
Scaling Real-time Collaborative
Editing in a Cloud-based Web App

MASTER THESIS

Martin Dürsch

Submitted on 19 April 2023

Friedrich-Alexander-Universität Erlangen-Nürnberg
Faculty of Engineering, Department Computer Science

Professorship for Open Source Software

Supervisor:
Julian Lehrhuber, M.Sc.

Julia Mucha, M.Sc.
Prof. Dr. Dirk Riehle, M.B.A.

Declaration of Originality

I confirm that I have written this thesis unaided and without using sources other
than those listed and that this thesis has never been submitted to another exam-
ination authority and accepted as part of an examination achievement, neither
in this form nor in a similar form. All content that was taken from a third party
either verbatim or in substance has been acknowledged as such. The submitted
electronic version of the thesis matches the printed version.

Erlangen, 19 April 2023

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 19 April 2023

i

https://creativecommons.org/licenses/by/4.0/

ii

Abstract

QDAcity is a cloud-based web application for multiple researchers to collaborat-
ively conduct Qualitative Data Analysis (QDA) in shared projects. Qualitative
data (in textual, visual, or audio form) can be open for interpretation and draw-
ing of subjective conclusions. Thus, enabling and encouraging close collaboration
can be highly beneficial for teams conducting QDA, since it prevents miscommu-
nication problems. However, real-time collaborative text editing has been missing
so far in QDAcity’s feature set. In the context of this master thesis, QDAcity’s
existing collaboration features were extended by real-time collaborative editing
of rich text documents. The implementation is required to be compatible with
QDAcity’s existing features, reliable, maintainable, and extendable. In order to
ensure future scalability, the implementation of real-time collaborative editing
shall also be horizontally scalable. After discussing various approaches for real-
time collaborative editing as well as the scaling of applications in a cloud-based
environment, a suitable combination of approaches was chosen, designed, and
implemented. The agile development process resulted in the implementation,
evaluation, and discussion of Conflict-free Replicated Data Type (CRDT)-based
real-time collaborative editing for QDAcity, by harnessing a combination of open-
source technologies. Horizontal scalability was achieved by implementing the
collaborative editing service in a stateless manner and interconnecting multiple
instances via Redis Pub/Sub.

iii

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 2
1.3 Thesis Structure . 3

2 Related Work 5
2.1 QDAcity . 5
2.2 Real-time Collaborative Editing 7

2.2.1 Collaborative Editing . 7
2.2.2 Real-Time Reads . 10
2.2.3 Real-Time Writes . 12
2.2.4 Differential Synchronization 15
2.2.5 Operational Transformation 18
2.2.6 Conflict-Free Replicated Data Types 21

2.3 Scaling a Cloud-Based Web Application 25
2.3.1 Cloud Computing . 25
2.3.2 Vertical Scaling . 27
2.3.3 Horizontal Scaling . 28
2.3.4 Elasticity . 32

3 Requirements 37
3.1 Functional Requirements . 37
3.2 Nonfunctional Requirements . 39

4 Architecture 43
4.1 Research Conclusions . 43
4.2 Initial Architecture of QDAcity 45
4.3 Reworked Architecture of QDAcity 46
4.4 Document Storage Format . 48
4.5 Horizontal Scaling Design Drafts 50

4.5.1 Initial Situation without Horizontal Scaling 50
4.5.2 Stateful Instances with Service Discovery/Routing 52

v

4.5.3 Stateless Instances with Log-Based Message Broker 53
4.5.4 Stateless Instances with Pub/Sub Service 55

5 Design and Implementation 59
5.1 Libraries . 59
5.2 Implementation . 62

6 Evaluation 65
6.1 Functional Requirements . 65
6.2 Nonfunctional Requirements . 67

7 Discussion 71
7.1 Network Model . 71
7.2 Hybrid Model for Collaborative Editing Sessions 73
7.3 Development Process and Future Work 74

8 Conclusion 77

References 79

vi

List of Figures

2.1 Screenshot of a dummy project in QDAcity’s coding editor 6
2.2 Document edited by different authors, document versions are in a

global total order . 8
2.3 Examplary architecture of a simple web application (including

write/read path) . 9
2.4 Example of an adjusted write/read path for a web application . . 11
2.5 Document simultaneously edited by different authors, document

versions in global partial order and local total order 14
2.6 Example of a three-way merge using git merge (Source: https://www.

atlassian.com/git/tutorials/using-branches/git-merge) 16
2.7 Differential Synchronization in a local environment (Fraser, 2009b,

p. 2) . 17
2.8 Example of Operational Transformation (OT) (Boelmann et al.,

2016, p. 4) . 19
2.9 Concurrent editing of plain text using a CRDT (Kleppmann &

Beresford, 2017, p. 5) . 23
2.10 Provisioning for peak load (Armbrust et al., 2010, p. 54) 32
2.11 short-term underprovisioning (Armbrust et al., 2010, p. 54) 33
2.12 long-term underprovisioning (Armbrust et al., 2010, p. 54) 33

3.1 FunctionalMASTeR template (Rupp & SOPHIST-Gesellschaft für
Innovatives Software-Engineering, 2014, p. 230) 37

3.2 ConditionMASTeR template (Rupp & SOPHIST-Gesellschaft für
Innovatives Software-Engineering, 2014, p. 242) 38

3.3 PropertyMASTeR template (Rupp & SOPHIST-Gesellschaft für
Innovatives Software-Engineering, 2014, p. 239) 39

3.4 EnvironmentMASTeR template (Rupp & SOPHIST-Gesellschaft
für Innovatives Software-Engineering, 2014, p. 239) 40

4.1 Initial architecture of QDAcity . 45
4.2 Reworked architecture of QDAcity 47

vii

https://www.atlassian.com/git/tutorials/using-branches/git-merge
https://www.atlassian.com/git/tutorials/using-branches/git-merge

4.3 Initial situation with a single Real-Time Collaboration Service
(RTCS) instance . 51

4.4 Scaling the RTCS as stateful instances with a discovery/routing
service . 52

4.5 Scaling the RTCS as stateless instances with Apache Kafka 54
4.6 Reworked architecture of QDAcity 56

7.1 Comparison of synchronization of a document via client/server or
Peer-to-Peer (P2P) network mode. Equivalent network partitions
in red. 71

viii

List of Tables

5.1 Hocuspocus hooks that can be attached with custom event hand-
lers by using a custom extension. (Source: https://tiptap.dev/hocuspocus/
server/hooks) . 61

5.2 Provided Hocuspocus extensions. (Source: https://tiptap.dev/hocuspocus/
server/extensions) . 61

5.3 Events emitted by the Hocuspocus provider objects in the fron-
tend. (Source: https://tiptap.dev/hocuspocus/provider/events) 64

ix

https://tiptap.dev/hocuspocus/server/hooks
https://tiptap.dev/hocuspocus/server/hooks
https://tiptap.dev/hocuspocus/server/extensions
https://tiptap.dev/hocuspocus/server/extensions
https://tiptap.dev/hocuspocus/provider/events

x

Acronyms

2PL Two-Phase Locking

ACID Atomicity, Consistency, Isolation, Durability

AWS Amazon Web Services

CAQDAS Computer-assisted qualitative data analysis software

CES Collaborative Editing Service

CRDT Conflict-free Replicated Data Type

DS Differential Synchronization

EC2 Elastic Compute Cloud

FP Functional Programming

FR Functional Requirements

GCP Google Cloud Platform

GCS Google Cloud Storage

HPC High Performance Computing

IaaS Infrastructure as a Service

IT Information Technology

JSON JavaScript Object Notation

LWW Last-Write-Wins

NFR Nonfunctional Requirements

OT Operational Transformation

P2P Peer-to-Peer

PaaS Platform as a Service

xi

QDA Qualitative Data Analysis

RTCS Real-Time Collaboration Service

SaaS Software as a Service

SLA Service-Level-Agreement

TCP Transmission Control Protocol

TDF The Document Foundation

VM Virtual Machine

XP Extreme Programming

xii

1 Introduction

1.1 Motivation

Qualitative Data Analysis (QDA) is a significant part of conducting research
in fields that deal with large amounts of qualitative (i.e. non-numerical) data,
like psychology, education, pharmaceuticals, and/or other social sciences. Un-
like quantitative data, which consists of structured and precise, numerical data,
qualitative data can be characterized as unstructured, natural language data in
textual, visual, or audio form (Mihas, 2019). Qualitative data usually origin-
ates from interviews, documentary materials, field notes, observations, or similar
(Graue, 2015). In short, quantitative data deals with numbers, whereas qualit-
ative data deals with meanings (Dey, 2005). QDA can be defined as conducting
research by continual reflection about qualitative data, as well as making inter-
pretations, and deriving theories from it (Creswell & Creswell, 2018). It is an
established method of theory building in research. An exemplary approach of
QDA could be an iterative, alternating process of data analysis and deriving
theory from the previously analyzed data (Bryman & Bell, 2011).

Unlike quantitative data analysis, which is accompanied by a lot of statistical
and mathematical rules, "[...] there are few well-established and widely accepted
rules for the analysis of qualitative data.", according to Bryman and Bell (2011).
However, the process of QDA typically involves applying a certain kind of struc-
ture to the qualitative data, called "coding". Coding has become a key part of
QDA.

Coding loosely describes the process of structuring qualitative data in some way,
for instance by assigning specific parts of one or multiple documents to certain
"codes". These codes label reoccurring patterns or themes. During the process
of QDA, related codes are grouped into a category, and related categories are
grouped into more encompassing themes that "[...] describe the data in a form
which summarises it, yet retains the richness, depth, and context of the original
data" according to Seers (2012). Thus, the codes form a tree-like, structured
code system, increasing in abstraction from the leaves to the root.

1

1. Introduction

Applications that enable digitally conducting QDA are grouped as Computer-
assisted qualitative data analysis software. One representative of Computer-
assisted qualitative data analysis software (CAQDAS) is called QDAcity1. QDA-
city is a cloud-based web application, developed and operated by the Professor-
ship for Open Source Software at the Friedrich-Alexander-Universität Erlangen-
Nürnberg. QDAcity provides an environment for multiple analysts or researchers
to collaboratively conduct QDA. Since QDA deals with big amounts of fuzzy
and subjective data, enabling researchers to share and discuss different interpret-
ations, ideas, and conclusions can be very beneficial for the process of QDA. The
approach of enhancing a process by promoting close collaboration and "shrinking
the feedback loop" can also be found in other fields. Agile approaches of soft-
ware development like Extreme Programming (Beck, 2000) serve as examples of
this. However, currently QDAcity only allows the simultaneous collaboration of
multiple researchers in a shared project, but not on a more granular level in a
shared document.

Real-time collaborative editing of a shared document is a classic form of digitally
enabled, close collaboration. This particularly applies when considering that
prototypical real-time collaborative editing has been demonstrated as early as
1968 (Akhtar, 2022). Its technological significance has grown since then. Due to
the large number of use cases that can benefit from real-time collaborative editing,
it has developed to be a desired feature for many applications and products.
Given the potential benefits of close collaboration for conducting QDA, enhancing
the process of QDA via real-time collaborative editing seems promising. Thus,
allowing multiple researchers to simultaneously collaborate, not just in a shared
project, but also in a shared document, has become apparent to be a great fit for
QDAcity.

1.2 Objective

In the context of this thesis, QDAcity shall be extended to enable real-time
collaborative editing of text documents. The main part of the implementation
shall be an extension of the existing Real-Time Collaboration Service (RTCS).
The frontend and backend of QDAcity shall also be extended to integrate the
new functionality. The new feature shall be implemented in a way that combines
performance, horizontal scalability, reliability and maintainability while at the
same time being implemented and deployed using the existing Google Cloud
Platform (GCP) infrastructure and services. The implementation should include
acceptance test coverage and be extendable to support collaborative editing of
different document types in the future. Chapter 3 provides a more detailed list
of requirements.

1qdacity.com

2

https://qdacity.com/

1. Introduction

The requirements of this thesis mainly describe the functionality that the new
implementation shall provide, while also expressing clear preferences for the ser-
vices and tools that are to be used, primarily those that are already in use. In
contrast to this, the requirements are agnostic about the technical details of the
implementation and do not specify a technical approach for achieving the expec-
ted results. Thus, in order to dynamically adapt to gained insights based on the
continuous evaluation of existing technologies, we will take an agile approach.

1.3 Thesis Structure

As a consequence of the technical nature of the feature to be implemented, the
structure of this thesis is based on the general structure of an engineering thesis.

Chapter 1 motivates this thesis, sets its objective, and describes its structure.
Afterwards, chapter 2 discusses and summarizes the most relevant related work
and research for this thesis. This chapter deals with QDAcity’s coding editor,
real-time collaborative editing as well as scaling a cloud-based web application.
Chapter 3 formulates the requirements for the implementation part of this thesis.
Subsequently, chapter 4 describes and discusses the architectural modifications
that were applied to QDAcity in the context of this thesis. It also discusses the
design drafts that were in consideration during the agile development process of
this thesis. Chapter 5 discusses and describes the used libraries and QDAcity-
specific implementation details of the new real-time collaborative editing feature.
Chapter 6 revisits and evaluates the fulfillment of the requirements as stated in
chapter 3. Chapter 7 discusses considerations about adaptations to QDAcity that
were considered but decided against. Additionally, it presents general considera-
tions about the development process and proposes possible future work. Finally,
chapter 8 summarizes and concludes this thesis.

3

1. Introduction

4

2 Related Work

This chapter summarizes and discusses related work and research that is relevant
to this thesis. First, section 2.1 provides a basic overview of QDAcity and its
coding editor. In section 2.2, the difficulties and approaches of solving real-
time collaborative editing are discussed. Lastly, section 2.3 discusses the topic
of scaling a web application, like QDAcity that is deployed in a cloud-based
environment.

2.1 QDAcity

QDAcity is a cloud-based web application, developed and operated by the Profess-
orship for Open Source Software at the Friedrich-Alexander-Universität Erlangen-
Nürnberg. As mentioned in section 1.1, it is a representative of CAQDAS and
provides an environment for multiple analysts or researchers to collaboratively
conduct QDA. It is implemented using Javascript/Typescript and React in
the frontend and Java and Google Cloud Endpoints in the backend. Addition-
ally, the RTCS handles some live awareness features using Javascript. QDAcity
is based on various services provided by GCP, such as Google App Engine1,
Google Cloud Run2, Google Cloud Storage3, Google Cloud Datastore4, Google
BigQuery5, Google Cloud Endpoints6, Google Speech-to-Text7, as well as Redis8.

QDAcity’s multitude of features includes:

• A coding editor where most of the QDA is conducted.

• Tools to analyze, customize and add additional data and metadata to codes
and codings.

1cloud.google.com/appengine
2cloud.google.com/run
3cloud.google.com/storage
4cloud.google.com/datastore
5cloud.google.com/bigquery
6cloud.google.com/endpoints
7cloud.google.com/speech-to-text
8redis.com/cloud-partners/google/

5

https://cloud.google.com/appengine
https://cloud.google.com/run
https://cloud.google.com/storage
https://cloud.google.com/datastore
https://cloud.google.com/bigquery
https://cloud.google.com/endpoints
https://cloud.google.com/speech-to-text
https://redis.com

2. Related Work

• Tutorials that introduce QDAcity’s features and an FAQ.

• A project dashboard that displays statistical information.

• Speech-to-text transcription for audio data.

• A coding recommendation system.

• Import and export of documents in various formats like RTF and PDF.

• A project revision history.

• Role-based access control for users of shared projects.

• To-do lists.

For this thesis, the central part of QDAcity is the coding editor, as seen in figure
2.1.

Figure 2.1: Screenshot of a dummy project in QDAcity’s coding editor

The two main components of the coding editor are the sidebar and the content
area. Within QDAcity, users can create shared projects. A shared project may
contain multiple user-uploaded or -created documents in varying formats that
share a common code system. The code system is a tree-like structure of codes.
The sidebar of the coding editor, on the left side of figure 2.1, gives an overview of
these elements. The sidebar also contains most of the buttons for controlling the
application, applying codings, and using various tools. Additionally, the sidebar
displays if other users are currently working on the same project.

6

2. Related Work

For documents that are represented in an editable format, the content area dis-
plays an included and tightly integrated text editor. It is displayed on the right
side of figure 2.1. The text editor enables modification of the document and
provides rich text features. The left side of the text editor shows coding brackets
of codes applied to different parts of the text. Since these can be customized,
they are represented in various colors.

2.2 Real-time Collaborative Editing

This section discusses real-time collaborative editing. In the context of this thesis,
we have to choose an approach for implementing real-time collaborative editing
for QDAcity. Subsection 2.2.1 starts with traditional collaborative editing, like
a shared document file. Subsections 2.2.2 and 2.2.3 emphasize the constraints
and difficulties that distinguish real-time collaborative editing from traditional
collaborative editing. Subsequently, we will discuss how the three most popular
approaches to real-time collaborative editing handle these constraints and diffi-
culties. The approaches covered are Differential Synchronization (DS) in subsec-
tion 2.2.4, Operational Transformation (OT) in subsection 2.2.5, and Conflict-free
Replicated Data Types (CRDTs) in subsection 2.2.6.

2.2.1 Collaborative Editing

In the context of this thesis, we follow the definitions of The Document Founda-
tion (TDF)9 regarding collaborative editing, real-time collaborative editing, and
offline collaborative editing10. TDF is a charitable foundation under German law
and the developer and maintainer of LibreOffice.

