOSEC

2. Information Security and Access Control

Confidentiality

It refers to hiding data from unauthorized access and allowing only access to the
authorized users.

Integrity

It refers to the prevention of data against unauthorized modification.

Availability

It refers to the accessibility of data whenever it is needed to the users by protecting
the system against denial-of-service attacks.

Access control

Ferraiolo et al. (2003) stated that "Access control is concerned with determining
the allowed activities of legitimate users, mediating every attempt by a user to
access a resource in the system".

2.2 Types of access control

Some of the most common types of access control models are described below.

2.2.1 Discretionary Access Control (DAC)

In the DAC model, the data owner decides to whom the data access should
be given. It is very flexible as the owner can share ownership with other users.
However, it is less secure because the initial owner cannot control the data sharing
of other users. So it is not a good model for QDAcity.

2.2.2 Mandatory Access Control (MAC)

In the MAC model, the system determines to whom the data access should be
given based on the security level of the data. For example, the security level of the
data can be "Secret" or "Confidential". Users who have these security levels are
allowed to access the data. It is an extremely secure model where administrators
have high control over the data flow. However, it is less flexible because of the
strict security labels check. So it is not suitable for QDAcity.

2.2.3 Attribute Based Access Control (ABAC)

In the ABAC model, the system decides to whom the data should be accessible
based on the attributes like location, Internet Protocol (IP) address. Any required
attributes can be configured and checked at run time, making it a very secure and
flexible model. However, it is very complex to implement. Moreover, QDAcity

4

2. Information Security and Access Control

currently does not require authorization based on any such attributes, so it is not
a good fit for now.

2.2.4 Role Based Access Control (RBAC)

In the RBAC model, the system decides to whom the data should be accessible
based on the subject’s assigned role. It is highly scalable as most of the authoriz-
ation is done based on the predefined roles. It is also highly flexible, as the role’s
permission can be easily assigned or revoked. Compared to MAC and DAC, it
supports data integrity by preventing unauthorized data modification. So based
on these criteria, RBAC is the best-suited model for QDAcity.

According to Sandhu et al. (1996), three well-known security principles supported
by RBAC are,

• PoLP: RBAC assigns only needed permission for the role, thereby restrict-
ing unwanted permission assignment

• Separation of Duties (SoD): RBAC ensures no users should be assigned
conflicting permission. For example, a user who applies for leave should not
have permission to approve it

• Data abstraction: RBAC hides the data from the users based on their
role’s permission.

The most important terminologies related to RBAC are,

• User group(UG) refers to the collection of users who works to achieve a
common goal

• Subject(S) in RBAC refers to an entity that requires access to an object.
In the case of QDAcity, subjects are users or user groups

• Object(O) refers to the particular resource the subject wants to perform
a specific operation. An example of this would be a specific document of a
project in QDAcity

• Action(A) refers to a specific operation done on an object by a subject

• Permission(P) is the granular level of policies that defines what actions
can be performed on which objects

• Roles(R) are common job titles that refer to the access level of the subject

• Role Assignment (RA) refers to assigning roles to subjects(users or user
groups).

• Permission Assignment (PA) refers to assigning a set of permissions to
a role. A role can have multiple permissions, thus allowing the subject to

5

2. Information Security and Access Control

perform different actions on objects through a single role

• Role Hierarchies (RH) refer to the inheritance within the roles. A role
higher in the hierarchical tree inherits all the roles below it, thus inheriting
all their permissions in addition to their own permissions

• Member in QDAcity refers to a subject with RA

RBAC models categorized by Sandhu et al. (2000) are,

• Flat RBAC

• Hierarchical RBAC

• Constrained RBAC

• Symmetrical RBAC

Flat RBAC

In this model, roles are assigned to the users, and permissions are assigned to
the roles. Users gain permissions through their assigned roles. Users can have
multiple roles. Furthermore, Roles can have numerous permissions too. It is the
simplest of all the models. The flat RBAC model, is shown in figure 2.1.

Figure 2.1: Flat RBAC model (Sandhu et al., 2000)

Hierarchical RBAC

The hierarchical RBAC model, is shown in figure 2.2. RH are built on top of the
flat RBAC in this model. A role at the top hierarchy level inherits the permissions
of all the roles below it. An example of RH is represented in figure 2.3

6

2. Information Security and Access Control

Figure 2.2: Hierarchical RBAC model (Sandhu et al., 2000)

Figure 2.3: Hierarchical role tree

7

2. Information Security and Access Control

Figure 2.4: Constrained RBAC model with SSoD (Sandhu et al., 2000)

Constrained RBAC

This model imposes constraints on the hierarchical RBAC model with Static
Separation of Duties (SSoD) or Dynamic Separation of Duties (DSoD). SSoD
ensures that no subject is assigned mutually exclusive roles. As depicted in
figure 2.4, the constraints are in RA and RH. For example, a user who is payment
initiator cannot be a payment authorizer. Unlike SSoD, where the constraints are
predefined, in DSoD, constraints are dynamic and determined at the user session
as represented in figure 2.5. DSoD allows the user to have mutually exclusive
roles at the same time. For example, a subject can be a payment initiator and
payment authorizer, but the subject cannot authorize their own payment.

Figure 2.5: Constrained RBAC model with DSoD (Sandhu et al., 2000)

Symmetrical RBAC

Maintaining appropriate permission for respective roles is crucial for authoriza-
tion. The permission-role review is vital in systems where many administrators
can create and assign permissions. As shown in the figure 2.6 and 2.7, this model
introduces constraints in PA phase on top of the constrained RBAC model with
SSoD and DSoD. It includes an auditing interface for permission-role review.

8

2. Information Security and Access Control

Based on the review result, obsolete permission can be identified and removed.

Figure 2.6: Symmetrical RBAC model with SSoD (Sandhu et al., 2000)

Figure 2.7: Symmetrical RBAC model with DSoD (Sandhu et al., 2000)

9

2. Information Security and Access Control

10

3 Requirements

The detailed functional and non-functional requirements to implement PoLP us-
ing RBAC is explained in this chapter.

3.1 Functional Requirements (FR)

The following FR are expressed using the FunctionalMASTeR template by Rupp
and Sophist. (2014), as shown in figure 3.1. "Condition" field is optional in
the template. Keyword "SHALL" indicates the requirement must be fulfilled,
"SHOULD" represents it is important to satisfy the requirements but not man-
datory for the software to work properly, and "WILL" indicates good to have but
not must to have requirements.

