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Abstract

Software engineering productivity is a metric that can be an indicator for soft-
ware quality, development efficiency and developer satisfaction. As a result, the
metric can be used for managerial decision making and is crucial to the suc-
cess of a software project. However, even though the importance of the topic is
widely accepted, there is no uniform approach to measuring it. In this thesis,
we use a design science approach to provide a new objective metric to measuring
software engineering productivity based on past literature. The approach uses
openly available repository metadata collected by Git and GitHub and is usable
for both a classic software engineering approach and an inner source approach.
Furthermore, we demonstrate the functionality of our approach by analyzing a
software engineering project.
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1 Introduction

Software engineering productivity can be used as an indicator for software quality,
development efficiency and developer satisfaction (Forsgren et al., 2021; Graziotin
& Fagerholm, 2019). Thus, being able to measure software engineering productiv-
ity in one’s company or software project can be crucial to managerial decision
making and the overall success of software engineering projects (Oliveira et al.,
2016). However, even though the importance of measuring productivity is clear,
no consensus on how to achieve this has been made. In fact, researchers have
called for finding a more uniform approach and reviewed the extensive body of
literature (Chapetta & Travassos, 2016; Forsgren et al., 2021; Wagner & Ruhe,
2018).

Existing approaches most commonly diverge in the the data sources used during
the evaluation. Many early attempts were for example based on the added Source
Lines of Code (SLOC) in a specific time frame. This however neglects the wealth
of data available and the complexity of the issue (Murphy-Hill et al., 2019).
Modern research for example attempt to use more complex indicators such as
bugfixing work and developer surveys (Diamantopoulos et al., 2020; Meyer et al.,
2014).

One factor that has become increasingly relevant is data gathered through re-
pository mining. A developer committing software code to a repository cre-
ates metadata with information on additions. Furthermore, code hosting plat-
forms, such as GitHub, also generate metadata when discussions take place. This
metadata can be analyzed by parsing the data and provides an openly available
source for measuring productivity. For this thesis we focus on creating an ap-
proach using metadata generated during the software engineering process.

This thesis contributes to the topic, by analyzing the existing body of work and
generating an approach to measuring software engineering productivity based on
the findings. Furthermore, we demonstrate this approach, by analyzing a software
engineering project consisting of 8 repositories. The approach is usable for both
a dedicated and an inner source software engineering approach and can be used
to enable a comparison between the two.



1. Introduction

For a research approach we chose to follow the design science methodology. This
choice was made, because measuring software engineering productivity is a mostly
unsolved identified organizational problem, which design science is focused on
solving (Hevner et al., 2004). In detail, we follow the approach defined by Peffers

et al.

(2007) and structure the thesis as follows:

Firstly, in chapter 2 we give an overview of related literature and define the
problem we intend to solve.

In chapter 3 we define the desired requirements we expect our solution to

fulfill.

In chapter 4 we describe our approach to the design and development of
our solution.

In chapter 5 we describe the tools we used and the steps we took to imple-
ment our solution.

In chapter 6 we demonstrate our solution by analyzing a sample of open
source projects.

In chapter 7 we compare the desired results of our artifact with the actual
outcome from chapter 6.

Lastly, in chapter 8 we give our concluding thoughts on the thesis.



2 Problem Identification

As described in the previous section, measuring productivity in software engin-
eering is not an easy task. There are many factors and challenges influencing a
software developers work. This section will define key terminology, describe po-
tential problems in detail and give background information by analyzing previous
literature.

2.1 Productivity

2.1.1 Definition

The term productivity has been used in a variety of different contexts in software
engineering research. In our thesis we rule out the use of productivity for topics
such as determining a software tool’s contribution to the overall workflow or the
reuse of past software projects. Instead, we focus on a developer’s contribution
to a software project. Thus, we define software engineering productivity as the
efficiency of the output resulting from software developers contributions. Further-
more, it is important to mention that this thesis is not focused on investigating
ways to enhance productivity in software engineering. Our purpose is finding
ways to measure productivity in software engineering projects.

2.1.2 Problems Measuring Productivity

Software developer productivity is of great importance to software engineering,
because it can give information about a software project’s status throughout the
entire development cycle. This can for example be used to determine develop-
ment efficiency, developer satisfaction and influence managerial decision making
(Forsgren et al., 2021; Graziotin & Fagerholm, 2019; Oliveira et al., 2016). As
such, it is important to find ways to measure productivity. However, there are
many challenges to measuring productivity.

Firstly, while there have been many attempts over the past decades, no uniform
approach on how to best measure productivity has been made. The variety of



2. Problem Identification

approaches is also an important topic in research, with papers reviewing available
literature or pointing out the divide in research (Chapetta & Travassos, 2016;
Forsgren et al., 2021; Wagner & Ruhe, 2018).

Approaches differ mostly in their use of data artifacts to determine productivity.
There are many different aspects of a software developer’s work that can be
representative of productivity. However, determining which of these artifacts are
relevant and useful for creating a productivity metric is a difficult task. de Aquino
Junior and de Lemos Meira (2009) for example classify the artifacts generated
from the software engineering process into:

e Physical Size: Use the physical size of a contribution (e.g. SLOC, created
files)

e Design Size: Use the design of a contribution (e.g. number of classes and
modules in the code)

e Functional Size: Use the number of features of a contribution.
e Value Size: Use the estimated added value of a contribution.

Overall, it is easier to measure physically based indicators, as they can be ex-
tracted directly from the source code. Thus, more recently, Treude et al. (2015)
and Murphy-Hill et al. (2019) divided the topic into objective and subjective pro-
ductivity metrics. Objective approaches consider components that can be directly
measured from the output of the work (e.g. SLOC, commits, files). Subjective
approaches are more focused on measuring personal evaluations that are more
difficult to determine (e.g. qualitative surveys of developers). Table 2.1 gives an
overview of examples of objective and subjective approaches used in productivity
research.

