
Intercoder Evaluation Metrics in
QDAcity
MASTER THESIS

Vishwas Anavatti

Submitted on 5 July 2022

Friedrich-Alexander-Universität Erlangen-Nürnberg
Technische Fakultät, Department Informatik

Professur für Open-Source-Software

Supervisor:
Dr. Andreas Kaufmann

Prof. Dr. Dirk Riehle, M.B.A.

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen,
die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 5 July 2022

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 5 July 2022

i

https://creativecommons.org/licenses/by/4.0/

ii

Abstract

In qualitative research, Intercoder Agreement (ICA) represents the extent to
which two or more researchers share the interpretation of the data. The ICA
assessment adds investigator triangulation to a project and helps researchers val-
idate their findings.

QDAcity is a cloud-based application which provides a platform for qualitative
data analysis by allowing researchers to collaborate and analyse the data by defin-
ing codes mutually and code the same documents independently. The researchers
can assess their coding using three ICA metrics: F-Measure, Krippendorf’s Alpha
and Fleiss’ Kappa, which can be generated with an evaluation unit as ‘paragraph’
for selected documents.

In this thesis, we extend the existing metrics by providing ‘sentence’ as another
evaluation unit and an option to calculate agreement on a subset of the codesys-
tem, which enables collaboration on larger projects. Additionally, we present
the design and implementation of a new ICA metric called Agreement Queries,
which generates results based on agreement types such as Code Occurrence, Code
Frequency and Code Intersection Percentage.

iii

iv

Contents

1 Introduction 1

2 QDAcity 3
2.1 Analysis of Current State . 3
2.2 Problem Statement . 4
2.3 Objectives . 7
2.4 Agreement Queries . 8

3 Requirements 9
3.1 Functional Requirements . 9
3.2 Non-Functional Requirements . 13

4 Architecture 15
4.1 Sentence Detection . 15

4.1.1 Sentence Detection - an NLP Problem 15
4.1.2 Evaluation of Libraries . 16
4.1.3 Architecture . 17

4.2 Task Queues . 19
4.3 Agreement Queries . 20

5 Implementation 21
5.1 Evaluation Unit - Sentence . 21

5.1.1 Language Detection . 21
5.1.2 Text Document . 23
5.1.3 Codings Per Sentence . 24

5.2 ICA by Code . 28
5.2.1 Backend . 28
5.2.2 Frontend . 30

5.3 Agreement Queries . 32
5.3.1 Data Structure . 32
5.3.2 General Process . 34
5.3.3 Process Implementation . 36

v

5.4 User Interface (UI) . 41
5.4.1 Report . 41
5.4.2 Agreement Queries . 44

5.5 Agreement Queries vs MAXQDA ICA 46

6 Challenges 47
6.1 Identification of Sentence for Coding 47
6.2 Coding Intersection - PDF Document 47

6.2.1 Text Coding . 48
6.2.2 Area Coding . 49

7 Evaluation 51
7.1 Functional Requirements . 51
7.2 Non-Functional Requirements . 55

8 Future Work 59
8.1 Report . 59
8.2 Agreement Queries . 59
8.3 Visualization . 60

9 Conclusion 61

References 63

vi

List of Figures

2.1 Project Dashboard overview in QDAcity 4
2.2 Validation report creation modal dialog 5
2.3 Overview of F-Measure report . 5
2.4 Overview of Krippendorff’s Alpha and Fleiss’ Kappa report 6

3.1 Characteristics of quality software based on ISO/IEC 25010 13

4.1 Codings per unit architecture . 17
4.2 Strategy with factory pattern UML diagram of codings per unit . 18
4.3 Workflow of push queue (Google, 2022) 19
4.4 Agreement queries architecture . 20

5.1 UML class diagram of LanguageModel 22
5.2 UML class diagram of TextLanguageDetector 22
5.3 Coded paragraphs and its HTML representation 23
5.4 UML class diagram of Codings Per Unit 24
5.5 Codings per sentence detection flowchart 25
5.6 Coding white space in a paragraph 27
5.7 Simplefied UML class diagrams of Report data structure 28
5.8 Codings of two coders . 29
5.9 Simplified UML class diagram of SimpleCodesystem, Codesystem

and CodesystemWithCheckbox components 30
5.10 Simplified UML class diagram of SimpleCode 31
5.11 UML class diagram of agreement queries data structure 33
5.12 Flowchart of agreement query creation 35
5.13 UML class diagram of agreement queries deferred tasks 37
5.14 Baseline and compared coders coding in a text document 40
5.15 Agreed characters in paragraph 3 . 41
5.16 ICA screen with list of generated reports 42
5.17 Create report modal dialog . 42
5.18 F-Measure report . 43
5.19 Krippendorf’s Alpha and Fleiss’ Kappa report 44
5.20 Agreement query creation . 45

vii

5.21 Agreement query view . 45

6.1 Coding of white space . 47
6.2 PDF document and its HTML representation 48
6.3 Area coding example in PDF document 49

7.1 Error handling report creation . 52
7.2 Error handling agreement queries creation 52

viii

List of Tables

3.1 Definition of the requirement terms 10

4.1 Evaluation of Java NLP libraries for sentence detection 16
4.2 Evaluation of Java libraries for language detection 17

5.1 ICA per code . 29
5.2 Example usage of HashBasedTable 38
5.3 Agreement table for code occurrence 39
5.4 Characters count table . 40
5.5 Agreement and Disagreement tables 41

7.1 LOC coverage for unit test . 57

ix

x

List of Codes

5.1 Sentence index finding of coding . 26
5.2 startSpan of coding . 27
5.3 endSpan of coding . 27

xi

xii

Acronyms

API Application Programming Interface

CSV Comma Separated Value

GAE Google App Engine

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

ICA Intercoder Agreement

LOC Lines Of Code

NLP Natural Language Processing

PDF Portable Document File

QDA Qualitative Data Analysis

RTF Rich Text File

UI User Interface

UML Unified Modeling Language

XLS Microsoft Excel Spreadsheet

xiii

xiv

1 Introduction

The concept of Intercoder Agreement (ICA) has a wide range of applications in
various domains of study, with qualitative research being one of them. Data clas-
sification into preset categories is a typical task in qualitative research. Codes
are often values assigned to a nominal or ordinal property. By asking two indi-
viduals, referred to as coders, to independently perform this classification with
the identical set of data, the agreement of this classification process can be es-
tablished. By performing this task, these two individuals have just completed an
ICA exercise, which will result in two categorizations of the identical data. ICA
refers to the degree to which these two categorizations agree (Gwet, 2014).

ICA in general is widely known as agreement between different coders on how to
code the same data. In a collaborative environment, ICA assessment yields nu-
merous benefits for qualitative research as it helps to improve the communication
and transparency of the coding process (O’Connor & Joffe, 2020). Researchers
use the ICA measure to communicate, validate and ensure, they have a shared
interpretation of the data.

QDAcity is a web application for Qualitative Data Analysis (QDA) which provides
a collaborative environment for researchers to conduct qualitative research. The
tool allows researchers to analyse ICA using three statistical methods such as
F-Measure, Krippendorff’s Alpha and Fleiss’ Kappa. The ICA can be measured
in various other techniques and researchers would like to assess results in different
aspects. Therefore, the goal of this thesis is to enhance ICA evaluation approaches
in order to give researchers with a diverse set of alternatives for analysing ICA.

In this thesis, we analyse the current state of QDAcity, identify the problems
and define the thesis objectives in chapter 2. chapter 3 states the functional and
non functional requirements. In chapter 4 we evaluate the libraries and present
the architecture, while our implementation solution is discussed in chapter 5.
We discuss the implementation challenges in chapter 6 before evaluating the
provided solution in chapter 7. Scope of future work is discussed in chapter 8
and conclusion to the thesis is made in final chapter 9.

1

1. Introduction

2

2 QDAcity

In this chapter, we analyse the current state of QDAcity, identify the problems
and derive the objectives for the thesis.

2.1 Analysis of Current State

QDAcity runs on Google App Engine (GAE)1 and provides a platform for collab-
orative research on the qualitative data. In QDAcity, a user can create a project
and add other users as collaborators. The users can then create text documents
and upload PDF, RTF and audio files for analysis. Codes are defined mutually
by users in an iterative process which forms a codesystem. The codesystem is
a hierarchical structure of codes and captures concepts, categories, their prop-
erties and interactions (Kaufmann & Riehle, 2019). These codes are then used
to annotate the data in the document to identify the pattern or categorize the
content. The process of annotating the data is called ‘coding’. After coding, a
revision must be created for further analysis which is explained as follows.

Figure 2.1 shows the overview of project dashboard. It consist of ‘Project De-
scription’, ‘Project Stats’, ‘Intercoder Agreement bar charts’, ‘Todos’, ‘Users’
and ‘Revision History’. As our main focus is ICA which is part of a revision, we
explain the contents of a revision as numbered in the screenshot.

1. Revision: Multiple revisions can be created for a project which is a snapshot
of the project. Revision 0 is the first revision of the project and a typical
revision contains revision info, generated reports and validation projects.

2. Validation Projects: Users of the project can click on ‘recode’ button to
create a validation project which is a clone of the revision without the
applied codings. The section contains the validation project list in the
name of users who has recoded the revision.

3. Reports: A user can click on ‘Create Report’ button to create an ICA
report. The section contains list of generated reports for the revision.

1https://cloud.google.com/appengine

3

https://cloud.google.com/appengine

2. QDAcity

Figure 2.1: Project Dashboard overview in QDAcity

ICA report can be generated for a revision using statistical methods such as
F-Measure, Krippendorf’s Alpha and Fleiss’ Kappa using ‘paragraph’ as an eval-
uation unit for selected documents. This report assists researchers in identifying
differences in their codings, discussing the reasons for the differences and improv-
ing coding so that they arrive at the same conclusion.

2.2 Problem Statement

QDAcity has three metrics for ICA assessment and limitations with current met-
rics are

1. Evaluation unit

Figure 2.2 shows the report creation modal. The user can provide title,
choose one of the three metric as evaluation method and select documents.
Only ‘paragraph’ is supported as unit of coding (evaluation unit).

4

2. QDAcity

Figure 2.2: Validation report creation modal dialog

The ‘paragraph’ as only evaluation unit does not provide the users with
many options to assess their coding. Though the user interface provides
an option to select the sentence during report creation, the implementation
for the same is not handled in the backend. Thus, QDAcity requires an
extension to the evaluation unit.

2. ICA by code

(a) F-Measure report

(b) F-Measure result per document for a coder

Figure 2.3: Overview of F-Measure report

5

2. QDAcity

Figure 2.3 shows the F-Measure report in a modal. The results of the each
coder is displayed in the Figure 2.3a. On selecting the coder, the result per
document can be viewed for that coder as shown in Figure 2.3b.

