
Design and Implementation of a
Version Control System for Open

Data Modelling Projects
MASTER THESIS

Martin Buchalik

Submitted on 15 August 2022

Friedrich-Alexander-Universität Erlangen-Nürnberg
Faculty of Engineering, Department Computer Science

Professorship for Open Source Software

Supervisor:
Georg Schwarz

Prof. Dr. Dirk Riehle, M.B.A.

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen,
die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 15 August 2022

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 15 August 2022

i

https://creativecommons.org/licenses/by/4.0/

ii

Abstract

Many modern software applications and research projects depend on the ability
to access high-qualitative data sources. Even though there is already a large
number of openly available data sets, such data sets are often hard to (re)use due
to various barriers such as incomplete documentation, wrong or missing values,
and more. To address these barriers, the JValue Project has been established
by the Professorship of Open Source Software at Friedrich-Alexander-Universität
Erlangen-Nürnberg. The goal of the JValue Project is to “make open data easy,
safe, and reliable”.

In the context of the JValue Project, numerous software applications are de-
veloped which, among others, allow to explicitly define the structure and further
meta information of openly available data sets. However, it is currently neither
possible to collaborate with other individuals on such data source configurations,
nor is it possible to retrace the historic development that led to the current state
of a particular configuration.

To build a basis to address these issues, a Version Control System shall be de-
veloped, which makes it possible to store, retrieve, and compare revisions of
files containing data source configurations and related information. This thesis
presents a concept of such a system, and evaluates this concept by implementing
a prototype showing its feasibility.

As a result of this thesis, it is now possible for other applications developed in the
context of the JValue Project to access, create, and compare revisions in order
to provide advanced collaboration and versioning features to end users.

iii

iv

Contents

1 Introduction 1

2 Fundamentals 5
2.1 Context: The JValue Project . 5

2.1.1 Data Engineering Workbench 6
2.1.2 JValue Hub . 6

2.2 Version Control Systems . 7
2.2.1 Basic terminology . 7
2.2.2 Diff . 9
2.2.3 Core features of a VCS . 9
2.2.4 Types of Version Control Systems 11

2.3 Trees and graphs . 13
2.3.1 Trees . 13
2.3.2 Graphs . 16

3 Requirements 19
3.1 Source of requirements . 19

3.1.1 Adaptation of the Core Operations 19
3.2 Requirements format . 20
3.3 Metric to summarize requirements completion 21
3.4 Functional requirements . 21
3.5 Non-functional requirements . 25

4 Conceptual design 27
4.1 Comparison of CVCSs and DVCSs 27
4.2 Reusing existing general-purpose systems 28

4.2.1 Reusing user interfaces . 28
4.2.2 Reusing HTTP APIs . 28

4.3 Logical Model of the Hub VCS 29
4.3.1 Initial Logical Model . 29
4.3.2 Model of files, folders, and delta 32
4.3.3 Model of the commit history 35

v

4.3.4 Updated Logical Model . 40

5 Architecture 43
5.1 Foundation of final design . 43
5.2 Backend . 43
5.3 Clients . 44

5.3.1 User-facing clients (UIs) 45
5.3.2 System test suite and Importer 46

5.4 Final system structure . 49

6 Implementation 51
6.1 Database schema . 51

6.1.1 Storage of files and folders 51
6.1.2 Storage of commits, repositories, and more 55

6.2 Creation of commits . 59
6.3 Retrieval of diffs . 64

6.3.1 Basic request processing 64
6.3.2 Detection of moved files 67
6.3.3 Result format . 72

7 Evaluation 75
7.1 Used notation for endpoints . 75
7.2 Evaluation of functional requirements 75
7.3 Evaluation of non-functional requirements 91
7.4 Summary . 92

8 Conclusion 95

Appendix 97
Mockups of DEWB and JValue Hub 99

References 103

vi

Acronyms

API Application Programming Interface

CLI Command Line Interface

CVCS Centralized Version Control System

DAG Directed Acyclic Graph

DEWB Data Engineering Workbench

DVCS Distributed Version Control System

ETL Extract, Transform, Load

HTTP Hypertext Transfer Protocol

ID Identifier

IDE Integrated Development Environment

JSON JavaScript Object Notation

ODS Open Data Service

UI User Interface

URL Uniform Resource Locator

UX User Experience

VCS Version Control System

vii

viii

1 Introduction

“There is a long history of governments, businesses, science and cit-
izens producing and utilising data in order to monitor, regulate, profit
from, and make sense of the world. Data have traditionally been time-
consuming and costly to generate [...]” (Kitchin, 2014)

Members of modern societies - companies, scientists, and more - often have a great
need for high-qualitative data. This is also represented in the term “Information
Society”, which describes societies that highly depend on knowledge gained from
information (Wessels, Finn, Wadhwa & Sveinsdottir, 2017).

Being able to access large amounts of data can have a major positive impact
on efficiency and innovation. Thus, in recent years, especially governments have
decided to make data available to the public. (Huijboom & van den Broek, 2011)

Such openly available data is commonly referred to as “Open Data”. More pre-
cisely, the term “Open Data” describes the praxis of making data “accessible,
understandable and open to reuse” (Wessels et al., 2017).

According to this definition of Open Data, it is not sufficient to publish raw1 and
undocumented data. However, according to a survey asking for the biggest bar-
riers regarding Open Data in the context of governmental Open Data strategies,
multiple factors were found that explicitly mention issues with the aforemen-
tioned aspects. Two of the “top 10 barriers” are “Limited user-friendliness/info
overload” and “Lack of standardisation of open data policy”. Also, it has been
mentioned that government data often has a low quality. (Huijboom & van den
Broek, 2011)

In order to erase those and additional barriers in the context of Open Data, the
“JValue Project” has been started by the Professorship of Open Source Software
at Friedrich-Alexander-Universität Erlangen-Nürnberg. The goal of the JValue
Project is to “make open data easy, safe, and reliable”.

One major software application developed in the context of the JValue Project
1We define “raw data” as data that has not or barely been processed and thus may include

missing values, errors, and the like.

1

1. Introduction

is the “Open Data Service” (ODS). The ODS provides features to fetch data
from multiple sources, perform “cleansing” and quality assurance operations, and
finally to allow access to this enhanced data using a single and well-documented
API. At the time of writing this thesis, configurations of the ODS were performed
individually, meaning that every user of the ODS would create their own settings
and typically keep them for themselves, instead of sharing the settings and being
able to reuse already existing ones.

This strategy might work well for smaller projects and few data sources. However,
for larger projects with many data sources, being able to reuse and extend already
existing settings definitions, as well as collaborating with other data scientists,
software developers, and the like, will most likely greatly increase the productivity
of users of the ODS. Such a crowd-sourcing approach may lead to the creation of
communities, which could experience benefits similar to the ones found in Open
Source Software communities.

Because of this, plans are made to develop a collaboration platform, the “JValue
Hub”. In its essence, the JValue Hub will follow the ideas of platforms like
GitHub2 or GitLab3, which are platforms that are commonly used by software
developers to collaborate on software code. The major difference between these
platforms and the JValue Hub is that the JValue Hub will explicitly be tailored
to the needs of data scientists and developers who want to collaborate on and
share models of Open Data sources. These models can eventually be used by the
ODS to retrieve, “clean up”, and enhance the data present in the respective Open
Data source.

The goal of this thesis is to develop a core functionality of the JValue Hub: Version
Control. Version Control is commonly used in the field of software development
for “tracking and managing [of] revisions” (Loeliger & McCullough, 2012). A
Version Control System (VCS) typically allows users to access historical revisions
of source code and explore which changes have been made at which point in time
(Loeliger & McCullough, 2012).

This thesis contributes to the JValue Project by

1. presenting a concept to support the JValue Hub with a web-based VCS

2. evaluating the concept by implementing a prototype showing its feasibility

2https://github.com, accessed on June 21, 2022
3https://gitlab.com, accessed on June 21, 2022

2

https://github.com
https://gitlab.com

1. Introduction

This thesis is structured as follows:

• Chapter 2 describes the most important concepts and terms used in this
thesis, and lays out the context in which the novel system will be developed.

• Chapter 3 defines functional and non-functional requirements that shall be
met by the final system.

• Chapter 4 explains important theoretical concepts needed for the develop-
ment of the new VCS.

• Chapter 5 provides an overview of the technical structure of the novel sys-
tem.

• Chapter 6 highlights interesting and particularly important parts of the
final implementation.

• Chapter 7 evaluates the final implementation of the novel VCS against the
functional and non-functional requirements defined in chapter 3.

• Chapter 8 provides a short summary of the previous chapters.

3

1. Introduction

4

2 Fundamentals

This chapter explains the most important concepts and terms used in this thesis.
Furthermore, this chapter lays out the context in which the novel system will be
developed.

2.1 Context: The JValue Project

As mentioned in chapter 1, the goal of the JValue Project is to “make open
data easy, safe, and reliable”. To achieve this goal, multiple complex software
applications, as well as related research projects, have been established and are
actively being worked on.

The core components of the JValue Project are1:

• The “Data Engineering Workbench”, and the “JValue Hub”, which will be
described in more detail in sections 2.1.1 and 2.1.2.

• The ODS, which provides features to load, “cleanse”, and access data from
multiple sources.

• A framework (meta-model) for modelling data sources and eventually of
ETL pipelines.

• A compiler to make it possible to transform an ETL model to configurations
of various runtimes.

• A “Cloud Service” to provide configured ETL runtime instances to clients.

The VCS developed in this thesis will be connected to multiple of the afore-
mentioned components of the JValue Project. In the following, two software
application projects are presented that are connected the closest: The “Data
Engineering Workbench”, and the “JValue Hub”.

1The list of “core components” only reflects a fraction (the most important “pillars”) of the
software applications built in the context of the JValue Project.

5

2. Fundamentals

2.1.1 Data Engineering Workbench

At the time of writing this thesis, a new software application called “Data Engin-
eering Workbench” (DEWB) was under development. Conceptually, the DEWB
is similar to an Integrated Development Environment (IDE) such as the Eclipse
IDE2 or Xcode3. The main goal of the DEWB is to support users who want to
create data source configurations for the ODS by providing user-friendly editing
capabilities, error prevention, previewing functionalities, and more.

The DEWB is a completely web-based editor, meaning that it can be used in any
modern web browser, but it is not meant to be installed as a standalone software
application on a user’s computer. This approach makes it especially easy for new
users to quickly try out the DEWB, since no complex set-up is required to run
the application. But it also brings benefits to experienced “power users”, such
as being able to work on (and switch between) any computer that is connected
to the internet, always using the most recent version of the application and thus
never having to manually deal with software updates, and having a consistent
editing experience across all supported devices.

One of the most important features of the DEWB is the ability to preview which
“effect” a data source configuration has: When the user is in the process of creating
a data source configuration, the DEWB will display a preview of the data fetched
using the configuration that is currently being edited. This quick feedback allows
the user to determine possible problems and also to get a better understanding
of the influence certain settings have. For this purpose, being able to load data
from a remote server is necessary, which is why the DEWB is not meant to be
used offline.

2.1.2 JValue Hub

As described in chapter 1, plans are being made to develop a platform called
“JValue Hub”. This platform is supposed to be a central place for sharing con-
figurations of the ODS. Users are encouraged to collaborate in order to provide
configurations for new data sources, to enrich already existing ones, to discuss
problems, and more. This is similar to the way developers collaborate in Open
Source Software communities.

The JValue Hub will be connected to the DEWB: If a user wants to work on a
configuration, he or she can simply launch the DEWB. Once the work is finished,
it will be possible to feed the changes back to the JValue Hub, i.e. to update the
current version found in the JValue Hub through the DEWB.

2https://www.eclipse.org/ide/, accessed on June 21, 2022
3https://developer.apple.com/xcode/, accessed on June 21, 2022

6

https://www.eclipse.org/ide/
https://developer.apple.com/xcode/

2. Fundamentals

In order to guarantee that it is always possible to understand which changes were
made, all historic versions must be archived and it must be possible to determine
the changes made between two of such “snapshots”. Otherwise, it might become
hard for users to follow the reasoning behind certain changes, which in turn might
lead to less trust in the quality and integrity of such configurations. This is why
a VCS is of high importance for the success of the JValue Hub.

Since the VCS built in this thesis will later become a central part of the JValue
Hub, we call this VCS the JValue Hub VCS or just Hub VCS.

2.2 Version Control Systems

As described in chapter 1, VCSs are typically used in software development to
allow users to precisely track the changes made to one or multiple files. One
important feature of a VCS is the ability to access historic revisions of the source
code under development (Loeliger & McCullough, 2012). VCSs can simplify
and speed up software development processes, especially when collaborating with
other developers and concurrently working on the same files in a software project
(Otte, 2009).

2.2.1 Basic terminology

Otte (2009) and Sink (2011) explain important terms that will be used throughout
this thesis. The following explanations are based on their definitions.

Typically, software projects are organized into one or more repositories. A repos-
itory contains all files and folders, as well as all historic revisions. Sink (2011)
describes repositories using an “equation”:

repository = filesystem ∗ time

When a user wants to edit files, he or she first needs to perform a checkout of
a specific revision. A checkout creates a working copy of the files and folders of
a revision specified by the user. The user can then start performing changes to
the working copy, independently of other users. It is important to note that a
checkout is performed for exactly one specific revision. One could say that the
user checks out a “snapshot” from the history of the repository.

Often, users just want to check out the latest revision from a repository in order
to base their work on the most recent version. This would require these users to
frequently look up the identifier of the latest revision. To make this process easier,

7

2. Fundamentals

some VCSs provide additional commands to check out the latest revision without
having to specify an exact revision identifier. Often, the latest revision is referred
to as the head. Additionally, users can create named references to individual
revisions. Such a named reference is called tag. A tag can, for instance, be used
to mark an important version.

When the user has been working on changes in the working copy and has finalized
them, he or she needs to create a new revision in order to persist these changes
in the repository. Such a single new revision is called a commit. A commit does
not only contain information about the modifications of the working copy, but
may also contain metadata: Typically, users can provide a commit message to
explain what a particular commit has changed compared to the previous version.
Also, many VCSs store the creation date and time of a commit.

When one user has created a new commit, other users need to perform an update
if they want to apply these changes to their own working copy. An update is
equivalent to a checkout if no changes have been applied to the working copy.
However, if the working copy has been modified prior to the update, it becomes
necessary to merge4 the changes of the incoming commit to the ones of the
working copy. If an automatic merge fails because the incoming commit contains
changes that are not compatible with the ones from the working copy, a conflict
occurs. For instance, in many VCSs a conflict will occur when the exact same
line in a particular file has been modified both in the working copy and in the
incoming commit. A VCS may then prompt the user to resolve the conflict
manually.

When a developer works on a new feature, he or she might want to commit
smaller, potentially unfinished or broken changes to the repository. This can
especially happen when testing a potential solution for a problem, or when trying
out a new way to fix a certain issue. In such cases, every commit can hinder other
developers from continuing their work if they perform an update of their working
copy with a potentially faulty revision. Because of this, when starting work on a
new set of changes, developers often create a new branch. Commits are always
pushed to one specified branch. Later, commits from one branch can be merged
into another branch. One way to work with branches is to define a “Main Branch”
where the latest stable revision can be found, and many “Feature Branches”5. In
this particular way of organizing a repository, once a certain feature is finished
on a Feature Branch, it will get merged into the main branch.

In some cases, developers want to copy an entire repository in order to work
completely independently of the maintainers of the original repository. Such an

4It should be noted that the term “merge” is used in multiple ways in this thesis. Apart
from merging an incoming commit to the working copy when performing an update, the term
is also used when combining the changes from one branch into another.

5See https://martinfowler.com/bliki/FeatureBranch.html, accessed on June 21, 2022

8

https://martinfowler.com/bliki/FeatureBranch.html

2. Fundamentals

action is often referred to as a fork 6. It is important to note the differences
between a branch and a fork: Branches are part of a repository. A repository
may contain an arbitrary number of branches. When creating a new branch, it
gets added to the repository and points to a particular revision. On the other
hand, forks are copies of repositories. Thus, when creating a fork, the original
repository is not modified.

2.2.2 Diff

The term diff is defined by Otte (2009) as “the changes between two revisions of a
file”. This implies that a diff can only be calculated for single files, and that a diff
must always compare historic versions of the same file. In this thesis, we alter
this definition: A diff represents the changes (differences) between two files, or
even between two directories. When calculating the diff between two directories,
we expect the diff to be performed recursively so that sub-directories are also
compared, as well as their sub-directories and so on. Thus, it is possible to say
“the diff between file A and file B” or “the diff between folder A and folder B”. It
is not necessary that “file A” and “file B” are historic revisions of one particular
file. Instead, they may be two arbitrary files the user wants to compare.

Additionally, we say that a diff between two commits represents the differences
between the files and folders pointed to by these two commits.

2.2.3 Core features of a VCS

The exact list of supported features differs between various VCSs. However, there
are certain basic operations that should exist in every VCS in order to provide
essential features needed for version control. Sink (2011) defines a set of 18 basic
operations that “could be considered the core concepts of version control”. These
features are listed in table 2.1. In this thesis, we call the operations listed in this
table “Core Operations”. For instance, Core Operation 1 (Create) refers to the
first operation listed in table 2.1.

6The term “fork” is used in multiple version control platforms, see for example https:
//docs.github.com/en/get-started/quickstart/fork-a-repo or https://docs.gitlab.com/ee/user/
project/repository/forking_workflow.html (both links accessed on June 21, 2022).

9

https://docs.github.com/en/get-started/quickstart/fork-a-repo
https://docs.github.com/en/get-started/quickstart/fork-a-repo
https://docs.gitlab.com/ee/user/project/repository/forking_workflow.html
https://docs.gitlab.com/ee/user/project/repository/forking_workflow.html

2. Fundamentals

Number Title Description
1 Create “Create a new, empty repository.”
2 Checkout See section 2.2.1
3 Commit See section 2.2.1
4 Update See section 2.2.1
5 Add “Use the add operation when you have a file or direct-

ory in your working copy that is not yet under version
control and you want to add it to the repository.”