Figure 3.1: FunctionalMASTeR template

The functional requirements of member management and access control are presen-
ted in the following subsections.

3.1.1 Member management

FR 1: The QDAcity RBAC system shall be able to define the project permissions
listed in table 3.1

FR 2: The QDAcity RBAC system shall be able to define the default project
roles Owner, Organizer, Editor and Viewer

11

3. Requirements

Permission Description
REVISION_CUD Used to create, update or delete

project revision
TODO_CUD Used to create, update or delete

todo
INTER_CODER_
AGREEMENT_CUD

Used to create, update or delete
project intercoder agreement

CODING_EDITOR_CUD Used to create, update or delete
coding editor related objects

RESOURCES_IMPORT Used to import codebook
RESOURCES_EXPORT Used to export codebook and re-

quirements
DESCRIPTION_EDIT Used to edit project description
SETTINGS_UPDATE Used to update project settings
MEMBER_CUD Used to create, update or delete

project members
DELETE_PROJECT Used to delete project

Note: CUD is a short form for Create, Update and Delete

Table 3.1: Project permissions and it’s description

Permission Viewer Editor Organizer Owner
Read access to all resources
belonging to the project

✓ ✓ ✓ ✓

REVISION_CUD ✓ ✓ ✓
TODO_CUD ✓ ✓ ✓
INTER_CODER_
AGREEMENT_CUD

✓ ✓ ✓

CODING_EDITOR_CUD ✓ ✓ ✓
RESOURCES_EXPORT ✓ ✓ ✓
RESOURCES_IMPORT ✓ ✓
DESCRIPTION_EDIT ✓ ✓
SETTINGS_UPDATE ✓ ✓
MEMBER_CUD ✓ ✓
DELETE_PROJECT ✓

Note: CUD is a short form for Create, Update and Delete

Table 3.2: Access control matrix of project roles

12

3. Requirements

FR 3: The QDAcity RBAC system shall be able to assign project permissions
to the respective project roles as shown in table 3.2

FR 4: The QDAcity RBAC system shall be able to allow an authorized user to
add users with a role in a project

FR 5: The QDAcity RBAC system shall be able to allow an authorized user to
add user groups with a role in a project

FR 6: The QDAcity RBAC system shall be able to allow an authorized user to
add multiple users and user groups with any supporting role in a project

FR 7: The QDAcity RBAC system shall be able to allow an authorized user to
update the role of a project member

FR 8: The QDAcity RBAC system shall be able to allow an authorized user to
remove a member from the project

FR 9: The QDAcity RBAC system shall be able to allow an authorized user to
leave the project

FR 10: The QDAcity RBAC system shall be able to enforce a constraint that
at least one owner member exists in a project

FR 11: The QDAcity RBAC system shall be able to synchronize authorization
within the project based on changes with user group/user group users

FR 12: The QDAcity RBAC system should allow the user to define custom roles
with permission and assign the custom roles to users/user groups.

FR 13: The QDAcity RBAC system shall be able to aggregate the permissions
when a user acquires more than one role in a project

3.1.2 Access control

FR 14: The QDAcity frontend authorization system shall be able to hide or
disable non-permitted UI elements

FR 15: The QDAcity backend authorization system shall be able to grant access
to an object when the user has permission

FR 16: The QDAcity backend authorization system shall be able to restrict
access to an object when the user does not have permission or is unauthorized

13

3. Requirements

3.2 Non Functional Requirements (NFR)

NFR specifies how a system should perform certain functions. It is related to the
quality of software. According to the standard ISO-250101, software quality can
be determined based on the eight metrics as represented in figure 3.2.

The requirements are based on the PropertyMASTeR by Rupp and Sophist.
(2014) as represented in figure 3.3.The "condition" and "qualifying expression"
fields in the template are optional.

Figure 3.2: ISO/IEC 25010 - Categories

Figure 3.3: PropertyMASTeR template

Functional suitability

NFR 1: The implementation shall be fully functional and should not break any
existing functionalities in QDACity

Performance efficiency

NFR 2: The QDAcity RBAC system shall be able to cache the default project
roles

1 https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

14

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

3. Requirements

Compatibility

NFR 3: The QDAcity RBAC system shall be able to comply with the existing
data and data model

NFR 4: The implementation shall be able to work with the existing cloud
infrastructure of QDAcity

Usability

NFR 5: The implementation shall be able to support QDAcity’s international-
ization strategies

NFR 6: The QDAcity RBAC system UI shall be consistent with the current
color scheme of QDAcity

Reliability

NFR 7: The QDAcity RBAC system shall behave consistently and throw distinct
error codes for different possible error cases

Security

NFR 8: The QDAcity RBAC system Application Programming Interface (API)
shall be able to authorize and authenticate the user before performing an action

Maintainability

NFR 9: The implementation shall be able to include unit test cases for the
modified functionalities with at least 90% of Lines of Code (LoC) coverage

NFR 10: The implementation shall be able to handle End-to-End (E2E) ac-
ceptance test for the modified functionalities

Portability

NFR 11: The implementation shall be able to work as expected in widely used
modern browsers such as Google Chrome, Mozilla Firefox and Microsoft Edge

15

3. Requirements

16

4 Architecture

This chapter explains the architectural overview of the RBAC system in QDAcity.
It is divided into two subsections member management and access control. Both
topics have subsections to explain the backend and frontend architecture.

4.1 Member management

QDAcity needs to have a central member management system to control author-
ization over different objects in QDAcity, like Project or Exercise.

The system should be integrated easily with minimal effort to any entities that
need member management. The following section discusses the backend and
frontend architectures of member management.

4.1.1 Backend

There are three different phases in member management. They are

• Member Assignment (MA)

• Role Assignment (RA)

• Permission Assignment (PA)

Figure 4.1 represents the phases in project member management. For better
understanding, the phases are discussed in reverse order.

Figure 4.1: Phases in member management of project

17

4. Architecture

Figure 4.2: UML class diagram of Role inheritance

PA

In the PA phase, permissions are assigned to roles. To distinguish between the
roles of different entities, we have implemented inheritance from an abstract class
which is represented in figure 4.2. The PA part of RBAC is done through role
classes. Roles can have one or more permissions. The permission belonging to
a role differs based on what type of role it is. For example, the project role
will have a specific permission set, while the exercise role will have a different
permission set. So the model should be able to make sure that only the correct
permissions are assigned to the respective role types. To achieve this, a template
parameter T is introduced in abstract BaseRole class, which ensures the derived
classes extend the base class with its appropriate permission enumeration as T.
ExerciseRole and ExercisePermissions are not implemented in this thesis but
used to demonstrate inheritance. For the rest of the thesis, the term Role when
italicized, will be used to indicate the derived classes of BaseRole abstract class,
while non italicized form refers to the corresponding linguistic meaning.