Figure 2.4 shows the Krippendorff’s Alpha and Fleiss’ Kappa report in a
modal. Both the report displays result for selected documents and whole
codesystem. The Krippendorff’s Alpha report shows code average and
Fleiss’ Kappa report shows document average in the header.

(a) Krippendorff’s Alpha report

(b) Fleiss’ Kappa report

Figure 2.4: Overview of Krippendorff’s Alpha and Fleiss’ Kappa report

The report is generated by considering all of the codes in the codesystem.
However, in large projects with over 100 codes, multiple users would prefer
to do ICA using a subset of the codesystem rather than requiring each user
to become familiar with over 100 codes in the codesystem. The F-Measure
report allows the user to view agreement by document and the user would
like the same flexibility to view agreement by code. As a result, there is
a need to provide an option to select a subset of the codesystem during
creation, as well as the ability for the user to view agreement per code for
the selected subset of codes from the codesystem.

6

2. QDAcity

3. User Interface (UI)

QDAcity requires a UI modification of ICA for the following reasons:

• Figure 2.3b displays result per document but provides no information
on which coder the document result is displayed for.

• The Figure 2.4a and Figure 2.4b shows average of codes and documents
in the header respectively. The results are cramped which makes it
difficult for users to interpret the result.

• The results are shown in a modal which is not very intuitive as it
restrict the amount of information that could be shown and requires
too much user interaction.

• The labels in the table header are hard coded in English, as a result
it is not possible to change labels as per user language preference.

4. Intercoder evaluation metrics

The QDAcity has three statistical metrics for ICA measurement which cal-
culate results based on established mathematical models. There are several
other well established methods like Holsti’s method (Holsti, 1969), Scott’s
pi (Scott, 1955), Cohen’s kappa (Cohen, 1960) which user would be inter-
ested to use or user would like to define his own criteria to analyse ICA
in different aspects. Therefore, QDAcity requires the addition of a new
evaluation metric.

2.3 Objectives

From the four identified problems we derived the following objectives for this
thesis:

• Provide ‘sentence’ as another evaluation unit.

• Provide an option to select subset of codesystem while creating ICA and
the ability for users to view agreement per code in F-Measure report.

• Provide an intuitive UI for ICA where user can view all results at one place.

• Provide an implementation of new metric where users can analyse ICA
based on their own criteria.

7

2. QDAcity

2.4 Agreement Queries

To provide a new metric, we looked at our competitor MAXQDA2 which is com-
mercially available platform for QDA. In MAXQDA, the users can do a teamwork
and analyse their codings by generating ICA results. The ICA is measured on
three types of agreement such as code occurrence in the document, code frequency
in the document and minimum code intersection rate of X% at the segment level3.

We analysed the use case of providing such a metric in QDAcity as it could
provide flexibility for researchers to define their own criteria and analyse the res-
ults conveniently with potentially large group of intercoders. Therefore, inspired
by MAXQDA we came up with the idea of implementing ‘Agreement Queries’.
The name Agreement Queries represents that we are querying the agreement
results based on different agreement types and parameters which the user may
configure. As a result, it gives users a wide option to analyse results based on their
own criteria. This implementation also provides scope for future development as
agreement types can be extended to analyse the results in various ways. The
Agreement Queries is similar to ICA in MAXQDA but there are some differences
which are discussed in section 5.5.

2https://www.maxqda.com/
3https://www.maxqda.com/help-max18/teamwork/problem-intercoder-agreement-qualitative-research

8

https://www.maxqda.com/
https://www.maxqda.com/help-max18/teamwork/problem-intercoder-agreement-qualitative-research

3 Requirements

In this chapter, we define the requirements for this thesis. The requirements are
categorized into functional and non-functional requirements. All the requirements
are defined using Rupp (2014) templates.

3.1 Functional Requirements

The terms used in the requirements are defined in the Table 3.1. The definition
of the requirement keywords shall, should and will are as follows.

• Shall - The requirement that has to be fulfilled.

• Should - The requirement that is important but not required for the proper
operation of software.

• Will - The requirement is desirable but not required.

The functional requirements are defined as follows:

1. QDAcity shall provide new UI for ICA.

1.1. QDAcity shall provide an ICA button for each revision in the project.

1.2. QDAcity shall provide two sidebar menus ‘Report’ and ‘Agreement
Queries’ in the UI.

1.3. QDAcity shall provide ‘Report’ as default menu on navigating to ICA
and list generated reports if any or show appropriate message and
provide option to create a report.

1.4. QDAcity shall provide the results in tabular form and the ability for
the user to sort the table results in ascending or descending order
based on column values.

1.5. QDAcity shall be able to display the codes in the hierarchical structure
according to codesystem in the result table containing codes.

9

3. Requirements

Term Definition of the Term
user The physical person who is using the QDAcity applic-

ation
documents The data structure that has the potential to be used

for QDA
codes The unique set of values to represent documents data
coder The user who can code the documents
project The place where users can collaborate, add documents,

define codes mutually and code the documents
result The calculation outcome of ICA for the existing metrics
coder result The calculation outcome of ICA for the existing metrics

for a coder
document result The calculation outcome of ICA for the existing metrics

for a document per coder
code result The calculation outcome of ICA for the existing metrics

for a code per document
report The ICA generated for the existing metrics containing

consolidated result
agreement queries The new metric to generate agreements based on vari-

ous agreement types
agreement query The single calculation outcome of agreement queries
baseline coding The coding of individual user project or the main pro-

ject used as basis for comparison to calculate the agree-
ment query

compared codings The codings of individual users project or the main pro-
ject that are used to compare the result with baseline
coding

coder agreement The calculation outcome of agreement query metric for
a coder whose coding is selected for comparison

document agreement The calculation outcome of agreement query metric for
a document per coder

code agreement The calculation outcome of agreement query metric for
a code per coder

notification feature The feature of QDAcity used to update users with im-
portant information

Table 3.1: Definition of the requirement terms

1.6. QDAcity shall be able to validate the following for report and agree-
ment queries and throw corresponding errors.

• At least one document is selected

10

3. Requirements

• At least one code from the codesystem is selected

• Report title is not empty

• At least one compared coding is chosen for agreement queries

• If “Code Agreement by Intersection Percentage” is selected as
agreement type for agreement queries, the “minimum intersection
percentage” value must not be empty and must be between 20-100

2. QDAcity shall be able to allow only authorized users to create ICA from
projects.

3. QDAcity shall be able to allow only authorized users to view ICA from
projects and validation projects.

4. Report

4.1. Report Creation

4.1.1. QDAcity shall provide the user the ability to generate report with
sentence as an evaluation unit using all three currently supported
metrics.

4.1.2. QDAcity shall provide the user the ability to generate report for
a subset of the codesystem using all three currently supported
metrics.

4.2. Report View

4.2.1. QDAcity shall provide a report that includes the evaluation unit,
evaluation method, report name, creation date and creator name
entered during creation as an overview.

4.2.2. F-Measure Report

4.2.2.1. QDAcity shall provide a section to display documents and
codes that were selected during creation.

4.2.2.2. QDAcity shall provide the user the ability to select documents
to view the agreement per document and to select codes to
view the agreement per code.

4.2.3. Krippendorff’s Alpha and Fleiss’ Kappa Report

4.2.3.1. QDAcity shall provide a result table that includes evaluated
documents in the first row and codes in the first column.

4.2.3.2. QDAcity shall provide the average of each document and code
agreement at the row and column ends of the result table.

11

3. Requirements

4.2.3.3. QDAcity should provide the user the ability to export table
results into a CSV document.

5. Agreement Queries

5.1. Agreement Query Creation

5.1.1. QDAcity shall provide the user the ability to select only one baseline
coding in order to provide basis for the ICA assessment with other
codings.

5.1.2. QDAcity shall provide the user the ability to select multiple com-
pared codings in order to assess ICA of many coders with baseline
coding.

5.1.3. QDAcity shall provide the user the ability to select documents and
subset of the codesystem.

5.1.4. QDAcity shall provide three agreement types: “Code Occurrence”,
“Code Frequency” and “Code Agreement by Intersection Percent-
age”, with the ability for the user to choose only one of the three.

5.1.5. If “Code Occurrence” is selected as agreement type, QDAcity shall
provide the user the ability to mark “Consider True Negatives” in
order to consider true negatives codes as agreed or not.

5.1.6. If “Code Agreement by Intersection Percentage” is selected as
agreement type, QDAcity shall provide the user the ability to enter
a “minimum intersection percentage” in order to define agreement
criteria.

5.2. Agreement Query view

5.2.1. On initial viewing, QDAcity shall provide an agreement query that
includes the baseline coding, agreement type and creator name as
an overview and coders agreement.

5.2.2. QDAcity shall provide the user the ability to select a coder agree-
ment to view the documents and codes agreement for that coder.

5.2.3. QDAcity should provide a search box in the documents and codes
agreement, in order to filter the table by document and code name.

5.2.4. QDAcity shall provide the user the ability to select a code agree-
ment, in order to view the codings of baseline and compared coder
for that code in a two column comparison view which is resizable.

5.2.5. QDAcity should provide the user the ability to select a document
agreement along with code agreement, in order to compare the

12

3. Requirements

codings of baseline and compared coder for that combination of
document and code in a two column comparison view.

5.2.6. QDAcity shall provide the user the ability to export the coder,
document and code agreements tables into a CSV document.

5.2.7. QDAcity shall provide the user the ability to create new agreement
query.

5.3. QDAcity shall be able to delete the previously created agreement query
when initiating a new one.

6. QDAcity shall be able to notify the initiating user with the QDAcity noti-
fication feature upon successful creation of report or agreement query.

3.2 Non-Functional Requirements

Figure 3.1: Characteristics of quality software based on ISO/IEC 25010

The non-functional requirement is about the quality of the software. According
to ISO-2501011 standards, the quality software comprises of eight characteristics
as shown in the Figure 3.1.

Functional Suitability

1. The ICA implementation shall be fully functional and user shall be able to
generate and view ICA reports and agreement queries.

2. The newly added functionalities should not break the previous implement-
ation of ICA and shall support all previous use cases of the ICA.

Performance Efficiency

3. The ICA metrics subsystem shall be horizontally scalable without relying on
the main backend system with a more appropriate hardware configuration.

1https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

13

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

3. Requirements

Compatibility

4. The ICA implementation shall be compatible with the existing data and
data model.

Usability

5. The UI implementation of ICA shall follow the colour scheme of QDAcity.

6. The text containing UI elements shall adhere to the app’s localization
strategies.

7. As user initiates the report or agreement query creation, QDAcity shall
provide a visual feedback message to the user.

