
Communications of the Association for Information Systems Communications of the Association for Information Systems

Volume 51 Article 13

10-25-2022

Problems, Solutions, and Success Factors in the openMDM User-Problems, Solutions, and Success Factors in the openMDM User-

Led Open Source Consortium Led Open Source Consortium

Elçin Yenişen Yavuz
Friedrich-Alexander-University Erlangen-Nürnberg, elcin.yenisen@fau.de

Ann Barcomb
University of Calgary

Dirk Riehle
Friedrich-Alexander-University Erlangen-Nürnberg

Follow this and additional works at: https://aisel.aisnet.org/cais

Recommended Citation Recommended Citation
Yavuz, E. Y., Barcomb, A., & Riehle, D. (2022). Problems, Solutions, and Success Factors in the openMDM
User-Led Open Source Consortium. Communications of the Association for Information Systems, 51, pp-
pp. https://doi.org/10.17705/1CAIS.05122

This material is brought to you by the AIS Journals at AIS Electronic Library (AISeL). It has been accepted for
inclusion in Communications of the Association for Information Systems by an authorized administrator of AIS
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

https://aisel.aisnet.org/cais
https://aisel.aisnet.org/cais/vol51
https://aisel.aisnet.org/cais/vol51/iss1/13
https://aisel.aisnet.org/cais?utm_source=aisel.aisnet.org%2Fcais%2Fvol51%2Fiss1%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.17705/1CAIS.05122
mailto:elibrary@aisnet.org%3E

C

ommunications of the

A

I

S

 ssociation for nformation ystems

Research Article DOI: 10.17705/1CAIS.05122 ISSN: 1529-3181

Volume 51 Paper 22 pp. 509 – 542 October 2022

Problems, Solutions, and Success Factors in the
openMDM User-Led Open Source Consortium

Elçin Yenişen Yavuz

Computer Science Department,

Friedrich-Alexander-Universität Erlangen-Nürnberg

elcin.yenisen@fau.de

Ann Barcomb

 Schulich School of Engineering,

University of Calgary

Dirk Riehle

Computer Science Department,

Friedrich-Alexander-Universität Erlangen-Nürnberg

Abstract:

Open-source software (OSS) development offers organizations an alternative to purchasing proprietary software or
commissioning custom software. In one form of OSS development, organizations develop the software they need in
collaboration with other organizations. If the software is used by the organizations to operate their business, such
collaborations can lead to what we call “user-led open-source consortia” or “user-led OSS consortia”. Although this
concept is not new, there have been few studies of user-led OSS consortia. The studies that examined user-led OSS
consortia did so through the lens of OSS, but not from the inter-company collaboration perspective. User-led OSS
consortia are a distinct phenomenon that share elements of inter-company collaboration, outsourcing software
development, and vendor-led OSS development and cannot be understood by using only a single lens. To close this
gap, we present problems and solutions in inter-company collaboration, outsourcing, and OSS literature, and present
the results of a single-case study. We focus on problems in the early phases of a user-led open-source consortium,
the openMDM consortium, and the solutions applied to these problems. Furthermore, we present the factors which
lead this consortium to sustained growth.

Keywords: Open Source Software, Collaborative Software Development, Open Source User-Led Consortia, Open

Source Foundations, Community Source, Eclipse Foundation, Success Factors, Outsourcing.

This manuscript underwent peer review. It was received 8/11/2021 and was with the authors for eight months for one revision. Julie
Kendall served as Associate Editor.

Communications of the Association for Information Systems 510

Volume 51 10.17705/1CAIS.05122 Paper 22

1 Introduction

Organizations are involved in open-source software (OSS) in different ways. Some organizations open
source their internally developed code and create a community around it (West & O’Mahony, 2005;
Dahlander & Magnusson, 2005; Dahlander, 2007; Harutyunyan et al., 2020), and some contribute to the
development of OSS projects through sponsorship, such as providing infrastructure, marketing support,
financial support, or developer support (Berdou, 2006; Zhou et al., 2016).

Some organizations contribute to or lead OSS projects with the aim of profiting from the software
commercially (Dahlander, 2007). This model, with exactly one stakeholder company, is called single-
vendor open source (Riehle, 2010; Schaarschmidt et. al., 2011). If multiple organizations collaborate,
these collaborations often lead to open-source consortia or foundations. One type of these foundations is
the vendor-led foundation, in which software vendors collaborate to develop the software they base their
products on (Schaarschmidt et. al., 2011; Riehle & Berschneider, 2012). In another type of OSS
foundation, organizations collaborate to develop software for the organizations’ own use; the intent is firm-
internal use of the software. We call these types of foundations “user-led open-source consortia”, or “user-
led OSS consortia”. Consortium here means a formally organized community of organizations with a
defined governance structure and processes. The specific incorporation, if any, does not matter. We,
therefore, use the terms foundation and consortium synonymously. We present the hierarchy and
categorization of open-source foundations’ terms regarding the leading roles in Table 1 and in Figure 1,
respectively. Our area of focus, user-led open-source consortia, is shown with a gray background.

Figure 1. Hierarchy of Types of Open Source Foundations Regarding the Leading Roles

511 Problems, Solutions, and Success Factors in the openMDM User-Led Open Source Consortium

Volume 51 10.17705/1CAIS.05122 Paper 22

Table 1. Categories of Open Source Foundations

Category Common definition Example

Open Source
Foundations

General term for all types of foundations that host OSS
development projects.

Linux Foundation

Developer-Led
Open Source
Foundations

General term for open source foundations that host OSS
development projects steered by software developers
(individual or organizational)

Mozilla Foundation

Community-
Led Open Source
Foundations

Developer-led open source foundations that host OSS
development projects which are initiated and managed by
individuals or groups of individuals.

The Apache Software
Foundation

Vendor-Led Open
Source
Foundations

Developer-led open source foundations that host OSS
development projects which involve software development
companies and individual developers (either volunteer or paid).

The Open Infrastructure
Foundation (Project:
OpenStack)

User-Led
Foundations

Foundations that host OSS development projects that are
initiated and steered by software user organizations with the
purpose of their own use.

Apereo Foundation

A user-led open-source consortium is a consortium of organizations that sponsor and steer the
development of OSS needed to operate their business. Organizations that are not generally engaged in
selling software products or services are key stakeholders and often founders. Software that the
organizations develop collaboratively doesn’t provide competitive differentiation among members.
Sponsorship involves paying for development in any combination of outsourcing and allocating employees
to work on the software. Those who lead the consortium are user organizations, that is software
consumers. Individuals are not the intended beneficiaries of the consortium, and might be permitted to
contribute, depending on how the consortium is structured.

Developing OSS helps organizations avoid vendor lock-in, establish de-facto standards, and reduce costs
for customization and training (Wheeler, 2004; West & Gallagher, 2006; Liu et al., 2008). As an alternative
to using proprietary software or developing the software alone, user-led open source consortia reduce
costs while allowing organizations to acquire software that meets their needs (Liu et al., 2008; Liu et al.,
2014).

Early examples of user-led OSS consortia were seen in higher education (e.g., Kuali, Sakai). Recently,
interest in user-led OSS consortia has increased among commercial organizations. In our ongoing
subsequent research, we counted over 56 distinct user-led OSS consortia in different industries. Some of
these user-led open-source consortia established their own foundations to govern their collaboration (e.g.,
GENIVI Alliance), and others joined already established umbrella foundations such as the Linux
Foundation (LF) or Eclipse Foundations (EF).

There are two focal features of user-led OSS consortia. First, the development is driven by user
organizations, not by individual volunteers or software vendors. Being a software consumer (user) and
being a software vendor (producer) lead to differences in governance, project management and
maintenance processes. Second, software is developed primarily for the organizations’ own use instead of
being part of a commercial software end-product for the leading organizations of the consortium (Liu et al.,
2007; Wheeler, 2007; Baldwin & von Hippel, 2011). These characteristics are what distinguish user-led
open-source consortia from vendor-led open-source foundations, which are driven by vendor
organizations, and typically for the purpose of developing non-differentiating software which can be used
as a base for or in commercial software offerings (West & O’Mahony, 2005; Riehle, 2010; Germonprez et
al., 2013).

To date, research about user-led OSS consortia is limited, and primarily focused on early examples in
higher education, such as the Kuali and Sakai projects (e.g., Liu et al. (2012)), with a focus on describing
the phenomenon, rather than developing an overview of the problems and solutions which differentiate
user-led OSS consortia from other collaborations. Later work examined other industries, using the OSS
literature to understand user-led OSS consortia (e.g., Schwab et al. (2020)). In this paper, we drew on the

Communications of the Association for Information Systems 512

Volume 51 10.17705/1CAIS.05122 Paper 22

literature from user-led OSS consortia, inter-company collaboration, open source software (OSS)
development, and outsourcing literature, and anticipated the possibility of finding additional problems
arising from the lack of familiarity with OSS development methods, which can exist in both consortium
members as well as the vendors they hire.

This study addresses this gap in how user-led OSS consortia can be best guided, through an exploratory
single-case study research. Our goal was to understand the problems faced and solutions to these
problems found by investigating a successful consortium. We chose the openMDM consortium, which is
an automotive industry working group. openMDM is not incorporated as its own legal entity, but rather
takes the form of an Eclipse Working Group (EWG), which is an Eclipse Foundation (EF) concept that
provides a working group with all the independence of a stand-alone non-profit organization, including its
own bylaws, without incorporation. Our research was guided by the following questions:

RQ1: What problems occur in a user-led open source consortium?

RQ2: What are solutions to the problems which occur in a user-led open source consortium, and
which factors lead to success?

To address these questions, we opted to conduct a single-case study research (Eisenhardt, 1989; Yin,
2018). Our work involved collecting multiple sources of evidence (public documents, meeting minutes,
interviews with the key informants of the consortium), and qualitatively analyzing the data. In case study
research, unlike in action research, the researchers do not actively engage or intervene in the case. We
subsequently confirmed the accuracy of our findings by presenting them at the annual meeting of
openMDM in 2019.

The contributions of this paper are:

 We perform case study research on a novel industry phenomenon where little work has been
presented before.

 We precisely identify and present the 13 problems and 22 solutions which are faced during the
starting and growing phases of a user-led open-source consortium.

 We relate these problems and solutions and support the results with findings from the literature.

The rest of this paper is structured as follows: In Section 2 related work is reviewed. Section 3 describes
the research method and provides background information about the case of openMDM. Section 4
presents the results of our research. Discussion about our findings and suggestions for future work are
presented in Section 5. Limitations are discussed in Section 6. Finally, Section 7 concludes this paper.

2 Related Work

There are four main areas of literature relevant for the topic: existing work on user-led OSS consortia,
problems and solutions of company collaborations, problems and solutions of OSS development projects,
and problems associated with outsourcing software development.

2.1 User-Led Open Source Consortia

The first examples of user-led OSS consortia came from higher education. uPortal, Sakai, Kuali, Open
Source Portfolio Initiative are early examples of user-led OSS consortia, that have also been called
“community source” (Wheeler, 2004). Since the term “community source” can cause confusion with the
community-led OSS projects—that is, OSS projects which are led by a community of developers,—we use
the term “user-led OSS consortia” in our research. Other consortia that have been studied include
openKonsequenz (Schwab et al., 2020), and openMAMA (Levy & Germonprez, 2015). Schwab et al.
(2020) investigate the ecosystem and motivation of actors in the involvement of openKonsequenz user-led
OSS consortium. Levy & Germonprez (2015) present the innovation intermediaries in the openMAMA
community.

Liu et al. performed studies specifically around the “Kuali” case. They have focused on the technical
features of the developed product, partners’ motivations and decision criteria applied for joining
consortium, labor changes over the project life-cycle, and evolution of the consortium (e.g., Liu et al.,
2007; Liu et al., 2008; Liu et al., 2010; Liu et al., 2012; Liu et al., 2014; Liu et al. 2020).