Table 2.1: Comparison between objective and subjective approaches in software
engineering literature

Objective Approaches

Subjective Approaches

Parizi et al., 2018: Analyses
software engineering productivity by
measuring contributions in git

Gousios et al., 2008: Analyses soft-
ware productivity by measuring de-
velopers contribution to the project

Murphy-Hill et al., 2019: Analyses
software engineering productivity by
surveying developers about their ex-
perience

Meyer et al., 2014: Analyses soft-
ware productivity by surveying de-
velopers about their perceptions of
productivity

In this thesis we use this classification and focus on creating an objective ap-
proach, because we want our approach to be easily usable on any repository

4



2. Problem Identification

using Git and GitHub. The data found in the metadata of these data sources is
objective. We do however consider the insight gained from subjective approaches
if they can be translated to an objective approach.

Besides the artifacts used for a productivity metric, one must also consider the
source of such artifacts. The software engineering process produces a high amount
of artifacts that can be difficult to keep a track of. Overall, there can be more
to a software engineering project than the software code itself. Documentation,
discussion and planning are examples of this (Diamantopoulos et al., 2020; Meyer
et al., 2014). As a result, Murphy-Hill et al. (2019) explain that simplistic ap-
proaches only considering SLOC will not be sufficient for a metric. Additionally,
some factors such as meetings or planning can be difficult to measure, because it
is not immediately apparent what the indicators are Treude et al., 2015.

A problem we encountered while planning the development of this thesis, is the
variety of tools used in software development. There are many different tools
available to aid software development. As a result, it is likely that making a
direct comparison between two software projects is challenging. Different software
projects can use differing software tools (e.g. different bug tracking tools), that
provide differing metadata on the development status.

2.1.3 Previous Approaches to Measuring Productivity

The topic of measuring productivity in software engineering is a chiefly studied
topic in research. There have been a variety of approaches spanning multiple
decades. In the following section, we give an overview of previous objective ap-
proaches split between earlier approaches and more recent Git based approaches.

Basic approaches

One common approach used early in productivity research is the use of SLOC.
For this approach, the developer’s contribution to the code is measured by their
direct contribution in added lines of code. While analyzing previous literature
on the inputs and outputs used for productivity metrics, Hernandez-Lopez et al.
(2015) for example found that the most common productivity metric is defined
as the ratio between SLOC and effort. Effort is commonly measured by the time
developers spend on the work. The prevalence of the SLOC based objective pro-
ductivity metrics is mentioned commonly in literature (Chapetta & Travassos,
2016; de Aquino Junior & de Lemos Meira, 2009; Oliveira et al., 2020). However,
as previously mentioned, it is generally considered an insufficient metric for pro-
ductivity. de Aquino Junior and de Lemos Meira (2009) for example state that
the output of the software engineering process is more than just SLOC. (Oliveira
et al., 2016) describe the ease of obtaining the relevant data as one of the main
factors for its popularity.
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git-based approaches

More recently, software engineering productivity approaches have started using
Git to measure objective productivity indicators. Git is a version control system
that is used as an archive for the development process. Each code contribution is
stored and provides a variety of metadata about the contributions, such as added
lines of code, number of commits and the exact time of the contributions. Many
of the more recent approaches are based on the data collected this way.

Gousios et al. (2008) for example extracted repository data to determine actions
that developers partake in during the development process. This encompasses
actions such as added SLOC and commits of new files. From this data, they
measure how much each developer contributes to the source code. Similarly, Par-
izi et al. (2018) used this to extract information about commits, SLOC, performed
merges, added files and the time spent on the work. From this data they then
measure individual developer performance. Furthermore, Hamer et al. (2021) use
commits, merges and churns (lines added and removed) to measure contributions
in software projects.

Another indicator used is the issues feature. Treude et al. (2015) for example
describe commit messages and issues as a potential summary source for the work
a developer performs. While surveying 156 developers, they found that both
issues and commits are commonly regarded as objective measures for activity.
Diamantopoulos et al. (2020) also further developed the use of git, by adding
online repository data about issues collected on GitHub.

2.2 Inner Source

A dedicated approach to software engineering is often a closed and centralized
process. Organizations split their software developers into departments and have
them work on a singular project Raymond (1999). However, with the success of
open source, organizations have begun to translate and apply the more distrib-
uted process to their own software engineering process. This use of open source
development methodology in companies is called inner source.

Stol et al. (2014), describe a transparent and universally accessible setup of the
code as some key practices used in an inner source approach. This is comparable
to open source projects being hosted on public repositories for everyone to observe
and contribute. In the case of inner source this is restricted to the internal use
within the company. The goal of this is for software developers to be able to freely
contribute to any project in the company. This is designed to reduce barriers
that might hinder a software developer work and in return improve volunteering,
collaboration, task self-selection and a faster development process among other
things (Capraro & Riehle, 2016; Morgan et al., 2011; Stol et al., 2011).
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2.3 Productivity Measurement in Inner Source

While the topic of measuring software engineering productivity has been an im-
portant research topic, measuring inner source productivity has not received the
same attention. As far as we can tell, no research into the matter has taken place
so far. However, being able to determine the value of conducting an inner source
approach is important for both research and practice. It could for example be
used to enable a direct comparison between the dedicated approach and inner
source approaches and in return give insight on which development model to
practice in the future. Thus, the lack of a software engineering metric that can
measure inner source and the dedicated approach is important to solve.



2. Problem Identification




3 Objective Definition

In the previous chapter we found that so far, there is no universally accepted
solution to measuring software engineering productivity. Furthermore, we found
no approach to measuring inner source productivity. As a result, we want to define
a metric that measures software engineering productivity and is compatible with
inner source. For this, we have chosen six criteria we want our solution to fulfill.

Firstly, as described in the previous chapter, there is large amounts of literature
that doesn’t necessarily correlate. Thus, we want our solution to use previous lit-
erature as a basis. More specifically, we want our solution to compile information
from previous approaches, in order to find commonly used metric components.
Our findings from literature should then be used to create our metric.

