
Management Accounting Concepts for Inner
Source Software Engineering

Julian Hirsch and Dirk Riehle

Computer Science Department - Friedrich-Alexander University Erlangen-Nürnberg,
Martensstraße 3, 91058 Erlangen, DE,

julian.hirsch@fau.de, dirk@riehle.org,
https://oss.cs.fau.de/

Abstract. Inner source software development is the use of open source
development’s best practices inside a company. In inner source, develop-
ers collaborate on reusable software components across company-internal
organizational silo boundaries for mutual benefit. As such, inner source
goes against the grain of traditional management techniques. In this ar-
ticle, we present two conceptual models of management accounting for
inner source. We derived these prototypes by performing a literature
review and triangulating the results with interviews of industry prac-
titioners. We demonstrate how the conceptual models can be used for
monitoring and controlling inner source projects and to determine their
future viability.

Key words: software engineering, inner source, management account-
ing, business intelligence

1 Introduction

The collective and non-hierarchical idea of open source has helped propel the
software engineering paradigm from a niche phenomenon to a dominant force
across markets, with double or triple digit growth rates to underline its increased
prevalence [1][2][3].

Peer-review, unobstructed communication and transparency of development
allow for frequent releases while mitigating flaws and revisions. In fact, it has
been established that open source processes can have positive impacts on soft-
ware quality and reliability, due to the non-standard work structure and col-
laborative spirit [4][5]. Further, the egalitarian and meritocratic nature of work,
championed by user rights in open source licenses, makes it an attractive outlet
for developers to collaborate on projects without direct financial incentive [6].

Unsurprisingly, with these advantages to open source software development,
private companies are interested in branching into the space. Their goals, how-
ever, appear to be diametrically opposed, as a company’s goal is to extract
economic value out of their development and protect intellectual property [7].

Permissive licenses would not allow for direct monetization, as per the open
source definition, any open source licensed software has to be freely distributed,
along with it derivative works [8]. This mismatch between open source working



2 Hirsch, Riehle

principles, proprietary licensing and community-driven development will proba-
bly remain unresolvable, forcing companies to choose two of the three options,
while opting to mitigate losing the third. One approach (of several) to capture
some of the benefits of open source is the limitation of open source practices
practices and principles to a closed system with organizations - appropriately
named inner source [9]. With these rather disruptive changes to company pro-
cesses, a number of (potential) problems when moving towards inner source have
been identified by the likes of Riehle et al [10] and Stol et al [6][11], respectively.
To combat these - and to ensure adoption within more traditional management
structures - steering and controlling subsystems are most likely required to make
inner source a useful integration into most companies.

Within a design science framework, we present potential approaches to inte-
grate inner source software engineering with management accounting. To that
end, in section 2 we present related work regarding inner source, accounting, and
project controlling, followed by a description of our research method in section
3, which leads into a discussion of results in section 4. Subsequently, we dedicate
sections 5 and 6 to limitations and concluding thoughts, respectively.

2 Related Work

Prior research in this exact area is limited, with one adjacent topic being pre-
sented by Buchner and Riehle [12], which approaches the topic of financially
evaluating inner source collaboration from a financial accounting perspective,
employing transfer pricing principles. Capraro et al [13] further developed a
framework for measuring collaboration across organizational boundaries. The
area of inner source management accounting, however, lacks an established ap-
proach entirely, possibly due to the legal ambiguity on the topic of management
accounting in general. Since we seek to establish a connection between inner
source and management accounting, related work covers both of these topics as
well as the adjacent area of software project controlling, which deals with many
of the same areas of interest.

2.1 Inner Source

Inner source is the use of open source best practices to within an enterprise - thus
eliminating the need for full public availability and permissive licensing [10]. At
first glance, this limitation to within the scope of an enterprise seems to be a stark
contrast to the ideas of open collaboration. However, it enables practitioners to
benefit from many of the upsides of collaborative development, without using
open source licensing and without risk of losing their intellectual property in
software. This is achieved by sacrificing mechanisms like community development
and crowd-sourced support, in favor of the aforementioned work principles and
best practices. In supplementing their closed source development processes with
these open source principles, companies can expect to improve compliance with



IS Management Accounting 3

schedules, achieve higher reliability and more efficient development practices due
to less parallel development, and to generally further develop and improve their
software product platforms. [10][14] .