513 Problems, Solutions, and Success Factors in the openMDM User-Led Open Source Consortium

Volume 51 10.17705/1CAIS.05122 Paper 22

Several problems were identified in the Kuali studies. One concerns the development process
management aspects. Liu et al. (2010) suggest that when a user consortium has a large number of
partner institutions that have developers with unbalanced competencies, the consortium faces problems of
coordination and development management. A proposed solution is outsourcing software development
(Liu et al., 2010). Another problem is differing expectations among partner organizations, meaning
software development teams receive requirements from multiple stakeholders. Flexible software
architecture is a possible solution (Liu et al., 2012). Other problems are seen during the expansion phase
of the consortium with an increased number of projects, participants and commercial affiliates are
explained by Liu et al. (2020). These are the difficulties in community governance and coordination, which
is addressed by overseeing governance by a single unit (foundation); balancing the competition between
the involved commercial affiliates, maintaining the family atmosphere among the participants of the
consortium, and lack of knowledge sharing between different development projects. These problems,
which are related to the growth of a user-led OSS consortium, are addressed through modular
organizational structure.

2.2 Problems and Solutions of Inter-Company Collaborations

In user-led OSS consortia, two or more companies collaborate to develop OSS to operate their internal
processes. In order to understand the collaboration dynamics in user-led OSS consortia better, we
examined the inter-company collaboration literature.

Inter-company collaborations can suffer from a number of problems. When the partners are lacking
technological capability, financial resources, and due diligence, it can lead to friction, particularly if the
partners differ in these aspects (Fortuin & Omta, 2008; Kelly et al., 2002). Asymmetry between partners in
other aspects also negatively affects collaboration success. When the companies are very different in
size, the smaller companies may fear losing independence (Fortuin & Omta, 2008). Fear and distrust can
also arise from cultural differences, due to misunderstandings, lack of openness, and untimely information
flow (Dacin et al., 1997; Fortuin & Omta, 2008). When ground rules, roles, and responsibilities are not
defined clearly, and the potential benefits of the collaboration are not explicit, problems are more likely to
occur (Kelly et al., 2002; Fortuin & Omta, 2008).

Solutions depend on the specific problems, but the literature has identified numerous success factors in
collaboration. In order to provide a general overview of the topic of solutions and success factors in
collaboration, and to highlight concepts that may be relevant to user-led open source consortia, we
focused on six systematic literature reviews in different domains: collaborations and co-opetition in
general, strategic partnerships, and collaborations in Information Technology. By comparing and mapping
the findings of these six studies, we identified 92 success factors. Eighty-two of these factors were
mentioned only in a maximum of two of these six studies. We present a complete mapping of the success
factors in Yenişen Yavuz et al. (2022). In Figure 2, we present seven factors and their explanations which
were found at least in three studies. These factors are: partner selection, common goals, ground rules,
equality, regular progress reviews, top management commitment, and collaboration champions.

Communications of the Association for Information Systems 514

Volume 51 10.17705/1CAIS.05122 Paper 22

Figure 2. Success Factors of Inter-Company Collaborations

2.3 Problems and Solutions of OSS Projects

In user-led OSS consortia participants follow the basic principles of OSS development, such as openness,
transparency, collaborative working, and resource sharing. In order to understand the development
process and ecosystem in user-led OSS consortia, we provide an overview of the problems and solutions
faced in OSS development practices. A summary of the problems and solutions identified in the literature
is presented in Yenişen Yavuz et al. (2022).

The developer community, source code, and coordination mechanisms are key resources of OSS projects
which affect success (Chengalur-Smith et al., 2010; Midha & Pavia, 2012; Sagers, 2004). In this section,
we explain the problems and solutions associated with these three components of OSS project success.

Developer community. The developer community in OSS consists of core developers, who contribute
mainly to the source code and regulate administrative responsibilities, and peripheral developers, who
make contributions and help to improve the quality of the code by reporting bugs, submitting patches, and

515 Problems, Solutions, and Success Factors in the openMDM User-Led Open Source Consortium

Volume 51 10.17705/1CAIS.05122 Paper 22

developing new features (Lee & Cole, 2003; Crowston & Howison, 2005). The sustainability of OSS
projects often depends on an active developer base (Colazo & Fang, 2010). Inactive developers,
developer turnover, having too many developers, and barriers to entry for newcomers are the problems
we associate with the developer base. When developers, especially core developers, stop contributing to
a project without communicating their intention, the quality and sustainability of the project are affected
because their absence is not always immediately observed (Michlmayr, 2004). Developer departure and
arrival to projects have a negative effect on the quality of a team’s work and the quality of the modules
(Foucault et al., 2015). High developer turnover can also cause problems in a project, due to knowledge
loss and experience gaps (Rashid et al., 2017). On the other hand, having a greater number of active
developers in a project means an increase in activity and creates a need for more effort for project
management and coordination (Midha & Palvia, 2012). Finally, barriers to entry can prevent new
developers from joining in the first place, reducing the pool of potential core contributors (von Krogh et al.,
2003; Steinmacher et al., 2015a).

The problem of inactive developers can be reduced by managing to avoid burnout, educating new
maintainers on the importance of communicating when they are unable to fulfill responsibilities, and
making personal inquiries into their well-being (Michlmayr, 2004; Bacon, 2012). Developing a high degree
of connectedness and increasing social connection between the community participants increases their
likelihood of staying in the community and continuing their contributions (Maruping et al., 2019). Both
developer turnover and barriers to entry can be reduced by developing modular code and ensuring good
documentation (Midha & Palvia, 2007; Steinmacher et al., 2015a; Barcomb et al., 2018; Barcomb et al.,
2020). Additionally, turnover can be reduced by balancing writing new code with maintaining old code, and
balancing writing code and writing documentation (Lin et al., 2017). Providing public guidelines for the
community about “welcoming new contributors” and providing contributor guides to newcomers about “first
contributions” may help to lower the entry barriers for newcomers (Lumbard et al., 2020). Providing social
support, mentorship, classifying tasks based on their complexity, are additional techniques for aiding
newcomers (Qureshi & Fang, 2011; Ducheneaut, 2005; Steinmacher et al., 2015b, Riembauer et al.,
2020), while social norms, satisfaction, and community commitment contribute to participants’ intention to
remain (Barcomb et al., 2019). Providing a short path for information flow, which means having a small
number of developers as intermediaries in the information or knowledge transfer, increases the speed of
transfer, and minimizes the information decay in communities with a large number of developers (Singh,
2010).

Source Code. Ultimately, OSS requires software—source code—to exist. Problems involving source code
include the lack of maintainability, quality, and interoperability. Maintainability is especially important for
OSS because the primary activity in OSS projects is the production of new versions of existing software
(Yu et al., 2012). Quality and internationalization are important to increase the user satisfaction and
popularity of the project (Conley & Sproull, 2009; Radtke et al., 2009; Midha & Palvia, 2012). Finally, due
to the large number of stakeholders, OSS offers particular opportunities for interoperability, which in turn is
of high importance to industry and government alike (Almeida et al., 2011).

A modular structure helps to increase maintainability because it allows parallel, decentralized, and
incremental development (Feller & Fitzgerald, 2000; Narduzzo & Rossi, 2005; Midha & Palvia, 2012).
Coordination through open superposition (the process of incrementally developing open source software
components by layering development tasks independently) can improve the quality and the popularity of a
project (Howison & Crowston, 2014; Medappa & Srivastavaa, 2019). Code quality can be improved by
time-based releases, testing, peer review, version control, reducing complexity and public discussion of
issues (Rigby et al., 2008; Conley & Sproull, 2009; Mauerer & Jaeger, 2013; Michlmayr et al., 2015;
Geiger et al., 2021). Effective bug fixing activities have a positive influence on project success (Singh,
2010). Lastly, interoperability is assisted by having a well-defined API, which allows developers to reuse
the software without fully understanding the source, and by integration testing (Haefliger et al., 2008).

Social interaction and coordination. Effective coordination increases user and developer satisfaction,
and improves the success of software projects (Sagers, 2004). Geographically distributed software
development, lack of diversity, toxic contributors, and companies’ bad behaviors are the problems
associated with OSS coordination. OSS is often characterized by geographically distributed development
which leads to difficulties in building trust between team members due to a lack of face-to-face meetings,
a lack of informal communication, or a lack of established relationships (Herbsleb & Grinter, 1999; Piccoli
& Ives, 2003; Damian, 2003; Henkel, 2004; Filippova & Cho, 2015; O'Leary et al., 2020). Diversity in OSS
communities leads to knowledge of a greater array of topics, higher creativity, and an increase in team

Communications of the Association for Information Systems 516

Volume 51 10.17705/1CAIS.05122 Paper 22

productivity, but achieving greater diversity is frequently not a priority, and can even be hindered by the
widespread belief among OSS developers in a meritocracy (Castilla & Benard, 2010; Nafus, 2012; Daniel
et al., 2013; Vasilescu et al., 2015; Bosu & Sultana, 2019). People who create a toxic atmosphere in the
project can lead to unproductivity and contribute to attrition (Carillo & Marsan, 2016; Guizani et al., 2021).
Although having an organizational sponsor is accepted as a sign of having technical support and
sustainability of the software, companies' bad behaviors―such as trying to control and influence the
development process for their own interest, free-riding, conflict between companies, and code
dumping―lead to conflicts or extra works in OSS communities (Dahlander & Magnusson, 2005; Stewart
et al., 2005; Ciesielska & Westenholz, 2016; Zhou et al., 2016; Ehls, 2017; Pinto et al., 2018; Kochhar et
al., 2019, Weikert et. al., 2019, Geiger et al., 2021).

Transparent, asynchronous, and open communication address the difficulties of distributed development
approach by allowing community members to see the past work activity and project history (Tsay et al.,
2014; Riehle, 2015; Riembauer et al., 2020). Proposals to address a lack of diversity include providing a
social platform in the OSS communities for minoritized groups to share their experiences and motivate
each other, and having a code of conduct (Bosu & Sultana, 2019; Singh & Brandon, 2019). Toxic people
can be addressed by identifying their concerns, discussing them, and developing an evidence-based
summary of poor behavior if the problem persists (Bacon, 2012; Fogel, 2005). Providing guidelines for an
inclusive communication space is a further strategy for avoiding toxic environments (Guizani et al., 2021).
To avoid too much control by companies in the OSS environment, conflict management strategies are
necessary. This can be combined with code modularity, a parallel development approach, and allowance
of the forking of projects to provide freedom for companies and developers (van Wendel de Joode, 2004).

2.4 Problems with Outsourcing Software Development

In user-led OSS consortia, organizations either devote their own employees to the software development
project or sponsor development efforts by outsourcing to software vendors, which develop the code on
their behalf.

When companies outsource software development, as is often the case in user-led open source consortia,
there is the threat of opportunism, or “specific acts of self-interest seeking with guile” (Williamson, 1993)
on the part of the vendor, in addition to strategic risks. Risks include shirking (deliberate under-
performance of a vendor), behavior unobservability (inability to assess the performance of the vendor),
poaching (misuse of information acquired during the contract after the termination of the contract),
opportunistic renegotiation (renewal of the contract in favor of the vendor due to lock-in), difficulty with
project or requirements specifiability, project complexity, and requirements volatility (Tiwana & Bush,
2007; Aron et al., 2005). In the context of an open source user-led consortia, the risks of poaching and
opportunistic renegotiation are reduced; avoiding lock-in is often a motivation for the initiative (Courant &
Griffiths, 2006).

Companies can use a portfolio of control mechanisms, which contain both formal and informal
mechanisms, to reduce outsourcing problems. Formal mechanisms include outcome controls and
behavior controls, such as progress reports. Informal controls are social mechanisms to align the client
and vendor goals, which can be achieved through regular meetings and long-term alliances, and self
controls, which can be achieved by working with timetables and milestones (Choudhury & Sabherwal,
2003). Shirking can be addressed through close monitoring and outsourcing the same job to two or more
vendors and dispensing with the worst performer (Aron et al., 2005). Contracts with detailed roles and
responsibilities, including monitoring procedures and penalties, can help mitigate opportunism
(Barthélemy & Quélin, 2006). Precisely specifying functional requirements can help avoid specification
issues (Choudhury & Sabherwal, 2003).

3 Research Method

We followed an exploratory single-case study research approach. We chose case study research in order
to investigate a user-led consortium’s problems and solutions in a natural setting and focus on actual
events (Benbasat et al., 1987; Yin, 2018). The methodology of the research is adopted from the theory
building framework suggested by Eisenhardt (1989). After defining our research questions, we chose our
sample case purposefully. We triangulated our data by using multiple sources of evidence: (1)
documentation of meeting minutes, administrative documents, news and information on the consortium’s
website; (2) interviews and (3) analysis of another user-led open-source consortium. We conducted data

517 Problems, Solutions, and Success Factors in the openMDM User-Led Open Source Consortium

Volume 51 10.17705/1CAIS.05122 Paper 22

collection and analysis steps iteratively. During the theory building phase, we searched for evidence of the
relationships between the constructs and compared our findings with similar literature.

