
Friedrich-Alexander-Universität Erlangen-Nürnberg

Technische Fakultät, Department Informatik

Julian Hirsch

MASTER THESIS

Conceptualizing a Management Accounting

Solution for Inner Source Software Engineering

Submitted on May 27, 2022

Supervisor: Prof. Dr. Dirk Riehle, M.B.A.

Professur für Open-Source-Software

Department Informatik, Technische Fakultät

Friedrich-Alexander University Erlangen-Nürnberg

II

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der

angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch

keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung

angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden,

sind als solche gekennzeichnet.

Nürnberg, May 27, 2022

License

This work is licensed under the Creative Commons Attribution 4.0 International license

(CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Nürnberg, May 27, 2022

https://creativecommons.org/licenses/by/4.0/

III

Abstract

Open Source represents a non-hierarchical and collective approach to software development,

that has seen unprecedented success and rapid adoption across a multitude of fields. Inner

Source is an attempt to siphon some of the advantages of the Open Source paradigm by applying

it to internal closed development projects.

However, the well-established uncontrolled and free-flowing nature of Open Source poses a

challenge for conventional management systems, that are traditionally well-monitored and run

in a top-down manner.

Using both sources from literature as well as interviews with industry practitioners, this work

investigates potential approaches to combine management accounting and Inner Sourcing in a

meaningful way and presents two design artifacts. These prototypes are demonstrated to be used

for monitoring and controlling active projects, and to determine the viability of Inner Sourcing

potential future projects, respectively.

IV

Agenda

1 Introduction ... 1

1.1 Open Source and Inner Source Software Development .. 1

1.2 Dimensions of Management and Management Accounting .. 3

1.3 Management Accounting in Software Engineering ... 8

1.3.1 Cost controlling ... 9

1.3.2 Process Controlling ... 10

1.3.3 Metrics ... 11

1.3.4 Implementation options ... 13

1.4 Relevance of Topic .. 14

2 Requirements Identification .. 17

2.1 Interview Review .. 17

2.2 Summary and Critical Evaluation ... 21

2.3 Literature Review .. 22

3 Objective Definition .. 25

3.1 Research Question ... 25

3.2 Research Approach .. 25

4 Conceptual Solution Design .. 26

4.1 Basic Assumptions and Design Decisions ... 26

4.2 Model Selection and Design .. 26

4.2.1 Model for Monitoring and Direct Compensation .. 27

4.2.2 Model for Viability of Inner Sourcing ... 28

5 Implementation .. 32

5.1 Compensation Model .. 32

5.2 Viability Model.. 34

6 Demonstration ... 37

6.1 Compensation Model .. 37

6.2 Viability Model.. 38

7 Limitations and Outlook .. 40

8 Conclusions ... 41

Appendix A Interview Expert No. 1 ... V

Appendix B Interview Expert No. 2 .. VI

Appendix C Viability Model Judgments Lookup Table .. VII

References ... IX

1

1 Introduction

1.1 Open Source and Inner Source Software Development

Open Source software development is based on the principles of free access and open col-

laboration. The collective and non-hierarchical nature of work has helped propel Open

Source from a niche phenomenon to a dominant force in a number of markets with many years

of double or triple digit growth rates and companies worth billions of US-dollars in market

capitalization (Deshpande & Riehle, 2008; Volpi, 2019; Ahlawat, Boyne, Herz, Schmieg, &

Stephan, 2021).

The underlying Open Source definition that this branch of software development is based on

takes two forms, which are deeply interconnected. They are, on one hand, the rights granted by

the software’s license. On the other hand, following from these basic rights emerged a way of

collaboration that is distinct from other proprietary software development and that has become

part of the term Open Source as much as the licensing itself.

Generally, in order to qualify as Open Source, a software license must be permissive enough to

allow open access, adaptation and improvement on a piece of code. Thus, the set of rules in a

license also act as universal rights for any contributor.

Perens (1998) points out three fundamental rights in particular that make programmers want

to contribute to Open Source. They are:

• The right to have access to the software’s source code

• The right to make and distribute copies of the program

• The right to make improvements to the program

These user (and by extension, developer-) rights established in Open Source create a parity

between all contributors that is unlike traditional software projects. This parity is then di-

rectly reflected in the way the collaborators work together. The bottom-up approach to soft-

ware development creates an inversion of power from traditional guided development pro-

cesses. With parity established, collaboration must be structured around shared principles, so-

called best practices. In Open Source development these best practices revolve around the col-

laboration principles of egalitarian, meritocratic, and self-organizing work (Riehle et al.,

2009).

Stol, Avgeriou, Babar, Lucas, and Fitzgerald (2014) further collected seven Open Source best

practices:

• Universal access to development artifacts

• Transparent development environment

• Peer-review of contributions

• Informal communication channels

• Self-selection of contributors

• Frequent releases and early feedback

• “Around the clock” development

Instead of being assigned a single, pre-determined task, as is usually the case in traditional

development, Open Source enables contributors to choose what and how they contribute to a

2

project, and are a lot more flexible in what way they choose to utilize their time and skills

(Gillies, 2016). Peer-review, unobstructed communication and transparency of develop-

ment allow for frequent releases while mitigating flaws and revisions after release. In fact, it

has long been established that Open Source processes can have positive impacts on software

quality and reliability, due to the non-standard work structure and collaborative spirit (Bosio,

Bev Littlewood, L. Strigini, & M. J. Newby, 2002; Lawrie & Gacek, 2002).

With these advantages to Open Source software development, private companies quickly be-

came interested in branching into the Open Source space. Their goals, however, appear to

be diametrically opposed, as companies would naturally still seek to extract economic value out

of their development and protect their intellectual property (Riehle, 2009). Permissive licenses

would not allow for direct monetization, as per the Open Source definition, any Open Source

licensed software has to be freely distributed, along with all of its derivative works (Open

Source Initiative, 2007). This mismatch between Open Source working principles, propri-

etary licensing and community-driven development will probably remain unresolvable,

which forces companies to choose either two of the three, while mitigating the impact of

losing the third.

Figure 1: Decision triangle in Open and Inner Source

These contrasting ideas couldn’t easily be combined. As a result, a number of new approaches

and business models were developed to solve this perceived dichotomy between inherently

open development and profit-driven private markets. A number of solutions were formulated

under the umbrella term Commercial Open Source (Riehle, 2009). The innovation brought

about provided a platform for economic disruption in the software marketplace and gave rise to

corporate Open Source collaboration as well as entire Open Source departments. The partici-

pating companies are forced to forego revenue and give up some of their intellectual property

but may receive other benefits that compensate for this. In some cases, their business models

are hybrids between Open and Closed Source, and create revenue from software adjacent ser-

vices, such as an improved distribution system or adapting the codebase to a specific customer

on demand (Watson, Boudreau, York, Greiner, & Wynn, 2008).

Another approach to capture some of the benefits of Open Source is the limitation of Open

Source practices and principles to a closed system within organizations – appropriately

named Inner Source (Capraro & Riehle, 2017). This limitation to a single organization seems

to be a stark contrast to the ideas of open collaboration described before. However, it enables

practitioners to benefit from many of the upsides of collaborative development, without us-

ing Open Source licensing and without risk of losing their intellectual property in software.

Of course, at the same time, Inner Source sacrifices mechanisms like community develop-

ment and crowd-sourced support, in favor of the aforementioned work principles and best prac-

tices. In supplementing their closed source development processes with these Open Source

Open-Source
working

principles

Proprietary
license and
protected IP

Community
development
and support

3

principles, companies hope to improve compliance with schedules, higher reliability and more

efficient development practices, and to generally further develop and improve their software

product platforms (Riehle, Capraro, Kips, & Horn, 2016; Morgan, Gleasure, Baiyere, & Dang,

2021).

With these rather disruptive changes to their processes, a number of (potential) problems

when moving towards Inner Source have been identified by the likes of Riehle et al (2016)

and Stol et al (2011) and (2014), respectively. To combat these, steering and controlling sub-

systems are most likely required to make Inner Source a useful integration into most com-

panies – either as part of their overarching management accounting software, or as a standalone

component used and maintained by Inner Source practitioners.

1.2 Dimensions of Management and Management Accounting

Management provides the core functions of planning, organization, commanding, coordination

and monitoring, as described by Charifzadeh and Taschner (2017). Among these management

responsibilities, all monitoring and documenting of processes relating to income, expenditures,

and cash flow is handled by an accounting subsystem.

Within accounting, financial accounting represents the external reporting within clear au-

thoritative guidelines, i.e., within the framework defined by accounting standards such as US

GAAP (USA), HGB (Germany), and IFRS (International). Its purpose is to be a documentation

process to ensure compliance with these regulations. Recording only quantitative, financial in-

formation, accounting systems track the flow of all business transactions that directly affect

stocks of goods and tangible resources. As a rule of thumb, financial accounting aims to dis-

close only what is strictly necessary and mandated, because this information may be availa-

ble to external parties, such as competitors, creditors and authorities.1

Its counterpart, management accounting acts as the internal reporting and controlling tool

used to supplement and guide management decision making. It is a pure management sub-

system, and unlike financial accounting, management accounting is not bound by country-

specific laws and tax codes. As such, the reporting dimension of management accounting can

go beyond documentation of facts and include management-specific information like projec-

tions, forecasts, deviations from prior forecasts as well as error margins.

This distinction can be most easily illustrated using one of the most common forms of financial

accounting documentation – the balance sheet, which includes financial information document-

ing a company’s total assets, equity, and liabilities. And where the balance sheet in financial

accounting represents solely the financial status at the time of annual reporting, manage-

ment accounting extends it to serve its own function. To fulfill internal information require-

ments, the balance sheet in this form includes prior forecasts, deviations, and comparisons to

last year’s items.

In the following example, columns highlighted in grey are found in reporting by financial ac-

counting, whereas ones in blue are customarily added for internal purposes at management ac-

counting.

1 Publication obligations are subject to local laws and can vary depending on the legal form (§325 HGB),

structure of liability (§ 264a HGB), and the size of a company (§ 1 PublG), as well as jurisdiction – examples are

taken from German tax law.

4

 CURRENT YEAR

 Actual Forecast Diff Diff% Prior Year

ASSETS

Non-Current Assets

Value, Depreciation, Amortization, Investments 415 228 414 500 728 0,2% 379 250

Current Assets

Inventory, Debtors, Loans, Bank, Cash 958 756 833 589 125 167 15,0% 618 533

Total Assets 1 373 984 1 248 089 125 895 10,1% 997 783

EQUITY & LIABILITIES

Equity

Shareholders' Contributions + Retained Earnings 769 452 789 289 -19 836 -2,5% 543 889

Non-Current Liabilities

Long Term Liabilities 216 250 168 800 47 450 28,1% 200 000

Current Liabilities

Creditors, Accruals, Sales Tax, Dividends 388 283 290 000 98 283 33,9% 253 894

Total Liabilities 604 532 458 800 145 732 31,8% 453 894

Total Equity & Liabilities 1 373 984 1 248 089 125 896 10,1% 997 783

Figure 2: Illustrative Balance Sheet Statement used in Financial Accounting and Management

Reporting2

Beyond the monitoring of a company’s overall financial information, management accounting

is also directly involved in a firm’s pricing process. Evidently, pricing is critical to sustain a

business’ profitability, as setting prices incorrectly risks losing out on revenue in the short-term,

and market share in the long run – making pricing strategy a crucial part of a firm’s overall

strategic alignment (Lancioni, 2005; Johansson, Hallberg, Hinterhuber, Zbaracki, & Liozu,

2012). In addition to the above described financial data, the pricing process in management

accounting also includes imputed costs such as markups for risk and investments, as well

as profit margin to determine the product’s final price to the customer Charifzadeh

& Taschner, 2017; Jung & Han, 2017).

Pricing methods can take three basic forms: cost-plus-pricing, value-based pricing, competitive

pricing, as well as variations thereof. Barring the last, which focuses on the market to derive

one’s own price tag, pricing generally requires clear knowledge of one’s production cost

and the customer-value created. Since although companies may choose one method over an-

other to set their prices, if cost of production is higher than the value towards the potential

customers, the product cannot be viable, making both metrics vitally important regardless of

what pricing method is chosen (Charifzadeh & Taschner, 2017).

Further, in addition to the aggregation of a company’s financial information, management ac-

counting defines, documents, and monitors non-financial business metrics, depending on a

company’s specific use cases and management requirements. Since reporting is usually only

2 Typically, a balance sheet in management accounting would include one or more further statements. These do

follow the same structure and items as Figure 2 and display the same financial overview for a different period of

time, usually the current month as well as year-to-date or year-by-year views. To ensure readability, these

additional views were truncated, and the individual asset, equity and liability items consolidated. The balance

sheet as presented is only intended to illustrate the difference in information between financial and management

accounting.

5

made available to internal stakeholders, it often readily includes business-critical and confiden-

tial information like internal good and IP flows, resource allocation (as well as management)

and resource utilization (Charifzadeh & Taschner, 2017).

One area, where both the financial and non-financial aspects of management accounting are

combined, is during strategic planning and sourcing. More specifically, management account-

ing aids in the strategic decision between designing and developing products in-house or

buying them from a third party – also known as a make-or-buy decision. Most often used

to avoid higher cost, management may choose to outsource some production to stay competitive

or increase potential margins (Cánez, Platts, & Probert, 2000).

According to an analysis run by Medina-Serrano, González-Ramírez, Gasco-Gasco, and Llopis-

Taverner (2020), further reasons for purchasing ready-made solutions may include higher qual-

ity and reliability, lack of in-house expertise, resources or flexibility, insufficient scaling capa-

bilities or disproportionate required investment in research and development. On the other hand,

outsourcing can risk draining in-house competences (human factors) and degrade comparative

advantages when used for one’s core processes (technological factors). Crucially, the research-

ers further argue that there is no need to constrain sourcing to either “Make” or “Buy” and

argue that hybrid solutions like “make-and-buy” should be considered as possible outcomes

– opening the door to fruitful strategic partnerships in sourcing and development.

To find the correct course of action for a sourcing decision, any tool analyzing the impact of

a potential make-or-buy decision has to account for both its financial and non-financial

factors, as well as weighing their potential effect on the long-term strategic outlook. The make-

or-buy framework elaborated by Medina-Serrano et al. (2020) elaborates the following general-

purpose areas and factors that should be considered.

Figure 3: Make-or-buy framework

Source: Own illustration adapted from Medina-Serrano et al., 2020)

Due to the legal ambiguity surrounding management systems, the roles and responsibilities of

management accounting don’t follow a narrow definition, which is also reflected in differ-

ing nomenclatures. In Central Europe, for instance, management accounting is generally re-

ferred to as controlling, giving higher importance to the control and feedback aspect of man-

agement accounting (Charifzadeh & Taschner, 2017). Most traditionally however, manage-

ment control is considered a subsystem, that, together with management reporting, builds

Triggers for
Make-or-Buy

Asessment

New product
Introduction

Need for
improvement

Need for quality
improvment

Need for
competitive
advantages

...

Strategic Value

Profiability

Sales Growth

Technical
Differentiation

Demand
Flexibility

...

Resource
Position

Resources /
Capabilities

available

Skills and Know-
how available

Assets available

Process maturity

...

Performance

Conversion cost

Manufacturing
flexibility

Expected Impact
on Quality

Asset utilization

...