6 Edit “Modify a file.”
7 Delete “Delete a file or directory.”
8 Rename “Rename a file or directory.”
9 Move “Move a file or directory. Use the move operation when

you want to move a file or directory from one place in
the tree to another.”

10 Status “List the modifications that have been made to the work-
ing copy.”

11 Diff “Status provides a list of changes but no details about
them. To see exactly what changes have been made to
the files, you need to use the diff operation.”

12 Revert “Undo modifications that have been made to the working
copy.”

13 Log “Show the history of changes to the repository.”
14 Tag See section 2.2.1
15 Branch See section 2.2.1
16 Merge See section 2.2.1
17 Resolve “Handle conflicts resulting from a merge.”
18 Lock “Prevent other people from modifying a file.”

Table 2.1: The 18 core operations of a VCS as defined by Sink (2011). The
descriptions quoted here are also excerpts from Sink (2011).

10

2. Fundamentals

2.2.4 Types of Version Control Systems

Otte (2009) distinguishes two types of VCSs: Centralized Version Control Sys-
tems (CVCSs) and Distributed Version Control Systems (DVCSs)7. This differ-
entiation is made because of fundamental differences in the way repositories are
stored, accessed, and collaborated on.

Centralized Version Control Systems

In a CVCS such as CVS8 or SVN9, a repository is always stored in only one single
place. Checkouts are always performed against this central repository. (de Alwis
& Sillito, 2009) Thus, one can see the central repository as a server (Otte, 2009).

Figure 2.1 shows how collaboration using a CVCS is organized: The history is only
stored on the central server. Clients (“Computer A” and “Computer B”) always
only communicate with this central repository. Thus, every commit is always sent
to the central server. It is not possible for clients to exchange commits between
themselves. This also makes the central server a Single Point of Truth since it is
the only place where the entire history is stored.

Figure 2.1: Structure of a CVCS. Source: https://git-scm.com/book/en/v2/
Getting-Started-About-Version-Control, accessed on June 21, 2022

7Instead of saying “Distributed Version Control System”, some sources refer to such systems
as “Decentralized Version Control Systems”, see for example de Alwis and Sillito (2009). In this
thesis, we use both terms interchangeably.

8http://cvs.nongnu.org, accessed on June 21, 2022
9https://subversion.apache.org, accessed on June 21, 2022

11

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
http://cvs.nongnu.org
https://subversion.apache.org

2. Fundamentals

Distributed Version Control Systems

In a DVCS such as Git10, there is no central repository. Every user has a full
copy of a given repository on their computer. Changes are always performed
on this local repository. So, a user can directly create commits, branches, tags,
or the like, on the locally stored repository. To enable collaboration with other
users, it is possible to either make the locally stored repository available over a
network, or to publish this repository on a server. Other users can then clone
this repository to their own computers and work independently of the original
repository. When collaborating with other users, one pushes the locally made
changes to the repository the clone has been made from. If another user has
pushed a change, it is possible to fetch the changes to the locally stored repository.
When performing a fetch operation, it is necessary to merge the incoming changes
with the ones already present. (Otte, 2009)

Figure 2.2 visualizes how a DVCS is organized: The entire history is always
stored on every single computer. It is possible to exchange information with any
other computer, which is the major difference to the client-server model used in
CVCSs.

Figure 2.2: Structure of a DVCS. Source: https://git-scm.com/book/en/v2/
Getting-Started-About-Version-Control, accessed on June 21, 2022

10https://git-scm.com, accessed on June 21, 2022

12

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com

2. Fundamentals

2.3 Trees and graphs

Two data structures are essential for the VCS implemented in this thesis: trees
and graphs. The following explanations are based on the definitions of Mehlhorn
and Sanders (2008).

2.3.1 Trees

A tree is a data structure used in computer science and similar fields to model
hierarchies between entities. These entities are represented by nodes in the tree.
Every node can have multiple “children”. Additionally, every node has exactly
one “parent” node, except for one node, which is called the “root”. The terms
“child” and “parent” are inverse to each other: Given two nodes A and B, if B
is a child of A, then A is the parent of B. Finally, in this thesis we call nodes
without children “leaves”, and all other nodes “inner nodes”.
Figure 2.3 shows an example of a tree with five nodes. Node 1 is the root node
and has two children (nodes 2 and 3). Thus, node 1 is the parent of nodes 2
and 3. Nodes 4 and 5 are children of node 3. Nodes 2, 4 and 5 are leaf nodes.
In this example, a node has a maximum of two children. However, if no further
restrictions are defined, a node may have an arbitrary number of children.

1

2 3

4 5

Figure 2.3: An example of a tree with five nodes (nodes 1 to 5). Nodes 2 and
3 are children of node 1; nodes 4 and 5 are children of node 3.

Application in file systems

One situation where tree(-like) structures can be found are file/folder structures
in a typical file system: Here, a folder can contain multiple sub-folders and files.
Every file and folder (except for the root folder) has exactly one parent folder.
This is exactly what trees are able to represent: When mapping the file system

13

2. Fundamentals

model to a tree, every single file and folder is represented by one node. A file
node never has any children (it only holds the content of the respective file it
represents, but that can be seen as being “part of the node”). A folder node
references the file and folder nodes that represent the direct children of the given
folder. Thus, every file node is always a leaf node, while folder nodes are either
inner nodes (if the folder is not empty), or also leaf nodes (if the folder is empty).

Hash trees

A special type of tree is the hash tree, which is based on a technique described by
Merkle (1987, 1989a). Assuming that all leaf nodes are meant to reference some
kind of payload, every leaf node also stores the hash11 of its respective payload.
Inner nodes, on the other hand, store a hash based on the hashes of their child
nodes.

Hereinafter, we use the following definitions12: Let Nx be a node in a hash tree,
with x being its unique identifier (“label”). C(Nx) shall be the sequence of child
nodes of Nx. (We say “sequence” instead of “set”, since we want to assume some
kind of stable ordering of the child nodes.) For convenience, we say that Ci(Nx)
is the i-th child node of Nx. Let Hx be the hash of node x, and hf be the hash
function used for the computation of all hashes in this hash tree. We say that
every leaf node l holds data (a payload) Dl.

For every leaf node Nl, the hash Hl is defined as the hash of its payload: Hl =
hf(Dl). For every inner node Ni with n = |C(Ni)| children, the hash is defined
as the hash of the concatenation of the hashes of its children: Hi = hf(Hc1 ⊕
Hc2 ⊕ ...⊕Hcn). Here, we say that the operator ⊕ is a concatenation, and that
c1, c2, and so on, are the identifiers of the children of node Ni. This shows
an interesting aspect of hash trees: The hash of a node “covers” all descendants
(children, children of children, etc.) of this node.

11A hash function, as shown by Merkle (1989b), is a function that computes a “fingerprint”
or “cryptographically secure checksum[]” of a given piece of information.

12The definitions are based on the explanations by Niaz and Saake (2015) and Szydlo (2004),
but have been generalized to trees consisting of nodes with arbitrary numbers of children.

14

2. Fundamentals

Hence, if two nodes have the same hash, then this means that all descendants
of this node also have the same hash and are thus identical. This is particularly
useful when comparing two trees, e.g. in order to determine which nodes are
different between these two trees: Without hashes, in order to determine which
nodes are different (e.g. that have different children or, in the case of a leaf node,
a different payload), it is necessary to recursively compare every single node. A
simple “diff” algorithm could be defined as follows:

Diff(Na, Nb) =

(Na, Nb) ∪

max(|C(Na)|,|C(Nb)|)⋃
n=1

Diff(Cn(Na), Cn(Nb)) if Na 6= Nb

max(|C(Na)|,|C(Nb)|)⋃
n=1

Diff(Cn(Na), Cn(Nb)) otherwise

Let T1 and T2 be two trees that shall be compared. Let NT1 be the root node
of T1, and NT2 be the root node of T2. To compare these two trees without the
usage of hashes, it is necessary to compute Diff(NT1, NT2), which recursively
compares all nodes of the two trees13. However, in a hash tree, it is possible to
utilize the hash of a node to determine if the comparison of two subtrees can be
skipped:

HashDiff(Na, Nb) =

=

(Na, Nb) ∪
max(|C(Na)|,|C(Nb)|)⋃

n=1

HashDiff(Cn(Na), Cn(Nb)) if Ha 6= Hb

∅ otherwise

This definition shows that the usage of a hash allows to skip the comparison of
subtrees if their hash is the same, since this indicates that the subtrees themselves
are recursively equal.

It should be noted that in this simple definition of Diff(Na, Nb) (and also
of HashDiff(Na, Nb)), we compare the nodes in order, i.e. we compare
child node C1(Na) with child node C1(Nb), then we compare child node
C2(Na) with child node C2(Nb), and so on. This is shown in the union

13It should be noted that in the definition of Diff(Na, Nb), we use the comparison Na 6= Nb.
We say that this compares the payloads if two leaf nodes are given, i.e. it is true if the two
payloads are unequal. If two inner nodes are given, this comparison “waits” for the result of
the recursive comparison of the descendant nodes and then checks if the result is non-empty.
In all other cases not mentioned here, Na 6= Nb is defined to be true.

15

2. Fundamentals

max(|C(Na)|,|C(Nb)|)⋃
n=1

Diff(Cn(Na), Cn(Nb)). Technically, a “smarter” selection of

node pairs could improve the results of these comparisons, but they especially
depend on the concrete use case.

Figure 2.4 shows an example of a hash tree. This tree is structured in the same
way as the tree shown in figure 2.3. Every node is labelled with its hash: Nodes 2,
4 and 5 are leaf nodes, thus the hash is calculated using their respective payload
(D2, D4, and D5). Nodes 1 and 3 are inner nodes. Because of this, their hash
is calculated using the hash of their respective children. This figure also shows
that hashes need to be computed “bottom-up”, i.e. starting at the leaf nodes: In
order to compute the hash of node 1, it is necessary to compute the hashes of
nodes 2 and 3. And to compute the hash of node 3, it is necessary to compute
the hashes of nodes 4 and 5.

1 H1 = hf(H2 ⊕H3)

2H2 = hf(D2) 3 H3 = hf(H4 ⊕H5)

4H4 = hf(D4) 5 H5 = hf(D5)

Figure 2.4: An example of a hash tree, based on the tree shown in figure 2.3.

When applying hash trees to the model of file/folder trees in file systems, it
allows to quickly determine if two folders are equal by comparing their hashes:
If two folders have the same hash, then all sub-folders (and their sub-folders and
so on), as well as all files in these folders, are equal. This makes hash trees
particularly useful when files and folders frequently need to be compared: In
order to (recursively) determine the differences between two folders, it is only
necessary to further compare those children that have a different hash.

2.3.2 Graphs

The concept of graphs forms a superset of the concept of trees: Similar to a
tree, a graph allows to model the relationship between entities (represented by
nodes). However, these entities do not have to form a hierarchy. Instead, two
arbitrary nodes can be connected using an edge to indicate that some kind of
“connection” exists between them. An edge can be directed, which is used to

16

2. Fundamentals

indicate a direction of the respective connection. A graph is acyclic if, when
traversing the graph, there is no path where one node appears more than once.
A graph is called a Directed Acyclic Graph (DAG) if all edges in this graph are
directed and the graph is acyclic.

Figure 2.5 shows an example of a DAG: Here, five nodes are connected with
multiple directed edges. When traversing this graph following the “direction” of
the edges, it is not possible to visit a particular node twice, which makes this
graph acyclic.

1

2 3

4 5

Figure 2.5: An example of a DAG with five nodes (nodes 1 to 5).

17

2. Fundamentals

18

3 Requirements

This chapter explains functional and non-functional requirements that shall be
fulfilled by the VCS built in the context of this thesis.

3.1 Source of requirements

The requirements are split into functional and non-functional requirements. The
functional requirements are based on the Core Operations as described in chapter
2; the non-functional requirements are defined based on the context in which the
Hub VCS will be developed.

3.1.1 Adaptation of the Core Operations

As already mentioned, the functional requirements are based on the Core Opera-
tions. However, since Sink (2011) defines certain operations like diff in a different
way compared to how it is done in section 2.2.1, it was necessary either to add
additional functional requirements or to slightly diverge from the idea behind
certain Core Operations.

Additionally, the decision was made to skip two Core Operations: Core Operation
5 (Add) and Core Operation 18 (Lock).

Core Operation 5 (Add) implies that it is possible to create untracked files in the
working copy (and later to be able to advise the VCS to explicitly track these
files). Such a feature would not provide any advantages when used in the context
of the DEWB, since the only reason for a user to create a file in the DEWB is
because he or she wants to publish a configuration on the JValue Hub. Thus,
there will be no functional requirement based on Core Operation 5 (Add).

Core Operation 18 (Lock) essentially refers to an exclusive locking mechanism
allowing one user to prevent other users from modifying one or multiple given
files. Allowing users to stop other users from working on the same files could have

19

3. Requirements

a major negative impact on the user experience in the DEWB. Such a feature
would mean that one user could stop other users from working on a particular
project in the DEWB for a potentially long period of time. Such a feature can be
replaced by implementing proper merge features. Because of this, Core Operation
18 (Lock) will not be part of the functional requirements.

3.2 Requirements format

The functional requirements are defined in the format of User Stories. User
Stories are often used in agile development and commonly follow the format “As
a 〈type of user〉, I want 〈goal〉, [so that 〈some reason〉]” (Lucassen, Dalpiaz, van
der Werf & Brinkkemper, 2016). Thus, a User Story defines which stakeholder
a feature is meant for, what the actual feature consists of (e.g. which action the
stakeholder wants to be able to perform), and (optionally) includes a clarification
or other type of information.

In this thesis, we allow functional requirements to contain more than one User
Story. This helps to avoid an overly large number of requirements. Also, we
allow User Stories to slightly violate the strict sentence format mentioned before
in order to make them easier to comprehend.

User Stories are meant to be “problem-oriented” (Lucassen et al., 2016) and should
not include technical details. Thus, the functional requirements formulated in this
thesis do not define how or “where” a particular feature shall be implemented:
It is for instance possible that a feature only exists in the client part (frontend)
of the system and internally utilizes other features provided by the server part
(backend). As an example, it could be possible that the backend has a feature to
fetch all files for a given commit, but that no diff feature exists on the backend.
To display a diff between two commits, the frontend could load the folder trees
of the two commits and calculate the diff on the client side. The decision how
to approach a certain feature is not defined in the functional requirements, but
must be selected when actually implementing this feature.

At the end of this thesis, the features of the final VCS will be compared against
the list of functional requirements, in order to evaluate by which degree the
requirements have been met. User Stories are very well suited for this purpose,
because every User Story can be evaluated independently of the others.

20

3. Requirements

3.3 Metric to summarize requirements completion

In order to summarize by which degree the functional and non-functional re-
quirements are met by the final system, the evaluation presented at the end of
this thesis will contain a metric that shows the fraction of successfully completed
requirements. For this purpose, every single requirement will be classified as
“completed” or “failed”. Even if only a small part of a requirement has not been
fulfilled, it will be classified as failed (i.e. there is no “partially failed” or the
like). Then, both for the functional and for the non-functional requirements, the

fraction
#CompletedRequirements

#TotalRequirements
will be computed. #CompletedRequirements

is the number of completed requirements, and #TotalRequirements is the total
number of requirements. This fraction will be computed separately for the func-
tional and for the non-functional requirements, which means that in the end, there
will be one number that shows by which degree the functional requirements have
been met, and another number that shows by which degree the non-functional re-
quirements have been met. No weighting of individual requirements takes place,
which means that all requirements are treated as equally important in this metric.

3.4 Functional requirements

In order to be able to reference individual functional requirements, these require-
ments are numbered and prefixed with “F-”.

F-1: Repository Listing

As a user of the Hub VCS, I want to retrieve a list of all existing repositories,
so that I can get an overview of all existing repositories and eventually start
exploring one in more detail.

F-2: Repository Creation

As a content creator, I want to create new repositories, so that I can share
my work with other users.

This requirement is based on Core Operation 1 (Create).

F-3: Repository Deletion

As a repository owner, I want to delete my repositories, so that I can remove
content I don’t want to share any longer.

21

3. Requirements

F-4: Branch Listing

As a user accessing a particular repository, I want to get a list of all existing
branches, so that I can explore the work done in this repository.

This requirement is based on Core Operation 15 (Branch).

F-5: Branch Management

As a collaborator in a repository, I want to create new branches, so that I
can work independently of other users.

Additionally, I want to be able to rename existing branches, so that I can
fix potential spelling mistakes or improve the understandability of a name.

Finally, I want to be able to delete branches, so that I can remove content
that is not needed anymore.

This requirement is based on Core Operation 15 (Branch).

F-6: Tag Management

As a collaborator in a repository, I want to create new tags, so that I can
highlight important commits.

Additionally, I want to edit existing tags, so that I can improve already
existing tags instead of having to create new ones.

Finally, I want to delete tags, so that I can remove tags that are not needed
anymore.

This requirement is based on Core Operation 14 (Tag).

F-7: Checkout

As a collaborator in a repository, I want to checkout a particular revision
(commit), so that I can start performing changes to it.

This requirement is based on Core Operation 2 (Checkout).

F-8: Edit

As a collaborator in a repository who has checked out a revision, I want to
edit the content of the files in my working copy, so that I can try out and
apply the changes I had in mind.

This requirement is based on Core Operation 6 (Edit).

22

3. Requirements

F-9: File and Folder Management

As a collaborator in a repository who has checked out a revision, I want
to create new files and folders in my working copy, so that I can add new
content to the repository.

Also, I want to delete files and folders, so that I can remove content I don’t
need anymore.