Collaborative editing can be described as multiple users concurrently making
changes or applying edits (used synonymously in this thesis) on a document in
some form. If a document is represented by a generally indivisible block of binary
data (like a Microsoft Word document for example), this will lead to multiple
users making changes based on the same version of the document, overwriting
each other’s changes upon persisting the document. This problem is a type of
write conflict called lost updates. In general, a write conflict describes a situation
where multiple users (or other kinds of entities) concurrently make equally valid
changes to a document (or some other data object), based on the same version,
leading to data loss (like with lost updates) or inconsistent results.

9www.documentfoundation.org
10https://wiki.documentfoundation.org/index.php?title=Collaborative_Editing&oldid=

277901

7

https://www.documentfoundation.org/
https://wiki.documentfoundation.org/index.php?title=Collaborative_Editing&oldid=277901
https://wiki.documentfoundation.org/index.php?title=Collaborative_Editing&oldid=277901

2. Related Work

In software engineering, this is a typical use case for concurrency control. There
are two main approaches to concurrency control. These are pessimistic concur-
rency control and optimistic concurrency control (Sheikhan & Ahmadluei, 2013).

The pessimistic approach works by locking a shared document so that only one
user may edit the document at a certain time. According to Fraser (2009b),
"[...] a familiar [real-world] example is Microsoft Word’s behavior when opening
a document on a networked drive. The first user to open the document has global
write access, while all others have read-only access."

The optimistic approach works without locks. After reading and editing a doc-
ument, optimistic concurrency control would check whether the document has
experienced other changes in the meantime, before overwriting the file. If not,
the overwriting operation succeeds. If yes, then the change operation has to be
aborted and restarted based on the updated version of the document.

Both of these approaches of concurrency control have in common that they pre-
vent the possibility of write conflicts. Pessimistic concurrency control prevents
the possibility of concurrent writes in general, by locking a shared document
while it is being opened with write access. Optimistic concurrency control blocks
write conflicts by checking for their occurrence before writing a change, aborting
the write operation if it would lead to a write conflict. Both of these approaches
lead to changes on a document only being possible in serializable order, based on
the document’s most up-to-date version. This brings the version history of the
document into a global total order. A total order means that for any two edit
operations, we can always say which one happened first (Kleppmann, 2017). The
resulting version graph is a unidirectional path graph (like a single git branch) as
can be seen in figure 2.2. The nodes in figure 2.2 represent subsequent versions
of the document, edited by two different authors that are called "Green" and
"Blue". The edges in figure 2.2 represent the application of edits to convert an
old version of the document into a newer version.

Figure 2.2: Document edited by different authors, document versions are in a
global total order

Transferring the demonstrated example to a simple web application scenario, the
Microsoft Word document would be some kind of document data in a database.
The users trying to open and edit the Microsoft Word document would corres-
pond to users on a browser-based frontend. The frontend contains a document
editor component that is used to display and edit the document. Figure 2.3
demonstrates this scenario.

8

2. Related Work

Figure 2.3: Examplary architecture of a simple web application (including
write/read path)

According to Kleppmann (2017), "[...] in [the] typical web application model, the
database acts as a kind of mutable shared variable that can be accessed synchron-
ously over the network. The application can read and update the variable, and
the database takes care of making it durable, providing some concurrency control
and fault tolerance." In the context of the web application example, we assume
that the database is a single-node ACID-database that uses strong isolation like
via Two-Phase Locking (2PL) or serializable snapshot isolation to execute trans-
actions in serializable order (Kleppmann, 2017).

However, multiple users first requesting a document to the frontend and then
writing a new version of the document via separate database transactions would
again lead to users overwriting each other’s changes. To prevent the possibility
of lost updates and to be consistent with the Microsoft Word example, we would
assume that reading the current version of a document and overwriting it is
bundled into a single transaction. Changes on a document are always based on
the last written version and are applied to the document in total order. Thus,
the database also uses some form of pessimistic or optimistic concurrency control
to provide guarantees about the correctness of transactions and prevent write
conflicts on the document.

In practice, however, when a user reads the state of a document via the traditional
HTTP request/response pattern, he receives a snapshot of the document from a
single point in time. The browser assumes that the local state of the document is
static unless the user himself locally applies edits. The browser does not subscribe
to updates from the backend/database, thus the document is possibly stale before
even being displayed in the browser. The only way of finding out whether the
displayed data is stale would be to repeatedly refresh the web application in

9

2. Related Work

the browser to check for newer versions. However, repeatedly sending reads via
HTTP request will still display snapshots of the document from different points
in time (Kleppmann, 2017), which may already be stale on arrival. In computer
science, this is referred to as polling. The web browser that displays the snapshot
of the data after requesting it can be seen as a temporary, possibly stale cache of
the data from the database.

Real-time collaborative editing can be described as multiple users simultaneously
editing the same document. In the context of this thesis, we understand real-
time collaborative editing as being a seamless experience. Multiple users editing
a document, using real-time collaborative editing, shall feel the same way to them
as editing the document alone on their local client. The only difference is the
following: if multiple users are concurrently editing the same document, the users
see each other’s changes pop up in real time. In the context of this thesis, real-
time is defined as as fast as reasonably possible, given the usual constraints of
a distributed system. Furthermore, there is offline collaborative editing. Offline
collaborative editing describes a situation where users can keep editing a shared
document after disconnecting. While disconnected, users that are concurrently
editing a shared document cannot exchange updates. However, these updates will
be exchanged once the connection is restored, converging the shared document.

Enabling real-time collaborative editing in a web environment requires solving the
two problems of enabling real-time reads and real-time writes. We will discuss
these in the following, starting with enabling real-time reads.

2.2.2 Real-Time Reads

A user writing some data and another user reading it can be thought of as a
data flow connecting the two users. The arrows between the different domains
in figure 2.3 represent this data flow. It can be divided into two different areas.
The part of the data flow that is triggered by the writing user is called the write
path whereas the part of the data flow that is triggered by the reading user is
called the read path (Kleppmann, 2017). Both of these are marked as such in
figure 2.3. It is important to emphasize that the write path and read path are
not just determined by the travel of data between the different domains of the
application, but more importantly, by the general work done that is triggered by
the writer or reader. However, in this case, the data travel distance serves as a
way of visually representing this "work done".

In order to enable faster reads we need to extend the write path and shorten
the read path. For example, a web application like Twitter might prebuild every
user’s feed page on writes to be able to serve quicker reads (Kleppmann, 2017).
Without a prebuilt user feed, answering a user’s read request for his feed would
require going through the tweets of all his followed users to collect all of their

10

2. Related Work

relevant posts and build the feed page from scratch. This results in extensive
querying of the database for lots of data from different users.

With a user’s feed page being prebuilt on writes, a read request for a user’s feed
page can be immediately answered using the prebuilt feed page. Consequently,
since work has been shifted from the read path to the write path, the read path
for feed pages has been shortened while the write path of new tweets has been
extended.

However, rebuilding the user feed from scratch on every relevant write is still an
expensive operation. Especially when considering that many prebuilt versions of
the user’s feed page might never be requested by the user before the feed page is
rebuilt again on the next relevant write. In order to avoid fully rebuilding a user’s
feed page from scratch on every relevant write, it can instead be maintained and
updated on relevant writes. In order to keep the prebuilt user feed up to date,
relevant writes are required to be pushed to the prebuilt user feed.

This can be seen in figure 2.4. In order to visually represent the extended write
path and shortened read path, we assume that the prebuilt user feeds are cached
close to the backend instances. Since the prebuilt user feeds are updated on
relevant writes to be consistent with the state of the application in the database,
they can be seen as an extension of the state of the database. The state of a
prebuilt user feed in the cache is derived from the state of the database, which
acts as the source of truth (Kleppmann, 2017).

Figure 2.4: Example of an adjusted write/read path for a web application

However, in order to enable real-time reads for real-time collaborative editing, it
is not enough to just shorten the read path. Enabling real-time reads requires
pushing writes to the readers as soon as they happen, thus extending the write
path all the way from the writer to the reader. This results in eliminating the

11

2. Related Work

read path entirely. Instead of waiting for the user to request a snapshot version
of the document, changes to the document need to be pushed directly to a user’s
browser, keeping the document displayed in the browser up to date. This is
analogous to the prebuilt user feeds being kept up to date in the cache at the
backend instances of figure 2.4. As long as the document is opened in the browser
of the user, the state of the document in the user’s browser is seen as an extension
of the database, which needs to be kept consistent with the state of the database.

This requires moving beyond the basic request/response pattern, to using bidirec-
tional communication protocols like the WebSocket protocol. WebSockets keep
an open TCP connection to a server, and the server can actively push messages
to the client as long as it remains connected. This enables the backend to actively
inform the frontend client about any changes to the state it has stored locally.
Upon connection, the client would still request the initial state of the document,
involving a read path. Afterwards, the client can rely on the stream of changes
sent by the backend (Kleppmann, 2017).

2.2.3 Real-Time Writes

Enabling real-time writes is a more difficult problem. For an application in a
web environment like in figure 2.3, traditional collaborative editing using con-
currency control and strong consistency would mean the following: in figure 2.3,
the database is responsible for preventing write conflicts of a single document by
enforcing linearizable writes, and thus a total order of changes. All writes have
to be based on the most up-to-date version of the document. Thus, after every
write the frontend requests the backend to confirm that the changes made on
the current local version of the document have been successful. In this context
successful means that the changes did not collide with other changes made in the
meantime. If the backend confirms it, the new version will replace the current
version in the database. If the backend declines, the local changes will be undone
and the document will be refreshed to display the newest version. If this request
happens synchronously, the user in the frontend cannot make any further changes
until the last change has been confirmed.

In a real-time collaborative editing scenario, in order for a user to be confident
that his local version is in sync with the global version of the document, a user
would have to pause and wait for confirmation after every keystroke. Further-
more, multiple users editing the same document would result in frequent write
conflicts and thus invalidations of local changes. With more users editing the
same document, the probability of global write conflicts and thus locally invalid-
ated changes increases exponentially. Of course, one could mitigate this problem
by more granularly locking only parts of the document. For example, a database
might use locks on a single row level (Kleppmann, 2017) and a document might
use one lock per paragraph or line. However, this does not solve the underlying

12

2. Related Work

problem. To make things worse, offline collaborative editing is not possible in
this scenario, since the database has to linearize and confirm every edit. To sum-
marize, traditional concurrency control would severely restrict the usability of
the editor and not provide a satisfying real-time collaborative editing experience.

At this point, the real-time collaborative editing web application can be described
as a distributed system with multiple writing nodes, concurrently writing to the
same data in form of the document. In distributed systems theory, allowing only
a single writing node (either via concurrency control or as an elected leader node)
is not the only way of dealing with the possibility of write conflicts. Instead, one
could also allow multiple nodes to write conflicting versions and then handle write
conflicts retrospectively. Retrospectively handling write conflicts is a responsib-
ility that can be left to the clients that are using the system or to the system
itself. In case of the clients having the responsibility, it could look like this: The
distributed data system would be persisting all conflicting versions in a so-called
multi-value register (Vitillo, 2022). Then, upon read request, the system would
return all conflicting versions to the client. The client would then be in charge
of merging the conflicting versions or choosing the most valid one. However, for
our use case, a solution that does not hand over this responsibility to the client
appears to be more suitable. Another way of dealing with write conflicts would
be having the system retrospectively resolve conflicts algorithmically, by merging
or deciding on a preferred version (Kleppmann, 2017).

A simple way of handling write conflicts is Last-Write-Wins (LWW), available
in many different database systems (Kleppmann & Beresford, 2017). However,
as the name suggests, LWW handles write conflicts by accepting the last write
(by timestamp) and discarding all other conflicting versions. Thus not a lot is
gained from using it for real-time collaborative editing. In order to enable real-
time collaborative editing, a more sophisticated conflict resolution algorithm is
required.

In order to enable real-time writes, in the sense of real-time collaborative editing,
the user needs to be able to make lasting changes in his local client, based on the
version that is currently in his local client. In other words, when a user makes
changes to his local document, its state must be allowed to temporarily diverge
from the state of the document in the rest of the system. Instead of asking
the backend/database to approve and write some changes, the backend/database
needs to accept the concurrent edits/conflicting versions of multiple users. It is
then the responsibility of the backend and the rest of the system to retrospectively
resolve write conflicts by converging the state of the document while incorporating
all received edits/conflicting versions. The user has to be able to rely on the
guarantee that the changes he made will as soon as possible be incorporated into
a future version and not get dropped, even when one or multiple other users make
changes at the same time.

13

2. Related Work

In summary, the state of the document must be allowed to temporarily locally
diverge, yet guaranteed to eventually globally converge. This means a depar-
ture from linearizability/strong consistency and a global total order of changes,
towards strong eventual consistency, a global partial order, and locally diver-
ging total orders (Alexei Baboulevitch, 2018). Strong eventual consistency is
a variation of eventual consistency that guarantees strong convergence. Strong
convergence means that a local replica that receives concurrent edits from other
replicas, can immediately apply incoming edits to its local version, and still even-
tually converge. With strong convergence, all incoming edits can be applied to
the local state immediately upon arrival, no matter their order of origin or ar-
rival. Replicas that have received and applied the same edits (or the same subset
of edits), are guaranteed to have the same local state, no matter the order of
application of these edits (Vitillo, 2022).

Figure 2.5: Document simultaneously edited by different authors, document
versions in global partial order and local total order

Partial order means that, unlike with a total order, pairs of operations exist for
which you can not decide which happened first (Kleppmann, 2017). These are
the edits that happened concurrently at different clients. Figure 2.5 shows some
exemplary version graphs. From a global perspective, the version graph of the
document is partially ordered. This means that the version graph may include
some changes that happened sequentially as well as other changes that happened
concurrently, leading to branching in the version graph. In distributed systems
theory, global partial order is usually used in accordance with causal order and
causal consistency. (Kleppmann, 2017). In order to keep track of causal order in
a distributed system, logical clocks (Lamport, 1978) like Lamport timestamps or
vector clocks are used. These work similarly to the version counters in figure 2.5.

14

2. Related Work

Locally, users write and receive changes to their version of the document at
different points in time, leading to temporary divergence of the local versions
from the other versions of the document in the rest of the system. However,
for real-time collaborative editing, all the local versions shall eventually converge
into a single global version.

For distributed systems in general there are many constraints that apply (Van
Den Hoogen, 2004). One of these is the certainty that network partitions are
inevitable in a distributed system (Gilbert & Lynch, 2012). In the context of a
web application that offers real-time collaborative editing, being able to tolerate
network partitions means supporting offline collaborative editing. Nonetheless,
even without network partitions, messages in a packet-based network can arrive
indefinitely delayed (for example due to packet congestions). Correctly handling
these cases requires the real-time collaborative editing web application to be able
to merge an undefined number of concurrent changes, based on different versions
of the document, arriving at the same time.

The three most popular approaches to solving real-time collaborative editing are
DS, OT, and CRDTs. These will be discussed in the following subsections.

2.2.4 Differential Synchronization

The first solution for real-time collaborative editing we are looking at is DS. DS
is an algorithm that has been developed by Neil Fraser at Google (Fraser, 2009b).
DS can be described as a further development of three-way merges.

Three-way merges have been used in early forms of collaborative editing (Lind-
holm, 2004). Nowadays, three-way merges are best known from version control
software like git and svn. A three-way merge is what the "git merge" command
does when both of the branches that are to be merged, experienced changes since
diverging. A three-way merge solves write conflicts, by comparing both of the
changed versions with their shared base versions to build a combined version
(using a patch function). An example of this is demonstrated in figure 2.6.

Three-way merge uses diff, match, and patch functions to achieve this. How well a
three-way merge solves write conflicts depends on the individual implementation
of these functions. On the one hand, this means that you can use a three-
way merge for basically any use case as long as you have fitting diff-match-patch
implementations for your use case. On the other hand, this way, the responsibility
for the correct handling of write conflicts is ultimately still on the developer that
provides the diff-match-patch implementation. For example, git merge uses a
line-based approach to merge changes to the same file (de la Vega & Kolovos,
2022). However, in case of overlapping or overly intermixed changes, it relies on
the user to converge conflicting versions into a consistent state.

15

2. Related Work

Figure 2.6: Example of a three-way merge using git merge
(Source: https://www.atlassian.com/git/tutorials/using-branches/git-merge)

In 2006, Google implemented its version of diff-match-patch for plain text (also
line-based) to power Google Docs11.

The main problem with three-way merges for real-time collaborative editing is
the following: if another user makes any changes to the merging versions while
the merge is still in progress, the merged version is basically obsolete before
even being finished. Thus, the three-way merge is not useful while users are still
actively editing. Think about another git user committing a change to one of
the two branches that are to be merged, while the merge is in progress. If this
happens, you need to redo the three-way merge from scratch, incorporating the
new commit, in order to get an up-to-date result. Fraser (2009b) calls this "[...]
the chickens [need to] stop moving so we can count them".

DS is an algorithm that gets around this problem by using an infinite cycle of
background diff and patch operations (Fraser, 2009b). In this example, the match
step from diff-match-patch is part of the patch operation, resulting in diff-patch.
An overview of DS in a local environment can be seen in figure 2.7. In a local
environment, the client text and the server text share the same common shadow,
whereas, in a network environment, each client/server text has its own shadow.
However, the working principle remains the same.