Potential for
Opportunism

Information
Asymmetry

Impact on
Delivery Time

Cost increases

Skills
Appropriation

...

Possible
Outcomes

Make in-house

Buy externally

Redefine and not
make product

Make-and-buy

...

6

the function of management accounting. As responsibilities of controllers have expanded,

this distinction has become less clear over time. This research aims to use the specific terms

management accounting, (management) reporting, and (management) control respectively,

where applicable. However, as concepts and responsibilities may overlap, the distinction cannot

always be resolved finally. The following image illustrates the definition used within this aca-

demic work.

Figure 4: Classification and differentiation of management accounting within management

Source: Own extended illustration modeled after Charifzadeh, Taschner (2017)

To prevent confusion by the illustration above, it has to be noted that, from an organizational

viewpoint, management accounting and control are rarely centrally organized in the same

way financial accounting usually is. Information and responsibility for management accounting

tasks are spread across departments and hierarchical levels, such as project management,

product management, sales, and sometimes individual low-level employees. And as a manage-

ment tool, management accounting supports and reinforces the general hierarchical structure

most management systems have, with information flowing upward towards middle and upper

management and being aggregated and generalized along the way. Complementing this bottom-

up movement of information, management uses the information provided to steer and control

the process in a top-down manner.

Since management accounting is not subject to any pre-defined regulation, managers and con-

trollers are left to decide on the nature of their reporting, which information to include in

reports for which stakeholder, how to organize it and at how often to produce it.

Specifically, managers and controllers are free to decide on the:

• contents and level of detail

• scope

• form and structure of the reports

• frequency of reporting

• target audience and authorized viewers

As a commonly used example, management accounting can create a regular reporting of busi-

ness performance – either of the business as a whole or an individual unit.

Management

Human
Resource

Operations Accounting

Financial Accounting Management Accounting

Management Reporting

Management Control

...

7

Items Budget Actual Diff Diff% Variance

Revenues 57 000 60 000 3 000 5,3% Favorable

Cost of Goods Sold 40 000 43 400 3 400 8,5% Unfavorable

Wages 6 700 7 000 300 4,5% Unfavorable

General & Admin 1 300 900 -400 -30,8% Favorable

Other fixed costs 2 500 2 500 0 0,0% -

Operating Income 6 500 6 200 -300 -4,6% Unfavorable

Figure 5: Weekly Performance Report

Source: Own adaptation after Charifzadeh and Taschner (2017)

In this instance, the amount of content and the level of detail are relatively limited, which allows

an easy overview of the most important and consolidated financial information to detect devi-

ations from the budget.3 The scope is either the whole organization or an organizational unit,

with the form and structure serving as a quick overview for the target audience – upper man-

agement. The frequency of reporting is weekly, which leaves ample room for more in-depth

analyses when irregularities are detected.

With this decision power over what, when and how often to report, management reporting

also heavily influences categorization and prioritization of available information, which di-

rectly affects operations and strategic decisions.

As a decision making tool, a management accounting system provides the necessary infor-

mation for analyzing the raw data collected from the subgroup to measure performance of cur-

rent business operations and serves as the basis for further planning. This duality of purpose

is often reflected in the distinction between operative and strategic controlling, i.e., the

analysis and control of performance compared to the long-term alignment with strategic

goals. Evidently, in some cases it may be preferable to accept suboptimal performance on any

one particular endeavor in order to guarantee long-term strategic success. As a standard exam-

ple, it is reasonable to risk a loss on a project to avoid losing a customer that is high-revenue or

otherwise strategically relevant.

As mentioned, risks should be mitigated during the planning phase and thus already considered

by management accounting – such as during the markup in price determination. However, when

these challenges arise during the execution phase, they have to be detected and dealt with as

little disruption as possible. In order to ensure that an operation still reaches its strategic goals,

operative management accounting goes beyond documentation and reporting – which is where

the controlling element of management accounting takes center stage. Where management

reporting acts as an aggregation and analysis tool for monitoring and planning business

processes, management control provides the tools to enact corrective action to achieve the

goals when necessary.

Strategic controlling is an integral part of the planning process of any major project or change

in processes as it helps in analyzing the different options and offers input for continuous im-

provement. This action of monitoring and providing corrective feedback into a system is usually

referred to as the controlling dimension of management accounting.

Structurally, any controlling system consists of three components, that interact with and act on

the controlee: A measuring device (detector), an assessor that determines discrepancies between

3 Note that the report does not include details on the cause of the deviations and the decrease in income while

revenues are up. This would have to be the subject of further reporting, if the decisionmakers find it warranted.

8

the observed and planned values, and an effector that provides feedback and takes corrective

action if necessary.

Figure 6: Operative Control System

Source: Own illustration after Charifzadeh & Taschner, 2017; Anthony & Govindarajan, 2014

Summing up, management accounting tasks are deeply interwoven with an organization’s entire

operation and are carried out across several organizational units. The main distinction identified

within the tasks is time – with some tasks taking place in the planning phase before a project is

started, and others used for reporting and controlling currently running projects.

The main aspects of a management accounting and controlling system, grouped by when in the

project lifecycle they take place, are:

1. Monitoring, Performance Measurement and Corrective Action – for ongoing pro-

jects

2. Planning, Preparation, Budgeting, Resource Allocation – for potential future pro-

jects

1.3 Management Accounting in Software Engineering

Management accounting for software engineering most traditionally takes the form of

general project controlling, as a project from a management perspective mirrors what the de-

velopment process entails from an engineering point of view. This seems logical, as most man-

agement accounting action in software engineering is operative.

The necessity for a controlling infrastructure in software is quite apparent: software develop-

ment processes can quickly become complex and strenuous to monitor. Projects are rarely

finished as originally planned, in schedule, effort and result – and this observation is neither

new nor expected to change dramatically. For this reason, organizations engaged in software

development are always looking for ways to improve their software development processes and

iteratively improve upon their development projects (Deephouse, Mukhopadhyay, Goldenson,

& Kellner, 1995; Bloch, Blumberg, & Laartz, 2012; Budzier & Flyvbjerg, 2012; Dingsoyr et

al., 2019).

Time, cost, and quality – it’s these three key performance criteria named the Triple Constraint,

also known as Iron Triangle, that determine the priorities and boundaries of project management

(Pollack, Helm, & Adler, 2018). An aggregation analysis of project cost, schedule and outcome

deviations elaborated by McKinsey’s Bloch et al. (2012) shows that software projects are often

not finished within budget or schedule, but reports better average compliance with quality re-

quirements than in non-software projects. These statistics are suggestive that software projects

rather sacrifice deadlines and accept higher effort than lower-quality results.

Object being
controlled

Detector

Assessor

Effector

9

Table 1:Percentage of IT projects with given issue (budget > $15 million in 2010)

Source: Own illustration after McKinsey-Oxford study in Bloch et al., 2012

According to Kuster et al (2015), project controlling’s mission is to “describe the rules that

are used in project management to ensure that the project goals are achieved”. Thus, its

goal is, by extension, to make different projects consistent across an organization to im-

prove overall project outcomes. This consistency of rules can, in turn, ease the transition be-

tween consecutive projects and allow for collaboration between concurrent ones.

The basic aspects of project controlling are well-established and remain largely unchanged:

every project has to be controlled in terms of its cost as well as concerning its processes,

including scheduling as well as project outcome and process quality (Larson & Gobeli, 1989).

And – with some adaptation – these hold true in software development projects as well (Boehm

& Papaccio, 1988; Rook, 1986; Filieri et al., 2015).

1.3.1 Cost controlling

Regarding the cost of software development, there are two well-established approaches to

control development projects – namely the influence-function and cost-distribution ap-

proaches described originally by Boehm and Papaccio (1988). In conjunction, these two per-

spectives work together to create an understanding of software cost. In more detail:

1. The influence-function – or black-box approach – acts as an overarching comparison

tool between distinct software projects and attempts to identify the influence that

non-financial project inputs have on the overall project outcome and cost. As such,

this perspective describes the projects in terms of objectives, methods employed,

time and personnel constraints, as well as skill level. From this aggregated data, the

method tries to draw correlations and explore causations with higher or lower soft-

ware cost (or quality), which can in turn be used to identify and mitigate cost-drivers to

improve processes long-term. It has to be noted that, with a reasonable number of pre-

dictors, even with just one outcome variable like cost, this type of multiple regression

analysis requires a large number of input observations to yield statistically significant

results at a satisfactory power.4 Critically, if this method is used for more than one out-

come metric, the solution space would require an even larger dataset, to make any cor-

relations statistically significant.

Another main drawback of this approach is its inability to create short-term improve-

ments to a system, while requiring additional documentation and the establishment of

4 Breakdown of the sample sizes required for a multiple regression analysis measuring the effect between an

exemplary five explanatory and one outcome variable (like cost) and their resulting powers, anticipating an

effect size (f²) of either 0.15 or 0.35 and a desired probability level (p) of at least 0.05:

Expected

Statistical Power

Required Sample Size at f² of 0.35 (high)

Optimistic Estimate

Required Sample Size at f² of 0.15 (medium)

Conversative Estimate

0.50 26 52

0.80 43 91

0.90 53 116

0.95 63 138

Project Type Average cost overrun Average schedule overrun Average benefits shortfall

Software 66 33 17

Non-software 43 3,6 133

Total 45 7 56

10

common evaluation factors. Due to this, practitioners may be hesitant to dedicate the

necessary time to the required record-keeping.

2. The cost-distribution – or glass-box approach – focuses in more detail on the individ-

ual sources of project cost. As an aggregative costing method, it relies on detailed doc-

umentation of all cost factors, as well as when, how, and by whom the cost was incurred.

Specifically, the glass-box approach puts emphasis on analyzing the distribution of

these types of cost:

a. Value-added or corrective activity – i.e., time spent on development, imple-

mentation and improvement vs. documentation and maintenance effort

b. Capital or labor cost – Capital Expenditure vs. Operating Expenditure5

c. Project phase or activity – planning, implementation, testing, maintenance, etc.

It may be useful to adapt the and add to the classification types proposed by the original

authors to apply the method to new development methods and potentially enable col-

laborative action.

This collective cost approach is quite intuitive, but will struggle to capture the overall

cost structure when the individual cost is not documented in enough detail. In these

application cases, similar to the black-box approach, the glass-box approach will re-

quire upfront investment and changes to the way development activity is docu-

mented before achieving benefit.

Experimental approaches confirm the viability and applicability of both methods, showing

that a better understanding of cost development and correlation with project factors results in

increased effectiveness and better control over cost while maintaining quality standards. Anal-

yses of controlled experiments have shown similar gains to productivity for both methods.

The aggregation of historical project data when identifying cost factors and risk has also been

shown to allow a significant cost reduction long-term. However, the black-box approach has

been associated with high variance in its effect on productivity – due to differences in adaptation

by the development teams.

1.3.2 Process Controlling

Processes can be distinctly more difficult to control, since they are often less clearly defined

and improvement metrics less obvious. To classify these software development processes one

could rely on the Capability Maturity Model (CMM), first established by the Software Engi-

neering Institute of Carnegie Mellon University in 1991 and expanded and added-to in later

iterations (Paulk, 2009). The model groups software development operations into five as-

cending levels, from entirely chaotic to highly organized and optimized. They detail clear

priorities on which improvement activities should be implemented first, as they will most likely

prove to be most effective in leading to a successfully performing software operation.

The levels, in ascending order of maturity and complexity, are:

1. Ad hoc / chaotic – few processes are defined; success hinges on individual contribu-

tions and effort.

5 Usually, any movement towards higher percentage of OpEx is welcomed, as it reduces upfront investment and

hedges risk – which can also be seen in movement towards Cloud, IaaS and PaaS solutions in software

engineering projects (Andreo, Calà, and Bosch (2021).

11

2. Repeatable – basic project management processes are defined to monitor cost, sched-

uling and product viability.

3. Defined – processes (both management and engineering) are standardized and inte-

grated into the company’s wider software environment. Projects use standardized com-

pany-wide software processes which focus on continuous learning and improvement.

4. Managed – comprehensive collection, reporting and controlling of process and product

quality attributes; Quantitative analysis and statistics become paramount at this stage,

aiming towards evidence-based management structures.

5. Optimizing – steady feedback into the processes and constant introduction of innova-

tion enables continuous improvement. Changes in the processes are constantly evalu-

ated using both practical experience and statistics to gauge whether the revisions were

merited and are potentially worth expanding further.

In order to improve development performance and output long-term, companies need to im-

prove through these stages, which is where the connection between development processes

and the involvement of management through reporting and controlling can be drawn. Level 1

is the only one of the five that may “function” without even a basic reporting and control-

ling mechanism – it is also called chaotic after all.

Moving from a chaotic level to Levels 2 and 3 already requires, at the very least, some project

management and managerial oversight to avoid non-compliant software as well as discrepan-

cies in delivery time and cost. To achieve a reasonably stable development process, these stages

require technical, business, and financial control which can be achieved by introducing a

low-level management accounting system that quantifies the process and gives management

handles for supervision and potential intervention, without completely re-designing the pro-

cesses established.

To achieve any of the higher levels of organization (Levels 4 or 5) that foster effective devel-

opment and high-quality output, Paulk, Curtis, Chrissis and Weber (1993) suggest moving to-

wards a process that is standardized and monitored on an organizational level. This includes

establishing process value metrics measuring both cost and quality parameters of each process

unit which should be kept in a well-managed process database. The collection of these metrics

should also extend to product quality measures and other adjacent metrics that are integral to

the success of the software department or company. Importantly, this maturity level also re-

quires adequate processing and analysis of the data collected by dedicated individuals to

advise the project members and decision-makers on how to implement data-driven solutions in

the process.

This extensive requirement for monitoring, analytics and direct corrective action necessitates

a comprehensive reporting and control system. In combination with the requirement for

company-wide standardization, oversight, and ability for intervention, this suggests the need

for a central unit dedicated to the gathering, storage and analysis of software process and prod-

uct metrics.

1.3.3 Metrics

For it to be able to properly measure performance, and thus success, of a development operation,

such a management accounting tool needs to be tailor-made or adapted towards the task of

monitoring software development. In order to properly monitor and steer a software project or

process in a way that leads to satisfactory outcomes all round, one needs to establish a set of

metrics that define the project and process performance. According to DeCotiis and Dyer

12

(2016), recognizing what constitutes good project performance is the first important step

towards understanding and successfully controlling project operations, and requires rigorous

definitions and accurate measurements.

For this reason, the authors established five basic performance dimensions for engineering

projects in 1977:

1. Manufacturability and business performance

2. Technical performance

3. Efficiency

4. Personal growth experience

5. Technological innovativeness

These include technical, business and human resource dimensions of engineering endeavors

and represent a good starting point, around which to structure the metrics for one’s management

accounting system. It is to be noted, that the metrics by DeCotiis and Dyer are not exhaustive,

nor were they meant to be 45 years ago, and encompass a very general notion of ‘engineering’.

To adapt these to any modern software engineering context requires analyzing the demands of

today’s industry – extending and adding metrics accordingly.