RA

In this phase, roles are assigned to the subject. In QDAcity, we refer to subjects
with role assignments as members. Similar to Role classes, we use inheritance to
implement different types of members. The RA part of RBAC is implemented
using member classes. The member object contains the role ID assigned to it.
A member can only be associated with one role. Roles differ depending on the
entity they belong to. For example, a project member can have some roles, while
an exercise member can have some different roles. Thus, the model should be
able to ensure that only the correct roles are assigned to the respective members.
To achieve this, a template parameter T is introduced in the abstract class Base-
Member, which ensures that the derived classes extend the base class with the
appropriate role enumeration as T. The member inheritance is shown in figure
4.3. ExerciseMember is not implemented in this thesis but used to demonstrate
inheritance. For the rest of the thesis, the term Member when italicized, will
be used to indicate the derived classes of BaseMember abstract class, while non
italicized form refers to the corresponding meaning defined for QDAcity.

18

4. Architecture

Figure 4.3: UML class diagram of Member inheritance

Figure 4.4: Member factory UML diagram

A common difficulty with inheritance is creating the instance of different derived
classes. We used the factory design pattern to create instances of Member classes.

The factory pattern simplifies the creation of derived objects using a simple in-
terface without exposing complex logic. Figure 4.4 represents the factory design
pattern for member classes.

MA

In this phase, the members are assigned to the respective entities they belong to.
An entity can have multiple members. For example, a project entity can have
multiple members with a project role.

The members can be users or user groups. User members are stored in the dir-
ectUsers property, while user group members are stored in the directUserGroups
property of the associated entity object.

19

4. Architecture

4.1.2 Frontend

QDAcity uses React JS frontend library developed by Facebook.

Member management components in the frontend should be reusable by any
entities (Project or Exercise) which need it. However, the requirements differ for
each entity in the following aspects.

• Each entity has its own set of business logic

• Roles and permission vary for different entities

• Certain entities can only allow users to be added

• API differs

So, the components should be decoupled from these constraints to be reusable.
The following section discusses how this can be achieved through Separation of
Concerns (SoC)

Ingeno (2018) states SoC is a "design principle that manages complexity by par-
titioning the software system so that each partition is responsible for a separate
concern, minimizing the overlap of concerns as much as possible". Abiding by
this principle, we can separate UI components from business logic components.
The concept is similar to the popular Model View Controller (MVC) pattern,
which has bidirectional property binding between components. However, React
is not an MVC framework and supports only unidirectional property binding.
Benefits of SoC are,

• Maintainability: It makes maintenance of a more extensive codebase
easier by separating UI components from logic components

• Reusability: Different components can reuse UI components with different
business logic states

• Testability: It will be easy to test the UI components and logic compon-
ents individually by separating them

Applying SoC to React, the components can be classified1 as

• Presentation components

• Container components

1 https://medium.com/@danabramov/smart-and-dumb-components-7ca2f9a7c7
d0

20

https://medium.com/@danabramov/smart-and-dumb-components-7ca2f9a7c7d0
https://medium.com/@danabramov/smart-and-dumb-components-7ca2f9a7c7d0

4. Architecture

Presentation components

They have the following characteristics,

• Deals only with the look

• Have Document Object Model (DOM) markups and styles for the look

• Receives data through props

• Emits user actions throw the callback provided through props

Some examples are the button and list components, which receive the data as
properties from the parent component and emit events to the parent component
on user interaction.

Container components

They have the following characteristics,

• Deals with the business logic

• Mostly have state

• Make API calls and mutate the states

• Have minimal DOM elements to wrap the presentation components

Some examples are components containing button and list components that
provide data to their children components and make API calls on user inter-
action such as button click.

Figure 4.5: Presentation and container components

21

4. Architecture

Figure 4.5 represents the re-usage of presentation components by two different
container components in the same app.

4.2 Access control

Access control needs to be implemented in the authorization layer centrally that
decides whether a requesting subject should be granted or denied access to do an
action on the given object.

There are two ways to check for authorization in an RBAC system, namely ex-
plicit access control and implicit access control.

An explicit access control checks for the role, while implicit access control checks
for permission.

For example, consider a scenario where a member having an Owner role has
permissionA. Explicit access control check for this scenario is shown in code 4.1
and implicit access control check is shown in code 4.2.

if (member.hasRole(ProjectRole.Owner)){
//Do action A

}

Code 4.1: Explict access control for Owner role

if (member.hasPermission(ProjectPermissions.permissionA)){
//Do action A

}

Code 4.2: Implicit access control for permission A

Now, if the requirement changes that members with the Editor roles are also
allowed to do action A. Then explicit access control needs to be changed as
shown in code 4.3.

if (member.hasRole(ProjectRole.Owner) ||
member.hasRole(ProjectRole.Editor)){
//Do action A

}

Code 4.3: Explicit access control for Owner and Editor roles

However, no code refactoring is needed if we use implicit access control. Only
PermissionA needs to be bound to the Editor role in the PA phase. For better
maintainability, we use implicit access control for authorization.

22

4. Architecture

4.2.1 Backend

Authorization is widely used across the code base and is always a crucial part
of the system. it should also check if the requesting user is authenticated and
performs authorization only if the user is authenticated.

QDAcity already has an authorization layer that acts as a facade hiding the
complex implementation and provides a simple interface to the outside world.
However, QDAcity does not have authorization checks based on fine granular
permission. This thesis has implemented polymorphic methods that handle au-
thorization based on the given permission.

4.2.2 Frontend

In the frontend, access control mostly refers to hiding and disabling of UI elements
based on the member’s permission on the object. Components across the code-
base need Access Permission Data (APD) to hide or disable elements. However,
passing APD across the component tree is error-prone. Also, some components
within the tree do not even need APD, but they have to pass it to their child,
which might need it. The process of passing properties from a parent component
to its descendant components at any nested level is called props drilling. In order
to avoid the problems with props drilling, react provides a way through context
API to send and receive this data without passing it as props at each level by
using provider and consumer contexts.

