
De�ning a framework for
automated Software-BOM

generation from package metadata
in a CI/CD environment

BACHELOR THESIS

Alexander Gschrei

Submitted on 28 September 2022

Friedrich-Alexander-Universität Erlangen-Nürnberg

Technische Fakultät, Department Informatik

Professur für Open-Source-Software

Supervisor:
Prof. Dr. Dirk Riehle, M.B.A.

Declaration of Originality

I con�rm that the submitted thesis is original work and was written by me without
further assistance. Appropriate credit has been given where reference has been
made to the work of others. The thesis was not examined before, nor has it been
published. The submitted electronic version of the thesis matches the printed
version.

Erlangen, 28 September 2022

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 28 September 2022

i

https://creativecommons.org/licenses/by/4.0/

ii

Abstract

With modern applications growing in complexity an increasing reliance on third
party components can be observed across the industry. Such reuse of Free/Libre
Open Source Software (FLOSS) or Commercial o�-the-shelf (COTS) artifacts
can help reduce time to market and enable faster release cycles. At the same
time, managing a large toolbox of dependencies presents developers with new
challenges, both in terms of license compliance and vulnerability monitoring.
Package managers like npm can help with these tasks by providing at-a-glance
information about the dependencies present in a project. However, these tools
are often tailored to speci�c technologies or use-cases and require domain know-
ledge to be used e�ectively. As an alternative, this thesis proposes and sub-
sequently implements a new, plugin-based toolchain that provides an abstraction
layer on top of existing tools and can be deployed as part of a Continuous Integra-
tion (CI) pipeline to generate a Software Bill of Materials (SBOM) from package
metadata. To allow for future extensibility, the framework o�ers a Remote Pro-
cedure Call (RPC) interface that allows plugins to exchange data across process
and technology boundaries.

iii

iv

Contents

1 Introduction 1

1.1 Bene�ts of SBOMs . 2

2 Problem Identi�cation 5

2.1 Existing solution . 5
2.2 Drawbacks of the existing solution 5

2.2.1 Code duplication . 6
2.2.2 Inconsistent User Experience 6
2.2.3 Lack of signing capabilities 6

2.3 General Challenges with SBOM generation 7
2.3.1 Unwarranted trust in Package Metadata 7
2.3.2 Unclear de�nition of SBOM Formats 7

3 Objective De�nition 9

3.1 Framework De�nition . 9
3.2 Extensibility through plugins . 9
3.3 Project-level con�guration . 10
3.4 SBOM Contents . 10
3.5 Command-Line Interface . 11
3.6 Portability . 12
3.7 Reference implementations . 12
3.8 Output Signing . 13

4 Solution Design 15

4.1 Subcomponents . 15
4.1.1 Core application . 15

Terminal User Interface 15
Filesystem Walker . 16
Plugin Loader . 16

4.1.2 Plugins . 16
4.2 Technology Stack . 17

4.2.1 The Go Programming Language 17

v

4.2.2 gRPC . 18
4.2.3 JSON Web Signature . 18
4.2.4 syft . 19
4.2.5 CycloneDX . 19

5 Implementation 21

5.1 Repository Structure . 21
5.2 Hyperion . 22

5.2.1 Domain Models . 22
SBOM-related Models . 23
Internal Models . 24

5.2.2 Processing Utilities . 24
JWS Signer . 25
Concurrency Helpers . 25
Plugin Loader . 25

5.2.3 The Core Application . 26
5.3 Command Line Interface . 27

5.3.1 autopilot Command . 27
5.3.2 scan Command . 29

5.4 Plugin Architecture . 29
5.4.1 Interface De�nitions . 31

5.5 Reference Implementations . 33
5.5.1 npm-scanner . 34
5.5.2 pypi-scanner . 36
5.5.3 go-scanner . 37
5.5.4 syft-scanner . 37
5.5.5 source-downloader-transformer 38
5.5.6 cyclonedx-writer . 38

6 Demonstration 39

6.1 Setup . 39
6.2 Usage . 41
6.3 Sample Project . 42

7 Evaluation 49

7.1 Extensibility . 49
7.2 CLI and TUI implementations . 50
7.3 Validity and accuracy of produced SBOMs 50

8 Conclusions 53

Appendices 55

A Code Listings . 57

vi

A.1 Go Domain Models . 57

vii

viii

List of Figures

5.1 User Journey for the autopilot commmand 28

(a) Project Information View of the Autopilot Command 40
(b) Plugin Findings View of the Autopilot Command 40
(c) Additional Plugin View of the Autopilot Command 40
(d) Con�guration Review View of the Autopilot Command . . . 40

6.1 Artifacts produced as part of the CI build 41

ix

x

List of Tables

3.1 The minimum elements of an SBOM as de�ned by the NTIA . . . 11

5.1 Overview of available plugin types 31

xi

xii

Acronyms

API Application Programming Interface

CI Continuous Integration

CD Continuous Delivery

CLI Command Line Interface

DBMS Database Management System

ECC Export Control Compliance

FLOSS Free/Libre Open Source Software

COTS Commercial o�-the-shelf

HTTP Hypertext Transfer Protocol

IDL Interface De�nition Language

IPC Inter-Process Communication

JOSE Javascript Object Signing and Encryption

JSON Javascript Object Notation

JWS JSON Web Signature

NTIA National Telecommunications and Information Administration

OCI Open Container Initiative

OSS Open Source Software

OWASP Open Web Application Security Project

PKI Public Key Infrastructure

PURL Package Uniform Resource Locator

RPC Remote Procedure Call

xiii

SBOM Software Bill of Materials

SCP Siemens Clearing Platform

SDLC Software Development Life Cycle

SPDX Software Package Data Exchange

TCP Transmission Control Protocol

TOML Tom's Obvious, Minimal Language

TUI Terminal User Interface

UDS Unix Domain Socket

UPX the Ultimate Packer for eXecutables

VCS Version Control System

XML Extensible Markup Language

YAML Yet Another Markup Language

xiv

1 Introduction

Software development is becoming increasingly reliant on code reuse from existing
components. Building on top of such artifacts has the inherent advantage that a
development team does not need to build the entire functionality of its product
from scratch, but can instead leverage existing libraries, frameworks, database
systems or, for example in the case of Linux, an entire operating system kernel.

Reuse in this manner capitalizes on e�ort that has already been expended by
third parties and allows developers to focus on implementing the core business
logic of their product.

At the same time, introducing external dependencies into a software product,
whether they are open source, commercial or in-house, inadvertently adds com-
plexity.

Essential tasks across the Software Development Life Cycle (SDLC) such as
adding components to a project, keeping these components up-to-date and refer-
encing them in a central point of record so they become trackable are all challenges
that need to be overcome for software products today.

Within Siemens we see a trend that products, particularly web applications, often
rely on hundreds or even thousands of third-party components. For this volume
of dependencies handling the tasks outlined above is not feasible. One way of
tackling these pain points are package managers like npm or pip that provide de-
pendency management capabilities for software dependencies, such as installing,
updating and listing project dependencies and their relevant metainformation, in
most cases also including basic copyright and license information as declared on
the package.

Data provided by such package managers can be leveraged in the context of
the Siemens Clearing Platform (SCP), a Siemens-internal service that helps pro-
jects ensure compliance with the licenses of third-party software components used
within their product, a process that this thesis refers to as Software Clearing.

While SCP also provides support with Software Clearing for commercial soft-
ware components, the framework developed in this thesis focuses on open source

1

1. Introduction

dependencies. That is not to say that the given plugin architecture couldn't
also be leveraged for the purpose of analyzing commercial dependencies, but the
reference tools developed currently do not support this.

The main goal for this thesis is to evaluate the existing tooling within SCP and
to improve upon it by providing a framework that uni�es the core functionalities
required for the generation of Software Bills of Materials (SBOMs).

1.1 Bene�ts of SBOMs

As an introduction to the topic the thesis will �rst investigate some of the key
bene�ts that an SBOM can provide for a software product and the stakeholders
interacting with it.

In it simplest form, an SBOM is a record of the artifacts included in the com-
ponent the SBOM describes. The concept of producing such a Software-BOM
was adopted from traditional engineering disciplines, where it is commonplace
and often required for regulatory reasons to provide a Bill of Materials, that is,
a comprehensive record of the the parts and items included in the product.

Producing such a document can provide valuable insight to development teams
by making information readily available that would normally have to be retrieved
from technology-speci�c build �les. Knowing the dependencies a software arti-
fact has is an inevitable requirement for many regulatory and compliance-related
tasks.

One such task as already outlined above is Software Clearing, but Export Con-
trol Compliance (ECC), where detection of dependencies a�ected by an embargo
or other trade regulations is essential, and vulnerability monitoring to identify
known security vulnerabilities are other examples. Additionally, if regressions are
introduced by library con�icts after dependency changes in a product, a compre-
hensive record of how the product dependencies have changed over time can help
identify the origin of such con�citing changes.

In the scenarios above, the main consumer of the SBOM is often the producer
itself, however publishing or shipping such a document alongside a product also
o�ers bene�ts to customers and users. On the one hand, security experts can
incorporate this data and the derived vulnerabilities in their threat model and, if
such documents are centrally stored for all products in use in an organization, it
becomes possible to quickly determine which applications are a�ected by known
vulnerabilities. The detection of log4shell (`CVE-2021-44228', 2021), a critical
bug in Apache Log4J, a popular logging library used in many Java applications,
serves as a prime example of a situation in which the ability to quickly identify
vulnerable applications is essential for organizations. (Arora et al., 2022, p. 123)

2

1. Introduction

One essential requirement in this context is for the consumers and producers
of these documents to agree on a common format. Many companies, including
Siemens, have been building records that qualify as an SBOM in the sense that
they provide a list of used components, for a long time. However, often these
records were only available in a proprietary format which made it di�cult to
share them with third parties.

As a result, in 2011, the Linux Foundation published the �rst version of Software
Package Data Exchange (SPDX), a data format that facilitates the exchange of
package information (Linux Foundation, 2011). Since then, various addtional
formats such as CycloneDx and SWID have been introduced. Section 4.2.5 will
investigate the CycloneDx format in more detail.

3

1. Introduction

4

2 Problem Identi�cation

As mentioned in the introduction SCP already provides a toolchain for automated
dependency detection to its customers. This thesis will �rst give an overview of
these existing tools and subsequently identify the key problem areas in open
source and in-house tools alike.

2.1 Existing solution

A toolchain to automatically detect and analyze third-party package dependencies
has been in use within SCP since 2019. This toolchain consists of standalone
applications that are designed to run in sequence within customer CI pipelines.
These applications can broadly be classi�ed into three main types:

� Scanners, i.e. applications that can understand package metadata and con-
struct an SBOM from it

� SBOM Tools that take an existing SBOM, e.g. the output of a scanner and
operate on it

� An SBOM ingester that takes an SBOM and submits its contents to a
central system that all software dependencies are tracked in

These existing tools are either bundled as plugins for speci�c package managers
or build tools or they are distributed as container images compliant with the
Open Container Initiative (OCI) speci�cation. Each application also provides a
basic template for its integration into a GitLab CI pipeline. Depending on their
target environment, the applications are variably implemented in Java, Python,
C#, Dart, TypeScript or Bash.

2.2 Drawbacks of the existing solution

While this existing toolchain is currently deployed in hundreds of internal projects
it has a number of drawbacks that are discussed in the following sections.

5

2. Problem Identi�cation

2.2.1 Code duplication

Many of these tools, while they might consume di�erent inputs, share core func-
tionalities such as resolving license names to SPDX IDs or computing �le check-
sums. In their current form, these core functionalities are not bundled in a
common library, nor is it easy to do so given the polyglot nature of the exist-
ing toolchain. This leads to code duplication and, particulary in the context of
writing output data, any changes to the format either need to be coordinated
across all tools or consumers of these outputs need to support various iterations
of the format at any given moment. This is especially painful for tooling main-
tainers if a blindspot or bug in the marshalling of an output �le is identi�ed and
subsequently needs to be patched in all producers.

The existing tools outlined above rely on shared libraries wherever possible, for ex-
ample, the company-internal standard-bom format provides library implementa-
tions for both Java and .NET. However, for integration with existing third-party
tools implemented in other technologies, it is currently necessary for developers to
provide their own implementation that complies with this format. Keeping these
implementations in sync is not trivial, despite e�orts to automate compliance
validation through a published jsonschema.

2.2.2 Inconsistent User Experience

Since the existing tools are loosely coupled and therefore inherently modular, it
is possible for users to pick and choose the tools that need to run within their
pipelines. At the same time, this also means that each tool needs to be set
up and con�gured individually. To do so, users need to consult the respective
documentation for each tool and identify the prerequisites that need to be met
for its integration. This process can be error-prone and time-consuming.