For software engineering in particular, it can be difficult to gauge efficiency and technical per-

formance specifically, as such aspects are often too complex to be measured directly (Kaner &

Bond, 2004). Simple Lines of Code (LoC)6 metrics can be used when comparing the size of

programs and coding contributions, but they cannot fully account for the actual production

of a software contributor. To create a more holistic benchmark for productivity, Mas y Parareda

and Pizka (2007) have adapted this LoC approach to consider two further metrics. The authors

proposed an extension of LoC to “Redundancy-free Source Lines of Code per Effort” as

well as an inclusion of “Defects per Source Lines of Code”. This combination of metrics was

found to be a fair and comprehensive measure of productivity in software engineering.

Other performance and success metrics may be derived from sources such as compliance

with legal requirements, industry standards, management and corporate demands as well

as from interviews with the development team and other important stakeholders (Nuseibeh &

Easterbrook, 2000; Aurum & Wohlin, 2005). As one example, managers are increasingly con-

cerned with skills management, skill building and employee retention, as they represent some

of the most essential resources in software engineering (Bibi, Anwar, & Rana, 2021). Deciding

which of the metrics derived are to be integrated in a management accounting system can

heavily influence the usability, scope, and usefulness of the software solution. This trade-

off situation needs to be evaluated as a major design choice in the construction of the software,

and may potentially be left for configuration and customization by the system user.

Importantly, there is also a trade-off when opting for a one-size-fits-all system for software

controlling. From real-world testing, such approaches either result in high variance estimations

or require more inputs than are generally available at the start of a project. Particularly during

the early stages of tool development, not all requirements and thus required metrics will be

known, which is why the software needs to be adaptable and allow for iterative improvements

upon the system (Hihn & Menzies, 2015). Ideally, a tool prototype demonstrates the basic func-

tionality with commonly accessible metrics, which can then be extended with additional com-

plex measures using more intricate processes.

6 Sometimes also called Source Lines of Code – SLoC

13

1.3.4 Implementation options

Implementing such a tool can be realized either as a standalone software development report-

ing and control tool, or by integrating the software engineering monitoring into the general-

purpose management accounting environment of the company. In most scenarios, this de-

cision will hinge on the importance that software has within the company’s value chain, i.e.,

whether software is the main selling point, or a complementary part of the end product.

For implementation of the advanced productivity and code value measures described before-

hand, an analysis tool like the Open Source project GrimoireLab could be of use. With a great

number of functions surrounding repository mining and software development analytics, the

GrimoireLab platform could be used both for a post-hoc analysis as well as a monitoring solu-

tion for new code contributions and interface directly with a project’s code repository (Dueñas

et al., 2021).

To track and visualize all metrics associated with an endeavor, any number of database and

business intelligence solutions could be used. However, even though these solutions are gener-

ally robust and highly customizable, any custom analysis and change or update thereto requires

significant upfront development. As such, especially during early stages of development, a less

complex implementation may be warranted. In industry, project controllers still rely on

spreadsheet-based solutions to monitor and control their projects, even though they are gen-

erally replaced by more sophisticated project management tools and database implementations

long-term (Raith, Richter, & Lindermeier, 2017). This is mainly because spreadsheets’ wide-

spread adaptability and ease of use allow for rapid iterations and make it an ideal tool for

prototyping a robust software solution.

In addition, there are advantages from a change management perspective to implement any

software solution within tools or frameworks familiar to the practitioners, i.e., active users. As

per Hihn and Menzies (2015), who evaluated the introduction of software costing systems at

NASA’s Jet Propulsion Laboratory over the course of ten years: The larger an operation is and

the more different stakeholders are involved, the harder it becomes for a new tool to be adapted

readily and achieve the desired outcome. Therefore, actual adaptation should take precedence

over technological perfectionism. Particularly as a proof of concept, spreadsheet-based so-

lutions may be helpful in convincing stakeholders and making the tool an effective addi-

tion to the overall management process.

Average resolution / conclusion times in calendar days

Status Cosmetical Minor Major Critical Total

Assigned to resolved 10,8 16,6 18,2 9,1 16,5

Resolved to closed 6,7 14,1 11,0 5,2 11,5

Assigned to closed 17,4 30,7 30,0 14,3 28,4

Figure 7: Part of a software defects dashboard in project controlling

Akin to the previously-explained influence-function (= black-box) approach, efforts have been

made to introduce advanced data analytics methods and machine learning models to estimate

expected workload and predict budget overruns, although they remain a niche application

(BaniMustafa, 2018; Arndt, 2018). Generally, these models require higher development effort

and are often prone to high variance in prediction accuracy which, coupled with the already

high variance connected to the black-box approach, could impact their usefulness. They are,

however, an option for further development once the prototyping was successful and the models

were shown to be practical.

14

1.4 Relevance of Topic

Any form of Open Source (and transitively Inner Source) development is making use of a wide

range of development tools, to enable the collaborative and shared nature of the paradigm, while

reaching its technological goals. As a general rule, the increasing number of programs that de-

velopers depend on does not seem to have stalled the advancement of Open Source projects

(Dueñas et al., 2021).

However, stratifying the Inner Source software development paradigm within a monitoring and

reporting system seems to restrict some of the nature of Open Source working principles itself,

even more so a controlling system influencing and correcting the process. After all, its basic

tenants appear to be opposed to the idea of quantifying, monetizing and being steered, instead

focusing on open collaboration across organizational boundaries without major restrictions.

Additionally, introducing a new dimension to one’s management accounting system is no small

feat either. Especially when the target process does not conform with the structure and scope of

a normal organizational unit. Where usually a manager assigns resources and registers expec-

tations in the form of a project plan (and eventually results) in accordance with these inputs,

this clear connection is no longer guaranteed in collaborative work environments like Inner

Source. As established, many companies do not have access to highly customized management

accounting solutions, nor are they required to have such systems at all. For a seemingly niche

area such as Inner Source, the upfront investment for a custom management accounting tool, as

well as the management overhead caused by such a system, may not be worth the expense.

Considering the amount of effort required changing and adapting to a new system in general, it

might be questioned whether the system could even achieve its theoretical potential in any given

environment.

All of this means that working towards a specialized management reporting and control system

for Inner Source despite these challenges requires comprehensible justification and a realizable

execution plan. In essence, why would it even be necessary to add the dimension of man-

agement accounting to the Inner Source process in the first place? And how would it be

done?

As touched on beforehand, Open Source methodologies and working principles can have a

number of direct impacts when applied on a company’s operations – many of which directly

translate to Inner Source. Perhaps most crucially, it has long been known that open collaboration

and interaction between different organizational units and functions can lead to increased

productivity and overall better results (Deephouse et al., 1995). While in the past this has mostly

been realized through interaction between cross-functional teams, increased collaboration is

also one of the key tenants the Open Source method could bring to organizations. In addition,

regarding product and development process quality, Open Source methodologies have the po-

tential to improve security and availability, if properly implemented and managed (Lawrie

& Gacek, 2002).

Generally, in the case of Commercial Open Source development, no special management re-

porting tools are required, because the involvement in Open Source projects does not create

revenue directly. Supplementary or adjacent software, which the company sells under a propri-

etary license, can be handled the same way as any other software – its connection to Open

Source is irrelevant from an accounting perspective. On a side note, while reporting may not be

necessary, even in the case of Open Source software engineering, there are some advantages to

be drawn from a management controlling system (Riehle, 2011).

15

Inner Source, on the other hand, requires a more formal and complete subsumption into a man-

agement accounting system, as it affects resources and revenue streams more directly than

other forms of Commercial Open Source, differing only in the work methodology and organ-

ization. And as management accounting is generally less rigid and customizable and financial

accounting, it lends itself more readily to be adapted to a new use case, which is important, as

very rigid supervision systems may quickly lose or dampen the advantages of Inner Source.

Perhaps most crucially, accurate pricing and cost control are among the most important parts of

any business’ ability to continue its operation and sustain itself long-term. Involving Open

Source principles and unmonitored Inner Source processes may create ambiguity and inaccurate

pricing. To prove the economic viability of Inner Source and to convince companies to

venture into the field, solid management processes and tools are to be established that en-

able tracking contributions across usual organizational boundaries.

Management accounting also goes beyond economic analysis in making sure to align the oper-

ations with the strategic outlook (Charifzadeh & Taschner, 2017). As such, if companies seek

to implement an Inner Source strategy that involves resource and IP-management, a mon-

itoring and controlling device is without alternative. In the case of knowledge management

for instance, Open Source and Inner Source differ dramatically, and in turn, they have different

management requirements attached to them. As Inner Source seeks to protect intellectual prop-

erty and proprietary knowledge, those could be integrated in a company-wide knowledge man-

agement structure (Oun, Blackburn, Olson, & Blessner, 2016).

In most companies, management sets up a hierarchical structure through which it delegates

resources and responsibilities. While this is not set in stone, it is somewhat inherent to the man-

agement function of commanding and leading, also described by Charifzadeh and Taschner

(2017), which also makes it unreasonable (in most cases) to restructure an entire organization

around Inner Source. Particularly traditionally operated organizations have a vested interest in

keeping a close grip on their processes.

As Inner Source and its open, un-controlled and free-flowing nature does not naturally lend

itself to being under strict supervision and control, it does not conform to the usual top-down

system of management. A lack of integration with management accounting can pose a signifi-

cant barrier to entry into the realm of Inner Source, since an absence of information makes any

organizational change potentially high-risk to decision-makers. Depending on the level of en-

gagement and integration, it can cause inefficiencies and errors in existing Inner Source

processes, hinder further expansion, or prevent companies from venturing into Inner

Source at all.

The specific reasoning behind connecting Inner Source development and management account-

ing can be manifold. However, in general, it can be traced back to management’s information

and control requirements. It is why companies have management accounting systems in place

– to monitor and control their operations as well as their strategic alignment, which, as laid out

before, can be the difference between continued success and failure of a development project

(Deephouse et al., 1995). The all-encompassing nature of management accounting is paramount

to this purpose. Only if all aspects of a company are monitored and controlled, can this strategic

alignment be guaranteed. It is only logical therefor, that Inner Source should be subject to

the same level of scrutiny as other operations.

This is further affirmed when viewing Inner Source in the context of the Capability Maturity

Model (CMM) – in order for Inner Source not to be treated like the non-conforming step-

16

sibling of traditional development, it needs to adhere to the same process quality and ma-

turity requirements. The CMM already suggests some basic monitoring and project manage-

ment, as well as an effort of process standardization, to leave the chaotic level and reach one of

the lower maturity levels. The higher maturity levels require even further monitoring, strat-

ification, constant feedback and corrective action, which can (reasonably) only be achieved

by integrating Inner Source processes into company-wide management processes, including

accounting.

Recalling the performance dimensions of engineering projects, Inner Sourcing can make a pow-

erful contribution to the success of any project or process, if the endeavor is not only well-

understood and supervised with well-defined metrics but is also subject to a functioning cor-

rective system using said metrics. If implemented properly, Inner Sourcing could lead to better

business performance through quicker and less error-prone development as well as more effi-

cient detection and correction of inefficiencies. A less restrictive development environment also

has the potential to foster employee growth and create a more innovative work environment,

creating long-term benefits for the business.

For some cases, hesitation to implement Inner Source, despite its potential advantages,

may stem from legal rather than organizational boundaries. For many projects, such as

government contracts, process compliance takes precedence over faster development and po-

tential innovation. In other instances, licensing requirements may make it difficult to justify

unmonitored interactions and collaboration with organizational units that are not part of the

original certification as is the case for medical products or critical infrastructure. Still, with the

advantages of Open Source methods becoming apparent, there is a significant push towards

acceptance of FLOSS software products in medical procurement (Reynolds & Wyatt, 2011).

With this growing recognition of Open Source solutions in the medical field, it is only reason-

able to assume that there are tangible benefits to applying Open Source principles within med-

ical companies as well. Using Inner Source in combination with an adapted management ac-

counting system, many of the risks and certification problems could be mitigated or solved

entirely.

Evidently, Inner Source will never be able to capture all the benefits of Open Source – some

trade-offs will have to be accepted. By definition, it is constricted within the boundaries of an

organization, and it cannot have all the same freedoms as Open Source. But in creating tools

that satisfy the management requirements as well as harness the power of Inner Source collab-

oration, companies get the option to diversify their operations and take advantage of this rela-

tively new development in the realm of software engineering.

Aiming to integrate Inner Source into a management accounting environment to capture the

postulated benefits while maintaining flexibility and working advantages is certainly a chal-

lenge. Yet, if successful, this evolution and adaptation of existing instruments could prove help-

ful both for small companies attempting to find their competitive edge, as well as for bigger

players to strengthen their position on the market.

17

2 Requirements Identification

2.1 Interview Review

As this research aims to conceptualize a practical solution artifact, it is paramount to iden-

tify the problems that real-world applicants of Inner Source are faced with. Thus, and to derive

the requirements they have towards any business or software solution, two interviews with

Inner Source practitioners were conducted.

Both interviewees are involved with the Inner Source processes in medical engineering and

have cooperated with researchers in the past, indicating their openness to new developments

within the growing field of Inner Source. Both of the interlocutors also have management

responsibilities within what is internal known as “Shared Software Components” and can pro-

vide valuable insights into the practices and challenges of an industry example of Inner Source.

They have expertise on the development, the inner source processes, as well as the approval of

changes to said processes.

As such, they could be considered the target audience for the proposed management ac-

counting artifact. In any case, they are important stakeholders, whose requirements should be

heard and met to increase the likelihood of adoption.

The first interview, conducted on April 1st 2021 shed light on the perspective of a software

architect on the Inner Source topic. He is part of the company’s proprietary platform for medical

equipment. As a domain platform, it serves as a central hub for the research and development

efforts of multiple medical devices and software products of the company, as well as the service

associated with any of the solutions. Additionally, the unit is also a user of its own services,

meaning its products and software products are also hosted on this platform.

He is the head of the department of software architecture, which also includes the system engi-

neering group, test automation, analytics and testing strategy. His responsibilities are two-fold:

They include the strategic orientation, both in technology and software architecture, but he is

also in charge of reliability to guarantee seamless operations.

To that end, he is basing his decisions on analytics that help give faster feedback to both devel-

opers and management as well as to enable them to find flaws in the process and improve the

general workflow. The data they collect include information about code commits, test execution

and preparation, for instance, and is then used to give rapid feedback to the developer about

their most recent commits and changes. As of the time of the interview, this analytic process is

mostly descriptive, with the goal of including predictive monitoring and advanced feedback as

well.

Regarding how the development process is measured and controlled, i.e. the metrics that are

used, the measurement process is quite openly defined. The main metric used to measure prod-

uct success is value to the customer – represented by the number of complaints, qualitative

analysis of the complaints, extent of the necessary rework, and time until a complaint is finally

resolved. Process quality is measured by the general velocity of development and how much

the time deviates from prior planning. Feedback is received through two channels, either di-

rectly from the platform user (i.e., an internal customer) or indirectly through the end customer

using the platform solution. This feedback is used qualitatively to identify flaws.

Regarding code completeness and correctness, a commit is considered correct when all of its

assigned tests have been passed. Regarding a potential way to assign value to a commit, the

18

interviewee proposed assigning a value to the respective user story and considering each com-

mit an equally valuable part of this user story.

When asked about the granularity of code documentation, he explained that there is no con-

sistent style of documentation and coding, even though such practices are encouraged, and pos-

itive developments have been observed. However, regarding commit history, and documenta-

tion, there is significant architecture and resources available for development teams which

makes code contributions viewable, and in theory, traceable.