Provider-Consumer pattern

React context API provides a way to share data globally with descendants of the
UI component tree. As shown in figure 4.62, data can be provided through the
context API at any node of the UI component, and the components below the
provider node can consume it. When the data changes, the entire tree under the
provider node re-renders.

We can use this pattern to provide APD of the logged-in user in the current entity
that can be consumed by the components that need to decide whether it needs
to render the UI elements.

2 https://ipraveen.medium.com/react-basic-how-react-16-context-api-work-72
57591589fc

23

https://ipraveen.medium.com/react-basic-how-react-16-context-api-work-7257591589fc
https://ipraveen.medium.com/react-basic-how-react-16-context-api-work-7257591589fc

4. Architecture

Figure 4.6: Provider - Consumer pattern by React Context

24

5 Implementation

This chapter discusses the implementation of architectures explained in chapter
4 to satisfy the requirements specified in chapter 3. QDAcity uses Java-based
Google App Engine (GAE) for the backend, React for the frontend and Node JS
for Real-Time Collaboration System (RTCS). The implementation is explained
in two sections member management and access control.

5.1 Member management

In this section, the implementation details of member management are discussed
for both the backend and frontend.

5.1.1 Backend

This section describes classes related to RBAC, error handling, additive role
model, bit masking techniques and migration of old data to new data model.

Role classes

Role class inheritance is shown in figure 5.1. BaseRole is an abstract class,
and it implements the serializable interface to deal with the serialization and
deserialization for the datastore. It has four properties and one abstract method.
Properties of BaseRole class are explained in table 5.1. Role object contains
permissions that are assigned in PA phase. To indicate what type of permission
a role can hold, template parameter T is introduced in BaseRole class.

ProjectRole extends the BaseRole class with the ProjectPermission enum as para-
meter T. It implements the hasPermission(ProjectPermissions) to check whether
a project member has permission to do an action on an object. ProjectPermis-
sions holds the permission for different actions on different objects belonging to
a Project entity. Project permissions are listed in table 3.1. As shown in figure
5.2, ProjectPermission enum implements BasePermission interface to implement
common methods. Parameter T is constrained with BasePermission in BaseRole

25

5. Implementation

class to ensure only the relevant enum that implements this interface alone can
be used as permission enum.

A role object holds a value of the type RoleType to differentiate between different
role types. Role types are

• DEFAULT_ROLE - Applicable for system created static roles

• CUSTOM_ROLE - Applicable for user created roles

• DERIVED_ROLE - Applicable for roles that are combined together from
other roles

Roles with DEFAULT_ROLE type are static and it should always be available
in the Database (DB). To create and persist default role, CreateRoleServlet is
created and it is triggered on server start. This servlet persist roles, if it is not
already available in the DB.

To support Create, Retrieve, Update, Delete (CRUD) operations on role objects,
the RoleController class is created.

Figure 5.1: UML class diagram of Role

26

5. Implementation

Figure 5.2: UML class diagram of the permission enums

Property Data type Purpose
id Long Contains the unique identifier of the object
name String Contains the name of the role
type RoleType Refers to the enum type, which can be DE-

FAULT_ROLE / CUSTOM_ROLE / DE-
RIVED_ROLE

permission Long Contains the effective permissions of the role,
which is obtained by the union of all the
permission values assigned to the role in PA
phase

Table 5.1: Properties of BaseRole class

Member class

Figure 5.3 presents the Member inheritance. BaseMember is an abstract class,
and it implements the serializable interface to deal with the serialization and
deserialization for the datastore. BaseMember is designed as an abstract class
so that it cannot be instantiated and also enforces its derived class to implement
specific required methods. It has eight properties and two abstract methods. The
properties are explained in table 5.2.

BaseMember class has a template parameter T which is constrained with in-
terface DefaultRole. Parameter T is used in the hasRole(T) abstract method,

27

5. Implementation

which checks if a member has a given default role. Derived classes extend
this base class with respective role enums as parameter T. For example, Projec-
tRole extends BaseMember with DefaultProjectRole enum and implements the
hasRole(DefaultProjectRole), while ExerciseRole extends BaseMember with De-
faultExerciseRole and implements hasRole(DefaultExerciseRole). Parameter T
ensures that derived classes implement the hasRole(T) method with its respect-
ive role enums at compile time.Parameter T is constrained to ensure only relev-
ant enum that implements the DefaultRole interface alone can be used so that
a random enum cannot be used for implementation. The implementation of this
interface by these enums is shown in figure 5.3 .

Figure 5.3: UML class diagram of Member

28

5. Implementation

Figure 5.4: UML class diagram of the role enums

Figure 5.5: Project roles hierarchy

A member object holds a value of the type MemberType to differentiate between
different member types. Different member types are

• USER - applicable for users

• USER_GROUP - applicable for user groups

• USER_GROUP_USER - applicable for users who gain access through user
groups

29

5. Implementation

Property Data type Purpose
id Long Contains the unique identifier of

the object
maxRoleID Long Contains the role ID of the mem-

ber with maximum permission
type MemberType Refers to enum type which can be

USER/USER_GROUP/
USER_GROUP_USER

userID String Contains the user ID applic-
able for the types USER and
USER_GROUP_USER

userGroupID Long Contains the user group
ID applicable for the
types USER_GROUP and
USER_GROUP_USER

userGroupUserID Long Contains the user group user
ID applicable only for the type
USER_GROUP_USER

associatedEntityID Long Contains the ID of the entity
(Project/Exercise/UserGroup) to
which the member is part of.

otherSources List<Long> Contains the list of BaseMember
ID in which the user has same
maximum role through some
other USER_GROUP member.

Table 5.2: Properties of BaseMember class

As discussed above, the ProjectMember class has only two methods and no prop-
erties. Therefore, it might not seem to be a good candidate for inheritance.
However, having inheritance within our initial design helps extend the function-
alities for future customization. For example, consider that only users are allowed
and user groups are not allowed to be added to the Exercise entity. Then with
the chosen design, we can override the getters and setters related to the user
group in the derived class to persist null. This way, we can ensure that no user
groups are added even if the methods are invoked in the code.

As depicted in figure 5.4, DefaultProjectRoles enum has the roles owner, or-
ganizer, editor and viewer. This enum implements the DefaultRole interface.
Implementation of DefaultProjectRoles is shown in the figure 5.5.

To support CRUD operations on member objects, the MemberController class is
created.