Reliability

8. QDAcity shall perform as expected and throw or log errors for all the pos-
sible error occurrences.

Security

9. QDAcity shall be able to allow only authorized and authenticated users to
perform the generation and viewing of ICA.

Maintainability

10. The implementation of evaluation unit extension should provide developers
the ability to further extend the evaluation unit using pre-defined interface.

11. The implementation of agreement types in agreement queries should provide
developers the ability to extend the agreement type and add new function-
alities.

12. The implementation shall include tests for all API endpoints and added
functionalities with Lines Of Code (LOC) coverage of at least 90%.

13. The implementation shall include acceptance tests for the newly added and
modified functionalities.

Portability

14. The ICA feature shall be able to work as intended in widely used browsers
such as Google Chrome and Mozilla Firefox.

14

4 Architecture

In this chapter, we first discuss the sentence detection, evaluation of libraries and
architecture change to find codings in a sentence. Later a general architecture of
push queues and agreement queries are discussed.

4.1 Sentence Detection

As we would like to provide ‘sentence’ as another evaluation unit for the current
metrics, the detection of sentences in the text documents becomes a challenge.
The sentence detection is not a straight forward process because it depends on
many factors. Natural Language Processing (NLP)1 is the branch of artificial
intelligence which gives computers the ability to extract meaning from natural
language data. Thereby, we discuss why NLP is required and which NLP libraries
could be used for our purpose.

4.1.1 Sentence Detection - an NLP Problem

The detection of sentence seems easy as one could imagine splitting paragraph
at period (‘.’) could result in the sentences. The period sign is quite ambiguous
as it can have several functions. Consider an example

Mr. President, the call with vice president is scheduled at 8.30 p.m.

The example shows the ambiguity of the period sign as it can be at the end of
a sentence, or can be used in abbreviations, or in acronyms and initialism, or
in numbers. The use of ambiguous punctuation characters has to be resolved in
a sentence detection to determine if the punctuation character is a true end-of-
sentence marker (Schweter & Ahmed, 2019).

The semantics of a sentence is present in its interpretation. An English speaker
would understand the sentence and be able to perform the individual activity
like “Pass the bal”. However, sentences can be too ambiguous in some cases and

1https://www.ibm.com/cloud/learn/natural-language-processing

15

https://www.ibm.com/cloud/learn/natural-language-processing

4. Architecture

their meaning can only be deduced from context. Typically this makes NLP a
complex task for a machine because it will be missing the context2.

The process of deciding the beginning and end of the sentences is known as
Sentence Boundary Disambiguation. This process is heavily researched under
NLP. Hence, we need an NLP library which is trained with machine learning
models to detect the sentences in a text document.

4.1.2 Evaluation of Libraries

Our application is built on Java and there are several NLP libraries available for
Java. Our primary purpose in using an NLP library is to identify sentences, so
we must assess each library’s ability to do so. Other factors to consider when
choosing a library include the license, documentation and whether the library is
actively maintained.

Another important aspect of the library is that it should provide the position of
sentences in a paragraph rather than just the content and the reason is explained
in detail in subsection 5.1.3. All evaluated libraries are listed in Table 4.1. Con-
sidering all the criteria, the decision was made to use Apache OpenNLP3 as it
has a permissive license, very active project status and provides the functionality
to find the sentence position.

Criteria Stanford
CoreNLP

Apache
OpenNLP

LingPipe

License GNU General Pub-
lic License v3.0

Apache License 2.0 Proprietary

Documentation Good document-
ation with demo
example

Detailed document-
ation, many imple-
mentation examples
available

Detailed document-
ation with code
demo

Project status Active Active No status available
Sentence posi-
tion detection

No Yes No

Table 4.1: Evaluation of Java NLP libraries for sentence detection

For sentence detection, OpenNLP library requires a pre-trained model. The
models are language dependent and perform well only when the model language
matches the language of the text document. To select a trained model, we must
first understand the language of the text document. As a result, another library
that can detect the language of the text document is required.

2https://xperti.io/blogs/java-natural-language-processing/
3https://opennlp.apache.org/

16

https://xperti.io/blogs/java-natural-language-processing/
https://opennlp.apache.org/

4. Architecture

The Table 4.2 lists all of the libraries that have been evaluated for language de-
tection. Lingua4 and Apache Tika5 are good candidates for language detection
because they have a permissive license, an active project and detailed document-
ation. According to Lingua documentation, it outperforms Apache Tika in lan-
guage detection but due to the fact that Lingua consumes very high memory and
Apache Tika being product of Apache software foundation6 having large number
of contributors and QDAcity already using the Tika library for document parsing,
the decision was made to use Apache Tika.

Criteria Apache
OpenNLP

Apache Tika Lingua optimaize

License Apache-2.0 Apache-2.0 Apache-2.0 Apache-2.0
Documentation Good doc-

umentation
with demo
example

Good Javadoc
and demo
examples
available

Detailed doc-
umentation
with code
demo

Demo code
available but
document is
not detailed

Project status Active Active Active Not Active
Disadvantages Needs training

data file to
provide input
to the machine
learning al-
gorithms

Detects only
18 of 184
standard
languages
standardized
by ISO 639–1

Consumes very
high memory

Not suitable
for short text

Table 4.2: Evaluation of Java libraries for language detection

4.1.3 Architecture

Figure 4.1: Codings per unit architecture

4https://github.com/pemistahl/lingua
5https://tika.apache.org/
6https://www.apache.org/

17

https://github.com/pemistahl/lingua
https://tika.apache.org/
https://www.apache.org/

4. Architecture

We would like to add ‘sentence’ support to the evaluation unit. Extending the
evaluation unit to a sentence helps to find the codings used in each sentence.
Previously, only CodingsPerParagraph class was used to find codings within a
paragraph. We outlined the architecture in the Figure 4.1 to make it more generic
and extensible for finding codings for various units. CodingsPerParagraph is the
class that finds the applied codings per paragraph and CodingsPerSentence is
the class that finds the applied codings per sentence. Both classes implement the
CodingsPerUnit interface.

The current metrics calculation implementation requires code Id of the codings
per paragraph which are obtained from the CodingsPerParagraphCalculator class
which implements the DocumentVisitor. The CodingsPerParagraphCalculator
overrides the visit() method which provides the required code Ids of the codings
per paragraph using CodingsPerParagraph class.

Figure 4.2: Strategy with factory pattern UML diagram of codings per unit

We modified the current implementation to make it generic for any evaluation
unit by applying two design patterns. The factory pattern defines an interface
for creating an object but allows subclasses to select which class to instantiate,
whereas the strategy design pattern enables runtime selection of an algorithm’s
behaviour.

Figure 4.2 represents the strategy with factory design pattern for finding cod-
ings per unit. The CodingsPerParagraphCalculator class has been renamed to
CodingsPerUnitCalculator. When visit() is called, the factory pattern is used
to create the class object, i.e. CodingsPerUnitFactory class is used to create the

18

4. Architecture

object based on the evaluation unit and the strategy pattern is used to run the al-
gorithm corresponding to the object, i.e. at runtime, the algorithm corresponding
to the created object is selected, which gets the codings per unit.

4.2 Task Queues

Task Queues are used to perform tasks asynchronously outside of a user request.
The task can be described as a unit of work such as “write object to datastore”.
The tasks are added to a task queue which gets executed later by GAE worker
services. There are two types of Task Queues

• Push Queues: The tasks are enqueued into the queue and GAE executes
them on the handler. It can be scaled automatically or manually and tasks
are deleted by App Engine after processing.

• Pull Queues: The tasks are enqueued into the queue which needs to be
pulled by worker service by leasing tasks. It requires manual scaling and
task deletion is done explicitly.

Push queues are used extensively to generate the ICA results. As a result, we
explain push queues in detail. Figure 4.3 shows the push queue workflow. A
queue.yaml file is used to name and configure the push queues. Push queues
carry out tasks by sending HTTP requests to App Engine worker services and
requests are processed at a constant rate. When a task fails, the service retries
it by sending a new request if retry is configured. We must provide a handler for
each task we use. A single service can have multiple handlers for different types
of tasks, or different services can be used to manage different task types.

Figure 4.3: Workflow of push queue (Google, 2022)

When a worker service receives a push task request, it must handle the request
and send an HTTP response before a deadline defined by the worker service’s
scaling type. Our application is set up to run push queues with automatic scaling,
which should finish the task in 10 minutes. The task’s success is indicated by an

19

4. Architecture

HTTP status code ranging from 200 to 299, while any other value indicates the
task’s failure. When a task fails, it can be configured to retry before the deadline
(Google, 2022).

4.3 Agreement Queries

The new metric implementation should allow researchers to define criteria and
analyse agreements at the coder, document and code level with a potentially large
group of intercoders. The criteria can be defined in terms of an agreement type
and we provide three different agreement types: code occurrence, code frequency
and code intersection percentage. To provide an implementation for each of the
agreement types, we have created the following architecture.

Figure 4.4: Agreement queries architecture

Figure 4.4 outlines the architecture for generating agreements based on dif-
ferent agreement types. The implementation class for each of the agreement
types code occurrence, code frequency and code intersection percentage is called
DeferredAgreementByCodeOccurrence, DeferredAgreementByCodeFrequency and
DeferredAgreementByIntersectionPercentage respectively. All classes are rep-
resented by the abstract class DeferredAgreement which implements the De-
ferredTask. To run the tasks asynchronously and generate agreements for large
group of intercoders simultaneously, we utilized the DeferredTask interface provided
by the App Engine task queue to configure the tasks into push queue.

20

5 Implementation

This chapter discusses the implementation of the architecture described in Chapter
4 as well as the frontend refactoring required for ICA. The QDAcity uses Java for
the backend and JavaScript and React for the frontend. The implementation is
discussed in detail, beginning with the provision of sentence as an evaluation unit.
Followed by the implementation of ICA by code and the new metric Agreement
Queries.

5.1 Evaluation Unit - Sentence

The provision of sentence as an evaluation unit is to find the applied codings per
sentence for generating ICA reports. Previously, the ICA report was generated
for text documents with evaluation unit as paragraph by finding applied codings
per paragragh. Because only the evaluation unit ‘paragraph’ is supported, the
existing metrics algorithms obtain the codings used in each paragraph from the
CodingsPerParagraph class. The algorithm must obtain the applied codings for
each sentence in order to extend the metrics to sentence as an evaluation unit. As
a result, the modification is required only where the applied codings are obtained,
with no modification required in the metrics calculation.

To find applied codings in a sentence, it is necessary to detect sentences in a para-
graph. We use the Apache OpenNLP library to detect sentences. The library
contains pre-trained models1 for different languages. The models are language
dependent and they will only function properly if the model language matches
the language of the input text. QDAcity supports English and German as local-
ized languages and this thesis focuses solely on sentence detection in these two
languages.