The interviewee was personally involved in the introduction of Inner Source at the company

after identifying the need to exchange code between dedicated business lines and has in-depth

knowledge on the internal processes established at the company.

The Inner Source infrastructure at the company is divided in two. On one side, there is “true

Inner Source”, which is mostly used for internal development tools – open collaboration and

communication between software engineers and development staff is encouraged with very lit-

tle oversight. On the other side, Inner Source is adapted as Healthineers’ own Shared Software

Components system, SSC for short. What makes SSC different is that these software compo-

nents are shared and used in the final products that are sold to the customers, not just in internal

development. As such, especially in the biomedical engineering field, more oversight is re-

quired.

The whole Shared Software Component process is headed by the so-called Steering Committee,

also known as SteeCo, which is made up of members of all business lines. If a business unit,

department or similar wants to join SSC, they must fill out a fact sheet, which evaluates whether

there is potential to Inner Source this component or not. If the result is positive, the proposal is

presented to the SteeCo to make the final decision and, if accepted, decides on two guardians

for the component, one from research and development and one from project lifecycle manage-

ment. The guardians are in charge of the component and responsible for all artifacts associated

with it, which consists of source code and documentation, but can be extended depending on

the type of project – special licensing requirements are typical and manifold in medical device

production. When all artifacts are assembling, and a final assessment is passed, the Inner Source

component is released as version 1.0 and made part of the company’s shared software compo-

nents.

If developers and stakeholders want to make or request changes to a component within SSC,

they cannot make that change directly or even fork the source code. Every potential change has

to be proposed or requested through an SSC forum where it is then discussed between stake-

holders. If the community decides to accept this proposal, the contribution to the project can be

made. Any shared software component that is pulled to a specific domain product or platform

(i.e., a product sold to the end customer) is responsible for their version of the code, which

means that is takes care of any adaptations to the code and potential bugfixes – pulling a com-

ponent from SSC creates a separate entity of source code singular to the product. Beyond the

previously mentioned discussion forum, there is no direct feedback from the live product to the

SSC component and no connection between the different iterations of the SSC component

across product lines.

The interviewee regards the topic of Inner Source highly and values its positive effect on prod-

uct quality and the changes it brings to collaborative processes. He identifies higher develop-

ment speeds, removal of bottlenecks and smoothing of development efforts through quicker

bugfixes as the main advantages. In addition, the Inner Source process gives rise to better de-

velopment ideas and sparks cooperation in areas, that previously had little collaboration – like

unified components for various products across business lines.

The development efforts and contributions made through SSC are projected and organized dur-

ing the planning process – both when designing the features that have to be realized for the final

19

product as well as when scheduling developer time. The time spent on an Inner Source compo-

nent is thus budgeted towards the project first developing it – there is no formal distinction

between an Inner Source component or a platform or product component.

At the time of the interview, there was no deliberation between complexity of contribution from

different contributors. However, he acknowledges that there is management interest in quanti-

fying IP flows – particularly because of tax implications. Asked about where the value creation

of an Inner Source component should be quantified, he argued that only the internal user selling

a product to the end customer can actually create value for the company, which is why the

valuation should be done there.

On the topic of technical debt, the interviewee sees no direct correlation between Inner Source

and higher accrual of technical debt, as the Inner Source process at the company is highly strat-

ified and controlled, much like any other development efforts. As such, technical debt isn’t more

(or less) of a problem than traditional development, as their Inner Source style is still quite

restrictive. There were discussions to loosen this system, by having contributors gather “trust”

through good commits, which could give them a preferential status in contributing to some

components, but it is not expected to be implemented soon.

On the topic of estimating effort and value of a proposed component through the use of com-

parable historical data, he considered the idea interesting, but questioned its feasibility in the

context of software components that are not sold as standalone products. He contrasted the idea

of an Inner Source valuation to the purchasing of software licensing, which gives an immediate

plannable cost and value. Inner Source, on the other hand, has rather indirect influences on the

cost of a product, mostly through its influence on short-term and long-term resource usage. He

mentions the increased efficiency and output of Inner Source components, whose licenses coun-

terpart had high cost in the past, but struggles to reason a way to quantify this change.

The valuation of a component is also different depending on its intended use – commodity

features are mostly implemented to maintain customer value, not adding to it. For differentiat-

ing and innovative features there is potential for added market value, but its realization depends

largely on the acceptance of the customer on the market.

The second interview was conducted on April 7th, 2021, with another key employee behind

the Inner Source process at the company . In his main occupation, he is a project manager for a

medical device used in radiology. In this position, he is an active user of Shared Software Com-

ponents. In addition, he is the general program manager for SSC, which entails moderating the

Steering Committee, which in turn oversees the addition of components to the SSC program

and facilitates continuous improvements to the process involved.

As of the time of the interview, the SSC process does not include a method to valuate each

contribution. However, the contributor of an SSC component can make an annotation on their

contribution to mark it as strategically important and prevent other internal users from giving it

away for free and thereby eroding the value the component gives to another product. Within the

general context of software engineering at the company, there are instances of valuating soft-

ware – most commonly by Lines of Code via percentage breakdowns, but also including code

complexity, comparable products and comparable functions.

He is interested in the idea of measuring who contributes and profits to what extent from the

Inner Source components in SSC and bringing understandability to the internal transfers of code

through transparent pricing between business lines. Currently, there is some traceability of who

uses which SSC code through internal process, especially since most code is shared between

similar products. However, the system of signing in and indicating when using an SSC compo-

nent isn’t always used properly and usage is not enforced. Additionally, this is only meant to

monitor where the code is used in case of bugs and vulnerabilities, or when software-adjacent

20

work like regulatory studies for medical licenses can be done only once and shared between all

instances of that software component. The interviewee argues that using this system for remu-

neration would stifle adoption of SSC and lose many of the non-monetary benefits. Still, there

is vested interest within the parties responsible for SSC at the company to create better infor-

mation density of Inner Source usage across business lines.

Regarding the granularity of code documentation and traceability, the interviewee points to the

extensive legal requirements for documenting and validating software components in the bio-

medical field. These regulations are not only far-reaching and strict but also changing across

different markets. For medical device providers to comply with all of these requirements means

building a strict framework for any of their processes, including the Inner Source process real-

ized in SSC. However, he also mentions the different management structures and systems that

are present in an organization spanning multiple business lines, resulting in incompatible soft-

ware development processes, that have to be united when collaborating in Inner Source. In

addition, only officially trained personnel is allowed to work on specific medical software,

making the integration of Inner Source into the process even more complex and posing a sig-

nificant barrier to entry for each business line and product team intending to enter the SSC

realm at the company.

The documentation of Inner Source contributions at the company is rather loose and incomplete.

If documentation about SSC components are created at all, this is not stratified within in a

process or generated through tools – meaning the documentation is done manually.

The concrete Inner Source process at the company is highly regulated and stratified, and headed

up by the previously mentioned Steering Committee, which evaluates proposed SSC compo-

nents and appoints guardians for these projects, in the form of a product owner and a guardian.

And while there is open access to the Inner Source components, there is no free-for-all devel-

opment, as it might occur in Open Source. There are strict quality requirements and checks

before changes are to be made on a component to guarantee continued functioning of compo-

nents as well as compliance with regulation. Also, participation in an SSC component at the

company makes the users responsible to participate in its maintenance and further development

– which has led to internal criticism of the Inner Source implementation.

Each SSC component comes with a number of mandatory documentation objects, such as an

engineering requirements specification, test records, code reviews, and other development arti-

facts, as well a distribution notification, which acts as a guideline for potential users of the

component. This includes if and under which conditions the component is published, e.g. for

which software environment the component is validated. If other versions are adapted or devel-

oped from this component, validation and documents may have to be generated anew.

The interviewee considers Inner Source an important aspect of the company’s business, but

laments inconsistent acceptance, with some business lines being very active in the process and

contributing readily, while others would prefer a ready-made solution without having to con-

tribute themselves.

The contributions are, unlike in Open Source, planned and scheduled for and are part of regular

project management and software maintenance in the same development team. Usually, there

is no collaboration in the initial build of a component, meaning that the first version is normally

built by one org unit and then published to the broader audience. There have been instances

where two business lines have collaborated on a development project, however, the organiza-

tional structure at the company requires there to be one unit in charge of the development, nev-

ertheless. Again, as the collaborative process is rather loosely structured and supervised, there

is no direct way to determine who made which contribution. Version control in Inner Source is

realized within Microsoft Team Foundation Server (TFS), with a wish to migrate towards

GitHub.

21

Asked whether a potential quantification of software contributions should be done on the con-

tributing or using side, he expressed a preference for the former. Referring to his colleague’s

prior (contrary) answer, he commented that quantifying on the side of the user of the component

required a lot of confidence and honesty, and expressed doubt whether this approach would

work. Rather, he envisioned a subjective quantification procedure that creates trust in all par-

ticipants.

Regarding technical debt, the interviewee is of the opinion that having guardians overseeing

each SSC component is advantageous and avoids many problems. However, he laments lacking

quality of accompanying documentation, which, in some cases, can cause problems when au-

diting and licensing the software. This system is continuously being improved upon, with at-

tempts to make the process more transparent and traceable.

On the topic of potentially using historical data about the output of development teams to esti-

mate the future planned Inner Source projects, he states that there is clearly a connection to be

drawn, as similar projects often have similar performance and problems. Nevertheless, he

voiced concerns if this could be used to estimate an Inner Source component’s contribution to

the overall worth of the software, as a similar component can have very different importance to

the valuation. He argues for a valuation of Inner Source components as a pool of software, and

for using the contributions made to it from different parties to value their individual part in that

value.

2.2 Summary and Critical Evaluation

To enable analyzing the information collected, the following is a short summary of the inter-

viewees’ points of view. To avoid repetition, the second interviewer’s answers are only included

where they differ from the first.

Notably, despite the fact that both interviewees are not designated controllers, their management

responsibilities are interwoven with the tasks of management accounting. In the first inter-

viewee’s function as head of software architecture, his responsibilities are divided between stra-

tegic planning and ensuring seamless operation, using analytics to continuously improve upon

the processes at the company. The other interviewee is a project manager whose work involves

monitoring projects that are connected to Inner Source. And as head of the SSC program at

Healthineers, he is partly responsible for the planning and viability of new additions to the SSC

pool.

Conclusions according to the interviewees:

Regarding Inner Source Planning and Execution, IS projects are usually run by one team and

then made available to the SSC pool. Particularly during the first iteration of development, there

is no direct emphasis on collaborative development, also due to the fact that internal processes

can vary greatly across software engineering teams and departments. In any case, any planning

process is to be supported through data, which should be understandable and consistent across

project and department lines. Generally, at the company, IS projects are treated like any other

development project in both planning and execution. As such, participation in an IS project also

mandates the contribution to maintenance efforts.

Feedback into the Inner Source Process is very loosely organized and not a priority at the

time of the interview. There is no mandatory traceability of who uses an IS component – and

critically - once components are copied from the SSC pool, there is no direct connection be-

tween the code repositories and projects. Still, continuous feedback is welcome and evaluated

22

quantitatively. Nevertheless, adoption of said feedback may be slow as reliability generally

takes precedence over innovative changes. The IS practitioners are aided in their work by de-

scriptive analytics tools, with the goal of introduction predictive monitoring and controlling

aspects as well.

There is a variety of metrics used in the documentation of Inner Source contributions and a

number of tools available, even though their actual usage and granularity is inconsistent. Both

interviewees agree that subjective and consistent measurement are paramount if a valuation is

done. The IS process focuses mainly on measuring product quality and process quality. The

main metrics for the product is customer value – measured by the number of complaints, extent

of complaints and time until correction and the number of flaws and amount of rework neces-

sary. Whereas the main metrics for the process quality are velocity and accuracy of prior plan-

ning predictions as well as percentage of passed unit test.

Importantly, a single code commit rarely has value on its own. Rather, its value is tied to its

correctness (verified through tests) and the overall value of the respective user story. Within IS

at the company, there is no differentiation between different Inner Source code contributions or

evaluation of complexity, however, there are instances of such valuation at the wider company.

One possible differentiation of code is to classify whether contributions were made either as

corrective action, to provide commodity functionality or to create innovative features.

The clear advantages of Inner Source are in smoothing the development process through the

removal of bottlenecks, as well as the generally increased development speed and quicker bug-

fixes. IS is also credit with creating better ideas and heightened potential for cooperation, which

in the past has provided high-quality contributions to replace formerly licensed software prod-

ucts.

The challenges associated with Inner Source are very particular to the environment at the

company. As the company operates within biomedical engineering, their production processes

require significant oversight to assure legal compliance, which can be difficult to combine with

collaborative development. In addition, there is internal criticism that engagement in an IS pro-

ject requires the continued participation in its maintenance efforts. If a tracking and remunera-

tion system where to be established, the IS process runs the risk of losing participants and miss-

ing out on many of the non-monetary benefits.

2.3 Literature Review

The previously conducted interview review gives a deep but relatively narrow view on the Inner

Source process at one company. In order to reflect requirements that pertain to the wider audi-

ence of Inner Source software engineering, a literature analysis was used to create more gen-

eralizable requirements for a management accounting tool in this environment. These are

to be used in conjunction with the general attributes of a management accounting system in

software engineering to build a robust system prototype.

The rights generally bestowed on any contributor and user in Open Source are technically at

odds with the goal of quantifying contributions with the aim of determining the appropriate

compensation, usually monetary. As one of the fundamental principles of Open Source eco-

nomics, no royalties or license fees are collected (Perens, 1998). Many, if not all of the ad-

vantages of the Open Source (and transitively those of Inner Source) are intrinsically linked to

the free and open access, that allows rapid innovation and collaborative success beyond the

boundaries of a single organizational unit.

23

The issue of accounting systems that are incompatible with what they are used for is nothing

new. In fact, accounting principles and systems often lag behind the technological processes

required. Gietzmann (1996) goes as far as alleging that these systems can cause counteracting

incentives that “stifle attempts to work cooperatively”, and argues for an increase in flexibility

to improve relationships and collaboration. This suggests that it must not necessarily be a

case of stratifying and potentially constricting Inner Source into a management accounting con-

text, but that there is potential of adapting management accounting systems to become

more flexible in dealing with non-traditional development practices. Transposing the idea

of Gietzmann (1996) to the Inner Source realm, the goal has to be to create a management

accounting tool that gives management control over the process without wrestling control from

the developers and without obstructing Inner Source collaboration.

In any collaborative project approach, one of the main questions posed by accounting concerns

cost centers. More specifically, whether the collaborative development should be considered its

own internal entity with costs and potential profits, or if the endeavor should be hosted under

the umbrella of one of the participating units (Link, Teece, & Finan, 1996). Further research

suggests that companies aim to improve their operations using firm management accounting

systems rather than deviating too much from the norm to potentially gain a strategic advantage

(Granlund & Lukka, 1998). Economic and competitive stability seems to take precedence

over potential short-term gains at higher risk.

Research also registers an increasing call for simplicity from industry (Cappelli, 2016; Driscoll,

Webb, & Schmidt, 2015). Evidently, it is expected that any tool has sufficient complexity and

potential customization to ensure it produces useful results. At the same time, to guarantee

user acceptance, ease of use and simplicity are paramount and can be achieved through high

levels of abstraction, and ideally automation of manual processes (Bueno & Salmeron, 2008).