Additionally, I want to rename and move files and folders, so that I can
easily change the directory structure according to my ideas.

This requirement is based on Core Operation 7 (Delete), Core Operation 8
(Rename) and Core Operation 9 (Move).

F-10: Status and Revert

As a collaborator in a repository who has checked out a revision and per-
formed changes to the working copy, I want to see the changes I have
performed compared to the originally checked out version, so that I can get
a summary of what I have done.

I don’t only want to see which files have been changed, but also get a
more in-depth comparison of the changed files, so that I can understand
the changes I have performed in detail.

Additionally, I want to be able to revert changes I have made to my working
copy, so that I can undo modifications that aren’t needed anymore.

This requirement is based on Core Operation 10 (Status), Core Operation
11 (Diff) and Core Operation 12 (Revert). It should be noted that Core
Operation 11 (Diff) only refers to the diff between the originally checked
out version and the current changes in the working copy. It does not refer
to features related to the comparison of two commits or the like.

F-11: Commit

As a collaborator in a repository who has checked out a revision and per-
formed changes to the working copy, I want to commit the changes I have
made, so that I can share them with other users.

This requirement is based on Core Operation 3 (Commit).

23

3. Requirements

F-12: Update

As a collaborator in a repository who has checked out a revision, I want to
update my working copy if it does not point to the head of the checked-out
branch anymore, so that I can base my work on the latest revision.

If I have already performed changes to my working copy, I expect the in-
coming changes to be merged with the ones I have performed, so that I
don’t have to start over again.

This requirement is based on Core Operation 4 (Update).

F-13: Merge

As a collaborator in a repository, I want to merge one branch onto another
one, so that I can combine the changes that have been developed individu-
ally on those branches without having to manually copy these changes.

If the merge cannot be performed automatically, I want to be able to resolve
the conflicts manually.

This requirement is based on Core Operation 16 (Merge) and Core Opera-
tion 17 (Resolve).

F-14: History

As a user accessing a particular repository, I want to see the history of
the repository (i.e. the list of commits), so that I can retrace the historic
development of this repository.

Additionally, I want to see the history of individual files (i.e. see which com-
mits affected those files), so that I can find out when and why a particular
file has been modified.

This requirement is based on Core Operation 13 (Log).

F-15: Diff

As a user accessing a particular repository, I want to see the diff between
two commits, so that I can understand the detailed changes that have been
performed between these two commits.

24

3. Requirements

3.5 Non-functional requirements

In order to be able to reference individual non-functional requirements, these
requirements are numbered and prefixed with “N-”.

N-1: Architecture

Because the DEWB will become a fully web-based editor, the backend of
the Hub VCS should be accessible using an HTTP API.

The frontend of the Hub VCS should also be web-based so that it will later
be possible to integrate the frontend of the Hub VCS into the DEWB (or
vice versa).

N-2: Programming Languages and Frameworks

The backend and frontend should be built using TypeScript1. Using the
same programming language across multiple parts of the system might (and
most likely will) allow to reuse pieces of code. Since the DEWB and other
projects in the context of the JValue Project are also mostly developed
using TypeScript, it is expected to achieve the best interoperability when
also developing the Hub VCS using TypeScript.

The frontend should additionally be developed using Vue.js2, since the
DEWB and other projects in the context of the JValue Project are also
based on this library.

N-3: Code Style

The code style should match the style used in other software applications
developed in the JValue Project.

N-4: Testing

All HTTP API endpoints should be covered by automated system tests. At
least one test case should be created for every single API endpoint.

N-5: API Documentation

There should be documentation for every single HTTP API endpoint, de-
scribing which features it provides, which payload a request should contain,
and which data the response will contain. Since TypeScript is used both
on the server and the client(s), the request payload and response data may
be documented in code using TypeScript interfaces or similar.

1https://www.typescriptlang.org, accessed on June 21, 2022
2https://vuejs.org, accessed on June 21, 2022

25

https://www.typescriptlang.org
https://vuejs.org

3. Requirements

26

4 Conceptual design

In this chapter, important theoretical concepts and decisions are explained that
form the foundation for the implementation of the Hub VCS. These concepts are
independent of the concrete implementation of the Hub VCS and could therefore
also be used as a foundation for the implementation of other VCSs that are meant
to provide similar features as the Hub VCS.

4.1 Comparison of CVCSs and DVCSs

A very important architectural decision is to determine whether a CVCS or a
DVCS shall be developed. As described in chapter 2, the major difference between
these two architectures is that a CVCS is built based on a client-server-like archi-
tecture, while a DVCS makes use of a distributed workflow where every repository
can essentially exist independently of any other repository.

Another way to compare CVCSs and DVCSs is to look at how the content of
a repository is accessed. In a CVCS, the clients access the current revision by
performing a checkout for one specific revision. In a DVCS, clients first need to
create a copy of the repository (often including the entire history) and can then
access all revisions without even having to rely on an internet connection.

To answer the question which of these two architectural styles might be better
suited, it is important to take the context of development into account. Most
importantly, the features and requirements of the DEWB need to be complied
with, since the VCS will be tightly connected to the DEWB.

The DEWB is meant to be a completely web-based editor. Since one of the most
important features of it relies in the ability to preview data from remote sources,
it is also built with a permanent internet connection in mind. Thus, it is also
not necessary for the VCS to be usable in an offline scenario. Additionally, the
JValue Hub is meant to be the single point where configurations are permanently
stored. There is no need to allow clients to work independently of the JValue Hub,

27

4. Conceptual design

especially since the DEWB will rely on APIs provided by a service connected to
the JValue Hub.

Because of these reasons, the decision was made to implement a CVCS instead
of a DVCS. As already defined in requirement N-1, the VCS will be required to
provide an HTTP API and to have a web-based frontend.

4.2 Reusing existing general-purpose systems

Before being able to implement the Hub VCS, the decision must be made whether
the system shall be implemented from ground up (“from scratch”), or if it could
be based on an already existing (general-purpose) VCS such as Git or SVN.

There are already software packages like GitLab or Gitea1 that enable adminis-
trators to self-host a full VCS. These packages provide both a backend including
an HTTP API, as well as a frontend allowing the users to interact with reposit-
ories and the like. In the following, we call such systems “self-hosted VCSs”.

4.2.1 Reusing user interfaces

Unlike the general-purpose approach of self-hosted VCSs, the JValue Hub will
be specifically tailored to the needs of data scientists and developers working on
configurations of the ODS. This especially brings many requirements regarding
the user interface (frontend) that are not supported by the user interfaces of
the aforementioned self-hosted VCSs. One option to solve this issue would be
to extend an already existing frontend with the features required by the JValue
Hub. However, since the requirements of the JValue Hub will lead to many large
additional features with deep integration into many parts of the user interface,
the decision was made to rather implement a completely new frontend.

4.2.2 Reusing HTTP APIs

Since many self-hosted VCSs also provide an HTTP API, it could be seen as
a good approach simply to use such an API when implementing the custom
frontend. Alternatively, a custom HTTP API could be implemented based on
features directly provided by a system like Git or SVN.

In the short term, compared to a completely new implementation, both ap-
proaches would most certainly require much less time and effort for the develop-

1https://gitea.io, accessed on June 21, 2022

28

https://gitea.io

4. Conceptual design

ment of a system fulfilling the minimal requirements. Also, since these systems
have already been used by many other projects, it is very likely that most features
have already been well tested.

However, as mentioned earlier, the JValue Hub has special requirements regarding
the features of the VCS. In the future, it could for instance be very beneficial for
the user experience if a diff between two commits is also able to take semantic in-
formation into account, instead of just comparing files line-by-line. Additionally,
partitioning a repository into multiple “feature repositories” could be required
if, for instance, not only data source configurations, but also other types of in-
formation like data coming from remote APIs shall be versioned. Furthermore,
fine-grained access permissions could add a layer of security for collaboration in
larger repositories. Finally, it might be required to attach additional meta data
to commits, such as flags telling the JValue Hub whether an API described by a
data source configuration should be queried.
Adding such complex additional features to the data model of Git or SVN would
require large changes to the source code of these systems. Since the VCS is such
a critical component regarding the success of the JValue Hub, the decision was
made to implement the entire VCS from scratch. In the long run, this especially
enables the implementation of unique features for the JValue Hub, without being
limited by a data model that is not specifically suited for the requirements of
data scientists and the like.

4.3 Logical Model of the Hub VCS

The central and probably most critical part of a VCS is its data model: Without
a good model of repositories, branches, commits, and the like, a VCS will be of
little use. Thus, it is critical to determine which types of information need to be
stored by the VCS, and how entities are related to each other. In this thesis, we
call this the “Logical Model”.

4.3.1 Initial Logical Model

Section 3.4 describes the features the final system should provide. This set of
features also indirectly contains a high-level overview of the pieces of data that
need to be provided by the VCS, which is a basis for the Logical Model:

• Requirement F-1 says that it should be possible to retrieve a list of all
existing repositories. This implies that the VCS should be capable of storing
multiple repositories.

29

4. Conceptual design

• Requirement F-3 mentions that repository owners shall be able to delete
a repository. This implies that some kind of repository ownership exists,
which in turn requires user accounts to exist. Since no further restrictions
were made, a simple solution can be selected at this point: One reposit-
ory has exactly one owner (which is a user). One user may own multiple
repositories. This is a 1:N (One-to-N) relationship between users and re-
positories.

• Requirement F-7 says that it shall be possible to checkout a particular re-
vision (i.e. a commit). This implies that revisions (commits) need to be
stored in the system. The requirement does not explicitly state that a com-
mit should be part of a repository. However, this is indirectly introduced
by F-14, because this requirement says that the history of a repository is
equal to the list of commits. Thus, we say that a commit always belongs
to a repository, and that a repository can contain multiple commits, which
is a 1:N2 relationship between repositories and commits.

• Requirement F-11 talks about the creation of commits and that changes
made in the working copy are part of a commit. This implies that it is
possible to store files and folders, and/or some kind of “delta” (i.e. diff to
the previous commit), in the VCS. Also, commits and files/folders/delta
are connected in some way. At this point, it is not clear how this part of
the architecture shall look like. For instance, it could be necessary to store
both the delta and a “snapshot” of the files/folders for a commit.

• Requirement F-14 explains that it shall be possible to retrieve the commit
history of a repository, and that it shall be possible to retrieve the history of
a particular file (i.e. the list of commits that modified a particular file). At
this point, it is not clear how such a data model could look like. Most likely,
it depends on how commits and their files/folders/delta are represented.

• Requirement F-4 implies that a particular repository should contain a list
of branches. Thus, one repository shall be able to contain N branches.
This is a 1:N relationship between repositories and branches, since the
requirements do not mention that it shall be possible for one branch to
belong to multiple repositories.
Additionally, a branch references a commit, and a commit can be referenced
by multiple branches, which leads to a 1:N relationship between commits
and branches.

• Similar to how a repository shall contain branches, requirement F-6 de-
scribes that a repository should contain a list of tags. This is also a 1:N

2Every usage of “N” shall imply that a “fresh” “N” is being used. For instance, the number
of commits of course does not have to be equal to the number of repositories. “N” is merely a
way to express cardinality here.

30

4. Conceptual design

relationship between repositories and tags, since the requirements do not
mention that tags should be shared across the “borders” of repositories.
Additionally, a tag references a commit, and a commit can be referenced
by multiple tags, which leads to a 1:N relationship between commits and
tags.

Figure 4.1 shows a graphical representation of the Logical Model. The figure also
shows that two aspects of the Logical Model are still missing:

1. It is not clear how files, folders, and the delta for a commit shall be modelled.

2. It is also not clear how a model for the commit history could look like.

Both of the missing parts of the Logical Model will be discussed hereinafter.

User

Repository

Branch TagCommit and History

Files, Folders, and/or Delta

1

owns ↓
is owned by ↑

N

1

contains ←
is part of →

N

1

contains →
is part of ←

N

1

contains ↓
is part of ↑

N

N
references →

is referenced by ←

1 1
references ←

is referenced by →

N

Figure 4.1: Overview of the Logical Model. It is not clear how the commits
and their history shall be represented, and how they are related to files, folders,
and a delta to the previous version.

31

4. Conceptual design

4.3.2 Model of files, folders, and delta

In order to make it possible for the client to actually perform a checkout on a
particular commit, it must be possible to fetch the state of the files and folders
at the point a particular commit was made. Additionally, it should be possible
to compare the files and folders of two commits in order to allow the client to
visualize a diff.

A simple model for this purpose (in the following called “Simple Storage” model)
could be designed as follows: Every commit references a (root) folder. Every
folder can contain multiple sub-folders, and multiple files - similar to a file system.
This is visualized in figure 4.2. When a new commit is created, then a copy of
all folders and files (in the following called “tree items”) is made before applying
the delta (i.e. the changes) to this copy. Figure 4.3 shows an example where
one commit (“Commit 1”) references a folder with two files (“File A” and “File
B”). Based on this commit, a new commit (“Commit 2”) is created. In this new
commit, a new file is introduced (“File C”). The other files remain unchanged.
The advantage of this simple model is that it is always possible to retrieve all
files and folders for a checkout without having to rely on possibly expensive
computations: Every commit always points to “its own” file/folder tree, making
it possible to access the file/folder tree in constant time (O(1)). However, this also
means that if a commit only changes a small subset of the tree items compared
to its predecessor, a large number of unchanged tree items are copied to be
referenced by the new commit. Thus, the number of tree items stored in the VCS
grows linearly with the number of commits, with a potentially large number of
duplicates - even small changes require a full copy of all tree items.

There are two models that avoid the issue of having to copy (a potentially large
number of) unchanged tree items as described by Chacon and Straub (2022):

Systems like CVS or SVN only store the changes (deltas) that are introduced
by a new commit. In the following, this mechanism is referred to as “Delta
Storage”. On the other hand, Git stores snapshots similar to the Simple Storage
model described before, but uses references to avoid duplicate tree items. In the
following, this mechanism is referred to as “Snapshot Reference Storage”.3

Delta Storage

As described before, Delta Storage avoids the problem of having to copy all tree
items for every commit by only storing the deltas compared to other revisions.
An example of this mechanism is illustrated in figure 4.4: Here, three files (“File

3The terms “Delta Storage” and “Snapshot Reference Storage” are no “official” terms. In-
stead, they have been introduced in this thesis to avoid confusion with other terms.

32

4. Conceptual design

Commit Folder File
1 1

1 N

1 N

Figure 4.2: The Simple Storage model: A commit points to a (root) folder. A
folder can contain multiple sub-folders, and also multiple files. This is similar to
how a file system is organized.

A”, “File B”, and “File C”) are being tracked in a VCS. The “base” of these files
can be found at Version (Revision) 1. In Version 2, files A and C get modified.
This is done by storing the differences (deltas) compared to the respective state
at Version 1. In Version 3, File C gets modified again. This time, the delta
compared to Version 2 is stored. Versions 4 and 5 are handled in a similar way.

A problem with this storage mechanism is the computational complexity for re-
trieving the file/folder tree of one particular revision. In the following, to simplify
the explanation, the assumption is made that only one single file is tracked by the
system. Over time, this file gets modified multiple times, resulting in multiple
revisions (versions). When using a mechanism as shown in figure 4.4, the retrieval
of the file content in version 1 is trivial. In order to retrieve the file content in
version 2, it is necessary to apply the delta found at version 2 (in the following
called ∆2) to the file content found at version 1. In order to retrieve the file
content at version t, it is necessary to apply all deltas ∆2 to ∆t to the file content
found at version 1. (Koc & Tansel, 2011) This means that the number of deltas
that need to be applied in order to retrieve the file content of a particular revision
is in O(t), which could lead to problems if many commits shall be handled by
the system.
To address this issue, some VCSs use more advanced algorithms with a sub-linear
complexity. For instance, according to the SVN Developer Notes4, and Vaidya,
Torres-Arias, Curtmola and Cappos (2019), SVN uses a mechanism called “skip-
deltas” when computing and storing the deltas for a new commit. This mechanism
reduces the number of deltas that need to be applied in the aforementioned scen-
ario to O(lg(t)). Furthermore, the SVN Developer Notes, and Koc and Tansel
(2011), describe a “reverse-delta” mechanism where the deltas are computed rel-
ative to the latest revision instead of the first revision. This is useful in scenarios
where the latest commits get accessed more often than the older ones. However,
if there are n commits stored in a system that is using a combination of the
skip-deltas and reverse-deltas algorithms, it is still on average necessary to apply
O(lg(n)) deltas to retrieve the file content of a particular revision.

4See https://svn.apache.org/repos/asf/subversion/tags/1.9.11/notes/skip-deltas, accessed
on June 21, 2022

33

https://svn.apache.org/repos/asf/subversion/tags/1.9.11/notes/skip-deltas

4. Conceptual design

Commit 1 Root Folder File A

File B

Commit 2 Root Folder File A

File B

File C

Figure 4.3: Two commits in the Simple Storage model. Commit 1 references a
folder (“Root Folder”) with two files (“File A” and “File B”). In commit 2, a new
file (“File C”) has been introduced. For the creation of commit 2, files A and B
(and the Root Folder) have been copied.

Snapshot Reference Storage

Snapshot Reference Storage is a mechanism that sets Git apart from many other
VCSs. Instead of storing deltas, Snapshot Reference Storage actually stores full
file/folder trees, similar to the Simple Storage model. But instead of copying
unchanged tree items, Git simply creates references to all unchanged tree items
in order to avoid the necessity to store duplicate content. (Chacon & Straub,
2022) This mechanism is shown in figure 4.5. This figure shows the same series of
changes as figure 4.4, but this time using the Snapshot Reference Storage model.
In Version 1, there are again three files (“File A”, “File B”, and “File C”) that are
being tracked by the VCS. In Version 2, files A and C get modified. The new file
versions are directly stored (“A1” and “C1”), instead of just storing a delta. File
B remains unchanged, but can still be directly accessed when fetching Version 2,
because a reference (pointer) is used to reference the actual file found at Version
1. In figure 4.5, this is represented using a dotted border. In Version 3, File C is
modified again and is now stored as “C2”. The other two files remain unchanged
and are thus represented as references to files A1 and B. Versions 4 and 5 are
handled in a similar way.