Secondly and thirdly, the metric we create should be able to measure software en-
gineering productivity in the dedicated approach, as well as software engineering
productivity for the inner source approach. This means the centralized approach
to software engineering practiced for a long time and the more recent open source
based approach.

Fourthly, based on the previous two points, we want our metric to enable making
a direct comparison between the two approaches to software engineering.

Fifthly, we have to consider the feasibility of our approach. Any metric we create
will be limited by the available data we can compose our metric off. As there are
a near limitless number of ways to write software or to contribute to the software
engineering process, we have to limit the ones we use in this thesis. Thus, we
want our solution to consist of repository data available on GitHub!. GitHub
was chosen, because it is a commonly used and accepted code hosting platform,
that gives access to Git metadata and GitHub metadata (e.g. SLOC, developer
communication and exact time points). The information we can extract from
these data sources will be objective.

Lastly, we want the output of our metric to be easily reused and visualized. For
this an appropriate data format, as well as a suitable representation is required.

LGitHub - https://github.com/


https://github.com/

3.

Objective Definition

To summarize, the software engineering productivity metric created in this thesis
must fulfill the following criteria:

10

1.

The metric should take the existing body of literature on software engin-
eering productivity into account.

The metric should be usable to measure software developer productivity in
a dedicated software development environment.

The metric should be usable to measure software developer productivity in
an inner source environment.

The metric should enable the comparison between an inner source approach
and a classic software development approach.

The metric should make use of objective data openly available in GitHub
repositories.

The metric should store it’s output in a reusable and visualizable format.



4 Solution design

For the construction of our metric, we will firstly consider the previous work on the
subject in-depth. We will analyze a selection of papers (see subsection 4.1.1 for
selection process) for the metric components the individual metrics are composed
of. From this data, we will count the rate of occurrence of each metric component.
Afterwards, we analyze the suitability of the found metric components for inner
source software engineering. From the gathered data of these tasks, we will then
describe and create our metric approach. Figure 4.1 gives a detailed overview of
the process.

Figure 4.1: Overview of the solution design process

|

Metric Component Identification

Papers —| - Search for related papers
- Extraction of metric components
| — See section 4.1

J

List of metric components
4 A

Metric Component Analysis

- Analyse results for inner source suitability
| — See section 4.2

J

Refined list of metric components

N

Metric Creation

- Create metric from previous results
— See section 4.3

Completed
metric
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4.1 Identifying Metric Components

In order to create a metric, we must first determine which objective components
our metric will be composed of. As there are many different data sources available,
we base our choice of metric components on previous literature. For this process,
we will first detail how we selected the papers included in our analysis. Secondly,
we will give our analysis of the metric components found.

4.1.1 Approach to Finding Papers

In order to find suitable papers describing the measurement of productivity in
software engineering, we searched for papers using Google Scholar. For this
process, the following key search terms were used:

e Software engineering productivity
e Software engineering performance
e Software developer productivity
e Software developer performance
Papers were accepted if they fulfilled one of the following criteria:

1. The paper deals with the creation of an objective software engineering pro-
ductivity metric.

2. The paper deals with the creation of an objective software engineering met-
ric that matches our definition of productivity.

3. The paper analyzes factors that objectively contribute to software engin-
eering productivity.

4. The paper makes findings about objective software engineering metrics in
subjective research.

4.1.2 Metric Component Identification

Within the papers found in subsection 4.1.1, we analyzed the information, in
order to extract the components used to create the metrics. In the following, a
metric component refers to a specific

.Occurrences of a specific metric component were counted and summed up. For
a selection criteria, we used our previous objective definition. Thus, we only
included metric components that could feasibly be implemented with Git and
GitHub data. Furthermore, metric components with less than 4 occurrences will
not be used for the creation of our metric. We summed up metric components in
categories, if they were similar to each other (e.g. lines added and lines removed

12



4. Solution design

were counted under SLOC, as they were usually used in combination). Overall, we
found 8 different components and 30 total mentions. Table 4.1 gives an overview
of each found metric component, as well as the papers it was used in and the
total sum of occurrences.

Table 4.1: Overview of identified metric components

Name Description Authors Sum
Commits Describes the number of | Gousios et al., | 6
commits a developer con- | 2008, Oliveira et
tributed to the code. This | al., 2020, Hamer
can for example be counted | et al., 2021, Par-
for a specific timeframe. izi et al., 2018,
Treude et al.,
2015, Diaman-
topoulos et al.,
2020
SLOC Describes the number of | Gousios et al., |8
lines a developer added to | 2008, Oliveira et
the code. We also include | al., 2020, Hamer
lines removed and changed | et al., 2021, Par-
to accommodate for refact- | izi et al., 2018,
oring. This can for example | Treude et al.,
be counted per commit or | 2015,  Diaman-
for a specific timeframe. topoulos et al.,
2020,  MacCor-
mack et al., 2003,
Chapetta and
Travassos, 2020
Files Describes the number of | Pariziet al., 2018, | 2
files a developer has com- | Diamantopoulos
mited to the code. This is | et al., 2020
usually counted for a spe-
cific timeframe.
Pulls Describes the number of | Treude et al., |1

pull requests the developer
is responsible for. This is
usually counted for a spe-
cific timeframe.