In practice, this would mean that key decision makers have access to detailed metrics about the

Inner Source software engineering process, while programmers and project managers only have

to be involved with the management overhead as little as possible or as necessary. This is in

line with the unobstructed working principles of Open and Inner Source, while satisfying the

information and steering requirements of management. Making input mechanisms intuitive and

standardized can further help both management and employees in their use of the tool.

Recalling the CMM, a management accounting system that allows the advantages of Inner

Source to shine while enabling it to reach high levels of maturity, requires well thought-out

and clearly measured metrics, that are updated regularly, or imported directly from pro-

ject management and repository analysis tools. Such metrics are found across software en-

gineering management literature and may have to be adapted to suit the broader Inner Source

and collaborative approach. Possible metrics are both financial and non-financial in nature to

accurately depict the value of any project, not only in the short-term but within the long-term

strategic outlook of a company or department (Anderson, 2003; Bibi et al., 2021).

To create more robust predictions when human input for a continuous variable is needed,

estimation techniques like the three-point-approximation work with three values instead of

one value for each input. These values – one pessimistic, one optimistic, and one realistic – are

then weighed to achieve a more dependable estimation (Keefer & Bodily, 1983).

Whereas financial values are intrinsic to any accounting system, non-financial metrics are often

recorded qualitatively, making analysis more difficult. In many cases, this leads to suboptimal

understanding and even disregard of qualitative data – simply because it is more difficult to

handle (Dul & Hak, 2007). To solve this and to make qualitative data usable, management

24

accounting systems have to rely on quantification mechanisms, such as the Likert-Scale

which was pioneered in psychological research and continues to be used for social science work

to this day (Likert, 1932; Joshi, Kale, Chandel, & Pal, 2015).

25

3 Objective Definition

3.1 Research Question

How can Inner Source collaboration be quantified and controlled in a way that is unobstructive

and enables and supports free collaboration in a way that is productive to both the participants

and the organization? How can this quantification and control be captured in a design artifact,

i.e., a management accounting system?

3.2 Research Approach

This thesis paper follows the Design Science research method laid out by Pfeffers, Tuunanen,

Rothenberger, & Chatterjee (2014) which serves as a framework for Information Systems re-

searchers in the successful building of artifacts.

This master’s thesis contextualizes the current characteristics and flavors of Open Source as

well as their adaptation practices within competitive markets. It also highlights the growing

importance of establishing management accounting processes to guide and measure general

software development processes and including cost control mechanisms. Following from that,

the author motivates the need to introduce this type of comprehensive tooling and practices to

quantify and control Inner Source projects and processes (Chapter 1).

In order to explore concrete requirements for the desired artifacts, a two-fold analysis is con-

ducted – two interviews with Inner Source practitioners from industry to identify practical chal-

lenges and expectations, as well as a literature review to derive general requirements from a

software engineering and information systems management point of view (Chapter 2).

Following this process of establishing requirements, the theoretical solution designs as well as

the basic assumptions made prior are laid out. Namely, a conceptual solution is finalized that

includes a valuation model for running Inner Source projects or processes, as well as a planning

tool to gauge the viability of introducing a component to Inner Source (Chapter 4).

The implementation of this conceptual design is shown as a proof of concept using traditional

spreadsheets (Chapter 5), and subsequently demonstrated using an example data set and signif-

icant use case scenarios (Chapter 6).

Finally, the thesis then concludes with listing potential shortcomings, limitations, approaches

for further research and subsequent artifact iterations (Chapter 7) as well as closing thoughts

(Chapter 8).

26

4 Conceptual Solution Design

4.1 Basic Assumptions and Design Decisions

Any economics model or simulation will not be a perfect representation and prediction of real-

ity, as certain simplifications or assumptions have to be made. To that end, these assumptions

are based on the previous requirements established from industry interviews as well as a litera-

ture review and try to reflect the current standards in software engineering and management

accounting.

One of the main assumptions made within the models is that all code added to a project is of

equal value, measured by Lines of Code and entered manually. Initially, there will be no

real distinction by code complexity, although there is potential for later inclusion of this mech-

anism, powered by the tools mentioned earlier. Still, there is value in differentiating contribu-

tions by project phase, the results of which have to be evaluated qualitatively.

For the early prototypes of the model, it also requires full transparency, honesty and diligence

by the contributing party, so that all contributions are recorded at the necessary level of detail.

For later iterations, there is potential for integration with ERP systems, or analytics tools inter-

facing directly with version control systems and code repositories.

Access restriction in the exemplary model is represented by naming the sheets with a shorthand

for the parties able to access them, as follows:

• PM1 – Project manager of team 1

• D2 – Developer team 2

• C – Controller

The aim is to limit the apparent complexity of the model to simple and consistent inputs,

coupled with high level of abstraction to the individual user. I.e., managers and developers are

granted access to separate input panels to enter their data. In order to design a model that can

produce clear and comparable outputs, all inputs are required to be quantitative in nature.

For descriptive financial information this is rather straightforward, whereas predictive financial

data will have to be provided using the three-point-estimation technique. Any non-financial user

input is required to be quantified within a seven-point Likert-scale.

To further increase the resilience of the projection, the estimations entered by participating par-

ties will be checked automatically for inconsistencies. In the case of irregularities, the system

is supposed to provide the project controller or project manager with a note, who can run a

manual revision and, if necessary, advise the project members.

4.2 Model Selection and Design

It was deemed unfeasible and against the caution for simplicity, to implement all of the estab-

lished requirements into one design model. Therefore, the decision was made to create two

distinct models, mirroring the two-fold responsibilities associated with management account-

ing systems – both planning and monitoring. As such, this design paper aims to prototype

both a useable a-priori planning tool as well as an a-posteriori monitoring solution.

The models are prototyped to be financial in nature but aim to derive some information about

the development process and non-financial metrics as well. The tool will provide visualizations

for some of these whereas the required qualitative analysis will ultimately be left to the tool

user.

27

Particularly for a planning model, it can be useful to include non-financial metrics to determine

the viability of a project beyond its direct monetary value. Whenever applicable, this data will

have to be provided (and quantified within a set framework) by the user. As these models are

prototypes and subject to change, user feedback will be needed, particularly for the implemen-

tation of these non-financial metrics.

4.2.1 Model for Monitoring and Direct Compensation

This model will assume that the decision to Inner Source a component has already been made

and that Inner Source development has either started or already been completed. Hence,

this can be seen as an a-posteriori controlling device, when cost associated with the develop-

ment is accounted for, fulfilling the monitoring function of management accounting described

in Chapter 1.2.

For each individual project, this model adapts the glass-box approach outlined by Boehm and

Papaccio (1988), which aims to document each low-level cost item and its associated cost type,

during which project phase it was incurred, and whether the action added direct or indirect value

to the endeavor.

This very simplistic model takes as input the contributions by each team – ideally drawn auto-

matically from the project’s version control system. These inputs can be:

• Code additions by LoC and Number of Errors

• Revisions by LoC and Number of Errors resolved

From this data, the model computes the overall contribution by each party to the project and

visualizes the data. It also gives the controllers and project managers an indication if an imbal-

ance in contributions has occurred.

The overall contribution in percentage points for contributor A is thus calculated as follows,

using:

• LoC = Lines of Code

• E = Errors produced

• R = Error Resolutions

• m = Custom Error Multiplier

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝐴 =
∑ 𝐿𝑜𝐶𝐴 − (𝐸𝐴 − 𝑅𝐴) × 𝑚

𝐿𝑜𝐶𝑇𝑜𝑡𝑎𝑙
 × 100%

Using the error multiplier, the participants or the controller can decide what emphasis to

assign code quality. Using a higher multiplier rewards contributions without errors and shifts

the net-contribution percentage slightly towards contributors that resolve more issues

than they create. For instance, a multiplier of 10 subtracts ten Lines of Code from a contribu-

tor’s overall per error introduced and adds the same amount for a resolution. This assures that

resolving one’s own errors has no negative impact on the total and that reworking faulty code

of others is recognized in the overall calculation. Setting the multiplier to zero cancels this

rebalancing effect out.

As per this implementation, the model will not be considered its own accounting post or cost

center. Rather, it is aimed to be a net-zero mechanism to measure and coordinate collaboration

28

between two or more developing parties and to assure mutual understanding of effort and sug-

gest equal contribution. As collaborators within a company will likely want to avoid actual

payment, the attributed value can simply be used as a running tally of collaboration to ensure

balanced cooperation between two sides.

To ensure an adequate level of comparability between project reports and to guarantee easier

understanding for management decision-making, the form and structure of the reports should

remain fixed as follows.

The model includes:

• Management Overview: Input masks for the respective project managers including a

management overview of the running total and potential deviations – one per contrib-

uting organizational unit

• Development Team Input: Input sheets to track additions and revisions – one per pro-

ject

• Control: Controlling sheet only available to management accounting – one per project

Outlining the reporting decisions made for the tool, this development follows the previously

introduced structure described by Charifzadeh and Taschner (2017):

• Contents and level of detail: Recording each contribution made to a singular project –

granularity at discretion of the contributor

• Scope: Restricted to a single Inner Source development project

• Form and structure of the reports:

1. Consisting of a simple input sheet for each contributor, where single contributions are

recorded – input manually during prototyping, with ERP-integration as a possibility

long-term

2. Fixed – to ensure comparability between distinct projects

• Frequency of reporting: Continuous – standard view: running weekly report

• Target audience and authorized viewers: Granting each contributor only access to

their own contributions – analysis sheets made available to decision makers, project

managers and possibly controllers

4.2.2 Model for Viability of Inner Sourcing

As a derivative of the compensation model described in the previous section, this model should

seek to identify the viability of Inner Sourcing a specific component, before development has

started. More concisely, it should determine whether it is worth combining development

efforts with another unit to work on related components. As such, this can be considered an

a-priori planning device, for when cost and resource expenditure of development can only be

projected.

In essence, any decision whether to Inner Source a component or to develop it yourself, comes

down to a modified Make-or-Buy decision, as laid out in the earlier chapters. In this context,

“making” as the internal sourcing mechanism is the equivalent of independent closed devel-

opment – i.e., traditional software engineering. “Buying” on the other hand, represents ex-

ternal sourcing – usually done through a one-time transaction between companies – but in this

case through Inner Source collaboration. The price paid for an Inner Source component can be

considered the cost of one’s own contribution as well as the cost of adoption and integration in

29

one’s own environment. If the company wishes to implement as transfer pricing scheme into its

Inner Source process, the departments would also account for licensing fees towards the bigger

contributors.

The main difference between traditional Make-or-Buy and this Make-or-Inner-Source ap-

proach is that there is no clear distinction between seller and buyer, as all parties involved

are contributing and taking advantage of others’ contributions at the same time. Therefore,

there is usually no passive buyer role – as everyone is also a contributor – and solutions are

built on demand. Advantageously, this mean that the solution is not only custom made, but

every contributor has direct insight and influence over the development efforts. However, un-

like in Make-or-Buy, the company cannot outsource externalities such as liabilities, potentially

requiring additional spending for quality control and certification.

It is evident that there are multiple factors beyond pure financial reasoning that might lead to

the decision for collaboration (or against it). For instance, a business unit might choose to con-

tribute to or license an Inner Source component developed by another unit to comply with

scheduling of their developers or because they lack know-how in a certain area, even though it

causes higher upfront cost than with own development. As is, many project planning tools only

allow for quantification of financial and scheduling aspects, which disproportionately affects

other success metrics, such as quality and long-term maintenance effort.

The following is an attempt to adapt the established make-or-buy template to a template

displaying the factors important for Inner Source considerations. Many of the general deci-

sion criteria between a make-or-buy and a make-or-contribute decision don’t change much.

However, as this model is not supposed to evaluate whether a development should be pursued

or not – simply how development should be carried out – the criteria were adapted and rear-

ranged to reflect this change.

In any case, this template should help decision-makers by establishing the difference in con-

siderations between own development and Inner Sourcing – such as the impact on perfor-

mance, measured in delivery time, cost or quality. It also helps evaluate the potential synergy

effects regarding resources and strategic value and provides a framework to gauge the finan-

cial implications of an Inner Source decision.

Figure 8: Make-or-Inner-Source Decision Factors

Own depiction modeled after Medina-Serrano et al., 2020

Triggers for
Make-or-IS
Assessment

New product
Introduction

Need for
improvement

Need for
quality

improvment

Need for
competitive
advantages

Strategic
Value Factors

Urgency

Potential Sales
Growth

Technical
Differentiation

Profitability

Human
Factors

Human
Resource

Availability

Skills and
Know-how
Availability

Skills
Development

Potential

Inner Source
Experience

Performance
Factors

Exp. Impact on
Quality

Exp. Impact on
Flexibility

Exp. Impact on
Innovation

Exp. Impact on
Delivery Time

Financial
Factors

Contribution
Cost

Conversion and
Integration

Cost

Exp.
Maintenance
Contribution

Cost of
Alternative

Development

Possible
(Individual)
Outcomes

Hard Reject -
own Dev.
Preferable

Weak Reject -
potentially
Unviable

Weak Accept -
Evaluate Trade-

Off

Hard Accept -
IS preferable

30

Each of the factors in the first three columns highlighted in light blue is to be rated on a seven-

point Likert scale. In this context, “1” represents a low or negative value, “4” an average or

neutral value, and “7” a high or positive value.

As established beforehand, the planning process should enable the participants to prioritize

certain decision factors over others – which is why managers are not only asked to rate

each factor subjectively, but also to assign weights in accordance with their importance for

the specific project.

To the end of specific analysis, the factors can be arranged into a matrix that visualizes the

different approach dimensions. These dimensions are:

• Company Dimension: Long-term Strategic Value as well as Human Development fac-

tors

• Project Dimension: Short-term value Performance factors regarding deliverables and

Cost impact of Inner Sourcing

• Quality Dimension: Concerned with the impact of Inner Source on Product and Process

Quality factors

• Resource Dimension: Assesses the status quo and the expected impact of Inner Source

on company assets

 Company Dimension Project Dimension

Q
u

al
it

y
 D

im
en

si
o

n

 Strategic Value

Factors
 Performance

Factors

R
es

o
u

rc
e

D
im

en
si

o
n

 Human

Factors
 Financial

Factors

Figure 9: Make-or-Inner-Source Decision Matrix

Using this combined information, the model returns a judgement of viability of Inner Sourc-

ing. Importantly, the model carries out both an overall recommendation of viability of inner

sourcing the project in terms of each of these factors, as well as a recommendation for each

of the participating business units considering their specific delivery time and financial

impact situation. Combined with the fact that this model represents a proof of concept, and as

laid out earlier, may need subsequent updates and refinements to properly reflect a company’s

needs.

Here, the model takes as inputs all of the potential contributors’ judgments and returns partial

assessments for each of the value dimensions. As established, the model also takes some special

considerations into account, that have to be assessed individually. High urgency, for instance,

does not immediately affect a project’s quality outlook. However, combined with an expected

negative impact on delivery time due to Inner Sourcing, the project is at a high risk of going

31

over schedule. In this case, the model issues an additional warning addressing this shortcoming

and leaves the final decision up to the affected user. If, on the other hand, the expected impact

on delivery time is a net positive, the time consideration weighs favorably into the overall cal-

culation. Similarly, the model issues a warning if Inner Sourcing is expected to be a net negative

on a project’s budget, only if the rest of the parameters are favorable.