11github.com/google/diff-match-patch

16

https://www.atlassian.com/git/tutorials/using-branches/git-merge
https://github.com/google/diff-match-patch

2. Related Work

Figure 2.7: Differential Synchronization in a local environment (Fraser, 2009b,
p. 2)

According to Fraser (2009a), the algorithm consists of the following steps:

1. First, the Client Text is diffed against the Common Shadow.

2. A list of edits that have been performed on the Client Text is returned.

3. Common Shadow is overwritten with the current snapshot of the Client
Text.

4. The list of edits from step two are applied to the Server Text on a best-effort
basis.

5. Server Text is updated with the result of previous step.

6. The cycle restarts with the server text at step one.

The enabling mechanism is that the patch algorithm is fuzzy (Fraser, 2009a).
This means that the patches are likely able to be successfully applied per line of
text to their target text, even if the line changes in the meantime. If a patch can
not be successfully applied to a line anymore (due to severe changes of this line
in the meantime), another synchronization attempt will be included in the next
loop going in the other direction. This leads to repeated attempts at converging,
possibly cycling until it succeeds.

17

2. Related Work

However, eventual automatic convergence is not guaranteed. Patches can not be
guaranteed to arrive (in time or at all) in a network environment with best-effort
delivery. This might lead to client text and server text (and their local shadows)
diverging to an extent that is beyond synchronizable with simple patch operations
(Fraser, 2009a). This is because at some point the patch algorithm might not
recognize the right lines to apply the line-based edits to anymore. In this case,
the process requires human intervention or the two parties have to sync by one
side transmitting the whole body of the text to the other side, possibly discarding
changes by doing so.

To summarize, with appropriate implementations of diff and patch, DS can ba-
sically be applied to enable real-time collaboration in any use case. However,
this is a double-edged sword. Similar to the three-way merge, the diff and patch
algorithms, which are doing the heavy lifting for write conflict resolution and
convergence, are to be provided by the developer. One could describe this as con-
cealing the true complexity of handling write conflicts for real-time collaborative
editing behind the abstractions of unspecified diff and patch functions (Alexei
Baboulevitch, 2018). Additionally, a developer that is implementing custom diff
and patch algorithms for his custom use case will have a hard time mathematic-
ally proving that his implementation delivers correct results. To summarize, the
patch algorithm is generally fuzzy and works on a best-effort basis.

On the one hand, this is advantageous. Whereas other text-based solutions usu-
ally work with indexes (like OT for example), DS tries to find the most probable
positions for its changes by looking at the surrounding characters (the "match"-
part of diff-match-patch). Thus, generally staying true to the intention of the
users changes. On the other hand, since it does not rely on a mathematically
proven model for convergence (Alexei Baboulevitch, 2018), it is unclear whether
it will actually be able to converge the state of two documents. If it cannot, one
side must transmit the whole body of the text to the other side to get back in
sync. This results in the loss of applied changes. To avoid the sudden loss of data
it could stop and ask the users to manually merge the two documents, resulting
in a suboptimal user experience. As of 2010, Google replaced three-way merging
and DS for Google Docs in favor of OT (Day-Richter, 2010).

2.2.5 Operational Transformation

OT is the most popular solution for real-time collaborative editing, notably cur-
rently used in Google Docs (Day-Richter, 2010), Etherpad (‘Etherpad’, 2011,
March 26/2011), Dropbox Paper (Sun et al., 2018) as well as many other commer-
cial products. OT resolves write conflicts by transforming concurrent operations.
Figure 2.8 shows an example of this.

18

2. Related Work

Figure 2.8: Example of OT (Boelmann et al., 2016, p. 4)

Part (a) of figure 2.8 shows two clients making concurrent changes to their local
copy of the shared string "abc". The edit operations consist of an operation
type (like insert or delete), an index, and possibly one or multiple characters.
Transmitting edit operations over the network to other clients takes an unspecified
amount of time. This is not a problem as long as edit operations happen non-
overlapping in global total order. However, concurrent edits will make the local
copies diverge. In figure 2.8, the shared string "abc" locally diverged to "ab" and
"dabc". After receiving and executing the edit operations of the other client, the
local strings are "dab" and "dac". By simply exchanging concurrent index-based
edit operations, the local copies of the shared string have not converged again.

Inserting a character at any position in a string increments the index of all sub-
sequent characters. The edit operations in this format rely on an index to specify
the position of the operation. Executing the edit operations in different orders
leads to different outcomes. Consequently, edit operations that rely on indexes
are not commutative. In this case, whereas del(2) deleted the character c for
process A, it deleted the character b for process B due to the changed index of
character c after the ins(0,d) operation of Process B.

19

2. Related Work

Part (b) of figure 2.8 shows how OT solves this problem by transforming concur-
rent edit operations in a way that leads to convergence of the shared string. OT
recognizes operations that happen concurrently with other operations based on
a version counter/logical clock. Then, if necessary, it adapts the edit operations
to the individual local version timelines before applying them. In part (b) of
figure 2.8 you can see that the del(2) operation was adapted to the local version
timeline of process B by changing it to del(3). However, for the ins(0,d) opera-
tion at process A it was not necessary to do so, because this edit operation is not
affected by the previous del(2) operation.

OT accepts that in a distributed system, edit operations that are distributed over
the network will lead to noncommutative operations being applied in different
local orders. It then adjusts these edit operations accordingly to account for
these different local edit histories and has the local versions globally converge
anyway.

Since OT intercepts and, if needed, modifies edit operations it can be described
as an input-based algorithmic solution. Due to the reliance on index-based edit
operations, OT is especially suited for real-time collaborative editing of an ordered
list of items (Kleppmann, 2017). Thus, OT is not all too complex to implement
for plain text editing. However, for rich text editing, due to the sheer number of
possibilities of at least two different operations overlapping, it is generally known
as being very complex to implement correctly. For example, when adding a
new custom edit operation, all the possible interactions with every other existing
operation need to be correctly handled (Alexei Baboulevitch, 2018). Due to its
complexity, it tends to be more in use by larger companies.

After its first proposal by Ellis and Gibbs (1989), many different versions of
OT have been proposed, yet proven to not guarantee convergence (Kleppmann,
2018). For most of them, some edge cases were eventually discovered that were
found to produce different results on different clients. With OT this is especially
problematic. Because it is an input-based algorithm, once documents go out of
sync due to incorrectly handled inputs, they will remain out of sync for at least
the remaining session.

Most of the still assumed to be correct versions of OT require a central server that
handles each client individually, thus avoiding the complexity of transformations
that involve multiple users at the same time. These are the algorithms proposed
by Nichols et al. (1995) and Vidot et al. (2000). An assumed to be correct
Peer-to-Peer (P2P) implementation of OT was proposed by Oster et al. (2006).
This approach works by, among other things, retaining tombstones for removed
elements. However, since this approach turned out to be even more complex
(Herron, 2020), most applications that use OT rely on a central server.

20

2. Related Work

To summarize, the strengths of OT include the following:

• Since OT works by intercepting and modifying different edit operations,
the underlying document data structure itself remains unchanged.

• The intent of a user’s change can be represented by the type of operation.

• OT is generally real-world proven when using a central server, due to the
number of products that successfully use it.

• Simple implementation for plain text editing.

• OT can support offline collaborative editing for clients by locally buffering
operations and then reconciliate with the server upon reconnection (Gentle,
2016).

Nonetheless, there are also some downsides:

• While the client has been offline, many concurrent changes might have
happened that need to be taken into account when transforming the locally
buffered operations. This leads to potentially expensive operations upon
reconnection.

• OT is complex to implement for rich text editing from the ground up, due
to the large number of cases and edge cases that need to be considered.

• Since OT only works on the inputs, a single faulty transformation is enough
for documents to be permanently out of sync.

• Not well suited for P2P-based real-time collaborative editing.

• Since a single central server is responsible for algorithmically combining all
concurrent edit operations, the performance of OT can suffer dramatically
with high numbers of concurrent edit operations (Li & Li, 2006) or clients
recovering from network partitions.

2.2.6 Conflict-Free Replicated Data Types

The third and youngest approach to real-time collaborative editing is based on
CRDTs. According to Kleppmann (2017), CRDTs "[...] are a family of data
structures for sets, maps, ordered lists, counters, etc. that can be concurrently
edited by multiple users, and which automatically resolve conflicts in sensible
ways".

Although CRDTs have been around for longer, they have first been formalized as
a category of data structures by Shapiro et al. (2011). They are mathematically
sound, based on commutativity and monotonic semilattices. Thus, provided a
communication network that ensures eventual delivery, "CRDTs are guaranteed
to [eventually] converge towards a common, correct state, without requiring any

21

2. Related Work

synchronization", according to Shapiro et al. (2011). Since then, more complex
data structures like nested JSON objects have been implemented as CRDTs
(Kleppmann & Beresford, 2017), enabling more complex use cases like real-time
collaborative, rich text editing.

According to Bourgon (2014), "the tl;dr on CRDTs is that by constraining your
operations to only those which are associative, commutative, and idempotent,
you sidestep a lot of the complexity in distributed programming." These three
properties are what different CRDTs have in common:

• Commutativity: Commutativity is defined as the property that the order
of applied operations does not change the outcome, i.e. f(g(x)) = g(f(x)).
Well-known commutative operations are addition (a + b = b + a) and
multiplication (a * b = b * a).

• Associativity: Associativity is defined as the property that the grouping
of operations does not change the outcome. Again, well-known associative
operations are addition (a + (b + c) = (a + b) + c)) and multiplication
(a * (b * c) = (a * b) * c).

• Idempotence: Idempotence is defined as the property of an operation that,
when performed only once has the same effect as when performed multiple
times. Setting a key in a key-value store to some fixed value is an idem-
potent operation, since writing the value again simply overwrites the value
with an identical value. However, incrementing a counter is not idempotent
since performing the increment again means the value is incremented twice
(Kleppmann, 2017).

These properties are achieved by attaching additional metadata to the data struc-
ture and its contents (Kleppmann & Beresford, 2017). This additional metadata
could be IDs for all elements, tombstones for deleted elements, or logical/vector
clocks.

Figure 2.9 shows an example of a CRDT for real-time collaborative plain text
editing. Both replicas (p and q) start with the string "abc". Both replicas
make some changes. Then their local edits are exchanged via the network. It
is important to note that the indexes that are used as parameters for the edit
operations are only used as an API to point to characters in the text. Internally,
unique IDs are used to access certain characters. This is contrary to the approach
of OT from the previous subsection 2.2.5. OT tries to identify characters in a
text document by index position and then algorithmically fixes synchronization
problems of distant clients by transforming index-based operations. CRDTs avoid
the problem of shifting indexes by using the additional metadata to uniquely
identify all characters by ID.

22

2. Related Work

Figure 2.9: Concurrent editing of plain text using a CRDT (Kleppmann &
Beresford, 2017, p. 5)

Replica p deletes the ’b’ character using an index as a parameter. Since replica
q added a ’y’ character at the beginning of the string and inserted a ’z’ character
in front of ’b’, the index of subsequent characters got incremented. This includes
the ’b’ character, whose index was incremented by two. However, since CRDTs
rely on unique ids to access single elements, the shifted indexes do not prevent
the delete operation at replica q from finding the right character to delete.

Both replicas add one new character, ’x’ and ’z’, behind ’a’. Because these oper-
ations happen concurrently, after exchanging the edits it is unclear whether ’x’ or
’z’ is supposed to be first in order. In this case, the CRDT uses an unambiguous
secondary sorting property that ensures that the result of concurrent operations
will be the same on every replica. Thus, the replicas are guaranteed to converge.

The listed properties enable CRDTs to provide eventual consistency without OT-
like transformations, without concurrency control (Sun et al., 2018) and even
without a central server. In a P2P environment or leaderless data system, every
participating replica might broadcast received edit operations to all other par-
ticipating replicas. This would be a problem for a simple OT algorithm, due
to the nonidempotent operations. However, the idempotence property of CRDT
operations ensures that this is not an issue. For example, a P2P environment
might lead to a unique delete operation arriving multiple times at a replica. In
this case, a tombstone in the metadata of the CRDT signals that the repeatedly
received delete operation has already been executed and can be ignored.

23

2. Related Work

In general, CRDTs can be described as approaching the problem on a lower
level than OT, by building data structures that are inherently tolerant of the
constraints of distributed systems. As claimed by ‘Peter Bourgon on CRDTs, Go
at SoundCloud’ (2015), "the key win for CRDTs is that [as a developer] you get
to ignore all the problems that are inherent in distributed systems, so network
failures, message duplication, out of order arrival [...]".

However, there is a significant downside of using CRDTs. Because this is a
data structure-based approach, developers are forced to map the data (and thus
logic) that is supposed to converge to appropriate CRDTs. Since OT works on
the edit operations, real-time collaborative editing can be implemented without
touching the underlying data structures. Implementing CRDT-based real-time
collaborative editing to an existing application is a more extensive operation.

In practice, CRDTs are deployed for many use cases beyond collaborative text
editing. CRDTs are especially prevalent as registers, counters, maps, and sets
for so-called Dynamo-style key-value stores like Dynamo, Cassandra, or Riak
(Vitillo, 2022). For example, Riaks CRDTs have been part of the implementation
of the chat feature of a multiplayer game that handled 70 million unique monthly
players at the time (Ptaszek, 2014). Beyond that, CRDTs are in use by many tech
companies like Meta (Shi et al., 2020), Apple (Hedkvist, 2021) and Soundcloud
(Bourgon, 2014).

To summarize, using CRDTs for real-time collaborative editing includes the fol-
lowing strong points:

• CRDTs’ defining properties allow developers to avoid dealing with lots of
constraints of distributed systems, reducing development complexity.

• CRDTs are naturally convergent. No algorithmic conflict resolution mech-
anisms are required, further reducing complexity.

• Due to CRDTs’ defining properties being inherent to the data structure
itself, no central server is required. This enables P2P environments, high
scalability, and high availability.

• CRDTs’ defining properties enable offline-mode support with almost no
overhead.

On the other hand, weaknesses of CRDTs for real-time collaborative editing
include:

• CRDTs reliance on additional metadata, may affect long-term performance.
The reliance on tombstones for deleted elements, for example, leads to
monotonically increasing document size as more operations are applied,
even when content is deleted. This also makes CRDTs more suitable for
manually edited documents than automatically written documents.

24

2. Related Work

• Whereas OT defines and works on different edit operations that are close
to the actual user operations, CRDTs’ state-transforming operations are
more low-level. Consequently, these operations do not capture the user’s
intent as accurately. This may lead to users having to intervene if a shared
document converges in an unexpected way.

• CRDTs are a data structure-based approach to real-time collaborative edit-
ing. Consequently, adding real-time collaborative editing to existing applic-
ations requires translating the existing underlying data structures and the
logic that acts upon them to CRDTs. This requires major modifications.

2.3 Scaling a Cloud-Based Web Application

This section presents the topic of scaling a web application in a cloud-based
environment. After providing a general overview of cloud computing as an en-
vironment for scaling applications in subsection 2.3.1, we will discuss the two
basic categories of scaling applications. These are vertical scaling, as described
in subsection 2.3.2, and horizontal scaling, as described in subsection 2.3.3 (Dutta
et al., 2012). Furthermore, we will outline the topic of scaling dynamically based
on fluctuating workloads, called elasticity, in subsection 2.3.4.

According to Sotiriadis et al. (2019), scalability refers to the ability of the system
to accommodate larger loads (mid to long-term adjustments), whereas elasticity
refers to the ability to adapt to loads dynamically (short-term adjustments).
Scaling an application could include taking measures in terms of its underlying
hardware resources as well as adapting an application’s software and structure in
order to better deal with the increasing load. When scaling an application, there
are different kinds of load whose scaling must be approached in different ways. For
example, scaling the amount of data an application can hold differs from scaling
the volume of requests an application can process (Kleppmann, 2017). Elasticity
is enabled in particular by on-demand resource provisioning that public cloud
platforms provide.

2.3.1 Cloud Computing

The emergence of cloud computing had a big impact on facilitating the provision-
ing of underlying hardware resources to an application. According to Armbrust
et al. (2010), the term cloud computing refers to both the cloud itself (the hard-
ware and software in the data centers) as well as the services provided by those
data centers. These are usually divided into Infrastructure as a Service (IaaS),
Platform as a Service (PaaS) and Software as a Service (SaaS). A cloud that is
made available to the general public is called a public cloud while an organiza-
tion’s internal cloud is called a private cloud. The public clouds with the most

25

2. Related Work

market share as of 2023 are (in descending order) Amazon Web Services (AWS),
Microsoft Azure and GCP. According to Dutta et al. (2012), the emergence of
public clouds was enabled primarily by advances in server virtualization (for in-
stance containerization) and has been a major transformation in the IT industry
in the last 15 years.

According to Armbrust et al. (2010), on the public cloud provider side, the key
advantages of cloud computing compared to traditional medium-sized, private
data centers are economies of scale and multiplexing. Due to economies of scale,
building extremely large-scale, commodity hardware data centers at optimal loca-
tions vastly reduces the costs of hardware, software, maintenance, and operation.
This applies in particular when comparing large-scale public cloud data centers
to smaller, on-premise data centers. Hardware is expensive, not just to purchase
but also to operate. The cost of operation of a server does not scale down lin-
early with its utilization. This is because an idling server will still draw a lot of
power and needs to be maintained. Consequently, higher utilization of existing
hardware in a data center is generally more efficient and preferred. As stated by
Armbrust et al. (2010), back in 2008, "[...] real world estimates of average server
utilization in data centers range from 5% to 20%. This may sound shockingly
low, but it is consistent with the observation that for many services the peak
workload exceeds the average by factors of 2 to 10. Since few users deliberately
provision for less than the expected peak, resources are idle at nonpeak times.
The more pronounced the variation, the more the waste." Making large-scale data
centers available to the general public greatly improves the utilization rate of ex-
isting hardware, since a variety of workloads of different customers balance each
other out and lead to smaller fluctuations in utilization. In consequence, while a
small-scale, company private, on-premise data center may experience big fluctu-
ations between low and high utilization, a large-scale public cloud data center is
generally able to balance its utilization on a higher, more efficient level.