3.1 Sampling Model and Sample Selection

We performed purposeful sampling (Patton, 1990) by determining the relevant dimensions, describing the
population based on these dimensions, and selecting a project which met our criteria.

As the first step of the sample selection, we created a sampling model by listing possible user-led OSS
consortia which we found online. We filled the model with the specifications of each consortium based on
our dimensions.

Industry was important because the majority of studies on user-led OSS consortia have been drawn from
a single industry, the higher education industry, that may limit generalizability. We considered maturity
because we expect that success can only be evaluated after a certain maturity. Senyard & Michlmayr
(2004) present three stages of OSS development: cathedral, transition and bazaar phases. Cathedral is
the initial phase of the development process which is led by one individual or a group of core developers.
In the bazaar phase, besides the initial developers, a community of users (both non-technical and
technical) are actively contributing to the code, and the quality of the software increases due to modular
development and parallel review of the code. Transition phase is the stage between the cathedral and
bazaar phases, a phase in which decisions are made about the distribution of the code, license choice,
management style to attract others for contributions. Considering Senyard & Michlmayr (2004)’s
approach, we evaluated the maturity based on its developer and user community and stage of the product
development. Finally, we included activity, on the grounds that high activity is a sign of project success
(Crowston et al., 2003). Although not a dimension, an additional factor was the availability of public, online
data, and the willingness of participants to engage with us.

The active projects we found were from the automotive, agriculture, culture, energy, entertainment,
finance, geospatial, higher education, infrastructure, tourism, and transportation industries. We described
maturity as early (having an initial code without a product release and core team of organizations),
growing (having a released product with a team of developer organizations and users), or mature (having
an established product with regular releases and an ecosystem with developers, users, and contributors).
We examined code repositories to evaluate the amount of activity and the frequency of releases in order
to assess activity.

We selected a project from the automotive industry, with growing maturity and high activity: openMDM.
Additionally, there was significant online documentation available, and consortium members were willing
to support the research. openMDM is described with reference to the selection criteria in Table 2.

To supplement our findings about openMDM, we included a mature user-led OSS consortium from the
higher education industry: Sakai. The Sakai Project was initially established in 2004 by four universities in
the United States with the goal of developing an open source learning management system (LMS) mainly
for their own use. As of 2019, approximately 300 universities around the world are using Sakai LMS

1
. We

did not conduct a full analysis of Sakai, but rather compared it to our findings of openMDM.

The purpose of this comparison was to help identify the extent to which the openMDM findings also apply
to user-led consortia observed in the higher education industry, and to help distinguish which aspects of
openMDM are likely to be specific to this collaboration, and which are more likely to be universal. Basic
information about Sakai is also given in Table 2.

1
https://www.apereo.org/projects/sakai-lms/2018-2019-software-community-health-metrics-sakai-lms#bookmark=id.l3omy8i978gh

Communications of the Association for Information Systems 518

Volume 51 10.17705/1CAIS.05122 Paper 22

Table 2. Sampling Dimensions

 openMDM Sakai

Dimension Summary Details Summary Details

Industry Automotive software development
project about
measured data
management

Higher education software development project
about learning management
system (LMS)

Maturity Growing phase released product
ecosystem with
leading organizations
and vendors
not yet industry
standard

Mature established product with
developers and users from
multiple universities
ecosystem with user
organization, vendors,
contributors

Activity Active regular code
contributions &
periodic releases
(since July 2017,
yearly at least 6
releases; between
July 2017 and May
2020, 19 releases)2

Active regular code contributions &
periodic releases
(since July 2017, yearly at
least 3 releases; between
February 2017 and May
2020, 15 releases)3

3.2 Data Collection

The data collection process started in November 2018 and lasted until June 2019. We investigated the
case of openMDM consortium for its activities between the years 2014 and 2019. Qualitative data from
multiple sources of evidence were collected for the purpose of data triangulation. We collected
documentation in the form of meeting minutes, website content, Eclipse Wiki, Jira tracking tool, and email
archives. The insights of the people leading the openMDM Eclipse Working Group (EWG) were collected
in the form of semi-structured interviews. Furthermore, we included data from another user-led open-
source consortium, Sakai, in order to triangulate our findings. Detailed information and data sources of
Sakai are listed in (Yenişen Yavuz et al., 2022).

The search for archival data was conducted online and iteratively. We present the steps of the data
collection process in Figure 3. After the initial analysis of the collected documents, we conducted a
prolonged interview which lasted for three hours with the Managing Director of Eclipse Foundation (EF)
Europe GmbH, and a semi-structured interview with the toolkit manager of the openMDM consortium. Our
interview partners were the key informants of the consortium. The managing Director of EF Europe has
been involved in the project from the beginning of the consortium establishment process, which started in
2012. The toolkit manager started working on the project in 2018, when major problems arose and
solutions were needed to improve the consortium progress. With the toolkit manager’s involvement, the
consortium started to solve their problems. The interview protocol is presented in Yenişen Yavuz et al.
(2022).

In total, 86 distinct documents were evaluated. Yenişen Yavuz et al. (2022) contains a complete list of all
public documents. In the rest of this paper, we refer to data sources as follows:

 “A” for annual meeting presentations and minutes

 “I” for interview transcripts

 “G” for guidelines

2
 https://projects.eclipse.org/projects/automotive.mdmbl/downloads

3
 https://www.apereo.org/projects/sakai-lms/news

519 Problems, Solutions, and Success Factors in the openMDM User-Led Open Source Consortium

Volume 51 10.17705/1CAIS.05122 Paper 22

 “L” for legal documents (e.g., participation agreement)

 “M” for meeting minutes

 “S” for Sakai data sources

Figure 3. Data Collection Process

Communications of the Association for Information Systems 520

Volume 51 10.17705/1CAIS.05122 Paper 22

3.3 Data Analysis

We performed qualitative data analysis by using the MaxQDA data analysis tool.
4
 We used the coding

paradigm of grounded theory, as defined by Strauss & Corbin (1990) and performed open, axial, and
selective coding. The data analysis process was conducted in the following manner:

Step 1. We collected publicly available documents from the oldest to the newest, read and analyzed them.
We searched for missing documents, iteratively. We performed open coding by labeling important points
in documents.

Step 2. After open coding, we created higher categories by relating sub-categories. We sought a deep
understanding of the structure and dynamics of the consortium. For this reason, we grouped sub-
categories into the following axial categories: consortium structure, Steering Committee (SC) duties, SC
decisions, Architecture Committee (AC) duties, toolkit management, Quality Committee (QC),
communication, and documentation.

Step 3. In this phase, we created selective codes related to problems and solutions categories. Based on
these categories we built the base of our theory and shared our preliminary results with the consortium
members.

Step 4. After finding out major problems and solutions in the consortium, we performed interviews, and
coded the transcripts into our final code segments. The final code system is presented in Yenişen Yavuz
et al. (2022).

Step 5. We presented our findings at the openMDM General Assembly 2019 to the SC members as a
form of member checking (Guba, 1981). As the response to our analysis was positive, we made only
minor refinements following the presentation.

Going beyond the openMDM case, we analyzed parallels with another consortium, Sakai, for data
triangulation.

3.4 Background of the Case of openMDM Consortium

openMDM is a user-led open source consortium established by the automobile companies Audi, BMW,
and Daimler, and the service providers HighQSoft, Gigatronik, Canoo Engineering, Science+Computing,
and Peak Solutions in 2014. The goal of the consortium is “promoting the development and distribution of
open source tools for measurement data management based on the ASAM (Association for
Standardization of Automation and Measuring Systems) ODS (Open Data Services) standards” (W3).

The origin of the openMDM, the MDM (Measured Data Management) project, dates to 1999. The MDM
project was initiated by Audi AG as a software development project for their internal use. In 2008, Audi AG
open sourced the developed software for other vehicle manufacturers and suppliers (W1). Over time, the
users of the software started demanding new functionalities and a demand for an equal partnership, with
equality of both decision making and funding, arose (I1). In 2012, Audi and Eclipse Foundation started
conversations about the possible structure of the consortium and in 2014 the openMDM consortium
became an Eclipse Working Group (I1).

Figure 4. Milestones of the openMDM

4
 https://www.maxqda.com/

521 Problems, Solutions, and Success Factors in the openMDM User-Led Open Source Consortium

Volume 51 10.17705/1CAIS.05122 Paper 22

The openMDM consortium has five membership types: drivers, service providers, application vendors,
users, and guests. At its founding, the driver members of the community were Audi, BMW, and Daimler. In
2015 and 2016, respectively, Müller-BBM and Siemens joined the community as driver members. A
number of service provider members joined and left the consortium between the years 2014 and 2019. As
of 2018, Gigatronik, Peak Solutions, Karakun are the main service providers. HighQSoft is the only
application vendor member of the consortium. The consortium has one user member, TATA, and one
guest member, ASAM.

Driver members and user members are both the potential users of the openMDM software. The difference
is that driver members invest more resources in the project and have more influence on the direction of
the development. Guest members are mainly research and development partners, academic entities, and
potential future full-fledged members. They do not have voting rights. Service provider members offer
services for deployment, development, and maintenance of the software, while application vendor
members aim to use the components of this software in their products (L1).

4 Research Results

This section presents the results of this case study research. During the coding process, we grouped the
problems and solutions into four categories: consortium management, project management, software, and
external factors. We present results in subsections based on these categories.

4.1 Problems of a User-Led Open Source Consortium

Our RQ1 is: “What problems occur in a user-led open-source consortium?” We addressed this question by
identifying the problems openMDM faced from 2014 to 2019. As the results of our open, and axial coding
process, we identified 13 main problems, and at the end of selective coding, we grouped them into four
categories: consortium management, process management, user management, and external factors.
Some of these problems have already been solved, and some were still in progress when the research
was conducted. We present these problems and their occurrences in time, and map them to the literature
in Table 3.

Table 3. Problems in openMDM

Category Code Problem
Observed
period

Data
source

Reference in literature

Consortium
Management

PC.1
Slow return on investment
(ROI)

2017 I1, A2, L2

PC.2
Turnover in service provider
members

2015 - 2018
I1, A1, A2,
A3, A5

Rashid et al. (2017), Foucault
et al. (2015)

PC.3 Non-user-friendly website
2014 - ongoing
as of June 2019

I1, W4 Riembauer et al. (2020)

PC.4

Lack of promotion
Low involvement in
conferences
Lack of user stories

2016 - ongoing
as of June 2019

I1, M3, M4 gerfalk & Fitzgerald (2008)

PC.5 Low number of users
2018 - ongoing
as of June 2019

I1, I2 Radtke et al. (2009)

PC.6
Low number of driver
members

2018 - ongoing
as of June 2019

A1, A3 Shaikh et al. (2009)

PC.7 Lack of financial resources
2018 - ongoing
as of June 2019

I1, A2, A3,
A5

Fortuin & Omta (2008), Kelly
et al. (2002)

Process
Management

PP.1
Split development
responsibility without a
consortium wide authority

2014 - 2016 I1, A2, A6
Boldyreff et al. (2004), Liu et
al. (2010), Tiwana & Bush
(2007), Aron et al. (2005)

PP.2 Integration problems 2016 - 2018
M35, M44,
M45, M46,

Communications of the Association for Information Systems 522

Volume 51 10.17705/1CAIS.05122 Paper 22

Table 3. Problems in openMDM

I1

PP.3 Delayed release 2017 I1, A3 Michlmayr et al. (2015)

PP.4 Knowledge loss 2017 - 2018 M1, M49 Rashid et al. (2017)

User
Management

PS.1 Lack of a multilingual GUI 2014 - 2019 I1, M52 Midha & Palvia (2012)

External
Factors

PE.1 Industry dynamics 2017 I1

4.1.1 Consortium Management

The consortium management category comprises problems concerned with the actions and processes
which affect the stability of the project, namely slow return on investment (ROI), turnover in service
provider members, non-user-friendly website, lack of promotion, low number of users, low number of
members, and lack of financial resources.