34

4. Conceptual design

Applied to the example in Figure 4.3, instead of copying files A and B, the
Snapshot Reference Storage model would use references. Thus, in commit 2, files
A and B would be represented by references to the files found in commit 1, as
shown in figure 4.6.

The Snapshot Reference Storage model brings an important advantage compared
to the Delta Storage model: The file/folder tree for every commit can be directly
accessed, without having to apply multiple deltas to a base version. This makes
the Snapshot Reference Storage model effectively independent of the number of
commits: Accessing the file/folder tree for commit n does not depend on any pre-
decessors or successors of commit n. Thus, it is possible to access the file/folder
tree in constant time (O(1)). Compared to the Simple Storage model, the Snap-
shot Reference Storage model has the advantage of not storing potentially large
numbers of copies of tree items.

The Snapshot Reference Storage model combines the constant access times found
in the Simple Storage model with the ability to avoid large numbers of duplicate
tree items as described in the Delta Storage model. Because of these advantages,
the Snapshot Reference Storage model has been selected as the model to be used
for the Hub VCS.

Figure 4.4: Delta Storage as a mechanism to avoid full copies of all tree items
for every commit. Source: Chacon and Straub (2022)

4.3.3 Model of the commit history

The last missing aspect of the Logical Model is related to the Commit History.
More precisely, it is not clear how the Commit History itself shall be modelled
and how it interacts with the Storage Model described in the previous section.

35

4. Conceptual design

Figure 4.5: Snapshot Reference Storage as a mechanism to avoid full copies of
all tree items for every commit. Source: Chacon and Straub (2022)

Sink (2011) describes two history models: The Linear Model, and the DAG
Model.

The Linear Model describes the commit history as one “line” of commits: Every
commit has exactly one direct predecessor, and exactly one direct successor. The
only exceptions are the very first commit, which has no predecessor, and the
latest commit, which has no successor. In the following, the direct predecessor of
a commit is referred to as “commit parent”.
Figure 4.7 shows a linear commit history: In this figure, a commit is represented
by a circle, and parents are indicated using an arrow pointing from a particular
commit to its parent. The revision numbers of every commit are represented by
the numbers within the circles. Every commit, except for the very first one, has
exactly one parent, and every parent has a lower revision number compared to
its successor.

In order to create a new commit, the client fetches the latest commit Cn, performs
changes to it, and then creates a new commit Cn+1. Cn+1 is now the latest
commit, with Cn being its parent. Figure 4.8 shows the commit history after
commit Cn+1 has been created, based on the commit history shown in figure 4.7.

This history model unfortunately does not solve one problem: It is not clear
how merges between branches should be handled. Figure 4.9 shows an example
scenario: Two users “A” and “B” are working on the same project. Commits C1

to Cn−1 are part of branch “A”. User A checks out commit Cn−1 and directly
makes changes on the same branch, resulting in commits Cn and Cn+1. User B
also wants to perform some changes, but in order not to interrupt the workflow
of user A, he or she creates a separate branch, branch “B”. This branch is based
on commit Cn−1. Now, user B creates two commits on this branch: Cb and Cb+1.
This can be done completely independently of user A, since the two users are

36

4. Conceptual design

Commit 1 Root Folder, version 1 File A

File B

Commit 2 Root Folder, version 2 File C

Figure 4.6: Two commits in the Snapshot Reference Storage model. Commit
1 references a folder (“Root Folder”) with two files (“File A” and “File B”). In
commit 2, a new file (“File C”) has been introduced. For the creation of commit
2, files A and B do not get copied. Instead, they are represented by references to
the ones introduced in commit 1.

1 2 Cn−1 Cn
. . .

Figure 4.7: An example of the Linear Model used to represent the commit
history. The commits, shown as circles, are arranged in a linear way, with arrows
indicating the respective parent commit.

working on separate branches.5

Now, user B wants to integrate the changes from branch B into branch A. There
are multiple ways this could be achieved. One option would be to replace commits
Cn and Cn+1 with Cb and Cb+1 as shown in figure 4.10. In this case, all changes
and the commit history created by user B would now be available on branch
A. But commits Cn and Cn+1 created by user A would be lost, including all
changes. Thus, this method is not feasible for any kind of collaboration (or
branching in general, even if it is done by only one user), since it does not allow
users to combine their work from separate branches, but instead just overrides
all changes made on one branch with the changes made on the other, leading to
loss of information.
Another option to merge branch B into branch A is shown in figure 4.11: The

5Strictly speaking, this violates the definition of the Linear Model, because commit Cn−1

now has two successors. But in order to allow users to work independently of each other, there
needs to be a way to create commits without involving the action of other users. One could
say that commit Cn−1 has one successor per branch, which would again be in accordance with
the definition of the Linear Model.

37

4. Conceptual design

1 2 Cn−1 Cn Cn+1. . .

Figure 4.8: The Linear Model after commit Cn+1 has been added to the commit
history shown in figure 4.7.

Branch A

Branch B

1 2 Cn−1 Cn Cn+1

Cb Cb+1

. . .

Figure 4.9: The Linear Model with two branches (“Branch A” and “Branch
B”). Branch B was created after commit Cn−1 was added to the commit history.
Commits Cn and Cn+1 have been added to branch A, similar to how it was done
in figure 4.8. Commits Cb and Cb+1 are part of branch B.

commits on branch A are left unchanged. All commits on branch B are combined
into one commit Cb∗. This commit includes all changes that were made on branch
B, but it is designed in a way that it also respects the changes made in commits
Cn and Cn+1. Cb∗ is added to branch A as the latest commit, with Cn+1 being its
parent. The advantage of this approach, compared to the first one, is that changes
performed on both branches are not lost. However, the actual commit history on
branch B (i.e. commits Cb and Cb+1) is not referenced by Cb∗. Thus, it is not
possible to retrace the changes that were made by user B. In this example, this
is certainly not a fundamental loss of information. However, if a larger number
of commits was made on branch B, probably even hundreds of commits, then it
might be useful for users to be able to follow the exact history of changes made
on branch B. With this model, the information that commit Cb∗ is based on all
the commits in branch B, would simply be lost, and it would appear as though
commit Cb∗ was just a single set of changes introduced on branch A.

Figure 4.12 shows a way to make it possible to retrace the historic changes that
led to Cb∗: Instead of only referencing Cn+1 as its parent, Cb∗ also references Cb+1

as an additional parent. Thus, Cb∗ has not only one, but two parents. Now, it
is possible to follow the changes that were made on both “paths” leading to Cb∗.
This is exactly what the DAG Model allows to define: Instead of a linear history
where every commit may only have up to one parent, the DAG Model allows an

38

4. Conceptual design

Branch A 1 2 Cn−1 Cb Cb+1. . .

Figure 4.10: A simple idea how to merge the changes (shown in figure 4.9) from
branch B into branch A: Commits Cn and Cn+1 got removed from branch A, and
commits Cb and Cb+1 got added to branch A.

Branch A 1 2 Cn−1 Cn Cn+1 Cb∗. . .

Figure 4.11: An alternative to the approach shown in figure 4.10: Instead of
removing commits Cn and Cn+1, the two commits have remained unchanged. A
new commit Cb∗ was created and contains the changes from branch B in a way
that is compatible with the state at commit Cn+1. It is not possible to determine
that Cb∗ uses commits Cb and Cb+1 as a basis.

unlimited number of parents for every commit. It should be noted that, as the
name implies, a DAG does not allow any cycles. Hence it is not allowed for a
commit to be (transitively) referenced by itself in the history, i.e. a commit may
not be the ancestor of itself when defining the commit history graph. Technically,
it is not necessary that one branch is merged into another - a merge is essentially
performed between two commits, so in the example described before, it would
also have been possible to merge commit Cb (which is not the latest commit found
in branch B) into branch A.

The DAGModel allows to model the commit history in a similar way as the Linear
Model: For every commit, it is possible to determine its historic development. But
unlike the Linear Model, the DAG Model makes it possible to perform merges
while retaining the history of every merged commit, i.e. without any loss of
information. This makes the DAG Model perfectly suited for the handling of
the commit history with all of the required features the Hub VCS shall provide.
Because of this, the DAG Model has been selected as the history model for the
Hub VCS.

Since files and folders are stored using the Snapshot Reference Storage model, a
commit can directly reference (a root folder of) a snapshot. This also shows one
of the strengths of the Snapshot Reference Storage model: If the Delta Storage
model was used, then it would not be clear how deltas should be handled. Since
a commit in the DAG Model can have multiple parents, a delta would have
to be able to cover differences not only between one “source” and one “target”
commit, but also between multiple source commits and one target. This would

39

4. Conceptual design

most likely introduce additional complexity, especially when the content of a
tree item for a particular commit shall be fetched. In the Snapshot Reference
Storage model, commits simply directly point to a file/folder tree snapshot, no
matter how many parents a commit has. To fetch the content of a tree item for
a particular commit, no additional (computational) complexity is added, so the
complexity for retrieving this tree item remains at (O(1)).

Branch A

Branch B

1 2 Cn−1 Cn Cn+1

Cb Cb+1

Cb∗. . .

Figure 4.12: An example of the DAG Model: Similarly to figure 4.11, a commit
Cb∗ was created. But unlike in the Linear Model, Cb∗ has references to two parent
commits (to Cn+1 and to Cb+1). This makes it later possible to retrieve the entire
commit histories of Cn+1 and Cb+1, so no information is lost because of the merge.

4.3.4 Updated Logical Model

Figure 4.13 shows an updated overview of the Logical Model. Compared to the
original model shown in figure 4.1, two important missing parts have been added:

• The commit history is now modelled using a N:M relationship between
commits. A commit can have multiple parent commits, and a commit can
be the parent of multiple commits.

• The Snapshot Reference Storage model now implements the requirement of
storing files, folders, and deltas. Folders are modelled using a N:M rela-
tionship: One folder can be the parent of multiple other folders, and one
folder can also be part of (i.e. referenced by) multiple (parent) folders. The
connection between files and folders is also modelled using a N:M relation-
ship: One folder can contain multiple files, and one file can be part of (i.e.
referenced by) multiple folders.
Deltas are not directly stored since the model only stores snapshots. How-
ever, it is possible to compute the delta between two arbitrary commits by
comparing the respective file/folder tree snapshots.

40

4. Conceptual design

User

Repository

Branch TagCommit

Snapshot Reference Storage Folder

Snapshot Reference Storage File

1

owns ↓
is owned by ↑

N

1
contains ←
is part of →

N

1
contains →
is part of ←

N

1

contains ↓
is part of ↑

N
N

has parent →
is parent of ←

M

N
references →

is referenced by ←

1 1
references ←

is referenced by →

N
N

references (as root folder) ↓
is referenced by ↑

1N

is part of →
is parent of ← M

N

is parent of ↓
is part of ↑

M

Figure 4.13: An updated overview of the Logical Model, based on the overview
shown in figure 4.1. A “Snapshot Reference Storage Folder” is a folder in the
Snapshot Reference Storage model, and a “Snapshot Reference Storage File” is a
file in the Snapshot Reference Storage model. A commit always references one
folder (the root folder) of a file/folder tree in the Snapshot Reference Storage
model.

41

4. Conceptual design

42

5 Architecture

This chapter provides an overview of the technical structure of the Hub VCS.
While chapter 4 provides an implementation-independent overview of the most
relevant concepts and decisions needed for the Hub VCS, this chapter outlines
the concrete architecture used in the implementation of the Hub VCS.

5.1 Foundation of final design

The decisions regarding the final system design are based on the functional and
non-functional requirements as described in chapter 3, as well as the main con-
ceptual decisions as described in chapter 4.

Since the Hub VCS is meant to be structured as a CVCS, the Hub VCS can be
divided into a client and a server part. The client(s) are not meant to persist
any data - instead, the server is the “single source of truth”. That means that
operations like committing or checking out a particular commit must include
some kind of communication between a client and the server. Technically, it
is not necessary that every interaction a user performs on a client application
directly makes the client communicate with the server, since it is also possible
that certain actions are performed “locally” and only later on synchronized with
the server. However, every change that shall be persisted must in the end involve
communication with the server. This makes the server the central and most
important part of the Hub VCS.

In the following, the server will be referred to as “backend”.

5.2 Backend

As described in requirement N-2, the backend is built using TypeScript as the
main programming language. This makes it particularly easy to reuse parts
of the program in other software applications developed in the context of the

43

5. Architecture

JValue Project. The compiled TypeScript code is executed in Node.js1, while
dependencies to (external) software packages are managed using npm2.

Since the main interactions of the user are meant to be performed through a web-
based frontend as defined in requirement N-1, the backend must be accessible
through an HTTP API. To provide this API, the backend uses Express3, which
is a library that, among others, makes it possible to “listen” and react to HTTP
requests made by clients.

A very important part of the backend of the Hub VCS is its persistent data
storage: Here, all repositories, branches, commits, and more, are stored. The
decision was made to use a relational database system like PostgreSQL4 or Mari-
aDB5 as the only persistent storage system, i.e. the one and only point where
all data is actually stored and managed. Unlike the storage of data using regular
files in a file system, relational database systems typically make it possible to
quickly access and aggregate data even in scenarios with very complex relation-
ships, allow developers to avoid race conditions using locking mechanisms, and
ensure high data consistency with the definition of precise schemas, constraints,
and the execution of queries in ACID-compliant transactions6. PostgreSQL has
been selected as the database system to be used in the Hub VCS, since it is also
used in other software applications in the context of the JValue Project.

5.3 Clients

All software applications that communicate with the backend using the HTTP
API are referred to as “clients” in this context. What all clients have in common
is that they are built using TypeScript, and that npm is used to manage the
(external) libraries they depend on. For the Hub VCS, two web applications
(User Interfaces (UIs)) that shall later be used by end users, an “Importer” for
performance testing, and a suite of system tests have been developed that can all
be classified as clients in this setting. In the following, these software applications

1https://nodejs.org/en/, accessed on June 21, 2022
2https://www.npmjs.com, accessed on June 21, 2022
3https://expressjs.com, accessed on June 21, 2022
4https://www.postgresql.org, accessed on June 21, 2022
5https://mariadb.org, accessed on June 21, 2022
6Transactions make it possible for one database client to execute multiple operations in

complete isolation from other clients. “The concept of a transaction [...] requires that all of
its actions be executed indivisibly: Either all actions are properly reflected in the database
or nothing has happened.” (Haerder & Reuter, 1983) For this purpose, Haerder and Reuter
(1983) have introduced four properties that must be provided by a database system: Atom-
icity, Consistency, Isolation, and Durability - those properties are also referred to as “ACID”
properties.

44

https://nodejs.org/en/
https://www.npmjs.com
https://expressjs.com
https://www.postgresql.org
https://mariadb.org

5. Architecture

will be described in more detail.

5.3.1 User-facing clients (UIs)

To make it possible for end users to interact with the Hub VCS, two UIs have
been implemented: The “Contributor Frontend” and the “Viewer Frontend”. As
described in requirement N-2, both applications are built using Vue.js, which is
a framework for the creation of web applications.

From a technical point of view, it would certainly also have been possible to
integrate all features into one single frontend. However, as described in chapter
2, there are two major projects the Hub VCS will later communicate with (or be
integrated into): The DEWB and the JValue Hub. While the DEWB focuses on
content editing, the JValue Hub is focused on the presentation and exploration
of information. To provide a similar distinction between “writing” and “reading”,
the decision was made to develop not one, but two frontend applications.
The Contributor Frontend is meant to demonstrate the “writing” features of the
Hub VCS: It allows to create repositories, branches, tags, commits (including files
and folders), and more. Similar to how the DEWB is meant to edit content, the
Contributor Frontend makes it possible to make changes to a repository. Thus,
in the same way as the DEWB allows to edit data source configurations, the
Contributor Frontend makes it possible to create and update information stored
in the Hub VCS.
The Viewer Frontend on the other hand makes it possible to explore repositories:
It provides features to view the history of a file or folder, to compare two revisions
(i.e. to visualize the diff between two commits), and more. Hence, the Viewer
Frontend can be seen as an analogy to the JValue Hub.

The Contributor Frontend and the Viewer Frontend are both applications that
provide a non-trivial set of features: Among others, the Contributor Frontend
needs to provide features to edit files, to make changes to folder trees, to create
commits (ideally with the ability for the user to see which changes he or she is
about to commit), to perform updates to the working copy, and even to create
merge commits. The Viewer Frontend on the other hand needs to provide features
for the exploration of commit histories, a suitable visualization method for diffs,
and more. To be able to properly structure and design these two applications,

45

5. Architecture

Mockups and Prototypes7 have first been created in Figma8. Figma is a tool
that, among others, is used in the field of UI and User Experience (UX) Design
to create the visual parts of an application in the form of Mockups, without
having to actually write software code. This allows the designers to focus their
work on the general layout and feature composition, without getting distracted
by the complexity of actual program code. Compared to directly implementing
a particular part of a frontend in software code, the creation of Mockups leads
to much faster iterations. In Figma, it is also possible to add basic interactivity
to these Mockups (e.g. by simulating what happens when a particular button is
pressed), which turns these Mockups into Prototypes.
Figure 5.1 shows a Mockup created in Figma that presents how a view for editing
files and folders could look like in the Contributor Frontend. Even though this
looks like a screenshot from an actual software application, it is merely a com-
position of visual primitives like rectangles and text. In the Figma Prototype, it
is possible to click on selected regions in order to simulate how a user might later
navigate through the real application. Figure 5.2 shows another Mockup of the
Contributor Frontend: Here, a commit view is shown, i.e. a page that allows the
user to see all the changes he or she has made to the working copy, and to select
which files shall be part of the next commit.