On the customer side, using services provided by a public cloud instead of building
and operating a small to medium-sized private data center includes the following
benefits (Armbrust et al., 2010):

• Less financial risk: The elimination of a big up-front financial commitment
of building a data center, including acquisition and operation of hardware,
enabling small startups with low resources or big risk-averse companies to
innovate using data center services.

• Easy scaling on demand: The ability to provision what appears to be
infinite computing resources on demand, thus enabling an application to
scale alongside possibly rapidly growing demand without having to rely on
long-term growth predictions to acquire a sufficient amount of hardware
resources beforehand.

26

2. Related Work

• Elasticity: The ability to automatically adjust to fluctuations in workload
and only pay for services that are actually being used, financially rewarding
the freeing of resources that are no longer needed.

Since the objective of this thesis includes implementing a scalable service in a
cost-efficient way, these benefits are significant to us. Even if a cloud computing
provider might set a price for using a server per timespan that is higher than
the cost of operating the same server for the same timespan by yourself, the
operational and economical benefits of easier scaling and elasticity as well as less
financial commitment usually outweigh the potentially lower costs of self-hosting.

2.3.2 Vertical Scaling

As mentioned before, vertical scaling can be defined as adding more resources to
existing application instances. As stated by Pujol et al. (2010), "a natural and
traditional solution to cope with higher demand is to upgrade existing hardware".
This includes upgrading the capabilities of the CPU, memory, storage, network
bandwidth, etc. With specialized hardware, you can join together many CPUs,
RAM chips, and disks under one operating system and a fast interconnect allows
any CPU to access any part of the memory or disk. This so-called shared-memory
architecture can still be treated as a single machine (Kleppmann, 2017).

As stated in subsection 2.3.1, vertical scaling is significantly easier in a cloud com-
puting environment compared to a traditional self-hosted environment. Whereas
in a conventional environment, you had to purchase hardware, install it and get
it up and running with appropriate drivers, in a cloud computing environment
it is usually a matter of just a few clicks to upgrade a Virtual Machine (VM) to
stronger hardware or a cloud service to a higher tier. Modern hypervisors might
even support adding additional resources to a VM without stopping it (Dutta et
al., 2012), a process called hot adding. However, with VM-focused cloud services
like Amazon Elastic Compute Cloud (EC2) 12 and Google Compute Engine13 the
execution of the VM usually still needs to be stopped in order to upgrade its in-
stance type. This is because an upgrade of its instance type will most likely trigger
a live migration of the stopped VM to a different physical machine (Dutta et al.,
2012). This process avoids restarting the VM and re-initializing its applications,
thus preserving its state. However, live migration of a VM will still incur some
unavailability and delay in executing incoming requests. The time frame of a live
migration can take anywhere from a few seconds to several minutes, depending
on different circumstances like the size of the VM, availability of resources, or
whether the VM shall be migrated to a different region/data center.

12docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html
13cloud.google.com/compute/docs/instances/changing-machine-type-of-stopped-instance

27

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html
https://cloud.google.com/compute/docs/instances/changing-machine-type-of-stopped-instance

2. Related Work

Positive aspects of vertical scaling include:

• Vertical scaling of VMs in a cloud-based environment usually only takes a
few clicks and some downtime for live migration.

• Vertical scaling is an easy way of increasing an application’s processable
load, without having to implement complex adaptations of its software.

On the other hand, vertical scaling also has significant drawbacks (Kleppmann,
2017):

• As stated by Kleppmann, "the problem with [vertically scaling a machine
using] a shared-memory approach is that the cost grows faster than linearly:
a machine with twice as many CPUs, twice as much RAM, and twice as
much disk capacity as another typically costs significantly more than twice
as much. And due to bottlenecks, a machine twice the size cannot necessar-
ily handle twice the load." Vertically upscaling a single shared-memory ma-
chine will quickly lead to a departure from commodity hardware, towards
hardware specialized for High Performance Computing (HPC), incurring
huge costs. As mentioned in subsection 2.3.1, using commodity hardware
in high volumes is much more price efficient and a key characteristic of
cloud computing.

• A vertically scaled, special hardware machine might be able to process the
same load as multiple commodity hardware machines. However, unlike
multiple commodity hardware machines, it is still a single point of failure.
This generally leads to lower availability.

• Related to the previous point, a vertically scaled, shared-memory architec-
ture system is definitely limited to a single geographic location. This leads
to high latencies from distant regions.

• In many cases, workloads have reached a size that makes vertical scal-
ing technically unfeasible. For example, already by the years 2008-2010,
Facebook (now Meta) required "multiple hundreds of Terabytes of memory
across thousands of machines", according to Pujol et al. (2010).

Due to these significant drawbacks, scaling an application nowadays usually refers
to horizontal scaling.

2.3.3 Horizontal Scaling

Instead of adding more resources to existing application instances, horizontal
scaling can be defined as adding additional application instances to the cluster
or instance group. Since these instances are executed separately, this is known as
shared-nothing architecture (Kleppmann, 2017). In a cloud computing environ-
ment, instances can refer to physical instances like a VM running the application,

28

2. Related Work

or logical instances, like serverless functions or an application process that is run-
ning in a VM. A physical instance can usually host multiple logical instances. In
the context of this thesis application instance refers to a logical instance.

The complexity of horizontally scaling an application can differ significantly, de-
pending on whether the part of the application that should be horizontally scaled
is stateless or stateful. In the context of this thesis, we will use definitions of state-
lessness and statefulness based on those formulated by Red Hat14. A stateless
application is defined as an application whose application instances can under-
stand and handle requests in isolation and do not locally store or require in-
formation on past requests. Therefore, an application instance can be replaced
interchangeably with any other identical application instance. Any user request
can be routed to and processed by any application instance (Kleppmann, 2017).
A stateful application, however, is defined as an application whose application in-
stances execute requests using the context of previous requests. Stateful requests
can be thought of as ongoing conversations with the same person. In order to
have a valid dialogue with a person, consecutive requests need to be answered by
the same person. Consequently, an instance of a stateful application cannot be
replaced interchangeably with other instances of the same application since their
states might differ.

Nowadays, web applications are usually deployed as stateless applications. As
has been said in subsection 2.2.1, the database in a traditional web application
schema acts as a passive, mutable, shared state that provides concurrency con-
trol and fault tolerance. The application instances, on the other hand, act as
stateless functions that mutate the state of the database. This separation of
state and function is also generally known as a fundamental aspect of Functional
Programming (FP).

The separation of state and function makes stateless applications easy to scale
horizontally. Since instances of stateless applications can respond to requests in-
terchangeably, horizontally scaling a stateless application may only require adding
additional instances behind a load balancer. Application instances of stateless
applications can be removed and added at will, without interfering with other run-
ning application instances. As claimed by Pujol et al. (2010), "horizontal scaling
has eased most of the scaling problems faced by traditional web applications.
Since the application front-end and logic are stateless, it can be instantiated on
new servers on demand in order to meet the current load." The functional as-
pect of stateless applications is also reflected in the names of some popular cloud
services that offer serverless hosting of stateless applications and automatic ho-
rizontal scaling. These include Azure Functions15 and AWS Lambda16.

14www.redhat.com/en/topics/cloud-native-apps/stateful-vs-stateless
15learn.microsoft.com/en-us/azure/azure-functions/
16aws.amazon.com/lambda/

29

https://www.redhat.com/en/topics/cloud-native-apps/stateful-vs-stateless
https://learn.microsoft.com/en-us/azure/azure-functions/
https://aws.amazon.com/lambda/

2. Related Work

Horizontally scaling stateful applications is far more complex since it generally
requires carefully designed logic, and/or partitioning of the application state.
Partitioning can be defined as splitting up the state of an application or database
into multiple disjoint partitions that are distributed among the set of application
instances. Requests that try to query a specific partition of the application state
need to reach the specific instance that is responsible for this partition. This
requires some kind of service or mechanism that handles the routing of requests
to the required application instance. This is an example of a common problem
called service discovery (Kleppmann, 2017), further adding complexity to the
stateful application.

The complexity of partitioning the state of an application or database varies sig-
nificantly, depending on the structure of the data that it holds. For example,
partitioning the key-value data of a hashmap, by key range or hash of the key,
is rather straightforward (Kleppmann, 2017). This is because the data is already
strictly separated by its keys. However, partitioning data that is highly intercon-
nected and does not already have clear boundaries is far more complex (Pujol
et al., 2010). Data from a social network for example is usually stored in the form
of graph databases. A graph database generally consists of vertices (entities) and
edges (relationships). Every pair of vertices can potentially be connected via one
or multiple edges. On a social network, a user can potentially be friends with
every other user but also be connected with all kinds of other entities like loca-
tions, posts, groups, events, etc. A graph database is a natural way of modeling
this highly interconnected data (Kleppmann, 2017). Partitioning this kind of
highly interconnected data is non-trivial, leading to the development of special-
ized algorithms and procedures (Pujol et al., 2010).

Regardless of whether data is easily partitionable or highly interconnected, par-
titioning requires careful consideration (Kleppmann, 2017). In order to distrib-
ute partitions among all of the application instances, the number of partitions
needs to be at minimum the number of application instances. When an applic-
ation scales horizontally, the number of application instances may increase and
at some point even exceed the number of partitions. At this point, in order to
redistribute the application state to all the application instances, the whole ap-
plication state needs to be repartitioned more granularly from scratch. In order
to avoid an expensive repartitioning process, it is generally advisable to parti-
tion the application state rather granularly from the beginning (assuming the
workload is expected to grow). This results in one application instance handling
multiple partitions. Once certain partitions become a so-called hot spot, either
in terms of their size or in terms of query load, the partitions need to be rebal-
anced. In this case, only specific application instances may be affected by the
rebalancing. A highly granular partitioning process allows for easy allocation of
an appropriate volume of partitions (in terms of total size and query load) to a
given application instance. However, high granularity comes with a high over-

30

2. Related Work

head of metadata. Thus, when partitioning the application state, it is required to
find a balance between the required granularity (for example based on estimated
workload growth) and the metadata overhead.

On the one hand, the advantages of horizontal scaling include the following:

• Vast scaling potential, enabling scaling of applications that cannot feasibly
be scaled vertically.

• Cloud providers offer services for fast and easy horizontal scaling of stateless
application instances.

• Since horizontal scaling is relying on commodity hardware, it is more cost-
efficient compared to vertical scaling.

• Generally higher availability, because the application is not relying on a
single instance point of failure.

• Instances in different regions possible, leading to low latencies for users.

On the other hand

• Horizontally scaling stateful applications usually requires significant adap-
tions of software and infrastructure.

• If required, partitioning, service discovery, and rebalancing introduce a lot
of additional complexity.

• Horizontal scaling brings up different bottlenecks at different magnitudes
of scaling. During the growth process of a horizontally scaled application,
its structure needs to be regularly adapted to the increasing load.

In summary, when it comes to horizontal scaling, if possible, it is preferable to
keep application instances stateless in order to avoid introducing the additional
complexity of scaling stateful applications. It should be mentioned, however,
that most applications can not avoid handling some kind of state. If not in the
service layer, then usually in an underlying database layer. Keeping application
instances in the service layer stateless for easier horizontal scaling may only shift
the complexity from the service layer to the underlying database layer. For
handling large amounts of data and complex state in the database layer, there
are many different existing databases. These may be open source or closed source,
relational or nonrelational, provide strong or weak isolation levels, are single node
or distributed, etc. Correctly choosing, configuring, and using a horizontally
scalable, distributed database brings a lot of challenges and complexity on its
own (Kleppmann, 2017) that cannot be ignored, whether by stateful or stateless
application instances. However, discussing this topic in detail would exceed the
scope of this thesis.

31

2. Related Work

2.3.4 Elasticity

As stated in chapter 2.3.1, many data centers and web applications experience
some kind of workload fluctuation, depending on the kind of service they provide.
Due to the natural day and night cycle, human-used web applications are espe-
cially affected by this. Based on sampling data of a private data center of a
Fortune 500 company, Dutta et al. (2012) observed that for half of the intervals,
the required short-term scaling factor exceeded 2.

Scaling a web applications infrastructure to handle the expected workload peaks
generally leads to overprovisioning, as seen in figure 2.10 (Armbrust et al., 2010).

Figure 2.10: Provisioning for peak load (Armbrust et al., 2010, p. 54)

The x-axis in figure 2.10 represents the passage of time in days, while the y-
axis shows the capacity provisioned/required by demand. The fluctuating de-
mand is shown in black and the static capacity to handle peak demand is in
red. The green area represents the difference in demand and capacity during
non-peak times. When overprovisioning, (even if you could perfectly anticip-
ate peak load like in this example) the green areas are wasted capacity, since
the application has more resources available than required to fulfill its Service-
Level-Agreement (SLA) (Lorido-Botran et al., 2014). Of course, you could try
to optimize static capacity for the least difference in capacity and demand, or,
maybe more practically applicable, minimization of cost of operation plus estim-
ated cost of SLA violation (Sotiriadis et al., 2019). Regardless of whether it was
done deliberately or is a consequence of underestimated load, the resulting state
is called underprovisioning and is shown exemplarily in figure 2.11.

However, provisioning less capacity than required to handle peak load leads to ser-
vice unavailability during peak load. Long-term, this service unavailability may
lead to negative press and unsatisfied customers switching to the competition, as
represented by figure 2.12.

32

2. Related Work

Figure 2.11: short-term underprovisioning (Armbrust et al., 2010, p. 54)

Figure 2.12: long-term underprovisioning (Armbrust et al., 2010, p. 54)

This is where elasticity comes into play. AWS17 defines elasticity as "[...] the
ability to acquire resources as you need them and release resources when you no
longer need them. In the cloud, you want to do this automatically." Other defin-
itions of the term elasticity, e.g. as stated by Kleppmann (2017), generally refer
to the capability of a system to do this automatically. As mentioned in 2.3.1,
one key advantage of using cloud computing compared to private data centers
is the ability to granularly add or remove resources within minutes rather than
weeks or months. This capability enables customers of public clouds to auto-
matically align their provisioned resources with the experienced demand, almost
entirely eliminating the difference between provisioned resources and experienced
demand.

In order to achieve this automatically, “[...] an auto-scaler is in charge of making
decisions about scaling actions, without the intervention of a human manager.
[...] Auto-scaling decisions rely on having useful, updated performance metrics.

17wa.aws.amazon.com/wellarchitected/2020-07-02T19-33-23/wat.concept.elasticity.en.html

33

https://wa.aws.amazon.com/wellarchitected/2020-07-02T19-33-23/wat.concept.elasticity.en.html

2. Related Work

The performance of the auto-scaler will depend on the quality of the available
metrics, the sampling granularity, and the overheads (and costs) of obtaining the
metrics”, as stated by Lorido-Botran et al. (2014).

Performance metrics that may be taken into account by an auto-scaler include
(Lorido-Botran et al., 2014):

• Hardware metrics like CPU utilization, memory usage, and disk access load.

• Operating system metrics like CPU-time per process or percentage of page
faults.

• Load balancing metrics like the number of jobs/requests in queues or re-
sponse times.

• Database metrics like the number of transactions, number of aborted trans-
actions to ensure transaction isolation, and response times.

An auto-scaler may be a simple rule-based agent, some kind of more sophisticated
algorithm, as proposed by Kwan et al. (2019) and Dutta et al. (2012), or based
on neural networks to predict future workload (Rossi et al., 2019).

Nowadays (as of 2023), many cloud computing services offer features for config-
uring fully automated horizontal scaling. Usually, high-level PaaS services that
leave the management of instances to the cloud provider can be expected to offer
such features.

A sophisticated auto-scaler may use a combination of vertical and horizontal
scaling measures to adjust provisioned capacity to the experienced load. Whether
to choose vertical or horizontal scaling measures depends on different factors, for
example, the expected longevity of a certain fluctuation in workload or the ease
with which application instances can join or leave the cluster.

Horizontal scaling of stateless applications is generally problem free since new
application instances can be added to the cluster without affecting existing in-
stances.

However, horizontal scaling of stateful applications may require a full restart due
to reconfiguration or rebalancing of partitions (see subsection 2.3.3) This leads to
short-term unavailability potentially affecting every application instance (Dutta
et al., 2012). This is an example where a hasty horizontal scaling action could
make the situation worse, not better. In this scenario, migration of only a few
VMs, triggered by vertical scaling, appears to be the better choice, especially for
handling short-term fluctuations (Dutta et al., 2012). In order to keep a state-
ful application running and available when scaling horizontally, the application
needs a (potentially complex) live migration procedure that correctly handles
the migration of certain partitions of the application state/workload from one
VM/instance to another.

34

2. Related Work

Finding the most cost-effective combination of horizontal and vertical scaling op-
tions is difficult. When given a limited amount of physical resources (e.g. VMs)
and a set of variable size workloads to distribute among them (like stateful ap-
plication instances with variable size partitions of application state/workload),
finding the cost-optimal configuration is a variation of the bin packing problem,
which is known to be NP-hard (Kwan et al., 2019). Consequently, to keep over-
head low, an efficient auto-scaler will rely on heuristics instead of computing
optimal results.

Regardless of the type of auto-scaler, it needs to avoid "oscillation". Oscillation is
an effect that occurs when an auto-scaler executes scaling actions too nervously,
leading to an erratic alternation between over- and underprovisioning. Usually,
a cooldown period between scaling actions and/or a generously sized utilization
target is used to prevent this behavior (Lorido-Botran et al., 2014).