5.1.1 Language Detection

The enum class for LanguageModel is shown in Figure 5.1. The supported lan-
guages English(en) and German(de) are added as enums and the corresponding

1http://opennlp.sourceforge.net/models-1.5/

21

http://opennlp.sourceforge.net/models-1.5/

5. Implementation

Figure 5.1: UML class diagram of LanguageModel

pre-trained models ‘en-sent.bin’ and ‘de-sent.bin’ are kept in the project resources
path (src/main/resources). The enum class includes the following methods:

• getModel() - This method returns enum as string.

• getModel(LanguageModel) - This method implicitly calls getModel() and
returns enum as string.

• getInputStreamModel(LanguageModel) - This method loads the pre-trained
model for the input language from resources and returns it as InputStream.

• isLanguageSupported(String) - This method validates whether the input
language is supported.

Figure 5.2: UML class diagram of TextLanguageDetector

To determine the language of the text, we use the Apache Tika library. The
library helps to determine the language of the text, which then helps to load the

22

5. Implementation

appropriate pre-trained model for sentence detection using the OpenNLP library.
The UML class diagram for TextLanguageDetector is shown in Figure 5.2. This
class uses the LanguageDetector#detect() method from the library to identify the
language.

When TextLanguageDetector class is instantiated, the constructor calls the init()
method which instantiates the class detector attribute and loads the language pro-
file models based on the specified languages in the LanguageModel. The language
of the text can be determined by passing text as a String to the detectLanguage()
method. The method identifies the language and returns LanguageResult, which
contains language as ‘en’ or ‘de’, confidence as LOW, MEDIUM or HIGH and
rawScore between 0 and 1.

If the text is blank or only contains special characters, the language detector
returns LanguageResult language as ‘None’. In such cases, English is considered
as the default language.

5.1.2 Text Document

Figure 5.3: Coded paragraphs and its HTML representation

The sentence detection is only implemented for TextDocument. Figure 5.3 shows
the coded paragraphs in a text document and its HTML representation. Each

23

5. Implementation

paragraph has a span which contains the text and a unique key called codingKey.
The highlighted region in the editor view represents the coded part.

The Coding data structure has four attributes that represents start and end of a
coding. These attributes are critical in determining the applied codings for each
sentence.

• anchorkey - represents the codingKey in which the coding starts

• anchorOffset - represents the starting position of the coded text in a para-
graph

• focusOffset - represents the ending position of the coded text in a paragraph

• focusKey - represents the codingKey in which the coding ends

5.1.3 Codings Per Sentence

Figure 5.4 shows the class diagram CodingsPerParagraph and CodingsPerSen-
tence implementing CodingsPerUnit. The existing implementation of Coding-
sPerParagraph is modified by adding two new attributes to the class.

• codingKeys - This attribute contains the list of paragraph codingKey.

• codingKeyParagraphTextMap - This attribute contains the paragraph cod-
ingKey and the corresponding paragraph text as a key value pair.

Figure 5.4: UML class diagram of Codings Per Unit

The CodingsPerSentence contains only one attribute sentencePositionPerPara-
graph which contains the List<List>. The getAllCodings(TextDocument)
is the main implementation method for finding codings in a sentence and it re-
turns List<List<BaseCoding>>. The List<List<BaseCoding>> represents the
list of sentences containing list of applied codings.

24

5. Implementation

The Apache OpenNLP library is used in the CodingsPerSentence class to identify
the sentences. The library has SentenceDetectorME class which detects the sen-
tences using sentPosDetect(String) method. The sentPosDetect(String) method
gives the position of the sentences for a given string. Consider the following
paragraph for sentence detection, which is passed to the method as a String.

Jack’s mother can make paper animals come to life. In the beginning, Jack loves
them and spends hours with his mom. But as soon as he grows up he stops
talking to her since she is unable to converse (speak) in English.

The SentenceDetectorME#sentPosDetect(String) method detects three sentences
in the paragraph and returns a list of span as [[0..50), [51..115), [116..218)]. The
span represent the start and end position of a sentence in a given text. The
returned list contains the span of each sentence in a paragraph. The term list
of span or List mean the sentences or position of the sentences in a
paragraph. The span representation of sentence is similar to the data structure of
the Coding class. The anchorOffset and focusOffset of the Coding also represents
the starting and ending position of the applied coding in a paragraph.

Figure 5.5: Codings per sentence detection flowchart

25

5. Implementation

Figure 5.5 shows the flowchart of finding codings in a sentence for text document.
We must first detect the sentences in a text document in order to find the codings.
The procedure for determining the position of the sentences per paragraph is
explained on the left side of the flowchart. The text document is parsed using
JSOUP2 library to obtain the paragraphs.

The sentencePositionPerParagraph attribute of the class is used to contain the
position of sentences for each paragraph. For each paragraph, the language is
detected to obtain the pre-trained model required by the SentenceDetectorME
class, and the paragraph is passed to the sentPosDetect(String), which returns a
list of spans and is added to the sentencePositionPerParagraph.

The procedure to find codings in a sentence is explained on the right side of
the flowchart. The paragraph is made up of sentences and if the first and last
sentences contain coding, then all of the sentences in between will definitely
contain that coding. Therefore, for each coding in a paragraph, we find the start
and end index of a sentence in a paragraph containing the coding. Coding data
structure is used to identify which codings belong to which sentence.

if (coding.getAnchorKey().equals(paragraphCodingKey)) {
Span startSpan = positionOfSentencesInParagraph.stream().

filter(sentenceSpans -> contains(sentenceSpans, coding.
getAnchorOffset()))

.collect(Collectors.toList()).stream().findFirst().orElseGet(()
-> getStartSpan(positionOfSentencesInParagraph, coding.

getAnchorOffset()));
start = positionOfSentencesInParagraph.indexOf(startSpan);

}

Code 5.1: Sentence index finding of coding

Following the identification of the position of sentences per paragraph, the codings
in each paragraph are obtained from the CodingsPerParagraph class. Code 5.1
demonstrates how starting index of the sentence containing the coding is determ-
ined.

For each coding in a paragraph’s codings, the codingKey of the paragraph is
retrieved from the CodingsPerParagraph#codingKeys attribute and set to para-
graphCodingKey and the coding anchorKey is compared with the paragraphCod-
ingKey ; if it matches, the span containing the coding anchorOffset is determined
using the contains() method which checks if the coding anchorOffset is in between
the span. The index of the span will give the starting index of the sentence in a
paragraph.

2https://jsoup.org/

26

https://jsoup.org/

5. Implementation

Although the coding is present in the paragraph since we obtain the codings
for each paragraph and iterate over each one, the beginning of the coding, i.e.
anchorKey, may not correspond to the current paragraphCodingKey, as coding
might have begun in any of the paragraphs before that. In this scenario, the
first sentence’s index, which is zero, is assumed to represent the start as the
anchorOffset does not belong to any of the sentences. The Code 5.1 demonstrates
how the starting index of the sentence containing the coding is determined.

Similarly, the focusKey and focusOffset are used to find the index of the sentence
where coding ends. If a coding is present in the paragraph but the focusKey does
not match the paragraphCodingKey, the index of the last sentence is considered
to be the end.

There is a possibility that the list of spans does not contain the anchorOffset or
focusOffset in a paragraph even if the paragraph codingKey matches anchorKey
or focusKey. Consider the following coded paragraph with white spaces as shown
in Figure 5.6.

Figure 5.6: Coding white space in a paragraph

The anchorKey and focusKey of the coding are same and the value of anchorOff-
set is 53 and focusOffset is 128. When detecting sentences, the sentence de-
tector disregards white spaces and returns the List as [[0..50), [57..121),
[136..238)] and no span contains the anchorOffset or focusOffset of the coding.

To identify the sentences in such a scenario, the CodingsPerSentence contains
getStartSpan() and getEndSpan() methods, which help to identify the start and
end spans of the coding respectively. Code 5.2 and Code 5.3 demonstrate method
implementation for determining the start and end span for coding.

Span startSpan = null;

for (Span span : spanList) {
if(anchorOffset<span.getStart())

{
startSpan = span;
break;

}
}

Code 5.2: startSpan of coding

Span endSpan = null;
Collections.reverse(spanList);
for (Span span : spanList) {
if (focusOffset > span.getEnd())

{
endSpan = span;
break;

}
}

Code 5.3: endSpan of coding

27

5. Implementation

5.2 ICA by Code

The ICA by code has two aspects. One is to allow the user to view the agreement
per code for F-Measure report and the other one is to allow the user to create
ICA for a subset of the codesystem.

To view the agreement per code requires changes in both backend and frontend.
The selection of a subset of the codesystem to create ICA requires only frontend
refactoring. In the following the implementation changes are explained in two
sub sections Backend and Frontend.

5.2.1 Backend

Figure 5.7: Simplefied UML class diagrams of Report data structure

Figure 5.7 shows the simplified UML class diagram of Report classes. The Val-
idationReport and ValidationResult class stores the information of the existing
ICA metrics report. Each ValidationResult corresponds to one coder who is in-
volved in the ICA report. The DocumentResult is used to store the information
to provide the functionality of agreement per document for F-Measure report.
The DocumentResult is used only during the F-Measure report generation and
each DocumentResult corresponds to a document which is selected during report
creation. These functionalities are already supported in the QDAcity.

To provide the functionality of agreement per code for F-Measure report, we need
a class to store the necessary information for each code. Thereby we implemented
a CodeResult class which stores the information per code per document. The F-
Measure is a measure of intercoder accuracy which is calculated using precision
and recall. Each term is explained as follows

• True Positive (TP) - It indicates both coders have coded in the given
unit.

28

5. Implementation

• False Positive (FP) - It indicates that baseline coder has not coded but
compared coder has coded in the given unit.

• False Negative (FN) - It indicates that baseline coder has coded but
compared coder has not coded in the given unit.

• Precision
precision =

TP
TP + FP

• Recall
recall =

TP
TP + FN

• F-Measure
F-Measure =

2 × precision × recall
precision + recall

Figure 5.8: Codings of two coders

test 1

Paragraph TP FP FN
Lorem Ipsum 1 0 0
consectetur 0 0 1

eiusmod 0 0 0
tempor 0 0 0
Total 1 0 1

test 2

Paragraph TP FP FN
Lorem Ipsum 0 0 0
consectetur 0 1 0

eiusmod 1 0 0
tempor 0 0 1
Total 1 1 1

Code Precision Recall F-Measure
test 1 1 0.5 0.666
test 2 0.5 0.5 0.5

Table 5.1: ICA per code

29

5. Implementation

The calculation of ICA per code is explained using an example. Figure 5.8 shows
the codings of baseline and compared coder who has coded the codes ‘test 1’ and
‘test 2’. Consider each line corresponding to a paragraph and evaluation unit as
paragraph. The Table 5.1 demonstrates how the ICA F-Measure calculation is
done for each code.