Moreover, knowledge about the con�guration of one tool may not translate to
other tools. For example, while one general guideline for applications that are
part of the toolchain is to favor con�guration through environment variables,
there is no enforced naming scheme for the variables an application expects.

2.2.3 Lack of signing capabilities

The existing toolchain does not provide users the option to cryptographically
sign their SBOMs which limits the ability to verify their source and makes it
impossible to identify modi�cations made to the documents in transit. This can
lead to scenarios that result in altered SBOMs that may contain defective data
entering the central record. Such modi�cations can be di�cult to detect, if at
all, and always require manual investigation. Without the ability to verify that a
document was produced by a speci�c user, the current tooling is forced to default

6

2. Problem Identi�cation

to a trust-all model, that is, any SBOMs that enter the toolchain need to be
considered as trustworthy. That is not to say that sanity checks on the data
contaiend in the document do not take place, but these checks cannot negate the
risks introduced by such an approach.

2.3 General Challenges with SBOM generation

Beyond the drawbacks speci�c to the existing solution within SCP there are
a number of general challenges that arise in the context of automated SBOM
generation. This section demonstrates these challenges and exempli�es them on
existing open source tools.

2.3.1 Unwarranted trust in Package Metadata

Many tools operate on the premise that package metadata is reliably accurate.
There are many real-world examples that prove this assumption generally doesn't
hold. For one thing, many packages only allow maintainers to declare a main li-
cense which means that this data point does not necessarily re�ect all licenses
present within a package. Some package managers rectify this by allowing SPDX
expressions to be declared as licenses. This approach is slightly better, but
also misses critical information as, for example, it is impossible to reconstruct
which �les within a package are covered by what license based on the license
expression alone. As an example, if a package declares the license expression
LGPL-3.0-or-later AND GPL-3.0-or-later the only thing that can be inferred
from this declaration is that both licenses apply to some portions of the package.

Furthermore, while large open source communities equipped with their own gov-
erning bodies and review processes may be dilligent about the accuracy of the
metadata they publish alongside their packages, the same can not be said for
individual maintainers. This problem is aggravated by the fact that many popu-
lar packages are authored by a single individual. For example, a metaanalysis of
all packages hosted on the pypi Index revealed that only a fraction of publicly
available python packages were authored by organizations or multiple individuals
(Bommarito & Bommarito, 2019).

2.3.2 Unclear de�nition of SBOM Formats

Another major problem a�ecting SBOMs is the fact that many of the established
formats such as CycloneDX and SPDX expose many �elds that may be populated
by a producer, but the standards themselves only require a minimal set of this
information to be present for a document to be considered valid. The CycloneDx
1.4 speci�cation for example only requires a type and a name for a component

7

2. Problem Identi�cation

entry to be compliant with its speci�cation (OWASP Foundation, 2022). How-
ever, these two data points alone are hardly useful in any context an SBOM might
be consumed in.

For the purposes of Software Clearing in particular, since analysis of a compon-
ent's source code is often imperative, data points that allow a component to be
resolved to the source code it was produced from, such as integrity checksums, are
essential. Not all existing open source SBOM generators available today manage
to reliably provide this information. Special care needs to be taken when con-
suming such documents as the fuzzy nature of the data contained within them
may jeopardize any e�orts of documenting a project's supply chain. Chapter 7
will elaborate on some of the blindspots inherent in existing FLOSS tools.

8

3 Objective De�nition

Based on the identi�ed problems given in the previous chapter, this chapter will
focus on de�ning clear and veri�able objectives for the design and implementation
stages of the thesis.

3.1 Framework De�nition

Since the goal is to provide a solution that solves problems speci�c to the do-
mains of Software Clearing and Software Dependency Analysis, it is an obvious
choice to implement the toolchain around a framework that encapsulates the
domain-speci�c concepts. To better understand the requirements of such an im-
plementation, this section introduces the core elements of a framework as de�ned
in Riehle (2000).

At its basic level a framework serves as a sca�olding that introduces constraints
on how the di�erent elements within the domain model may interact with each
other. In object-oriented langauges, such constraints are often de�ned through
interface de�nitions and abstract classes. As the core of hyperion, the tool
described in this thesis, is implemented in Go abstract classes are not available
and the design solely relies on interfaces.

Users of the framework may then introduce custom behavior at prede�ned in-
jection points in the framework. Doing so often involves providing a custom
implementation for one of the interfaces exposed by the framework. Addition-
ally, template methods may be used to invoke custom logic at certain points in
the application lifecycle. This common design pattern described in Gamma et al.
(1994) allows framework designers to de�ne the high-level operations an imple-
mentation needs to provide, delegating the application-speci�c implementation
to the user.

9

3. Objective De�nition

3.2 Extensibility through plugins

As outlined in the previous section, one of the core properties exhibited by a
framework is the ability to extend it. In order to satisfy this requirement, the
resulting tool needs to allow its users to override, change and enhance its key
functionalities by providing their own implementations. To that end, for the core
functionalities of dependency detection, result aggregation and output format-
ting the framework needs to support the integration of plugins that either build
upon or replace the baseline implementation provided by the framework. The
plugin subsystem needs to �exibly support implementations written in various
di�erent technologies and needs to provide dynamic plugin detection capabilities
at runtime based on provided user con�guration.

3.3 Project-level con�guration

Because of its execution context within a CI environment, the tool needs to allow
users to provide con�guration on a per-project level. To satisfy this, hyperion
needs to support loading con�guration options from a �le that a user can check
into their Version Control System (VCS) such that it is available in the CI
pipeline's execution context. The exposed con�guration options need to cover
both the core application including any logging options and the registered plu-
gins, that is, the core application needs to parse the plugin con�guration nested in
its own con�guration and delegate it to the respective plugin. The framework and
its documentation also need to provide users with comprehensive documentation
about the available con�guration options.

3.4 SBOM Contents

The tool and all of its reference plugins need to provide SBOMs that contain the
minimum elements put forth by the National Telecommunications and Informa-
tion Administration (NTIA) as outlined in the table below (Telecommunications
& Administration, 2021).

As the tool is primarily expected to detect and report packages provided through
package managers we rely exclusively on a Package Uniform Resource Locator
(PURL) as as a unique identi�er for components within the SBOM and the applic-
ation's execution context (Ombredanne, 2017). Beyond these minimal require-
ments one essential data �eld each plugin needs to provide is a reference to the
source code a package was derived from. For the purposes of Software Clearing

downstream analysis of the source code through an SBOM consumer to detect
copyright information and additional licenses within a source set is a mandatory
requirement for SCP. In cases where providing a direct reference to source code

10

3. Objective De�nition

Table 3.1: The minimum elements of an SBOM as de�ned by the NTIA

Data Field Description

Supplier Name
The name of an entity that creates, de�nes,
and identi�es components.

Component Name
Designation assigned to a unit of software de�ned
by the original supplier.

Version of the Component
Identi�er used by the supplier to specify a change
in software from a previously identi�ed version.

Other Unique Identi�ers
Other identi�ers that are used to identify a
component, or serve as a look-up key for
relevant databases.

Dependency Relationship
Characterizing the relationship that an upstream
component X is included in software Y.

Author of SBOM Data
The name of the entity that creates the
SBOM data for this component.

Timestamp
Record of the date and time
of the SBOM data assembly.

or a deep link it can be obtained from is not feasible, tools should alternatively
provide �ngerprinting information that allows a package entry to be resolved to
its source code. One concrete example of such a �ngerprint are the hash digests
of binary artifacts. These digests, together with the package coordinates, that
is, namespace, name and version of a package, make it possible to query public
registries for artifacts matching these checksums and subsequently resolve them
to the source artifacts they were created from. Should the automation fail to
provide such references for open source components, the source code for the af-
fected package would then need to be procured manually, creating a bottleneck
in the clearing process.

Even in cases where a package entry in the SBOM provides references to its source
code outright, checksums that allow to verify the integrity of this source code are
bene�cial. For the scope of hyperion a cryptographically secure digest, preferably
a sha256 digest is expected to be present. This algorithm and, more broadly,
all algorithms of the SHA-2 family, are approved by NIST for the purposes of
generating digital �le signatures (Dang, 2009). Additionally, for the purpose of
allowing straightforward matching against legacy datasets that only provide md5
and sha1 checksums, these algorithms also need to be supported, but should only
be used alongside a NIST-approved algorithm that additional veri�cations can
be conducted with.

11

3. Objective De�nition

3.5 Command-Line Interface

Because of its execution context within a CI/Continuous Delivery (CD) pipeline
the application needs to provide a Command Line Interface (CLI) that can be
invoked by a job script. Furthermore, this CLI needs to provide an entrypoint for
guided setup, leading the user through the various steps and prompting them for
information about the project that is being scanned and the plugins that need
to be con�gured. The CLI application, once invoked, needs to stream logs to
STDOUT so they can be displayed within a web UI that is commonly provided by
CI/CD platforms. Additionally, it must be possible to specify a �le as a logging
target such that users may persist the job logs as part of their build artifacts.

3.6 Portability

The application needs to be portable, i.e. a user must be able to run the tool
on di�erent operating systems and hardware architectures. On the one hand,
both Unix and Windows are in use as CI agents by our customers, additionally
Windows is the main operating system in use across Siemens for developer work-
stations so while the application may run on a Linux machine once deployed in
the CI pipeline, the initial setup is likely to happen in a Windows environment.
Additionally, with the availability of cheaper Graviton instances within AWS we
see a growing number of customers running their pipelines on ARM64 hardware so
this target also needs to be supported alongside the ubiquitous AMD64 instruction
set.

3.7 Reference implementations

Alongside the core application a reference implementation for each plugin type
needs to be provided. These reference implementations serve as guidelines for
developers looking to develop their own plugins and their code needs to be docu-
mented and provided alongside the core application. Additionally, these reference
plugins need to be useful, production-ready tools that enhance the core applica-
tion. Towards that end, the following reference plugins are to be developed:

� A scanner that enables detection of npm packages from package-lock.json
and yarn.lock �les, developed in Go

� A scanner for pypi packages developed in Python, showcasing the capability
to execute plugins developed in di�erent technologies

� A scanner that is capable of resolving go module references from go.mod

�les checked into a repository.

12

3. Objective De�nition

� A source code downloader developed in Go that takes intermediary results
and attempts to obtain their source code

� A CycloneDX output plugin that consumes the internal SBOM represent-
ation and marshalls it into a CycloneDX 1.4 compliant Javascript Object
Notation (JSON)

3.8 Output Signing

The core application needs to provide signing capabilities that allow output plu-
gins to take their output and sign it with a user-provided cryptographic key. The
application needs to take special care not to leak the key.

13

3. Objective De�nition

14

4 Solution Design

This chapter provides an overview of hyperion, the CLI tool that was implemen-
ted in the context of this bachelor thesis. It covers the subcomponents developed
as part of the tool and their respective functionalities. Additionally, an outline
of the technologies that enabled its development is provided.

4.1 Subcomponents

In order to ful�ll the requirement of �exibility, hyperion is composed of multiple
subcomponents. This section showcases these components and explains their
purpose within the larger application. The following sections are split into an
introduction to the main application and the plugins that integrate with it.

4.1.1 Core application

The main application provides common functionalities such as loading and storing
con�guration, loading and orchestrating plugins and aggregating outputs. To
provide these features it exposes its own subcomponents.

Terminal User Interface

hyperion is a tool targeted towards users that are expected to be familiar with
command-line environments. Consequently setup and con�guration of the tool
happen through a Terminal User Interface (TUI) that allows users to provide any
information necessary to run hyperion as part of their CI pipelines. This TUI
can be invoked through the autopilot command and guides the user through
the setup process. After successful completion of this setup, the resulting con�g-
uration is written to disk and can be stored alongside the project that is to be
analyzed in the VCS.

15

4. Solution Design

Filesystem Walker

Scanning the �lesystem for package manager metadata that can be analyzed is a
common concern for all scanner plugins, therefore the core application centrally
provides this functionality to reduce the need for code duplication. Scanners,
once loaded, can provide a set of patterns that are of interest to them. The
Filesystem Walker component will then recursively traverse the directory struc-
ture provided in the application con�guration, checking each directory and �le
encountered against these patterns. Additionally, to prevent the component from
scanning irrelevant parts of the �lesystem, a user can provide an exclusion list
of paths to skip. If a path provided on this list is a directory, then all subpaths
contained in this directory will also be skipped. The default implementation can
be replaced with custom logic that implements the respective interface.

Plugin Loader

This component realizes the detection and loading of plugins. The reference
implementation allows users to de�ne a set of search paths that will be considered
during plugin detection on top of the default paths. Its interface also exposes
methods that allow users to limit the plugins that should be loaded to a known
set or to override this behavior and simply load any plugins. The loader's default
implementation can be replaced with a custom loader that satis�es its interface.