2.2 Management Accounting

Management accounting represents the internal reporting and controlling tool,
accumulating business information used to supplement management decision
making. Unlike financial accounting, it is not bound by country-specific legis-
lation and not limited to purely financial information, and as such, it is freely
extensible to cater to any company-critical needs. It often includes projections
and forecasts on critical KPIs and business metrics [15].

It is also of interest during strategic planning and sourcing. Combining both
non-financial and financial aspects, it aids the decision between designing and
developing products in-house or buying them for a third party - also known
as a make-or-buy decision. More modern approaches, enabled through in-depth
process insights, have extended this to create hybrid solutions like ”make-and-
buy”, opening the door to partnerships and collaboration [17][18].

Thus, a management accounting system provides the necessary information
both for analyzing the raw data to measure performance of current business
operations as well as to serve as the basis for further planning. As such, its
task are interwoven with all levels of operations and carried out across several
organizational units. The main distinguishing factor being occasion - with some
tasks taking place in the planning phase before a project is started and others
used to analyze and steer currently running projects.

Summing up, the main tasks of a management accounting and controlling
system, grouped by when in the project life cycle they take place, are:

1. Monitoring, Performance Measurement and Corrective Action – for ongoing
projects

2. Planning, Preparation, Budgeting, Resource Allocation – for potential future
projects

2.3 Software Project Controlling

The necessity for a controlling infrastructure in software is quite apparent: soft-
ware development processes can quickly become complex and strenuous to mon-
itor. Projects are rarely finished as originally planned, in schedule, effort and
result. For this reason, organizations engaged in software development are al-
ways looking for ways to improve their processes and iteratively improve upon
their development projects [19][20][21][22].

In essence, every project has to be controlled in terms of its cost as well as its
processes, including scheduling as well as project outcome and process quality
which holds true in software development until today [23][24][25]. Approaching
cost controlling from a bottom-up perspective, the cost-distribution (or glass-
box) approach, originally described by Boehm and Papaccio [24] becomes useful.



4 Hirsch, Riehle

This aggregative costing method relies on detailed documentation of all cost
factors, as well as when they were incurred, which is usually already found in
modern day project management, ERP, or management accounting systems.
Specifically, the glass-box emphasizes the distribution of these types of cost:

1. Value-added or corrective activity – i.e., time spent on development,
implementation and improvement vs. documentation and maintenance effort

2. Capital or labor cost – Capital Expenditure vs. Operating Expenditure
3. Project phase – planning, implementation, testing, maintenance, etc.

In software engineering, it can be difficult to gauge efficiency and technical
performance, as such aspects are often too complex to be measured directly
[26]. Simple Lines of Code (LoC) metrics are used when comparing the size of
programs and code contributions, but they cannot fully account for the actual
production of a software contributor. To create a more holistic benchmark for
productivity, Mas y Parareda and Pizka [27] have adapted this LoC approach,
proposing an extension to “Redundancy-free LoC per Effort” as well as an in-
clusion of “Defects per LoC”. This combination of metrics was found to be a fair
and comprehensive measure of productivity in software engineering.

3 Research Method

This paper uses the design science research method laid out by Peffers et al.
[28] which serves as a framework for information systems researchers in the
development of artifacts. This approach was chosen due to its ability to convey
new developments in an easily-understandable way, building a proof-of-concept
solution artifact in the process. Consequently, our work follows these steps:

1. Problem Identification - Accurately defining the problem and showing the
topic’s importance. Combining literature analysis with industry interviews,
we established a dependable problem definition and align it with require-
ments from practice.

2. Objective Definition - Identifying what solution a design artifact should
and could provide. Using the requirements established with industry part-
ners, we determine our concept design should implement the two main task
groups traditionally handled by management accounting and apply them to
the inner source context.

3. Solution Design - Developing an innovative design science artifact in accor-
dance with the specified requirements. Our solution aims to provide analysis
and decision making aid with minimal intrusion into the software process.

4. Implementation - Building the design model according to specification
and documenting the process. We implement the approach using a basic
spreadsheet system, that makes the process traceable and the model easy to
be understood and modified.

5. Demonstration - Presenting the design artifact within its intended context.
For this, we simulate a planning and evaluation process with retroactive
analysis of software projects.



IS Management Accounting 5

4 Research Results

4.1 Problem Identification

The problem identification leaned heavily on literature research to identify typ-
ical challenges associated with the introduction of inner source as well as the
inclusion of management accounting processes to guide these new introductions.
In addition, interviews conducted with industry partners complemented and cor-
roborated the literature findings to make them more dependable and move closer
towards real-world industry requirements.