PC.1. Slow return on investment (ROI) (2017). Collective development efforts for openMDM started in
July 2014 (L2). In the beginning, member organizations split development responsibilities and set a
timeline (June 2016) to integrate components (A2). Since the split development approach did not work,
the release of the software was delayed and the parties, in particular service provider members, could not
create a sustainable business until 2017 (I1). Since service providers were investing money (i.e., paying
membership fees) and resources (e.g., developers’ effort on code contribution), the delayed release led to
a slow return on investment for them and caused some to leave openMDM.

Interviewee 1 explained: “[U]ntil 2017, all these service companies had started to leave openMDM.
Because they couldn’t justify internally why they should pay 20,000 to the EF in membership. Because
there was no return on investment for them. So, they started to leave. And that was not good.”

PC.2. Turnover in service provider members (2015 - 2018). The consortium experienced turnover
among service provider members mainly due to slow return on investment (A1, A2, A3, A5, I1). Although
the missing resources were replaced with new members, the change in the service providers had a
negative influence on the consortium’s image (I1).

Interviewee 1 explained the effect of turnover in the service provider members: “It did not affect the actual
MDM|BL project but it affected the public view of the openMDM. Losing members or losing participants is
always a bad thing for us because it sheds a negative light on openMDM.”

PC.3. Non-user-friendly website (2014 - ongoing as of June 2019). openMDM’s website contains a
broad range of information from the history of the consortium to the governance structure, software
releases, and events (W4). However, the website does not provide any content about the benefits of using
the software or of joining the consortium (I1).

PC.4. Lack of promotion (2016 - ongoing as of June 2019). The consortium does not actively promote
the project. In the early phase (2015), consortium members were planning activities such as creating
presentations about the community, presenting them in the EclipseCon and EuroForum events, and
sharing them via online channels such as SlideShare (M3, M4). Although they followed these plans in
2015, they did not continue. Consortium members do not attend conferences as speakers (low
involvement in conferences).

Furthermore, the consortium did not create and share user stories which would serve as a sort of
"requirements document" and would attract organizations with similar needs (M3, I1) (lack of user stories).

PC.5. Low number of users (2018 - ongoing as of June 2019). The number of users has two main
effects on the openMDM. First, more use of the software means increased bug reports, that have a
positive influence on the quality of software (I2). Second, users are seen as the potential driver members
(I1). Since the project did not launch on time, there was no software to use until 2017 (delayed release).

523 Problems, Solutions, and Success Factors in the openMDM User-Led Open Source Consortium

Volume 51 10.17705/1CAIS.05122 Paper 22

Furthermore, until April 2019 the user interface of the software was only in German (lack of a multilingual
GUI). Together with the lack of promotion problem, user member numbers of openMDM did not increase
until April 2019 (I1).

PC.6. Low number of driver members (2018 - ongoing as of June 2019). openMDM had five driver
members as of 2019. Driver members influence the development direction, and provide the main financial
resources for the continuity of software development (A3, I1). An increase in the driver member numbers
is necessary for growth and sustainability (A1, I1).

PC.7. Lack of financial resources (2018 - ongoing as of June 2019). The collaboration relies on
membership fees for sustainable development. The minimal financial requirement for a working model is
€500k annually. However, the annual income is €206k, which is insufficient to cover expenses (A5). Lack
of funds slows the development process (I1).

“Evaluation concludes that the working group has been running underfunded for the past years. This may
be one of the reasons why progress is rather underwhelming” (A5).

4.1.2 Process Management

The process management category outlines the problems of the software development process. Split
development responsibility without a consortium-wide authority, integration problems, delayed release and
knowledge loss are the problems listed in this category.

PP.1. Split development responsibility without a consortium wide authority (2014 - 2016). Software
development responsibility was allocated to the three driver members of the consortium: Audi, BMW, and
Daimler (A2). Each of these members paid for, coordinated and monitored their part of the development
with different service providers. The plan was to integrate the separately developed components in June
2016 (I1, A6). However, as there was no collaboration between the service providers and no central
control mechanism or monitoring, the vendor behaviors were unobservable, and one vendor shirked
responsibility. Consequently, the development process failed (I1, A6).

Interviewee 1 described the lack of accountability: “Supplier 1 came back with this, Supplier 2 came back
with that, Supplier 3 came back with nothing. Because they decided at that time, they didn’t want to do
anything. It was a wrong supplier, [they] just couldn’t do it.”

PP.2. Integration problems (2016 - 2018). Since the software components were developed
independently without a consortium-wide authority, each provider used their own tools, repositories and
frameworks (M35, M44, M45, M46). In the end, some of the components did not integrate well. As a
result, integrating code took more time and effort than expected and it led to delayed release (I1).

Interviewee 1 described the situation: “In 2016, the organization came to a point where nothing worked,
they had spent a ton of money, each of them. They were really frustrated with the results. They created a
lot of disjunct pieces that just didn’t build a solution.”

In the AC meeting on the date of 20th of January 2017 (M35), integration problems were discussed: “The
current structure of the openMDM web client together with the openMDM API is not well suited for the
implementation of the search function [...]. In the API, every entity is loaded separately, leading to
unnecessary overhead and poor performance.”

PP.3. Delayed release (2017). Due to the split development responsibilities without a consortium wide
authority and integration problems, the software was not usable for more than three years, whereas the
basic operational product was originally expected to launch by the end of 2017 (A3). Delayed release and
slow return on investment weakened the support for the project inside of the member companies (I1).

PP.4. Knowledge loss (2017 - 2018). The base code of the openMDM was developed by the service
provider members. Turnover in one of the service provider members caused problems with the pace of
the development from July 2017 to August 2018. Due to the loss of experienced staff on the project, the
code integration process was affected by knowledge loss, resulting in delays (M1, M49).

In the SC meeting minutes of 22nd of March 2018 the concerns about losing experienced developers was
mentioned: “[Name of the service provider] faces a lot of contract terminations and with that partially a loss
of know-how. Stabilization of the situation is on target but the timeline [is] unknown. [Name of the service
provider] stays committed to openMDM. All tasks will be executed as agreed. Mid-term future of [Name of

Communications of the Association for Information Systems 524

Volume 51 10.17705/1CAIS.05122 Paper 22

the service provider] and OpenMDM depends on personnel and know-how availability and is still in
planning.”

4.1.3 User Management

The user management category contains problems related to users’ needs and expectations. The only
problem in this category was the lack of a multilingual GUI.

PS.1. Lack of a multilingual GUI (2014 - 2019). Initially, the software only had a user interface in
German, which was an obstacle for companies from other countries (I1, M52).

The following note highlights the issue: “Tata asked for a quick internationalization of the GUI, since
today's implementation displays a GUI in German language” (M52).

4.1.4 External Factors

The external factors category contains the problems related to the outside of the consortium. Only one
factor was found in this category, industry dynamics.

PE.1. Industry dynamics (2017 - ongoing as of June 2019). In 2017, the scandal involving falsified
emissions tests led to a negative public image of the automotive industry, which made openMDM
members unwilling to promote the project publicly (I1). Service providers are reluctant to be associated
with automotive industry projects (I1).

Interviewee 1 talked about the impact of the emissions falsification scandal on the entire industry: “You
may have heard [that] the automobile industry has little problem in presenting [what they do] within terms
of the diesel scandal and all these things. None of them wants to talk in public which is a huge problem for
us. Because they would be the ones to provide us the user stories [...]. It is just an issue with industry. If it
was another industry, IT or so, everybody would be happily willing and blurting out that we did something
great. But here we have this issue, unfortunately.”

4.1.5 Causal Relationships of the Problems

openMDM consortium’s problems have a causal relationship with each other. We present the relationship
between these problems in Figure 5.

Split development responsibility without a consortium wide authority caused integration problems.
Integration problems led to delayed release. This was a cause for both slow ROI and low number of users.
Slow return on investment led to turnover in service provider members and knowledge loss. Meanwhile,
the low number of users was one of the reasons for the low number of driver members. Low number of
driver members led to lack of financial resources, since the driver members are providing the financial
support for the consortium. Knowledge loss and lack of financial resources led to the slow pace of
development.

The other reasons for a low number of users and, later, a low number of driver members were lack of a
multilingual GUI, non-user-friendly website, and lack of promotion, which was also a result of industry
dynamics.

The conclusion, slow pace of development is not an ideal situation for the consortium, but due to the
solutions (described in Section 4.3), development continues at a steady pace, albeit slower than originally
envisioned. The current slow pace of development is expected and therefore does not contribute to a
repetition of previous problems, delayed release.

525 Problems, Solutions, and Success Factors in the openMDM User-Led Open Source Consortium

Volume 51 10.17705/1CAIS.05122 Paper 22

Figure 5. The Causal Relationships between Problems in openMDM

The diagram shows the relationship between distinct problems (white boxes) and the ultimate
consequence (gray box). Arrows between boxes indicate a proposed causal relationship between
problems and other problems, or between problems and the consequence.

4.2 Solutions and Success Factors of a User-Led Open Source Consortium

RQ2 is “What are solutions to the problems which occur in a user-led open source consortium, and which
factors lead to success?” We addressed this question by examining openMDM consortium. We found that
openMDM consortium is following a combination of best practices from the inter-company collaboration,
OSS governance and OSS development practices. Besides following the best practices, the openMDM
consortium developed some solutions which became success factors for the consortium.

We found 27 success factors and grouped them into four categories: consortium management, process
(software development) management, user management and external factors. These success factors are
listed in Table 4. In some cases, we were able to map these factors to known success factors in the
literature and present these references. Furthermore, we found support for many of these factors through
triangulation with another consortium, namely Sakai. We did not conduct a complete analysis of Sakai, but
a partial analysis in order to validate our findings on openMDM. As Sakai was not the primary focus of this
research, additional information about Sakai can be found in the appendix (Yenişen Yavuz et al., 2022).
We present the supporting evidence from Sakai in the same table.

Communications of the Association for Information Systems 526

Volume 51 10.17705/1CAIS.05122 Paper 22

Table 4. Solutions and Success Factors of openMDM

Category Code
Solutions and success
factor

openMDM
data source

Sakai
(Supporting
data source)

Reference in literature

Consortium
Management

SC.1
Clearly defined rules
and boundaries

I1, L1 SB, SI1, SPP1
Ostrom (1990), Bruce et al. (1995), Rai
et al. (1996), Hoffmann & Schlosser
(2001)

SC.2 Collective prioritization I1
SBP5, SBP10,
SBP16, SI2,
SPP1

Ostrom (1990), Mattessich & Monsey
(1992), Rikkiev & Mäkinen (2009),
 gerfalk & Fitzgerald (2008)

SC.3
Openness and
transparency

I1, I2, A1,
M2, M4, M6,
M14, M20,
M21

SB, SBP5,
SBP10, SI1,
SPP1

Tsay et al. (2014), Riehle (2015),
Riembauer et al. (2020)

SC.4
Shared resources and
equality

I1, I2, L1,
L2, M2, M6,
M9, M11

SB1, SPP1
Ostrom (1990), Bruce et al. (1995), Rai
et al. (1996), Hoffmann & Schlosser
(2001), Rikkiev & Mäkinen (2009)

SC.5
Commitment of the
members

I1, A2, A5
SB1, SBP9,
SPP1

Bruce et al. (1995), Rai et al. (1996),
Hoffmann & Schlosser (2001), Rikkiev
& Mäkinen (2009)

SC.6
Inheriting established
governance and legal
structure

I2 SB

SC.7 Periodic communication
I2, A4, A5,
M2, M12,
M21

SBP1, SBP8,
SI1, SPP1

Mattessich & Monsey (1992), Bruce et
al. (1995), Choudhury & Sabherwal
(2003)

SC.8 Events I2 SI1, SPP1 Barcomb et al. (2018)

SC.9
Promoting the project
(via events)

I1, M5, M28,
M43

SB, SI1, SI2,
SPP1

Process
Management

SP.1
Timebox development
with milestone releases

I1, I2

Michlmayr et al. (2015), Choudhury &
Sabherwal (2003)

SP.2

A dedicated project
manager and a
persistent team of
developers

I1, I2, A6,
A7

Hoffmann & Schlosser (2001), Chin et
al. (2008), Sagers (2004), Colazo &
Fang (2010), Rashid et al. (2017),
 gerfalk & Fitzgerald (2008)

SP.3 Sanction mechanism I1

Ostrom (1990), Barthélemy & Quélin
(2006)

SP.4
Monitoring and regular
assessment

I1, I2 SI1, SI2
Ostrom (1990), Bruce et al. (1995),
Hoffmann & Schlosser (2001), Chin et
al. (2008), Barthélemy & Quélin (2006)

SP.5 Code review I2

Rigby et al. (2008)

SP.6 Single repository
I1, I2, M31,
M44, M47,
M48, M49

SBP9

SP.7 High-quality code I1, I2

Conley & Sproull (2009), gerfalk &
Fitzgerald (2008)

User
Management

SU.1
Being responsive to the
users (Quick responses
to bug reports)

I2, M2, M63
SBP1, SBP5,
SBP25, SI2

Singh (2010)

527 Problems, Solutions, and Success Factors in the openMDM User-Led Open Source Consortium

Volume 51 10.17705/1CAIS.05122 Paper 22

Table 4. Solutions and Success Factors of openMDM

SU.2
Multilingual graphical
user interface (GUI)

I1, I2 SI2, SPP3 Midha & Palvia (2012)

SU.3 Proper documentation I1, I2 SPP1
Steinmacher et al. (2015), Lin et al.
(2017), Barcomb et al. (2018)

SU.4
Customization (Product
line approach)

I1
SBP17, SI1,
SPP1, SWi1

van Wendel de Joode (2004)

External
Factors

SE.1
Power of the driver
members

I1

SE.2
Collaboration
opportunities

I1 SB, SPP1

4.2.1 Consortium Management

The consortium management category includes practices associated with collaboratively using a common
resource pool, which is based on the Ostrom’s managing the commons principles (Ostrom, 1990) as
expressed by Interviewee 1, successful inter-company collaboration, and successful open source
governance.