4.1.2 Plugins

While the core application provides shared functionality, more specialized func-
tionality is implemented in plugins. hyperion supports three di�erent types of
plugins:

� Scanners

� Transformers

� Writers

Each of these plugin types exposes a public interface that allows developers to
provide custom implementations.

Scanners are tools that detect the presence of packages or package metadata
on the �lesystem and construct a result entry for each detected package. The
core application is responsible for passing the user-provided con�guration op-
tions to the plugin when loading or invoking it. The core application executes
scanners concurrently and subsequently aggregates the results into an intermedi-
ary SBOM expressed in hyperion's internal format. It is the plugin developer's
choice whether additional resources, such as a Web Application Programming

16

4. Solution Design

Interface (API) are consulted during a Scan to enrich the detections with addi-
tional data. Apart from the resulting SBOM entries Scanners are expected to
report any errors that occurred during a scan to the host application.

Transformers receive the intermediary results outlined above as inputs and re-
turn a modi�ed SBOM as output. Transformers may have additional side e�ects
beyond modi�cations to the BOM. For example, a Transformer could resolve
any download URLs provided by package entries, download the associated source
code bundle and store it alongside the SBOM. Other examples might include the
removal of duplicate entries and the enrichment of existing entries with additional
data. By default transformer plugins are executed in sequence in the order they
are declared in the con�guration.

Writers receive the �nal scan result in hyperion's internal format and write
outputs. For example a Writer may convert the internal representation into a
well-known SBOM format like CycloneDX and store it on the local �lesystem or
it may choose to instead send the result to a web service for further processing.
Writers are executed concurrently.

4.2 Technology Stack

This section references the core technologies used to build hyperion.

4.2.1 The Go Programming Language

The goal for this project was to provide a tool with a responsive CLI that is per-
formant enough to run as a regular CI job without prolonging pipeline runtimes
signi�cantly. The languages evaluated for the implementation of the core applic-
ation were Java, Python and Go with Go being chosen over the other contenders.

Go is an open source programming language originally developed by Google for
in-house use (Robert Griesemer, 2009). It is a statically typed and compiled
language that also o�ers garbage collection. Because Go binaries contain native
machine code they start up quickly, making the language and its runtime ideal
for CLI applications. At the same time, the Go toolchain distributed as part
of the language allows for straightforward cross-compilation of binaries to other
target architectures and operating systems, therefore the compilation to native
machine instructions does not impede portability of the application. Due to
its classi�cation as a compiled language, Go has also been shown to be more
performant than an interpreted langauge like Python for many use-cases, the
Computer Language Benchmark Game may serve as empirical evidence of this
(Gouy, n.d.). One additional advantage Go has over the other options given above
is that the language runtime is compiled into the binary and it is therefor not

17

4. Solution Design

necessary for a user to have any additional runtime installed in order to execute
a Go application. More speci�cally, if CGo support is disabled the go compiler
goes as far as producing a purely static binary that does not require any dynamic
libraries to be present for a Go application to run. For linux binaries this can be
veri�ed by compiling the application and subsequently invoking ldd to analyze
the binary for any dynamic references. Listing 10 shows an example of this. It
is worth nothing that disabling CGo is generally not a risky operation as a build
with CGo would simply fail if a Go application requires CGo.

$ go bu i ld =o hyper ion . / core /main . go # de f au l t bu i ld without add i t i ona l opt ions
$ ldd hyper ion # invoke ldd to show any shared ob j e c t dependenc ies
> l inux=vdso . so . 1 (0 x00007 f f f 715a3000)

l i bp th r ead . so . 0 => / l i b /x86_64=l inux=gnu/ l i bp th r ead . so . 0 (0 x00007f531a024000)
l i b c . so . 6 => / l i b /x86_64=l inux=gnu/ l i b c . so . 6 (0 x00007f5319dfc000)
/ l i b 6 4 / ld=l inux=x86=64. so . 2 (0 x00007f531a045000)

$ CGO_ENABLED=0 go bu i ld =o hyper ion . / core /main . go # compile again with CGo
e x p l i c i t l y d i s ab l ed

$ ldd hyper ion # run again on pure ly s t a t i c binary
> not a dynamic executab l e

Listing 4.1: Statically compiled Go binaries

4.2.2 gRPC

gRPC is an RPC framework that enables e�cient communication between remote
services. A server may expose methods that can be called by clients as if they
were local resources. The qualifer remote may describe the scenario of client and
server running on di�erent machines with calls being brokered over a network,
but gRPC can also be used for Inter-Process Communication (IPC). This scenario,
where client and server both run on the same machine but in di�erent processes
is how hyperion uses gRPC.

The framework allows the use of Protocol Buffers, another open source stand-
ard, as its Interface De�nition Language (IDL) and message format. While other
message formats are supported, hyperion exclusively uses Protocol Buffers to
de�ne its interfaces exposed through the framework.

4.2.3 JSON Web Signature

JSON Web Signature (JWS) is a proposed standard (M. Jones, 2015) for the
representation of signed content within JSON data structures. A JWS consists
of a header, which encodes information about the cryptographic algorithms and
input parameters that were used to produce the signature, a payload, which can
be an arbitrary sequence of bytes, and a signature which is the result of applying
the cryptographic operations de�ned in the header to both the header and the
payload. If an asymmetric key pair is used and a JWS was signed with a private
key, then given the corresponding public key, a consumer can verify that the JWS

18

4. Solution Design

was not modi�ed in transit and that it was produced by somebody with access
to the private key.

4.2.4 syft

syft is an open source CLI application maintained by Anchore Inc. and distrib-
uted under the Apache-2.0 license. It provides the ability to scan container images
and �lesystems and produce an SBOM from its �ndings. Its detection capabilit-
ies are realized through catalogers and as of release v0.55.0 18 package types
are supported. syft exclusively relies on �lesystem data for its detections and
does not reach out to any external sources to enrich the content of its detections.
This approach allows it to produce results very quickly. A typical syft scan of a
container image only takes a few seconds. However, this decision also comes at
the cost of producing incomplete results. In such cases, it is the responsibility of
the SBOM consumer to take the result produced by syft and enhance it with
additional information as needed.

4.2.5 CycloneDX

CycloneDX is an open-source SBOM format published under the Apache-2.0 li-
cense. The project is backed by the CycloneDX Core working group and ori-
ginated in the OWASP community. Release 1.4 of the CycloneDX speci�cation sup-
ports both Extensible Markup Language (XML) and JSON as output formats
and provides schemas for both that SBOM producers can validate their outputs
against.

19

4. Solution Design

20

5 Implementation

The following chapter demonstrates how the design decisions outlined in the
previous chapter are re�ected in the implementation of hyperion. Additionally,
any third-party libraries and data formats used in the application are referenced
where applicable.

5.1 Repository Structure

All source artifacts produced as part of this thesis are stored in a single repository
hosted within the company's GitLab instance. The layout of its directory presents
itself as shown in listing 53. Any code related to the main application is contained
in the core directory, including the CLI commands to invoke the application and
the TUI implementation. The contents of the pkg folder will be discussed in
section 5.2. The remaining portion of the repository, placed in the plugins

directory contains both the reference implementations for each plugin type and
the shared library portion, including the interface de�nitions for each plugin type.
Section 5.4 will revisit these plugins in more detail.

.
|== core
| |== cmd
| `== pkg
| |== concurrency
| |== hyper ion
| | |== c on f i g
| | `== e r r o r s
| |== l oade r
| |== models
| | |== a r t i f a c t s
| | |== hashes
| | |== l i c e n s e s
| | `== pat t e rn s
| |== r e p o s i t o r y
| |== s i g n e r
| `== t u i
`== p lug in s

|== common
| |== proto
| |== scanner
| | `== proto
| |== t rans fo rmer

21

5. Implementation

| | `== proto
| |== u t i l s
| `== wr i t e r
| `== proto
|== scanners
| |== go_scanner
| | |== models
| | |== par s e r
| | `== u t i l s
| |== npm_scanner
| | |== models
| | |== t e s tda ta
| | `== u t i l s
| |== pypi_scanner
| | |== d i s t
| | |== pypi_scanner
| | | |== i n s t a l l e r
| | | `== pa r s e r s
| | |== t e s tda ta
| | `== t e s t s
| | `== pa r s e r s
| `== sy f t_scanner
| |== conver t e r
| |== runner
| `== t e s tda ta
|== t rans f o rmer s
| `== source_downloader
`== wr i t e r s

`== cyc lonedx

Listing 5.1: Tree view of directory structure as produced by 'tree -n �
charset=unicode -d'

5.2 Hyperion

The core of hyperion provides three main artifacts

� The domain models, i.e. the data representation of dependencies and their
metadata within the application

� Utilities that operate on the domain data and realize functionalities com-
monly required in the context of SBOM generation

� The sca�olding for an application that can detect dependencies, transform
their representations and write them to an output format

The following subsections will look at each of these artifacts in detail.

5.2.1 Domain Models

The models subdirectory contains struct de�nitions that represent key elements
of an SBOM alongside operations that can be applied to that data. Additionally,
it also contains the de�nitions for any metadata exchanged between the host and
its plugins.

22

5. Implementation

Appendix A.1 contains detailed information about all models de�ned as part of
the application.

SBOM-related Models

The keystone in all of these models is the Package type which provides a generic
representation of an artifact consumed from a package manager. It is conceptually
similar to the component type de�ned by CycloneDx but di�ers in a number of
key ways.

For one thing the dependencies of a package are directly de�ned on the package in
hyperion's representation, allowing us to quickly resolve the source graph without
the indirection of consulting an additional lookup table. Secondly, as the ability
to reference source code is of vital importance to the core use-case of Software
Clearing the package struct embeds information about its source artifacts directly
on the struct in a special-purpose �eld. Go's struct embedding feature is used to
embed a PackageCoordinates subtype in a package. This allows the struct to be
passed around as if it were an instance of the embedded type and is conceptually
similar to subclassing in other languages. These package coordinates constitute
a package namespace, name and version and are su�cient to uniquely identify
a package within an SBOM. For convenience, a package coordinates struct also
includes a PURL that can be used as a key for many mapping purposes. The
packageurl-go 1 library and its PackageURL type are used for convenience.

Beyond these �elds a package may also hold references to the URL its VCS is
reachable from, as well as a project homepage and authorship and maintainer in-
formation. Any �elds referencing organizations or people are of type LegalEntity
and encapsulate name, email and homepage which are the data �elds commonly
available on package metadata such as an npm package.json.

Information about a package's licenses is encapsulated in the LicenseContainer
type which is similar to the LicenseChoice type de�ned in the CycloneDx spe-
ci�cation in that it may either hold an SPDX license expression or a concrete
license that may optionally contain a URL reference and the embedded license
text.

Beyond these �elds a package also provides other metadata such as a copyright
�eld that may contain any string or metadata about the plugin that detected it
and where it was detected.

The SoureArtifact type is a simple container that either links to a download
URL for source or a BOM-relative path. Additionally, checksums that facilitate
integrity veri�cation and �ngerprinting may be provided.

1https://github.com/package-url/packageurl-go

23

5. Implementation

An aggregation of all detected packages is simply referred to as a BOM within the
application and, in addition, a BOM contains a metadata section that, among
other data points, includes a comprehensive list of any tools or plugins that
participated in the creation of the BOM.

Internal Models

Apart from the models describing core SBOM elements outlined above, the ap-
plication also provides models that are only relevant within the context of the
application itself and are used to exchange data between the host and plugin
applications.

For example, if a plugin noti�es the host about �le patterns it is interested in, it
does so by providing an implementation of the SearchPattern interface.

At its core, the interace, shown in listing 5.2 provides the Matches() method
which expects a string as input and returns a boolean value. This approach
allows the framework to remain agnostic about the underlying implementation.

// SearchPattern a l l ows to d e f i n e r u l e s that paths can be matched aga in s t
type SearchPattern i n t e r f a c e {

//Matches r e tu rn s t rue i f path matches the under ly ing ru le , f a l s e o therw i se
Matches (path s t r i n g) bool
//Tag r e tu rn s the tag a s s o c i a t ed with a pattern , i f any
//These tags can be used by downstream t o o l s to c l a s s i f y pat t e rn s / f i n d i n g s
Tag () s t r i n g
//ToDto i s a he lpe r method that a l l ows marsha l l ing a Pattern
// in to a DTO that can be sent over an RPC connect ion
ToDto () SearchPatternDto
//ToProto i s a he lpe r method that a l l ows marsha l l ing a Pattern
// in to a Protobuf DTO that can be sent over a GRPC connect ion
ToProto () proto . SearchPattern
//Pattern r e tu rn s a s t r i n g r ep r e s en t a t i on o f the search pattern
Pattern () s t r i n g
fmt . S t r i n g e r

}

Listing 5.2: The SearchPattern interface

Two implementations of this interface are also provided as part of the framework,
the SimpleSearchPattern that trivially matches whether the string de�ned by
the pattern is contained in a path and the RegexSearchPattern which allows for
more sophisticated matches based on regular expressions.