Literature Review. The rights bestowed on any contributor and user in open
source are technically at odds with the goal of quantifying contributions to deter-
mine appropriate compensation, usually monetary. As one of the key principles
of open source economics, no royalties or license fees are collected.

Additionally, inner source does not follow the clear division between compa-
nies and organizational units that most management systems are set up with,
complicating the creation of cooperative environments. Accounting subsystems
are seen as stable and non-adaptive, forcing processes to change around them,
clashing with the flexible approach displayed in inner source. Research suggests
that companies are hesitant to change management accounting to accommodate
changes, rather using them to promote economic and competitive stability [29].

Another point of contention are sources, quality and consistency of input
data. Typically, software engineering professionals prefer undisturbed work en-
vironments, with as little management overhead as possible. Adding additional
requirements for recording contributions could risk losing support from practi-
tioners and might be harmful to efficiency and operations long-term. To guaran-
tee user acceptance, ease of use and simplicity are paramount, and high levels of
abstraction are expected [30][31][32]. To align this with the unobstructed work-
ing principles of open and inner source, while satisfying the information and
steering requirements of management, programmers and technical leads can be
at most tangentially involved - whereas managers and key decision makers get
access to detailed and accurate metrics about the inner source process.

Further, many project monitoring and planning systems only record financial
data qualitatively, while recording non-financial metrics qualitatively (if at all),
making meaningful analysis a challenge. In many cases, this leads to sub-optimal
understanding and even disregard of qualitative data – simply because it is more
difficult to handle [33].

Industry Interviews. We conducted structured interviews with two industry ex-
perts in software development management positions at a multi-industry com-
pany. These partners have experience in the management of collaborative de-
velopment efforts and have been involved with and shaped the company’s inner
source processes. As such, they are considered key stakeholders and provide
valuable insights into industry practices.

Many of the points raised above were mirrored during the industry interviews,
with practitioners lamenting inconsistency in the granularity and quality of data



6 Hirsch, Riehle

used to run inner source analyses, mainly due to increased overhead caused by
catering to yet another system. Crucially, implementing an inner source process
does not take shape as a harmonization between organizational units, but rather
adds an additional layer of complexity to the existing structure. This leads to
a rather loose organization and low-priority designation of all inner source pro-
cesses.

To improve upon this, the industry experts emphasize the need for consistent
metrics that allow for objective measurements to achieve any meaningful valu-
ation of work and to acquire dependable data for subsequent planning rounds.
Importantly, pertaining to code contribution, they also mention that in their
experience, a single code commit rarely has value of its own. Rather, it is tied
to its correctness (verified through tests) and its context, i.e. the value of the
respective user story to the overall component. The interviewees also corrobo-
rate the usefulness of code classification as either corrective action, commodity
functionality, or the creation of highly innovative features. Any system should
attempt to capture this distinction and allow for easy valuation and comparison
between different types of contribution.

Pertaining to the specific application of inner source within biomedical engi-
neering, legal compliance was mentioned as one further hurdle in implementing
inner sourced processes. Within the interviewees’ field of work, processes require
significant oversight to assure legal compliance, which can be difficult to combine
with collaborative development, as it can be harder to trace.

Finally, the interviewees expressed concern with valuating inner source con-
tribution with the goal of comparing efforts among participants. They fear a
tracking system risks unsettling contributors and might decrease continued par-
ticipation in inner source efforts.

4.2 Objective Definition

The research process described in the previous section provides insights into the
perceived incongruity between management’s need for information and the in-
herent principles of open collaboration ascribed to inner source. Further, it high-
lights the challenges practitioners are faced with when implementing a seemingly
non-conforming new process. Consequently, this paper’s research goal is defined
as: The establishment of management accounting tools

– that can control and quantify inner source that is unobstructive to the collab-
oration process itself

– with a high degree of flexibility to apply to a wide range of pre-existing pro-
cesses and management systems

with the goal of providing support to decision makers within software engi-
neering companies.



IS Management Accounting 7

4.3 Conceptual Solution Design

It was deemed unfeasible and against the caution for simplicity to implement all
of the established requirements into one design model. Therefore, we made the
decision to create two distinct models, mirroring the two-fold responsibilities as-
sociated with management accounting systems – both planning and monitoring.
As such, this design paper aims to prototype both a useable a-priori planning
tool as well as an a-posteriori monitoring solution.