After the content that had been identified as relevant for the Contributor Fron-
tend and Viewer Frontend had been built in Figma, the actual Vue.js frontend
applications were implemented with the Figma layouts as a basis. Since the Pro-
totypes already provide a very realistic preview of the interactions a user shall
be able to perform, the structure of the components implemented in Vue.js could
be derived from the “blueprints” designed in Figma.

5.3.2 System test suite and Importer

Two other pieces of software communicate with the backend: A suite of system
tests, and the Importer. Similar to the user-facing clients, the system tests and
Importer only communicate with the backend via the HTTP API. Both software
packages are used to test the backend.

The system test suite is based on Jest9, which is a testing framework for JavaS-
7Some sources like Rivero et al. (2014) treat the words “Mockup” and “Prototype” as syn-

onyms. In this thesis however, we say that a Mockup is static (e.g. an image) - it does not
react to any type of user interaction. Once some kind of interactivity is added to a Mockup
(e.g. navigating to a different Mockup when clicking on a certain region in the first one), the
Mockup turns into a Prototype. Thus, a Prototype is an interactive Mockup. The scope of
interactivity is irrelevant - even if only one small button or the like is simulated, the Mockup
turns into a Prototype.

8https://www.figma.com, accessed on June 21, 2022
9https://jestjs.io, accessed on June 21, 2022

46

https://www.figma.com
https://jestjs.io

5. Architecture

Figure 5.1: A Mockup created using Figma, showing how a view for editing
files and folders could look like in the Contributor Frontend.

cript applications. Every time the system test suite is executed, a backend with a
“fresh” (i.e. empty) PostgreSQL database gets started. Then, the actual tests are
run. All tests work in a very similar way: They perform requests to the HTTP
API and check if the response from the server matches the expected response.
For instance, a test for the commits API first sends a request to create a commit,
and then sends another request to retrieve the commit that has just been created.
The data returned by the second request are matched against the data sent in
the first request. If there is a mismatch, the test fails. Such a pattern is used
among all tests and ensures that the HTTP API fulfills its specification, and that
edge cases are properly handled.

The system test suite is meant for automatic testing: After making a change
to the code base of the backend, the system tests should be executed and once
the execution has been completed, the developer only needs to check if the tests
all pass or if an error is indicated. For the development of the Hub VCS, this
has been automated using a Continuous Integration Pipeline, which executes the
tests whenever a new commit gets pushed to the repository the development
takes place in. The Importer, on the other hand, is used for manual testing,
and is mostly meant for performance evaluation: The Importer is a Command
Line Interface (CLI) application that makes it possible to import parts of a Git
repository into the Hub VCS by performing requests to the HTTP API. This is
especially useful to determine whether the backend of the Hub VCS is capable of

47

5. Architecture

Figure 5.2: AMockup created using Figma, showing how a view for the creation
of commits could look like in the Contributor Frontend.

handling a large number of commits, files, and folders.

A user of the Importer first needs to select a Git repository he or she wants to
import into the Hub VCS. There are no restrictions regarding the structure of
this repository - any Git repository can be handled by the Importer. Such a Git
repository can of course be created manually by the user. However, in order to
test whether the system is able to handle hundreds or thousands of commits,
and/or a large number of files and folders, the user typically clones an already
existing (public) repository from a platform like GitHub or GitLab.
After the Git repository has been selected in the Importer CLI prompt, the
user has to provide a short list of additional information, such as the “target”
repository on the Hub VCS the import should be performed into.
Then, the Importer determines which commits shall be imported from the commit
history: It loads the commit history of a branch that has been chosen by the user,
and selects one linear “path” through this history. That means: If a commit in
the Git repository has more than one parent, then only one of these parents will
be selected by the Importer to be sent to the Hub VCS.10

Finally, for every commit in the linear history, starting at the oldest one, the
10This technically means that parts of the commit history in the Git repository are ignored.

However, since the Importer is not meant to provide any kind of interoperability between Git
and the Hub VCS, but is rather only meant for testing purposes, this simplified history import
does not have any major negative impact on the testing process. On the contrary, it makes the
imported history easier to predict, and greatly simplifies the overall import procedure.

48

5. Architecture

Importer creates a commit in the Hub VCS using the HTTP API. Optionally,
after every imported commit, the Importer can perform “Reverse Tree Validation”,
which means that the file/folder tree for the just created commit is again fetched
from the backend and compared to the expected structure.

Once all commits have been imported, the user can perform the manual tests he
or she intended to perform. For instance, the user can load the commit history
using the Viewer Frontend and observe whether the response time of the backend
is acceptable, and whether the returned data matches the expectations.

This kind of testing should be seen as complementary to the system tests: While
the system tests provide a strict set of tests and expected results (which can also
automatically be executed), the manual tests allow to answer questions related
to approximate response times, and whether the Hub VCS is able to handle
real-world repository sizes. Since the Importer allows to create large numbers
of commits, files, and folders, it can also be utilized for development purposes,
especially as an (informal) way to test potential performance optimizations.

5.4 Final system structure

As described before, all of the clients, as well as the backend, are built using
TypeScript, while their dependencies are managed using npm; each of these soft-
ware applications is a separate npm package. In order to allow important parts
of code to be reused, an additional Shared package has been introduced. Among
others, the Shared package contains models and helper functions for dealing with
data structures used in the Hub VCS, as well as information about the endpoints
provided by the backend. To properly orchestrate all npm packages, and espe-
cially to make it possible to easily reference the Shared package in other parts of
the system, the decision was made to use npm workspaces11, which is a feature
provided by npm to orchestrate multiple packages and their dependencies.

Figure 5.3 shows the structure of the packages the Hub VCS consists of: There
are four client packages (Contributor Frontend, Viewer Frontend, System Tests,
and Importer), one server-side package (the Backend package), and the Shared
package. The client packages are independent of each other - they only commu-
nicate with the backend, but never directly with each other. All client packages
and the Backend package use (“import”) models, helper functions, and the like,
from the Shared package. A side effect of this system structure is that it makes it
almost trivial to implement new clients, since most of the complex business logic
is already encapsulated in the Shared package and in the backend.

11https://docs.npmjs.com/cli/v8/using-npm/workspaces, accessed on June 21, 2022

49

https://docs.npmjs.com/cli/v8/using-npm/workspaces

5. Architecture

Clients Server

Contributor Frontend

Viewer Frontend

System Tests

Importer

Shared Package

Backend

PostgreSQL
Database

HTTP Requests

Data Storage
and Retrieval

Uses Uses

Figure 5.3: The final system structure: There are four client packages, one
server-side package (the Backend package), and the Shared package.

50

6 Implementation

This chapter highlights details about interesting and particularly important parts
of the final system developed for this thesis. These implementation details are
a result of, and based on, the theoretical and practical foundations described in
chapters 4 and 5. Since the most relevant logic of the VCS can be found in the
backend, this chapter focuses mostly on the server-side part of the application.

6.1 Database schema

The most relevant implementation details are centered around, or highly influ-
enced by, the database schema. Thus, an overview of the database schema is
presented hereinafter.

6.1.1 Storage of files and folders

Files and folders are stored using hash trees, following a similar mechanism as
used in Git1: To store a new file, the hash of the content is computed. If a file
with the same hash already exists, then nothing else needs to be done (it can
simply be referenced by its hash). If a file with the same hash does not exist,
then the file is stored, using the hash as an identifier. Folders are handled in
the same way, with the difference that the hash is based on the hashes of their
children. The major difference between the hash trees used in Git and the Hub
VCS is their scope: In Git, repositories exist independently of each other. Thus,
hash trees cannot be “shared” between multiple repositories. If, for example, a
file F is stored in repositories A and B, then a copy of F exists twice (once in
repository A, and once in repository B). In the Hub VCS however, hash trees
are reused across repositories. If file F is stored in repositories A and B, then
this file is actually only stored once in the storage system of the Hub VCS (and

1The storage mechanisms used by Git are roughly described by Chacon and Straub (2022).

51

6. Implementation

referenced twice in this example). This storage system is especially useful if the
same file content (or even entire folder) can be found in many repositories.

Figure 6.1 shows how files and folders (“tree items”) are stored in the PostgreSQL
database. Files are stored in table tree_files . This table contains three columns:
hash , mode , and content . Column hash contains the hash of the data stored
in the other two columns. This hash is used as an identifier; In many parts of
the implementation, files are referenced by their hash. mode can either be text
or binary, while content is always a text string. To store a binary file, the file
must be transformed to a string by the client, e.g. using a Base642 encoding. The
backend does not define any standard for the encoding of a binary file - the format
must be selected by the client(s), depending on the use case. It should be noted
that file names or other meta information are not stored in table tree_files .
Table tree_folders contains information about the content of a folder. This
table is essentially a mapping from a particular folder hash to its children (i.e.
to files and other folders that are stored in the first folder). The table has four
columns: folder_hash , child_name , child_type , and child_hash . Column
folder_hash contains the hash of the entire folder, i.e. of all files and folders
that are directly referenced by this folder. For every child of a particular folder,
a separate row exists in this table. If a folder F has n children, then n rows exist
in table tree_folders to store folder F , all of these rows having the same value
in column folder_hash . Column child_type describes whether a particular
folder child is a file or a folder. child_name contains the file or folder name
of the child, and child_hash contains the hash used to reference the particular
child file or folder.

In the following, an example is constructed in order to better illustrate the func-
tionality of these two tables.

Two text files FileA.txt and FileB.txt shall be stored. These files have the con-
tent “This is file A” and “This is file B”. Thus, two entries are created in table
tree_files as shown in figure 6.2: For every file, the hash is computed and
stored alongside the file mode and content. The hashes shown in this example
are not authentic, but are only meant to illustrate the functionality of the system.

52

6. Implementation

tree_folders

folder_hash TEXT NOT NULL

child_name TEXT NOT NULL

child_type ENUM(’file’, ’folder’) NOT NULL

child_hash TEXT NOT NULL

tree_files

hash TEXT NOT NULL

mode ENUM(’text’, ’binary’) NOT NULL

content TEXT NOT NULL

Figure 6.1: The schema in the PostgreSQL database of tables tree_folders
and tree_files . tree_folders references children that are either folders (thus
stored in tree_folders as well), or files (stored in tree_files).

tree_files

hash mode content

8eafa3cace text This is file A

97fa7db13f text This is file B

Figure 6.2: The content of the two sample files FileA.txt and FileB.txt stored
in table tree_files .

53

6. Implementation

tree_folders

folder_hash child_name child_type child_hash

f3f722036d FileA.txt file 8eafa3cace

f3f722036d FileB.txt file 97fa7db13f

Figure 6.3: The content of folder Folder1 stored in table tree_folders .

Now these two files shall be stored in a folder called Folder1, leading to the
following file/folder structure:

Folder1

FileA.txt

FileB.txt

In order to store the content of Folder1, two entries need to be created in table
tree_folders , defining files FileA.txt and FileB.txt as the children of Folder1.
This is illustrated in figure 6.3. One aspect of the storage structure now becomes
apparent: The name of a tree item (i.e. of a file or folder) is always stored “one
level up” - the names of the two files of this example have only been stored once
they have been embedded as children of Folder1. Since Folder1 currently has no
parent folder, its name is not stored. This structure makes it possible to rename
a file without having to store a second copy of it: If FileA.txt was now renamed
to AnotherFileA.txt, the entries in table tree_files would not have to be altered.

2https://developer.mozilla.org/en-US/docs/Glossary/Base64, accessed on June 21, 2022

54

https://developer.mozilla.org/en-US/docs/Glossary/Base64

6. Implementation

tree_folders

folder_hash child_name child_type child_hash

f3f722036d FileA.txt file 8eafa3cace

f3f722036d FileB.txt file 97fa7db13f

a40d4d3725 Folder1 folder f3f722036d

a40d4d3725 AnotherFileA.txt file 8eafa3cace

Figure 6.4: The content of folder RootFolder stored in table tree_folders .
The content of folder Folder1 as shown in figure 6.3 remains unchanged.

To conclude this example, another folder called RootFolder is introduced. This
folder has two children: Folder1, and a new file AnotherFileA.txt, which has the
exact same content as FileA.txt. The file system is now structured as follows:
RootFolder

Folder1

FileA.txt

FileB.txt

AnotherFileA.txt

Figure 6.4 shows the updated content of table tree_folders : Two entries (the
children of Folder1) have remained unchanged. Two entries (the two children of
RootFolder) have been added - one entry holds Folder1 by defining child_type
as “folder” and using the hash of Folder1, the other entry holds AnotherFileA.txt
by setting child_type as “file” and using the same hash that has previously been
used for FileA.txt. Table tree_files remains unchanged, since the only added file
(AnotherFileA.txt) has the same content and thus the same hash as an already
existing file (FileA.txt).

6.1.2 Storage of commits, repositories, and more

Figure 6.5 shows how commits are stored: Table commits contains the actual
commits, including meta information like a title, description, and more. Commits
are identified using a unique number (ID). Column tree is used to reference an
entry (root folder) in table tree_folders , using the hash of the entry. Table

55

6. Implementation

commit_parents contains information about commit parents, i.e. a mapping
from a commit to its parents. Thus, table commit_parents contains the actual
DAGs of commits.

Figure 6.6 illustrates how all of the aforementioned tables reference each other.
Additionally, it shows three additional tables: repos , branches , and tags . re-
pos contains information about the repositories stored in the Hub VCS. Just like
with commits, repositories are referenced using a unique number (ID). Every
repository contains multiple branches and tags. Branches and tags are also ref-
erenced using an ID.

One aspect is only shown indirectly: Similar to the hash trees, commits do not
necessarily belong to only one repository. Instead, a particular commit can be
part of multiple repositories. Because of this, the commits table does not contain
a column that references a repository. Whether a commit C belongs to a certain
repository R can only be determined using the following technique:

1. Load all branches and tags of repository R. In the following, the set of
branches and tags part of R is called BTR.

2. Fetch the commits that are referenced by BTR. Hereinafter, the set of
these commits is called BTC.

3. Is one of the commits in set BTC equal to commit C? Then we know that
C is part of repository R. Nothing needs to be done anymore.

4. None of the commits in set BTC was equal to commit C? Then recursively
extract all commit ancestors (i.e. the commit parents, the parents of the
parents, and so on) of the commits in BTC. Once C is found in the
recursive extraction of commit ancestors, we know that C is part of R and
the computation can be stopped. If, however, the recursive check did not
find commit C, then C does not belong to R.

This model allows to implement complex branching techniques across multiple
repositories without having to copy commits or the like. We say that the Hub
VCS acts as a “Super Repository”: Technically, repositories are merely a layer
on top of branches and tags, instead of acting as hard boundaries that strictly
separate commits belonging to one repository or another. Such a feature was not
described in the requirements defined in chapter 3, but has been identified as a
feature that might be needed in the Hub VCS in the future.

56

6. Implementation

commits

id SERIAL PRIMARY KEY

tree TEXT NOT NULL

title TEXT NOT NULL

description TEXT NOT NULL

(Additional entries omitted here)

commit_parents

commit INTEGER NOT NULL REFERENCES commits

parent INTEGER NOT NULL REFERENCES commits

tree_folders

Figure 6.5: The schema in the PostgreSQL database of tables commits
and commit_parents . commits contains the actual commits, while com-
mit_parents holds information about the commit parents, thus creating the
commit DAGs.

57

6. Implementation

repos

branches tags

commits commit_parents

tree_folders

tree_files

Figure 6.6: An overview of the database tables used to store information about
repositories, commits, and the like. The edges drawn in this diagram illustrate
the references between individual tables. For instance, table branches has a
column repo to indicate which repository a branch belongs to. Thus, the edge is
drawn from branches to repos . A dotted edge is drawn if the reference is not
maintained using the PostgreSQL REFERENCES keyword.

58

6. Implementation

6.2 Creation of commits

In the following, the most important steps in the creation of a regular commit
are explained.
A client can create a new commit by sending an HTTP POST request to the
backend, using the following endpoint:
/repos/{repoId}/commits
Here, {repoId} is the ID of the repository, which is a simple number.

The request body contains the following information:

• title: The title of the commit, which can for example contain a short
description of the changes the commit introduces.

• description: The description of the commit, which can for instance be
used to describe the changes of the commit in more detail.

• branchId: The ID of the branch the commit shall be created in. It is not
possible to create a commit outside a branch.

• parentCommitId: The ID of the commit the new commit is based on. It
is only possible to create a commit if parentCommitId matches the head
of the given branch. If parentCommitId is not up-to-date (i.e. it does not
match the head of the given branch), the request will be rejected. This is
done to avoid race conditions with other clients.

• diff: The changes (added, updated, and deleted files) compared to the
state at parentCommitId.

Figure 6.7 shows an example of a request body used to create a new commit.
The backend expects the request body to be encoded as JSON. In this example,
a commit on branch 5 is made, based on commit 7. Three changes are applied
to the file/folder tree:

• A new file /file2.txt is added.

• The content of /file1.txt is modified.

• File /documents/important-content/content.txt is deleted.

All files in the diff are referenced by their path. In this example, the deleted file
was called content.txt and was stored in folder important-content, which in turn
was stored in folder documents.

59

6. Implementation

1 {
2 "title": "Add important changes",
3 "description": "This commit introduces an important update

which resolves multiple issues discussed with the team.",
4 "branchId": 5,
5 "parentCommitId": 7,
6 "diff": {
7 "addedFiles": [
8 {
9 "path": "/file2.txt",

10 "file": {
11 "fileMode": "text",
12 "content": "This is the content of file2.txt"
13 }
14 }
15],
16 "updatedFiles": [
17 {
18 "path": "/file1.txt",
19 "file": {
20 "fileMode": "text",
21 "content": "This is the content of file1.txt, which has

been updated"
22 }
23 }
24],
25 "deletedFiles": ["/documents/important-content/content.txt"]
26 }
27 }

Figure 6.7: An example of a request body used to create a new commit.