30

5. Implementation

Based on the MemberType, many properties need to be set. The builder pat-
tern helps construct complex objects step by step. Using the same construction
code, different representations of objects can be created. A UML diagram for
the builder pattern to create different Member objects initialized with different
properties are presented in figure 5.6.

Figure 5.6: Member builder UML diagram

Project class

A project should allow adding users and user groups, and a project should be
able to differentiate whether a member is a user or user group. As described in
section 4.1.1, the directUsers and directUserGroups properties were added in the
Project class. The prefix direct indicates that these members were added directly
to the project. There are also indirect members who gain access through user
groups. To differentiate between these types of members MemberType enum with
values of USER, USER_GROUP, USER_GROUP_USER is introduced.

In addition to these properties, two more properties, maxRoleMembers and sup-
portedRoles, were also added. These properties are explained in table 5.3.

31

5. Implementation

Property Data type Purpose
directUsers List<Long> Contains the list of ProjectMember IDs

with USER MemberType
directUserGroups List<Long> Contains the list of ProjectMember IDs

with USER_GROUP MemberType
maxRoleMembers List<Long> Contains all the ProjectMember Ids of

distinct direct or indirect users with
their maximum role.

supportedRoles List<Long> Contains the list of ProjectRole Ids of
all the supporting roles, including de-
fault project roles and custom roles, if
any.

Table 5.3: RBAC properties of Project class

JDO persistence strategies

We use the SUPER_CLASS_TABLE inheritance strategy provided by Java
Data Objects (JDO) for both Member and Role classes. This strategy instructs
the database management system to store all the types of BaseMember and
BaseRole classes in one table each. Since we are building a central RBAC system
for QDAcity, it is better to use super class inheritance. According to the JDO
guide1, this has the benefit that retrieving an object is a single call to a single
table. However, it also has the drawback that the single table can have many
columns, which suffer database performance and readability. Thus a discrimin-
ator column is desired.

Based on the JDO mapping guide2, a discriminator is an additional column stored
alongside the data to recognize the class to which that information belongs. It is
useful to determine the object type upon retrieval. Two types of discriminators
supported by JDO are,

• class-name - the class name is stored as a discriminator

• value-map - unique numeric value for each type is stored as a discriminator

We use the class-name discriminator strategy to identify different object types.

1 https://www.datanucleus.com/products/accessplatform_4_1/jdo/orm/inher
itance.html
2 https://www.datanucleus.org/products/accessplatform_5_1/jdo/mapping.h
tml

32

https://www.datanucleus.com/products/accessplatform_4_1/jdo/orm/inheritance.html
https://www.datanucleus.com/products/accessplatform_4_1/jdo/orm/inheritance.html
https://www.datanucleus.org/products/accessplatform_5_1/jdo/mapping.html
https://www.datanucleus.org/products/accessplatform_5_1/jdo/mapping.html

5. Implementation

Error handling

Error handling in API is very important as it helps to convey the client what has
caused the error. In the RBAC system, to handle different kinds of error cases,
RBACErrorCode enum is created with the following items,

• MEMBER_NOT_AVAILABLE - used when the given member is not found
in datastore

• ROLE_NOT_SUPPORTED - used when the given role is not supported
by the project

• ROLE_NOT_CHANGED - used when the role is not changed while up-
dating member role

• SINGLE_OWNER_CASE - used when the given member is the only owner
of the project while degrading role/removing member/member leaves the
project

• MEMBER_ALREADY_ADDED - used when the member is already ad-
ded to the project

• USER_GROUP_USER_DIRECT_ACTION_NOT_ALLOWED - used
when an action is directly performed on a user group user

• USER_CANNOT_REMOVE_THYSELF - used when the member re-
move themselves

• OWNER_MEMBER_NOT_FOUND - used when no owner member found
for the project

• INVALID_EMAIL - used when the user email is invalid

MemberController has methods to check and throw RBACExcception for each
error case. API methods catch these exceptions and throw them as BadReques-
tException with the specific error code to the client.

Nomenclature of permission

Permissions are the core part of RBAC. The permission name should express
what action can be done on which object. So a common nomenclature is followed.

OBJECTNAME_ACTIONS

The actions are sometimes grouped as Create, Update, Delete (CUD), which
refers to the short form of Create, Update and Delete. The read property of
the commonly known abbreviation CRUD is handled separately to allow read
access to non-registered users under certain conditions. If these conditions ap-
ply, those users could not be authorized to use RBAC because they can not be

33

5. Implementation

authenticated.

Additive role model

QDAcity currently has hierarchical default roles. So when a user is assigned
multiple roles, the role with maximum permission will become the effective per-
mission for that user. However, when custom roles are introduced, the roles may
not be hierarchical, and the maximum role cannot be determined. As depicted
in figure 5.7, when multiple roles are assigned to an user within the same entity,
the user’s effective permission will be a union of all the permission sets of the
user’s assigned roles. This is called an additive role model.

Figure 5.7: Additive role model

Bit masking technique

As the app matures, functionality will increase. Eventually, the number of pos-
sible permissions may also grow. Then it will not be easy to store different per-
mission boolean in the DB. To solve these difficulties, the bit masking technique
is used.

A bitmask is a sequence of bits used to represent multiple boolean flags. If a
bit is set, it is considered true, otherwise false. Based on this concept, each
permission is assigned a unique value in the powers of two. Aggregating all
the appropriate permissions of a role results in its effective permission. A mask
is a filter that extracts needed bits and leaves the unwanted bits. Masking is

34

5. Implementation

the process of applying mask to the value. Bitwise operations used for different
masking purposes are

• Bitwise AND - used to extract needed bits

• Bitwise OR - used to add bits

• Bitwise XOR - used to remove the bits

Let us consider the permissions with values in the sequence of powers of 2 as
shown in table 5.4 and access control matrix on table 5.5. The blue represents
the bitmask value of the permission and orange color represents the effective
permission of the role.

Permission Value Bitmask value
TODO_CUD 20 = 1 0001
VALIDATION_PROJECT_APPROVE 21 = 2 0010
PROJECT_DELETE 22 = 4 0100

Table 5.4: Permission and bitmask value

Permission Editor Organizer
TODO_CUD ✓ ✓
VALIDATION_PROJECT_APPROVE ✓
PROJECT_DELETE

Effective permission 2 0 = 1
= 0001

2 0 + 21 = 3
= 0011

Table 5.5: Access control matrix roles with effective permission

Check permission

Logical AND(&) can be used to mask the given permission from the role’s effective
permission. If the masked value is greater than zero, permission is granted else
denied.