SC.1. Clearly defined goals, rules and boundaries. The goals and rules of the consortium, processes,
responsibilities and privileges of the members, and governance structure are clearly defined in the charter
(L1). In order to join the collaboration, organizations must accept these preset rules. Setting rules and
boundaries at the beginning is necessary to avoid potential conflicts and is essential for the sustainability
of the collaboration (I1).

Interviewee 1 explained the importance of having clear goals: “[I]f you take openMDM, and another thing
in the automotive industry and try to mix them, they don't have one mission anymore, they do not have
one goal. [So], it needs to be clearly defined in this working group, we deal just with management of
measured data, in the other working group we deal with evaluation of AI, and in the third working group
we deal with testing or simulation. If you mix it into one, it will fail.”

SC.2. Collective prioritization. openMDM members have a common goal, and they are working
collaboratively to reach this goal. Although driver members have different priorities, for the health of the
collaboration they jointly determine the priorities. In order to work effectively and avoid conflicts,
openMDM follows a well-defined decision process with a Steering Committee (SC) and an Architecture
Committee (AC) (I1).

Interviewee 1 explained how they prioritize the requirements with the following words: “It goes by
collective choice arrangements. So, the collective choice arrangements helped us to say okay for now, we
will do this, and later on we may do that. But for now, our focus is on building exactly this.”

SC.3. Transparency and openness. Transparency is vital for the health of the consortium (I1). SC and
AC meetings are open to anyone to attend, and meeting minutes are mostly publicly available. Wiki pages
of the community and mailing lists are used to share information with the public and project participants
(A1, M6, M14, M20, M21). Issues, assignments, bug reports, and achievements are open and transparent
to all members (I1, I2, M2, M4).

Interviewee 2 explained the importance of transparency with the following words: “We have high-quality
releases. They are documented. People know what's going on because we are announcing our releases
via mailing lists. I think we have a good quality and even more. It is really about making open source,
having this in the open and transparent.”

Since some of the driver members are competitors with each other, their activities should be in accord
with the antitrust law in Germany. This increases the importance of transparency. Competitive members
are only allowed to work together by sharing their common activities with the public (I1).

Communications of the Association for Information Systems 528

Volume 51 10.17705/1CAIS.05122 Paper 22

Interviewee 1 explained how openness benefits the consortium: “As of today, if a person from Daimler and
a person from Audi need to talk to each other, they cannot do it. Because they might break antitrust law
[...]. When they come to the EF, they can talk. They can plan together because it is open, public, and
transparent.”

SC.4. Shared resources and equality. Resource sharing has a positive influence on the efficiency of the
development process and on the quality of the code (I2). Driver members have equal rights by means of
resource sharing and influence on the project decisions (L1, I1). Each of the driver members has a seat
on the SC, and each of them has three voting rights (L2). The SC is responsible for the governance of the
strategic decisions. Acceptance of these decisions are decided by the majority, mostly unanimously (e.g.,
M2, M6, M9, M11).

Interviewee 2 explained the importance of resource sharing with the following words: “From my point of
view, it's very useful to share resources, share know-how and do things together. And if you do it in the
open and everybody can be involved, you're faster to market and you have a higher quality because you
can share your resources, especially at the moment. Everybody knows it's not very easy to get good
developers. So, if you share your resources, you have more outcomes.”

SC.5. Commitment of the members. Daimler positions the openMDM as part of their Industry 4.0 vision
(A2). Daimler and BMW are investing in in-house projects based on openMDM (A5, I1). These activities
show that the project is important for driver members (I1).

SC.6. Inheriting established governance and legal structure. The consortium is working with an
umbrella open source foundation, the EF. This strategy allows the consortium to apply established open
source best practices, which helps prevent potential problems. These practices are about governance
structure, bylaws, intellectual property (IP) management policy, and development tools (I2).

Interviewee 2 explained this advantage with the following words: “So, if you share your resources, you
have more outcomes. And, furthermore, if you do it open source, do it like in a working group like the EF,
you have the governance model and the bylaws for example, having antitrust rules that don't put you in
danger of having accusations because of trust issues, which we know is very important for our German
OEMs.”

SC.7. Periodic communication. Committee members of openMDM have regular meetings (A5, M2). AC
has three weekly conference calls, and since 2017 the toolkit management team has conducted weekly
meetings (M2, A4, M12, I2). Members discuss specifications, technology decisions, job assignments, and
project status. For transparency and observability, meeting minutes and assignments are shared on the
community’s wiki and the openMDM consortium mailing list (M2, M21). Periodic communication has an
influence on the development of trust and understanding between team members and developers which
has an influence on the improved code development process.

SC.8. Events. In addition to the periodic meetings, all community members gather in the annual meetings,
which take place once a year. openMDM also hosts hackathons and developer workshops, which create
an opportunity for developers to build trust, exchange experiences, present best practices, discuss
requirements and solutions of the projects (I2, M5, M28, M43). Events help to improve the trust and
understanding between team members and developers, which has a positive influence on the code
development process.

SC.9. Promoting the project. Attending conferences as speakers and explaining the project to the
audience in related industries is helpful to gain more attention and users (I1).

4.2.2 Process Management

The process management category covers success factors related to code development strategy and
coordination.

SP.1. Timebox development with regular milestone releases. The toolkit management team consists
of developers and a toolkit manager, and follows the timebox development approach, which enables self
control mechanisms. The team uses six-week timeboxes culminating in milestones. At the end of each
timebox, an updated version of the software is being released (e.g., in A7). The toolkit manager presents
the results of the timeboxes, status of the development team, and the next steps to the SC periodically
(e.g., in A6, A7). This approach enables the SC to monitor and measure the development process (I1, I2).

529 Problems, Solutions, and Success Factors in the openMDM User-Led Open Source Consortium

Volume 51 10.17705/1CAIS.05122 Paper 22

This solution addresses the split development, and delayed release problem and resulted in improved
code development.

Interviewee 2 explained the process and importance of following this approach: “[R]eleasing every six to
eight weeks, knowing exactly what features are going on what branch document, documenting this via Git
commits and writing, for example, bug numbers into the Git commits, these give us a great overview what
we are doing and we can always prove at every moment, what we are doing on what branch and what is
already in our code base, what is released and what is still on development. So, we have a very good
overview about what we are doing and what's going on.”

SP.2. Having a dedicated project manager (PM) and a persistent team of developers. After the failure
of splitting development responsibilities, openMDM changed its development strategy. In 2017, the
consortium created a shared pool of resources and assigned a project manager (toolkit manager) as the
head of the software development team (I1). Four developers from three companies were involved in this
development team in 2017 and 2018 (A6, A7). Developers are either employees of the service providers
or of the vendors working for the driver members. Developers’ contracts are for the duration of a timebox,
which lasts six weeks and is extended after an evaluation of development efforts (I1, I2). The whole
development process is controlled by the toolkit manager who reports to the SC. This approach helps to
perform monitoring and regular assessment and is a solution to the split development effort without a
consortium-wide authority problem.

SP.3. Sanction mechanism. In openMDM, developers’ contracts are for the duration of a timebox. The
decision of whether or not to prolong a contract is made by an evaluation of the work performed during the
timebox period (I1). This solution is a response to the split development effort without a consortium-wide
authority.

Interviewee 1 explained how the sanction mechanism can address shirking: “You have to have a sanction
mechanism. If you don't develop what you have promised, you are out, you get fired.”

SP.4. Monitoring and regular assessment. Monitoring and regular assessment provides members with
the opportunity to plan their processes and prioritize requirements (I1, I2). Having a dedicated project
manager and following the timebox development approach improved monitoring of the development
process for the openMDM (I1, I2).

Interviewee 1 explained the importance of regular assessment: [So], we said okay, these are the
important things that we want to focus on in the first time-box. And then in the second time-box, we could
do two more things. By this, you could measure every milestone, whether we have reached what we
expected to reach. So, the development became a lot more predictable, and all the different organizations
had a very good and exact understanding.”

SP.5. Single repository. Since 2016, openMDM members have been using a single repository (Eclipse
Git) (M31). This means developers are working on the same repository, instead of using different
repositories and combining code later. This approach improved collaboration between teams, enabled
code versioning, and provided better monitoring of the development process (I1, I2, M31). An exception to
this approach is the code developed by external contributors. These contributions are integrated into the
Eclipse Git after a quality check (M44, M47, M48, M49).

SP.6. Code review. Code is not committed to the main codebase until the code is reviewed by another
team member, which increases the quality of the code (I2).

SP.7. High-quality code. An improved code development process together with code reviews, using a
single repository, proper documentation and quick response to bug reports (being responsive to users) led
to an increase in the quality of code which resulted in high-quality code. With increased quality and a
modular structure, the driver members benefit from the code through the software product line approach
which allows customization. Having high-quality code increases the popularity of the software. Some data
management systems suppliers are considering replacing their own code with the openMDM interface
(I1). The consortium anticipates that this solution will address the low number of users and low number of
driver members problems.

Interviewee 1 explained the expected effect of having high-quality code: “We are also seeing companies
that are building products for data management systems like AVL in Austria and FES in the Netherlands.
We reached a point with the quality of our code where they are thinking about replacing their own code
with this MDM interface.”

Communications of the Association for Information Systems 530

Volume 51 10.17705/1CAIS.05122 Paper 22

4.2.3 User Management

This category focuses on the factors which help to ease the users’ use of the software and increase the
demand for the software. These are quick responses to the bug reports, considering users’ needs, proper
documentation, and customization.

SU.1. Being responsive to users. Being responsive to users shows that the project is alive (I2). It
demonstrates that reported bugs are seen, and will be handled (I2). In openMDM, the toolkit manager
responds quickly to bug reports whether they are reported by members or non-member users (I2).

SU.2. Multilingual graphical user interface (GUI). The openMDM software did not have a GUI in
English until 2019. In April 2019, the development team published the English user interface (I1). This
solution addressed the lack of a multilingual GUI problem and is expected to increase the user numbers
as a response to the low number of users problem.

SU.3. Proper documentation. The AC and the toolkit manager prepare documents for different
audiences. These documents are guidelines, specifications, release notes, and process plans that have
the purpose of providing information about technical aspects and showing how to avoid repeating
problems (I1, I2). This solution addresses knowledge loss and low number of users.

Interviewee 2 explained the importance of documentation: “When I started, there was not much technical
documentation. I set up all the technical documentation and I am still maintaining it. In each milestone we
do not only do the code updates or publish new code, but we also publish updates in our documentation.”