5.2.2 Processing Utilities

As already outlined, the implementation also provides common utilities that aid
in processing package metadata and related entities.

24

5. Implementation

JWS Signer

One such tool is the JWS Signer that allows producing JWS signatures for SBOM
output, this subcomponent satis�es the requirement de�ned in section 3.8. While
de�ned as generically as possible, its main purpose is to provide signing capab-
ilities for output plugins. A plugin can simply invoke the signer with a byte
stream payload and the signer will provide a signed JWS token that complies
with M. Jones (2015)

The signer supports keys in three di�erent PEM formats: PKCS8 and PKCS1 for
RSA keys and EC1 for signing keys based on elliptic curve cryptography. These
three formats cover the requirements within Siemens. On top of the standard
JWS signing procedure as de�ned in RFC7515 which has the side e�ect that the
signed data is stored as a Base64 payload on the token itself which forfeits read-
abilty by humans, the signer also supports detached signing, where the payload is
not marshalled to Base64 and added to the token, but rather placed alongside the
token. Many library implementations of the JWS standard support this scheme,
including go-jose which is the implementation the signer relies on.

Concurrency Helpers

One downside of the lightweight design principles for the Go language is that
unlike in other languages such as Java, its standard library does not o�er higher
order concurrency primitives that allow users to conduct operations such as map,
filter or foreach in parallel. Such facilities either have to be implemented
using the lightweight concurrency facilities available in Go, namely goroutines,
which allow concurrent execution of code and channels, which provide message-
passing capabilities between these concurrently executed routines, or imported in
the form of existing libraries.

For the case of hyperion the decison was made to provide a custom implementa-
tion rather than adding a dependency to a library that o�ers far more advanced
primitives than are needed for the purposes of the application. These primitives
implement the operations mentioned above using Go Generics which were added
to the language in early 2022 (The Go Maintainers, 2022a), as such they are
highly reusable. The primitives are particularly helpful in scenarios where slow
�lesystem or network calls can be overlapped to hide latencies and maximize
throughput.

Plugin Loader

PluginLoader is a core interface in the application that handles detection and
instantiation of plugins. The reference implementation included in the application
will crawl a prede�ned set of directories for �les matching prede�ned naming
patterns for plugins. For each of these plugins, the loader will then instantiate an

25

5. Implementation

interface implementation that can be called directly from the core application.
If additional features are required, such as signature veri�cation on the binaries
to ensure that they are provided by a trusted entity or downloading plugins
from remote locations, users may implement their custom loader satisfying the
interface and register that with the main application.

5.2.3 The Core Application

The application core is mainly responsible for orchestrating all the primitives
de�ned until this point. Once it has been initialized from con�guration, it will
progress through the following steps in sequence:

1. Invoke the registered PluginLoader instance to retrieve any plugins re-
quired for the scan. In addition to these loaded plugins, it is possible for
users to explicitly register additional plugin implementations on the applic-
ation context

2. Query each registered scanner plugin about its declared SearchPattern

instances and store them on the application context in a map that allows
it to correlate the pattern with the plugin it came from

3. Invoke the registered FsWalker instance, passing the root path for the
�lesystem scan and all registered searches

4. Gather the FsWalker �le matches and partition them based on the scanner
plugin they need to be delegated to.

5. Invoke all registered scanner plugins concurrently, passing the relevant iden-
ti�ed matches to the plugins.

6. Parse the scan results retrieved from each scanner plugin, handle any scan
errors and aggregate the results in a central Repository instance that also
takes care of removing duplicate �ndings

7. Construct an intermediate Bom instance that is then passed to each re-
gistered transformer plugin. The transformer plugins are executed in se-
quence in the order in which they are de�ned on the con�guration �les.

8. Submit the Bom as it exists after the transformer call chain has concluded
to all registered writers in parallel.

9. Wait for all Writers to complete, process any errors and tear down the
application context by invoking the Cleanup method that also allows users
to register cleanup hooks for their manually registered plugins

The Run and RunAndCleanup methods encapsulate all of these steps in a single
entrypoint that users can call. Additionally, for more specialized needs, the ap-

26

5. Implementation

plication exports additional methods that allow callers to manually orchestrate
the execution steps.

5.3 Command Line Interface

The CLI exposes two main commands, autopilot which provides the setup and
con�guration functionality and scan which triggers a project scan using the main
application. In the implementation of these commands hyperion relies on cobra,
a common Go library that aids in the development of CLI tools and provides con-
venient routines to declare subcommands, de�ne command-line �ags and validate
input.

5.3.1 autopilot Command

The autopilot command is implemented as a TUI that guides the user through
the setup process.5.1 shows the user journey for the command. A user is expected
to provide key project information that will be referenced in the SBOM such as
the main component it is valid for and an optional author reference.

While the user is prompted for this information, the application concurrently
scans the known plugin locations for available plugins. By default hyperion at-
tempts to detect plugins in the current working directory and the .hyperion/plugins
subpath of the user's home directory, but these default locations may be overriden
through the --plugin-location option.

After all plugins are loaded, the application obtains the search patterns from each
of the detected scanner plugins and scans the working directory, or alternatively
the path provided as an input argument to the command, for �les matching these
patterns. Based on these �ndings a user will then be presented with a dialog that
allows them to select the plugins they want to enable for the scan. Allowing
the user to make an informed decision, detected matches are listed here for each
plugin. If the number of matches is too large, the output is truncated and limited
to a few exemplary matches. To provide �exibility when running on terminals
of di�erent sizes, the TUI supports pagination to enable scrolling in cases where
either many plugins are loaded or searches produce many matches.

After proceeding to the next view of the TUI the user will be able to select
additional plugins detected on the system. This also includes any transformer
and writer plugins. This view can also include plugins that weren't detected on
the �lesystem, but are instead de�ned in the Plugin Catalog �le. This listing
of known plugins and their respective default con�gurations allows references
to third-party plugins to be enabled as they become available. The format of
a catalog entry is also de�ned in such a way to facilitate the implementation

27

5. Implementation

of an auto-installer that downloads a plugin from a canonical URL provided in
its de�nition. After a user has selected all desired plugins, the last view of the
autopilot TUI o�ers the opportunity to review the .hyperion.yaml �le that
was generated based on the previous user choices and the default con�gurations
for each plugin. The textview component rendered as part of this view allows
users to interactively apply con�guration options to the con�g �le directly on the
terminal.

The interactive portions of the command are implemented using bubbletea 2,
a Go framework that allows developers to build TUI applications based on the
Model View Update architecture popularized by the Elm programming language
(Maintainers, 2021). hyperion de�nes several message types that are processed
in the Update Loop to transition through the setup process, including events that
are triggered asynchronously, such as plugin loading, that send data from outside
the TUI's context.

Figure 5.1: User Journey for the autopilot commmand

2Please see https://github.com/charmbracelet/bubbletea

28

https://github.com/charmbracelet/bubbletea

5. Implementation

5.3.2 scan Command

The other available command on the CLI application is the scan command that
loads the application con�guration from �le, defaulting to the aforementioned
.hyperion.yaml �le in the working directory the command is invoked in, but ac-
cepting overrides through the -c option to enable support for referencing centrally
stored con�guration. The con�guration is used to bootstrap the main application
and setup its logger. After these setup tasks are complete, this command will
simply hand over control to the main application context.

5.4 Plugin Architecture

This section describes the plugin architecture as it is implemented in hyperion.
While the solution design section mainly focused on the capabilities each plugin
type provides, this section outlines how the plugins are implemented from a
technical perspective. Table 5.1 showcases the three supported plugin types and
explains how they integrate with the main application.

As the most straightforward implementation, the framework supports native plu-
gins that need to be implemented in Go and are essentially consumed as a regular
Go library by the host application. The main bene�t of this approach is that it
su�ers from the smallest amount of communication process as there is no require-
ment for IPC and all data exchanged between the host and a native plugin lives in
the same process. At the same time, this tight integration has the downside that
the plugin, due to the fact that it is running in the same process, is not airgapped
meaning that it may be able to access data on the application context that is not
intended for its consumption. Additionally, if a bug in the plugin implementation
such as an attempt to dereference a null pointer leads to an access violation, the
operating system will kill the entire process, including the host.

As a result, native plugins, while requiring the least amount of communication
overhead at runtime, require additional care in their development and testing to
ensure that they don't threaten the stability of the entire application.

The remaining two plugin types both rely on go-plugin, a plugin system de-
veloped by HashiCorp for use in its own Infrastructure-as-Code tools and sub-
sequently published under the Mozilla Public License, version 2.0 a weak
copyleft license that requires developers to, in turn, publish any changes made to
the MPL-licensed code, retaining the MPL license for it. For the purposes of this
application, this is however not an issue as it is primarily intended for internal
use and quali�es as a "Larger Work" as de�ned in section 1.7 of the license. No
modi�cations to go-plugin source code were necessary in the development of
this project.

29

5. Implementation

The second type of implementation are plugins that run as standalone processes
spawned and managed by the host process through the functionalities provided by
the os/exec module that is part of the Go standard library. In essence, the host
launches the plugin application and subsequently brokers a connection with it
through net/rpc an implementation of an RPC protocol on top of Transmission
Control Protocol (TCP) that is also provided as part of the Go standard library.
While this plugin type does not su�er from the same risks outlined for native
plugins, as plugin and host are separated by a process boundary and exclusively
communicate through IPC in the form of a well-de�ned interface, plugins of this
type, in practice, still have the limitation that they need to be implemented in
Go. It is theoretically possible to write an implementation of the protocol de�ned
by net/rpc in other languages. However, doing so would require to additionally
implement the gob format, a binary data representation used in conjunction
with net/rpc. Moreover, apart from the signi�cant e�ort required for such an
implementation, given the existence of the third plugin type there is simply no
need to go that route.

Plugins implemented in gRPC constitute the third supported implementation type.
Their inner workings are mostly identical to those of net/rpc plugins, but the
major di�erence is, as their name implies, that they rely on the gRPC framework
for host-plugin communication. While it adds additional overhead to RPC calls
compared to the raw TCP connections used by net/rpc, this overhead is entirely
negligible for the purposes of the application described in this thesis. Interested
readers may refer to Duberstein (2020) and Werner (2021) for benchmarks that
investigate the impact gRPC has on call latencies for local IPC. The main bene�t
the framework provides is that plugins built with it don't have the same stringent
limitations in terms of the underlying technologies and runtimes they may be built
on. gRPC is an Open Source framework with a cleanly de�ned protocol.

Apart from the o�cial Google-maintained implementations that exist for the likes
of Java and Python, there are also community-maintained implementations for
many other runtimes and languages, such as Node.js and Rust. This provides
parties interested in contributing plugins to hyperion the �exibility to choose
the right tool for their needs. The project repository provides the .proto �les
that de�ne the services a plugin needs to implement, including de�nitions of
any data that may be sent to and from the service implementations. These �les
can either be compiled to language-speci�c service implementations using protoc
(The Protocol Bu�er Maintainers, 2022) or, depending on the technology used,
they may also be parsed dynamically at runtime. One additional advantage this
plugin type has is that, should the application require integration with a remote
service in the future, the sca�olding to support this is already implemnted simply
by virtue of relying on gRPC.

30

5. Implementation

Table 5.1: Overview of available plugin types

Plugin Type Integration Overhead

native
run in same process as host,
communicate directly
through in-process primitives

none - memory is shared
with main application

net/rpc

separate process,
host application and plugin
communicate via RPC
over TCP or UDS

data needs to be marshalled
in order to be sent over the wire

gRPC

separate process,
host application and plugin
communicate via gRPC
over HTTP/2

data needs to be marshalled
and gRPC introduces
additional overhead

5.4.1 Interface De�nitions

Now that the ground work of introducing the supported plugin types has been
laid, this section will elaborate on the application-speci�c usage of the technolo-
gies outline above.

From the perspective of the host application, all plugin types need to implement
two common interfaces, Configurer and Informer that allow it to get and set
the plugin con�guration, and retrieve information about a plugin, respectively.

type Conf igurer i n t e r f a c e {
SetConf ig (p lug inConf ig map [s t r i n g] i n t e r f a c e {}) e r r o r
GetConfig () map [s t r i n g] i n t e r f a c e {}

}

Listing 5.3: The Con�gurer interface

Listing 5.3 shows the de�nition of the Configurer interface. As can be seen on
the signatures of the two methods it provides, the data it receives and returns is
deliberately chosen to be as generic as possible. The reason for this is the fact
that the host does not need to understand the plugin-speci�c con�guration. To
the host, all plugin con�guration is simply interpreted as a potentially nested
key/value map that is delegated to the plugin. All the host needs to be able to
do is to load the plugin con�guration from a con�guration �le and, in the contetx
of the autopilot command that generates these con�g �les, write it to one.