Compensation Model. The first artifact - the model for monitoring and direct
compensation - assumes that that the decision to inner source a component
has already been made and that inner source development has either started or
already been completed. Hence, this can be seen as an a-posteriori controlling
device, when cost associated with the development is accounted for. It applies a
glass-box approach to analytics, and aims to document each low-level cost item,
as well as its associated cost type, project phase and whether the action provided
direct or indirect value to the endeavor. As such, the model takes as input the
contributions by each team – ideally drawn automatically from the project’s
version control system. These inputs can be code additions by LoC and number
of errors as well as revisions by LoC and number of errors resolved.

From this data, the model computes the overall contribution by each party
to the project and visualizes the data. It also gives the controllers and project
managers an indication if an imbalance in contributions has occurred. Using:

LoC = Lines of Code (1)

E = Errors produced within Code (2)

R = Error resolutions within Code (3)

ϕ = Custom error modifier (4)

the overall contribution in percentage points for contributor A is thus calcu-
lated as follows:

ContributionA =
ΣLoC − (EA −RA)× ϕ

LoCTotal
(5)

Using the error modifier phi, the participants or the controller can decide
what emphasis to assign code quality. Using a higher value rewards contributions
without errors and shifts the net-contribution percentage towards contributors
that resolve more issues than they create. For instance, a modifier of 10 subtracts
ten Lines of Code from a contributor’s overall per error introduced and adds the
same amount for a resolution. This assures that resolving one’s own errors has
no negative impact on the total and that reworking faulty code of others is
recognized in the overall calculation. Setting the value of phi to zero cancels this
rebalancing-effect out. Building on the contribution figure, adding:



8 Hirsch, Riehle

W = Total Work hours (expected or actual) (6)

C = Cost per personnel hour (7)

U = Share of Usage (expected or actual) (8)

the deviating contribution, and thus, suggested compensation, is calculated
using this formula:

CompensationA to B = (W × C)× (U − ContributionA) (9)

As per this implementation, the model is aimed to be a net-zero mechanism.
As such, its goal is to measure and coordinate collaboration between two or
more developing parties and to assure mutual understanding of effort and sug-
gest equal contribution. When collaborators within a company want to avoid
actual payment, the attributed value can simply be used as a running tally of
collaboration to ensure equal cooperation between partners long term.

Viability Model. The second artifact seeks to identify the viability of inner sourc-
ing a specific component, before development has started. More concisely, it
should determine whether it is worth combining development efforts with an-
other unit to work on related components. As such, this can be considered an
a-priori planning device, for when cost and resource expenditure of development
can only be projected.

This artifact leans on the planning and sourcing angle of management ac-
counting - mirroring the idea of a make-or-buy decision. In this context, “mak-
ing” as the internal sourcing mechanism is the equivalent of independent closed
development – i.e., traditional software engineering. “Buying” on the other hand,
represents external sourcing – usually done through a one-time transaction be-
tween companies – but in this case through inner source collaboration. The price
of an inner source component can be considered the cost of one’s contribution
as well as the cost of adoption and integration in one’s own environment.

The main difference between make-or-buy and this make-or-inner-source ap-
proach is that there is no clear distinction between seller and buyer, as all parties
involved are contributing and taking advantage of others’ contributions at the
same time. Therefore, there is usually no passive buyer role as everyone is also
a contributor. Advantageously, this mean that the solution is not only custom
made, but every contributor can directly influence development. However, unlike
in make-or-buy, the company cannot outsource externalities such as liabilities,
potentially requiring additional spending for quality control and certification.

It is evident that there are multiple factors beyond pure financial reasoning
that might lead to the decision for collaboration (or against it). For instance, a
business unit might choose to contribute to or license an inner source component
developed by another unit to comply with scheduling or because they lack know-
how, even though it causes higher upfront cost than with own development.



IS Management Accounting 9

The following is an attempt to transform the established make-or-buy tem-
plate by Medina-Serrano et al [18] to a template displaying factors for inner
source considerations. Importantly, since this model is not supposed to evaluate
whether development should be pursued or not – simply how it should be carried
out – the criteria were adapted and rearranged to reflect this change.