5.2.2 Frontend

The codesystem is a hierarchical structure of codes which is used to annotate
the data. During the ICA creation, instead of generating the report for the
whole codesystem, the option to provide the selection of subset of codesystem to
generate a report gives user the flexibility to analyse ICA only for the required
codes.

Figure 5.9: Simplified UML class diagram of SimpleCodesystem, Codesystem
and CodesystemWithCheckbox components

30

5. Implementation

Figure 5.9 layouts the UML class diagram of the codesystem class components.
The class component CodeSystem extends SimpleCodeSystem and these compon-
ents were already implemented in the QDAcity to render codesystem in Codin-
gEditor. To provide the codesystem with checkbox, we implemented CodeSys-
temWithCheckbox class component which extends CodeSystem.

The CodeSystemWithCheckbox is used to select codes during creation, display
selected codes and view results for selected codes during the analysis. To provide
such functionality, the props were added to customize the checkbox rendering for
each code. The props are

• canShowCheckbox - boolean value to decide if a code checkbox is required

• codeIdsUsedForReport - Array of long values identifying the code Ids that
are selected during creation

• defaultChecked - boolean value to initially select or deselect all codes

The buildTree() method is used to create the codes structure hierarchy. Each
code attributes is defined in this method and is defined based on the above
mentioned props to decide if a code requires a checkbox or is it selected by default.
The renderRoot() method is used to render every code in the codesystem using
SimpleCode component.

Figure 5.10: Simplified UML class diagram of SimpleCode

The SimpleCode class component is used to render a code and its properties.
Figure 5.10 shows the UML class diagram of SimpleCode class. The render-
Checkbox() method is added to render checkbox along with the code and default
props are introduced to customize the code rendering. The default props are

• canShowCodeStatusBar - boolean value to decide if a status bar is required

• canShowCheckbox - boolean value to decide if a checkbox is required

• disableCheckbox - boolean value to enable or disable the checkbox selection

31

5. Implementation

5.3 Agreement Queries

The agreement queries metric allows user to define the criteria and do comparison
of multiple coders project with single coder or main project to analyse the ICA in
the means of agreement, disagreement and agreement percentage value. The user
can generate agreements for different agreement types such as code occurrence,
code frequency and code intersection percentage and analyse agreements at coder,
document and code level. The implementation is explained in three following
sections Data Structure, General Process and Process Implementation.

5.3.1 Data Structure

Figure 5.11 outlines Agreement Queries data structure. The AgreementQuery
class stores the overview and baseline coding details and has ten persistent and
three non persistent properties. The AgreementQuery holds a value of type Agree-
mentType to refer to the type of agreement created. CODE_OCCURRENCE,
CODE_FREQUENCY and CODE_AGREEMENT_BY_PERCENTAGE_IN -
TERSECTION are the three different types of agreements. The properties of
AgreementQuery are

• id - unique identifier

• agreementType - refers to AgreementType enum

• creatorId - reference to user Id of the agreement query initiator

• creatorName* - name of the creator who initiated agreement query

• isReady - boolean value to check if agreement query is completed or not.
This attribute is provided because GAE lacks a good mechanism for syn-
chronizing results from multiple asynchronous tasks in the task queue.

• revisionId - reference to the revision

• projectId - reference to the project

• baselineProjectId - reference to the baseline project

• baselineProjectName* - name of the baseline project

• baselineProjectType - type of the baseline project

• coderAgreements* - list of CoderAgreement class

• considerTrueNegatives - boolean value to check if true negatives are con-
sidered when agreementType is CODE_OCCURRENCE

• minimumIntersectionPercentage - minimum value for agreement when agree-
mentType is CODE_AGREEMENT_BY_PERCENTAGE_INTERSECTION

32

5. Implementation

Note: The starred(*) properties mean that they are non persistent which means
they are not stored in the datastore.

Figure 5.11: UML class diagram of agreement queries data structure

The CoderAgreement class is used to store the information of compared coders
project. There can be several instances of CoderAgreement that belong to Agree-
mentQuery and the number of instances is equal to the number of coders project
selected for comparison. The CoderAgreement has the following properties

• id - unique identifier

• agreementQueryId - reference to the AgreementQuery

• projectId - reference to the project selected for comparison

• projectName* - name of the project

33

5. Implementation

• projectType - type of the project

• totalAgreement - total agreed value of documents or codes agreement

• totalDisagreement - total disagreed value of documents or codes agreement

• totalPercentage - ratio of totalAgreement to the sum of totalAgreement and
totalDisagreement

• documentAgreements* - list of DocumentAgreement class

• codeAgreements* - list of CodeAgreement class

The DocumentAgreement and CodeAgreement class stores the information of doc-
ument and code per coder respectively. The DocumentAgreement has document
specific properties like documentId, baselineDocumentId, documentType, docu-
mentName whereas the CodeAgreement has code specific properties like codeId,
codeName. Both these classes extend the abstract BaseAgreement class which
has following properties.

• id - unique identifier

• coderAgreementId - reference to the CoderAgreement

• agreementQueryId - reference to the AgreementQuery

• agreement - calculated agreed value for the defined criteria

• disagreement - calculated disagreed value for the defined criteria

• percentage - ratio of agreement to the sum of agreement and disagreement

The DocumentAgreement has the values calculated per document for a coder
while the CodeAgreement has the values calculated per code from all the docu-
ments for a coder. The number of instances of DocumentAgreement and CodeAgree-
ment that belong to CoderAgreement depends on the number of selected docu-
ments and codes during creation respectively.

5.3.2 General Process

Figure 5.12 shows the flowchart of agreement query creation. The creation of
an agreement query request is handled in the AgreementQueriesEndpoint. The
endpoint first validates the input parameter for following criteria and on a failed
validation throws the corresponding error code.

• User authorization - throws HTTP 401 Unauthorized

The following validation throws HTTP 400 Bad Request and the corresponding
error code. The codes are in sync with frontend to throw specific error.

• No project selected for comparison - EMPTY_COMPARED_PROJECTS

34

5. Implementation

• No selection of documents - EMPTY_DOCUMENTS

• No codes selected - EMPTY_CODES

The following validations are for agreement criteria value defined for agreement
type CODE_AGREEMENT_BY_PERCENTAGE_INTERSECTION

• Value is empty - EMPTY_MINIMUM_PERCENTAGE

• Value less than 20 - LESS_MINIMUM_PERCENTAGE

• Value more than 100 - MORE_MINIMUM_PERCENTAGE

Figure 5.12: Flowchart of agreement query creation

35

5. Implementation

After validation, the deletion of agreement query is done if any agreement query
for the revision already exists in the datastore. The deletion of corresponding
coder, document and code agreements are done asynchronously in a Deferred-
CoderAgreementDeletion class. The creation task is then added to deferred task
DeferredAgreementQuery which runs asynchronously and the endpoint returns
HTTP 204 No content response.

The asynchronous task runs and persist AgreementQuery in the datastore with
isReady as false. The persistence creates an unique identifier which is required
for reference in CoderAgreement. All the baseline project documents are loaded
from datastore and based on the agreement type the DeferredAgreement task is
created and added to the queue for each compared coder.

The enqueued tasks are dequeued by the handler and processed at a rate of 5/s.
The handler runs the task which persist the CoderAgreement without agreement
values to get the unique identifier required for reference in DocumentAgreement
and CodeAgreement. The agreement and disagreement values of document and
code are calculated using algorithm defined for each agreement type and are
persisted in DocumentAgreement and CodeAgreement respectively.

The agreement values of the CoderAgreement is then updated using document
agreement values. The agreement values of CoderAgreement can also be updated
using code agreement values as the total agreement and total disagreement values
of code and document is same for a coder.

After enqueuing tasks, the DeferredAgreementQuery class checks to see if all of
the agreement values of the CoderAgreement have been updated; if not, it checks
again after 10 seconds; if yes, it updates the AgreementQuery#isReady to true
and creates a notification for the completion of the agreement query.

5.3.3 Process Implementation

In this subsection, we discuss the implementation of agreement query in detail.
Figure 5.13 shows the UML class diagram of deferred task classes. The Deferred-
AgreementQuery implements the DeferredTask as it is run asynchronously. The
class has four properties and nine methods. The properties are

• evaluateAgreement - reference to the input EvaluateAgreement class

• user - reference to the user who initiated agreement query

• agreementQuery - reference to the AgreementQuery class

• baselineDocuments - collection of document of the baseline project

When queues are dequeued, the run() is called which creates the task based
on the agreement type with DeferredAgreement as reference and adds it to the

36

5. Implementation

queue for each coder or project selected for comparison. After creating the task,
the waitForAllCoderAgreementsUpdateToFinish() methods keeps the task waiting
until all the values of all the CoderAgreement are updated. Once all the updates
are done, the agreement query is updated as completed and a notification is
created for the initiated user through the createNotification() method.

Figure 5.13: UML class diagram of agreement queries deferred tasks

Currently, we have implemented three agreement types code occurrence, code
frequency and code intersection percentage. For each of these three types, we
have DeferredAgreementByCodeOccurrence, DeferredAgreementByCodeFrequency
and DeferredAgreementByIntersectionPercentage class with implementation lo-
gic. These classes extend the abstract DeferredAgreement class which implements
DeferredTask. Only the calculation logic of agreement and disagreement for doc-
uments and codes based on agreement type is performed in the child class, the
persistence of the data is handled generically in the parent class.

The implementation follows a behavioural pattern known as template design pat-
tern. The abstract method calculateDocumentAndCodeAgreement() in the parent
class is implemented in each child class. When the DeferredAgreement task is
dequeued, the run() method of the class is invoked, which calls the calculateDoc-
umentAndCodeAgreement() method. DeferredAgreement properties are

37

5. Implementation

• coderAgreement - reference to the CoderAgreement class

• agreementQueryId - reference to the AgreementQuery

• comparedProjectId - reference to the project

• comparedProjectType - type of the project

• documentIds - list of document Ids selected for comparison

• codeIds - list of code Ids selected for comparison

• user - reference to the user who initiated agreement query

• revisionId - reference to the revision

• considerTrueNegatives - boolean value to decide true negatives as agreement
or disagreement when agreement type is CODE_OCCURRENCE

• agreementTable - HashBasedTable based on multi maps to hold the agree-
ment values of document and code in a single table. The example Table 5.2
depicts typical agreementTable. It contains boolean value ‘true’ if there is
an agreement and sum of the boolean values across document and code
gives the total agreement for the document and code respectively.