31

5. Implementation

type P lug in In fo s t r u c t {
Name s t r i n g
Vers ion s t r i n g
SupportedPackageTypes [] s t r i n g
Build Bu i ld In fo

}

type Bu i ld In fo s t r u c t {
BuildTimestamp s t r i n g
CommitHash s t r i n g
CommitAuthor s t r i n g

}

type Informer i n t e r f a c e {
GetPluginInfo () P lug in In fo

}

Listing 5.4: The Informer interface and its response format

The Informer interface on the other hand, is essentially a plugin's calling card,
allowing a plugin to self-declare its name and version, supported package types
and, optionally, a BuildInfo container that holds information about the commit
that produced the plugin and the timestamp of its build, if any.

The three plugin types all embed these interfaces as can be seen below.

type Scanner i n t e r f a c e {
GetSearchPatterns () [] pa t t e rns . SearchPattern
Scan (scanLocat ions [] pa t t e rn s . SearchResult) (*models . ScanResults , e r r o r)
common . Informer
common . Conf igurer

}

Listing 5.5: The Scanner interface

Beyond these embedded interfaces, the Scanner interface additionally declares a
method that allows the host to query its search patterns and a Scan method that
receives all matches to plugin-speci�c search patterns and returns any package
references the scanner implementation was able to detect.

The protobuf service de�nition for a scanner looks, as one might expect, quite
similar, the main di�erence being that the protobuf format does not allow the
embedding of services within other services to replicate the embedded interfaces
present in listing 5.5.

s e r v i c e ScannerServ i ce {
// a l l ows pas s ing o f c on f i gu r a t i on opt ions to a p lug in
rpc SetConf ig (common . PluginConf ig) r e tu rn s (goog l e . protobuf . Empty) ;
rpc GetConfig (goog l e . protobuf . Empty) r e tu rn s (common . PluginConf ig) ;
rpc GetPluginInfo (goog l e . protobuf . Empty) r e tu rn s (common . P lug in In fo) ;
// r e t r i e v e s a l i s t o f s earch pat t e rn s from a plug in
rpc GetSearchPatterns (goog l e . protobuf . Empty) r e tu rn s (SearchPatternResponse) ;
// t r i g g e r s a scan
rpc Scan (ScanRequest) r e tu rn s (ScanResultsResponse) ;

}

Listing 5.6: The gRPC ScannerService de�nition

32

5. Implementation

The Transformer interface presents similarly, introducing only the additional
TransformBom method that takes a BOM representation and returns a modi�ed
version of it or an error if the operation failed.

type Transformer i n t e r f a c e {
TransformBom(bom * a r t i f a c t s .Bom) (* a r t i f a c t s .Bom, e r r o r)
common . Informer
common . Conf igurer

}

Listing 5.7: The Transformer interface

As the protobuf service de�nition is similar enough to not require any additional
explanation, its listing 1 can be found in the appendix A

Lastly, a Writer implementation needs to provide one additional method simply
called WriteBom that receives a BOM as input and returns an error on failure.
Its corresponding gRPC service de�nition, again, may be found in listing 2

type BomWriter i n t e r f a c e {
WriteBom(bom * a r t i f a c t s .Bom) e r r o r
common . Informer
common . Conf igurer

}

Listing 5.8: The BomWriter interface

The simplicity of these interfaces has the advantage that plugins are as decoupled
from the host as possible. They only serve one speci�c purpose and that purpose
is encapsulated in the interface they sit behind. This simpli�es any test �xtures
that need to be set up signi�cantly. In its current implementation all gRPC
services are implemented through unary rpc calls, that is, the caller sends an rpc
request and then blocks until a timeout, a response or an error is received. In
practice the host application simply calls these RPC stubs in separate goroutines
that block until the call completes while the main goroutine is free to do other
work, if any.

Since the types consumed by the gRPC services are distinct from the types de�ned
in the domain models declared on the main application, the plugins/common

folder also provides conversion helpers that take the internal representation and
map it into the types generated by protoc and vice-versa. These types and the
code that wraps the gRPC client and server implementations in the interface
expected by the main application only need to be de�ned once per language that
needs to be supported.

5.5 Reference Implementations

As part of this thesis, and in order for the host application to be useful, reference
implementations for each of the plugin types are provided. These plugins and

33

5. Implementation

their functionalities are outlined in the following section.

5.5.1 npm-scanner

The �rst implementation to be discussed in this context is the npm-scanner, a
scanner plugin implemented in Go that supports consumption as both a net/rpc
and gRPC plugin and can detect packages provided by the node package manager.
The plugin can parse the following metadata formats to retrieve information
about packages:

� package-lock.json �les, the format used by npm to store the resolved de-
pendency tree on disk (NPM Maintainers, 2022a)

� package.json �les, the format used by npm to express information about an
individual package, including its potentially unresolved dependencies (NPM
Maintainers, 2022b)

� yarn.lock �les, the lock format used by yarn v1, another popular package
manager for npm packages

The parsing of these di�erent formats is realized by concrete implemenations of
the NpmMetaResolver interface shown below.

type NpmMetaResolver i n t e r f a c e {
ResolveFromPath (path s t r i n g) (map [s t r i n g] models . LockPackage , e r r o r)
Resolve (reader i o . Reader) (map [s t r i n g] models . LockPackage , e r r o r)

}

Listing 5.9: The NpmMetaResolver interface

For any of the three implementations ResolveFromPath is simply a convenience
function that calls the Resolve method internally with a Reader produced from
the �le pointed to by the path parameter.

The two lock �le variants already contain basic information about each package,
at a minimum a package name and version identi�er and the dependencies de-
clared by a package. In the case of the yarn.lock �le entries are guaranteed to
also include a URL the package was obtained from, or in npm terms, resolved to.
For package-lock.json �les whether such a resolved link is present depends on the
version of the �le and a number of other parameters.

In both cases, if they are present, these entries also include subresoure integrity
digests 3 that not only allow to verify that the resource hasn't been modi�ed, but
that serve as a �ngerprint that can be useful in resolving packages from public
registries in cases where the resolved URL given on the lock �le references a
private registry mirror as is often the case in corporate settings.

3https://w3c.github.io/webappsec-subresource-integrity/

34

5. Implementation

"node_modules/@babel/ he lper=va l i da to r=opt ion " : {
" ve r s i on " : " 7 . 1 8 . 6 " ,
" r e s o l v ed " : " https : // r e g i s t r y . npmjs . org /@babel / [. . .] / he lper=va l i da to r=option
=7 .18 . 6 . tgz " ,

" i n t e g r i t y " : " sha512=XO7gESt5ouv / [. . .] 0 1PCwmR0SJHnkW6i8OwW/EVWRShfi4j2x+KQw
==",

"dev " : true ,
" eng ine s " : {

"node " : ">=6.9.0"
}

} ,

Listing 5.10: Example of a single package-lock.json entry (truncated)

"@babel/code=frame@^7 .0 . 0" , "@babel/code=frame@ ^7 . 1 4 . 5 " :
v e r s i on "7 . 14 . 5"
r e s o l v ed " https : // r e g i s t r y . yarnpkg . com/@babel / [. . .] = 7 . 1 4 . 5 . tgz#23
b08d740e83f49c5e59945fbf1b43e80bbf4edb "

i n t e g r i t y sha512=9pzDqyc6OLDaqe+z [. . .] + vOtCS5ndmJicPJhKAwYRI6UfFw==
dependenc ies :
"@babel/ h i g h l i g h t " "^7 .14 .5"

Listing 5.11: Example of a single yarn.lock entry (truncated)

One additional, noteworthy, di�erence between the two formats is that the yarn.lock
�le is not a JSON �le and the top level key for each entry are actually the depend-
encies declared by other packages in the same lock �le it satis�es. This allows
fast resolution of the dependency tree, even for tools that do not implement the
resolution strategies used by npm.

On top of its ability to parse these �les, the scanner can also query the up-
stream npm registry at registry.npmjs.org for additional package metadata
to enrich the BOM. The functionality that handles this is implemented in the
RegistryClient and complies with the format documented on the npm registry
GitHub repository (The NPM Maintainers, 2022).

As lock �les can contain well over a thousand packages in some scenarios, it makes
sense to send the requests to the registry concurrently rather than in sequence.
To handle this and, at the same time, prevent the requests to the registry from
running into the undocumented rate-limit de�ned by its maintainers , the client
wraps the default Go HTTP client with a limiter that, in its default con�guration,
o�ers a burst quota of 500 requests and re�lls the bucket at a rate of 100 tokens
per second. This limit is low enough to remain in the guaranteed safe-zone while,
at the same time, being lax enough that lock �les with in excess of 1000 requests
can be processed within reasonable time.

Another measure the scanner takes before submitting any API requests to the
registry involves deduplication of the aggregated �ndings from all meta�les.

The default behavior for the scanner is to include all dependencies regardless
of their scope, but its con�guration options allow users to exclude development

35

5. Implementation

dependencies and to declare additional exclusion rules that prune packages by
namespace, full name or a pattern.

5.5.2 pypi-scanner

The pypi-scanner plugin is currently the only plugin that is not implemented in
Go. On the one hand it serves as a speci�c example of how to implement plugins
in other technologies based on the gRPC service de�nitions, on the other hand,
relying on the python runtime to implement this plugin also makes sense from
the perspective of the resulting detection quality.

The plugin can detect references de�ned in two common metadata formats:

� requirements.txt entries

� poetry.lock entries

poetry.lock �les are reguar Tom's Obvious, Minimal Language (TOML) �les,
making it possible to easily consume them through a parser for this format, as
is the approach taken by the pypi-scanner. requirements.txt �les on the other
hand follow a specialized format de�ned in Python Software Foundation (2022a)
with incarnations of its entries ranging from simple version constraints to complex
replace directives that may also point to locations on a �lesystem that provide
the given dependency.

However, to facilitate the analysis of both formats, the pypi-scanner takes a
best-e�ort approach of parsing the high level information from both �les. For
poetry.lock �les this always includes, at a minimum, the name and version of
a package, but often also additional data.

To �ll in any gaps these detections have the scanner subequently uses virtualenv,
a tool that allows the installation of isolated python environments, to install the
dependencies for each meta�le to a temporary directory. After the installation
importlib.metadata, a package that was introduced to the python standard lib-
rary in python 3.8 Python Software Foundation, 2022b, is used to discover and
parse the metadata for each installed package.

To keep the scan duration low, the implementation relies on the multiprocessing
package to schedule the installation and parsing steps for each detected meta�le
to a separate process running the python interpreter.

Any additional data is queried from the o�cial pypi registry API at https://pypi.org
that is de�ned in Python Software Foundation, 2022c. To keep the response
latency low, asyncio, which is already present on the environment as a depend-
ency of gRPC, is used to submit any API requests concurrently.

36

5. Implementation

5.5.3 go-scanner

The go-scanner serves primarily as a basic example of a native plugin. It can
parse metadata about Go modules, the Go equivalent of a package, using the
o�cial mod�le library The Go Maintainers, 2022b.

go.mod �les, unlike the lock �les previously mentioned for npm, are not required
to include all transitive dependencies. As a result only parsing the top-level
go.mod �le for a project would only yield incomplete data The Go Maintainers,
n.d. To resolve this problem, an analyzer needs to recursively resolve any modules
listed in a go.mod �le, retrieve them and proceed resolving the dependencies
declared in its go.mod �le until it either arrives at a package that is not a module
or a module that has no dependenices. The go module proxy 4 facilitates this
process by providing a central URL that all publicly available packages, even if
they are hosted elsewhere, can be retrieved from.

Resolving through this proxy also provides the additional bene�t that, in contexts
where �rewall rules are necessary to access public URLs, only this singular URL
needs to be whitelisted to guarantee access to all public go modules.

5.5.4 syft-scanner

The syft-scanner is a shallow wrapper around syft that can be used to instrument
syft scans as part of a hyperion scan. Several di�erent approaches of integrating
the tool into hyperion were investigated, from consuming it as a library directly
that can then be treated as a native plugin, over bypassing the plugin architecture
and calling it through os/exec, to wrapping it in a simple plugin that uses the
parsing logic provided by syft itself to consume its metadata.