SU.4. Customization. Since 2018, openMDM has been following a product line development approach.
This approach allows members to use openMDM software as a core and build tailor-made components on
top of it for their specific requirements. Allowing customization increased the satisfaction of the members
and is expected to address low number of users and low number of driver members problems of the
consortium (I1). Meanwhile, increasing modularity means increasing the complexity of the code and slows
down the development pace of the process (I2).

Interviewee 1 explained how the members of the consortium benefit from the product line: “Let's say this is
Daimler and this here is BMW. They are all using the platform and they are building other things in
parallel. Other functions that they need.”

4.2.4 External Factors

External factors refer to the aspects which are not in control of the members. In the openMDM, these
factors are the power of the driver members and collaboration opportunities in the industry.

SE.1. Power of the driver members. Driver members of the openMDM consortium (e.g. Audi, Daimler,
BMW) have power in the automobile industry to set standards. After the software reaches maturity, the
driver members aim to use it as part of their core technology for measuring data, and they will look for
compatible products with openMDM standards (I1). It is expected that this power will help to overcome the
low number of users problem and become a success factor for the consortium.

Interviewee 1 explained how key industry players' power affects the project: “This number will go up for a
reason within the organizations like Daimler and BMW; now they will not buy anything that is not based on
openMDM5. Any system.”

SE.2. Collaboration opportunities. The automobile industry has a significant role in Germany. A number
of associations and institutions support the industry, such as VDA (Verband der Automobilindustrie) and
Fraunhofer Institute. There are a number of meetings and organizations that take place every year around
the automobile industry. These events make it easy for company members to meet, get acquainted and
collaborate (I1).

4.2.5 Relationships between Solutions and Success Factors

Finding solutions to specific problems and using best practices which were already established in inter-
company collaboration and OSS governance helped the openMDM consortium to achieve a sustainable
development process and success among members. These factors are related to one another. Some
results of the success factors have already been established and some are expected to be seen in the
longer term. We present the relationship between these factors in Figure 6.

531 Problems, Solutions, and Success Factors in the openMDM User-Led Open Source Consortium

Volume 51 10.17705/1CAIS.05122 Paper 22

Clearly defined rules and boundaries, collective prioritization, openness and transparency, shared
resources and equality, commitment of the members and inheriting already established open source
governance and legal structure lead to building a successful collaboration from the beginning. Increased
trust and understanding between the members which could be reached through periodic communication
and events is another factor for the sustainability and success of the collaboration.

Following a timebox development approach, having a dedicated project manager and a persistent team of
developers, having an increased trust and understanding between team-members, having a sanction
mechanism, and monitoring and regular assessments together lead to an improved code development
process.

Following open source development best practices such as using a single repository, conducting code
reviews, performing proper documentation together with an improved code development process and
being responsive to users results in having high-quality code.

High-quality code leads to a high-quality product. Having high-quality code allows customization and
provides an opportunity for members to use this code in parallel on their in-house products and create
value added services.

On the other hand, being responsive to users, having a multilingual GUI, using collaboration opportunities
and promoting the project are projected factors to increase the user and member base of the consortium
and increase the use of the product.

Power of driver members is a factor that is projected to be a reason for demand for compatible products in
the market.

Continuing the successful collaboration together with having a high-quality product, increased use of the
product in the market, demand for compatible products are expected to lead to the end result of
sustainability of the product in the market.

Communications of the Association for Information Systems 532

Volume 51 10.17705/1CAIS.05122 Paper 22

Figure 6. The Relationships between Success Factors in openMDM

Figure 6 shows the relationship between distinct solutions (white boxes), short-term consequences
already observed in the openMDM project (light gray boxes), and expected long-term consequences that
have not yet been realized (dark gray boxes). Arrows between boxes indicate a proposed causal
relationship between solutions and consequences, and between consequences and other consequences.
Some solutions, such as high-quality code, were enabled by earlier solutions. In such cases, the solution
is shown as following from the consequence of the earlier solutions, and can be viewed as both a
consequence and a solution.

5 Discussion

We found that many of the problems and solutions presented in this study are discussed in the OSS, inter-
company collaboration, and outsourcing literature, suggesting that the user-led consortium phenomenon
is best understood by considering all three types of literature.

One of the biggest problems openMDM faced was related to financial resources. Since the financial
resources were insufficient for development efforts, the pace of development slowed down. Furthermore,
lack of financial resources was and remains an obstacle to effective code development. Developing the
software took more time than initially projected. This meant that members of the project did not receive an
ROI as anticipated. In some cases, members left the collaboration due to the slow ROI.

Since user-led OSS consortia depend on financial support from members, when a consortium needs to
increase its financial resources, it needs to increase its member base. Increasing the member base

533 Problems, Solutions, and Success Factors in the openMDM User-Led Open Source Consortium

Volume 51 10.17705/1CAIS.05122 Paper 22

provides additional benefits to OSS development: the literature demonstrates that having more users has
positive effects on the development in terms of improved software testing and bug finding (Midha & Palvia,
2012). If a project is not explained and promoted enough, its potential members will not be aware of the
project and will not consider joining the collaboration. Midha & Palvia (2012) suggest that having a
software interface in different languages increases the attractiveness of the product and the potential for
market success. Our research shows that having the user interface only in one language, in German in
our case, was an obstacle in reaching more users and members. In the Sakai data, we also found
evidence that having a multi-language user interface increases the number of users of the software and
increases its recognition and acceptance. Further data from Sakai shows that promoting the product by
attending conferences, speaking about the product and organizing events around this specific software
increases the awareness of the product and consortium. As a result, we suggest that promoting the
project and using a multi-language GUI are two important factors for increasing user and member
numbers of a user-led OSS consortium.

Another problem was the lack of coordination between stakeholders. Our analysis shows that splitting the
code development responsibility between different parties without a consortium wide authority, and
assigning partial responsibility led to coordination and integration problems. These findings support our
expectation that user-led OSS consortia may face problems due to being inexperienced with OSS
development methods. In OSS, it is unusual for large components to be developed in private and released
after completion, and this is a known risk when it comes to realizing the benefits of OSS (Pinto et al.,
2018). Rather, software is developed publicly, enabling discussion and allowing for ongoing adjustments
to support integration (Ågerfalk & Fitzgerald, 2008). openMDM applied formal and informal controls from
outsourcing (Choudhury & Sabherwal, 2003; Barthélemy & Quélin, 2006) to the problem by following time-
box development with milestone releases, periodic communication, monitoring and regular assessment of
the development process, and having a sanction mechanism. Periodic communication, monitoring and
regular assessment are also seen as a success factor in Sakai.

A further risk of the development and implementation process is the turnover in the developers. When the
core developers leave the project, it leads to experience loss, know-how loss, and time loss for the
project, which is consistent with what is known about OSS (Rashid et al., 2017). Having a dedicated
project manager, having a persistent team of developers, and documentation are solutions for this
problem. Increased understanding and trust among developers, which can be built on periodic
communication and events, have positive effects on effective code development, as well. In the OSS
literature, communication is described primarily as open and asynchronous (Fogel, 2005; Tsay et al.,
2014; Riehle, 2015), and these aspects were also observed in the periodic communication of openMDM.
Effective code development increases the possibility of having regular milestone releases and of having
high-quality code. Performing code review, working on a single repository, proper documentation, and
being responsive to the users are additional factors which improve the quality of the code. The latter two
also influence the usability of the software. In particular, being responsive to the users was also observed
in Sakai.

Our research shows that usability and customizability are important factors in the value of open source
user-led consortia software. Customization enables members to create in-house systems based on the
consortium’s core software, which increases its utility to them. Having a standard core enables them to
use their market power to set standards relying on the software, increasing the sustainability of the
project. In both openMDM and Sakai, this approach is effective.

Our findings agree with previous findings in the inter-company collaboration research that equality of the
members, openness and transparency, setting boundaries at the beginning of the process, having
collective responsibility, and commitment of the members leads to successful collaboration (Mattessich &
Monsey, 1992; Bruce et al., 1995; Rai et al., 1996; Hoffmann & Schlosser, 2001; Rikkiev & Mäkinen,
2009). Many of the problems observed in the OSS literature were not relevant to openMDM, but
knowledge loss (Rashid et al., 2017), the effect of code quality on the number of users (Conley & Sproull,
2009), and the necessity of effective coordination (Sagers, 2004) were important factors in openMDM.

We performed this research by investigating a case from the automotive industry. In order to develop a
fuller understanding of the problems which are specific to user-led OSS consortia, replication studies of
other user-led OSS consortia in other industries should be conducted. A longitudinal study would also help
establish the effectiveness of the recently applied solutions. Finally, there is significant room for further
investigation into the ecosystem of user-led open source consortia, governance models, and process
management.

Communications of the Association for Information Systems 534

Volume 51 10.17705/1CAIS.05122 Paper 22

6 Limitations

We followed an exploratory single-case case-study approach. A major limitation of this study is that the
results are based on one user-led open source consortium. Since we followed a qualitative research
method, we adopted Guba’s (1981) trustworthiness criteria, namely credibility, transferability,
dependability, and confirmability, to evaluate our research.

Credibility concerns the truth of the research findings. We used two methods to improve credibility:
prolonged engagement and data triangulation. The investigation process lasted eight months. During this
period, we evaluated all meeting minutes and published documents from July 2014 to April 2019. After
that, we conducted interviews with the Eclipse Foundation representative and openMDM toolkit manager.
This allowed us to triangulate data from a total of 86 sources. In July 2019, we presented our findings in
the annual meeting of openMDM and received positive feedback.

Transferability is about establishing context-relevant statements. The subject of this research, the
openMDM consortium, is an example from the automotive industry. By relating the case to the existing
literature of collaboration and OSS success, we were able to identify common success factors and
highlight those which appeared in the openMDM case. Furthermore, we used data from another
consortium, Sakai, to demonstrate the transferability of our findings. 16 out of 22 solutions show
similarities in both cases, but it remains for future work to determine if the openMDM observations apply to
other user-led OSS consortia generally, or are unique to this particular case.

Dependability refers to having reliable and traceable research findings. Transparency is important for the
openMDM consortium. They publish meeting minutes and decision documents online. With the exception
of interviews, the data used in this research are publicly available in Yenişen Yavuz et al. (2022). This
facilitates the traceability of our findings.

Confirmability concerns objectivity. Member checking is one of the most effective ways of establishing that
the analysis reflects the reality of the participants. We shared our research findings with the consortium
members via email. In addition, we presented preliminary research results in the 2019 openMDM annual
meeting to a positive reception.

7 Conclusion

Although the user-led OSS consortium phenomenon is not new, there are not many studies about this
phenomenon. Existing studies are mostly in the educational sphere and investigate this phenomenon from
the OSS perspective. Since the dynamics of the education industry are different from other industries, and
user-led OSS cannot be understood only by considering OSS literature, we identified this as a gap. We
conducted an exploratory single-case case study, focusing on a user-led OSS consortium from the
automotive industry, openMDM.

RQ1 was “What problems occur in a user-led open source consortium?” We examined this question by
focusing on the problems experienced by openMDM over a 5-year period, from 2014 to 2019. We
organized our results into four categories: consortium management, process management, user
management, and external factors. In total, we found 13 problems. We found that the most important
problems were seen during the development of the core code, which is related to process management.
Split development responsibility without a consortium-wide authority is an obstacle to developing working
code which led to delayed release and financial instability. These factors resulted in a slow pace of
development. Furthermore, our research shows that using different frameworks and code repositories
causes integration problems which affects the development process.

RQ2 was “What are solutions to the problems which occur in a user-led open source consortium, and
which factors lead to success?” We applied the same categories used for the problems to find related
solutions. According to our research, working on timeboxes with milestone releases, having a dedicated
project manager and a persistent team of developers, and monitoring and regular assessment lead to
having high-quality code and software. When the core code of the software offers the customization
opportunity for the members, it increases utility. The power of the members increases the potential for
usability of the software and setting industry standards.

Although this study focuses on a single case, it offers practitioners an understanding of problems that can
arise in a user-led open source consortium, and how these might be addressed. Furthermore, this
research demonstrates the advantage of viewing the user-led open source consortia as an example of

535 Problems, Solutions, and Success Factors in the openMDM User-Led Open Source Consortium

Volume 51 10.17705/1CAIS.05122 Paper 22

both OSS development and inter-company collaboration, as neither category of literature was fully able to
explain all the problems and solutions observed. The OSS literature explained eight of the 13 problems
and 13 of the 22 solutions, the inter-company collaboration literature explained one of the problems and
eight of the solutions, and the outsourcing literature explained one of the problems and four of the
solutions. Additionally, lack of familiarity with OSS development led to an initial closed development
process (split development responsibility without a consortium-wide authority) which resulted in integration
problems and a delayed release. The number of problems arising from OSS development suggests that
founders and vendors seeking to establish a successful user-led open source consortium should acquire
expertise in OSS development processes.