Code 1 Code 2 agreement over document
Document 1 true 1
Document 2 true true 2
Document 3 true 1

agreement over code 2 2 Total = 4

Table 5.2: Example usage of HashBasedTable

• disagreementTable - HashBasedTable similar to agreementTable except it
contains boolean value ‘true’ if there is disagreement

• baselineDocuments - collection of documents of the baseline project

• comparedDocuments - collection of documents of the compared project

The implementation logic of all the three agreement types are explained as follows:

Agreement by Code Occurrence

The agreement is based on the code occurrence in the document and is imple-
mented in DeferredAgreementByCodeOccurrence class for all the document types.
The getUniqueLocalCodeIdsFromCodings() methods gets all the codeIds in the
document for baseline and compared coder and then checks if both the coders

38

5. Implementation

have coded the code or not. Table 5.3 depicts the agreement and disagreement
of a code for coders.

Coder A Coder B Agreement
Code 1 x x yes
Code 2 x No
Code 3 depends on selection

Table 5.3: Agreement table for code occurrence

The ‘Code 3’ is true negative because neither coder coded the code. The true
negative is considered as agreement if considerTrueNegatives is selected else it is
neither agreed nor disagreed. From the Table 5.3, the agreement percentage is
1/2 = 50% and with considerTrueNegatives selected it will be 2/3 = 67%.

Agreement by Code Frequency

The agreement is based on number of times the code occurs in the document and
is implemented in DeferredAgreementByCodeFrequency class for all the document
types. The single code can be applied more than once in a document, this agree-
ment type helps to find if both coders has coded a code and the code assignment
frequency of both coders are same. The getLocalCodesIdAndCountFromCodings()
gets the codeId and its frequency count as a map in the document for baseline
and compared coder. If both coders have coded a code equal number of times
then it is considered as agreed else it is disagreed. The true negatives are neither
agreed nor disagreed as it is not coded by both coders and the frequency will
always be zero.

Agreement by Intersection Percentage

The complex of all the three is to find the percentage of intersection of the coded
region of two coders. The agreement is based on how much both coders have
coded the same coding segment. The DeferredAgreementByIntersectionPercent-
age class has the implementation and supports only text document. It uses
TextDocumentPercentageIntersection class to find the percentage intersection of
coded segments in a text document.

To find the coded segments intersection in a text document, we count the number
of characters in a coded text. The agreement is calculated on how much the
compared coding intersect with the baseline coding. Consider the baseline and
compared coder coding in a text document as shown in the Figure 5.14. The
TextDocumentPercentageIntersection calculates the agreement per document and
uses two HashBasedTable to contain the characters count. One table contains the
number of coded characters per paragraph by baseline coder and another table

39

5. Implementation

contains the number of agreed characters of compared coder with baseline coder
per paragraph.

Figure 5.14: Baseline and compared coders coding in a text document

HashBasedTable has codingKey which is unique key to represent a paragraph in a
text document, codeId of the code and the number of characters count. Table 5.4
shows the generated HashBasedTable having baseline and agreed characters for
the example Figure 5.14. HashBasedTable Table 5.4 is shown with paragraph
number and code name instead of codingKey and codeId for the better under-
standing. Consider that test 1, test 2 and test 3 are three codes, while paragraph
1, paragraph 2 and paragraph 3 represent three paragraphs in order.

Baseline characters table

test 1 test 2 test 3
paragraph 1 213
paragraph 2 86
paragraph 3 167

Agreed characters table

test 1 test 3
paragraph 1 213
paragraph 3 80

Table 5.4: Characters count table

In paragraph 1, both coders used code test 1 to code the identical segment with
characters equal to 213. The baseline coder coded a segment comprising 86
characters with test 2 in paragraph 2, but the compared coder did not code the
test 2, hence the agreed characters table does not include test 2. In paragraph

40

5. Implementation

3, the baseline coder coded test 3 comprising 167 characters and the compared
coder coded a portion of paragraph 2 and a portion of paragraph 3 with test
3. Only the highlighted segment in the Figure 5.15 represents the characters in
agreement for the baseline and compared coders in paragraph 3, which is equal
to 80 characters.

Figure 5.15: Agreed characters in paragraph 3

Table 5.5 shows the agreement and disagreement table. The ratio of agreed
characters to baseline characters gives the agreement percentage. If “minimum
intersection percentage” is taken as 80%, then for test1: 213/213 = 100% which
is more than 80% so agreed. For test 2: 0/80 = 0% so disagreement, test 3:
80/167 = 48% which is less than 80% so disagreed.

Agreement table

test 1
text document true

Disagreement table

test 2 test 3
text document true true

Table 5.5: Agreement and Disagreement tables

5.4 User Interface (UI)

The ICA has two sections, one is Report where reports can be generated for the
existing metrics and another section is Agreement Queries which is a new metric
to analyse the agreements for different agreement types. The UI modifications
are discussed in two subsections Report and Agreement Queries.

5.4.1 Report

Figure 5.16 shows the initial view on navigating to the ICA which contains the
list of generated reports. The contents of the page are explained as numbered in
the screenshot.

1. Sidebar: It contains the heading ‘Intercoder Agreement’ and two menus
‘Report’ and ‘Agreement Queries’.

2. ICA content header: It contains the name of the revision project and revi-
sion number on the right and back button on the left to navigate back to
project dashboard.

41

5. Implementation

3. Report list header: It contains the report headers and a button to create
report.

4. Report hover: On hovering over the report, the background turns grey and
provides an option to select report to view and delete button to delete the
report.

Figure 5.16: ICA screen with list of generated reports

Figure 5.17: Create report modal dialog

Figure 5.17 shows the refactored create report modal. The report creation form
includes a input field for name as well as three dropdown menus for selecting the
evaluation unit, evaluation method and documents. The codes section is used

42

5. Implementation

to select the codesystem’s subset. The codesystem with checkbox is the usage
of CodesystemWithCheckbox component discussed in subsection 5.2.2. When a
user hovers over the code, if it has children, an option to select or deselect the
children will appear next to the code, as shown for code ‘test 2’. The blue tick
mark indicates that the code is selected, while the empty white box indicates
that it is not.

Figure 5.18: F-Measure report

Figure 5.18 shows the F-Measure report. The overview, documents and codes
sections, as well as the result table, are all on a single page in the report. The
result is displayed for all coders and the results for evaluated documents and
codes can be viewed by selecting them.

The document selection is highlighted in grey, while the code selection is high-
lighted in blue. Another usage of CodesystemWithCheckbox component is the
codes interface in F-measure report. The codes with checkboxes represent that
the codes are used for report creation and can be selected to view the result for
that code, while the codes without checkboxes are not used for report creation.
The result can be viewed for any combination of documents and codes selection.

The report view for Krippendorf’s Alpha and Fleiss’ Kappa are identical. Fig-
ure 5.19 depicts the report generated for Fleiss’ kappa. The report includes an
overview section and a result table. In a result table, evaluated documents are

43

5. Implementation

displayed in the first row with their average at the row end, while evaluated codes
are displayed in the first column with their average at the column end.

The codes are displayed in a hierarchical structure that is analogous to the
codesytem tree structure. With the sorting button provided in the column header,
the table can be sorted in ascending or descending order based on column val-
ues. The ‘Export Table’ button allows users to save the result table as a CSV
document.

Figure 5.19: Krippendorf’s Alpha and Fleiss’ Kappa report

5.4.2 Agreement Queries

The agreement query creation page is depicted in the Figure 5.20. Dropdown
menus are provided for selecting baseline coding, compared codings and docu-
ments. For baseline coding, only one coding can be chosen, whereas multiple
codings can be chosen for compared coding. The ‘more’ option in the documents
indicates that many documents have been selected but are not visible on the
screen and clicking on ‘more’ will open a dropdown displaying all of the selected
and deselected documents available for that revision. Codes are selected using a
checkbox.

The selection of agreement type is provided using radio buttons. Hovering the
mouse over the question mark of the agreement type will display a description
of that type. When the agreement type “Code Occurrenc” is selected, “Consider
True Negatives” with a checkbox appears, and when the agreement type “Code
Agreement By Intersection Percentage” is selected, “minimum intersection per-
centage” with an input field to enter a number appears. After entering all of the
required information, an agreement query can be initiated by clicking the ‘create’
button.

44

5. Implementation

Figure 5.20: Agreement query creation

Figure 5.21 depicts the consolidated agreement query view. The top of the page
includes overview with ‘export’ and ‘create new’ buttons. The overview has
baseline coding as ‘test’ which is the name of the baseline project. The export
function can be used to export the tables for all or specific coders, whereas the
create new function can be used to create a new agreement query.

Figure 5.21: Agreement query view

45

5. Implementation

Three agreement tables are shown, each with the agreement, disagreement and
percentage values. The first table which shows the total agreements for each coder
is displayed initially. On selecting a specific coder agreement, the documents and
codes agreement tables for that coder are displayed. These tables have a header
with the user name associated with the agreements, as well as a search bar for
filtering the table. The document names are displayed with a document icon that
corresponds to the type of the document.

The coder ‘User B’ agreement is selected in the Figure 5.21, and the documents
and codes agreement for ‘User B’ are displayed. The codes agreement has search
value ‘test’ and table is filtered with code names matching the search value ‘test’.
The column header of each table contains sort buttons that allow users to sort
the table in ascending or descending order based on the column values.

A single code agreement can be selected from codes agreement table to view
the codings applied for that code by the coders. When a code agreement is
selected, a resizable section appears displaying the codings in each document
for that code. The codings are shown in a two column comparison view, with
the baseline codings on the left and the selected coder codings on the right. In
the Figure 5.21, the code ‘test 2’ is selected and the codings applied in all the
documents for baseline coder (test) and compared coder (User B) are displayed.

5.5 Agreement Queries vs MAXQDA ICA

The agreement queries in QDAcity is inspired by ICA in MAXQDA. The feature
set is similar but there are some key differences:

• QDAcity allows comparison of multiple coders with a single coder. MAXQDA
allows comparison of only two coders.

• For agreement type “Code Intersection Percentage”, QDAcity supports only
text document and agreement is calculated on how much the compared
coding is intersecting with baseline coding. MAXQDA supports different
document types and provide options to choose segment of coder 1 docu-
ments or coder 2 documents or segments of both the documents to find the
intersection.

• QDAcity provides an agreement table of coders, documents and codes.
MAXQDA provides agreement table of document and code as it allows
comparison of only two coders.

• On selection of code agreement, QDAcity displays baseline and compared
coder coded segments in different documents for the code in a two column
comparison view. MAXQDA displays the coded segment in a plain view.

46

6 Challenges

6.1 Identification of Sentence for Coding

The sentence detection and finding the codings in a sentence was discussed in
the chapter 5. There is a scenario where finding a sentence for the coding is
ambiguous. Consider the Figure 6.1 where coding is applied to just white spaces
in a paragraph. We could find the position of the sentences using library that
provides a list of spans without taking white space into account. Because the
coding only represents white space, it is difficult to determine which sentence the
coding belongs to. The coding does not represent anything and assigning it to
any of the sentences would vary the result. Therefore, such a scenario is ignored.