As for this early model, the possible outcomes of the assessment are:

1. Hard Disapproval – the currently entered financial and non-financial information sug-

gests the project is unviable for Inner Sourcing or the contribution of this department is

non-viable. Re-evaluation is advisable after re-defining the project parameters signifi-

cantly.

2. Weak Disapproval – the project as presented is either financially or non-financially

unviable for one of the parties. The project could potentially be reworked, and parame-

ters redefined to achieve a more positive result.

3. Weak Recommendation – the project is viable from an objective point of view, but not

unconditionally. The specific trade-offs should be evaluated by the participants to re-

duce risk.

4. Full Recommendation – the collaboration appears viable on all accounts and can go

ahead if all participants agree on the terms.

Analogous to the monitoring tool, this development has the following report characteristics:

• Contents and level of detail: High-level approach – effort estimation and assessment

of non-financial aspects has to come from each potential contributing party

• Scope: Restricted to a single Inner Source development project

• Form and structure of the reports: One input sheet for each contributing party con-

sisting of Financial Aspects, Non-financial aspects and a result and recommendation

section displaying the analysis of viability regarding the previously laid-out criteria

• Frequency of reporting: Singular – potentially to be used for later analysis of devia-

tions

• Target audience and authorized viewers: Granting each contributor only access to

their own planning tool – meta-analysis can be made available to a controller or kept

anonymous

32

5 Implementation

5.1 Compensation Model

The compensation model consists of one main input sheet as well as one primary output

sheet used for controlling the Inner Source project. Additionally, the model includes one com-

bined input and overview sheet for each project manager of a participating unit.

The different data tables are connected using Excel’s PowerQuery function, which, other than

avoiding clutter, makes data manipulation more efficient and thus increases the performance of

the calculation model.

The project management overview comes pre-filled with data about the project and the partic-

ipating teams, as well as the previously planned work effort and its distribution between the

teams. The project manager is only asked to add the team members’ names. For the duration

of the project, this sheet is updated with currently added information displaying the distribution

of work between the teams and potential deviations from the original plan.

Figure 10: Inner-Source Project Management Overview

The main information the compensation requires is entered via the developer input sheet.

As mentioned, in a production scenario, this information would have to be gathered automati-

cally, from an ERP or version-control system. However, as per the prototype, the dataset has to

be entered manually.

It receives as inputs the time of the commit as a Unix timestamp, the name of the contributor,

the type of change as well as which phase of development it falls under. It also takes the size

and quality of the commit through Lines of Code and the number of errors and warnings that

were introduced or resolved.

Business Unit

Project Name:

Team Lead:

In Collaboration With:

Team Members Project Data Planned Actual Deviation

Forbes Nash Overall Effort (hours) 1600 2000 25,00%

Dave Ricardo Cost per personnel hour 85,00 € 85,00 € 0,00%

Milhouse Friedman Total Expected Cost 136 000,00 € 170 000,00 € 25,00%

Adam Schmidt Usage 45% 45% 0,00%

Vilfredo Loreto Contribution (in %) 35% 33,38% -4,63%

 Contribution Value 47 600,00 € 56 743,97 € 19,21%

 Suggested Compensation 13 600,00 € 19 756,03 € 45,26%

Inner-Source Project Management

Team Econ

Testproject Contribution Model

John Cains

Team CompSci

33

Figure 11: Input Table for Inner Source Contributions

This combined data is connected to PowerQuery for the main analysis that is carried out in

the controlling sheet, an example of which is displayed below.

Figure 12: Controlling Overview for the Compensation Model

Here, the controller adds the general project information from prior planning rounds, including

estimated hours to completion, an assumed hourly rate for the development team and infor-

mation about expected usage and contribution (orange table). The model also accepts subse-

quent updates on all of these inputs and changes the compensation calculation accord-

ingly. In addition, the template requires an input for the aforementioned error multiplier, to

rebalance some of the workload applied towards resolving errors in the codebase.

With this information, the model evaluates both teams’ contributions with regards to the origi-

nally planned values. Using the formula introduced in Chapter 4.2.1, the model calculates the

relative contribution of all contributors and – taking into account the expected usage of the

Inner Sourced component – determines whether one team disproportionately benefits from

Business Units: Team Econ & Team CompSci

Project Name: Testproject Contribution Model

Timestamp Date Contributor Type Phase LoC Errors (Negatives denote Resolution)

1650931720 26.04.2022 00:08 Ada Loveley Addition Planning 24 2

1650936184 26.04.2022 01:23 Gottfried Bahlsen Revision Planning 40 -1

1650957548 26.04.2022 07:19 Charles Cabbage Addition Analysis 39 1

1650964521 26.04.2022 09:15 Noam Plomsky Addition Analysis 10 0

1650979357 26.04.2022 13:22 Egon Dijkstra Addition Analysis 22 0

1650983046 26.04.2022 14:24 Forbes Nash Revision Analysis 45 -1

1650984552 26.04.2022 14:49 Dave Ricardo Revision Design 48 -1

1650990028 26.04.2022 16:20 Milhouse Friedman Addition Design 32 0

1650992831 26.04.2022 17:07 Adam Schmidt Revision Analysis 9 0

1651004959 26.04.2022 20:29 Vilfredo Loreto Addition Design 51 0

Inner-Source Contribution Progress

Project Name: Participants: Error Multiplier:

Testproject Contribution Model Team Econ Team CompSci 10

Project Data Planned Actual Compensation-Data Planned Actual Planned2 Actual2 Checksum

Overall Effort (hours) 1600 2000 Usage 45% 45% 55% 55% OK

Avg. Personnel cost per hour 85,00 € 85,00 € Contribution (in %) 35% 33,38% 65% 66,62% OK

Overall Cost 136 000,00 € 170 000,00 € Contribution (value) 47 600,00 € 56 743,97 € 88 400,00 € 113 256,03 € OK

Usage Team Econ 45% 45% Compensation 13 600,00 € 19 756,03 € 13 600,00 €- 19 756,03 €- OK

Usage Team CompSci 55% 55%

Contribution Team Econ 35% 33,38%

Contribution Team CompSci 65% 66,62%

Row Labels Errors Produced Errors Resolved Total LoC Contributed

Team CompSci 94 155 5739

Ada Loveley 48 3 1919 Row Labels Sum of LoC Row Labels Errors Produced Errors Resolved

Charles Cabbage 25 7 1379 Team CompSci 5739 Team CompSci 94 155

Egon Dijkstra 14 65 1327 Team Econ 3791 Team Econ 86 25

Gottfried Bahlsen 5 52 582 Grand Total 9530 Grand Total 180 180

Noam Plomsky 2 28 532

Team Econ 86 25 3791

Adam Schmidt 14 2 564

Dave Ricardo 27 14 1267

Forbes Nash 2 1 93

Milhouse Friedman 20 2 745

Vilfredo Loreto 23 6 1122

Grand Total 180 180 9530

Team Econ Team CompSci

Inner-Source Contribution Controlling

Team

CompSci

60%

Team Econ

40%

CO NTRIBUTIO NS BY TEAM

94
86

155

25

Team CompSci Team Econ

ERRO RS BY TEAM

Errors

Produced

Errors

Resolved

34

the work of the other(s). The resulting compensation “payment” represents a suggestion of

value that is owed.

In addition to the compensation calculation, the dashboard also aggregates information on in-

dividual developer contributions, as well as overall team contributions and error distribution.

This information can be used to corroborate the model’s judgment if questions about the process

arise.

5.2 Viability Model

When the decision to potentially Inner Source a project is to be evaluated, the controller sets

up the evaluation sheets for each of the participating parties. For each potential collaboration,

this includes at least three spreadsheets – one for each of the collaborators as well as one

overarching controlling and calculation sheet per project. In addition, each project draws

from a sheet containing variables and a look-up table for the wording of the result. This can be

shared between projects, but is technically still part of the overarching model.

To make the model accessible and its results easily understandable the implementation of the

collaborator sheets mirrors the previously introduced Make-or-Inner-Source decision ma-

trix.

Figure 13: Empty input view for a potential Inner Source contributor

In this matrix, the contributor is asked to estimate each of the decision factors, as well as

weighing the factors by their relative importance, if applicable. Ratings and weights are pre-

sented as a drop-down menu with specific descriptions, to avoid confusion and sanitize user

input. The Likert-scale allows for easier subsequent data analysis and comparison between con-

tributors.

Make-or-Inner-Source Decision Matrix

Business Unit: FAU Professorship OSS

Project Name: Testproject OSS FAU

Project Manager:

In Collaboration With: DummyPartner

Factor Rating Weight / Importance Factor

Urgency enter rating enter weight Expected Impact on Quality

Potential Sales Growth enter rating enter weight Expected Impact on Flexibility

Technical Differentiation enter rating enter weight Expected Impact on Innovation

Profitability enter rating enter weight Expected Impact on Delivery Time

Factor Factor Best-case Likely Worst-case

Human Resource Availability Contribution Cost 0 0 0

Skills and Know-how Availability Conversion and Integration Cost 0 0 0

Skills Development Potential Exp. Maintenance Contribution p.m. 0 0 0

Inner Source Experience Cost of Alternative Development 0 0 0

Overall Collaboration Assessment:

Company Dimension

Project Dimension

Quality Dimension

Resource Dimension

Rating

enter rating

enter rating

enter rating

enter rating

Incomplete

Incomplete

Incomplete

Incomplete

Summary:

Inconclusive

enter rating

enter rating

enter rating

enter rating

Strategic Value Factors

Human Factors

Performance Factors

Financial Factors

Rating

35

Figure 14: Drop-down menus with textual description

To assess the financial viability, users are further asked to estimate the development cost

associated with both Inner Sourcing as well as the alternative cost, most commonly tradi-

tional in-house development. To make this estimate more robust, the model uses the three-point-

estimation technique, requiring a realistic, a pessimistic and an optimistic estimate of each of

the cost factors.

Figure 15: Financial assessment using three-point-estimation

Using this information, the model yields an assessment of each of the four previously intro-

duced viability dimensions as well as an overall assessment of viability for this collaborator.

Figure 16: Exemplary result of viability assessment for single contributor

This assessment is drawn from the central controlling part of the model. Here, the information

entered by all participating parties is aggregated in a template, where the actual calculation of

viability takes place. This is also where an impartial entity, like a controller or project manager,

can revise inputs and, if deemed necessary, re-adjust some of the weights assigned to each of

the value factors.

As described above, this calculation yields a judgment for all of the established Inner Source

dimensions, as well as giving special consideration to financial and scheduling viability. De-

pending on the result of the calculation, the model draws on texts from a look-up-table

that contains custom summaries for any possible combination of verdicts.

For completeness, the actual controlling sheet contains one such template for each assessing

partner, that are displayed side by side for better comparison. To the end of better visualization,

only one is shown here.

Factor Best-case Likely Worst-case

Contribution Cost 30 000 50 000 80 000

Conversion and Integration Cost 5 000 7 500 20 000

Exp. Maintenance Contribution p.m. 500 700 1 200

Cost of Alternative Development 60 000 80 000 110 000

Financial Factors

Overall Collaboration Assessment:

Company Dimension

Project Dimension

Quality Dimension

Resource Dimension

Summary:

Weak
Weak Disapproval - The currently entered financial and non-financial information

suggests the project may be viable for Inner Sourcing. However, it could lead to an

increase in development time.

Medium

Strong

Medium

36

Figure 17: (Empty) Controlling view of one contributor’s inputs

Project Name

Testproject OSS FAU

FAU Professorship OSS

Company Dimension Factors Rating Weight f-weight Score

Urgency enter rating enter weight 0 waiting for input

Potential Sales Growth enter rating enter weight 7 waiting for input

Technical Differentiation enter rating enter weight 7 waiting for input

Profitability enter rating enter weight 5 waiting for input

Human Resource Availability enter rating 7 3 waiting for input

Skills and Know-how Availability enter rating 7 3 waiting for input

Skills Development Potential enter rating 7 7 waiting for input

Inner Source Experience enter rating 7 2 waiting for input

Long-term Strategic Factors 0

Human Development Factors 0

Company Position Incomplete

Project Dimension Factors Rating Weight f-weight Score

Expected Impact on Quality enter rating 7 5 waiting for input

Expected Impact on Flexibility enter rating 7 4 waiting for input

Expected Impact on Innovation enter rating 7 5 waiting for input

Expected Impact on Delivery Time enter rating 7 3 waiting for input

Contribution Cost -€

Conversion Cost -€

Exp Maintenance Cost -€

IS Cost for one year -€

Alternative Cost -€

Performance Factors 0

Financial Impact incomplete

Project Position Incomplete

Quality Dimension Factors Rating Weight f-weight Score

Urgency enter rating enter weight -7 waiting for input

Potential Sales Growth enter rating enter weight 2 waiting for input

Technical Differentiation enter rating enter weight 7 waiting for input

Profitability enter rating enter weight 1 waiting for input

Expected Impact on Quality enter rating 4 7 waiting for input

Expected Impact on Flexibility enter rating 4 2 waiting for input

Expected Impact on Innovation enter rating 4 5 waiting for input

Expected Impact on Delivery Time enter rating 7 7 waiting for input

Time Consideration 0

Strategic Factors 0

Performance Factors 0

Quality Position Incomplete

Resource Dimension Factors Rating Weight f-weight Score

Human Resource Availability enter rating 7 7 waiting for input

Skills and Know-how Availability enter rating 7 7 waiting for input

Skills Development Potential enter rating 7 4 waiting for input

Inner Source Experience enter rating 7 6 waiting for input

Contribution Cost -€

Conversion Cost -€

Exp Maintenance Cost -€

IS Cost for one year -€

Alternative Cost -€

Human Resource Factors 0

Financial Impact of IS incomplete

Project Position Incomplete

Overall Metrics Neutral

Financial Assessment Neutral

Time Consideration Neutral

Inconclusive

Make-or-InnerSource Controlling Sheet

Assessing Departments

FAU Professorship OSS

DummyPartner

37

6 Demonstration

6.1 Compensation Model

To demonstrate the functionality of the compensation model under different circumstances, a

300 lines sample data set is used, representing a small development endeavor. Assume a project

with the previously mentioned teams (Team Econ and Team CompSci) has the following input

parameters. Coincidentally, usage of and contribution to the Inner Source component are

in equal relation, and there is no deviation from the planned values. If this plan is met during

the development process, there will be no need for compensation between the contributors.

Figure 18: Project Data for a Compensation Model

However, using the sample data set with an error modifier of 0 (zero) the contribution of Team

Econ is calculated to be 39,78%, i.e. in excess of the planned 35%. To compensate for this,

the model suggests a payment of 4062,70€ to Team Econ in exchange for the extra work.

Figure 19: Compensation Calculation for changes in the distribution of contributions

Critically, this does not consider which party produced and resolved more errors during

the process. Applying an error modifier of 7,5 to the previous example causes the estimated

workload to (almost) balance out, leading to a suggested payment of only 17,84€. If the mod-

ifier is raised further to 12, for instance, the balance shifts in favor of Team CompSci, who

are now owed 2466,16€, as they disproportionately worked on errors in the codebase.