The formula to check permission is,

bitMaskValueOfPermissionToCheck & effectivePermission > 0 (5.1)

Checking the permission TODO_CUD for the editor role, the condition evaluates
to be true (0001 & 0001 = 0001 > 0), so editor member has the permission
TODO_CUD

Checking the permission PROJECT_DELETE for the editor role, the condi-
tion evaluates to be false (0001 & 1000 = 0000 ≯ 0), so editor member has no
permission PROJECT_DELETE.

35

5. Implementation

Add permission

Logical OR(|) can be used to add a given permission to the existing effective
permission.

The formula to add a permission is,

effectivePermission = bitMaskValueOfPermission ∣ effectivePermission (5.2)

Adding VALIDATION_PROJECT_APPROVE permission to the editor role,
effective permission will become 0010 | 0001 = 0011

Remove permission

Logical XOR(ˆ) can be used to remove a given permission from the existing
effective permission.

The formula to remove permission is,

effectivePermission = bitMaskValueOfPermissionToRemove ∧ effectivePermission
(5.3)

Removing VALIDATION_PROJECT_APPROVE permission from the organ-
izer role, the effective permission will become 0010 ∧ 0011 = 0001

Migration of data

Previously, project users were stored in a list called owners in the project entity.
With the current RBAC model, all the user data are stored in the Member table.
To migrate project user data to the new RBAC model, we used task queues.
Figure 5.8 depicts the workflow of migration. When a client triggers the up-
dateProjectRBACProperties API, deferred task UpdateAllProjectsRBACEntries
is added to the queue. This task queries all the projects from the datastore
and adds UpdateSingleProjectRBACEntries deferred task for every project to
the queue. Queues are consumed by the worker service, which calls the deferred
task handlers. Then the handlers create a ProjectMember object with USER
MemberType and maxRoleId as owner for each users and persist them in the
datastore.

Synchronization of user group with project members

Whenever there is a change in a user group, project members needs to be syn-
chronized with the user group. A deferred task is created to compute and persist
the members and their maximum permission.

36

5. Implementation

This task will be added to the queue when,

• the user group is deleted

• user leaves the user group

• user is added to the user group

• user is removed from the user group

Figure 5.8: Migration workflow of data to RBAC model

5.1.2 Frontend

In the frontend, we use container and presentation components to implement the
SoC design principle. The container component ProjectMembers handles the net-
work requests and provide the data as properties to the presentation components.
On user interaction, presentation components emit events to the ProjectMembers
component and react to property changes on state update of container compon-
ent.

The components hierarchy is represented in figure 5.9.

37

5. Implementation

Figure 5.9: Components hierarchy of container and presentation components

5.2 Access control

5.2.1 Backend

In this section, the implementation of access control mechanisms for backend and
frontend are discussed.

Backend

As discussed, we use implicit access control in the Authorization facade. Author-
ization involves many steps before deciding whether to deny or allow the request.
The general workflow of authorization in the backend is represented as a flow
chart in figure 5.10.

Figure 5.10: Authorization flowchart for RBAC

38

5. Implementation

Figure 5.11: Polymorphic authorization methods

As depicted in the flow chart, authorization involves lot of checks. The logic
also varies based on the object of interest. To implement implicit access control
polymorphic methods were created already in Authorization facade. Permission-
based authorization methods were created and overloaded with other methods
based on the different object types, types of the user object, and with or without
permission. A UML class diagram of polymorphic methods with and without
permission is represented in figure 5.11. For GET http requests, only existence
in project is checked while for other requests permission is also checked.

5.2.2 Frontend

In the frontend, access control should show/hide the UI elements based on the
underlying permission.

Provider consumer pattern

We use the provider consumer of the context API to pass the access permission
data to different components. Wherever a permission check is needed, the per-
mission consumer should be used to get the permission and conditionally render
UI elements based on particular permission. The following code handles access
control to show or hide "Create revision" button using this pattern.

<PermissionProvider permission={permissions}>
...

<PermissionConsumer>
{permission =>

{permission.REVISION_CUD &&
<button>Create revision</button>

}
}

</PermissionConsumer>
...

</PermissionProvider>

Code 5.1: Access control in frontend without containment component

39

5. Implementation

Containment component

The problem with using provider consumer alone is that there is a lot of boil-
erplate code with conditional rendering to show or hide UI elements based on
the permission. Also, the permission consumer has to be imported in all the
components which need access control. To avoid these difficulties, containment
components are used. React provides children properties to components in the
name child. This will be helpful when the component does not know the children
in advance, but needs to wrap it. Based on this concept, the ShowIfPermitted
containment component is created, which accesses the permission from Permis-
sioCconsumer, receives the permission to be checked, and children as properties.
If the given permission is satisfied, the children components are returned and
rendered. Similarly, DisableIfNotPermitted containment component is also cre-
ated to disable UI elements when not permitted. The following code handles
access control to show or hide "Create revision" button using containment com-
ponent.

<PermissionProvider permission={permissions}>
...

<ShowIfPermitted
permission={ProjectPermissions.REVISION_CUD}>
<button>Create revision</button>

</ShowIfPermitted>
...

</PermissionProvider>

Code 5.2: Access control in frontend with containment component

40

6 Evaluation

In chapter 3, we presented the FR and NFR. In this chapter, we examine whether
these requirements are satisfied or not.

6.1 Functional Requirements

This section evaluates FR for member management and access control.

6.1.1 Member management

FR 1: The QDAcity RBAC system shall be able to define the project
permissions listed in table 3.1

As discussed in section 5.1.1, ten project permissions were defined in an enum
ProjectPermission.

We satisfied this requirement.

FR 2: The QDAcity RBAC system shall be able to define the default
project roles Owner, Organizer, Editor and Viewer

As described in section 5.1.1, the four project roles were defined in an enum
ProjectRole.

We satisfied this requirement.

FR 3: The QDAcity RBAC system shall be able to assign project
permissions to the respective project roles as shown in table 3.2

The project permissions were assigned to the project roles in the PA phase of
RBAC. The permissions were added together to form the effective permission of
a role as mentioned in section 5.1.1.

We satisfied this requirement.