Including it directly into the host application proved problematic, as syft relies
on several dependencies that require CGo, an integration layer between C and Go
to compile, signi�cantly increasing the complexity of multiplatform builds. Since
the ability to build binaries for several platforms was one of the requirements
de�ned in section 3.6 this possibility was discarded.

Similarly, a native plugin that only consumes the syft.Decode method to read a
syft BOM from a �le, also su�ers from the problem that, while only requiring a
subset of these dependencies, all dependencies declared in the module are inclued
in the �nal binary, signi�cantly bloating binary size.

To that end, the decision was made to implement the syft integration as a gRPC
plugin that may optionally be included. The plugin, once its scan endpoint is
invoked, executes syft, parses its resulting JSON BOM and converts the data
from this representation to the hyperion models which are subsequently sent

4See https://proxy.golang.org/

37

https://proxy.golang.org/

5. Implementation

back to the host. The evaluation chapter discusses future improvements on this
current solution.

5.5.5 source-downloader-transformer

The source-downloader-transformer is an example for a native transformer plugin
that receives a BOM as input and attempts to resolve its entries to source code
that is subsequently downloaded to a location on disk. To achieve this, it �rst
checks whether a component already has a SourceArtifact entry populated with
a download URL. In this trivial case it downloads the �le from this URL and, if
checksums are present on the enry, validates the source artifact against them.

The other case supported by this plugin is that of attempting to resolve a
homepage or VCS URL to a source artifact. For example, if a GitHub link
is provided, it will attempt to query the GitHub API for a download bundle.

5.5.6 cyclonedx-writer

The cyclonedx-writer plugin is a native writer plugin that consumes the internal
BOM representation and writes it to a JSON document compliant with the Cyc-
loneDx 1.4 speci�cation. The plugin may optionally use the JWS Signer to sign
the resulting document with a private key provided by the user.

The CycloneDx format provides the possibility to de�ne dependencies between
components within an SBOM through a top-level dependencies key that contains
the bom-ref of the dependent component and a list of bom-ref values that denote
its dependencies. For the sake of simplicity, the implementation of the cyclonedx-
writer simply uses the PURL, that is guaranteed to be unique in the domain
model, as a bom-ref.

SourceArtifact entries from the hyperion domain are mapped to externalRefer-
ences of type distribution in the CycloneDx format. Since these entries only allow,
and actually require, URLs to be provided, in cases where no download URL for
a source artifact is present and only a relative path is set on the package entry,
a relative reference as de�ned in Kerwin, 2017 is used.

This concludes the overview on reference implementations provided as part of
the toolchain. The following chapter will demonstrate the functionality of the
implementation.

38

6 Demonstration

As a foundation for a subsequent evaluation that validates the implementation
against the objectives de�ned in chapter 3, this chapter �rst showcases how
hyperion may be used in a real-world context.

6.1 Setup

The setup process for the tool, at its most basic level, requires the following steps.

1. Downloading a distribution archive from the project release page on code.siemens.com

2. Extracting the archive to a location of the user's choosing, the recommend-
ation is to store the application and its plugins in $HOME/.hyperion/

3. Ensuring that the location of the hyperion binary is part of the $PATH

variable so it can be invoked by its name with the full path (optional, but
recommended)

4. Invoking the autopilot command to generate a con�guration �le as a start-
ing point for further modi�cation

Once the autopilot is invoked, the TUI, as outlined in section 5.3.1 will lead
the user through the con�guration process.

Figure 6.1a shows the view that allows a user to provide baseline information
about the BOM to be generated. Additionally, the verbose may be set globally
here. The expanded help command at the bottom of the TUI is also visible and
explains how a user may navigate through the application.

Once a user has proceeded through this input form and accepted the inputs, thy
are taken to the next view that showcases the �ndings produced by all available
scanner plugins. Figure 6.1b shows this view for the case where hyperion runs
inside its own repository root. The �ndings for each scanner are clearly visible,
and all scanners that had detections will be pre-selected. A user may then deselect
any scanners that are not relevant to their use-case.

39

6. Demonstration

(a) Project Information View (b) Plugin Findings View

(c) Additional Plugin View (d) Con�guration Review View

After the con�guration for scanners with �ndings is complete, the next view
allows a user to select additional plugins available for hyperion. Any plugins
already selected in the previous view will not be listed. However, such scanners
that are available but did not have explicit �ndings are listed. 1

Lastly, the �nal step of the autopilot command that allows users to review the
generated con�guration and edit it inline in a textarea component can be seen
in �gure refautopilot-con�g. Once a user accepts the reviewed and potentially
modi�ed documentation, the con�guration �le is written to disk. By default, the
�le will be available in .\.hyperion.yaml but a user may override this output
path using the -c �ag

1This can be useful for the syft-scanner as that does not de�ne any searches and instead
expects users to point it to relevant OCI images or �les

40

6. Demonstration

6.2 Usage

Once this con�guration �le is available, a user may then trigger the scan com-
mand to run the tool within their project. This can happen either manually
through the CLI, or a user may choose to execute the tools directly as part of a
CI pipeline.

To support this use-case, the repository also provides a docker image that bundles
the core application and all reference plugins.

This image is provided as part of the container registry within code.siemens.com
and accessible to any internal users for inclusion in their projects.

The project pipeline is con�gured using goreleaser a build tool that supports
integration with GitLab and, given a token, may publish the built artifacts to a
project release that users may subsequently retrieve it from.

The gorelaser build for hyperion is con�gured in such a way that it �rst builds
all plugins, for the Go plugins binaries are produced for AMD64 and ARM64 archi-
tectures, targetting Windows and Linux. Once these plugins are built, they are
compressed using the Ultimate Packer for eXecutables (UPX) and a detached
GPG signature is produced using a private signing key stored as a secret on the
CI pipeline.

6.3 Sample Project

Now that we have established how hyperion can be con�gured and consumed
within a CI pipeline, it makes sense to have a look at a concrete example of a
scan.

The sample project consists of three di�erent demo applications:

� A simple python hello world app built on top of FastAPI

� A showcase application that demonstrates how Go may be used within a
Kubernetes deployment

� A hello world sca�olding built with vite, relying on the npm package man-
ager

These primitive examples were chosen because, while the project code itself may
be very simple, each of these sample applications still declares a reasonably large
number of dependencies. Listing 6.1 shows the con�guration that hyperion was
invoked with.

41

6. Demonstration

Figure 6.1: Artifacts produced as part of the CI build

project_name : Hyperion SBOM Demonstrator
pro j e c t_ver s i on : " 0 .2 "
debug : f a l s e
s i l e n t : f a l s e
p lug in s :

s canners :
= npm=scanner :

exclude_namespaces : []
exclude_packages :
= v i t e=sandbox

exc lude_patterns : []
f i l t e r_dev : t rue
verbose : f a l s e

= pypi=scanner :
include_dev : t rue
inc lude_opt iona l : f a l s e
verbose : f a l s e

= go=scanner :
par se r_con f ig :

i gno r e_pre f i x e s : []
s t r i c t : t rue

r e s o l v e r_con f i g :
enable_proxy : t rue
proxy_url : proxy . golang . org
skip_download : f a l s e

verbose : f a l s e
w r i t e r s :

= cyclonedx=wr i t e r :
debug : f a l s e
output_path : output . cyc lonedx . j son

42

6. Demonstration

ove rwr i t e : t rue
pre t ty : f a l s e
sign_detached : t rue
sign_jws : t rue
signing_key : ""
signing_key_path : " s igning_key . pem"

p lug in_loca t i ons :
= .
= / root / . hyper ion / p lug in s

ignore_di r s :
= . g i t

sbom_author :
name : Alexander Gschre i
emai l : " a lexander . gschre i@s iemens . com"
homepage : ""

sbom_supplier :
name : Siemens AG
emai l : s o f twarec l ea r ing@s i emens . com

sbom_license :
spdx_id : MIT

scan_path : ""
load_al l : f a l s e
f a i l _ f a s t : f a l s e
l ogg ing :

log_path : " hyper ion . l og "

Listing 6.1: hyperion con�guration for the example project

A few things are noteworthy about this con�guration. First of all, in addition
to the logs that are written to STDOUT logs are also redirected to a �le for later
analysis. Additionally, the writer is con�gured to produce a compact JSON, a
JWS signing key loaded from the �lesystem is used and hyperion is con�gured
to create a detached signature for the resulting SBOM. Lastly, the npm-scanner,
pypi-scanner and go-scanner plugins are all enabled and are be used during
the scan.

The resulting CycloneDx SBOM metadata header can be seen in listing 6.2 in a
prettifed form as the compact representation produced by the scan does not lend
itself to human consumption.

Each of the plugins that participated in the creation of the SBOM is listed in the
tools key. Additionally, authorship information as given on the con�guration �le
above is included and the properties key contains the entire plugin con�guration
as a base64-encoded string.

43

6. Demonstration

{
"bomFormat" : "CycloneDX" ,
" specVers ion " : " 1 .4 " ,
" ser ia lNumber " : "urn : uuid :03779 a74=e206=4747=9030=86 f f42adb4bc " ,
" ve r s i on " : 1 ,
"metadata" : {

"timestamp" : "2022=09=26T23 : 5 9 : 1 5 z" ,
" t o o l s " : [

{
"vendor" : "Siemens AG <scp . i t@siemens . com>

[https : // s iemens . com] " ,
"name" : "go=scanner " ,
" v e r s i on " : " 0 .1 "

} ,
{

"vendor" : "Siemens AG <scp . i t@siemens . com>
[https : // s iemens . com] " ,

"name" : "npm=scanner " ,
" v e r s i on " : " 0 .1 "

} ,
{

"vendor" : "Siemens AG <scp . i t@siemens . com>
[https : // s iemens . com] " ,

"name" : "pypi=scanner " ,
" v e r s i on " : " 0 .2 "

} ,
{

"vendor" : "Siemens AG <scp . i t@siemens . com>
[https : // s iemens . com] " ,

"name" : " cyclonedx=wr i t e r " ,
" v e r s i on " : " 0 .1 "

}
] ,
" authors " : [

{
"name" : "Alexander Gschre i " ,
" emai l " : " a lexander . gschre i@s iemens . com"

}
] ,
" s upp l i e r " : {

"name" : "Siemens AG"
} ,
" l i c e n s e s " : [

{
" l i c e n s e " : {

" id " : "MIT"
}

}
] ,
" p r op e r t i e s " : [

{
"name" : " s iemens : hyper ion : plugin=c on f i g " ,
" va lue " :

"WwogIHsKICAgICJjeWNsb2 [. . .] lLAogICAgInZlcmJvc2UiOiB0cnVlCiAgfQpd"
}

]
} ,

Listing 6.2: The resulting CycloneDx Metadata

44

6. Demonstration

This provenance information, especially as a signature that allows to verify its
source is provided alongside it, can be extremely helpful for downstream con-
sumers of the SBOM in determining the context in which the document was
created.

After this metadata section, the detected components are listed. An example for
one of the npm components detected by hyperion can be seen in listing 6.3

{
"bom=r e f " : "pkg :npm/%40babel /code=frame@7 . 1 8 . 6 " ,
" type" : " l i b r a r y " ,
"group" : "@babel" ,
"name" : "code=frame" ,
" ve r s i on " : " 7 . 1 8 . 6 " ,
" scope " : " r equ i r ed " ,
" hashes " : [

{
" a lg " : "SHA=512" ,
" content " : "4 c30a694ae5e3af19 [. . .] 3 1 4 6 2 8 0 cdc8b5daa37fbbd1"

}
] ,
" pur l " : "pkg :npm/%40babel /code=frame@7 . 1 8 . 6 " ,
" ex t e rna lRe f e r en c e s " : [

{
" u r l " :

" https : // r e g i s t r y . npmjs . org /@babel/code=frame/=/code=frame =7 .18 . 6 . tgz " ,
"comment" : "Remote URL" ,
" hashes " : [

{
" a lg " : "SHA=512" ,
" content " : "4 c30a694ae5e3af1 [. . .] f e787edc740aa37fbbd1 "

}
] ,
" type" : " d i s t r i b u t i o n "

}
]

} ,

Listing 6.3: A component entry for an npm package (checksum truncated)

The component coordinates and checksum digests are present, additionally the
URL the package source was resolved from is given as an external refrence of type
distribution. For this particular package, hyperion was not able to detect its
license.

Similarly, listing 6.4 shows an entry for a pypi package, one of 17 detected in
total, that has most of its metadata �lled in, including a direct link to the pypi
index sdist download and authorship information.