35

2. Related Work

36

3 Requirements

This chapter states the requirements for the new real-time collaborative text
editing feature. The requirements are categorized into Functional Requirements
(FR), listed in section 3.1, and Nonfunctional Requirements (NFR), listed in
section 3.2. After describing the templates that the requirements are based on,
the requirements and their associated sub-requirements are listed. The syntax of
the requirements is based on the requirement templates by Rupp and SOPHIST-
Gesellschaft für Innovatives Software-Engineering (2014).

3.1 Functional Requirements

The representation of the FR follows the FunctionalMASTeR template by Rupp
and SOPHIST-Gesellschaft für Innovatives Software-Engineering (2014), as seen
in figure 3.1.

Figure 3.1: FunctionalMASTeR template (Rupp & SOPHIST-Gesellschaft für
Innovatives Software-Engineering, 2014, p. 230)

The FunctionalMASTeR template describes the syntax of expressing FRs in struc-
tured, natural language. The system that is to be developed forms the grammat-
ical subject of the requirement. In this case, it is the aforementioned Collaborative
Editing Service (CES). The keywords "shall", "should" and "will" inform about
the degree of obligation to fulfill the respective requirement (in descending order).

37

3. Requirements

The square brackets around the condition in the leftmost box mark this part as
optional. The syntax of conditions is based on the ConditionMASTeR template
by Rupp and SOPHIST-Gesellschaft für Innovatives Software-Engineering (2014),
as seen in figure 3.2.

Figure 3.2: ConditionMASTeR template (Rupp & SOPHIST-Gesellschaft für
Innovatives Software-Engineering, 2014, p. 242)

The ConditionMASTeR template divides conditions into 3 categories. These con-
sist of conditions based on logical expressions (keyword "If"), conditions based on
events (keywords "As soon as"), and conditions based on time periods (keywords
"As long as").

FR-1: The RTCS shall be extended by a new CES that generally enables
real-time collaborative editing for users of QDAcity.

FR-1.1: In order to keep overhead for maintenance and deployment low,
the CES shall be an extension of the QDAcity RTCS.

FR-1.2: The existing Slate1 text editor in the QDAcity frontend shall be
extended to connect to the CES and make use of the real-time collaborative
editing functionality that the CES provides.

FR-1.3: In order to provide a consistent user experience in the coding
editor, the CES or reworked RTCS shall be able to keep the code system
synchronized with the text document.

FR-1.4: The CES shall only process the operations of authenticated and
authorized users.

FR-2: The real-time collaborative editing feature that the CES provides shall
enable efficient document synchronization across multiple users.

FR-2.1: As soon as a user requests a document that is not currently
being edited, the CES shall load this document to memory and provide it
to requesting users.

1docs.slatejs.org

38

3. Requirements

FR-2.2: As soon as a user edits a document, the CES shall accept and
distribute these edits to all other concurrent editors of this document in
real-time, by using a bidirectional communication protocol.

FR-2.3: As long as one or multiple users are concurrently editing a doc-
ument, the CES shall prevent write conflicts by continuously converging
the state of the document.

FR-2.4: As long as a document is actively being edited, the CES should
regularly persist the current state of the document to the backend.

FR-2.5: As soon as the last editing user of a document has disconnected,
the CES should persist the most up-to-date state of the document to the
backend.

FR-2.6: As long as a document is not actively being edited, the CES
should not hold it in memory.

3.2 Nonfunctional Requirements

NFRs that describe properties of the new feature are formulated based on the
PropertyMASTeR template by Rupp and SOPHIST-Gesellschaft für Innovatives
Software-Engineering (2014), as shown in figure 3.3.

Figure 3.3: PropertyMASTeR template (Rupp & SOPHIST-Gesellschaft für
Innovatives Software-Engineering, 2014, p. 239)

NFRs demanded by the operating environment of the CES, are formulated based
on the EnvironmentMASTeR template by Rupp and SOPHIST-Gesellschaft für
Innovatives Software-Engineering (2014), as shown in figure 3.4.

39

3. Requirements

Figure 3.4: EnvironmentMASTeR template (Rupp & SOPHIST-Gesellschaft
für Innovatives Software-Engineering, 2014, p. 239)

NFR-1: The CES should be designed in a way that can be deployed and run
in the environment that Google Cloud Run provides.

NFR-1.1: Google Cloud Run offers a maximum of 32 gigabytes of main
memory per instance.2

NFR-1.2: Google Cloud Run offers a maximum of 1000 concurrent
WebSocket connections per instance.3

NFR-1.3: Google Cloud Run offers a maximum of 60 minutes per
WebSocket connection before timing out.4

NFR-2: The CES shall be designed in a way that provides compatibility for
existing features and possible feature extensions in the future.

NFR-2.1: The CES shall be implemented in a way that does not break
the existing functionality of QDAcity.

NFR-2.2: The CES shall be designed in a way that could support
syncing additional document formats in the future.

NFR-2.3: The CES should be designed in a way that is compatible with
offline editing.

NFR-3: The CES should be designed in a way that provides a degree of
scalability and elasticity, while not deviating from the GCP-based services that
are already in use by QDAcity.

NFR-3.1: The CES shall be designed in a way that is horizontally
scalable to cope with increasing load.

NFR-3.2: The CES should be designed in a way that can make use of
the elasticity that its underlying GCP services provide.

2cloud.google.com/run/quotas
3cloud.google.com/run/docs/about-concurrency
4cloud.google.com/run/docs/triggering/websockets

40

https://cloud.google.com/run/quotas
https://cloud.google.com/run/docs/about-concurrency
https://cloud.google.com/run/docs/triggering/websockets

3. Requirements

NFR-4: The CES shall be designed in a way that provides sufficient perform-
ance.

NFR-4.1: The CES should be designed in a way that can support the
real-time collaborative editing of a single document by at minimum five
users.

NFR-4.2: The CES should be designed in a way that can support the
real-time collaborative editing of at minimum 50 average-size documents
on a single CES instance.

NFR-4.3: In order to provide a satisfying degree of responsiveness, the
average latency of distributing edits between connected users should be
less than 1000 milliseconds.

NFR-5: The implementation of the CES should be designed in a way that
enables sufficient maintainability.

NFR-5.1: The implementation of the CES should be designed in a way
that is well documented internally (commented code) as well as externally
(in the QDAcity Wiki).

NFR-5.2: The implementation of the CES should be designed in a way
that can easily be extended.

NFR-5.3: The implementation of the CES should be designed in a way
that supports the creation of acceptance Tests.

NFR-6: The CES should be designed in a way that is reliable and fault-
resistant.

NFR-6.1: The CES should be designed and deployed in a way that can
consistently and autonomously recover from crashes and disconnects.

NFR-7: The CES should be designed in a way that benefits usability.

NFR-7.1: The CES should be designed in a way that supports intuitive
understanding by its users by displaying feedback for connection problems.

NFR-7.2: The CES should be designed in a way that supports intuitive
understanding by its users by displaying text editing awareness informa-
tion.

41

3. Requirements

42

4 Architecture

This chapter discusses the architecture of QDAcity, respectively before and after
the implementation of the real-time collaborative editing feature. First, the most
relevant conclusions for QDAcity from the conducted research are listed in sec-
tion 4.1. Section 4.2 describes the initial architecture and procedures of QDA-
city. Thereupon, section 4.3 describes the reworked architecture and procedures
of QDAcity. Section 4.4 discusses different possible data storage formats, since
these affected the subsequent architectural decisions. Finally, section 4.5 de-
scribes and discusses several approaches to horizontally scaling the new real-time
collaborative editing feature of QDAcity. These approaches have been in consid-
eration during the agile development process.

4.1 Research Conclusions

The research that was conducted in the context of section 2.2 has led to the
following conclusions for the architecture of the real-time collaborative editing
feature for QDAcity:

• In order to enable real-time reads, a bidirectional communication protocol
like WebSockets is required.

• In order to enable real-time writes, an approach is required that can guar-
antee the eventual convergence of simultaneously edited documents.

• DS has been assessed as a bad fit for QDAcity. This is because it can
not guarantee convergence without possibly discarding edits. Discarded
edits could lead to a bad user experience both for collaborative text editing
as well as keeping the code system synchronized. Additionally, a lot of
complexity regarding the handling of write conflicts is not actually solved
by the approach of DS but by the underlying algorithms DS relies on.

• OT is preferable to DS since it can guarantee convergence. However, the
complexity that is inherent to OT as an algorithmic approach could be
problematic. Even just extending an existing OT implementation with

43

4. Architecture

additional custom operations grows exponentially in complexity since the
interaction of the new operation with all existing operations needs to be
accounted for. The real-time collaborative text editing feature for QDAcity
should also support synchronizing the code system, additional document
formats, and possibly features that are yet to be implemented. Due to
the exponentially increasing complexity when adding additional operations
to an OT implementation, two separate versions of OT are likely to be
required to develop for synchronizing both the text document as well as
the code system. Since many other features need to be developed and
maintained for QDAcity, an approach with lower complexity and a wider
range of applicability would be preferable.

• CRDTs have been assessed as the most promising approach to implement-
ing real-time collaborative text editing for QDAcity. The ability of CRDTs
to converge without an explicit synchronization algorithm make it a rather
low-complexity approach. The ability to synchronize not just text, but
JSON objects in general, enables a wide range of applications for CRDTs.
For QDAcity, this capability could be used to synchronize both a text doc-
ument, as well as the code system of a shared QDAcity project. Addition-
ally, the capability of generally synchronizing JSON objects among multiple
users enables extending the system with additional document formats or
new collaborative features. The data structure-based approach of CRDTs
requires mapping parts of QDAcity’s underlying data and business logic to
CRDTs. However, this appears to be a more straightforward problem to
solve than debugging some kind of faulty OT operation in a distributed sys-
tem. Consequently, the complexity-reducing properties of CRDTs appear
to be a good fit for QDAcity.

In order to provide scalability for the new feature, the following conclusions for
QDAcity have been drawn from the research presented in section 2.3:

• The scalability of a vertical scaling approach is inherently limited. Even
though horizontal scaling requires additional efforts in terms of software
design and architecture, its advantages of providing long-term scalability
make it preferable.

• In order to keep the complexity of the scaling reasonably low, a horizontal
scaling approach that relies on stateless application instances would be
preferred over one that relies on stateful application instances.

• Many cloud computing services offer automated horizontal scaling and
elasticity features, usually for stateless application instances. In order to
keep the required active maintenance of the new feature moderate, an ap-
proach that could be automated using these features would be preferred.

44

4. Architecture

4.2 Initial Architecture of QDAcity

Figure 4.1: Initial architecture of QDAcity

Figure 4.1 shows the initial architecture of QDAcity at the beginning of this
thesis. The frontend is based on Javascript using React1 and styled-components2.
It is bundled and shipped using Webpack3. The RTCS is implemented using
Javascript and hosted on Google Cloud Run. The backend is based on Java and
uses Google Cloud Endpoints. The backend is responsible for persisting document
data in Google Cloud Storage buckets and meta data in Google Cloud Datastore
(a NoSQL database).

1https://react.dev
2https://styled-components.com
3https://webpack.js.org/

45

https://react.dev
https://styled-components.com
https://webpack.js.org/

4. Architecture

The initial workflow of editing and coding a document includes the following
steps:

1. When opening a project, the frontend requests project data, initial coding
data, and other meta data from the backend via HTTP and connects to
the RTCS.

2. When opening a document in the project, the frontend requests document
data from the backend. The document received from the backend can be
seen as a snapshot of the state of the document in the backend.

3. The user edits the local version of the document.

4. The user applies some codes to the document. These get distributed to
other users in the same project via the WebSocket connection to the RTCS.
Additionally, the RTCS is responsible for forwarding changes in the coding
data to the backend via HTTP.

5. The user closes the editor and the local state of the document is persisted
by overwriting the state of the document at the backend via HTTP.

While the RTCS is responsible for keeping the coding data in sync, this did not
apply to the document itself. Multiple users that would concurrently open, edit
and save a document would lead to write conflicts, in particular lost updates.
Reading a document and writing changes to the document to the backend did
not happen as part of a single transaction (see subsection 2.2.1). Additionally, no
sophisticated conflict resolution mechanism was in place that would handle new
versions of the document that were based on the same version. Consequently,
only the version of the last user saving the document in a state compatible with
the coding information at the backend was persisted. The edits of all other users
that concurrently edited the same document were discarded.

4.3 Reworked Architecture of QDAcity

In accordance with the research conclusions summarized in section 4.1, the real-
time collaborative editing feature has been implemented using CRDTs. The
CRDT implementation that was used will be examined and discussed in section
5.1. For this section, we will focus on the architectural details.

As has been stated in the requirements, the CES, which is responsible for keeping
concurrently edited documents in sync, is to be implemented as an extension of
the RTCS. In order to keep documents and coding data reliably consistent with
each other, the old mechanism of distributing coding data was also adapted to
CRDTs.

46

4. Architecture

In order to keep the local states of documents in sync from the beginning, users
opening a document will receive the state of the document from the RTCS via the
WebSocket connection. In order to prevent users from overwriting the persisted
document version in the backend with their local and possibly diverging states
of the document, only the RTCS will persist documents to the backend. The
same principles apply to coding data. The reworked architecture of QDAcity is
displayed in figure 4.2.

Figure 4.2: Reworked architecture of QDAcity

The reworked workflow of editing and coding a document includes the following
steps:

1. When opening a project, the frontend requests project data and other meta
data from the backend via HTTP and connects to the RTCS. If there is
no open session of the coding data being synced via the RTCS, the RTCS
requests the coding data from the backend. The RTCS will deliver the
coding data of the project to the frontend via WebSocket. As long as the
WebSocket connection exists, the coding data of the project will be kept in
sync with all other connected users.

2. When opening a document in the project, the frontend requests the doc-
ument from the RTCS via WebSocket. If there is no open session of the
document being synced via the RTCS, the RTCS requests the document

47

4. Architecture

from the backend. This is necessary because the CRDT implementation
and thus the convergence of the document is based on Javascript. The
RTCS delivers the document to the frontend. As long as the WebSocket
connection exists, the document will be kept in sync with all other connec-
ted users.

3. The user edits the local version of the document. The document locally di-
verges from the rest of the system. The edits are being transmitted to the
RTCS. The RTCS applies the incoming changes to its local state and for-
wards them to all other connected users. The global state of the document
converges. The RTCS persists the state of the document to the backend at
regular intervals.

4. The user applies some codes to the document. The RTCS handles the
convergence of the coding data the same way it handles the convergence of
the document.

5. The user closes the document and the frontend closes the WebSocket con-
nection that keeps the document in sync. When the last user closes the
document, the RTCS persists the last state of the document to the backend
and ends the document session.

6. The user closes the project and the frontend closes the WebSocket con-
nection that keeps the coding data in sync. When the last user closes the
project, the RTCS persists the last state of the coding data to the backend
and ends the coding data session.

4.4 Document Storage Format

Initially, the state of a document was persisted as a text file containing the
document content in the form of HTML. Since the state of the document needs
to be present in the format of a CRDT to be synchronized, the question arose
in which format the new RTCS should persist documents to the backend. The
discussion of options for the persistence format of documents analogously applies
to the persistence format of coding data.

The following options were discussed:

• Original HTML format: By using the original HTML format, the least
adaptations are required. This particularly applies to the backend. The
backend provides features to analyze the existing projects to derive inform-
ation and provide it to the users. The original HTML format is a good fit be-
cause it can be read and, if needed, edited using both Javascript/Typescript
in the frontend/RTCS as well as Java in the backend. However, the HTML
format has a downside. The RTCS can only apply incoming changes to its

48

4. Architecture

local version of the synced document in the native CRDT form. In this
case, when a document editing session ends the RTCS converts the CRDT
form of the document to the HTML format and persists it to the backend.
Discarding the CRDT form of the document is a hard cutoff point for users
that are locally editing a document using offline collaborative editing and
are expecting their changes to be retroactively applied to the global state
of the document, once they reconnect to the RTCS.

• Native CRDT format: Persisting the document in its native CRDT format
would allow the RTCS to retroactively apply edits of users that reconnect
after an indefinitely long time period. However, since the used CRDT
implementation is Javascript-based, the Java backend likely can not read
or edit the document in its native CRDT format without some form of a
Javascript runtime environment integration. In order to use the existing
analysis code of the backend, the RTCS is required to persist the native
CRDT format and additionally derive an HTML version of it for analysis
purposes. Furthermore, the native CRDT format has the property of grow-
ing monotonically in size with applied operations, regardless of the type of
operation (even deletes). This is due to the meta data that is required to
guarantee the special properties of the CRDT (see subsection 2.2.6). If the
size of the document in native CRDT format grows out of hand, a rein-
itialization of it would compress it by discarding the built-up meta data.
However, this again would be a hard cutoff point for retroactively applying
incoming changes.