Figure 6.1: Coding of white space

6.2 Coding Intersection - PDF Document

The agreement type “code intersection percentage” in Agreement Queries is only
implemented for text documents, while an attempt was made to incorporate it
for PDF documents but this effort was not successful for a number of reasons.
The PDF document uses two different forms of coding: text coding, which is used
to code texts and area coding, which is often used to code images in a document.
The challenges in finding the intersection of coding for each type are discussed in
subsections.

47

6. Challenges

6.2.1 Text Coding

The PDF document is rendered in the frontend using the PDF.js1 library. Fig-
ure 6.2 shows the PDF document and its HTML representation. Unlike a text
document which has one span per paragraph with a unique codingKey, the PDF
has many spans with data-key in a paragraph. The data-key is a codingKey for
the PDF document. Each span is not equal to a line as shown in the Figure 6.2
and structure of span depends on the parsing by PDF.js which varies for every
PDF document.

Figure 6.2: PDF document and its HTML representation

The Coding data structure provides the start of the coding in terms of startPage,
anchorKey and anchorOffSet and end of the coding in terms of endPage, focusKey
and focusOffSet. The anchorKey and focusKey holds one of the codingKey (data-
key) in which the coding starts and ends. The anchorOffSet and focusOffSet is
the start and end position of the text in a codingKey. Therefore, to find the coding
intersection we need to know the text in each codingKey to get the characters
count from anchorKey anchorOffSet to focusKey focusOffSet. So, in order to
access the text of each codingKey, we must parse the PDF in the backend in the
same way PDF.js renders in the frontend.

There are many Java libraries which parses the PDF. The Apache PDFBox2 lib-
rary was tried with custom modifications and was successful to some extent as it
could parse the PDF similar to PDF.js for some PDF documents but after testing
on numerous different documents we found that the parsing is not consistent and
requires in depth analysis of the library.

1https://mozilla.github.io/pdf.js/
2https://pdfbox.apache.org/

48

https://mozilla.github.io/pdf.js/
https://pdfbox.apache.org/

6. Challenges

6.2.2 Area Coding

Figure 6.3: Area coding example in PDF document

Figure 6.3 shows the area coding example with coded region of two coders in
PDF document. Consider the baseline coder coding in red and compared coder
coding in green. The shaded region in black represent the intersection of the
coders codings.

The area coding is rectangular in shape and the Coding data structure includes
the x and y positions, as well as the height and width of the rectangle. We can
calculate the area of any rectangle using these values. The PDF document on
the left depicts a simple scenario in which each coder has only one coding for a
code. Finding the intersection of two rectangles is simple because the end result
is another rectangle and there is a ready formula.

The PDF document on the right depicts a complex scenario in which each coder
has multiple codings for a code. Because the intersection of these codings does
not represent a rectangle, determining the area of intersection of multiple codings
is a difficult task requiring complex logic.

49

6. Challenges

50

7 Evaluation

In this chapter, we evaluate the implementation provided in chapter 5 against
the functional and non-functional requirements defined in the chapter 3.

7.1 Functional Requirements

1. QDAcity shall provide new UI for ICA

This requirement is fulfilled.

The validation projects section of each revision in the project dashboard
includes the ICA button which satisfies the requirement 1.1. As discussed
in the subsection 5.4.1 with Figure 5.16, the new UI for ICA has two sidebar
menus ‘Report’ and ‘Agreement Queries’ and displays a list of generated
reports and provides a button to create report on navigating to the ICA.
As a result, requirements 1.2 and 1.3 are satisfied.

The ICA results are displayed in a table, as explained in section 5.4, a
common Table component is used for all of the results tables. As shown in
Figure 5.19 and Figure 5.21, the table features sorting buttons in the column
header that allow the user to sort the table in ascending or descending order
based on the column values and the table containing the codes is hierarch-
ically constructed, similar to the codesystem tree. Therefore, requirements
1.4 and 1.5 are satisfied.

When creating a report, the report title is checked for emptiness, as are the
documents and codes for at least one selection and appropriate errors are
thrown as shown in Figure 7.1. The handling of errors for agreement queries
by throwing an exception with error codes is discussed in subsection 5.3.2.
The frontend constructs the error message in accordance with the error
code and throws error as shown in Figure 7.2. As a result, requirement 1.6
is satisfied.

51

7. Evaluation

Figure 7.1: Error handling report creation

Figure 7.2: Error handling agreement queries creation

2. QDAcity shall be able to allow only authorized users to create
ICA from projects

This requirement is fulfilled.

The API endpoint for creating reports validation.createReport and agree-
ment queries agreementQueries.createAgreementQuery validates the user’s
authorization. If the user is not authorized, a HTTP 401 unauthorized er-
ror is thrown. In the frontend, the create button is made visible only to
authorized users.

52

7. Evaluation

3. QDAcity shall be able to allow only authorized users to view ICA
from projects and validation projects

This requirement is fulfilled.

The API endpoint to get report validation.listReportsForRevision and
agreement queries agreementQueries.getAgreementQuery validates the
user’s authorization. If the user is part of the project then the data is
retrieved and the user can view the generated ICA. If user’s authorization
fails, HTTP 401 unauthorized error is thrown.

4. Report

4.1. Report Creation

This requirement is fulfilled.

As discussed in the section 5.1, report generation using evaluation
unit as sentence is implemented, satisfying requirement 4.1.1 The im-
plementation details discussed in section 5.2 and Figure 5.17 show
how a subset of the codesystem can be selected for report generation,
satisfies requirement 4.1.2.

4.2. Report View

This requirement is fulfilled.

4.2.1. As discussed in subsection 5.4.1 with Figure 5.18 and Figure 5.19,
the report includes an overview section containing report name,
evaluation unit, evaluation method, creation date and creator
name.

4.2.2. F-Measure Report

As discussed in Figure 5.18, the evaluated documents for the re-
port are displayed on the screen as chips and the codesystem is
displayed with evaluated codes having tick box next to them. The
user can view the agreement for the document and code by select-
ing the document chip or the code with a tick box.

We also discussed the implementation changes required to allow
users to view the agreement per code in section 5.2. As a res-
ult, the report enables the user to view the agreement for any
document and code combination, thus meeting the requirements
4.2.2.1 and 4.2.2.2.

4.2.3. Krippendorff’s Alpha and Fleiss’ Kappa Report

As discussed in subsection 5.4.1 with Figure 5.19, the report in-
cludes a result table with the evaluated documents and codes that

53

7. Evaluation

meet the requirement 4.2.3.1. To satisfy requirement 4.2.3.2, the
document and code averages are displayed at the row and column
ends of the result table. The ‘Export Table’ button located above
the result table allows the user to export the result table as a CSV
document, fulfilling requirement 4.2.3.3.

5. Agreement Queries

5.1. Agreement Query Creation

This requirement is fulfilled.

As discussed in subsection 5.3.1, the agreement query data structure is
designed to include one baseline and multiple compared coders inform-
ation. The frontend enables selection of just one baseline and multiple
compared coders coding as discussed in subsection 5.4.2 which meet
the requirements 5.1.1 and 5.1.2.

The document and code selection options for the user, as well as the
provision of three agreement types with a radio button to ensure only
one type can be selected are discussed in subsection 5.4.2 with Fig-
ure 5.20. This satisfies requirements 5.1.3 and 5.1.4.

When the agreement type “Code Occurrence” is selected, the option
“Consider True Negatives” is provided with a checkbox as shown in Fig-
ure 5.20 and is hidden if another agreement type is selected. When the
“Code Agreement by Intersection Percentage” type is selected, an in-
put field with the label “minimum intersection percentage” is displayed
for the user to enter a minimum agreement criteria value between 20
and 100 and it is hidden when another agreement type is selected. The
frontend handles the functionality of showing and hiding the agreement
type fields while the backend handles the calculation based on these
values as discussed in subsection 5.3.3, thus satisfying requirements
5.1.5 and 5.1.6.

5.2. Agreement Query view

This requirement is partially fulfilled as 5.2.5 is not met.

The creation process of an agreement query and implementation de-
tails of each agreement type is discussed in subsection 5.3.2 and sub-
section 5.3.3. The generated agreement query is shown in Figure 5.21
which includes an overview and coders agreement table on initial view-
ing and the documents and codes agreement tables are displayed for
a coder upon selection of a coder agreement. As a result, the require-
ments 5.2.1 and 5.2.2 are met.

54

7. Evaluation

The documents and codes agreement table provides a search box to
filter the table with document and code names as discussed in subsec-
tion 5.4.2 with an example, which meets the requirement 5.2.3.

When a code agreement is selected, the applied codings of the baseline
and selected coder are displayed in a two-column view. However, when
the document is selected, the codings for the combination of document
and code are not displayed. As a result, requirement 5.2.4 is satisfied
while requirement 5.2.5 is not.

The ability to export the tables to a CSV document via the ‘Export’
button, as well as the ability to create a new agreement query using
the ‘Create New’ button, were also discussed in subsection 5.4.2 to
meet requirements 5.2.6 and 5.2.7.

5.3. QDAcity shall be able to delete the previously created agree-
ment query when initiating a new one

This requirement is fulfilled.

As discussed in subsection 5.3.2, when the new agreement
query creation is initiated, the API endpoint agreementQuer-
ies.createAgreementQuery checks for existence of agreement query for
the revision. If an agreement query exist for the revision, it is deleted
and the deletion of coder, document and code agreements associated
with it is added to a deferred task before initiating a new one.

6. QDAcity shall be able to notify the initiating user with the QDA-
city notification feature upon successful creation of report or
agreement query

This requirement is fulfilled.

As discussed in subsection 5.3.2, when the agreement query process is fully
completed, that is, when all of the coder, document and code agreement val-
ues are persisted in the datastore, a notification is created for the initiated
user and the user is notified.

7.2 Non-Functional Requirements

Functional Suitability

This requirement is fulfilled.

Manual testing of ICA reports and agreement queries was performed to ensure
that all functionalities were operational. The previously and newly added ICA
unit tests pass, confirming that everything is functioning properly.

55

7. Evaluation

Performance Efficiency

This requirement is not fulfilled.

The idea was to provide a dedicated service for metrics so that they could scale
horizontally, in order to generate ICA reports and agreement queries in parallel.
Due to time constraints, this could not be accomplished.

Compatibility

This requirement is fulfilled.

The backend and frontend class components added in this thesis are completely
compatible with previously existing QDAcity components. Their compatibility
can be asserted by their successful implementation and flawless functioning of
the QDAcity system.

Usability

This requirement is fulfilled.