Figure 20: Compensation Model Contribution and Error Statistics

Project Data Planned Actual

Overall Effort (hours) 1000 1000

Avg. Personnel cost per hour 85,00 € 85,00 €

Overall Cost 85 000,00 € 85 000,00 €

Usage Team Econ 35% 35%

Usage Team CompSci 65% 65%

Contribution Team Econ 35%

Contribution Team CompSci 65%

Compensation-Data Planned Actual Planned2 Actual2

Usage 35% 35% 65% 65%

Contribution (in %) 35% 39,78% 65% 60,22%

Contribution (value) 29 750,00 € 33 812,70 € 55 250,00 € 51 187,30 €

Compensation - € 4 062,70 €- - € 4 062,70 €

Team Econ Team CompSci

38

Further, the model can also compensate for changes in the usage statistics. Continuing with

the relatively close modifier of 7,5, when Team Econ uses the component 55% of times instead

of the planned 35%, but their contribution stays the same, they can compensate for this with the

equivalent of 17017,84€. This seems logical, as the team is a majority user of the component

but has allocated fewer resources to its development than the other contributors.

Figure 21: Compensation Calculation for changes in the distribution of usage

6.2 Viability Model

To make use of the viability model, the user simply enters their project estimations into the

matrix and receives a recommendation in terms of non-financial and financial factors. If

applicable, the model also issues a specific warning if Inner Sourcing is likely to introduce a

delay incompatible with the project’s time frame, as can be seen in the example below.

Figure 22: Example Viability Model Input and Result

When this disadvantage is removed from the input matrix, the outcome changes to the following

statement.

Figure 23: Example Viability Judgment - Weak Recommendation

Compensation-Data Planned Actual Planned2 Actual2

Usage 35% 55% 65% 45%

Contribution (in %) 35% 34,98% 65% 65,02%

Contribution (value) 29 750,00 € 29 732,16 € 55 250,00 € 55 267,84 €

Compensation - € 17 017,84 € - € 17 017,84 €-

Team Econ Team CompSci

Factor Rating Weight / Importance Factor

Urgency 5 7 Expected Impact on Quality

Potential Sales Growth 1 5 Expected Impact on Flexibility

Technical Differentiation 4 7 Expected Impact on Innovation

Profitability 3 6 Expected Impact on Delivery Time

Factor Factor Best-case Likely Worst-case

Human Resource Availability Contribution Cost 30 000 50 000 80 000

Skills and Know-how Availability Conversion and Integration Cost 5 000 7 500 20 000

Skills Development Potential Exp. Maintenance Contribution p.m. 500 700 1 200

Inner Source Experience Cost of Alternative Development 60 000 80 000 110 000

Overall Collaboration Assessment:

Company Dimension

Project Dimension

Quality Dimension

Resource Dimension

4

Strategic Value Factors Performance Factors

Rating

5

5

3

2

Human Factors Financial Factors

Rating

3

2

2

Summary:

Weak
Weak Disapproval - The currently entered financial and non-financial information

suggests the project may be viable for Inner Sourcing. However, it could lead to an

increase in development time.

Medium

Strong

Medium

Overall Collaboration Assessment:

Weak Recommendation - The currently entered financial and non-financial

information suggests the project may be viable for Inner Sourcing. This approach is

further expected to have a positive impact on development time.

39

When the non-financial parameters are overwhelmingly positive and a quicker turnaround time

is expected, one of the following statements could be issued, depending on the financial viabil-

ity of Inner Sourcing.

Figure 24: Example Viability Judgments - Full Recommendation

When a project is judged non-viable, one of the following negative statements may be dis-

played.

Figure 25: Example Viability Judgments - Disapproval

All further potential combinations between the decision factors are listed exhaustively within

appendix C.

Overall Collaboration Assessment:

Full Recommendation - The currently entered non-financial information suggests

the project would benefit from Inner Sourcing and enable faster development at

comparable costs.

Overall Collaboration Assessment:

Full Recommendation - Inner Sourcing this project has the potential to increase

quality, improve delivery time and reduce production cost.

Overall Collaboration Assessment:

Weak Disapproval - The currently entered non-financial information suggests the

project is unviable - a redefinition or in-depth analysis is advised.

Overall Collaboration Assessment:

Hard Disapproval - The currently entered financial and non-financial information

suggests the project is unviable for Inner Sourcing or the contribution of this

department is non-viable. Re-evaluation is advisable after re-defining the project

parameters significantly.

40

7 Limitations and Outlook

It is important to note that the goal of this research was to establish how the practices of man-

agement accounting could be tailored to the realm of Inner Source software engineering. To this

end, this work tries to design a prototype artifact that can serve as the basis for further, more in-

depth developments. Evidently, as this research is done within the scope of a master’s thesis,

certain limitations had to be introduced.

As mentioned, any kind extensive management oversight risks hampering the benefits of Inner

Sourcing in the first place, which remains to be evaluated by industry practitioners, and could

lead to major changes to better reflect real-world application of the artifacts.

As it stands, the proposed compensation model assumes that all code committed is of equal

value to determine the overall contribution. The introduction of the custom error modifier rep-

resents an approach to remedy this and recognize code quality as a factor in value, but it’s very

rudimentary in its execution. In theory, partners could still benefit from artificially inflating

their LoC numbers without having contributed to the project at the same scale. Potential meth-

ods to increase precision include a weighted approach to LoC metrics by Mas y Parada (2007)

or a work time calculation from time between commits as proposed by Buchner and Riehle

(2022).

Understandably, suggesting compensation payment of any kind may be seen as controversial.

It is important to underline that collaborative software development is not a zero-sum-game

and likening it to one should be done carefully. In fact, the viability model considers this by

comparing traditional development and the potential cost through Inner Sourcing. This criticism

of the compensation model is, however, only applicable in cases of one-off collaboration. Long-

term collective work could use the suggested compensation as a running total to ensure equal

effort on all sides – without ever exchanging money.

As for the viability model, the calculation could be extended with further negative dimen-

sions associated with Inner Sourcing, such as loss of IP, which is a major concern in some

collaborative development situations. Clearly there will also be situations where the model de-

livers unsatisfactory results, due to the limitation and standardization of inputs. This lack of

customization could be resolved in later iterations.

Further, both of the models do not employ mechanisms that corroborate input against

other participants or prior projects, albeit such functionality should be comparably easy to

add.

There is also potential in implementing the discussed Black-box approach as a form to measure

the long-term impact and feasibility of certain project parameters and approaches. Both inter-

viewees showed interest in the potential of evaluating their Inner Source projects this way.

However, as demonstrated statistically, for this analysis to yield resilient results a significant

number of real-life input projects are required.

41

8 Conclusions

Although the results of this thesis have to contend with several limitations and simplifications,

the work nonetheless demonstrates the possibilities of connecting sound management ac-

counting principles with functional Inner Source processes. For industry, it presents easily

understandable approaches to the inclusion of collaborative software development within the

core management functions of planning and monitoring, that are also lightweight enough as to

not prohibit free combination of efforts across organizational boundaries. As such, it may pro-

vide a framework to further the adoption of Open Source principles within companies and

could aid in lowering barriers to entry into this fascinating and promising realm.

The broad sweep approach that was chosen during the theoretical chapters aimed to not only

establish a synergy between management accounting and software engineering, but also to con-

textualize the challenges and opportunities this connection can provide. The extensive discus-

sion of related research material has also stressed the topic’s interdisciplinary position in be-

tween the fields of economics, statistics, management as well as computer science. Located at

this intersection between subjects, the topic can draw from a number of potential tech-

niques to resolve the apparent dichotomy between Open Source principles and management

oversight. Combined with the introduction of expert opinions to verify the theoretical findings,

this body of work creates ample opportunity for more focused research to tie into and ex-

pand upon.

V

Appendix A Interview Expert No. 1

Interview Transcription

Interviewer(s): Julian Hirsch (JH)

Interviewee(s): Expert No. 1

VI

Appendix B Interview Expert No. 2

Interview Transcription

Interviewer(s): Julian Hirsch (JH), Dirk Riehle (DR)

Interviewee(s): Expert No. 2

VII

Appendix C Viability Model Judgments Lookup Table

Non-fi-

nancial

Finan-

cial

Time Con-

sideration

Verdict Explanation

Nega-

tive

Nega-

tive

Negative Hard

Disap-

proval

The currently entered financial and non-financial information

suggests the project is unviable for Inner Sourcing or the con-

tribution of this department is non-viable. Re-evaluation is ad-

visable after re-defining the project parameters significantly.

Nega-

tive

Nega-

tive

Neutral Hard

Disap-

proval

The currently entered financial and non-financial information

suggests the project is unviable for Inner Sourcing or the con-

tribution of this department is non-viable. Re-evaluation is ad-

visable after re-defining the project parameters significantly.

Nega-

tive

Nega-

tive

Positive Weak

Disap-

proval

The currently entered financial and non-financial information

suggests the project is unviable for Inner Sourcing or the con-

tribution of this department is non-viable. Re-evaluation is ad-

visable after re-defining the project parameters significantly.

Nega-

tive

Neutral Negative Hard

Disap-

proval

The currently entered financial and non-financial information

suggests the project is unviable for Inner Sourcing or the con-

tribution of this department is non-viable. Re-evaluation is ad-

visable after re-defining the project parameters significantly.

Nega-

tive

Neutral Neutral Weak

Disap-

proval

The currently entered non-financial information suggests the

project is unviable - a redefinition or in-depth analysis is ad-

vised.

Nega-

tive

Neutral Positive Weak

Disap-

proval

The currently entered non-financial information suggests the

project is unviable for Inner Sourcing or the contribution of

this department is non-viable. Re-evaluation is advisable after

re-defining the project parameters significantly.

Nega-

tive

Positive Negative Weak

Disap-

proval

The currently entered non-financial information suggests the

project is unviable for Inner Sourcing or the contribution of

this department is non-viable. Additionally, it could lead to an

increase in development time. However, the lower overall cost

could be considered a valuable trade-off.

Nega-

tive

Positive Neutral Weak

Disap-

proval

The currently entered non-financial information suggests the

project is unviable for Inner Sourcing or the contribution of

this department is non-viable. However, the lower overall cost

could be considered a valuable trade-off.

Nega-

tive

Positive Positive Weak

Recom-

menda-

tion

The currently entered non-financial information suggests the

project is unviable for Inner Sourcing or the contribution of

this department is non-viable. However, lower cost and

quicker delivery time could be considered a valuable trade-off.

Neutral Nega-

tive

Negative Weak

Disap-

proval

The currently entered non-financial information suggests the

project may be viable for Inner Sourcing. However, it would

have a considerable negative impact on delivery time and pro-

duction cost.

Neutral Nega-

tive

Neutral Weak

Disap-

proval

The currently entered non-financial information suggests the

project may be viable for Inner Sourcing. However, it would

have a considerable negative impact on development cost.

Neutral Nega-

tive

Positive Weak

Recom-

menda-

tion

The currently entered non-financial information suggests the

project may be viable for Inner Sourcing. The higher cost can

be considered acceptable if development time is prioritized.

Neutral Neutral Negative Weak

Disap-

proval

The currently entered financial and non-financial information

suggests the project may be viable for Inner Sourcing. How-

ever, it could lead to an increase in development time.

VIII

Neutral Neutral Neutral Weak

Disap-

proval

The current analysis parameters are inconclusive and do not

yield a clear recommendation for or against Inner Sourcing. A

re-balancing of inputs may yield better results.

Neutral Neutral Positive Weak

Recom-

menda-

tion

The currently entered financial and non-financial information

suggests the project may be viable for Inner Sourcing. This ap-

proach is further expected to have a positive impact on devel-

opment time.

Neutral Positive Negative Weak

Disap-

proval

The currently entered non-financial information suggests the

project may be viable for Inner Sourcing. While this is ex-

pected to have a positive impact on development cost, it can

lead to delays.

Neutral Positive Neutral Weak

Recom-

menda-

tion

The currently entered non-financial information suggests the

project may be viable for Inner Sourcing at a lower cost than

the alternative development.

Neutral Positive Positive Full

Recom-

menda-

tion

The currently entered non-financial information suggests the

project may be viable for Inner Sourcing. Additionally, it can

be expected to have a positive impact on both development

time and cost.

Positive Nega-

tive

Negative Hard

Disap-

proval

The currently entered non-financial information suggests the

project may be viable for Inner Sourcing. However, due to

expected disadvantages in development cost and time, alterna-

tive development is preferable.

Positive Nega-

tive

Neutral Weak

Disap-

proval

The currently entered non-financial information suggests the

project would benefit from Inner Sourcing, but could lead to

higher overall costs. Further analysis recommended.

Positive Nega-

tive

Positive Weak

Disap-

proval

The currently entered non-financial information suggests the

project would benefit from Inner Sourcing. However, as it is

likely to lead to higher production cost, Inner Sourcing is only

recommended if development time is paramount.

Positive Neutral Negative Weak

Recom-

menda-

tion

The currently entered non-financial information suggests the

project would benefit from Inner Sourcing. However, as it is

likely to lead to longer development time, Inner Sourcing is

only recommended if development time is not crucial.

Positive Neutral Neutral Full

Recom-

menda-

tion

The currently entered non-financial information suggests the

project would benefit from Inner Sourcing. Delivery time and

production cost are not expected to be affected.

Positive Neutral Positive Full

Recom-

menda-

tion

The currently entered non-financial information suggests the

project would benefit from Inner Sourcing and enable faster

development at comparable costs.

Positive Positive Negative Weak

Disap-

proval

The currently entered financial and non-financial information

suggests the project would benefit significantly from Inner

Sourcing. However, this option is only viable if an increase in

development time is acceptable.

Positive Positive Neutral Full

Recom-

menda-

tion

The currently entered financial and non-financial information

suggests the project would benefit significantly from Inner

Sourcing. Development time is not expected to be affected sig-

nificantly

Positive Positive Positive Full

Recom-

menda-

tion

Inner Sourcing this project has the potential to increase quality,

improve delivery time and reduce production cost.

IX

References

Ahlawat, P., Boyne, J., Herz, D., Schmieg, F., & Stephan, M. (2021). Why You Need an Open Source

Software Strategy. Retrieved from https://mkt-bcg-com-public-pdfs.s3.amazonaws.com/prod/open-

source-software-strategy-benefits.pdf

Anderson, D. J. (2003). Agile management for software engineering: Applying the theory of constraints for
business results. The Coad series. Upper Saddle River, NJ, London: Prentice Hall Professional

Technical Reference.

Andreo, S., Calà, A., & Bosch, J. (2021). OpEx Driven Software Architecture a case study. In S. Biffl, E.

Navarro, W. Löwe, M. Sirjani, R. Mirandola, & D. Weyns (Eds.), ECSA: European Conference on

Software Architecture: Vol. 12857. Software Architecture: 15th European Conference, ECSA 2021,

Virtual Event, Sweden, September 13-17, 2021, Proceedings. Cham: Springer International Publishing.

Anthony, R. N., & Govindarajan, V. (2014). Management control systems (First European Edition). New

York: McGraw-Hill Education.