2015

13



4. Solution design

Table 4.1 — Continued from previous page

Name Description Authors Sum
Merges Describes the number of | Hamer et al., | 2
lines a developer added to | 2021, Parizi et
the code. This is usually | al., 2018
counted for a specific time-
frame.
Bugfixing activ- | Describes the developers | Gousios et al., | 4
ity contribution to bugfixing | 2008, Treude
activity. This can for ex- | et al., 2015,
ample be partaking in dis- | Diamantopoulos
cussions or commits associ- | et al., 2020,
ated with a solved issue. Meyer et al., 2014
Work time cal- | Describes the estimated | Parizi et al., |3
culations work time of a developer. 2018, Treude
et al., 2015,
Diamantopoulos
et al., 2020
Community Describes the developers | Gousios et al., | 4
activity contribution in discussions | 2008, Treude
surrounding the develop- | et al., 2015,
ment. This can for example | Chapetta and
be contributions to docu- | Travassos, 2020,
mentation. Meyer et al., 2014

As can be seen, SLOC has been the most commonly used metric component. This
is consistent with the literature described in chapter 2. Furthermore, commits are
a commonly used metric component. This is also consistent with the literature
we analyzed. Bugfixing activity and community activity are used less frequently
than the other two, but still pass the threshold we set. Bugfixing activity is based
on the actions a developer takes to fix errors in the code. Community activity
refers to documentation work.

According to our selection criteria for metric components, we will create our
metric using SLOC, Commits, bugfixing activity and community activity.

4.2 Evaluating Metric Components

After identifying the different metric components in the last section, we will now
analyze each found metric component for suitability of measuring inner source
software engineering productivity. To do so, we analyzed our description of inner
source from section 2.2. From this, we defined two attributes commonly associ-

14



4. Solution design

ated with inner source software development to be used as selection criteria. The
metric components must fulfill both criteria for us to consider them during the
creation of our metric. We define the selection criteria as:

In order to represent inner source software development any metric component
must fulfill the following two criteria:

1. A contribution to an inner source software engineering project must capture
the flow of the contribution across department boundaries.

2. A contribution to an inner source software engineering project must repres-
ent the high frequency of the contribution.

Criteria 1 was chosen, because the cross department structure is central to in-
ner source development. Thus, a contribution made to the development process
must be one that can measure this process. For example, adding a SLOC is
a contribution that can be from a single department and from several different
departments. As such, this would be considered as fulfilling criteria 1.

Criteria 2 was chosen, because being able to add to a software project at time
is important to the nature of inner source. For example, adding a SLOC is a
contribution that can be added at any moment in time and is not restricted to
any specific time. As such, this would be considered as fulfilling criteria 2.

Table 4.2 shows our evaluation of each metric component. All components found
fulfilled both criteria. Overall, the objective nature of our data sources harmon-
izes well with inner source. Contributions can be made by any developer in the
company. As a result, this represents the cross department structure of inner
source well. Furthermore, the contributions are also high frequency, as there is
no specific timeframe to making a contribution.

Table 4.2: Evaluation of inner source suitability of each metric component

Metric Component Criteria 1 Criteria 2
Commits v’ v’
SLOC v v’
Bug fixing activity v’ v’
Community activity v’ v

4.3 Metric Creation

In the previous chapter, we analyzed what metric components represent an inner
source software engineering productivity metric. In the following, we will describe
how we construct our metric from the information learned. For this we will first

15



4. Solution design

describe the dimensions of our metric. Then we will detail how we weigh the
different metric components. Lastly, we will describe the completed metric.

4.3.1 Metric Basics

Our metric is designed to deal with the objectives defined in chapter 3. The fol-
lowing section describes some aspects we want to clarify before giving a complete
definition.

Value Range

Firstly, we wanted to ensure that point 4 of our objective definition is fulfilled.
For this we have chosen to make our metric ratio scaled in a range of 0-1. As a
result, two software repositories can be compared, because the determined values
are always in the same range of values.

Determining metric component share

The created metric will determine the weight of each metric component by using
the results from chapter section 4.2. Thus, we will award each identified metric
component with points based on the number of occurrences in literature. For
this we have chosen a tier based system. Overall, there are three tiers, with the
first tier being reserved for the most common occurring metric component. The
subsequent tiers are designed to hold metric components with a medium and
small number occurrences. Table 4.3 gives an overview of the classification into
tiers for each metric component.

Table 4.3: Classification of metric components into tiers based on number of
occurences

Tier Range Share Metric Components

A (Most common) [10 - §] 5 Points SLOC

B (Medium common) |7 - 5] 4 Points Commits

C (Least common) [5 - 3] 3 Points Community Activity
Bugfixing

The point based system is used to ensure that metric components represent a
customizable fraction of the total value. This counteracts the differing availability
of software tools. As previously stated, there are a lot of different tools available
for supporting the development process. Thus, a metric must be adjustable
based on what tools are available in each instance. An implementation can use
binary values (0: Not available, 1: Available) to set metric components according
to availability. If a software project for example does not use GitHub Issues

16



4. Solution design

(metadata associated with bugfixing), the bugfixing activity component can be
neglected by excluding the metric component from the configuration. As the
share is based on the total points. the metric automatically adjusts. Figure 4.2
and Figure 4.3 give an example of how the system works with two and three
metric components respectively.

Figure 4.2: Example for the point based system for metric component share

with two components

Figure 4.3: Example for the point based system for metric component share

Metric Metric
Component 1 Component 2
Tier A Tier B
Total Points
Points 5 Points 4 |::>
9 Points
Share Share
5/9 4/9

with three components

Metric Metric Metric
Component 1 Component 2 Component 3
Tier A Tier B Tier C
Total Points
Points 5 Points 4 Points 3 |::>
12 Points
Share Share Share
5M12 4/12 312

As can be seen in the examples, the metric will adjust automatically based on
the number of metric components. As there are only two metric components in
Figure 4.2, the overall share for each metric component is larger. This can also
be used for adding more values later, in order to expand upon the work in this
thesis.
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4.3.2 Metric Description

We define our metric for software engineering productivity as the sum of each
metric components individual evaluation:

#—Metric Components

Productivity = Z Metric Component Evaluation,  (4.1)

n=1

The Metric component evaluation is determined for each metric component in-
dividually. It is calculated, by evaluating the developer’s performance in corres-
ponding and relevant metadata available from a chosen data sources (e.g. Git
and GitHub in this thesis). For example, the metric component SLOC could be
determined by the amount of lines added and removed during development. The
final value is defined as the average of each metadata value:

#—Metadata components

el Metadata component,

Metric Component Evaluation =
b # — Metadata components

(4.2)

The individual metadata values are determined by splitting the total share of the
metric component into different value ranges. For this, a maximum value is set
and the value ranges are split into even parts based on this value. The maximum
value is set by the user and described in more detail in subsection 4.3.3. Based on
the performance in these categories we then assign the performance of a developer
in each metadata component to a specific value range. Each of the value ranges
is associate with an evaluation result, that is calculated by splitting the overall
share of the metric component by the same number as the value ranges. Thus
the final result for each metadata component cannot exceed the evaluation of the
metric component.