60

6. Implementation

In the backend, the request is handled as follows:

1. Start a new database transaction. Hereinafter, if any operation fails, a
ROLLBACK command is executed to discard all potential changes.

2. Check if the repository (as provided in the URL) exists and if the user has
proper access permissions to make changes in the repository.

3. Check if the requested branch exists and whether it is part of the repository.

4. Acquire an exclusive lock on the branch to avoid race conditions.

5. Check if the requested parent commit ID is matching the head of the branch.

6. Load the Base Hash Tree. This is the hash tree that is referenced by the
parent commit.

7. Calculate the hashes of all added and updated files that can be found in
the diff provided in the request payload. Based on these hashes, build the
“Hashed Commit Creation Diff”, which is a data structure similar to the diff
provided in the request payload, but with an additional field called “hash”
for all added and updated files.

8. Apply the Hashed Commit Creation Diff to the Base Hash Tree, i.e. add,
update, or delete files as requested by the client. The result is the hash tree
of the new commit.

9. Write the new files into the database. For this purpose, extract all added
and updated files from the Hashed Commit Creation Diff, and execute a
database query that inserts all of these files into the database if they did
not already exist.

10. Write the new folders into the database. This requires to recursively convert
the updated hash tree into a mapping from folder hash to its children. If
a particular folder entry already exists in the database, it will simply be
ignored.

11. Write the actual commit into the database, referencing the root folder that
has been inserted in the previous step.

12. Add an entry to table commit_parents to capture that parentCommitId is
a parent (in this situation: the only parent) of the newly created commit.

13. Update the head of the aforementioned branch to now point to the newly
created commit.

14. Run a COMMIT statement to end the transaction.

15. Return the ID of the new commit to the client.

61

6. Implementation

For writing the files and folders of a commit into the database, only two database
queries are required (one for the files, and one for the folders). This is especially
important when dealing with large diffs: If the number of queries was dependent
on the size of the diff, larger diffs could negatively impact the performance of
the commits endpoint, or even of the entire backend. Figure 6.8 shows how files
are inserted into the database: First, all added and updated files are extracted
from the diff. Then, a list of “rows” is constructed. Finally, a database query
is executed that inserts all entries found in the aforementioned list into table
tree_files . Since the database schema requires column hash to only contain
unique values, duplicate files will be ignored.

62

6. Implementation

1 interface TableLayout {
2 hash: string;
3 mode: 'text' | 'binary';
4 content: string;
5 }
6

7 const filesToInsert: TableLayout[] = [];
8

9 for (const addedOrUpdatedFile of
hashedCommitCreationDiff.addedOrUpdatedFiles) {

10 filesToInsert.push({
11 hash: addedOrUpdatedFile.hashedFile.hash,
12 mode: addedOrUpdatedFile.originalFile.fileMode,
13 content: addedOrUpdatedFile.originalFile.content,
14 });
15 }
16

17 const sqlQuery = `
18 INSERT INTO tree_files(hash, mode, content)
19 SELECT * FROM json_to_recordset($1::json) AS (hash TEXT, mode

tree_files__mode, content TEXT)
20 ON CONFLICT DO NOTHING
21 `;
22

23 const insertFilesQueryResult = await dbClient.query(sqlQuery, [
24 JSON.stringify(filesToInsert),
25]);
26 // Handle errors based on the query result.

Figure 6.8: A simplified version of the TypeScript code used to persist the files
that are part of a commit.

63

6. Implementation

6.3 Retrieval of diffs

A client can request the diff between commits by performing an HTTP GET
request to the /diff endpoint of the backend. This endpoint expects two query
parameters: base and target. These are used to identify the two commits that
shall be compared. Both parameters are “Fully Qualified Commit References”,
which is a format designed for the API of the Hub VCS to identify commits,
branches, or tags, together with their repositories. For instance, to compare the
head commit of branch 2 in repository 1 with the commit referenced by tag 7 of
repository 3, a request using the following URL can be used:
/diff?base=repo-1-branch-2&target=repo-3-tag-7
Hereinafter, the explanation will be limited to the comparison of two directly
specified commits, i.e. of requests that directly reference commits in the base
and target query parameters. For example, a request to compare commit 5
of repository 1 with commit 8 of repository 3 needs to be performed using the
following URL:
/diff?base=repo-1-commit-5&target=repo-3-commit-8

6.3.1 Basic request processing

The backend handles a request to the /diff endpoint as follows: First, a check
is made whether the user is allowed to access the base and target repositories.
Then, it is necessary to determine whether the two commit IDs actually belong
to the respective repositories. This is done using a recursive database query3.
Figure 6.9 shows a recursive query that checks whether the commit ID specified
in parameter $1 is part of the repository specified in parameter $2. To do so,
the query traverses all ancestors of commit $1 in the commit graph. The query
returns a single row with a boolean value, indicating whether commit $1 is part
of repository $2.

3See https://www.postgresql.org/docs/14/queries-with.html#
QUERIES-WITH-RECURSIVE, accessed on June 21, 2022

64

https://www.postgresql.org/docs/14/queries-with.html#QUERIES-WITH-RECURSIVE
https://www.postgresql.org/docs/14/queries-with.html#QUERIES-WITH-RECURSIVE

6. Implementation

1 WITH RECURSIVE
2

3 /* Fetch commit IDs from the branches and tags tables. */
4 start_commit_ids AS (
5 SELECT head AS commit_id
6 FROM branches
7 WHERE repo = $2
8

9 UNION
10

11 SELECT commit AS commit_id
12 FROM tags
13 WHERE repo = $2
14),
15

16 /* The recursive query: Follow the commit parents until we find
what we are looking for. */

17 rec AS (
18 /* Non-recursive part */
19

20 SELECT commit_id
21 FROM start_commit_ids
22

23 /* Recursive part */
24 UNION
25

26 SELECT parent AS commit_id
27 FROM commit_parents
28 INNER JOIN rec ON rec.commit_id = commit_parents.commit
29 /* This allows us to terminate the recursive query early if we

have found a result. */
30 WHERE $1 NOT IN (rec.commit_id)
31)
32

33 SELECT EXISTS (SELECT * FROM rec WHERE rec.commit_id = $1) AS
commit_exists

Figure 6.9: A parameterized database query used to determine if the commit
specified in parameter $1 is part of repository $2.

65

6. Implementation

After these checks have been performed, the hash trees for the base and target
commits can be loaded. This is also done using a recursive query, followed by a
conversion from database rows to an actual tree-like data structure.
Now, it is possible to compare these two trees in order to extract a list of added,
updated, and deleted files. The following rules apply:

• A file is classified as “added” if it exists in the target hash tree, but not in
the base hash tree.

• A file is classified as “deleted” if it exists in the base hash tree, but not in
the target hash tree.

• A file is classified as “updated” if it exists both in the base and target hash
trees, but has a different hash (and thus a different content and/or file
mode).

The comparisons are made based on file paths. As an example, a comparison of
the following two hash trees shall be made.

Base hash tree:

RootFolder

File1.txt (hash: ad488703f1)

File2.txt (hash: a7c4be9ef6)

File3.txt (hash: 4ea2e56cd2)

Target hash tree:

RootFolder

File1.txt (hash: ad488703f1)

File3.txt (hash: c410805029)

File4.txt (hash: a759ace5ec)

In this example, File1.txt is not part of the list of added, updated, or deleted
files, since it exists both in the base and target hash trees, and its hash is the
same in both trees. File2.txt is classified as “deleted”, since it exists in the base,
but not in the target hash tree. File3.txt is an updated file: It exists in both hash
trees, but its hash is different when comparing the file in the base and target hash
trees. Finally, File4.txt is classified as an added file, since it exists in the target,
but not in the base hash tree.

After the added, updated, and deleted files have been extracted, the information
currently available would not be sufficient for a client: At the moment, only the
hashes of these files are known, but not their content. Thus, it is then necessary
to load the actual file contents from the database. Technically, this step could
also have been performed earlier (while or directly after fetching the hash trees
from the database). However, this would lead to an unnecessarily high memory
consumption, since the base and target trees would then also include the contents
of unchanged files.

66

6. Implementation

6.3.2 Detection of moved files

Now that the added, updated, and deleted files have been extracted and their
content is also known, one last step is performed to improve the diff: The de-
tection of moved files, i.e. of files that have been renamed and/or moved into
another folder4. One option to detect moved files would be to explicitly store
information in the database about file renames and the like. However, this would
lead to issues when trying to compare two commits that either have no common
ancestor (and are thus part of different commit graphs), or have a complex com-
mit graph structure “between them”. If for instance a commit has been renamed
in one branch, and deleted and later re-introduced in another branch, and these
two branches got merged, it would be hard to properly classify this file, as it has
both been renamed and deleted. To avoid such ambiguities, the Hub VCS does
not explicitly track moves. Instead, heuristics are used that allow to find moves
between two arbitrary trees.

The heuristics distinguish two types of moved files: “moved without changes” and
“moved with changes”. At first, moves without changes are detected. This is done
by comparing the added with the deleted files: For every file in the list of added
files, the list of deleted files is searched for a matching counterpart. A file must
have the same content and the same file mode in order to be considered a match. If
a matching counterpart is found, then this is defined as a move without changes,
and the pair of files is not considered in any further comparisons. If multiple
deleted files match an added file (or vice versa), then an arbitrary selection is
made. The only guarantee the heuristic provides in this case is that the selection
is “stable”: When requesting the exact same diff multiple times, then the pairs of
files classified as “moved” are always the same.

It should be noted that the detection of moves operates on lists of files, not on
trees. The file path (including the file name) is merely used as an identifier of
the respective file. Thus, there is only one list of added files and one list of
deleted files that is handled when detecting moves. The “position” of a file in the
file/folder tree is not taken into account.

4In this part of the implementation, no distinction is made between renamed files and files
that have been moved into a different folder. Thus, we always say “moved file”.

67

6. Implementation

In the following, an example is constructed in order to better illustrate how
moves without changes are detected. The following table shows four added and
two deleted files, including their content. To keep the example simple, all files
are assumed to be text files.
File name File content

Added files
FileA.txt This is a file
FileB.txt This is an important file
FileC.txt This is an important file
FileD.txt This is a very important file

Deleted files
FileE.txt This is an important file
FileF.txt This is a very important file

Assuming that files are always checked in the order they appear in the table, the
heuristic used to detect moves without changes handles these files in the following
way:

1. First, FileA.txt is handled: The heuristic checks all deleted files for a match-
ing counterpart. However, there is no file with content “This is a file” in the
list of deleted files. Thus, FileA.txt is not classified as a file moved without
changes.

2. Then, FileB.txt is handled. There is exactly one matching file in the list
of deleted files: FileE.txt. So, the heuristic assumes that a move has been
performed from FileE.txt to FileB.txt (i.e. FileE.txt has been renamed to
FileB.txt).

3. Then, FileC.txt is checked. It has the same content as FileB.txt. Thus, one
could say that FileE.txt has been renamed to FileC.txt. However, FileE.txt
has already been marked as part of a move. Since a file can only be part
of one move, the potential move between files FileE.txt and FileC.txt is
ignored. Because there are no other files matching the content of FileC.txt,
this file is not classified as a file moved without changes.

4. Finally, FileD.txt is handled. There is exactly one deleted file with the same
content (FileF.txt). Because of this, the heuristic assumes that a move has
been performed from FileF.txt to FileD.txt (i.e. FileF.txt has been renamed
to FileD.txt).

After the moves without changes have been detected, the detection of moves
with changes (also called “fuzzy move detection”) is performed. For this purpose,
all added and deleted text files that have not been classified as moved without
changes are compared. If an added or deleted file is either a binary file, or it
has been classified as being part of a move without changes, it is not taken

68

6. Implementation

into account in the fuzzy move detection algorithm. In the following, a tuple
(A,B), with A ∈ AddedF iles and B ∈ DeletedF iles, is called “fuzzy move
candidate”. For the sake of simplicity, we say that for a fuzzy move candidate X,
X1 corresponds to the first entry in the tuple (which is the added file), and X2

corresponds to the second entry in the tuple (which is the deleted file).

For every possible fuzzy move candidate, the “Similarity Index” of their contents
is computed. The Similarity Index is a number between 0 and 1, with 0 indicating
that the two compared files are completely different, and 1 indicating that the
two files are identical.
The Similarity Index of two file contents ContentA and ContentB is computed
using the following formula:

SimilarityIndex(ContentA,ContentB) = 1− Leven(ContentA,ContentB)

|ContentA|+ |ContentB|

Here, Leven is a function that computes the Levenshtein Distance between two
text strings. Konstantinidis (2007) defines the Levenshtein Distance as follows:
“The edit distance (or Levenshtein distance) between two words is the smal-
lest number of substitutions, insertions, and deletions of symbols that can be
used to transform one of the words into the other.” Thus, in this formula,
Leven(ContentA,ContentB) returns the number of characters that are differ-
ent when comparing ContentA and ContentB. This number gets normalized
by |ContentA| + |ContentB|. Here, we say that |ContentA| is the length (i.e.
number of characters) of string ContentA, and |ContentB| is the length of string
ContentB.
If ContentA and ContentB are equal, then Leven(ContentA,ContentB) returns
0 and the Similarity Index is 1. If all characters found in ContentA are completely
different from the ones found in ContentB, then Leven(ContentA,ContentB) is
equal to |ContentA|+ |ContentB|, leading to a Similarity Index of 0. Finally, to
avoid division by zero, we say that the Similarity Index of two empty strings (i.e.
of two strings with length 0) is 1.

Since the Similarity Index needs to be computed for all pairs of added and deleted
files, O(nm) computations need to be performed, with n being the number of ad-
ded, and m being the number of deleted files. To reduce the computation time in
the implementation, multiple thresholds are defined. For instance, only files with
less than a fixed number of characters are taken into account in the comparison.
This avoids overly long computation times for single pairs of files. In the imple-
mentation, a threshold of 10, 000 characters has been selected, which has shown
a good balance between potential performance penalties and quality of results in
manual experiments. There is not only a limit for the number of characters per
file, but also a hard limit for the total number of files that are compared: If the
number of added files multiplied with the number of deleted files is greater than

69

6. Implementation

a fixed threshold, then no fuzzy move detection is performed at all. This number
is computed after filtering out files that will not be compared. In the implement-
ation, a threshold of 100 comparisons has been selected, which is again the result
of manual evaluation. Finally, only files with a Similarity Index not less than
a certain threshold (in the implementation set to 0.5) are considered potential
fuzzy moves. This allows to skip the computation of the Similarity Index (and
thus the Levenshtein Distance) in some cases: The difference in string lengths
of ContentA and ContentB defines a lower bound for the Levenshtein Distance,
since it is not possible to change less characters than ||ContentA| − |ContentB||

to get from ContentA to ContentB. Thus, if 1− ||ContentA| − |ContentB||
|ContentA|+ |ContentB|

is

less than the defined threshold, then there is no need to compute the actual Sim-
ilarity Index; The algorithm simply returns 0 for a Similarity Index less than the
defined threshold. This is also how a client would most likely expect fuzzy moves
to be detected: If two file contents only have a very small fraction of characters
in common, then the corresponding files should certainly not be seen as “moved
with a lot of changes”. Instead, the files should be treated as if they were added
and deleted separately.

After the Similarity Indices have been computed for all possible fuzzy move can-
didates, the fuzzy move candidates are ordered by their Similarity Index, with
higher Similarity Indices being listed first. This list is now called S.
The heuristic now uses a “greedy” approach to select which fuzzy moves shall be
part of the final result (in the following, the (temporary) list of selected fuzzy
move candidates is called T). The algorithm is defined as follows:

1. If S is empty, then stop and return T . Otherwise, select the first item in S
and remove it from this list. This item is now called X.

2. Is either X1 or X2 already part of T (i.e. is there another fuzzy move
candidate Y in T where either X1 = Y1 or X2 = Y2)? Then ignore this
fuzzy move candidate and go to step 1.

3. Neither X1 nor X2 is part of T? Then add X to list T and go to step 1.

70

6. Implementation

In the following, an example is constructed to better illustrate the functionality
of the fuzzy move detection algorithm. For this example, two added and two
deleted files exist as shown in the following table.

File name File content
Added files

FileA.txt This is a file
FileB.txt This is file B

Deleted files
FileC.txt This is another file
FileD.txt This is file D

Now, the Similarity Indices for all pairs of these files are computed. This is shown
in the following table.

Added file name Deleted file name Levenshtein Distance Similarity Index

FileA.txt FileC.txt 6 1− 6

14 + 20
≈ 0.82

FileA.txt FileD.txt 4 1− 4

14 + 14
≈ 0.86

FileB.txt FileC.txt 10 1− 10

14 + 20
≈ 0.71

FileB.txt FileD.txt 1 1− 1

14 + 14
≈ 0.96

71

6. Implementation

After the Similarity Indices have been computed, the list of fuzzy move candidates
is sorted by the Similarity Index as shown in the following table.

Position Added file name Deleted file name Similarity Index

1 FileB.txt FileD.txt 0.96

2 FileA.txt FileD.txt 0.86

3 FileA.txt FileC.txt 0.82

4 FileB.txt FileC.txt 0.71

Finally, the fuzzy moves can be selected based on this sorted list: The heuristic
first handles pair (FileB.txt, FileD.txt). Since no other fuzzy moves have yet been
handled, this pair can immediately be added to the final result set. Then, pair
(FileA.txt, FileD.txt) is handled. Since FileD.txt is already part of the final result
set, pair (FileA.txt, FileD.txt) is skipped. After that, pair (FileA.txt, FileC.txt) is
handled. Since neither FileA.txt nor FileC.txt are part of the final result set, pair
(FileA.txt, FileC.txt) gets added to the final result set. Finally, pair (FileB.txt,
FileC.txt) is handled. Since FileB.txt (and also FileC.txt) can already be found
in the final result set, pair (FileB.txt, FileC.txt) is skipped.
Thus, two pairs of files have been identified as fuzzy moves: According to the
algorithm, FileD.txt has been renamed to FileB.txt, while FileC.txt has been
renamed to FileA.txt.