FR 4: The QDAcity RBAC system shall be able to allow an authorized
user to add users with a role in a project

41

6. Evaluation

Figure 6.1: Add User dialog

AddUser API was created in ProjectEndpoint to support user addition to a pro-
ject. In the frontend, a modal dialog was implemented to enable user addition
by entering an email and choosing a role. Figure 6.1 shows the add user dialog
in QDAcity.

We satisfied this requirement.

FR 5: The QDAcity RBAC system shall be able to allow an authorized
user to add user groups with a role in a project

AddUserGroup API was created in ProjectEndpoint to support user group addi-
tion to a project. A modal dialog was implemented in the frontend to enable user
group addition by choosing an owned user group and a role. Figure 6.2 shows
the add user group dialog in QDAcity.

We satisfied this requirement.

FR 6: The QDAcity RBAC system shall be able to allow an authorized
user to add multiple users and user groups with any supported role in
a project

Both AddUser and AddUserGroup APIs allow multiple distinct members to be
added to the project. The listing of multiple members is shown in figure 6.3

We satisfied this requirement.

42

6. Evaluation

Figure 6.2: Add user group dialog

Figure 6.3: RBAC project members list UI

FR 7: The QDAcity RBAC system shall be able to allow an authorized
user to update the role of a project member

updateMemberRole API was added in ProjectEndpoint to modify a member role.
A dropdown with supported roles was provided in the frontend for the authorized
user to change the member role. The roles dropdown is encircled as 1 in figure
6.3

We satisfied this requirement.

FR 8: The QDAcity RBAC system shall be able to allow an authorized
user to remove a member from the project

removeMember API was added in ProjectEndpoint. In the frontend, a button to
remove a user, user group members were provided. The remove member button
is encircled as 2 in figure 6.3

We satisfied this requirement.

43

6. Evaluation

FR 9: The QDAcity RBAC system shall be able to allow an authorized
user to leave the project

leaveProject API was added in ProjectEndpoint. In the frontend, a button to
leave the project was added only for logged-in users. The leave project button is
encircled as 3 in figure 6.3

We satisfied this requirement.

FR 10: The QDAcity RBAC system shall be able to enforce a con-
straint that at least one owner member exists in a project

The throwIfMemberIsOnlyOwner() method has been implemented in Member-
Controller to check if the specified member is the only owner of the project and
throws RBACException if a member is the only owner. This method was used in
updateMemberRole, removeMember, and leaveProject APIs to ensure that at least
one owner member exists for the project. In addition to the API error handling,
error message prompt to the user was also handled in the frontend.

We satisfied this requirement.

FR 11: The QDAcity RBAC system shall be able to synchronize au-
thorization within the project based on changes with user group/user
group users

As discussed in section 5.1.1, whenever there is a change in the user group/user
group users, deferred tasks are added to the queue to synchronize project author-
ization with the changed user group.

We satisfied this requirement.

FR 12: The QDAcity RBAC system should allow the user to define
custom roles with permission and assign the custom roles to users/user
groups

Due to time constraints and lower priority, the custom role functionality was not
implemented. Nevertheless, the RBAC system’s design and architecture were
implemented to be extendable for custom roles.

We did not satisfy this requirement.

FR 13: The QDAcity RBAC system shall be able to aggregate the
permissions when a user acquires more than one role in a project

As discussed in section 5.1.1, RBAC was implemented with additive role model
which aggregates the role’s permission when a user has multiple roles in a project.

We satisfied this requirement.

44

6. Evaluation

6.1.2 Access control

FR 14: The QDAcity frontend authorization system shall be able to
hide or disable non-permitted UI elements

As discussed in section 5.2.2, we have implemented the provider-consumer pattern
along with ShowIfPermitted component to show/hide UI elements and DisableI-
fNotPermitted component to disable UI elements.

We satisfied this requirement.

FR 15: The QDAcity backend authorization system shall be able to
grant access to an object when the user has permission

As discussed in section 5.2.1, the authorization layer has been implemented to
check authentication and authorization based on permission. Requests will be
allowed access for the object if the member has the needed permission.

We satisfied this requirement.

FR 16: The QDAcity backend authorization system shall be able to
restrict access to an object when the user does not have permission or
is unauthorized

As discussed in section 5.2.1, the authorization layer has been implemented to
check authentication and authorization based on permission. If authorization
fails, request will be denied access by throwing UnauthorizedException.

We satisfied this requirement.

6.2 Non Functional Requirements

In this section, we evaluate the NFR listed in chapter 3.

Functional suitability

NFR 1: The implementation shall be fully functional and should not
break any existing functionalities in QDACity

Manual test was done to confirm that the functionalities were working as expec-
ted. All the unit test cases were also passed, indicating all the existing function-
alities work as expected.

We satisfied this requirement.

Performance efficiency

NFR 2: The QDAcity RBAC system shall be able to cache the default
project roles

45

6. Evaluation

All the project roles were stored in Memcache(in-memory key-value storage) with
both id and name as keys to facilitate retrieval of roles for different purposes.

We satisfied this requirement.

Compatibility

NFR 3: The QDAcity RBAC system shall be able to comply with the
existing data and data model

Deferred tasks were implemented to migrate the project user data from the old
data model to the new RBAC data model successfully.

We satisfied this requirement.

NFR 4: The implementation shall be able to work with the existing
cloud infrastructure of QDAcity

The RBAC system was built using the existing cloud infrastructures of QDAcity
(GAE, datastore, Memcache and tasks queue) without any additional infrastruc-
ture.

We satisfied this requirement.

Usability

NFR 5: The implementation shall be able to support QDAcity’s inter-
nationalization strategies

All the messages used in the UI were internationalized in English and German
using QDAcity’s internationalization system. The Continuous Integration (CI)
pipeline task to check translation messages also confirms it.

We satisfied this requirement.

NFR 6: The QDAcity RBAC system UI shall be consistent with the
current color scheme of QDAcity

The new RBAC system in the frontend was built using many common components
and newly added components only use colors defined in the theme file.

We satisfied this requirement.

Reliability

NFR 7: The QDAcity RBAC system shall behave consistently and
throw distinct error codes for different possible error cases

All unit test cases related to the RBAC system pass consistently, indicating
that the functionalities behave as expected. It also includes tests that check
for the error cases. As discussed in section 5.1.1, RBACErrorCode enum and

46

6. Evaluation

RBACException was created in the backend to throw exception with different
error codes for different error cases.

We satisfied this requirement.