0 if = €[04
Metadata component(z) = | ... (4.3)
Share if x € (yu_1; 0]
with:
x: Objective metadata component contribution of a developer
Y1, .-, Yn: Borders of the value ranges

Take for example a metric component Commits with:
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e Total number of commits as the only metadata component
e A 3/10 share
e A maximum value of 400

This could for example be split into 4 value ranges:

0 if x € [0;100(
0.1 if x € (100;200(
0.2 if z € (200;300(
0.3 if x € (300;00]

Number of Commits(z) = (4.4)

Thus, a developer that added 242 SLOC in a specific timeframe would receive
an evaluation of 0.2. As this is the only metadata component, this would also be
the evaluation for the metric component itself.

As can be seen in this example, by setting the maximum value to 400, we can
rule out any outlier results for a metadata component. This could for example
be library imports with an irregularly high number of SLOC.

4.3.3 Weighing

As there are many different components in our metric, that don’t necessarily have
the same range of values, we need to scale the values. It is for example not possible
to simply take commits and lines added and make a direct comparison. In this
scenario, lines added would eclipse commits, as one commit is not equal to one
line added. Thus, we need to properly scale these values before using our metric.
Finding a perfect measure for this is difficult, as this can vary depending on the
software project at hand. For this thesis, we calculate the value, by dividing the
total number for all contributions of a metadata component by the total number
of developers.
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5 Implementation

This section goes over the implementation of the solution described in chapter 4.
Firstly, we will cover different tools that were used during the development pro-
cess. Secondly, we will describe the data sources and the data collection process.
Lastly, we describe the identification of suitable metadata values and the compil-
ation of the data for our metric.

5.1 Used Tools

For the implementation of our solution we require a variety of software tools.
Firstly, we make use of GrimoireLab, a toolset for software development analytics,
to extract and compile data. Secondly, we describe the Application Programming
Interface (API) used for data collection. Lastly, we use Kibana, an analytics and
search dashboard, for query generation.

5.1.1 GrimoireLab

To aid our implementation, we used the software tool GrimoireLab!. Grimoire-
Lab was originally designed as a research project and is now maintained by the
CHAOSS? project (Duefias et al., 2021). The tool’s described use case is for
software development analytics and offers a variety of algorithms to extract data
from different sources (e.g. Git, GitHub). The following features make it relevant
for this thesis:

e Data extraction: In order to implement the metric defined in section 4,
we require a way to continuously extract relevant data from a variety of
data sources. Most importantly, we need to access repository data (e.g.
commits and dates), as well as GitHub related data (e.g. GitHub Issues).
GrimoireLab offers an implementation to extract and GitHub specific data.

!GrimoireLab - https://github.com/chaoss/grimoirelab
2CHAOSS - https://chaoss.community/
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e Data compilation: In order to compile the metric from its different com-
ponents, we need to store the collected information in an easily retrievable
format. GrimoireLab stores all retrieved data in an Elasticsearch data-
base. Thus, we have a way to store and retrieve data. Furthermore, we can
add additional data not supported by GrimoireLab at a later point (See
section 5.2 for more information).

Overall, GrimoireLabs offering is quite extensive, however we add some additional
data required for our solution. This is described in section 5.2.

Components

The overall GrimoireLab application uses a variety of tools. Each tool is its own
software repository and is responsible for a different task in the overall process.
We will make use of multiple components, but specifically focus on sirmordred?,
elk* and Perceval®.

sirmordred Sirmordred is the component used to coordinate the different grim-
oirelab tools. It configures the basic setup and determines which repositories are
analysed. In this thesis we will use it to set the analyzed repositories to the
configuration.

Perceval Perceval is the component handling the data gathering process by
collecting raw data from specified sources. For this thesis we will use it to gather
data from and GitHub data sources.

GrimoireElk GrimoireElk is the component responsible for handling the Elas-
tiSearch database connectivity. Any data extracted in the data gathering process
will be processed here and added to the database. In this thesis, we will use it
for storing our data.

5.1.2 Elasticsearch and Kibana

For data storage we use Elasticsearch®. Elaticsearch is the database used for
storing data in the GrimoireLab process. Data is added by GrimoireElk and can
then be visualized by Kibana.

Kibana' is a 'browser-based analytics and search dashboard’. GrimoireLab offers

3sirmordred - https://github.com/chaoss/grimoirelab-sirmordred

“elk - https://github.com /chaoss/grimoirelab-elk

SPerceval - https://github.com/chaoss/grimoirelab-perceval
6Elasticsearch - https://github.com /elastic/elasticsearch
"Kibana - https://github.com/elastic/kibana
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Kibiter®, a custom version of Kibana, that is designed to directly work with it’s
own tools. For this thesis, we will use the tool to generate predefined queries for
our data compilation scripts (see section 5.4).

5.2 Data Sources

For data sources we use and GitHub as defined in chapter 3. GrimoireLab’s data
extraction feature allows us access to predefined schemata for both. The schemata
define a set of metadata values (e.g. lines added, author name etc.) for data
source that can be used to find relevant information. This process is handled by
Perceval and GrimoireElk. Firstly, raw data is extracted by Perceval. For Git,
this is for example information about the developer responsible for the commit
or the size. This information is found within the system. Raw data from GitHub
is accessed by API calls to different systems. For this thesis GitHub Issues is the
most relevant data source for GitHub. As pull requests and issues are classified
in a similar way in GitHub, we exclude information about pull requests and focus
strictly on issues.