6.3.3 Result format

As shown before, the /diff endpoint distinguishes five different types of changes:

1. Added files

2. Updated files

3. Deleted files

4. Files moved without changes

5. Files moved with changes

When requesting a diff, the backend returns a list of changes, each change classi-
fied as one of the five change types. Figure 6.10 shows an example JSON response
the server may return: One file (File1.txt) has been added, i.e. it does not exist

72

6. Implementation

in the base tree but exists in the target tree. File2.txt has been updated, which
means that it exists in the base and target trees but its content in the base
tree is different from the content in the target tree. File3.txt has been classified
as moved (i.e. renamed) to File4.txt without changes. That means that File3.txt
exists in the base tree but not in the target tree, while File4.txt exists in the
target tree but not in the base tree.

1 [
2 {
3 "type": "added",
4 "filePath": "/File1.txt",
5 "file": {
6 "fileMode": "text",
7 "content": "This is File 1"
8 }
9 },

10 {
11 "type": "updated",
12 "filePath": "/File2.txt",
13 "originalFile": {
14 "fileMode": "text",
15 "content": "This is File 2"
16 },
17 "newFile": {
18 "fileMode": "text",
19 "content": "This is File 2 with some changes"
20 }
21 },
22 {
23 "type": "moved-without-changes",
24 "originalFilePath": "/File3.txt",
25 "newFilePath": "/File4.txt",
26 "file": {
27 "fileMode": "text",
28 "content": "This is File 3"
29 }
30 }
31]

Figure 6.10: An example of a response of the /diff endpoint.

73

6. Implementation

74

7 Evaluation

In this chapter, the final implementation of the Hub VCS is evaluated against the
functional and non-functional requirements defined in chapter 3. For this purpose,
every requirement is assessed separately to determine whether it has been fulfilled
or whether certain aspects are still missing in the final implementation. Since
the Contributor Frontend and the Viewer Frontend were barely covered in the
previous chapters, this chapter especially highlights selected features of these
two frontend applications, together with a description of the relevant endpoints
provided by the backend.

7.1 Used notation for endpoints

Since most features of the Hub VCS require interaction with an API endpoint
provided by the backend, we define a notation to easily describe an endpoint:
For every endpoint, it is essential to know the path the request needs to be
performed to, and the HTTP method that needs to be used for this purpose.
For example, to retrieve the list of all users stored in the Hub VCS, a cli-
ent needs to perform an HTTP GET request to (server-url)/users. In our
notation, we write: GET: /users. Formally, the notation is using the format
<HTTP Method>: <Path> with <HTTP Method> being the HTTP method (like
GET or POST) the client needs to use when accessing the endpoint, and <Path> be-
ing the path on the API the request is made to. Optionally, <Path> may include
parameters which are written using curly braces (e.g. GET: /repos/{repoId} to
say that the path must be constructed by substituting {repoId} with a concrete
value, in this case an ID of a repository).

7.2 Evaluation of functional requirements

In this section, the final implementation of the Hub VCS is evaluated against the
functional requirements as defined in section 3.4.

75

7. Evaluation

Requirement F-1 (Repository Listing)

The API of the Hub VCS provides the endpoint GET: /repos. When a client
performs a request to this endpoint, a list of all repositories the user has access
to is provided. For every entry in this list, the ID and name of the respective
repository is provided, as well as information regarding the “owner” of the repos-
itory and whether the repository is “private”. (A private repository can only be
accessed by its owner, which is the user who created this repository.)

Both in the Contributor Frontend and in the Viewer Frontend, the aforementioned
endpoint is used to present a list of available repositories. Once a user has selected
an entry from this list, he or she is able to explore the respective repository
further (when using the Viewer Frontend), or to make changes to it (when using
the Contributor Frontend).

In conclusion, since there are no missing aspects from requirement F-1, we say
that this requirement has been fulfilled.

Requirement F-2 (Repository Creation)

In order to create a new repository, a client needs to perform a request to the
endpoint POST: /repos. This endpoint expects a JSON payload in the request
body that includes the name of the new repository, as well as a boolean field
to describe whether the repository should be private or not. The name of a
repository is not unique, so there may be multiple repositories with the same
name. Thus, the name of a repository is seen as “meta information” and cannot
be used to reference (identify) a particular repository; In order to identify a
repository, its ID must be used. Once the repository has successfully been created,
the API returns the ID of the created repository.

If a client wants to change the name or “private” flag of a repository, a re-
quest to the endpoint PATCH: /repos/{repoId} needs to be performed, repla-
cing {repoId} with the ID of the repository that shall be updated. The expected
JSON payload is the same as in the aforementioned POST endpoint. This feature
was not explicitly requested in requirement F-2, but it has been identified as
a useful addition to improve the user experience. It should be noted that this
endpoint is only accessible for the owner of a particular repository.

When a user of the Hub VCS wants to create a new repository or intends to
update an existing one, he or she needs to use the Contributor Frontend: Here,
the user is able to open a page called “Manage Repositories” where all of the
repositories owned by him or her are listed with the possibility to update them,
as well as a button “Add Repository” allowing the user to open a dialog to create
a new repository.

76

7. Evaluation

In conclusion, since there are no missing aspects from requirement F-2, we say
that this requirement has been fulfilled.

Requirement F-3 (Repository Deletion)

To delete an existing repository, the owner of this repository needs to perform
a request to the endpoint DELETE: /repos/{repoId}, replacing {repoId} with
the ID of the repository that shall be deleted.

In the Contributor Frontend, this functionality can be found on the “Manage
Repositories” page that was also used to create or update repositories. On this
page, the owner of a repository is able to use a “delete” button which, after
asking for a separate confirmation (“Do you really want to delete the repository
‘Repository Name’?”), triggers a request to the aforementioned endpoint.

In conclusion, since there are no missing aspects from requirement F-3, we say
that this requirement has been fulfilled.

Requirement F-4 (Branch Listing)

To retrieve the list of all branches in a particular repository, a client needs to send
a request to the endpoint GET: /repos/{repoId}/branches. If the client has
proper access permissions (i.e. the repository is either public, or the client is the
owner of the private repository), the backend will respond with a list of branches.
Every list item contains the ID and the name of the respective branch. It should
be noted that, similar to repository names, branch names are not unique and
thus cannot be used to identify a particular branch.

In the Contributor Frontend and in the Viewer Frontend, the aforementioned
endpoint is accessed in multiple situations. For instance, before being able to
edit content in the Contributor Frontend, the user needs to checkout a branch
and is therefore presented with a list of branches to choose from. This dialog
is shown in figure 7.1. Another example can be seen in the Viewer Frontend:
In order to explore the files, folders, and history of the head commit of a given
branch, the user first needs to select one of the branches from the presented list as
shown in figure 7.2. There are many other situations where the aforementioned
endpoint is accessed, since branches are a very important part of the version
control workflow in the Hub VCS.

In conclusion, since there are no missing aspects from requirement F-4, we say
that this requirement has been fulfilled.

77

7. Evaluation

Figure 7.1: Screenshot of the Contributor Frontend showing a branch selector
menu. This menu is used to check out a branch in order to make changes to the
files and folders of the referenced commit.

Requirement F-5 (Branch Management)

In order to create a new branch in a repository, the client needs to send a request
to the POST: /repos/{repoId}/branches endpoint. The backend expects the
request payload to include the name of the branch that shall be created. Option-
ally, another branch, tag, or commit, can be specified which will be used as the
initial branch head. An example of the request payload needed to create a new
branch “my-new-branch”, initially pointing to a commit with ID “7”, is shown in
figure 7.3.

To change the name of a branch, the client needs to perform a request
to the PATCH: /repos/{repoId}/branches/{branchId} endpoint, replacing
{branchId} with the ID of the branch that shall be updated1. The new name
of the branch must be provided in the request payload. Finally, the end-
point DELETE: /repos/{repoId}/branches/{branchId} allows clients to delete
a given branch.

In the Contributor Frontend, users can open the “Manage Branches” page after
selecting a repository and navigating to the “Version Control” page. On the
“Manage Branches” page, a list of branches is shown with the possibility to update
and delete a particular branch (except for the currently checked out branch). This

1At this point, one design decision becomes apparent: Resources, for instance repositories,
branches, commits, and the like, are always referenced using their IDs. Thus, the ID is a central
element of the Hub VCS and is also in many places shown to the users of the two frontend
applications.

78

7. Evaluation

Figure 7.2: Screenshot of the Viewer Frontend showing a commit selector menu.
This menu is used to select a branch, tag, or commit ID, in order to explore the
files, folders, and history of the referenced commit.

1 {
2 "name": "my-new-branch",
3 "initialHead": {
4 "type": "commit",
5 "commitId": 7
6 }
7 }

Figure 7.3: An example of a request body used to create a new branch with an
initial branch head pointing to commit 7.

is shown in figure 7.4. Also, a new branch can be created on this page by providing
a branch name and optionally selecting an initial branch head, which is shown in
figure 7.5.

In conclusion, since there are no missing aspects from requirement F-5, we say
that this requirement has been fulfilled.

Requirement F-6 (Tag Management)

Tags are managed in a similar way as branches. The
GET: /repos/{repoId}/tags endpoint makes it possible to retrieve a list
of all tags for a given repository. A tag has an ID, a name (which again
cannot be used as an identifier), and a description. To create a new tag, the

79

7. Evaluation

Figure 7.4: Screenshot of the Contributor Frontend showing the “Manage
Branches” page.

POST: /repos/{repoId}/tags endpoint shall be used, which works similarly to
the endpoint used to create branches. It is also possible to update a tag by using
the PATCH: /repos/{repoId}/tags/{tagId} endpoint, replacing {tagId} with
the ID of the tag that shall be updated. Finally, a tag can be deleted using the
DELETE: /repos/{repoId}/tags/{tagId} endpoint.

The most notable difference between a tag and a branch in the Hub VCS is that
the commit pointed to cannot be changed for a tag, whereas the head commit of
a branch changes over time (by the creation of new commits).

In the Contributor Frontend, the handling of tags is very similar to the handling
of branches and is thus not described in more detail here.

In conclusion, since there are no missing aspects from requirement F-6, we say
that this requirement has been fulfilled.

Requirement F-7 (Checkout)

In order to perform a checkout, the client needs to fetch the
head commit of a given branch. This is possible by using the
GET: /repos/{repoId}/commits/{commitReference} endpoint. This en-
dpoint allows to fetch the data of a commit either directly by the ID of the
commit itself, or by the ID of a branch or tag. This reference to a commit,
branch, or tag, is called a “Commit Reference”. In the use case of requirement
F-7, it is necessary to fetch the head commit of a branch, which is why the
client needs to substitute {commitReference} with a string in the format

80

7. Evaluation

Figure 7.5: Screenshot of the Contributor Frontend showing the “Create
Branch” dialog on the “Manage Branches” page.

branch-x, with “x” being the ID of the branch the head commit shall be fetched
for. For instance, to fetch the head commit of branch 5 in repository 3, the
request needs to be performed to /repos/3/commits/branch-5. The response
from the backend includes the ID of the fetched commit, meta information like
the commit title and author, and the entire file/folder tree. An example of a
response is shown in figure 7.6. It should be noted that this endpoint is used in
various places: It is not only used to perform a checkout, but also, for instance,
in the Viewer Frontend to allow users to explore the files and folders of a given
commit, tag, or branch.

In the Contributor Frontend, the user performs a checkout by selecting a branch
as already shown in the evaluation of requirement F-4: After the branch has been
selected, a request to the aforementioned endpoint is made to fetch the details
(and most importantly the file/folder tree) of the head commit of the selected
branch. The user is then able to explore the files and folders, make changes to
the file/folder tree, to create new commits, and more.

In conclusion, since there are no missing aspects from requirement F-7, we say
that this requirement has been fulfilled.

Requirements F-8 (Edit) and F-9 (File and Folder Manage-
ment)

These two requirements are evaluated together, since they cover a very similar
subject. In the Contributor Frontend, after a checkout has been performed, the

81

7. Evaluation

1 {
2 "id": 8,
3 "creationDate": 1640991600,
4 "title": "Add important changes",
5 "description": "This commit introduces an important update

which resolves multiple issues discussed with the team.",
6 "author": {
7 "id": 1,
8 "name": "Sample User"
9 },

10 "parents": [7],
11 "tree": {
12 "children": {
13 "files": {
14 "test.txt": {
15 "fileMode": "text",
16 "content": "this is a file"
17 },
18 "test2.txt": {
19 "fileMode": "text",
20 "content": "this is another file"
21 }
22 },
23 "folders": {}
24 }
25 }
26 }

Figure 7.6: An example of a response from the backend when requesting the
details of a commit.

82

7. Evaluation

user is able to explore files and folders on the “Files” page. A screenshot of this
page is shown in figure 7.7: On the “Files” page, a file/folder tree is shown, which
not only enables the user to get an overview of the files and folders present in the
checked out commit, but also provides features to modify this tree. For instance,
it is possible to create new files and folders, to delete existing ones, and also to
move single files or entire folders. The “move” feature, as shown in figure 7.8,
has been designed in a way that it also allows to rename the respective file or
folder, which is why there is no separate “rename” option. When selecting a file,
an editor is shown which either allows to edit a text file (as shown in figure 7.7),
or to upload a binary file (as shown in figure 7.9). Thus, the “Files” page is
essentially an in-browser file manager, combined with a file editor. It should be
noted that all of the aforementioned operations are performed fully on the client
side (i.e. in the browser of the user) - the changes made to the file/folder tree are
only transferred to the backend once the user decides to create a commit.

In conclusion, since there are no missing aspects from requirements F-8 and F-9,
we say that these requirement have been fulfilled.

Figure 7.7: Screenshot of the Contributor Frontend showing a text file editor
on the “Files” page.

Requirement F-10 (Status and Revert)

Similar to requirements F-8 and F-9, requirement F-10 has been implemented in
the Contributor Frontend in a way that it does not require communication with
the backend. On the “Current Changes” page of the “Version Control” section,
a list of changes is shown. This list includes the added, updated, and deleted
files, in comparison to the state the file/folder tree was in on the last checkout.

83

7. Evaluation

Figure 7.8: Screenshot of the Contributor Frontend showing the “Move File”
dialog on the “Files” page. This dialog not only makes it possible to move the
selected file to a new directory, but also to rename this file.

Thus, this list includes all changes the user has made on the “Files” page. It is
possible to “preview” a change (i.e. to see the diff compared to the checked out
file/folder tree) as shown in figure 7.10. Also, it is possible to revert the changes
made in individual files: If a file has been deleted, it is possible to restore it. If
a file has been added, it is possible to delete it. And if a file has been updated,
it is possible to undo these modifications.

In conclusion, since there are no missing aspects from requirement F-10, we say
that this requirement has been fulfilled.

Requirement F-11 (Commit)

The backend implementation regarding the creation of regular commits has already
been covered in chapter 6, which is why this part is not described here in more de-
tail. In the Contributor Frontend, commits are created on the “Current Changes”
page: As mentioned before, this page shows a list of the changes that have been
performed to the working copy. In order to make one of the changed files part of
the next commit, the user selects it in the list of changed files. Once all of the
files that shall be part of the commit are selected, and the user has entered a title
and description for the commit, he or she can submit the commit to the backend.
It should be noted that it is not necessary to select every single changed file to
be part of one commit - if a file has not been selected, then it remains unchanged
and can, for instance, be made part of a future commit. This allows users to
make large changes to their working copy and then to “split” these changes into

84

7. Evaluation

Figure 7.9: Screenshot of the Contributor Frontend showing a preview of a
binary file on the “Files” page.

multiple small commits, instead of having to create one large commit.

In conclusion, since there are no missing aspects from requirement F-11, we say
that this requirement has been fulfilled.

Requirement F-12 (Update)

When two users are working on the same branch, and one user pushes changes
to this branch, then the other user needs to perform an update of the working
copy before being able to create a commit. For this purpose, the “Update” page
has been implemented in the Contributor Frontend: If the working copy is not
up-to-date, a message on this page is shown to indicate that an update needs to
be performed. (A similar message is also shown when trying to create a commit.)
To update the working copy, the “Update” page presents a “three-way-diff” view:
Here, three trees (the originally checked out tree, the working copy, and the tree
belonging to the current head of the branch as fetched from the backend) are
compared. Every file that is not equal in the three trees is shown to the user.
The goal of this three-way-diff view is to build a new working copy that is based
on the current head of the branch and still includes the changes the user has
previously made to the working copy. To do that, the user is presented with two
diffs for every single file as shown in figure 7.11: On the left side, the state of the
file in the working copy is shown, while visualizing the changes compared to the
originally checked out file. On the right, the state of the file in the “incoming”
tree (i.e. of the current head of the branch) is shown, again while visualizing the
changes compared to the file in the “base tree”. Now, the user needs to select one

85

7. Evaluation

Figure 7.10: Screenshot of the Contributor Frontend showing the “Current
Changes” page.

of these changes to be part of the new working copy. This “result file” is shown
in the middle column. As shown in figures 7.12 and 7.13, it is possible for the
user to edit the file shown in the middle, e.g. in order to manually merge more
complex changes made in the files shown on the left and right. Once the user
has finished working on one particular file, he or she needs to mark this conflict
as “resolved”. Once all conflicts have been resolved, the changes are applied to
the working copy and the user is now able to continue the work on an up-to-date
working copy.