User-led OSS consortia are a distinct phenomenon that share elements of inter-company collaboration,
outsourcing software development, and vendor-led OSS development and cannot be understood by using
only a single lens. In common with inter-company collaborations, user-led OSS consortia experience
coordination problems with multiple stakeholders. We also observe shirking and lack of behavior
observability, which are known from the outsourcing literature. We find that motivations for pursuing the
creation of the consortia, such as cost-sharing, interoperability and the creation of a de-facto standard are
familiar from vendor-led OSS foundations. Finally, user-led OSS consortia experience problems related to
a lack of knowledge of OSS development, which can exist in both the members and the vendors, leading
to inefficient processes.

Our research has practical implications for companies wanting to engage in successful user-led OSS
consortia, and also contributes to the academic understanding of the phenomenon outside of higher
education.

Acknowledgements

We would like to thank our interviewees for their time and sharing their experience with the openMDM
project. We also would like to thank Maximilian Capraro, Nikolay Harutyunyan, Andreas Kaufmann, Julia
Krause, and Sebastian Schmid for their valuable feedback on this paper. Finally, we would like to thank
the reviewers for their
extensive suggestions on how to improve this article.

Communications of the Association for Information Systems 536

Volume 51 10.17705/1CAIS.05122 Paper 22

References

Ågerfalk, P. J., & Fitzgerald, B. (2008). Outsourcing to an unknown workforce: Exploring opensourcing as
a global sourcing strategy. MIS Quarterly, 32(2), 385-409.

Almeida, F., Oliveira, J., & Cruz, J. (2011). Open standards and open source: Enabling interoperability.
International Journal of Software Engineering & Applications, 2(1), 1-11.

Aron, R., Clemons, E. K., & Reddi, S. (2005). Just right outsourcing: Understanding and managing risk.
Journal of Management Information Systems, 22(2), 37-55.

Bacon, J. (2012). The art of community: Building the new age of participation. O'Reilly Media, Inc.

Baldwin, C., & Von Hippel, E. (2011). Modeling a paradigm shift: From producer innovation to user and
open collaborative innovation. Organization Science, 22(6), 1399-1417.

Barcomb, A., Kaufmann, A., Riehle, D., Stol, K. J., & Fitzgerald, B. (2018). Uncovering the periphery: A
qualitative survey of episodic volunteering in free/libre and open source software communities.
IEEE Transactions on Software Engineering, 46(9), 962-980.

Barcomb, A., Stol, K. J., Fitzgerald, B., & Riehle, D. (2020). Managing episodic volunteers in
free/libre/open source software communities. IEEE Transactions on Software Engineering, 48(1),
260-277.

Barcomb, A., Stol, K. J., Riehle, D., & Fitzgerald, B. (2019). Why do episodic volunteers stay in FLOSS
communities? In 2019 IEEE/ACM 41st ICSE.

Barthélemy, J., & Quélin, B. V. (2006). Complexity of outsourcing contracts and ex post transaction costs:
An empirical investigation. Journal of Management Studies, 43(8), 1775-1797.

Benbasat, I., Goldstein, D. K., & Mead, M. (1987). The case research strategy in studies of information
systems. MIS Quarterly, 11(3), 369-386.

Berdou, E. (2006). Insiders and outsiders: Paid contributors and the dynamics of cooperation in
community led F/OS projects. In IFIP International Conference on Open Source Systems (pp. 201-
208). Springer.

Boldyreff, C., Nutter, D., & Rank, S. (2004). Communication and conflict issues in collaborative software
research projects. In 26th International Conference on Software Engineering - W8S Workshop
"Collaboration, Conflict and Control: The 4th Workshop on Open Source Software Engineering".

Bosu, A., & Sultana, K. Z. (2019). Diversity and inclusion in open source software (OSS) projects: Where
do we stand? In 2019 ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM).

Bruce, M., Leverick, F., Littler, D., & Wilson, D. (1995). Success factors for collaborative product
development: A study of suppliers of information and communication technology. R&D
Management, 25(1), pp. 33-44.

Carillo, K. D. A., & Marsan, J. (2016). “The dose makes the poison”- Exploring the toxicity phenomenon in
online communities. In International Conference on Information Systems.

Castilla, E. J., & Benard, S. (2010). The paradox of meritocracy in organizations. Administrative Science
Quarterly, 55(4), 543-676.

Chengalur-Smith, I., Sidorova, A., & Daniel, S. L. (2010). Sustainability of free/libre open source projects:
A longitudinal study. Journal of the Association for Information Systems, 11(11), 5.

Chin, K. S., Chan, B. L., & Lam, P. K. (2008). Identifying and prioritizing critical success factors for
coopetition strategy. Industrial Management & Data Systems, 104(4), 437-454.

Choudhury, V., & Sabherwal, R. (2003). Portfolios of control in outsourced software development projects.
Information Systems Research, 14(3), 291-314.

Ciesielska, M., & Westenholz, A. (2016). Dilemmas within commercial involvement in open source
software. Journal of Organizational Change Management, 29(3), 344-360.

537 Problems, Solutions, and Success Factors in the openMDM User-Led Open Source Consortium

Volume 51 10.17705/1CAIS.05122 Paper 22

Colazo, J. A., & Fang, Y. (2010). Following the sun: Temporal dispersion and performance in open source
software project teams. Journal of the Association for Information Systems, 11(11), 4.

Conley, C. A., & Sproull, L. (2009). Easier said than done: An empirical investigation of software design
and quality in open source software development. In 2009 42nd Hawaii International Conference on
System Sciences. IEEE.

Courant, P. N., & Griffiths, R. J. (2006). Software and collaboration in higher education: A study of open
source software. Retrieved from
https://www.campussource.de/opensource/docs/OOSS_Report.pdf.

Crowston, K., & Howison, J. (2005). The social structure of free and open source software development.
First Monday, 10(2).

Crowston, K., Annabi, H., & Howison, J. (2003). Defining open source software project success. In
Proceedings of the International Conference on Information Systems.

Dacin, M. T., Hitt, M. A., & Levitas, E. (1997). Selecting partners for successful international alliances:
Examination of US and Korean firms. Journal of World Business, 32(1), 3-16.

Dahlander, L. (2007). Penguin in a new suit: A tale of how de novo entrants emerged to harness free and
open source software communities. Industrial and Corporate Change, 16(5), 913-943.

Dahlander, L., & Magnusson, M. G. (2005). Relationships between open source software companies and
communities: Observations from Nordic firms. Research Policy, 34(4), 481-493.

Damian, D. (2003). Global software development: Growing opportunities, ongoing challenges. Software
Process: Improvement and Practice, 8(4), 179-182.

Daniel, S., Agarwal, R., & Stewart, K. J. (2013). The effects of diversity in global, distributed collectives: A
study of open source project success. Information Systems Research, 24(2), 312-333.

Ducheneaut, N. (2005). Socialization in an open source software community: A socio-technical analysis.
Computer Supported Cooperative Work, 14(4), 323-368.

Ehls, D. (2017). Open source project collapse–sources and patterns of failure. In 2017 Proceedings of the
50th Hawaii International Conference on System Sciences.

Eisenhardt, K. M. (1989). Building theories from case study research. Academy of Management Review,
14(4), 532-550.

Feller, J., & Fitzgerald, B. (2000). A framework analysis of the open source software development
paradigm. In ICIS 2000 Proceedings of the 21st International Conference on Information Systems.

Filippova, A., & Cho, H. (2015). Mudslinging and manners: Unpacking conflict in free and open source
software. In Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work &
Social Computing (pp. 1393-1403).

Fogel, K. (2005). Producing open source software: How to run a successful free software project. O'Reilly
Media, Inc.

Fortuin, F. T., & Omta, S. W. F. (2008). The dark side of open innovation: A survey of failed inter-
company cooperation. In Proceedings of the 8th International Conference on Management in
AgriFood Chains and Networks.

Foucault, M., Palyart, M., Blanc, X., Murphy, G. C., & Falleri, J. R. (2015, August). Impact of developer
turnover on quality in open-source software. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (pp. 829-841).

Geiger, R. S., Howard, D., & Irani, L. (2021). The labor of maintaining and scaling free and open-source
software projects. In Proceedings of the ACM on Human-Computer Interaction, 5(CSCW1) (pp. 1-
28).

Germonprez, M., Allen, J. P., Warner, B., Hill, J., & McClements, G. (2013). Open source communities of
competitors. Interactions, 20(6), 54-59.

Guba, E. G. (1981). Criteria for assessing the trustworthiness of naturalistic inquiries. Educational
Communication and Technology, 29(2), pp. 75-91.

Communications of the Association for Information Systems 538

Volume 51 10.17705/1CAIS.05122 Paper 22

Guizani, M., Chatterjee, A., Trinkenreich, B., May, M. E., Noa-Guevara, G. J., Russell, L. J., Cuevas
Zambrano, G.G., Izquierdo-Cortazar, D., Steinmacher, I., Gerosa, M.A. & Sarma, A. (2021). The
long road ahead: Ongoing challenges in contributing to large OSS organizations and what to do. In
Proceedings of the ACM on Human-Computer Interaction, 5(CSCW2), (pp. 1-30).

Haefliger, S., Von Krogh, G., & Spaeth, S. (2008). Code reuse in open source software. Management
Science, 54(1), 180-193.

Harutyunyan, N., Riehle, D., & Sathya, G. (2020, January). Industry best practices for corporate open
sourcing. In Proceedings of the 53rd Hawaii International Conference on System Sciences.

Henkel, J. (2004). Open source software from commercial firms–tools, complements, and collective
invention. Zeitschrift für Betriebswirtschaft, 4, 1-23.

Herbsleb, J. D., & Grinter, R. E. (1999). Splitting the organization and integrating the code: Conway's Law
revisited. In Proceedings of the 21st International Conference on Software Engineering.

Hoffmann, W. H., & Schlosser, R. (2001). Success factors of strategic alliances in small and medium-
sized enterprises—An empirical survey. Long Range Planning, 34(3), 357-381.

Howison, J., & Crowston, K. (2014). Collaboration through open superposition: A theory of the open
source way. MIS Quarterly, 38(1), 29-50.

Kelly, M. J., Schaan, J. L., & Joncas, H. (2002). Managing alliance relationships: Key challenges in the
early stages of collaboration. R&D Management, 32(1), 11-22.

Kochhar, P. S., Kalliamvakou, E., Nagappan, N., Zimmermann, T., & Bird, C. (2019). Moving from closed
to open source: Observations from six transitioned projects to GitHub. IEEE Transactions on
Software Engineering.

Lee, G. K., & Cole, R. E. (2003). From a firm-based to a community-based model of knowledge creation:
The case of the Linux kernel development. Organization Science, 14(6), 633-649.

Levy, M., & Germonprez, R. M. (2015). Is it egalitarianism or enterprise strategy? Exploring a new method
of innovation in open source. In 21st AMCIS 2015.

Lin, B., Robles, G., & Serebrenik, A. (2017). Developer turnover in global, industrial open source projects:
Insights from applying survival analysis. In 2017 IEEE 12th International Conference on Global
Software Engineering.

Liu, M., Hansen, S., & Tu, Q. (2014). The community source approach to software development and the
Kuali experience. Communications of the ACM, 57(5), 88-96.

Liu, M., Hansen, S., & Tu, Q. (2020). Keeping the family together: Sustainability and modularity in
community source development. Information and Organization, 30(1), 100274.

Liu, M., Wang, H. J., & Zhao, J. L. (2012). Technology flexibility as enabler of robust application
development in community source: The case of Kuali and Sakai. Journal of Systems and Software,
85(12), 2921-2928

Liu, M., Wang, H., & Zhao, L. (2007). Achieving flexibility via service-centric community source: The case
of Kuali. In AMCIS 2007 Proceedings.

Liu, M., Wu, X., Zhao, J. L., & Zhu, L. (2010). Outsourcing of community source: identifying motivations
and benefits. Journal of Global Information Management, 18(4), 36-52.