Secondly, repository metadata from is stored in Elasticsearch by commits as a
unit. GitHub Issues metadata is stored by Issues. There are a total of 124 and
72 values associated with each respectively. These values are partially extracted
directly from repositories and GitHub Issues. However, some values are calculated
during the GrimoireLab workflow. This includes internal identifiers for authors
and organizations, as well as information about when the data was extracted.
Thus, not every value can provide relevant metadata for our metric and we will
only analyze relevant values (See section 5.3 for our choice of values).

Furthermore, we noticed that the github issues values only lists the author of
an issue. For our metric we also wanted to include developers that contribute
to the discussion surrounding an issue or contribute by writing code. Thus, we
implemented a script that adds an involved value listing all contributors to an
issue that also have at least one commit. Developers involved in issues that do
not have a commit cannot be queried and are ignored in the following. This data
is extracted with the python script update.py and added to the Elasticsearch
database. The process is done in three steps:

1. Query Elasticsearch for a list of every developer that has contributed to the
code.

2. For each developer, query the GitHub Search API for a list of all GitHub
Issues the developer was involved with and keep a dictionary for each issue.

(a) The request is made by using curl and customizing:

8Kibiter - https://github.com/chaoss/grimoirelab-kibiter
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https://api.github.com /search/
issues?q=repo:{repo_name} 20involves:{developer account}

(b) The data is limited to 30 requests per minute and must be requested
periodically.

3. For each issue, write the involved value into the database

Afterwards, we create a scripted field in Kibiter that combines the involved values
and the developer that authored the issue (If not already present in the involved
value). Scripted fields are a feature of Kibana an allow for the creation of new
data tags without the need of adding to the code base.

5.3 Identifying Metric Component Metadata

In chapter 4, we described the different metric components our metric is going
to be composed of. As there are many ways the metric components can be rep-
resented, we will offer default values that our implementation will use. However,
the code is implemented in a way to allow further additions depending on avail-
ability. This section will describe the mapping of each metric component to the
corresponding default values in the data sources. We approached this process as
follows:

1. Analyze the available data sources for fitting metric component metadata.

2. Compile a list for each metric component, containing all possibly relevant
metadata (See Table 5.1).

3. Analyze the list based on feasibility and suitability.

Table 5.1: Relevant git and GitHub values for each metric component

Metric Component Data Source

Commits Count the total commits associated with a de-
veloper.

SLOC git: lines added

git: lines removed

git: lines changed
Bugfixing activity github _issues: involved

github issues: time to close days

github issues: time to first attention
Community Activity Analysis done on the documentation repository.

For commits we can count the total number of commits. We don’t differentiate
between the sizes of the commits, because SLOC covers this aspect. SLOC on the

24



5. Implementation

other hand provides three values that are associated with the metric component.
However, for our implementation we will only use lines changed, because it com-
bines lines added and lines removed. Thus, including all would result in eval-
uating values multiple times. For bugfixing activity, we make use of the GitHub
Issues dashboard of GrimoireLab. Relevant values include the involved value de-
scribed in the previous chapter, time to close days and time to first attention.
From these values we have decided to solely focus on the involved value. Com-
munity activity is represented by the work developers make on the documenta-
tion. Thus, as documentation for large repositories is often stored in and GitHub,
we will do our analysis on the corresponding repositories.

5.4 Compiling Metric Component Metadata

After gathering all data in the Elasticsearch database, we parse and compile
the data according to our metric definition in section 4.3. For this we will first
describe the configuration file that allows the implementation to be customized
and then detail the actual implementation of our metric.

5.4.1 Configuration

While designing our implementation, we paid attention to making it extendable
and customizable. This will allow us to add more tools later and to adjust values
depending on the project at hand. To achieve this we created a config.ini file.
This file is parsed upon starting the python script and contains configuration
values that can be edited by a user without having to adjust the code. Listing 5.1
gives a compressed overview of the relevant sections.

Listing 5.1: Compressed overview of the config.ini file

[ Basic |

metric_components = Commits, SLOC, Bugfixing , Community
tier weights = {"A":5,"B":4,"C":3}

split = 4

repo = https://github.com /...
start date = 2022—-01-01 00:00:00.000
end date = 2022—12—-31 23:59:59.999

[SLOC]|

tier = A

metadata = lines changed
metadata max = 100

The values under [Basic] are used to define the core functionality of the metric:
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metric_components: Defines what metric components will be used. This
is used to allow customization depending on the individual situation.

tier_weights: Defines how many points are awarded for each tier.
split: Defines how many value ranges there are for each metadata source.
repo: The repository to be analyzed.

start_date and end_date: Defines the time span of the analysis.

The values under [Commits] are used to define how to handle the individual
metric components (Commits is used as an exemplary value, each other metric
component has their own section):

tier: Defines which tier the metric component belongs to.

metadata: A list that defines which tags and data sources the metric com-
ponent consists of.

metadata_max: A list that defines the maximum value of each tag listed in
metadata. This value is then used to split the evaluation of each tag into
split ranges of values.

5.4.2 Data Processing

The actual python scripts for the data compilation are coordinated by a main.py
file that calls different functions. The file has five tasks:

1.
2.

Parse all relevant fields from the config.ini file.
Establish a connection to the Elasticsearch database.

Determine the total points by summing up all individual metric component
values. This allows us to determine the share of each metric component by

: . individualpoints
calculating;: otalporats

Calculate the individual metric component evaluation by using Equation 4.2
and Equation 4.3. A specific evaluate-function is called for each metric
component. The evaluation of community activity is handled by executing
the main process on the documentation repository.

Compile the previous results by using Equation 4.1.