As already mentioned, the three-way-diff view allows the user to manually inspect
every single changed file and to apply changes to these files in order to define
how they should be merged. However, the user does not have to take a look at
every single file when performing this merge: The three-way-diff view is able to
perform “smart guesses” to automatically select the content of the result file in
certain situations. For instance, if a particular file has not been modified in the
working copy, but it has been modified in the incoming tree, then the latter is
automatically selected as the result file, and the user does not have to perform
any actions for this file. Or, if a file has been deleted in the working copy, but
has not been changed in the incoming tree, then this file is automatically marked
for deletion. Of course, the user is able to override these “smart guesses” - they
are merely used to assist the user especially in cases where a large number of files
needs to be handled in the update.

In conclusion, since there are no missing aspects from requirement F-12, we say
that this requirement has been fulfilled.

86

7. Evaluation

Figure 7.11: Screenshot of the Contributor Frontend showing the three-way-diff
view of the “Update” page. In this example scenario, three text editors are shown
in order to handle the changes made in “file1.txt”.

Requirement F-13 (Merge)

In order to perform a merge, the user of the Contributor Frontend needs to use
the “Merge Branches” feature found on the “Manage Branches” page. To per-
form a merge, the user first needs to select the source branch and the target
branch of this merge operation. The Contributor Frontend then loads the “merge
base”, which is a common ancestor of the two commits the source and target
branches point to. To load this merge base, the Contributor Frontend performs
a request to the GET: /repos/{repoId}/commits/merge-base endpoint. This
endpoint expects the two commit IDs to be passed as query parameters. For
instance, to request the merge base of commits 5 and 8 in repository 3, a request
to /repos/3/commits/merge-base?commits[]=5&commits[]=8 needs to be per-
formed. The response of this endpoint includes the ID of the merge base, as well
as the entire file/folder tree.

There are multiple situations in which a merge cannot be performed. For instance,
if the target branch is “ahead” of the source branch, i.e. if the head commit of the
source branch is an ancestor of the head commit of the target branch, a merge is
rejected. Or, if the two commits do not have a common merge base, then a merge
is also not possible. All of these cases are handled in the Contributor Frontend
by showing an informative error message and aborting the merge process.

If the merge base could successfully be loaded, the same three-way-diff view is
shown as already used for the update of the working copy. Finally, the merge
commit can be created, which internally uses the same endpoint as used for the

87

7. Evaluation

Figure 7.12: Screenshot of the Contributor Frontend showing the three-way-diff
view of the “Update” page. In this example scenario, two conflicting binary files
are shown, and the user has decided to replace the binary files with a text file.

creation of a regular commit. The only difference in the request payload compared
to the creation of a regular commit is that there is another field mergeCommitId,
which indicates that a merge with this commit ID shall be performed.

In conclusion, since there are no missing aspects from requirement F-13, we say
that this requirement has been fulfilled.

Requirement F-14 (History)

To retrieve the history of a commit (i.e. the list of ancest-
ors of this commit), the client needs to send a request to the
GET: /repos/{repoId}/commits/{commitReference}/history endpoint.
The response of this endpoint contains a list of commits, which are the ancestors
of the referenced commit as well as the referenced commit itself. Every entry
in this list contains the commit ID, the IDs of the commit parents, as well as
meta information like the commit title, author, and more. It is also possible to
fetch the history of a file or folder by specifying a query parameter called “path”.
In this case, only commits that introduced, updated, or deleted a given file or
folder are returned.

In the Viewer Frontend, the user is able to explore the commit history after
selecting a commit, tag, or branch, on the “Files” page as shown in figure 7.14.
When selecting a file or folder, the history of the selected item is shown, while

88

7. Evaluation

Figure 7.13: Screenshot of the Contributor Frontend showing the three-way-diff
view of the “Update” page. In this example scenario, two conflicting binary files
are shown, and the user has opened a menu that, among others, allows to replace
the “result file” with an empty text file or to delete this file.

the entire commit history is shown when selecting the name of the repository.

In conclusion, since there are no missing aspects from requirement F-14, we say
that this requirement has been fulfilled.

Requirement F-15 (Diff)

The backend implementation regarding the retrieval of the diff between two com-
mits has already been covered in chapter 6, which is why this part is not described
here in more detail. In the Viewer Frontend, the user is able to compare two ar-
bitrary commits on the “Diff” page: After selecting the “base” and the “target”
commit, the list of added, updated, deleted, and moved files is shown. When
selecting an item from this list, the file content is displayed, which makes it pos-
sible to explore the respective file in more detail. If a file has been updated or
moved with changes, the changes introduced in the target commit compared to
the base commit are highlighted as shown in figure 7.15.

In conclusion, since there are no missing aspects from requirement F-15, we say
that this requirement has been fulfilled.

89

7. Evaluation

Figure 7.14: Screenshot of the Viewer Frontend showing the commit history of
a selected branch.

Figure 7.15: Screenshot of the Viewer Frontend showing the “Diff” page.

90

7. Evaluation

7.3 Evaluation of non-functional requirements

In this section, the final implementation of the Hub VCS is evaluated against the
non-functional requirements as defined in section 3.5.

Requirement N-1 (Architecture)

The clients can communicate with the backend of the Hub VCS using the HTTP
API. The two frontend applications are both web-based and thus in compliance
with requirement N-1. There are no missing aspects from requirement N-1, thus
we say that this requirement has been fulfilled.

Requirement N-2 (Programming Languages and Frameworks)

As described in chapter 5, not only the backend and frontend applications,
but also all other components like the Importer, have been implemented using
TypeScript. Additionally, the two frontend applications have been built using
Vue.js, making it possible to reuse pieces of the applications in other parts of the
JValue Project.

Unfortunately, after most features of the Contributor Frontend and Viewer Fron-
tend had been implemented, the development of some applications in the JValue
Project started to be focused around the usage of React2 instead of Vue.js. In
those projects, it is certainly not trivial to reuse the Vue.js components built for
the Hub VCS. But thanks to the Shared package, which only requires TypeScript
to be available in a project, it is quite easily possible to access all features of the
Hub VCS in a React project (or any other kind of project based on TypeScript).
Thus, one could now see the Contributor Frontend and Viewer Frontend as “ref-
erence implementations” that not only showcase all features of the Hub VCS, but
also provide many recommendations regarding UI and UX design.

In conclusion, since there are no missing aspects from requirement N-2, we say
that this requirement has been fulfilled.

Requirement N-3 (Code Style)

All components of the Hub VCS follow one central set of linter rules defined using
ESLint3. The rules are based on the ones used across other applications in the

2https://reactjs.org, accessed on June 21, 2022
3https://eslint.org, accessed on June 21, 2022

91

https://reactjs.org
https://eslint.org

7. Evaluation

JValue Project like the DEWB, which makes the code follow one common style.
For the Hub VCS, these rules have been extended to be even stricter than the
original ones in order to further improve the quality of the implementation.

Hence, we say that requirement N-3 has been fulfilled.

Requirement N-4 (Testing)

As already described in chapter 5, the endpoints of the backend of the Hub VCS
are tested using system tests. For every single endpoint, at least one test case
has been defined in order to ensure that all endpoints are working according
to their specification, and to make sure that edge cases are properly handled.
Additionally, the performance of the Hub VCS has been manually tested after
importing multiple Git repositories using the Importer.

Hence, we say that requirement N-4 has been fulfilled.

Requirement N-5 (API Documentation)

Every single HTTP API endpoint has been documented in a text file, describing
which features the respective endpoint provides, which payload it expects, which
data the response contains, and more. Additionally, every endpoint is also defined
using a TypeScript object, which contains all relevant information needed to
perform and validate a request and its response. These objects, which have been
called “Endpoint Descriptions”, are not only used by the clients to make requests
and validate the responses, but also by the backend to verify e.g. whether the
payload of a request has the correct structure. All Endpoint Descriptions are
part of the Shared package, which enables developers to reuse them in other
applications that shall communicate with the backend of the Hub VCS.

In conclusion, since there are no missing aspects from requirement N-5, we say
that this requirement has been fulfilled.

7.4 Summary

As described in section 3.3, to summarize by which degree the functional and non-

functional requirements have been fulfilled, the fraction
#CompletedRequirements

#TotalRequirements
can be computed.

92

7. Evaluation

In total, there are 15 functional requirements. As shown in section 7.2, all required
features have been implemented for every single functional requirement. Thus,
all 15 functional requirements can be classified as “completed”, which means that
15

15
= 100% of the functional requirements have been fulfilled by the final system.

This shows that the final system covers every necessary feature that has been
identified in section 3.4.

The same metric can also be computed for the non-functional requirements: In
total, there are five non-functional requirements. As shown in section 7.3, every
single non-functional requirement has been met by the final system. Thus, all
five non-functional requirements can be classified as “completed”, meaning that
5

5
= 100% of the non-functional requirements have been fulfilled by the final

system. Thus, the Hub VCS has been designed in full accordance with the non-
functional requirements defined in section 3.5.

93

7. Evaluation

94

8 Conclusion

This thesis has contributed to the JValue Project by demonstrating how a VCS
tailored to the technical and logical structure of the DEWB, JValue Hub, and
similar applications, could be designed and implemented. For this purpose, the
most important features of a VCS (the Core Operations) have been identified,
which constitute the basis of any general VCS. Based on these Core Operations
and the context of the JValue Project, the functional and non-functional require-
ments have been defined, which were not only used as a “framework” for the
research and development needed for the Hub VCS, but also allowed to evaluate
whether the finished implementation matches the initial expectations regarding a
(good) solution. Based on these requirements, a theoretical foundation has been
established that covers the most relevant aspects that need to be considered be-
fore implementing a VCS in the context of the JValue Project. This theoretical
foundation is independent of a concrete selection of programming languages and
the like, which makes it theoretically possible to build upon this foundation in
the (distant) future, even if the selection of used technologies in the JValue Pro-
ject changes. After this theoretical concept had been defined, its feasibility got
demonstrated with the implementation of the Hub VCS. For this implementa-
tion, not only the theoretical concept, but also the functional and non-functional
requirements have been considered, in order to establish a system architecture
that fits in the context of the JValue Project. Finally, the finished system has
been evaluated against the functional and non-functional requirements. All re-
quirements have been met by the Hub VCS, which is a strong indicator that the
Hub VCS could indeed provide a good extension to the set of applications already
present in the context of the JValue Project.

In conclusion, this thesis has provided important insights that will influence the
future developments in the context of the JValue Project, supporting the JValue
Project on its mission to “make open data easy, safe, and reliable”.

95

8. Conclusion

96

Appendix

97

Appendix: Mockups of DEWB and JValue Hub

Mockups of DEWB and JValue Hub

At the time of writing this thesis, the DEWB and the JValue Hub were in an
early stage of development. However, multiple visions both for the DEWB and
the JValue Hub were present in the form of Mockups. The final products will
most likely differ in major aspects from these Mockups. Still, these images are
able to transport the general ideas behind the DEWB and the JValue Hub. Thus,
in the following, Mockups are presented showing early design concepts regarding
the DEWB and the JValue Hub.

99

Appendix: Mockups of DEWB and JValue Hub

F
igu

re
1:

A
configuration

step
in

the
D
E
W

B
.
O
n
the

left,the
user

is
able

to
define

the
expected

“schem
a”

of
the

files
present

in
a
data

source.
In

this
particular

exam
ple,

the
user

is
m
odelling

the
schem

a
of

a
tabular

file.
O
nce

the
user

m
akes

a
change

on
the

left
side,feedback

is
im

m
ediately

presented
on

the
right

side:
H
ere,a

preview
ofthe

tabular
file

is
presented,w

hich
gets

evaluated
against

the
provided

schem
a.

M
ism

atches
betw

een
the

configuration
and

the
loaded

file
are

highlighted
to

allow
the

user
to

quickly
identify

problem
s
w
ith

the
provided

configuration.

100

Appendix: Mockups of DEWB and JValue Hub

F
ig
u
re

2:
O
ne

im
po

rt
an

t
fe
at
ur
e
of

th
e
JV

al
ue

H
ub

is
re
la
te
d
to

th
e
ex
pl
or
at
io
n
of

ex
is
ti
ng

re
po

si
to
ri
es
:
If
a
us
er

w
an

ts
to

ac
ce
ss

a
pa

rt
ic
ul
ar

ki
nd

of
da

ta
so
ur
ce

(e
.g
.
on

e
pr
ov

id
in
g
w
ea
th
er

da
ta
),

he
or

sh
e
sh
ou

ld
be

ab
le

to
si
m
pl
y
en
te
r

co
rr
es
po

nd
in
g
se
ar
ch

te
rm

s
an

d
ge
t
a
lis
t
of

al
lm

at
ch
in
g
re
po

si
to
ri
es
,i
nc
lu
di
ng

lic
en
se

in
fo
rm

at
io
n,

in
fo
rm

at
io
n
re
ga

rd
in
g

ho
w

m
an

y
ti
m
es

da
ta

fr
om

th
is

re
po

si
to
ry

ha
s
be

en
ac
ce
ss
ed
,a

nd
m
or
e.

101

Appendix: Mockups of DEWB and JValue Hub

F
igu

re
3:

A
fter

the
user

has
selected

a
repository

in
the

JV
alue

H
ub

search
view

as
show

n
in

figure
2,

m
ore

details
about

this
repository

are
presented.

H
ere,

a
textualdescription

(“R
E
A
D
M
E

file”)
is

show
n,

as
w
ellas

keyw
ords,

license
inform

ation,and
further

options
to

explore
this

particular
repository.

102

References

Chacon, S. & Straub, B. (2022). Pro git. (Vol. 2.1.338-2-g8a81047, 2022-04-05,
pp. 12–13, 63–64, 432–442). Apress Berkeley, CA.

de Alwis, B. & Sillito, J. (2009). Why are software projects moving from cent-
ralized to decentralized version control systems? (pp. 36–39). doi:10.1109/
CHASE.2009.5071408

Haerder, T. & Reuter, A. (1983). Principles of transaction-oriented database re-
covery. ACM Comput. Surv. 15 (4), 287–317. doi:10.1145/289.291

Huijboom, N. & van den Broek, T. (2011). Open data: An international compar-
ison of strategies. European Journal of EPractice, 12, 1–13.

Kitchin, R. (2014). The data revolution: Big data, open data, data infrastructures
& their consequences. (p. xv). SAGE.

Koc, A. & Tansel, A. U. (2011). A survey of version control systems. ICEME
2011.

Konstantinidis, S. (2007). Computing the edit distance of a regular language.
Information and Computation, 205 (9), 1307–1316.

Loeliger, J. & McCullough, M. (2012). Version control with git: Powerful tools and
techniques for collaborative software development. (p. 1). O’Reilly Media.

Lucassen, G., Dalpiaz, F., van der Werf, J. M. E. M. & Brinkkemper, S. (2016).
Improving agile requirements: The quality user story framework and tool.
Requirements Engineering. doi:10.1007/s00766-016-0250-x

Mehlhorn, K. & Sanders, P. (2008). Algorithms and data structures: The basic
toolbox. Springer.

Merkle, R. C. (1987). A digital signature based on a conventional encryption
function. In Conference on the theory and application of cryptographic tech-
niques (pp. 369–378). Springer.

Merkle, R. C. (1989a). A certified digital signature. In Conference on the theory
and application of cryptology (pp. 218–238). Springer.

Merkle, R. C. (1989b). One way hash functions and DES. In Conference on the
theory and application of cryptology (pp. 428–446). Springer.

Niaz, M. S. & Saake, G. (2015). Merkle hash tree based techniques for data
integrity of outsourced data. GvD, 1366, 66–71.

103

https://dx.doi.org/10.1109/CHASE.2009.5071408
https://dx.doi.org/10.1109/CHASE.2009.5071408
https://dx.doi.org/10.1145/289.291
https://dx.doi.org/10.1007/s00766-016-0250-x

References

Otte, S. (2009). Version control systems. Computer Systems and Telematics
Working Group.

Rivero, J. M., Grigera, J., Rossi, G., Luna, E. R., Montero, F. & Gaedke, M.
(2014). Mockup-driven development: Providing agile support for model-
driven web engineering. Information and Software Technology, 56 (6), 670–
687.

Sink, E. (2011). Version control by example. Pyrenean Gold Press Champaign,
IL.

Szydlo, M. (2004). Merkle tree traversal in log space and time. In Interna-
tional conference on the theory and applications of cryptographic techniques
(pp. 541–554). Springer.

Vaidya, S., Torres-Arias, S., Curtmola, R. & Cappos, J. (2019). Commit signa-
tures for centralized version control systems. In Ifip international conference
on ict systems security and privacy protection (pp. 359–373). Springer.

Wessels, B., Finn, R., Wadhwa, K. & Sveinsdottir, T. (2017). Open data and the
knowledge society. Amsterdam University Press. doi:10.1515/9789048529360

104

https://dx.doi.org/10.1515/9789048529360

	Introduction
	Fundamentals
	Context: The JValue Project
	Data Engineering Workbench
	JValue Hub

	Version Control Systems
	Basic terminology
	Diff
	Core features of a VCS
	Types of Version Control Systems

	Trees and graphs
	Trees
	Graphs

	Requirements
	Source of requirements
	Adaptation of the Core Operations

	Requirements format
	Metric to summarize requirements completion
	Functional requirements
	Non-functional requirements

	Conceptual design
	Comparison of CVCSs and DVCSs
	Reusing existing general-purpose systems
	Reusing user interfaces
	Reusing HTTP APIs

	Logical Model of the Hub VCS
	Initial Logical Model
	Model of files, folders, and delta
	Model of the commit history
	Updated Logical Model

	Architecture
	Foundation of final design
	Backend
	Clients
	User-facing clients (UIs)
	System test suite and Importer

	Final system structure

	Implementation
	Database schema
	Storage of files and folders
	Storage of commits, repositories, and more

	Creation of commits
	Retrieval of diffs
	Basic request processing
	Detection of moved files
	Result format

	Evaluation
	Used notation for endpoints
	Evaluation of functional requirements
	Evaluation of non-functional requirements
	Summary

	Conclusion
	Appendix
	Mockups of DEWB and JValue Hub

	References