• Update-based format: The third option is persisting the document as a
log of independent and immutable CRDT-updates. Although storing the
state of a document and storing the collection of updates of a document
might appear to be two different things, they are actually "two sides of the
same coin". The most up-to-date snapshot of the mutable state is equal
to the aggregation of all updates (Kleppmann, 2017). When initializing an
empty document and applying all updates, the output will be the current
version of the document. Yet, by converting a sequence of updates to the
current state of the document, the information about the temporal progress
of updates is lost. Thus, storing the document as a collection of independent
updates enables more options for analysis. With a document in its most
up-to-date state, you can only perform some specified analysis on this exact
version of the document. If you need information about some older version
of the document, you can only hope to have performed the analysis of the
older version when it was the most up-to-date, or hope to have created
a checkpoint of the required document version using QDAcity’s built-in
document checkpoint feature. With a log of independent updates, every
snapshot of the document that ever existed at the RTCS could be rebuilt.
This enables retroactively analyzing older document versions with newly

49

4. Architecture

implemented analysis tools. Furthermore, older document versions could
be rebuilt and delivered to the frontend for a version history feature that
would allow a more granular document history than QDAcity’s current
document checkpoint feature. The disadvantage of this approach would
be the increased storage size of a document at the backend. Applying all
updates to build the current state of a document discards all unnecessary
information, thus shrinking in size compared to the collection of updates.
However, QDAcity’s document checkpoint feature also introduces a certain
redundancy in terms of disk space usage. In order to keep the required disk
space per document under control, one could decide to only store a certain
recent time period in the form of independent updates and compress older
updates by applying them to a cutoff version of the document. All in
all, the estimated value added by an update-based document format over
the existing document checkpoint feature was not enough to warrant the
implementation effort.

After discussing the mentioned options, their advantages and disadvantages, as
well as estimating the expected effort of implementation, we decided to persist
the documents in their native CRDT format and add derived HTML versions of
the document for analysis purposes.

4.5 Horizontal Scaling Design Drafts

This section discusses design drafts for the implementation of the horizontal
scalability for the real-time collaborative editing feature of QDAcity. The design
drafts are described and compared using a scenario of four users simultaneously
editing two of four persisted documents. First, we will describe the initial state
without the implementation of horizontal scaling as a starting point in subsection
4.5.1. Afterwards, three different approaches to horizontal scaling of the RTCS
that were in consideration during the agile development process will be described
in subsection 4.5.2, subsection 4.5.3, and subsection 4.5.4.

4.5.1 Initial Situation without Horizontal Scaling

Figure 4.3 shows how a single RTCS instance handles the described scenario.

In its current state, the RTCS loads a document into memory as long as it is being
edited. This is necessary because the used CRDT implementation is based on
Javascript, thus the convergence of the documents can only happen in a Javascript
runtime environment.

50

4. Architecture

Figure 4.3: Initial situation with a single RTCS instance

Since the RTCS is being deployed on Google Cloud Run, the most likely bottle-
necks for a single instance are one of the following:

• The aggregated memory consumption of concurrently edited documents fills
up the main memory of the Google Cloud Run instance. At minimum, this
is 512 megabytes (mebibytes to be specific, for second generation runtime4).
For the highest tier, this is 32 gigabytes.

• The number of concurrent WebSocket connections reach Google Cloud Runs
maximum of 1000 per instance.

While a single RTCS instance provides great capacity in itself, these constraints
represent hard limits in terms of the maximum amount of workload that the
RTCS can handle. We will now look at three different approaches to horizontally
scaling the RTCS.

4https://cloud.google.com/run/docs/configuring/memory-limits

51

https://cloud.google.com/run/docs/configuring/memory-limits

4. Architecture

4.5.2 Stateful Instances with Service Discovery/Routing

As mentioned in subsection 2.3.3, in the context of this thesis, stateful instances
are defined as instances that hold a partition of the total state of the applic-
ation. With service discovery/routing, requests that need to act on a certain
partition of the state need to be routed to the correct instance. In figure 4.3, the
single RTCS instance would load all documents that are currently being edited
in memory. With the approach of horizontal scaling via stateful instances, the
edited documents are uniformly distributed among the RTCS instances.

Figure 4.4: Scaling the RTCS as stateful instances with a discovery/routing
service

Figure 4.4 shows how horizontally scaling the RTCS as stateful instances would
look like. The documents A, B, C, and D have been distributed evenly to the two
separate RTCS instances. Since the RTCS instances equally handle a distinct
partition of the total application state, this leads to great scaling capabilities.
This partitioning of state however requires a middleware that routes the requests
to the correct RTCS instances. If we were to scale this approach, by adding
or removing some instances, the total state of the application would have to be
repartitioned and distributed for the new number of RTCS instances.

52

4. Architecture

Since QDAcity is a user-centric application, large short-term fluctuations in work-
load are to be expected. For example, due to the day and night cycle. Addition-
ally, the load per document is expected to be rather irregular, since different
documents will be hotspots at different times. The latter aspect may balance
itself after a threshold number of documents per RTCS instance. However, the
efficient handling of the day and night cycle is definitely expected to require short-
term elasticity, once a certain size of the user base is reached. Consequently,
a mechanism that is able to seamlessly live migrate document editing sessions
between RTCS instances without restarting the whole cluster for reconfigura-
tion of partitioning would be required. Additionally, the service discovery and
routing middleware would have to be synchronously notified of repartitioning,
rebalancing, and live session migrations to provide correct routing at all times.

All in all, while this approach can deliver both, high scalability and elasticity,
the complexity overhead of stateful RTCS instances lead us to consider solutions
with stateless RTCS instances.

4.5.3 Stateless Instances with Log-Based Message Broker

In order to remove the statefulness of the RTCS instances, it is conceivable to
design an approach where the whole state of the application is stored in the
Backend and the RTCS instances only serve as functional actors that mutate the
state in the backend.

In subsection 4.5.1, it was stated that for the initial architecture of the real-
time collaborative editing feature, the documents need to be loaded into the
RTCS, because the application of state updates to the CRDT document requires
a Javascript runtime environment. In its current configuration, QDAcity can
execute Javascript in the frontend and in the RTCS, but not in the Java-based
backend.

In section 4.4, it has been said that manifested state is equal to the aggregation of
all state changes. For the initial architecture of the real-time collaborative editing
feature, the RTCS immediately applies incoming updates to the state of the
document and then persists the manifested state of the document to the backend.
Instead, one could remove the step of immediately applying state updates and
only persist the sequence of incoming document updates to the backend without
manifestation of the current state in the RTCS or the backend. When a user
wants to access a certain document, the frontend would request the sequence of
updates from the RTCS and then build the current state of the document from
the sequence of updates in the Javascript-based frontend.

However, in order to keep the manifestation of the state of the document in the
frontend up-to-date, it should be possible for the client to subscribe to incoming

53

4. Architecture

changes of documents at the backend. Log-based message brokers like Apache
Kafka5 appear to be a good fit for this use case.

When using Apache Kafka, producers append messages to an immutable log
(Kreps et al., 2011). Old and new messages can then be read by registered
consumers. Messages that are produced for Apache Kafka are grouped in logical
channels called topics. For our use case, all updates of a document are logically
connected, thus there would be one topic per document. Since each user should
receive all update messages of a document, a topic should not be split up into
multiple partitions and each consumer should have its own consumer group.

When users access a document from the frontend, the RTCS will act as a producer
for the topic of the document and append the edits of the user. At the same time
the RTCS instance will register as a consumer to the topic to receive incoming
edits from other users working on the same document. After building the state
of the document in the frontend, the frontend will use the WebSocket connection
to the RTCS as a proxy to produce and consume edit messages for the particular
document topic of Apache Kafka.

Figure 4.5: Scaling the RTCS as stateless instances with Apache Kafka

5https://kafka.apache.org/

54

https://kafka.apache.org/

4. Architecture

Figure 4.5 shows the scaling of the real-time collaborative editing feature using
stateless RTCS instances and a log-based message broker like Apache Kafka.
Since all the state of the document is handled either in the frontend or in the
log-based message broker at the backend, the RTCS only acts as a stateless proxy
and can easily be horizontally scaled. Kafka serves as the persistence layer for
the sequence of document updates in the backend that offers an API to produce
and consume updates. Apache Kafka runs on a horizontally scalable cluster. It
manages its own distribution and rebalancing of topics/partitions among nodes
and uses replication to provide fault tolerance.

To summarize, this approach appears to be highly scalable while also offering
elasticity. However, there are downsides for using this approach in the context of
QDAcity. First of all, Apache Kafka uses a polling-based mechanism to consume
messages. This may not be an issue for most use cases of Apache Kafka. However,
as has been stated in subsection 2.2.2, a bidirectional communication protocol
like WebSockets would be preferred to offer low latency ("real-time") reads of
the most up-to-date state of a document. Secondly, while removing complexity
in the form of statefulness from the RTCS instances, there would be a lot of
new complexity introduced at the backend in the form of a distributed, log-based
message broker like Apache Kafka as the persistence layer for documents. Since it
was preferred to implement real-time collaborative editing for QDAcity without
replacing major existing systems, a different approach was chosen that will be
discussed in the next subsection.

4.5.4 Stateless Instances with Pub/Sub Service

As has been shown, both the approaches of scaling via stateful RTCS instances
with a discovery/routing service and scaling via stateless RTCS instances with
log-based message broker incur a significant complexity overhead to the horizontal
scaling of the RTCS. However, to keep the horizontal scaling of the RTCS simple
we wanted to enable horizontal scalability while keeping most of the behavior of
the single RTCS instance from subsection 4.5.1 unchanged.

With the single instance approach of subsection 4.5.1, the RTCS loads the state
of a document into its memory, to open a collaborative editing session. Users
can perform real-time collaborative text editing, because they are connected via
the collaborative editing session at the RTCS. We have seen in subsection 4.5.2
how additional instances can be added by partitioning the total state of the ap-
plication (the collection of documents) and distributing them among the RTCS
instances. However, we have also seen that the process of partitioning and dis-
tributing the total state of the application makes the RTCS instances de-facto
stateful, leading to significant complexity overhead. Nevertheless, the complex-
ity of partitioning, distribution, and request routing can be avoided by not just
connecting users that are collaboratively editing via a shared RTCS instance, but

55

4. Architecture

Figure 4.6: Reworked architecture of QDAcity

also interconnecting all RTCS instances. By doing so, all users can be connected
to a certain collaborative editing session, regardless of which RTCS instance they
are connected to. This approach can be seen in figure 4.6.

Figure 4.6 shows the interconnection of RTCS instances using Redis Pub/Sub6.
Whenever an RTCS instance loads a document and starts a collaborative editing
session it also creates a channel for this document in Redis Pub/Sub or subscribes
to it if it already exists. All document edits that RTCS instances receive from
users will also be published in the Redis Pub/Sub channel of this document so that
users that are connected to different RTCS instances can participate in the same
collaborative editing session. Unlike the producers and consumers from Apache
Kafka, which generally use the classic request/response pattern of polling, Redis
Pub/Sub uses stable TCP connections to provide fast delivery.

6https://redis.io/docs/manual/pubsub/

56

https://redis.io/docs/manual/pubsub/

4. Architecture

Using this approach, every RTCS instance can handle every user request, dis-
regarding which documents the user wants to access. Consequently, the RTCS
instances can be described as stateless, although each RTCS instance has to
load the state of a document to memory to take part in its collaborative editing
session. Furthermore, collaborative editing sessions stretching different regions
around the globe could be implemented by interconnecting RTCS instances in dif-
ferent regions, close to the local users. With partitioning and stateful instances,
all users of a collaborative editing session have to connect to the same RTCS
instance. This leads to high latency for users in a distant geographical region.
By interconnecting RTCS instances using Redis Pub/Sub users could always be
connected to a RTCS instance in their own region. This would enable low latency
at least among the local clients connected to the local instance.

To summarize, this approach enables horizontal scalability and elasticity with
technically stateless RTCS instances and without major restructuring of the
backend. It is the generally recommended approach for initial horizontal scal-
ing in the community of the used CRDT implementation. Nonetheless, there are
some downsides. First of all, the reduced complexity by avoiding stateful par-
titioning leads to inefficient redundancy in the main memory load of the RTCS
instances, compared to the approach using stateful partitioning. As can be seen in
figure 4.6, every RTCS instance that is participating in the collaborative editing
session has to keep the document in the main memory. Additionally, the detour
over Redis Pub/Sub will add some latency to the distribution of changes between
users that are not connected to the same RTCS instance. Furthermore, a single
Redis Pub/Sub instance will eventually turn out to be a bottleneck, once the
load has reached a certain threshold. Unlike Apache Kafka, a Redis cluster does
not inherently partition the total Pub/Sub load among Redis instances (Mor,
2018). Instead, partitioning of Pub/Sub for a Redis Cluster requires manual im-
plementation. Nonetheless, the number of operations per second that a single
Redis Pub/Sub instance is able to handle should be around 100.000 or higher7.

Eventually, we decided to use this approach. This is mainly due to the combina-
tion of promising scalability and elasticity while being less complex to implement
in the short term compared to the previously discussed approaches.

7https://redis.io/docs/management/optimization/benchmarks/

57

https://redis.io/docs/management/optimization/benchmarks/

4. Architecture

58

5 Design and Implementation

This chapter describes the details of the design and implementation of the new
real-time collaborative editing feature of QDAcity. First, the most important
libraries used for the implementation are introduced in section 5.1. Subsequently,
implementation-specific processes and details of the different parts of the system
are described in section 5.2.

5.1 Libraries

The main libraries used for the implementation of real-time collaborative editing
for QDAcity are Yjs1, Slate-Yjs2 and Hocuspocus3. All three of these are open-
source and MIT-licensed.

Yjs is a Javascript-based CRDT implementation that has grown popular in recent
years. Its conflict resolution algorithm has first been described in a conference
paper (Nicolaescu et al., 2016). Yjs is an operation-based CRDT implementation
(also called Operation-based Commutative Replicated Data Type). This means
that the global state converges by exchanging update messages containing only
edits (Shapiro et al., 2011). This is contrary to state-based CRDT implementa-
tions (also called State-based Convergent Replicated Data Type), which converge
by exchanging and merging the whole state of the CRDT. By only exchanging
edits, operation-based CRDT implementations like Yjs possibly use significantly
less network traffic compared to state-based CRDT implementations.

Although the advantages of CRDTs for synchronizing data in a distributed system
are clear, they have been under scrutiny as a component for data-intensive real-
world applications, due to their large memory overhead (Jahns, 2020). However,
unlike automerge4 (a different CRDT implementation that can be used for real-
time collaborative text editing), Yjs does not attach meta data to every single

1https://github.com/yjs/yjs
2https://github.com/bitphinix/slate-yjs
3https://github.com/ueberdosis/hocuspocus
4https://automerge.org

59

https://github.com/yjs/yjs
https://github.com/bitphinix/slate-yjs
https://github.com/ueberdosis/hocuspocus
https://automerge.org

5. Design and Implementation

character by default. Instead, Yjs implements some crucial optimizations for
memory overhead and performance, e.g. merging sequential inputs to a single
element5. The optimized performance of Yjs compared to automerge can be
examined by executing a benchmark6. The success of this approach led to work-
in-progress ports of Yjs from Javascript to C# and Rust.

Yjs provides so-called shared types like Y.Map, Y.Array, Y.XmlElement, and
Y.Text. These can be added to a so-called Y.Doc that can be synchronized
among clients. Within a Y.Doc, you can nest shared types and execute trans-
actions in order to bundle changes of the contained shared types. In general,
every data structure that can be encoded as JSON or as an Uint8Array7 can
be mapped to a shared type and thus synchronized between clients using Yjs.
Additionally, ephemeral awareness information about the shared editing session
can be distributed as part of a Y.Doc.

Yjs is a modular library. The synchronization of a Y.Doc among multiple clients
is handled by a so-called network provider. For Yjs, multiple network provider
implementations exist using different communication protocols like WebSockets8,
WebRTC9, Dat10, or libp2p11. In order to use Yjs for real-time collaborative text
editing, multiple editor bindings exist that map the text body of a Javascript-
based text editor to Yjs. One of these is Slate-Yjs which provides a text editor
binding for Slate (the editor used for editable documents in the coding editor of
QDAcity). It also provides a mechanism for integrating the awareness information
of Yjs into the editor. Additionally, there is an IndexedDB12 provider13 for Yjs
that can be used to persist local changes in the browser until synchronization for
offline capabilities.

Hocuspocus is a Typescript-based WebSocket server implementation for Yjs built
upon the WebSocket provider of Yjs. It provides a framework that handles Web-
Socket connections, collaborative sessions, configuration, etc. It also provides
hooks for certain events that can be used with extensions. Table 5.1 shows a
summary of the Hocuspocus hooks that are available. Via custom extensions,
custom event handlers can be attached to these hooks to execute custom code
at the right time. When the event handler is called, relevant information and
objects are provided as parameters.

5https://text-crdt-compare.surge.sh
6https://github.com/dmonad/crdt-benchmarks
7https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/

Uint8Array
8https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
9https://webrtc.org

10https://datprotocol.com
11https://libp2p.io
12https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
13https://docs.yjs.dev/getting-started/allowing-offline-editing

60

https://text-crdt-compare.surge.sh
https://github.com/dmonad/crdt-benchmarks
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Uint8Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Uint8Array
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://webrtc.org
https://datprotocol.com
https://libp2p.io
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://docs.yjs.dev/getting-started/allowing-offline-editing

5. Design and Implementation

Hook Description
beforeHandleMessage Before handling a message
onConnect When a connection is established
connected After a connection has been establied
onAuthenticate When authentication is required
onAwarenessUpdate When awareness changed
onLoadDocument When a new document is created
onChange When a document has changed
onDisconnect When a connection was closed
onListen When the server is intialized
onDestroy When the server will be destroyed
onConfigure When the server has been configured
onRequest When a HTTP request comes in
onStoreDocument When a document has been changed
onUpgrade When the WebSocket connection is upgraded

Table 5.1: Hocuspocus hooks that can be attached with custom event handlers
by using a custom extension. (Source: https://tiptap.dev/hocuspocus/server/hooks)

Hocuspocus also comes with a set of extensions that use these hooks to add
additional functionality or simply demonstrate the behavior of extensions for
Hocuspocus. A summary of existing extensions is shown in table 5.2

Extension Description

Database A generic database driver that is easily adjustable to work with
any database.