Triggers for
Make-or-IS
Assessment

Strategic Value
Factors

Human
Factors

Performance
Factors

Financial
Factors

Possible
Outcomes

New product
introduction

Urgency
Human Resource

Availability
Exp. Impact on

Quality
Contribution

Cost
Hard

Rejection

Need for
improvement

Potential Sales
Growth

Skills and
Know-how
Availability

Exp. Impact on
Flexibility

Conversion and
Integration Cost

Weak
Rejection

Need for
higher quality

Technical
Differentation

Potential Skills
Development

Exp. Impact on
Innovation

Exp. Maintenance
Contribution

Weak
Recommendation

Need for
competitive
advantage

Profitability
Inner Source
Experience

Exp. Impact on
Delivery Time

Cost of Alternative
Development

Full
Recommendation

Table 1. Make-or-inner-source decision factors

This template can help decision-makers by establishing the difference in con-
siderations between own development and inner sourcing – such as the impact
on performance, measured in delivery time, cost or quality. It also helps evaluate
potential synergy effects regarding resources and strategic value and provides an
analysis of the financial implications of an inner source decision. To the end of
specific analysis, we arranged the decision factors into a matrix that visualizes
different approach dimensions.

Fig. 1. Make-or-inner-source decision matrix

With this combined information, the model returns a judgement of viability
of inner sourcing. Importantly, the model carries out both an overall recom-



10 Hirsch, Riehle

mendation of viability of inner sourcing the project in terms of each of these
dimensions, as well as a recommendation for each of the participating business
units considering their delivery time and financial impact.

4.4 Implementation

Both design artifacts were implemented as spreadsheets solutions, to allow for
quick iteration and adaptation, while using Excel’s PowerQuery to guarantee
model simplicity and performance.

Compensation Model. The model for direct compensation takes the following
manual inputs, both as planned prior to execution and as incurred during the
project. They should be provided through a project controller or overarching
project manager, to ensure objectivity.

– Overall project effort (in hours)
– Cost per personnel hour
– Usage percentage of the final artifact

as well as the code commits from the repository, containing the following
information. As per the prototype, this is done using a csv-file import, containing
a unix timestamp of the contribution, the contributor name, type of change
made, phase of development, number of lines of code as well as the number of
errors, warnings and resolutions.

From this, the compensation model computes the contributions of each par-
ticipant, as described under 4.3 and gives an overview of the inner source project
for controlling. Taking into account the expected usage of the component under
development, it determines whether one team disproportionately benefits from
the work of the other(s). The resulting compensation ”payment” suggestion is
relayed to the individual teams after revision by the controller.

Naturally, for each of the inputs, the model accepts subsequent updates and
changes the valuation accordingly. In addition to the compensation calculation,
the dashboard also aggregates information on individual developer contributions,
as well as overall team contributions and error distribution. This information can
be used to corroborate the model’s judgment to stakeholders if questions about
the process arise.

Viability Model. The viability model extends the previously introduced deci-
sion matrix, with a template that guides a potential inner source collaborator
through the project evaluation. The contributor is tasked with estimating each of
the decision factors, as well as assigning a weight by their relative importance.
An example of a contributor’s assessment mask can be seen below, including
both the color-coded input fields, as well as the real-time model result.



IS Management Accounting 11

Fig. 2. Empty assessment view for a potential contributor

While qualitative data is quantified using a seven-point Likert-scale, financial
estimations are made more robust using the three-point-estimation techniques.
To improve usability and sanitize user input, ratings and weights are presented
as drop-down menus with text descriptors. This information is aggregated and,
if deemed necessary, revised by an impartial entity, that can re-adjust factor
weights after the fact. The model yields a judgment for the four established inner
source dimensions and gives special consideration to financial and scheduling
viability, and displays warnings if either are in conflict with important project
parameters, even if the overall parameters may be favorable. To return an overall
assessment of collaboration viability, the model draws on custom texts for any
possible combination of verdicts, that can be shown to a user.

4.5 Demonstration

We demonstrate the models by illustrating the most important cases, and the
models’ behavior in them.

Compensation Model. The compensation suggestion is delivered to the user along
with usage proportions and the calculated valuation of their respective contri-
butions. One potential outcome can be seen below.

Fig. 3. Exemplary compensation model result



12 Hirsch, Riehle

This model’s behavior can be described by four basic cases:
Case one (Usage = Contribution; Modifier = 0; Actual = Planned): In

this case, planned values are met and all calculation cancels out. We determine
that no party received a disproportionate advantage from the cooperation. No
payment suggestion is made.

Case two (UsageA > Contribution; Modifier = 0; Actual = Planned): Party
A contributed less than their usage, but in accordance with prior planning.
Compensation to B suggested.

Case three (Usage = Contribution; Modifier > 0; Actual = Planned): All
else being equal, a higher error modifier shifts the balance towards the party
which resolved more errors. A formerly balanced cooperation may now require
compensation from the more error-prone contributor to adjust for the higher
workload generated.