Arndt, T. (2018). Big Data and software engineering: prospects for mutual enrichment. Iran Journal of

Computer Science, 1(1), 3–10. https://doi.org/10.1007/s42044-017-0003-0

Aurum, A., & Wohlin, C. (Eds.) (2005). SpringerLink Bücher. Engineering and Managing Software
Requirements. Berlin/Heidelberg: Springer-Verlag. Retrieved from http://swbplus.bsz-

bw.de/bsz120991276err.htm https://doi.org/10.1007/3-540-28244-0

BaniMustafa, A. (2018). Predicting Software Effort Estimation Using Machine Learning Techniques. In

2018 8th International Conference on Computer Science and Information Technology (CSIT) (pp. 249–

256). IEEE. https://doi.org/10.1109/CSIT.2018.8486222

Bibi, N., Anwar, Z., & Rana, T. (2021). Expertise based skills management system to support resource

allocation. PloS One, 16(8), e0255928. https://doi.org/10.1371/journal.pone.0255928

Bloch, M., Blumberg, S., & Laartz, J. (2012). Delivering large-scale IT projects on time, on budget, and on

value. Retrieved from https://www.mckinsey.com/business-functions/mckinsey-digital/our-

insights/delivering-large-scale-it-projects-on-time-on-budget-and-on-value

Boehm, B. W., & Papaccio, P. N. (1988). Understanding and controlling software costs. IEEE Transactions

on Software Engineering, 14(10), 1462–1477. https://doi.org/10.1109/32.6191

Bosio, D., Bev Littlewood, L. Strigini, & M. J. Newby (2002). Bosio, D., Littlewood, B., Strigini, L., &

Newby, M. J. (2002, February). Advantages of open source processes for reliability: clarifying the

issues. In C. Gacek & B. Arief (Chairs), Proceedings of the Open Source Software Development

Workshop, Newcastle upon Tyne, UK.

Buchner, S., & Riehle, D. (2022). Calculating the Costs of Inner Source Collaboration by Computing the

Time Worked. In T. Bui (Ed.), Proceedings of the Annual Hawaii International Conference on System
Sciences, Proceedings of the 55th Hawaii International Conference on System Sciences. Hawaii

International Conference on System Sciences. https://doi.org/10.24251/HICSS.2022.896

Budzier, A., & Flyvbjerg, B. (2012). Overspend? Late? Failure? What the Data Say About IT Project Risk

in the Public Sector. In Commonwealth Secretariat (Ed.), Commonwealth Governance Handbook

2012/13: Democracy, development and public administration (pp. 145–157). London: Commonwealth

Secretariat. Retrieved from https://arxiv.org/pdf/1304.4525

Bueno, S., & Salmeron, J. L. (2008). TAM-based success modeling in ERP. Interacting with Computers,

20(6), 515–523. https://doi.org/10.1016/j.intcom.2008.08.003

Cánez, L. E., Platts, K. W., & Probert, D. R. (2000). Developing a framework for make‐or‐buy decisions.

International Journal of Operations & Production Management, 20(11), 1313–1330.

https://doi.org/10.1108/01443570010348271

Cappelli, M. (2016). Overcoming the challenges of a complex ERP environment. Retrieved from

https://searcherp.techtarget.com/tip/Overcoming-the-challenges-of-a-complex-ERP-environment

Capraro, M., & Riehle, D. (2017). Inner Source Definition, Benefits, and Challenges. ACM Computing

Surveys, 49(4), 1–36. https://doi.org/10.1145/2856821

Charifzadeh, M., & Taschner, A. (2017). Management accounting and control: Tools and concepts in a
central European context / Michel Charifzadeh and Andreas Taschner. Weinheim, Germany: Wiley-

VCH.

DeCotiis, T. A., & Dyer, L. (2016). Defining and Measuring Project Performance. Research Management,

X

22(1), 17–22. https://doi.org/10.1080/00345334.1979.11756516

Deephouse, C., Mukhopadhyay, T., Goldenson, D. R., & Kellner, M. I. (1995). Software Processes and

Project Performance. Journal of Management Information Systems, 12(3), 187–205.

https://doi.org/10.1080/07421222.1995.11518097

Deshpande, A., & Riehle, D. (2008). The Total Growth of Open Source. In B. Russo, E. Damiani, S.

Hissam, B. Lundell, & G. Succi (Eds.), IFIP – The International Federation for Information
Processing. Open Source Development, Communities and Quality (Vol. 275, pp. 197–209). Boston,

MA: Springer US. https://doi.org/10.1007/978-0-387-09684-1_16

Dingsoyr, T., Dyba, T., Gjertsen, M., Jacobsen, A. O., Mathisen, T.‑E., Nordfjord, J. O., . . . Strand, K.

(2019). Key Lessons From Tailoring Agile Methods for Large-Scale Software Development. IT

Professional, 21(1), 34–41. https://doi.org/10.1109/MITP.2018.2876984

Driscoll, M., Webb, H., & Schmidt, J. (2015). ERP Complexity vs. business growth: At odds or in

alignment depends on your approach. Retrieved from https://www.cognizant.com/whitepapers/2015-

research-on-the-ERP-landscape_Publisher.pdf

Dueñas, S., Cosentino, V., Gonzalez-Barahona, J. M., Del Castillo San Felix, A., Izquierdo-Cortazar, D.,

Cañas-Díaz, L., & Pérez García-Plaza, A. (2021). Grimoirelab: A toolset for software development

analytics. PeerJ. Computer Science, 7, e601. https://doi.org/10.7717/peerj-cs.601

Dul, J., & Hak, T. (2007). To quantify or to qualify: That's not the question. Journal of Purchasing and

Supply Management, 13(3), 207–209. https://doi.org/10.1016/j.pursup.2007.09.010

Filieri, A., Maggio, M., Angelopoulos, K., D'Ippolito, N., Gerostathopoulos, I., Hempel, A. B., . . .

Vogel, T. (2015). Software Engineering Meets Control Theory. In 2015 IEEE/ACM 10th International

Symposium on Software Engineering for Adaptive and Self-Managing Systems (pp. 71–82). IEEE.

https://doi.org/10.1109/SEAMS.2015.12

Gietzmann, M. B. (1996). Incomplete contracts and the make or buy decision: Governance design and

attainable flexibility. Accounting, Organizations and Society, 21(6), 611–626.

https://doi.org/10.1016/0361-3682(96)00002-5

Gillies, S. (2016, February 11). Open source demonstrates the future of work: Traditional work paradigms

are collapsing. Open source models offer a more humane future of and for "work.". Retrieved from

https://opensource.com/open-organization/16/2/open-source-demonstrates-future-work

Granlund, M., & Lukka, K. (1998). It is a Small World of Management Accounting Practices. Journal of

Management Accounting Research, 153–179.

Hihn, J., & Menzies, T. (2015). Data Mining Methods and Cost Estimation Models: Why is it So Hard to

Infuse New Ideas? In 2015 30th IEEE/ACM International Conference on Automated Software

Engineering Workshop (ASEW) (pp. 5–9). IEEE. https://doi.org/10.1109/ASEW.2015.27

Johansson, M., Hallberg, N., Hinterhuber, A., Zbaracki, M., & Liozu, S. (2012). Pricing strategies and

pricing capabilities. Journal of Revenue and Pricing Management, 11(1), 4–11.

https://doi.org/10.1057/rpm.2011.42

Joshi, A., Kale, S., Chandel, S., & Pal, D. (2015). Likert Scale: Explored and Explained. British Journal of

Applied Science & Technology, 7(4), 396–403. https://doi.org/10.9734/BJAST/2015/14975

Jung, W., & Han, S. H. (2017). Which Risk Management Is Most Crucial for Controlling Project Cost?

Journal of Management in Engineering, 33(5), 4017029. https://doi.org/10.1061/(ASCE)ME.1943-

5479.0000547

Kaner, C., & Bond, W. P. (2004). Software Engineering Metrics: What Do They Measure and How Do We

Know? In METRICS 2004. IEEE CS.

Keefer, D. L., & Bodily, S. E. (1983). Three-Point Approximations for Continuous Random Variables.

Management Science, 29(5), 595–609. Retrieved from http://www.jstor.org/stable/2631360

Kuster, J., Huber, E., Lippmann, R., Schmid, A., Schneider, E., Witschi, U., & Wüst, R. (2015). Project

Controlling. In J. Kuster, E. Huber, R. Lippmann, A. Schmid, E. Schneider, U. Witschi, & R. Wüst

(Eds.), Management for Professionals. Project Management Handbook (pp. 165–186). Berlin,

Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-45373-5_17

Lancioni, R. (2005). Pricing issues in industrial marketing. Industrial Marketing Management, 34(2), 111–

114. https://doi.org/10.1016/j.indmarman.2004.07.009

Larson, E. W., & Gobeli, D. H. (1989). Significance of project management structure on development

success. IEEE Transactions on Engineering Management, 36(2), 119–125.

https://doi.org/10.1109/17.18828

XI

Lawrie, T., & Gacek, C. (2002). Issues of dependability in open source software development. ACM

SIGSOFT Software Engineering Notes, 27(3), 34–37. https://doi.org/10.1145/638574.638584

Likert, R. (1932). A Technique for the Measurement of Attitudes. Archives of Psychology. (140), 1–55.

Link, A. N., Teece, D. J., & Finan, W. F. (1996). Estimating the benefits from collaboration: The case of

SEMATECH. Review of Industrial Organization, 11(5), 737–751. https://doi.org/10.1007/BF00214832

Mas y Parareda, B., & Pizka, M. (2007). Measuring Productivity Using the Infamous Lines of Code Metric.

In J. Keung (Chair), Proceedings of The First International Workshop on Software Productivity Analysis

and Cost Estimation. Symposium conducted at the meeting of Information Processing Society of Japan;

Special Interest Group on Software Engineering, Nagoya, Japan. Retrieved from

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.4666&rep=rep1&type=pdf#page=13

Medina-Serrano, R., González-Ramírez, R., Gasco-Gasco, J., & Llopis-Taverner, J. (2020). Strategic

sourcing: Developing a progressive framework for make-or-buy decisions. Journal of Industrial

Engineering and Management, 13(1), 133. https://doi.org/10.3926/jiem.2858

Morgan, L., Gleasure, R., Baiyere, A., & Dang, H. P. (2021). Share and Share Alike: How Inner Source

Can Help Create New Digital Platforms. California Management Review, 64(1), 90–112.

https://doi.org/10.1177/00081256211044830

Nuseibeh, B., & Easterbrook, S. (2000). Requirements engineering. In A. Finkelstein (Ed.), Proceedings of

the conference on The future of Software engineering - ICSE '00 (pp. 35–46). New York, New York,

USA: ACM Press. https://doi.org/10.1145/336512.336523

Open Source Initiative (2007, March 22). The Open Source Definition. Retrieved from

https://opensource.org/osd

Oun, T. A., Blackburn, T. D., Olson, B. A., & Blessner, P. (2016). An Enterprise-Wide Knowledge

Management Approach to Project Management. Engineering Management Journal, 28(3), 179–192.

https://doi.org/10.1080/10429247.2016.1203715

Paulk, M. C. (2009). A History of the Capability Maturity Model for Software. The Software Quality

Profile, 1(1).

Paulk, M. C., Curtis, B., Chrissis, M. B., & Weber, C. V. (1993). Capability maturity model, version 1.1.

IEEE Software, 10(4), 18–27. https://doi.org/10.1109/52.219617

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2014). A Design Science Research

Methodology for Information Systems Research. Journal of Management Information Systems, 24(3),

45–77. https://doi.org/10.2753/mis0742-1222240302

Perens, B. (1998). The Open Source Definition. Retrieved from

https://www.researchgate.net/profile/Bruce-

Perens/publication/200027107_Perens_Open_Source_Definition_LG_26/links/568bdeb408ae16c414a9

c549/Perens-Open-Source-Definition-LG-26.pdf

Pollack, J., Helm, J., & Adler, D. (2018). What is the Iron Triangle, and how has it changed? International

Journal of Managing Projects in Business, 11(2), 527–547. https://doi.org/10.1108/IJMPB-09-2017-

0107

Raith, F., Richter, I., & Lindermeier, R. (2017). How Project-management-tools are used in Agile Practice.

In B. C. Desai, J. Hong, & R. McClatchey (Eds.), Proceedings of the 21st International Database
Engineering & Applications Symposium on - IDEAS 2017 (pp. 30–39). New York, New York, USA:

ACM Press. https://doi.org/10.1145/3105831.3105865

Reynolds, C. J., & Wyatt, J. C. (2011). Open source, open standards, and health care information systems.

Journal of Medical Internet Research, 13(1), e24. https://doi.org/10.2196/jmir.1521

Riehle, D. (2009). The Commercial Open Source Business Model. In M. L. Nelson, M. J. Shaw, & T. J.

Strader (Eds.), Lecture notes in business information processing, 1865-1348: Vol. 36. Value creation in

e-business management: 15th Americas Conference on Information Systems, AMCIS 2009, Sigebiz

Track, San Francisco, CA, USA, August 6-9, 2009, selected papers / [edited by] Matthew L. Nelson,

Michael J. Shaw, Troy J. Strader (1st ed.). New York: Springer.

Riehle, D. (2011). Controlling and Steering Open Source Projects. Computer, 44(7), 93–96.

https://doi.org/10.1109/MC.2011.206

Riehle, D., Capraro, M., Kips, D., & Horn, L. (2016). Inner Source in Platform-Based Product Engineering.

IEEE Transactions on Software Engineering, 42(12), 1162–1177.

https://doi.org/10.1109/TSE.2016.2554553

Riehle, D., Ellenberger, J., Menahem, T., Mikhailovski, B., Natchetoi, Y., Naveh, B., & Odenwald, T.

XII

(2009). Open Collaboration within Corporations Using Software Forges. IEEE Software, 26(2), 52–58.

https://doi.org/10.1109/MS.2009.44

Rook, P. (1986). Controlling software projects. Software Engineering Journal, 1(1), 7.

https://doi.org/10.1049/sej.1986.0003

Stol, K.‑J., Avgeriou, P., Babar, M. A., Lucas, Y., & Fitzgerald, B. (2014). Key factors for adopting inner

source. ACM Transactions on Software Engineering and Methodology, 23(2), 1–35.

https://doi.org/10.1145/2533685

Stol, K.‑J., Babar, M. A., Avgeriou, P., & Fitzgerald, B. (2011). A comparative study of challenges in

integrating Open Source Software and Inner Source Software. Information and Software Technology,

53(12), 1319–1336. https://doi.org/10.1016/j.infsof.2011.06.007

Volpi, M. (2019). How open-source software took over the world. Retrieved from

https://techcrunch.com/2019/01/12/how-open-source-software-took-over-the-

world/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=A

QAAALOQM0-mVOkO3itQzp9N1gGN2xpBF4tyfr-4W4VFrJJtDzzCtdF4RPqH0HuT9kEkSgz1Qb-

YMkV-NpYCGc2wZZ992Ica_c6-AhSZBWBsqi6ugrP_MdcM7twIjwGh6al7RMHbpIQh-

Nggo5qz5DQTDZmH9JxS8fPyM5jlGgflKnNj

Expert 1 (2021, April 1). Interview by J. Hirsch.

Watson, R. T., Boudreau, M.‑C., York, P. T., Greiner, M. E., & Wynn, D. (2008). The business of open

source. Communications of the ACM, 51(4), 41–46. https://doi.org/10.1145/1330311.1330321

Expert 2. (2021, April 7). Interview by J. Hirsch, & D. Riehle.