Security

NFR 8: The QDAcity RBAC system API shall be able to authorize
and authenticate the user before performing an action

Authentication and authorization of all the RBAC APIs were done using common
methods in the Authorization facade. These API throws UnauthorizedException
exception whenever authentication or authorization is failed.

We satisfied this requirement.

Maintainability

NFR 9: The implementation shall be able to include unit test cases
for the modified functionalities with at least 90% of LoC coverage

We have written 35 unit test cases related to RBAC system in the backend. LoC
coverage percentage for the RBAC packages are listed in table 6.1. The table
shows that only two packages meet 90% criteria while others don’t.

We partially satisfied this requirement.

Package Lines
missed

Lines
covered

LoC
coverage in

%
com.qdacity.rbac 0 12 100
com.qdacity.rbac.member 21 93 83.03
com.qdacity.rbac.member.controller 80 343 81.09
com.qdacity.rbac.role 16 37 69.81
com.qdacity.rbac.role.controller 32 63 66.32
com.qdacity.rbac.deferredTasks 39 43 52.44
com.qdacity.project.rbac.member 2 10 83.33
com.qdacity.project.rbac.role 22 99 81.81
com.qdacity.endpoint
(includes only RBAC related
APIs in ProjectEndpoint class)

0 124 100

Table 6.1: LoC coverage for unit test

NFR 10: The implementation shall be able to handle E2E acceptance
test for the modified functionalities

47

6. Evaluation

Due to time constraints and lower priority, we could not able to implement E2E
acceptance test.

We did not satisfy this requirement.

Portability

NFR 11: The implementation shall be able to work as expected in
widely used modern browsers such as Google Chrome, Mozilla Firefox
and Microsoft Edge

Manual testing ensured that the functionalities worked as intended in the recent
version of these browsers.

We satisfied this requirement.

48

7 Future Work

Although QDAcity now has a central RBAC system, there is still room for im-
provements. This section describes future works to be done in QDAcity.

7.1 Extending RBAC to other entities

Currently, RBAC is implemented only for project entities. However, QDAcity
has other entities like UserGroup, Course, and Exercise where RBAC is a good
candidate. Therefore, going forward, the RBAC system should be integrated
with these entities as additional RBAC objects.

7.2 Custom roles

Custom roles are user-defined roles. The user should assign permission bindings
when creating the role. RBAC system has been designed and implemented to
support custom roles. In the future, custom roles should be implemented as an
option for users.

7.3 RTCS integration

When a member is added, modified role, or deleted from a project, it is not com-
municated to the other members collaborating on the same project in real-time.
This leads to inconsistent behavior between the frontend and backend, which are
only eventually resolved on reload of the frontend client. By integrating with
RTCS, inconsistencies will be eliminated, providing a smooth user experience.

49

7. Future Work

50

8 Conclusion

The objective of this project was to implement PoLP in QDAcity to control
collaboration.

To successfully implement PoLP, we started by surveying literature related to
information security and access control, as discussed in chapter 2. We found that
RBAC is the most appropriate model to achieve PoLP. In chapter 3, we stated
FR and NFR related to member management and access control. In chapter 4,
we proposed an architecture to build these functionalities. The proposed archi-
tectures were implemented as discussed in chapter 5. In chapter 6, we evaluated
all the 27 requirements, out of which we have satisfied 24 requirements fully satis-
fied, 1 partially satisfied, and 2 not satisfied. In chapter 7, improvements needed
to make QDAcity member management better has been discussed.

QDAcity now has central member management based on the RBAC concept. It
allows users and user groups to be added to the project with roles. Member’s
roles can be updated, and members can be removed. Users are granted or denied
access based on their underlying role’s permission.

The resulting RBAC system was built using widely used design patterns. Inherit-
ance class hierarchies were used to support different types of members and roles.
Most of the queries related to the RBAC system were done using low-level data-
store API for better performance. In the frontend, SoC and provider-consumer
pattern were used. Also, the migration of existing data to the new RBAC data
model was done smoothly.

To conclude, hierarchical RBAC system with four project roles (Owner, Organ-
izer, Editor and Viewer) and ten fine-granular permissions were successfully im-
plemented to support PoLP and control the collaboration in QDAcity.

51

8. Conclusion

52

References

Edwards, W. K. (1996). Policies and roles in collaborative applications. Proceed-
ings of the 1996 ACM Conference on Computer Supported Cooperative
Work, 11–20. https://doi.org/10.1145/240080.240175

Ferraiolo, D., Kuhn, D. & Chandramouli, R. (2003). Role-based access control.
Artech House.

Ingeno, J. (2018). Software architect’s handbook: Become a successful software ar-
chitect by implementing effective architecture concepts. Packt Publishing.

Mezmir, E. A. (2020). Qualitative data analysis: An overview of data reduction,
data display and interpretation. Research on Humanities and Social Sci-
ences.

Rupp, C. & Sophist. (2014). Requirements - engineering und - management –
pro- fessionelle, aus der praxis von klassisch bis agil. Carl Hanser Verlag
München.

Sandhu, R., Ferraiolo, D. & Kuhn, R. (2000). The nist model for role-based
access control: Towards a unified standard. Proceedings of the Fifth ACM
Workshop on Role-Based Access Control, 47–63. https://doi.org/10.1145/
344287.344301

Sandhu, R., Coyne, E., Feinstein, H. & Youman, C. (1996). Role-based access
control models. Computer, 29 (2), 38–47. https ://doi .org/10 .1109/2 .
485845

53

https://doi.org/10.1145/240080.240175
https://doi.org/10.1145/344287.344301
https://doi.org/10.1145/344287.344301
https://doi.org/10.1109/2.485845
https://doi.org/10.1109/2.485845

	Introduction
	QDAcity
	Problem statement
	Objective

	Information Security and Access Control
	Terminology
	Types of access control
	Discretionary Access Control (DAC)
	Mandatory Access Control (MAC)
	Attribute Based Access Control (ABAC)
	Role Based Access Control (RBAC)

	Requirements
	Functional Requirements (FR)
	Member management
	Access control

	Non Functional Requirements (NFR)

	Architecture
	Member management
	Backend
	Frontend

	Access control
	Backend
	Frontend

	Implementation
	Member management
	Backend
	Frontend

	Access control
	Backend
	Frontend

	Evaluation
	Functional Requirements
	Member management
	Access control

	Non Functional Requirements

	Future Work
	Extending RBAC to other entities
	Custom roles
	RTCS integration

	Conclusion
	References