Case four (Actual <> Planned): Any deviation from planned values can
cause the same shifts in contribution balance as described above. The model
automatically accounts for changes in usage, contribution, and any other input
value provided.

Viability Model. This artifact judges the viability of an endeavor along the four
dimensions , as well as returning independent verdicts of viability considering
scheduling and financial aspects. Combining this information, the model returns
a general judgement in the following form, already seen in figure 2.

Fig. 4. Exemplary viability model result

In total, the model’s output can be described by 108 combinations of the
verdicts above. To demonstrate its functionality, the following illustrative cases
were selected.

Case one (Full Recommendation): In these cases, the non-financial pa-
rameters within the main inner source dimensions are overwhelmingly positive,
and both financial and scheduling aspects are not prohibitive. Depending on
whether they are neutral or positive, the message issued to the user changes.

Full Recommendation - Inner sourcing this project has the potential to
increase quality, improve delivery time and reduce production cost.

Full Recommendation - The currently entered non-financial information
suggests the project would benefit from inner sourcing and enable faster de-
velopment at comparable costs.

Case two (Disapproval by non-financial factors): Similarly, if a ma-
jority of the model’s non-financial dimensions yield a negative result, the model



IS Management Accounting 13

judges the project as a whole to be non-viable. In this case, calculations on af-
fected scheduling and finances are made and provided to the controller, but not
specifically displayed. The user may be presented with a message similar to the
following examples.

Weak Disapproval - The currently entered non-financial information sug-
gests the project is unviable. A redefinition and in-depth analysis are advised.

Hard Disapproval - The currently entered financial and non-financial in-
formation strongly suggests the project is unviable for inner sourcing or the
contribution of this department is non-viable. Re-evaluation is advisable after
potentially re-defining the project parameters significantly.

Case three (Weak Disapproval on scheduling or financial grounds): In
cases where the non-financial factors are positive, but the model determines a
higher risk of delays or significantly increased cost, this information is relayed to
the user in finer detail. It is ultimately at the project decision-makers’ discretion
to determine which of these aspects are critical to the success of the endeavor.
The verdict may be presented akin to the messages below.

Weak Disapproval - The currently entered financial and non-financial in-
formation suggests the project would benefit significantly from inner sourcing.
However, as it could lead to a potential increase in development time, inner
sourcing is only recommended if development time is not a crucial success
factor.

Weak Disapproval - The currently entered non-financial information sug-
gests the project may be viable for inner sourcing. Crucially, inner sourcing
is expected to increase overall cost, while improving on development time. At
the stakeholders’ discretion, the higher cost can be considered acceptable if
time to market is prioritized.

Weak Disapproval - The currently entered non-financial information sug-
gests the project may benefit from inner sourcing. However, due to expected
disadvantages in development cost and time, alternative development is gen-
erally preferable.

5 Limitations

As mentioned, any kind extensive management oversight risks hampering the
benefits of inner sourcing in the first place. This remains to be evaluated by
industry practitioners, and could lead to major changes to better reflect real-
world application of the artifacts.

As it stands, the proposed compensation model assumes that all code com-
mitted is of equal value to determine the overall contribution. The introduction
of the custom error modifier represents an approach to remedy this and recog-
nize code quality as a value factor, but it’s intentionally simplistic in execution.
In theory, partners could benefit from artificially inflating their LoC numbers
without having contributed to the project at the same scale. Potential meth-
ods to increase precision include a weighted approach to LoC metrics by Mas y



14 Hirsch, Riehle

Parada [27] or a work time calculation from time between commits as proposed
by Buchner and Riehle [12].

Understandably, suggesting compensation payment of any kind may be seen
as controversial. It is important to underline that collaborative software develop-
ment is not a zero-sum-game and likening it to one should be done carefully. In
fact, the viability model considers this by comparing traditional development and
the potential cost through Inner Sourcing. This criticism of the compensation
model is, however, only applicable in cases of one-off collaboration. Long-term
collective work could use the suggested compensation as a running total to en-
sure equal effort on all sides – without ever exchanging money. Even so, there
are cases where compensation payments are explicitly recommended, such as for
taxation purposes [16].

As for the viability model, the calculation could be extended with further
negative dimensions associated with inner sourcing, depending on the individual
collaborative development situations. Clearly there will also be situations where
the model delivers unsatisfactory results, due to the limitation and standardiza-
tion of inputs. This lack of customization could be resolved in later iterations.