The requirements 5 and 6 are met as all of the user-facing strings in the UI are
defined with a unique key using the react-intl format for localization and the
newly added components adhere to the colours defined in the theme file. The
user receives a feedback message on initiating the ICA report or agreement query
which satisfies requirement 7.

Reliability

This requirement is fulfilled.

As shown in Figure 7.1 and Figure 7.2, the errors are handled. The logs are
added where the exception are caught and the added test cases ensures that the
system is working as expected.

Security

This requirement is fulfilled.

All API endpoints include a validation method that validates the user’s authen-
tication and authorization, ensuring the security characteristics required to meet
this requirement.

Maintainability

This requirement is partially fulfilled.

Requirement 11 is met as discussed in subsection 4.1.3, a common interface Cod-
ingsPerUnit is defined. For further extension of the evaluation unit, the de-
velopers has to create a corresponding class implementing the interface to find
the applied codings for that unit. The ICA reports can then be created for the

56

7. Evaluation

added evaluation unit as we have incorporated the strategy with factory design
pattern to create and run the algorithm at the runtime based on evaluation unit.

As discussed in subsection 5.3.3, to support implementation of different agree-
ment types, an abstract class DeferredAgreement is created. The implementation
follows template design pattern which allows the developers to extend the ab-
stract class and write the calculation logic for the added agreement type while
rest of the functionalities is handled. Thus, requirement 12 is satisfied.

The total code coverage of 94.23% satisfies the requirement 13. The newly added
API endpoints createReport, getReport, listResults and listReportsForRevision are
included in the code coverage for ValidationEndpoint and the newly added classes
CodingsPerSentence, CodingsPerUnitFactory, SentenceDetectorModel, Language-
Model and TextLanguageDetector are included in the util package’s code coverage.

Package Lines
missed

Lines
covered

LOC cov-
erage in %

com.qdacity.project.metrics.CodeResult 12 31 61.29
com.qdacity.project.AgreementQueries 0 145 100
com.qdacity.project.data.util 15 126 88.09
com.qdacity.project.metrics.Agreement-
Queries.algorithms

4 64 93.75

com.qdacity.project.metrics.Agreement-
Queries.deferredTasks

14 294 85.23

com.qdacity.endpoint.ValidationEndpoint 0 38 100
com.qdacity.endpoint.AgreementQueri -
esEndpoint

0 82 100

Total 45 780 94.23

Table 7.1: LOC coverage for unit test

Due to time constraints, requirement 13 is only partially met because acceptance
tests do not cover all of the scenarios included in ICA. A test has been added for
creating and viewing the F-Measure report using the evaluation unit paragraph
and another test has been added for creating and viewing the agreement query
for the agreement type “code occurrence”.

Portability

This requirement is fulfilled.

The newly added and modified ICA functionality was manually tested and found
to work as expected in the most recent versions of Google Chrome and Mozilla
Firefox.

57

7. Evaluation

58

8 Future Work

The ICA evaluation approaches has now been enhanced with a wide options but
there is still room for improvement. The scope of future work in QDAcity ICA
measurement is described in this section.

8.1 Report

Document types - Report generation is currently supported only for text doc-
uments, but it can be extended to all document types supported by QDAcity.

Evaluation unit - QDAcity now supports the evaluation units sentence and
paragraph. This can be extended to larger units like pages or even smaller units
like words or characters.

Evaluation method - There are many other methods for ICA measurement,
such as Holsti’s method (Holsti, 1969), Scott’s pi (Scott, 1955) and Cohen’s
kappa (Cohen, 1960), which can be integrated into QDAcity.

8.2 Agreement Queries

PDF document support - The agreement query for agreement types code
occurrence and code frequency is supported for all document types, but code
intersection percentage is only implemented for text documents which could be
extended to support PDF documents in the future.

Agreement types - The Agreement Queries have been implemented for three
agreement types to generate and analyze ICA, which could be further extended
to other agreement types.

Area coding - Since QDAcity does not save the preview of area coding for PDF
document, the area coded region is displayed as “no preview available” in the
comparison view. This area coding preview feature could be added in the future
to show area coded region by the coders.

59

8. Future Work

Export - The export functionality of ICA supports only the export of the result
table to an CSV document, which could be extended to other document types
such as XLS, PDF and so on. For agreement query, the user can specify which
coders the agreements table should be exported to. This flexibility can be in-
creased further by allowing the user to choose which documents and codes to
export.

8.3 Visualization

The ICA can be visualised in a number of ways and we would like to discuss
about some of the potential visualisation techniques that could be implemented
in QDAcity.

Side by side view - This visualization compares the codings of two coders
for a document. The coded region for codes in a document are shown in the
CodingEditor with coding brackets and when the code is selected, the coded
region is highlighted for that code. This feature could be expanded to show the
two coders codings, with one coder coding brackets on the left and another coder
coding brackets on the right. When a code is selected, the coding of both coders
could be highlighted to show how closely the coding matches for that code.

Heat maps - The heat map can be created by comparing the consolidated agree-
ment of all intercoders to the model solution. Each character in the document
can be coloured based on the intercoders agreement’s true positive, false positive,
false negative and true negative. This provides an overall view of which text in
the document is in high and low agreement.

Charts - To visualize the ICA, different charts such as bar, pie and column can
be used. The chart, for example, can show the values generated for the agreement
queries using a bar or pie chart for the top 5 codes or documents with the highest
agreement. The column chart can be used to show different coders agreement for
a code or document. Furthermore, options can be provided to chart type, coders,
documents and codes to create a chart.

60

9 Conclusion

The objectives of this thesis were to provide a sentence as an evaluation unit,
an option to calculate agreement for the codesystem subset and a new UI and
metric for the ICA assessment.

In order to successfully implement these features in QDAcity, we analysed QDA-
city state in chapter 2. We described the features of QDAcity as well as the
methods used to generate ICA. The ICA limitations were stated and the require-
ments for ICA improvement were specified in chapter 3.

We explained the need for an NLP library for sentence detection and a library for
language detection before discussing the architecture. We used a strategy with a
factory design pattern to provide the architecture for finding codings in different
evaluation units. Additionally, the implementation architecture of the agreement
queries for three different agreement types were discussed in chapter 4.

In chapter 5, we started with implementation details on how an ICA report
for an evaluation unit sentence can be generated, followed by implementation
modifications to accommodate the ICA per code. The data structure of the
agreement query, the creation procedure and implementation for each agreement
type based on a template design pattern were all presented.

In chapter 6, we discussed the difficulties we found during implementation in
finding the sentence for a coding in a specific scenario and determining the coding
intersection in a PDF document. The requirements defined in chapter 3 were
evaluated against provided implementation in chapter 7. We mentioned potential
future works in ICA reports, agreement queries and visualisation in chapter 8.

To conclude, QDAcity now allows users to create an ICA report with an evalu-
ation unit sentence and a codesystem subset. The user can view the agreement
per code for the F-Measure report and can generate ICA agreement queries us-
ing three different agreement types, all of which are integrated into the new and
intuitive ICA UI.

61

9. Conclusion

62

References

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and
Psychological Measurement, 20 (1), 37–46. https : / / doi . org / 10 . 1177 /
001316446002000104

Google. (2022). Using push queues in java [[Online; accessed 2022-05-30]]. https:
//cloud.google.com/appengine/docs/standard/java/taskqueue/push/

Gwet, K. L. (2014). Handbook of inter-rater reliability: The definitive guide to
measuring the extent of agreement among raters. Advanced Analytics,
LLC.

Holsti, O. R. (1969). Content Analysis for the Social Sciences and Humanities.
Reading, MA: Addison-Wesley.

Kaufmann, A. & Riehle, D. (2019). The qdacity-re method for structural domain
modeling using qualitative data analysis. 24 (1), 85–102. https://doi.org/
10.1007/s00766-017-0284-8

O’Connor, C. & Joffe, H. (2020). Intercoder reliability in qualitative research: De-
bates and practical guidelines. International Journal of Qualitative Meth-
ods, 19, 1609406919899220. https://doi.org/10.1177/1609406919899220

Rupp, C. (2014). Requirements templates — the blueprint of your requirement,
6. https://www.sophist.de/fileadmin/user_upload/Bilder_zu_Seiten/
Publikationen/RE6/Webinhalte_Buchteil_3/Requirements_Templates_-
_The_Blue_Print_of_your_Requirements_Rupp.pdf

Schweter, S. & Ahmed, S. (2019). Deep-eos: General-purpose neural networks for
sentence boundary detection. KONVENS.

Scott, W. A. (1955). Reliability of Content Analysis:The Case of Nominal Scale
Coding. Public Opinion Quarterly, 19 (3), 321–325. https://doi.org/10.
1086/266577

63

https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
https://cloud.google.com/appengine/docs/standard/java/taskqueue/push/
https://cloud.google.com/appengine/docs/standard/java/taskqueue/push/
https://doi.org/10.1007/s00766-017-0284-8
https://doi.org/10.1007/s00766-017-0284-8
https://doi.org/10.1177/1609406919899220
https://www.sophist.de/fileadmin/user_upload/Bilder_zu_Seiten/Publikationen/RE6/Webinhalte_Buchteil_3/Requirements_Templates_-_The_Blue_Print_of_your_Requirements_Rupp.pdf
https://www.sophist.de/fileadmin/user_upload/Bilder_zu_Seiten/Publikationen/RE6/Webinhalte_Buchteil_3/Requirements_Templates_-_The_Blue_Print_of_your_Requirements_Rupp.pdf
https://www.sophist.de/fileadmin/user_upload/Bilder_zu_Seiten/Publikationen/RE6/Webinhalte_Buchteil_3/Requirements_Templates_-_The_Blue_Print_of_your_Requirements_Rupp.pdf
https://doi.org/10.1086/266577
https://doi.org/10.1086/266577

	Introduction
	QDAcity
	Analysis of Current State
	Problem Statement
	Objectives
	Agreement Queries

	Requirements
	Functional Requirements
	Non-Functional Requirements

	Architecture
	Sentence Detection
	Sentence Detection - an NLP Problem
	Evaluation of Libraries
	Architecture

	Task Queues
	Agreement Queries

	Implementation
	Evaluation Unit - Sentence
	Language Detection
	Text Document
	Codings Per Sentence

	ICA by Code
	Backend
	Frontend

	Agreement Queries
	Data Structure
	General Process
	Process Implementation

	User Interface (UI)
	Report
	Agreement Queries

	Agreement Queries vs MAXQDA ICA

	Challenges
	Identification of Sentence for Coding
	Coding Intersection - PDF Document
	Text Coding
	Area Coding

	Evaluation
	Functional Requirements
	Non-Functional Requirements

	Future Work
	Report
	Agreement Queries
	Visualization

	Conclusion
	References