Monitor A beautiful dashboard to monitor and debug your Hocuspocus
instance.

Redis Scale Hocuspocus horizontally with Redis.
Logger Add logging to Hocuspocus.
Webhook Send document changes via webhook to your API.
Throttle Throttle connections by IPs.

Table 5.2: Provided Hocuspocus extensions.
(Source: https://tiptap.dev/hocuspocus/server/extensions)

Noteworthy, the Monitor extension provides a Vue frontend dashboard to monitor
basic metrics of the Hocuspocus server. These include CPU usage, memory
usage, connected clients, existing collaborative editing sessions, etc. The Redis
extension can be used to connect the Hocuspocus server to a Redis Pub/Sub
instance as discussed in subsection 4.5.4. The Throttle extension can be used to
throttle client connections to prevent misuse. Additionally, Hocuspocus provides

61

https://tiptap.dev/hocuspocus/server/hooks
https://tiptap.dev/hocuspocus/server/extensions

5. Design and Implementation

a Vue14 frontend called Playground that can be used for testing the functionality
of the Hocuspocus server during development. When injecting extensions into a
Hocuspocus instance, the extensions themselves can also be given configuration
parameters to control their behavior.

This usage of extensions could be described as an application of the Inversion of
Control-pattern (Fowler, 2005). This way, the Hocuspocus framework gives up
control to a developer’s custom code whenever decisions need to be made (like
deciding whether a user is authorized to access a certain resource), or external
dependencies need to be addressed (like a database for the persistence of docu-
ments). If multiple event handlers are attached to an event hook, the order of
execution of event handlers can be controlled by assigning a priority value to the
event handler. By using custom extensions to inject these event handlers into
the Hocuspocus framework at initialization, the code of the Hocuspocus frame-
work is strictly separated from the custom code injected into it. This enables
the Hocuspocus framework to be maintained and updated independently from
an application’s custom code.

Yjs and the libraries building upon it were chosen for the CRDT-based real-time
collaborative editing feature of QDAcity due to its great performance, active
community, modular and open structure, versatile applicability, existing docu-
mentation, and the growing ecosystem of Yjs-based libraries like Slate-Yjs and
Hocuspocus. Yjs is in use and sponsored by multiple commercial products as well
as recommended by the global software consultancy company Thoughtworks15 in
2022.

5.2 Implementation

In the RTCS, a Hocuspocus server instance is initialized and injected with con-
figuration16 parameters. An example is a debounce setting that controls the
intervals of persisting documents to the backend. The most important exten-
sions used are a custom implemented QDAcity-specific extension and the Redis
extension. The Redis extension uses various event hooks to handle the connection
to the Redis Pub/Sub instance, as well as producing and consuming document
updates. Apart from Yjs, the Hocuspocus server and the custom QDAcity exten-
sion for Hocuspocus are the main parts of the implementation of the real-time
collaborative editing feature for QDAcity.

14https://vuejs.org/
15https://www.thoughtworks.com/de-de/radar/languages-and-frameworks?blipid=

202210047
16https://tiptap.dev/hocuspocus/server/configuration

62

https://vuejs.org/
https://www.thoughtworks.com/de-de/radar/languages-and-frameworks?blipid=202210047
https://www.thoughtworks.com/de-de/radar/languages-and-frameworks?blipid=202210047
https://tiptap.dev/hocuspocus/server/configuration

5. Design and Implementation

The QDAcity extension uses the provided hooks (see table 5.1) to implement
QDAcity-specific behavior. It contains code that handles authorization, initializ-
ation, loading, and storing of documents, as well as loading and persisting changes
of the code system to the backend. Authorization of a user request is decided,
by using a bearer token from the frontend that is received at the initialization
of the WebSocket connection. When a document/code system is requested from
the frontend, Hocuspocus checks whether there is an existing editing session for
this document/code system. If not, it emits the onLoadDocument event to get
the document/code system and initialize a new session.

In case of a document being requested, the onLoadDocument event handler in the
QDAcity extension then tries the download the Y.Doc of the requested document
from its Google Cloud Storage bucket. When the frontend requests a newly
created document that has not been initialized yet, the QDAcity extension creates
a new Y.Doc and fills it with an initial empty Slate paragraph and text node.
This is a necessary requirement for newly created Slate documents. In order
to execute this step exactly once, it happens at the RTCS instead of the Slate
editor instance in the frontend. If a document is requested that only exists in
the HTML representation that has been used for QDAcity so far, it converts
it from its HTML representation to the new CRDT representation (Y.Doc). In
case of a code system being requested, the RTCS acquires the necessary data by
requesting it from the backend and then builds a Y.Doc for the code system by
mapping the objects on shared types. After loading the requested resource, the
Hocuspocus server provides the newly connected client with the requested Y.Doc
by encoding the whole state of the Y.Doc as an update operation and delivering
it to the newly connected client. As a result, the client is now synchronized with
the collaborative editing session and can start working on the Y.Doc.

During the collaborative editing session, Hocuspocus calls the onStoreDocument
event handler at regular intervals to regularly persist the document/code system
to the backend. In the case of it being a text document, this means uploading
the Y.Doc containing the text document in its (binary encoded) native CRDT
representation to a Google Cloud Storage bucket. For a code system, this means
checking whether the data in the Y.Doc has changed since the last call of on-
StoreDocument. If yes, the updated objects from the code system Y.Doc will
be persisted to the backend using a batch request. When the last user leaves a
collaborative editing session, the onStoreDocument event handler is called a last
time before the session is cleaned up and garbage collected.

In the frontend, Hocuspocus provider objects (based on the WebSocket provider
of Yjs) are used in the React component of the Slate text editor and the React
context component that provides the code system information to the components
using it. These objects connect and synchronize a locally initialized Y.Doc using
the Hocuspocus server. In the case of the text editor component, Slate-Yjs is

63

5. Design and Implementation

injected as an extension for the Slate editor upon its initialization and connected
to the local Y.Doc. The behavior of the Hocuspocus provider can be configured
using various parameters. A URL parameter is used by the provider to setup
the connection to the server. Various parameters exist to configure a retry policy
for attempting to reconnect to the server in case of a disconnect. Using a token
parameter, the user token is passed to the provider for authentication and au-
thorization of the user at the Hocuspocus server. A name parameter is used to
identify collaborative editing sessions by ID. Additionally, the Hocuspocus pro-
vider also emits events and supports the attachment of event handlers. Table 5.3
shows a list of events emitted by a Hocuspocus provider. These events are used
to reflect changes in the connection life cycle and the connected Y.Doc in the
frontend. For example, the synced event is used to trigger displaying the received
data in the frontend after synchronization with the server. Afterwards, the mes-
sage event is used to update the state of the view on the data by rerendering a
component once relevant data has been edited by a different client.

Event Description
open When the WebSocket connection is created.

connect When the provider has successfully connected to the
server.

authenticated When the client has successfully authenticated.
authenticationFailed When the client authentication was not successful.
status When the connections status changes.
message When a message is incoming.
outgoingMessage When a message will be sent.

synced When the Y.js document is successfully synced (ini-
tially!).

close When the WebSocket connection is closed.
disconnect When the provider disconnects.
destroy When the provider will be destroyed.
awarenessUpdate When the awareness updates
awarenessChange When the awareness changes
stateless When the stateless message was received.

Table 5.3: Events emitted by the Hocuspocus provider objects in the frontend.
(Source: https://tiptap.dev/hocuspocus/provider/events)

At the backend, a new DocumentType and a new class CollaborativeTextDocu-
ment (inheriting from TextDocument) were added. It contains and manages the
additional meta data that is necessary for loading and storing the Y.Doc from
and to Google Cloud Storage (GCS). Furthermore, it implements some methods
for backend workflows handling the data of the new subclass, e.g. for cloning of
documents/projects.

64

https://tiptap.dev/hocuspocus/provider/events

6 Evaluation

This chapter revisits the requirements listed in chapter 3 and individually evalu-
ates whether the requirements have been fulfilled. The requirements are assessed
as fulfilled, partially fulfilled, or not fulfilled. Analogous to chapter 3, we will start
with the functional requirements in section 6.1. Afterwards, we will evaluate the
fulfillment of the nonfunctional requirements in section 6.2.

6.1 Functional Requirements

FR-1: The RTCS shall be extended by a new CES that generally enables
real-time collaborative editing for users of QDAcity.

FR-1.1: In order to keep overhead for maintenance and deployment low,
the CES shall be an extension of the QDAcity RTCS.

FR-1.2: The existing Slate1 text editor in the QDAcity frontend shall be
extended to connect to the CES and make use of the real-time collaborative
editing functionality that the CES provides.

FR-1.3: In order to provide a consistent user experience in the coding
editor, the CES or reworked RTCS shall be able to keep the code system
synchronized with the text document.

FR-1.4: The CES shall only process the operations of authenticated and
authorized users.

The implemented CES enables real-time collaborative editing using Yjs. It is an
extension of the RTCS and connects to the Slate text editor in the frontend via
the Slate-Yjs plugin. In order to keep the code system synchronized with the
text document a collaboration solution has been implemented with Yjs that can
synchronize both the code system and the text document. Changes to both of
these will be distributed and pushed to other users’ frontends in real time. A

1https://docs.slatejs.org/

65

https://docs.slatejs.org/

6. Evaluation

bearer token from the frontend is being used to authenticate and authorize users
at the initial connection to the CES.

The requirement FR-1 has been fulfilled.

FR-2: The real-time collaborative editing feature that the CES provides shall
enable efficient document synchronization across multiple users.

FR-2.1: As soon as a user requests a document that is not currently
being edited, the CES shall load this document to memory and provide it
to requesting users.

FR-2.2: As soon as a user edits a document, the CES shall accept and
distribute these edits to all other concurrent editors of this document in
real-time, by using a bidirectional communication protocol.

FR-2.3: As long as one or multiple users are concurrently editing a doc-
ument, the CES shall prevent write conflicts by continuously converging
the state of the document.

FR-2.4: As long as a document is actively being edited, the CES should
regularly persist the current state of the document to the backend.

FR-2.5: As soon as the last editing user of a document has disconnected,
the CES should persist the most up-to-date state of the document to the
backend.

FR-2.6: As long as a document is not actively being edited, the CES
should not hold it in memory.

The implemented CES only keeps text documents and code systems in memory
that are actively being worked on. WebSocket connections are used to distribute
incoming edits among the connected clients. Using Yjs as a CRDT-based solution,
the state of the document is being merged continuously. This applies no matter
the order of updates or the delay of distributing updates among the users. As long
as the Y.Doc of a document/code system is not discarded, incoming updates can
be applied and the Y.Doc will globally converge, thus preventing write conflicts.
Using a debounce configuration, the state of a document is persisted at regular
intervals, preventing large data loss in case of a fault at the RTCS. When a
collaborative editing session is closed, the CES removes the Y.Doc from memory,
freeing up resources for other collaborative editing sessions.

The requirement FR-2 has been fulfilled.

66

6. Evaluation

6.2 Nonfunctional Requirements

NFR-1: The CES should be designed in a way that can be deployed and run
in the environment that Google Cloud Run provides.

NFR-1.1: Google Cloud Run offers a maximum of 32 gigabytes of main
memory per instance.2

NFR-1.2: Google Cloud Run offers a maximum of 1000 concurrent
WebSocket connections per instance.3

NFR-1.3: Google Cloud Run offers a maximum of 60 minutes per
WebSocket connection before timing out.4

The CES, as part of the RTCS, can be deployed and run in the environment that
Google Cloud Run provides. The constraints of the hardware capacity provided
by Google Cloud Run has been mitigated by choosing an optimized CRDT im-
plementation in the form of Yjs. The constraint of a capped connection count
per Google Cloud Run instance has been addressed by the capability of the CES
to scale horizontally. The automated timeout of the WebSocket connection after
60 minutes has been addressed by using a connection provider in the frontend
that automatically attempts to reconnect after an unexpected disconnect. To
summarize, the requirement was met with the proviso that documents of human-
authored size are used.

The requirement NFR-1 has been fulfilled.

NFR-2: The CES shall be designed in a way that provides compatibility for
existing features and possible feature extensions in the future.

NFR-2.1: The CES shall be implemented in a way that does not break
the existing functionality of QDAcity.

NFR-2.2: The CES shall be designed in a way that could support
syncing additional document formats in the future.

NFR-2.3: The CES should be designed in a way that is compatible with
offline editing.

The CES was generally implemented in a way that does not break the existing
functionality of QDAcity. The coding feature has been reworked to enable it to
be compatible with the new system. By also persisting documents in the initial
HTML format, derived from the Y.Doc, the backend can keep performing its doc-
ument analyses without extensive adaptations required. However, the document

2cloud.google.com/run/quotas
3cloud.google.com/run/docs/about-concurrency
4cloud.google.com/run/docs/triggering/websockets

67

https://cloud.google.com/run/quotas
https://cloud.google.com/run/docs/about-concurrency
https://cloud.google.com/run/docs/triggering/websockets

6. Evaluation

analysis code has not yet been adapted to the new mechanism of embedding
coding information in a text document. The new document class Collaborative-
TextDocument has been implemented in a way that converts existing text docu-
ments at their first request through the CES. The capability of Yjs to generally
synchronize and converge JSON-based data enables the option of extending the
real-time collaborative editing feature with additional document formats in the
future. With the proviso that features that have been implemented in parallel to
the CES are not considered here, the requirement is seen as fulfilled.

The requirement NFR-2 has been fulfilled.

NFR-3: The CES should be designed in a way that provides a degree of
scalability and elasticity, while not deviating from the GCP-based services that
are already in use by QDAcity.

NFR-3.1: The CES shall be designed in a way that is horizontally
scalable to cope with increasing load.

NFR-3.2: The CES should be designed in a way that can make use of
the elasticity that its underlying GCP services provide.

By implementing the architecture presented in subsection 4.5.4, the RTCS can be
horizontally scaled using stateless instances and Redis Pub/Sub. Google Cloud
Run remains the hosting service for the modified RTCS including the newly
implemented CES. Due to the stateless nature of the RTCS instances, the newly
implemented real-time collaborative editing feature is able to benefit from its
automated scaling and elasticity capabilities. Thus, we assess this requirement
as fulfilled.

The requirement NFR-3 has been fulfilled.

NFR-4: The CES shall be designed in a way that provides sufficient perform-
ance.

NFR-4.1: The CES should be designed in a way that can support the
real-time collaborative editing of a single document by at minimum five
users.

NFR-4.2: The CES should be designed in a way that can support the
real-time collaborative editing of at minimum 50 average-size documents
on a single CES instance.

NFR-4.3: In order to provide a satisfying degree of responsiveness, the
average latency of distributing edits between connected users should be
less than 1000 milliseconds.

68

6. Evaluation

With manual testing, the minimum user count was confirmed. At this point,
the number of documents that a single CES instance can handle could only be
estimated. With local tests, a real-world human-authored document with an
extent of 15-20 pages is assessed as requiring a single-digit number of megabytes
of main memory. Thus, 50 documents of this size should allocate a three-digit
number of megabytes of main memory. When a single RTCS instance reaches its
cap of 1000 concurrent WebSocket connections, assuming every connected user
edits a different document with an extent of 15-20 pages, the RTCS is expected
to allocate a single-digit number of gigabytes of main memory. This should be
well within the required performance. The latency is mainly affected by the
distances between the data center and the user, but judging by the benchmark
results5 of Yjs, it should not be an obstacle in achieving a satisfying degree of
responsiveness. All in all, we expect this requirement to be fulfilled, however,
more practical evaluations are needed to confirm the assessments that are based
on local executions and benchmarks. Thus, we evaluate this requirement as
partially fulfilled.

The requirement NFR-4 has been partially fulfilled.

NFR-5: The implementation of the CES should be designed in a way that
enables sufficient maintainability.

NFR-5.1: The implementation of the CES should be designed in a way
that is well documented internally (commented code) as well as externally
(in the QDAcity Wiki).

NFR-5.2: The implementation of the CES should be designed in a way
that can easily be extended.

NFR-5.3: The implementation of the CES should be designed in a way
that supports the creation of acceptance tests.

The implementation of the CES is documented internally. The used libraries Yjs,
Slate-Yjs, and Hocuspocus also provide comprehensive documentation. While no
dedicated pages have been written for the QDAcity Wiki about the implement-
ation of the CES, parts of this thesis will be used and modified for the QDAcity
Wiki. The event hook-based framework of Hocuspocus provides a simple way of
implementing and injecting extensions, significantly facilitating the extendabil-
ity of the CES. In general, it should be possible to create acceptance tests for
the real-time collaborative editing feature using established tools like Selenium.
However, this has not been tackled in the context of this thesis. To summarize,
this requirement has been partially fulfilled.

The requirement NFR-5 has been partially fulfilled.
5https://github.com/dmonad/crdt-benchmarks

69

https://github.com/dmonad/crdt-benchmarks

6. Evaluation

NFR-6: The CES should be designed in a way that is reliable and fault-
resistant.

NFR-6.1: The CES should be designed and deployed in a way that can
consistently and autonomously recover from crashes and disconnects.