6 Conclusions

In this paper we demonstrate the possibilities of connecting sound management
accounting principles with functional inner source processes. For industry, it
presents easily understandable approaches to the inclusion of collaborative soft-
ware development within the core management functions of planning and mon-
itoring, that are also light-weight enough as to not prohibit free combination of
efforts across organizational boundaries. As such, it may provide a framework to
further the adoption of open source principles within companies and could aid
in lowering barriers to entry and reduce the risk of uncontrolled processes and
mismanagement.

The broad sweep approach that was chosen during the theoretical founda-
tion aimed to not only establish a synergy between management accounting and
software engineering, but also to contextualize the challenges and opportunities
this connection can provide. The discussion of related research material has also
stressed the topic’s interdisciplinary position in between the fields of economics,
statistics, management as well as computer science. Located at this intersection
between subjects, the topic can draw from a number of potential techniques to
resolve the apparent dichotomy between open source principles and management
oversight. Combined with the introduction of expert opinions to verify the the-
oretical findings, this body of work creates ample opportunity for more focused
research to tie into and expand upon.

References

1. Deshpande, A., Riehle, D.: The Total Growth of Open Source. In: Russo, B., Dami-
ani, E., Hissam, S., Lundell, B., Succi, G. (eds.) Open Source Development, Com-



IS Management Accounting 15

munities and Quality. IFIP, vol. 275, pp. 197–209. Springer US, Boston, MA (2008)
2. Volpi, M.: How open-source software took over the world (2019),

https://techcrunch.com/2019/01/12/how-open-source-software-took-over-the-
world

3. Ahlawat, P., Boyne, J., Herz, D., Schmieg, F. and Stephan, M.: Why You
Need an Open Source Software Strategy (2021), https://mkt-bcg-com-public-
pdfs.s3.amazonaws.com/prod/open-source-software-strategy-benefits.pdf

4. Bosio, D., Bev Littlewood, L. Strigini, M. J. Newby: Bosio, D., Littlewood, B.,
Strigini, L., & Newby, M. J. (2002, February). Advantages of open source processes
for reliability: clarifying the issues. In: Gacek, C., Arief, B. (eds.) Proceedings of
the Open Source Software Development Workshop, pp. 30–46 (2002)

5. Lawrie, T., Gacek, C.: Issues of dependability in open source software development.
SIGSOFT Softw. Eng. Notes, vol. 27, 34–37 (2002)

6. Stol, K.-J., Avgeriou, P., Babar, M.A., Lucas, Y., Fitzgerald, B.: Key factors for
adopting inner source. ACM Trans. Softw. Eng. Methodol., vol. 23, 1–35 (2014)

7. Riehle, D.: The Commercial Open Source Business Model. In: Nelson, M.L., Shaw,
M.J., Strader, T.J. (eds.) Value creation in e-business management. 15th Americas
Conference on Information Systems, AMCIS 2009, Sigebiz Track, San Francisco,
CA, USA, August 6-9, 2009, selected papers / [edited by] Matthew L. Nelson,
Michael J. Shaw, Troy J. Strader. Lecture notes in business information processing,
1865-1348. Springer, New York (2009)

8. Open Source Initiative: The Open Source Definition (2007),
https://opensource.org/osd

9. Capraro, M., Riehle, D.: Inner Source Definition, Benefits, and Challenges. ACM
Comput. Surv., vol. 49, 1–36 (2017)

10. Riehle, D., Capraro, M., Kips, D., Horn, L.: Inner Source in Platform-Based Prod-
uct Engineering. IIEEE Trans. Software Eng., vol. 42, 1162–1177 (2016).

11. Stol, K.-J., Babar, M.A., Avgeriou, P., Fitzgerald, B.: A comparative study of chal-
lenges in integrating Open Source Software and Inner Source Software. Information
and Software Technology, vol. 53, 1319–1336 (2011)

12. Buchner, S., Riehle, D.: Calculating the Costs of Inner Source Collaboration by
Computing the Time Worked. In: Bui, T. (ed.) Proceedings of the 55th Hawaii
International Conference on System Sciences (2022)

13. Capraro, M., Dorner, M., Riehle, D.: The patch-flow method for measuring inner
source collaboration. In: Zaidman, A., Kamei, Y., Hill, E. (eds.) Proceedings of
the 15th International Conference on Mining Software Repositories, pp. 515–525.
ACM, New York, NY, USA (2018)