45

6. Demonstration

{
"bom=r e f " : "pkg : pypi / fastap i@0 . 8 5 . 0 " ,
" type" : " l i b r a r y " ,
" author " : " Sebast ian Ramirez" ,
"name" : " f a s t a p i " ,
" v e r s i on " : " 0 . 8 5 . 0 " ,
" d e s c r i p t i o n " : "FastAPI framework , [. . .] ready f o r product ion " ,
" scope " : " r equ i r ed " ,
" hashes " : nu l l ,
" l i c e n s e s " : nu l l ,
" pur l " : "pkg : pypi / fastap i@0 . 8 5 . 0 " ,
" ex t e rna lRe f e r en c e s " : [

{
" u r l " :

" https : // f i l e s . pythonhosted . [. . .] 4 3 f87338a273 / f a s t ap i =0 .85 . 0 . ta r . gz" ,
"comment" : "Remote URL" ,
" hashes " : [

{
" a lg " : "MD5" ,
" content " : "0 ab4758246c22450dfae4046442879f

} ,
{

" a lg " : "SHA=256" ,
" content " : "bb219 c f a f d [. . .] 6 f 5a9 f 9 f 1416878"

}
] ,
" type " : " d i s t r i b u t i o n "

}
]

}

Listing 6.4: A component entry for a pypi package (checksum and URL
truncated)

Lastly, an example for a Go module detected by hyperion is given in listing ??

{
"bom=r e f " : "pkg : golang / github . com/ jackc /pgtype@v1 . 1 0 . 0 " ,
" type " : " l i b r a r y " ,
"group" : " github . com/ jackc " ,
"name" : "pgtype" ,
" ve r s i on " : "v1 . 1 0 . 0 " ,
" scope " : " r equ i r ed " ,
" hashes " : [

{
" a lg " : "SHA=256" ,
" content " :

"20 b9c15ab44c49719ccd8be69180fa3ec63254550d2d39c85091c70cb9aa937f "
}

] ,
" l i c e n s e s " : nu l l ,
" pur l " : "pkg : golang / github . com/ jackc /pgtype@v1 . 1 0 . 0 " ,
" ex t e rna lRe f e r enc e s " : [

{
u r l : " https : // proxy . golang . org / github . com/ jackc /pgtype/@v/v1 . 1 0 . 0 . z ip " ,
"comment" : "Remote URL" ,
" hashes " : [

{
" a lg " : "SHA=256" ,
" content " :

"20 b9c15ab44c49719ccd8be69180fa3ec63254550d2d39c85091c70cb9aa937f "
}

]

46

6. Demonstration

}
]

}

Listing 6.5: A component entry for a Go package

One thing worth to note in this listing is that the go-scanner will always set
the canoncial path resolved through the golang proxy as the download URL to
maximize compatibility. Additionally a sha256 digest is present that was resolved
from a go.sum �le.

These example components show that hyperion, while its plugins require addi-
tional work to maximize the information they are able to extract from the package
metadata, is capable of building an SBOM populated with enough information
about a component that an interested party may use these data points and sub-
sequently enhance them with, for example, license data obtained from scanning
the referenced source archives.

47

6. Demonstration

48

7 Evaluation

This chapter evaluates the design and implementation of hyperion both in terms
of the objectives de�ned in section 3 and the accuracy of the SBOMs produced
by the reference plugins.

7.1 Extensibility

The extensibility of the toolchain to support additional use-cases as de�ned in
section 3.2 was one of the key objectives for this thesis. The plugin architec-
ture designed in 4.1.2 provides users �exibility to pick and choose the plugin
implementation type that best �ts their needs. The interfaces plugins need to
implement are clearly de�ned, be it in Go directly or through the gRPC services
the host application consumes. Using the existing reference implementations and,
in the case of a gRPC plugin, the o�cial gRPC documentation, development of a
plugin is possible without requiring any particular knowledge about the core ap-
plication. Developers can focus on implementing the interfaces expected of a valid
plugin and have the peace of mind that as long as this interface is implemented
properly, the plugin can be loaded by the host application.

As such the implementation succeeds in ful�lling this requirement. However,
in retrospect, it may have been a better decision to simply ignore the net/rpc

plugin type altogether. The library, and particularly the underlying gob encoding
scheme are not straightforward to use and the Go core team has made the decision
to freeze the net/rpc plugin due to known bugs in the implementation that are
di�cult to �x 1. As a result, developers implementing plugins for hyperion

should always prefer gRPC over net/rpc

1See https://github.com/golang/go/issues/16844 issue on GitHub for details

49

7. Evaluation

7.2 CLI and TUI implementations

The tool provides both of these features, as demonstrated in sections 6.1 and
6.2 allowing developers comfortable with a command line environment to quickly
con�gure and run the tool. The frameworks hyperion relies on to provide this
functionality are both popular Go projects with an active developer community.
Additionally, hyperion currently only uses a small subset of the features o�ered
by bubbletea and adding new features to the TUI as the application evolves is
straightforward.

7.3 Validity and accuracy of produced SBOMs

The results produced by the pypi-scanner o�er by far the highest level of detail.
The scanner is successfully able to detect all transitive dependencies leveraging
pypi and the o�cial pypi registry API which allows it to not only resolve the
dependency graph, but also to reference available sdist packages. These source
distributions, unlike their precompiled counterparts, o�er valuable insight into
any additional copyrights and license references that may be available in the
source �les. The reliance on pip and virtualenv however also has the side
e�ect that, measured in time spent per detected component, this scanner is by
far the slowest of the developed reference implementations. For the example
given in section 6.3 the pypi-scanner took roughly 5 seconds to obtain results
for 17 packages while, in comparison, the npm-scanner processed more than 118
packages in 12 seconds.

Furthermore, the npm-scanner o�ers results of an acceptable quality by combin-
ing the metadata directly extractable from the respective lock �les with addi-
tional information queried from the upstream npm registry. However, there are
some cases in which the npm-scanner is unable to correctly resolve the depend-
encies between packages that were parsed from yarn.lock �les. This is due to an
oversight in the current implementation that does not support complex version
�elds in the yarn.lock format shown in listing 5.11. A yarn.lock entry may
actually contain complex version expressions for these top level keys that de�ne
wich requirements are satis�ed by a package. The current parsing logic does not
take this into account and future releases will need to address this.

The go-scanner, by referencing the Go package proxy, can reliably resolve any
publicly available modules. Additionally, it is capable of parsing go.sum �les that
contain checksum digests for each dependency within a module to verify that a
module retrieved through the is indeed resolved correctly. The current version,
however, still lacks a mechanism to automatically classify the licenses bundled
alongside Go modules.

50

7. Evaluation

Nevertheless, all three of these implementations can produce SBOMs that ful�ll
the requirements given in table 3.1.

The syft-scanner produces less comprehensive results however. This is due to
a number of di�culties in consuming the detections parsed from syft results.
First of all, syft maintainers chose the approach of embedding speci�c metadata
types for each package technology into the output format, which necessitates an
implemenation consuming this data to consider each of these types separately
even in cases where the metadata keys themselves are actually identical. A fu-
ture improvement of the syft-scanner may rectify this problem by dropping
the dependency on the syft.Decode call to unmarshall the data and instead im-
plement its own target struct the JSON results can be marshalled into following
the schema de�nitions published as part of the syft repository (Syft Maintainers,
2022). Resolution from syft detections to actionable download URLs has also
proven di�cult and requires future improvements.

The blindspots identi�ed in this section will serve as actionable tasks for the
future development of hyperion and lead us to th e�nalconclusion for this thesis.

51

7. Evaluation

52

8 Conclusions

The design and implementation of hyperion can be considered a success. While
the toolchain still exhibits a number of known issues and blindspots that need to
be recti�ed to improve the accuracy and reliability of its detections, the tool in
its current form is able to provide what can best be described as baseline �ndings
for each of the scanner reference implementations.

The tool solves most of the problems identi�ed in section 2. On the one hand, it
provides the desired BOM signing capabilities, on the other hand, its autopilot
command helps to unify the con�guration for all plugins and reduces the setup
complexity when compared to the existing tools.

Another major bene�t of the plugin architecture implemented in hyperion is
that it allows to decouple proprietary tools from the rest of the application such
that the core and many of its plugins that do not contain intellectual property
the company may want to protect, may eventually be published as Open-Source
Software.

This is a natural next step for the SCP following the registration of an o�cial
Siemens namespace in the CycloneDx property taxonomy (CycloneDx Maintain-
ers, 2022).

The FLOSS space provides a plethora of tools that enable SBOM generation
already, but the main novelty of hyperion, its truly multiplatform plugin archi-
tecture can be helpful in scenarios where users need to integrate complex systems
from di�erent technology stacks with one another.

53

8. Conclusions

54

Appendices

55

Appendix A: Code Listings

A Code Listings

s e r v i c e Trans formerServ ice {
rpc SetConf ig (common . PluginConf ig) r e tu rns (goog le . protobuf . Empty) ;
rpc GetConfig (goog le . protobuf . Empty) r e tu rns (common . PluginConf ig) ;
rpc GetPluginInfo (goog le . protobuf . Empty) r e tu rns (common . P lug in In fo) ;
rpc TransformBom(common .Bom) re tu rns (common .Bom) ;

}

Listing 1: The TransformerService Protocol Bu�er de�nition

s e r v i c e Wr i te rServ i ce {
rpc SetConf ig (common . PluginConf ig) r e tu rns (goog le . protobuf . Empty) ;
rpc GetConfig (goog le . protobuf . Empty) r e tu rns (common . PluginConf ig) ;
rpc GetPluginInfo (goog le . protobuf . Empty) r e tu rns (common . P lug in In fo) ;
rpc WriteBom(common .Bom) re tu rns (goog le . protobuf . Empty) ;

}

Listing 2: The WriterService Protocol Bu�er de�nition

A.1 Go Domain Models

This section contains a comprehensive overview of the core models de�ned as
part of the main application. The source code comments have been retained to
provide additional information about the intent of each �eld where applicable.

Please note that the search pattern model is omitted here as it was already
described in-depth in the main section of the thesis.

// PackageCoordinates are used to i d e n t i f y an a r t i f a c t both in i t s l o c a l context
// (s p e c i f i c to an a r t i f a c t manager) and g l o b a l l y through a PackageURL
type PackageCoordinates s t r u c t {

//Namespace i s op t i ona l as not a l l package types have the concept o f a namespace
Namespace s t r i n g ` j son : " namespace , omitempty" `
//Name i s the package name in package space
Name s t r i n g ` j son : " name" `
Vers ion s t r i n g ` j son : " ve r s i on " `
//Purl e f f e c t i v e l y conta in s redundant in format ion to the f i e l d s above , but we choose t h i s

approach as i t a l l ows
// consumers o f t h i s s t r u c t to choose which data point they want to use
Purl pur l . PackageURL ` j son : " purl , omitempty" `

}

//Package r ep r e s en t s an a r t i f a c t r e t r i e v e d from a package manager and/or i t s metadata
type Package s t r u c t {

PackageCoordinates //embedding
//Type can be ' app l i c a t i on ' or ' l i b r a r y ' = use ' l i b r a r y ' as d e f au l t
Type s t r i n g ` j son : " type" `
//Hashes conta ins checksums that a l low f i n g e r p r i n t i n g o f packages
Hashes Hashes ` j son : " hashes " `
// Sources ho lds a l l source a r t i f a c t s a s s o c i a t ed with a package ,
// i . e . the source the package was bu i l t from
Sources [] Sou r c eAr t i f a c t ` j son : " sources , omitempty" `
Desc r ip t i on s t r i n g ` j son : " de s c r i p t i on , omitempty" `
L i c ense s [] l i c e n s e s . L icenseConta iner ` j son : " l i c e n s e s , omitempty" `
//VcsUrl i s a d i r e c t l i n k to the o f f i c i a l VCS that houses the source code f o r the package
VcsUrl s t r i n g ` j son : " vcs_url , omitempty" `
//Homepage i s a d i r e c t l i n k to the p r o j e c t URL
Homepage s t r i n g ` j son : " homepage , omitempty" `
//Copyrights as dec la r ed on package metadata
Copyright s t r i n g ` j son : " copyr ight , omitempty" `
//Scope can e i t h e r be ' r equ i r ed ' , ' op t i ona l ' , ' dev ' or ' compile '
Scope Scope ` j son : " scope " `
//Dependencies i s a l i s t o f purl=r e f e r e n c e s to other packages t h i s package depends on
Dependencies [] pur l . PackageURL ` j son : " dependenc ies " `
//Author as dec la r ed by the package metadata
Author *LegalEnt i ty ` j son : " author , omitempty" `

57

Appendix A: Code Listings

//Mainta iners i s a pass=through f i e l d f o r package=l e v e l mainta iner i n f o
Mainta iners [] Lega lEnt i ty ` j son : " maintainers , omitempty" `
//FoundBy conta ins a l i s t o f p lug in s that detected the package
FoundBy [] s t r i n g ` j son : " found_by , omitempty" `
//FoundIn conta ins a l i s t o f l o c a t i o n s where a package r e f e r e n c e was found
FoundIn [] s t r i n g ` j son : " found_in , omitempty" `
Supp l i e r *LegalEnt i ty ` j son : " supp l i e r , omitempty" `