Calculating individual metric component evaluation

The individual metric component evaluation functions are responsible for query-
ing the Elasticsearch database for all relevant values gather in section 5.3. The
functions are structured as follows:
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Listing 5.2: Function definition of the compile data function

def evaluate_ sloc(share: float, metadata: List|[str],
metadata max: List[str]|, repo: str, es, start date: str
, end date: str) —> dict:

The function arguments are defined as follows:
e share: Describes the share of the final result.
e metadata: A list of which values need to be extracted.
e metadata_max: The maximum value corresponding to each metadata value.
e repo: The link to the repository to be analyzed.
e es: The Elasticsearch connection.

e start_date / end_date: Used to determine the range of dates for the final
output.

We query the Elasticsearch database for each metadata value specified for the
metric components. This is done by generating an Elasticsearch query from
preset requests generated in Kibiter. The values for dates, repository name
and metadata value can be adjusted depending on the arguments in metadata,
start_date and end_date. The response represents the raw results for indi-
vidual metadata components (e.g. total number of lines added). This value is
then allocated to a value range as defined in Equation 4.3. For this we divide the
metadata_max and share values by split. From these values we can generate
the value ranges and their corresponding metadata component evaluation value.
The final values are saved for each developer in a dictionary and returned to the
main process for the final output.

5.5 Storing Output

After the data processing is finished, the main.py script writes all data to a
Comma-separated values (CSV) file. This format saves the data for each metric
component in a line. Each line lists the individual values of each developer
separated by a comma. This allows users to store the data separately from the
code in a format that can be transformed to other formats with ease.
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6 Demonstration

The following section will demonstrate the functionality of our implementation
by analyzing a data sample. For this we will describe the data sample chosen,
the configuration of our solution and the detailed results.

6.1 Data Sample

For the data sample we chose repositories involved with the core GrimoireLab
project. This sample consists of 8 repositories with a total of 10.906 commits and
1164 GitHub issues from November 3rd 2017 to December 8th 2022. All data
used in this sample was obtained from publicly available GitHub repositories. A
complete list of each repository included in the data set can be found in Appendix
A.

The data sample was chosen, because we wanted to show the functionality of our
developed solution on a real world example. The structure of the repositories is
that of an open source project. However, it is also representative of attributes
common to regular software engineering and inner source. All contributions are
made by commit and issues are logged. Furthermore, open source projects also
have cross boundary contributions that are open to everyone, as well as high
frequency contributions that can be made at any time.

The data was gathered on December 8 2022 using the default docker-compose
setup as recommended in the GrimoireLab repository. For this we used the 0.7.0
release of GrimoireLab and the 6.8.6 version of Elasticsearch.

6.2 Configuration

For the basic configuration we determined the initial maximum values by analyz-
ing the entire data sample. We determined the average of each value by dividing
the total amount in our sample through the number of developers. For SLOC
we for example counted the total amount changed by all developers and then
divided the number by the total amount of developers. Some small adjustments
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were made to accommodate outliers, such as the import of libraries, as they would
falsify the end result. Accordingly, the values for the overall evaluation are set as
follows:

e [SLOC] metadata_max: 2611

e [Commits] metadata_max: 29

e [Bugfixing] metadata_max: 3

e [Community] metadata_max: 1
— [SLOC] metadata_max: 2104
— [Commits] metadata_max: 8
— [Bugfixing] metadata_max: 6

We then repeated this process for each repository, in order to obtain values for
individual comparisons in the next section. Table 6.1 lists all values used for each
repository:

Table 6.1: Classification of metric components into tiers based on number of
occurences

Repository SLOC Commits Bugfixing
grimoirelab 300 4 14
grimoirelab-graal 255 6 1
grimoirelab-perceval 669 13 3
grimoirelab-elk 1085 20 2
grimoirelab-sortinghat 2412 18 4
grimoirelab-sirmordred 395 11 2
grimoirelab-kibiter 5104 36 1
grimoirelab-sigils 591 12 1

6.3 Results

6.3.1 Overview

Firstly, we wanted to demonstrate the overall functionality of our solution, by
giving an overview of the productivity metric for the entire data sample. This is
achieved by listing all repositories in the repo variable of the configuration. The
results can be seen in Figure 6.1.

From this, we noticed that one issue with our metric is the abundance of de-
velopers that have only a small amount of contributions. This can be attributed
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Figure 6.1: Average productivity for each metric component for all repositories
combined
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to the repositories being open source. We checked a small sample of developers
with low contribution by hand and noticed that they were either small changes or
developers creating a single issue to ask for help. As a result, the final evaluation
pictured in Figure 6.1 is warped. Figure 6.2 gives an overview of the frequency of
developers divided into value ranges from (0.0-0.1) to [0.9-1.0]. As can be seen,
in our sample, there are 101 developers that have an evaluation of 0. We argue
that this is to be expected, as our implementation takes into account that there
are multiple actions a developer can conduct. Opening one issue is unlikely to in-
crease the productivity of the overall project. For the evaluation in this chapter,
we will exclude all developers that have an evaluation of 0. Figure 6.3 shows the
average evaluation with the adjustments.

The frequency of developers shows that there is a split between developers in
the repositories. There are few developers that have a high productivity, while a
larger amount is showing lower productivity. This is consistent with the reposit-
ories being an open source project. There are a few main contributors and other
developers of varying productivity. The average productivity is also in line with
this.