14. Morgan, L., Gleasure, R., Baiyere, A., Dang, H.P.: Share and Share Alike. How
Inner Source Can Help Create New Digital Platforms. California Management
Review, vol. 64, 90–112 (2021)

15. Charifzadeh, M., Taschner, A.: Management accounting and control. Tools and
concepts in a central European context / Michel Charifzadeh and Andreas
Taschner. Wiley-VCH, Weinheim, Germany (2017)

16. The International Federation of Accountants (IFAC): Evaluating and Improving
Costing in Organizations. New York, NY, USA (2009)

17. Cánez, L.E., Platts, K.W., Probert, D.R.: Developing a framework for make-or-buy
decisions. International Journal of Operations & Production Management, vol. 20,
1313–1330 (2000)

18. Medina-Serrano, R., González-Ramı́rez, R., Gasco-Gasco, J., Llopis-Taverner, J.:
Strategic sourcing. Developing a progressive framework for make-or-buy decisions.
JIEM, vol. 13, 133 (2020)



16 Hirsch, Riehle

19. Deephouse, C., Mukhopadhyay, T., Goldenson, D.R., Kellner, M.I.: Software Pro-
cesses and Project Performance. Journal of Management Information Systems, vol.
12, 187–205 (1995)

20. Bloch, M., Blumberg, S. and Laartz, J.: Delivering large-scale IT projects on
time, on budget, and on value (2012), https://www.mckinsey.com/business-
functions/mckinsey-digital/our-insights/delivering-large-scale-it-projects-on-time-
on-budget-and-on-value

21. Budzier, A., Flyvbjerg, B.: Overspend? Late? Failure? What the Data Say About
IT Project Risk in the Public Sector. In: Commonwealth Secretariat (ed.) Com-
monwealth Governance Handbook 2012/13. Democracy, development and public
administration, pp. 145–157. Commonwealth Secretariat, London (2012)

22. Dingsoyr, T., Dyba, T., Gjertsen, M., Jacobsen, A.O., Mathisen, T.-E., Nordfjord,
J.O., Roe, K., Strand, K.: Key Lessons From Tailoring Agile Methods for Large-
Scale Software Development. IT Prof., vol. 21, 34–41 (2019)

23. Larson, E.W., Gobeli, D.H.: Significance of project management structure on de-
velopment success. IEEE Trans. Eng. Manage., vol. 36, 119–125 (1989)

24. Boehm, B.W., Papaccio, P.N.: Understanding and controlling software costs.
IIEEE Trans. Software Eng., vol. 14, 1462–1477 (1988)

25. Filieri, A., Maggio, M., Angelopoulos, K., D’Ippolito, N., Gerostathopoulos, I.,
Hempel, A.B., Hoffmann, H., Jamshidi, P., Kalyvianaki, E., Klein, C., et al.: Soft-
ware Engineering Meets Control Theory. In: 2015 IEEE/ACM 10th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems, pp.
71–82. IEEE (2015)

26. Kaner, C., Bond, W.P.: Software Engineering Metrics: What Do They Measure
and How Do We Know? In METRICS 2004. IEEE CS, vol. (2004)

27. Mas y Parareda, B., Pizka, M.: Measuring Productivity Using the Infamous Lines of
Code Metric. In: Keung, J. (ed.) Proceedings of The First International Workshop
on Software Productivity Analysis and Cost Estimation, pp. 4–9 (2007)

28. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A Design Science
Research Methodology for Information Systems Research. Journal of Management
Information Systems, vol. 24, 45–77 (2014)

29. Granlund, M., Lukka, K.: It is a Small World of Management Accounting Practices.
Journal of Management Accounting Research, vol. , 153–179 (1998)

30. Bueno, S., Salmeron, J.L.: TAM-based success modeling in ERP. Interacting with
Computers, vol. 20, 515–523 (2008)

31. Cappelli, M.: Overcoming the challenges of a complex ERP environ-
ment (2016), https://searcherp.techtarget.com/tip/Overcoming-the-challenges-of-
a-complex-ERP-environment

32. Driscoll, M., Webb, H. and Schmidt, J.: ERP Complexity vs. busi-
ness growth. At odds or in alignment depends on your approach (2015),
https://www.cognizant.com/whitepapers/2015-research-on-the-ERP-landscape-
Publisher.pdf

33. Dul, J., Hak, T.: To quantify or to qualify: That’s not the question. Journal of
Purchasing and Supply Management, vol. 13, 207–209 (2007)