Liu, M., Zeng, D. D., & Zhao, J. L. (2008). A cooporative analysis framework for investment decisions in
community source partnerships. In AMCIS 2008 Proceedings.

Lumbard, K., Wethor, G., Goggins, S., Buhman, A., Hale, M., & Germonprez, M. (2020). Welcome?
Investigating the reception of new contributors to organizational-communal open source software
projects. In 26th Americas Conference on Information Systems, AMCIS 2020. Association for
Information Systems.

Maruping, L. M., Daniel, S. L., & Cataldo, M. (2019). Developer centrality and the impact of value
congruence and incongruence on commitment and code contribution activity in open source
software communities. MIS Quarterly, 43(3), 951-976.

539 Problems, Solutions, and Success Factors in the openMDM User-Led Open Source Consortium

Volume 51 10.17705/1CAIS.05122 Paper 22

Mattessich, P. W., & Monsey, B. R. (1992). Collaboration: What makes it work. A review of research
literature on factors influencing successful collaboration. Amherst H. Wilder Foundation.

Mauerer, W., & Jaeger, M. C. (2013). Open source engineering processes/open source-
entwicklungsprozesse. IT-Information Technology, 55(5), 196-203.

Medappa, P. K., & Srivastava, S. C. (2019). Does superposition influence the success of FLOSS projects?
An examination of open-source software development by organizations and individuals. Information
Systems Research, 30(3), 764-786.

Michlmayr, M. (2004). Managing volunteer activity in free software projects. In USENIX Annual Technical
Conference, FREENIX Track.

Michlmayr, M., Fitzgerald, B., & Stol, K. J. (2015). Why and how should open source projects adopt time-
based releases?, IEEE Software, 32(2), 55-63.

Midha, V., & Palvia, P. (2007). Retention and quality in open source software projects. In AMCIS 2007
Proceedings.

Midha, V., & Palvia, P. (2012). Factors affecting the success of open source software. Journal of Systems
and Software, 85(4), 895-905.

Nafus, D. (2012). ‘Patches don’t have gender’: What is not open in open source software. New Media &
Society, 14(4), 669-683.

Narduzzo, A., & Rossi, A. (2005). The role of modularity in free/open source software development. In
Free/Open Source Software Development (pp. 84-102). Igi Global.

O'Leary, K., Gleasure, R., O'Reilly, P., & Feller, J. (2020). Reviewing the contributing factors and benefits
of distributed collaboration. Communications of the Association for Information Systems, 47, 476-
520.

Ostrom, E. (1990). Governing the commons: The evolution of institutions for collective action. Cambridge
University Press.

Patton, M. Q. (1990). Qualitative evaluation and research methods. SAGE.

Piccoli, G., & Ives, B. (2003). Trust and the unintended effects of behavior control in virtual teams. MIS
Quarterly, 27(3),365-395.

Pinto, G., Steinmacher, I., Dias, L. F., & Gerosa, M. (2018). On the challenges of open-sourcing
proprietary software projects. Empirical Software Engineering, 23(6), 3221-3247.

Qureshi, I., & Fang, Y. (2011). Socialization in open source software projects: A growth mixture modeling
approach. Organizational Research Methods, 14(1), 208-238.

Radtke, N. P., Janssen, M. A., & Collofello, J. S. (2009). What makes Free/Libre Open Source Software
(FLOSS) projects successful? An agent-based model of FLOSS projects. International Journal of
Open Source Software and Processes, 1(2), 1-13.

Rai, A., Borah, S., & Ramaprasad, A. (1996). Critical success factors for strategic alliances in the
information technology industry: An empirical study. Decision Sciences, 27(1), 141-155.

Rashid, M., Clarke, P. M., & O’Connor, R. V. (2017). Exploring knowledge loss in open source software
(OSS) projects. In International Conference on Software Process Improvement and Capability
Determination.

Riehle, D. (2010). The economic case for open source foundations. Computer, (1), 86-90.

Riehle, D. (2015). The five stages of open source volunteering. In W. Li, M. N. Huhns, W-T., Tsai, & W.
Wu (Eds.), Crowdsourcing (pp. 25-38). Springer.

Riehle, D., & Berschneider, S. (2012). A model of open source developer foundations. In IFIP International
Conference on Open Source Systems.

Riembauer, S., Hornung, O., & Smolnik, S. (2020). Knowledge unchained or strategically overseen?
Knowledge management in open source software projects. In Proceedings of the 53rd Hawaii
International Conference on System Sciences.

Communications of the Association for Information Systems 540

Volume 51 10.17705/1CAIS.05122 Paper 22

Rigby, P., German, D., & Storey, M. A. (2008). Open source software peer review practices: A case study
of apache server. In 2008 ACM/IEEE 30th International Conference on Software Engineering.

Rikkiev, A., & Mäkinen, S. (2009). Success factors for technology integration convergence collaborations:
Empirical assessment. In 2009 Portland International Conference on Management of Engineering &
Technology.

Sagers, G. (2004). The influence of network governance factors on success in open source software
development projects. In International Conference on Information Systems 2004 Proceedings.

Schaarschmidt, M., Bertram, M., & von Kortzfleisch, H. F. (2011). Exposing differences of governance
approaches in single and multi vendor open source software development. In IFIP International
Working Conference on Governance and Sustainability in Information Systems-Managing the
Transfer and Diffusion of IT.

Schwab, B., Riehle, D., Barcomb, A., & Harutyunyan, N. (2020). The ecosystem of openKonsequenz, a
user-led open source foundation. In IFIP International Conference on Open Source Systems.

Senyard, A., & Michlmayr, M. (2004, November). How to have a successful free software project. In 11th
Asia-Pacific Software Engineering Conference (pp. 84-91). IEEE.

Singh, P. V. (2010). The small-world effect: The influence of macro-level properties of developer
collaboration networks on open-source project success. ACM Transactions on Software
Engineering and Methodology, 20(2), 1-27.

Singh, V., & Brandon, W. (2019). Open source software community inclusion initiatives to support women
participation. In IFIP International Conference on Open Source Systems.

Steinmacher, I., Conte, T. U., & Gerosa, M. A. (2015b). Understanding and supporting the choice of an
appropriate task to start with in open source software communities. In 2015 48th Hawaii
International Conference on System Sciences (pp. 5299-5308).

Steinmacher, I., Conte, T., Gerosa, M. A., & Redmiles, D. (2015a). Social barriers faced by newcomers
placing their first contribution in open source software projects. In Proceedings of the 18th ACM
Conference on Computer Supported Cooperative Work & Social Computing.

Stewart, K. J., Ammeter, A. P., & Maruping, L. M. (2005). A preliminary analysis of the influences of
licensing and organizational sponsorship on success in open source projects. In Proceedings of the
38th Annual HICSS.

Strauss, A., & Corbin, J. (1990). Basics of qualitative research: Grounded theory procedures and
techniques. SAGE.

Tiwana, A., & Bush, A. A. (2007). A comparison of transaction cost, agency, and knowledge-based
predictors of IT outsourcing decisions: A US-Japan cross-cultural field study. Journal of
Management Information Systems, 24(1), 259-300.

Tsay, J., Dabbish, L., & Herbsleb, J. (2014). Let's talk about it: Evaluating contributions through discussion
in GitHub. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering.

Van Wendel de Joode, R. (2004). Managing conflicts in open source communities. Electronic Markets,
14(2), 104-113.

Vasilescu, B., Posnett, D., Ray, B., van den Brand, M. G., Serebrenik, A., Devanbu, P., & Filkov, V.
(2015). Gender and tenure diversity in GitHub teams. In Proceedings of the 33rd annual ACM
conference on human factors in computing systems (pp. 3789-3798).

Von Krogh, G., Spaeth, S., & Lakhani, K. R. (2003). Community, joining, and specialization in open source
software innovation: a case study. Research Policy, 32(7), 1217-1241.

Weikert, F., Riehle, D., & Barcomb, A. (2019). Managing commercial conflicts of interest in open source
foundations. In International Conference on Software Business.

West, J., & Gallagher, S. (2006). Challenges of open innovation: The paradox of firm investment in
open‐source software. R&D Management, 36(3), 319-331.

541 Problems, Solutions, and Success Factors in the openMDM User-Led Open Source Consortium

Volume 51 10.17705/1CAIS.05122 Paper 22

West, J., & O'Mahony, S. (2005). Contrasting community building in sponsored and community founded
open source projects. In Proceedings of the 38th Annual HICSS.

Wheeler, B. (2004). The open source parade. Educause Review, 39(5), 68-69.

Wheeler, B. (2007). Open source 2010: Reflections on 2007. Educause Review, 42(1), 49-52.

Williamson, O. E. (1993). Opportunism and its critics. Managerial and Decision Economics, 14, 97-107.

Yenişen Yavuz, E., Barcomb, A., & Riehle, D. (2022). Problems, solutions, and success factors in the
openMDM User-Led open source consortium (Appendix). Retrieved from https://faubox.rrze.uni-
erlangen.de/getlink/fiRCBgxanJUqXTBFKPLADQ4N/Appendix%20-
%20Problems%20Solutions%20Success%20Factors%20of%20openMDM%20User-
Led%20Open%20Source%20Consortium.pdf

Yin, R. K. (2018). Case study research and applications. SAGE.

Yu, Y., Benlian, A., & Hess, T. (2012). An empirical study of volunteer members' perceived turnover in
open source software projects. In 2012 45th HICSS.

Zhou, M., Mockus, A., Ma, X., Zhang, L., & Mei, H. (2016). Inflow and retention in OSS communities with
commercial involvement: A case study of three hybrid projects. ACM Transactions on Software
Engineering and Methodology (TOSEM), 25(2), 1-29.

Communications of the Association for Information Systems 542

Volume 51 10.17705/1CAIS.05122 Paper 22

About the Authors

Elçin Yenişen Yavuz. Elçin Yenişen Yavuz, M.Sc., is a researcher and doctoral student at the
Professorship for Open Source Software at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU),
Germany. She received her master’s degree of International Information Systems from the FAU,
Germany. Before joining academia, she led various projects in the automotive, healthcare and
pharmaceutical industries. Her areas of interest are open innovation, open source software development,
collaborative software development, and digital transformation.

Ann Barcomb. Dr. Barcomb is an assistant professor at the Schulich School of Engineering, University of
Calgary. Her previous post was at Friedrich-Alexander University Erlangen-Nuremberg, Germany. Dr.
Barcomb received her PhD from the University of Limerick, Ireland, in 2019, with a specialization in
software engineering, and a master's in information systems from Maastricht University, The Netherlands.
In the course of her industry career, she worked as a software developer for multiple firms and as a
community manager for RIPE NCC. From the beginning, she has been active in free/libre/open source
software, organizing events, speaking at practitioner conferences, and writing for practitioner outlets. Her
research is characterized by a desire to understand and generalize processes and practices within
free/libre/open source software communities, to facilitate the exchange of knowledge between
practitioners.

Dirk Riehle. Prof. Dr. Dirk Riehle, M.B.A., is the Professor of Open Source Software at the Friedrich-
Alexander-Universität Erlangen-Nürnberg. Before joining academia, Riehle led the Open Source
Research Group at SAP Labs, LLC, in Palo Alto, California (Silicon Valley). Riehle founded the Open
Symposium (OpenSym, formerly WikiSym). He was the lead architect of the first UML virtual machine. He
is interested in open collaboration principles, methods, and tools, most notably open source and inner
source software development. Prof. Riehle holds a Ph.D. in computer science from ETH Zürich and an
M.B.A. from Stanford Graduate School of Business. He welcomes email at dirk@riehle.org, blogs at
https://dirkriehle.com, and tweets as @dirkriehle.

Copyright © 2022 by the Association for Information Systems. Permission to make digital or hard copies of
all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and full citation on
the first page. Copyright for components of this work owned by others than the Association for Information
Systems must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists requires prior specific permission and/or fee. Request permission to
publish from: AIS Administrative Office, P.O. Box 2712 Atlanta, GA, 30301-2712 Attn: Reprints are via e-
mail from publications@aisnet.org.

	Problems, Solutions, and Success Factors in the openMDM User-Led Open Source Consortium
	Recommended Citation

	/var/tmp/StampPDF/4SgRjDh8Cm/tmp.1666720360.pdf.Cz3Nh