}

Listing 3: The Package type and its PackageCoordinates embedding

The Bom and BomMetadata types are shown below:

//Bom i s the main conta ine r type f o r any package f i n d i n g s and execut ion metadata
type Bom s t ru c t {

FormatVersion s t r i n g ` j son : " bom_format" `
Metadata *BomMetadata ` j son : " metadata , omitempty" `
Packages [] Package ` j son : " packages , omitempty" `

}

//BomMetaddata i s the metadata header o f the BOM
type BomMetadata s t r u c t {

//Name o f the product the BOM i s generated f o r
ProductName s t r i n g ` j son : " product_name" `
//Vers ion o f the product the BOM i s generated f o r
ProductVersion s t r i n g ` j son : " product_vers ion " `
// Plug ins that were used to generate the BOM
Plugins map [s t r i n g] P lug in In fo ` j son : " p lug in s " `
//Author o f the BOM
Author *LegalEnt i ty ` j son : " author " `
// Supp l i e r o f the BOM
Supp l i e r *LegalEnt i ty ` j son : " s upp l i e r " `
// L icense o f the product the bom i s a s s o c i a t ed with
License * l i c e n s e s . L icenseConta iner ` j son : " l i c e n s e " `

}

Listing 4: The Package type and its PackageCoordinates embedding

// License i d e n t i f i e s a s i n g l e l i c e n s e
type License s t r u c t {

//SpdxId r e f e r e n c e s the ID as given on https :// spdx . org / l i c e n s e s / i f app l i c ab l e
SpdxId s t r i n g ` j son : " spdx_id , omitempty" yaml : " spdx_id" `
//Name g iv e s the canon i ca l name o f the l i c e n s e
Name s t r i n g ` j son : " name , omitempty" yaml : " name" `
// LicenseText i s a r e f e r e n c e to a text f i nd i ng
LicenseText *LicenseText ` j son : " l i c en s e_tex t . omitempty" `
//Url conta ins a d i r e c t l i n k to the l i c e n s e in format ion = a s imple GET c a l l should return

the data
Url s t r i n g ` j son : " ur l , omitempty" yaml : " u r l " `

}

type LicenseText s t r u c t {
// Locat ion denotes a package r e l a t i v e path where the l i c e n s e was found
Locat ion s t r i n g ` j son : " l o c a t i on " `
//Text conta ins the f u l l l i c e n s e text = may conta in copyr ight ho lder s p e c i f i c in fo rmat ion
Text s t r i n g ` j son : " text " `

}

type L icenseExpres s ion s t r i n g

type LicenseConta iner s t r u c t {
L icense L icense ` j son : " l i c e n s e , omitempty" `
Express ion LicenseExpres s ion ` j son : " expres s ion , omitempty" `

}

Listing 5: The models declared in the licenses package

type Sour c eAr t i f a c t s t r u c t {
Relat ivePath s t r i n g
DownloadUrl * ur l .URL
Hashes Hashes

}

Listing 6: The SourceArtifact struct

The types related to hash digest can be seen here:

58

//HashAlgorithm i s a type a l i a s that can r ep r e s en t common hashing a lgor i thms .
//The ` hashes ` package o f f e r s constants that can be used with t h i s type
type HashAlgorithm uint8

const (
Unknown HashAlgorithm = io t a
Md5
Sha1
Sha256
Sha512
Sha3_256
Sha3_512

)

// HashDigest encapsu la t e s a hex=encoded d i g e s t and in format ion about the a lgor i thm i t was
generated with

type HashDigest s t r u c t {
Algorithm HashAlgorithm ` j son : " a lgor i thm" `
Digest s t r i n g ` j son : " d i g e s t " `

}

Listing 7: The HashDigest models

Lastly, the models that encapsulate scanner results are shown below. Please note
that the ScanError struct implements the builtin error interface and facilitates
the construction of error chains

type S c anS t a t i s t i c s s t r u c t {
Art i factsFound uint64
ScanDuration time . Duration

}

type ScanResults s t r u c t {
S t a t i s t i c s S c anS t a t i s t i c s ` j son : " s t a t i s t i c s , omitempty" `
Packages [] a r t i f a c t s . Package ` j son : " packages , omitempty" `
Errors [] e r r o r ` j son : " e r ro r s , omitempty" `

}

type ScanError s t r u c t {
cause [] e r r o r

}

Listing 8: The HashDigest models

59

60

References

Arora, A., Wright, V., & Garman, C. (2022). Strengthening the security of oper-
ational technology: Understanding contemporary bill of materials. JCIP
The Journal of Critical Infrastructure Policy, 3 (1), 111.

Bommarito, E., & Bommarito, M. (2019). An empirical analysis of the python
package index (pypi). https://doi.org/10.48550/ARXIV.1907.11073

CVE-2021-44228. (2021). Retrieved August 22, 2022, from https://nvd.nist.gov/
vuln/detail/CVE-2021-44228

CycloneDx Maintainers. (2022). Cyclonedx property taxonomy.
Dang, Q. H. (2009). Sp 800-107. recommendation for applications using approved

hash algorithms.
Duberstein, T. (2020). Cockroachdb/rpc-bench.
Gamma, E., Helm, R., Johnson, R., & Vlissides, J. M. (1994). Design patterns:

Elements of reusable object-oriented software (1st ed.). Addison-Wesley
Professional.

Gouy, I. (n.d.). The computer language benchmarks game - go vs python3. Re-
trieved August 15, 2022, from https://salsa.debian.org/benchmarksgame-
team/benchmarksgame

Kerwin, M. (2017). The "�le" uri scheme (RFC No. 8089). RFC Editor. RFC
Editor. https://datatracker.ietf.org/doc/html/rfc8089%5C#appendix-
E.2.1

Linux Foundation. (2011). SPDX Speci�cation version 1.0. Retrieved August 30,
2022, from https://spdx.dev/wp-content/uploads/sites/41/2017/12/
spdx-1.0.pdf

M. Jones, N. S., J. Bradley. (2015). Json web signature (jws) (RFC No. 7515).
RFC Editor. RFC Editor. https://www.rfc-editor.org/rfc/rfc7515

Maintainers, E. (2021). The elm architecture. Retrieved September 16, 2022, from
https://guide.elm-lang.org/architecture/

NPM Maintainers. (2022a). Package-lock.json - a manifestation of the manifest.
Retrieved September 23, 2022, from https ://docs .npmjs .com/cli/v8/
con�guring-npm/package-lock-json

61

https://doi.org/10.48550/ARXIV.1907.11073
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://salsa.debian.org/benchmarksgame-team/benchmarksgame
https://salsa.debian.org/benchmarksgame-team/benchmarksgame
https://datatracker.ietf.org/doc/html/rfc8089%5C#appendix-E.2.1
https://datatracker.ietf.org/doc/html/rfc8089%5C#appendix-E.2.1
https://spdx.dev/wp-content/uploads/sites/41/2017/12/spdx-1.0.pdf
https://spdx.dev/wp-content/uploads/sites/41/2017/12/spdx-1.0.pdf
https://www.rfc-editor.org/rfc/rfc7515
https://guide.elm-lang.org/architecture/
https://docs.npmjs.com/cli/v8/configuring-npm/package-lock-json
https://docs.npmjs.com/cli/v8/configuring-npm/package-lock-json

References

NPM Maintainers. (2022b). Package.json - speci�cs of npm's package.json hand-
ling. Retrieved September 23, 2022, from https://docs.npmjs.com/cli/v8/
con�guring-npm/package-json

Ombredanne, P. (2017). Package-url speci�cation.
OWASP Foundation. (2022). Cyclonedx speci�cation version 1.4. Retrieved Au-

gust 30, 2022, from https : / / cyclonedx . org / docs / 1 . 4 / json /%5C#
components_items_type

Python Software Foundation. (2022a). Pypi requirements �le format. Retrieved
September 1, 2022, from https : / / pip . pypa . io / en / stable / reference /
requirements-�le-format/

Python Software Foundation. (2022b). Python standard library documentation.
Retrieved September 2, 2022, from https://docs.python.org/3/library/
importlib.metadata.html

Python Software Foundation. (2022c). Python warehouse json api. Retrieved
September 2, 2022, from https://warehouse.pypa.io/api-reference/json.
html

Riehle, D. (2000). Framework design: A role modeling approach (Doctoral disser-
tation). ETH Zurich.

Robert Griesemer, K. T., Rob Pike. (2009). Hey! ho! let's go!
Syft Maintainers. (2022). Syft github repository. Retrieved September 23, 2022,

from https://github.com/anchore/syft/tree/main/schema
Telecommunications, N. N., & Administration, I. (2021). The minimum ele-

ments for a software bill of materials (sbom) (tech. rep.). NTIA National
Telecommunications and Information Administration. "1401 Constitution
Ave., NW Washington, DC 20230".

The Go Maintainers. (n.d.). Go modules reference. Retrieved September 3, 2022,
from https://go.dev/ref/mod%5C#go-mod-�le

The Go Maintainers. (2022a). Go 1.18 release notes. Retrieved August 21, 2022,
from https://tip.golang.org/doc/go1.18

The Go Maintainers. (2022b). Pkg.go.dev documentation. Retrieved September
3, 2022, from https://pkg.go.dev/golang.org/x/mod/mod�le

The NPM Maintainers. (2022). Npm registry api. Retrieved August 22, 2022,
from https://github.com/npm/registry/blob/master/docs/REGISTRY-
API.md

The Protocol Bu�er Maintainers. (2022). Protocol bu�er language speci�cation
v3. Retrieved July 29, 2022, from https://developers.google.com/protocol-
bu�ers/docs/proto3

Werner, F. (2021). Using grpc for (local) inter-process communication. Retrieved
September 15, 2022, from https://www.mpi-hd.mpg.de/personalhomes/
fwerner/research/2021/09/grpc-for-ipc/

62

https://docs.npmjs.com/cli/v8/configuring-npm/package-json
https://docs.npmjs.com/cli/v8/configuring-npm/package-json
https://cyclonedx.org/docs/1.4/json/%5C#components_items_type
https://cyclonedx.org/docs/1.4/json/%5C#components_items_type
https://pip.pypa.io/en/stable/reference/requirements-file-format/
https://pip.pypa.io/en/stable/reference/requirements-file-format/
https://docs.python.org/3/library/importlib.metadata.html
https://docs.python.org/3/library/importlib.metadata.html
https://warehouse.pypa.io/api-reference/json.html
https://warehouse.pypa.io/api-reference/json.html
https://github.com/anchore/syft/tree/main/schema
https://go.dev/ref/mod%5C#go-mod-file
https://tip.golang.org/doc/go1.18
https://pkg.go.dev/golang.org/x/mod/modfile
https://github.com/npm/registry/blob/master/docs/REGISTRY-API.md
https://github.com/npm/registry/blob/master/docs/REGISTRY-API.md
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://www.mpi-hd.mpg.de/personalhomes/fwerner/research/2021/09/grpc-for-ipc/
https://www.mpi-hd.mpg.de/personalhomes/fwerner/research/2021/09/grpc-for-ipc/

	Introduction
	Benefits of SBOMs

	Problem Identification
	Existing solution
	Drawbacks of the existing solution
	Code duplication
	Inconsistent User Experience
	Lack of signing capabilities

	General Challenges with SBOM generation
	Unwarranted trust in Package Metadata
	Unclear definition of SBOM Formats

	Objective Definition
	Framework Definition
	Extensibility through plugins
	Project-level configuration
	SBOM Contents
	Command-Line Interface
	Portability
	Reference implementations
	Output Signing

	Solution Design
	Subcomponents
	Core application
	Terminal User Interface
	Filesystem Walker
	Plugin Loader

	Plugins

	Technology Stack
	The Go Programming Language
	gRPC
	JSON Web Signature
	syft
	CycloneDX

	Implementation
	Repository Structure
	Hyperion
	Domain Models
	SBOM-related Models
	Internal Models

	Processing Utilities
	JWS Signer
	Concurrency Helpers
	Plugin Loader

	The Core Application

	Command Line Interface
	autopilot Command
	scan Command

	Plugin Architecture
	Interface Definitions

	Reference Implementations
	npm-scanner
	pypi-scanner
	go-scanner
	syft-scanner
	source-downloader-transformer
	cyclonedx-writer

	Demonstration
	Setup
	Usage
	Sample Project

	Evaluation
	Extensibility
	CLI and TUI implementations
	Validity and accuracy of produced SBOMs

	Conclusions
	Appendices
	Code Listings
	Go Domain Models