6.3.2 Comparison

To analyze the sample further, we used our implementation to generate the results
for each repository individually. To do this we can change the repo value in our
configuration and use the configuration values described in Table 6.1. From this
we can enable a direct comparison of the individual results. An overview of the
average productivity values can be seen in Table 6.2 and the number of developers
per productivity interval can be seen in Table 6.3.
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Figure 6.2: Number of developers per productivity interval
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Figure 6.3: Average productivity for each metric component for all repositories
combined with adjusted developers.
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Table 6.2: Average productivity for each metric component for individual re-
positories

Com- Bug- Com-

Repository SLOC mits fixing munity Total
grimoirelab 0.0619  0.01270  0.0419 0.0590 0.1756
grimoirelab-graal 0.03485  0.0091 0.0653 0.0721 0.1850
grimoirelab-perceval 0.0280 0.0051 0.0892 0.0297 0.1520
grimoirelab-elk 0.0493 0.0126 0.1170 0.0390 0.2179

grimoirelab-sortinghat 0.0390 0.0115 0.0684  0.05368  0.1726
grimoirelab-sirmordred ~ 0.0497 0.0095 0.1210 0.0401 0.2203
grimoirelab-kibiter 0.1635 0.0752 0.0276 0.0336 0.2999
grimoirelab-sigils 0.0547 0.0159 0.0896 0.0617 0.2219

Table 6.3: Number of developers per productivity interval for each individual
repository

& > PP PSS N N
3 N R a3% WA at QN AN ot -
N N N SR G S S N SR
grimoirelab | 39 14 4 6 1 1 2 1 1 0
graal 27 11 12 1 1 2 3 1 0 0
perceval 7 23 23 5 4 2 3 0 2 0
elk 20 35 35 3 1 2 4 2 4 0
sortinghat 42 13 12 1 1 4 1 1 1 1
sirmordred | 20 30 32 7 3 4 4 1 2 0
kibiter 29 15 20 13 14 9 22 0 1 0
sigils 24 10 16 6 3 1 4 2 1 0
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From this, we can see that while the numbers for all repositories are relatively
close, some outperform the rest. For Kibiter, there is an over performance in
SLOC, with the value being more than double that of the second largest repos-
itories. Looking at the frequency of developers, one can notice a high number of
developers in the (0.5;0.6] interval that is likely the cause for this number. Grim-
oireElk,Sigils and SirMordred follow Kibiter in average productivity. However,
for these repositories, there is no clear value setting it apart from the others.
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7 Evaluation

In this chapter, we will look back at the objectives defined in chapter 3 and eval-
uate whether our solution, implementation and demonstration fulfill the defined
criteria. Furthermore, we will discuss limitations of our work.

7.1 Objective Criteria

For the evaluation, we want to look back at the six criteria we imposed on our
solution in chapter 3. For this, we will compare each criteria to our findings in
the previous chapters.

Firstly, as there are many existing approaches to measuring productivity, we
wanted our solution to be based on the existing body of literature. To create our
metric, we conducted a short review of existing literature on objective approaches
to measuring software engineering productivity. This helped us base our metric
on several metric components that represent a broad spectrum of the software
development process. This exceeds the more basic approaches based solely on
SLOC that have seen use in literature and practice.

= Criteria 1 is fulfilled.

Secondly and thirdly, we defined that our solution should be able to measure
both the dedicated and the inner source software engineering approach. Our
solution can be used on any repository that is hosted on GitHub. Furthermore,
the solution is designed to be adjustable to other situations. Thus, the imple-
mentation could be built upon to include other means of gathering data. For our
demonstration, we used an open source project, however, we argue that the data
generated and collected is similar to the other two approaches. Thus, while we
would like to conduct further analysis on this in the future, the criteria are still
sufficiently fulfilled.

=— Criteria 2 and 3 are fulfilled.

Fourthly, we defined that our solution should enable the comparison between the
dedicated and inner source software engineering approach. For this we chose our
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metric to be ratio scaled. This allows us to to make comparisons between average
total values, developer distribution and more. Furthermore, the metric can be
used on a single repository or multiples at once.

= Criteria 4 is fulfilled.

Fifthly, we defined that our solution should make use of objective data available in
GitHub repositories. Our solution extracts all data from GitHub (Git repository,
GitHub Issues, Search API).

= Criteria 5 is fulfilled.

Lastly, we defined that our solution should save the output in a format that is
reusable and visualizable. Our implementation uses the CSV format, which can
store the output in a separate file for later use. The format is also suitable for
visualization, as it can be converted and used in the most popular data visualiz-
ation software. Thus, this criteria is fulfilled.

= Criteria 6 is fulfilled.

7.2 Limitations

For this thesis, there are limitations we want to mention in this chapter. Firstly,
by only focusing on objective factors we neglect a subsection of factors potentially
influencing productivity. However, including more subjective factors would have
exceeded the scope of this paper. Furthermore, relying on objective factors means
that the system can potentially be deceived by developers intentionally producing
an irregular amount of commits. This could lead to the results being skewed
towards a higher productivity. Further research could improve on this by creating
a more hybrid approach that considers more aspects of software development.

Lastly, we restricted the amount of data sources to data available on GitHub. This
choice was made due to the scope of this thesis. However, for further research we
would recommend expanding the scope to different data sources such as different
bug trackers, communication tools and code hosting platforms.
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This thesis analyzes ways of measuring software engineering productivity. To
determine our own approach, we searched previous approaches for commonly
used metric components. We found that SLOC, commits, bugfixing activity and
community activity are the most frequently used.

From this, we created our own approach to measuring software engineering pro-
ductivity. This approach scales each of the found metric component’s relevance
based on the frequency we found them in past literature. To gather data for
our metric, we parse data available on GitHub. This data is compiled and the
relevant information is extracted and summed up.

We also demonstrated the functionality of our approach, by analyzing a group
of repositories belonging to a software project. This data showed that our ap-
proach can be used to determine productivity for a dedicated software engineering
approach and an inner source approach.

For future research, we suggest expanding the scope of our approach to include
more data sources. Furthermore, we think a hybrid approach between object-
ive and subjective ways of measuring productivity could give more insight into
productivity measurement.
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A List of Repositories used in Demonstration

A.1: Repositories used for demonstration

Repository

https://github.com/chaoss/grimoirelab
https://github.com/chaoss/grimoirelab-graal
https://github.com/chaoss/grimoirelab-perceval
https://github.com /chaoss/grimoirelab-elk
https://github.com/chaoss/grimoirelab-sortinghat
https://github.com/chaoss/grimoirelab-sirmordred
https://github.com/chaoss/grimoirelab-kibiter
https://github.com/chaoss/grimoirelab-sigils
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