In case of failure of an RTCS instance, its stateless nature enables the client to
simply reconnect to a different instance. It is not necessary for the client to wait
until some partitioning or replication management system has made the affected
partition available on a different RTCS instance. Upon reconnection, the local
changes of the client that have not reached the RTCS yet will be synchronized to
the new session and the local changes of the user will be persisted. However, the
RTCS does not immediately persist every keystroke to the backend and does not
write changes to local disk. Instead, it uses a debounce setting to persist changes
to the backend at regular intervals. Thus, the possibility of data loss exists. If
no other user is in the collaborative editing session to receive the changes, and
the RTCS crashes with non-persisted changes, then the new changes only exist
on the client of the user. If the user quits without reconnecting and sharing
his local changes with a different RTCS instance, the local changes will be lost.
This is where an offline collaborative editing feature for the frontend client could
help by locally persisting these changes until the user reconnects to an RTCS
instance at some point in the future. However, it cannot be guaranteed that
any user ever reconnects. Nonetheless, given a debounce setting of e.g. half a
minute, the expected data loss should be negligible. All in all, it is definitely
an improvement on the initial system. Since the fault-tolerance of the CES has
only been theoretically evaluated and not practically tested, we evaluate this
requirement as partially fulfilled.

The requirement NFR-6 has been partially fulfilled.

NFR-7: The CES should be designed in a way that benefits usability.

NFR-7.1: The CES should be designed in a way that supports intuitive
understanding by its users by displaying feedback for connection problems.

NFR-7.2: The CES should be designed in a way that supports intuitive
understanding by its users by displaying text editing awareness informa-
tion.

Awareness information has been implemented as part of Yjs and Slate-Yjs. Con-
nection feedback exists for the initial RTCS, but does not include the connection
to the CES part of the RTCS. This could be unified by attaching the connection
information to the synchronization of the code system. However, connection feed-
back has not been implemented yet (apart from console output). Additionally,
concrete practical tests including user feedback are required to test the usability.

The requirement NFR-7 has been partially fulfilled.

70

7 Discussion

In this chapter, further noteworthy aspects of the development process will be
discussed. Section 7.1 deals with the consideration of using a P2P-based network
model instead of the traditional client/server pattern. Subsequently, section 7.2
describes the consideration of implementing a hybrid between the initial and the
reworked model for collaborative editing sessions. Lastly, 7.3 gives a general
impression of the difficulties and aids of the development process and proposes
some future work.

7.1 Network Model

Figure 7.1: Comparison of synchronization of a document via client/server or
P2P network mode. Equivalent network partitions in red.

CRDTs have the capability to globally converge in a P2P network, without re-
quiring a central server. Thus, the question arises whether the new iteration of
QDAcity should rely on a client/server pattern or P2P network to synchronize the
state of a document between simultaneously editing users. A P2P approach may

71

7. Discussion

have some advantages over the traditional client/server pattern. A comparison
between both approaches is displayed in figure 7.1.

The client/server pattern is on the left side and the P2P approach is on the right
side of figure 7.1 Both network models experience the same network partition,
displayed as red bars. On the left side, user B is completely disconnected from
the RTCS, due to the network partition. On the right side, user B could use
the P2P connection to user A to still be connected to the other participants,
exchange document edits, and remain in sync with the rest of system. Thus,
the P2P approach could potentially provide better availability of QDAcity when
facing network partitions compared to the client/server pattern.

However, P2P-topologies are usually a good fit for networks where all participants
are equal. In the context of this example, the participants are not equal. Only
edits that arrive at the RTCS will be persisted to the backend. Additionally, as
the vendor of QDAcity, only the RTCS can be relied on to stay online (excluding
incidents of faults or network partitions). Participating users could go offline
and never return at any point in time. Consequently, if user B relies on user A
forwarding the edits of user B to the RTCS, as seen on the right side of figure
7.1, user A could go offline at any time. Thus, terminating user B’s connection
to the rest of the system. Thus, for user B, relying on other users to transmit its
edits to the RTCS could result in an unstable and intransparent experience.

Providing connection indicators to the user appears to be an easy fix for the
transparency issue. In the case of a client/server pattern, this would be a binary
indicator. It would indicate whether a connection exists between a user and the
RTCS or not. For the P2P approach, a third option would be needed. This
option would indicate that an indirect connection via other users exists but could
drop at any time, as soon as a required user goes offline.

To add to this example, two users, i.e. users A and B, may both experience a
loss of connection from the RTCS while editing the same document. This could
possibly be due to some fault on the side of the RTCS. In this case, users A and
B could still exchange updates and continue real-time collaborative editing over
their local P2P connection. However, if both users go offline indefinitely after
making their changes, their version of the document would never be persisted.
The exchange of edits between users A and B could delude them into believing
they are still connected to the RTCS when they actually are not. Having a
connection indicator indicating that no connection to the RTCS exists, yet there
are still edits from another user arriving, could again lead to an intransparent
and confusing experience for users.

72

7. Discussion

In the end, we decided the potential availability advantage of the P2P approach
does not justify a more complex system, which could lead to a possibly confusing
or unstable user experience. Thus, we decided to keep the traditional client/server
pattern and a binary connection indicator.

7.2 Hybrid Model for Collaborative Editing Ses-
sions

In its new state, text documents are being edited using CRDTs and the RTCS,
disregarding whether there are actually multiple users collaboratively editing a
document or there is only one user making changes. During the development
process, it was evaluated whether to keep the old system of making and persisting
changes of a document (as explained in section 4.2) in place as long as only a
single user is editing a document. A collaborative editing session at the RTCS
would only be created once at least two users start simultaneously editing the
same document. Another possibility would be to allow users to choose whether
they want to create/join a collaborative editing session or work on their own
diverging local version (without synchronization) instead. Thus, basically opting
out of the real-time collaborative editing system.

Since in a real-time collaborative editing session every keystroke is communicated
to the RTCS, the main advantage of a hybrid approach would be the possibility
of reducing traffic and memory load of the RTCS as long as the real-time col-
laborative editing feature is not required. However, we decided not to go with a
hybrid approach of the old and new system due to the following reasons:

• Running two approaches concurrently leads to increased effort in imple-
mentation and maintenance. Additionally, allowing users to permanently
diverge their local state of a document from the synchronized version (ba-
sically branching) increases the complexity of reasoning about the state of
the documents in a project.

• Whenever a second user joins a single user in editing a document, the editing
session needs to be migrated from the old approach to the new approach of
collaborative editing (or vice versa), possibly leading to disruptions in the
editing process.

• Since with the new approach, every keystroke is sent to the RTCS and
expected to be persistent, switching between approaches might confuse a
user’s expectation in terms of when his changes are persisted. A user that
usually edits in real-time collaborative sessions might expect his changes to
also be immediately persisted when he is editing a document alone. This
could lead to unexpected data loss if the user loses connection before his

73

7. Discussion

changed version of the document is persisted to the backend, leading to
a bad user experience. The immediate communication and persistence of
every keystroke can be seen as a feature for data loss protection disregarding
the number of concurrent users editing the same document.

7.3 Development Process and Future Work

The agile development process mainly consisted of a tight feedback loop between
conducting research, prototyping, new insights, and feedback from the super-
visors. In general, the development process was shaped significantly by the num-
ber of open questions at the beginning of the thesis process. This required a
comprehensive research process of examining existing solutions, evaluating the
most suitable approaches of real-time collaborative editing for QDAcity, and how
to additionally synchronize the code system. This similarly applies to the design
of the horizontal scaling capability.

Moreover, the fact that the newly implemented feature affects the frontend,
RTCS, backend, and Google Cloud Storage leads to a significant threshold of
getting acquainted with the existing system, before being able to draw conclu-
sions from the comprehensive research process. The effort of getting acquainted
with the existing system can be traced back to the number of different technolo-
gies, frameworks, and cloud services used in the different domains of the system.
Due to the number of features implemented by various students during their
thesis, many files of the frontend that were relevant for this thesis have reached
significant lengths.

Furthermore, most of the new technologies that have been used for the implement-
ation of real-time collaborative editing for QDAcity are based on Typescript and
functional React components. Thus, the still widespread use of plain Javascript-
based class components in the frontend and Javascript in the RTCS complicated
the adoption of these technologies. The architectural decisions have been influ-
enced by the approach of taking incremental steps and the preference of sticking
with the systems that are already in use by QDAcity. The collaboration with
the supervisors, the extensive test suite, and the comprehensive documentation
in the QDAcity repository provided tremendous support for the development of
this feature.

Future work that could build upon the results of this thesis includes the following:

• Currently, the backend code for analyzing projects and documents has not
yet been adapted to the new mechanism of embedding coding information
in a collaborative text document. This is required for full compatibility of
existing features upon rollout of the real-time collaborative editing feature.
Also, the existing deserialization function for documents (from HTML to

74

7. Discussion

Slate nodes) needs to be adapted to also convert the coding information
embedded in the document to its new representation.

• The presentation of awareness information is currently split between the
old and new approach of the RTCS for distributing information. These
could and should be unified using Yjs to condense the use of multiple Web-
Socket connections to multiplexing1 on a single WebSocket connection using
Hocuspocus. The multiplexing feature for Hocuspocus is currently (as of
April 2023) in development. It should be used for QDAcity since the num-
ber of WebSocket connections per Google Cloud Run instance is limited to
1000. The awareness feature of Yjs can be used to distribute ephemeral
information that will not be persisted as part of the Y.Doc. Via private
collaborative sessions, it is possible to only push information to specific
users.

• Yjs supports offline collaborative editing functionality but it has not been
implemented in the context of this thesis, since aside from the synchroniza-
tion of the text document, the focus was on the synchronization of the code
system. The offline collaborative editing feature could and should be im-
plemented as part of future iterations of QDAcity. Using the Y-indexeddb2

provider to store local edits persistently in the browser during a disconnect,
this feature should be possible to implement with moderate effort. Note
that for offline collaborative editing, the involved Y.Doc-objects need to be
persisted to allow retrospective convergence.

• Apart from the code system, other document types and existing features
of QDAcity that are currently not synced could also benefit from real-time
synchronization. Examples include document types like drawing boards or
calculation sheets.

• As the current approach of horizontal scaling is bottlenecked by the single
Redis Pub/Sub instance, one could manually implement partitioning the
Redis Pub/Sub channels for a Redis cluster or implement one of the other
approaches to horizontal scaling that have been described in section 4.5.

• Parts of the nonfunctional requirements have been implemented but not
tested yet, e.g. usability. To comprehensively evaluate the fulfillment of
these requirements, more practical tests including user feedback are re-
quired.

1https://github.com/ueberdosis/hocuspocus/pull/484
2https://docs.yjs.dev/getting-started/allowing-offline-editing

75

https://github.com/ueberdosis/hocuspocus/pull/484
https://docs.yjs.dev/getting-started/allowing-offline-editing

7. Discussion

76

8 Conclusion

This last chapter concludes and sums up the thesis. Chapter 1 motivated this
thesis, set its objective, and described the structure of this thesis. We claimed
that QDAcity as a platform for collaboratively conducting Qualitative Data Ana-
lysis (QDA) could benefit significantly from the implementation of a real-time col-
laborative editing feature. We set the objective of implementing a horizontally
scalable, real-time collaborative editing feature for QDAcity.

Chapter 2 discussed and summarized the most relevant related work and research
for this thesis. First, we briefly introduced QDAcity’s coding editor, which is the
component that shall be extended by the implementation of the new feature.
Subsequently, we discussed the difficulties of real-time collaborative text edit-
ing and the approaches to handling these difficulties. We came to the conclusion
that to enable real-time editing, a shift from strong consistency to strong eventual
consistency is necessary. The approaches covered include Differential Synchroniz-
ation (DS), Operational Transformation (OT), and Conflict-free Replicated Data
Types (CRDTs). We concluded that OT and CRDTs are both capable solutions
that are able to guarantee convergence. However, CRDTs offer more useful ab-
stractions for convergence in a distributed environment. Lastly, we addressed
the topic of scaling cloud-based web applications. We confirmed our assumption
that a purely vertical approach to scaling is inherently limited and a horizontal
scaling approach is preferable long-term. To implement horizontal scaling with
reasonable effort, keeping application instances stateless is a significant aspect.

Chapter 3 formulated the collected requirements for the implementation part of
this thesis. These were categorized into functional and non-functional require-
ments. The most significant requirements included the implementation of the
new Collaborative Editing Service (CES) as part of the existing Real-Time Col-
laboration Service (RTCS). The feature should be able to synchronize various
document formats and features of QDAcity. At the same time, it should be hori-
zontally scalable while being based on the Google Cloud Platform (GCP) services
that are already in use by QDAcity. Furthermore, the requirements emphasized
compatibility, maintainability, performance, usability, and reliability.

77

8. Conclusion

Chapter 4 discussed the architectural adaptations that were made in the context
of this thesis to achieve the desired functionality. Originally, the transmission
of the document data happened directly between the frontend client and the
backend via HTTP. Unlike before, the newly implemented architecture handles
the transmission of documents via a WebSocket connection to the RTCS. Vari-
ous design drafts were described. This includes the approach that was finally
implemented using Redis Pub/Sub to interconnect stateless RTCS instances.

Chapter 5 describes the most significant used libraries (Yjs, Slate-Yjs, Hocuspo-
cus) and QDAcity-specific implementation details of the new real-time collaborat-
ive editing feature. Yjs is a modular Javascript-based CRDT implementation that
features some optimizations and can synchronize JSON data in general. Slate-Yjs
is a library that maps the JSON-based content of a Slate text document on Yjs’
CRDTs. Hocuspocus is a Typescript-based, extendable server implementation
that uses WebSocket connections to synchronize collaborative editing sessions
via Yjs. It offers hooks to inject custom behavior via custom event handlers and
extensions. Furthermore, it was described how these libraries were used in the
various domains of the QDAcity software architecture to implement the real-time
collaborative editing feature.

Chapter 6 revisits and evaluates the fulfillment of the requirements as stated in
chapter 3. We came to the conclusion that the most significant requirements of
the functionality of the new feature were fulfilled. However, due to the research-
heavy and technical topic of this thesis, the fulfillment of some requirements could
only be confirmed based on theoretical estimates and analyses. Further practical
testing and deployments are required to fully confirm these requirements.

Chapter 7 discussed considerations of further adaptations to QDAcity that were
in consideration. These considerations dealt with a P2P-based network topology
between clients and RTCS, as well as a hybrid model of the old and the new ap-
proach to editing documents. Since their advantages were evaluated to not justify
the additional complexity, we ultimately decided against both of these mechan-
isms. Lastly, this chapter presented general considerations about the development
process and proposed some future work. The suggestions for future work cover
finishing the adaptation of the backend analysis tools to the new collaboration
system, the unification of transmission of awareness information, offline collab-
orative editing functionality, additional collaborative features or document types
beyond text documents, and practical tests for subjective requirements.

Concluding this thesis, we are satisfied with the implemented solution for QDA-
city’s real-time collaborative editing feature. There is still further work to be
done and practical insights to be gained that build upon the implemented solu-
tion. However, the implemented solution combines the fulfillment of the most
significant technical requirements with providing a synchronization platform that
supports comprehensive future extensions of QDAcity’s collaboration features.

78

References

Akhtar, W. (2022, March 15). The Mother of All Demos. Medium. Retrieved
March 19, 2023, from https://medium.com/@wicar/the-mother-of-all-
demos-719b3c666046

Alexei Baboulevitch. (2018, March 24). Data Laced with History: Causal Trees &
Operational CRDTs. Archagon Was Here. Retrieved March 4, 2023, from
http://archagon.net/blog/2018/03/24/data-laced-with-history/

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., & Zaharia, M. (2010). A view
of cloud computing. Communications of the ACM, 53 (4), 50–58. https:
//doi.org/10.1145/1721654.1721672

Beck, K. (2000). Extreme programming eXplained: Embrace change. Addison-
Wesley.

Boelmann, C., Schwittmann, L., Waltereit, M., Wander, M., & Weis, T. (2016).
Application-Level Determinism in Distributed Systems, 989–998. https:
//doi.org/10.1109/ICPADS.2016.0132

Bourgon, P. (2014, May 9). Roshi: A CRDT system for timestamped events. Re-
trieved March 12, 2023, from https://developers.soundcloud.com/blog/
roshi-a-crdt-system-for-timestamped-events

Bryman, A., & Bell, E. (2011). Business research methods (3rd ed). Oxford Uni-
versity Press.

Creswell, J. W., & Creswell, J. D. (2018). Research design: Qualitative, quantit-
ative, and mixed methods approaches (Fifth edition). SAGE.

Day-Richter, J. (2010, September 23). What’s different about the new Google
Docs: Making collaboration fast. Google Drive Blog. Retrieved March 9,
2023, from https://drive.googleblog.com/2010/09/whats-different-about-
new-google-docs.html

de la Vega, A., & Kolovos, D. (2022). An efficient line-based approach for resolving
merge conflicts in XMI-based models. Software and Systems Modeling,
21 (6), 2461–2487. https://doi.org/10.1007/s10270-022-00976-4

Dey, I. (2005). Qualitative data analysis: A user-friendly guide for social scient-
ists. Taylor & Francis e-Library
OCLC: 646796703.

79

https://medium.com/@wicar/the-mother-of-all-demos-719b3c666046
https://medium.com/@wicar/the-mother-of-all-demos-719b3c666046
http://archagon.net/blog/2018/03/24/data-laced-with-history/
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1109/ICPADS.2016.0132
https://doi.org/10.1109/ICPADS.2016.0132
https://developers.soundcloud.com/blog/roshi-a-crdt-system-for-timestamped-events
https://developers.soundcloud.com/blog/roshi-a-crdt-system-for-timestamped-events
https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs.html
https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs.html
https://doi.org/10.1007/s10270-022-00976-4

References

Dutta, S., Gera, S., Verma, A., & Viswanathan, B. (2012). SmartScale: Automatic
Application Scaling in Enterprise Clouds. 2012 IEEE Fifth International
Conference on Cloud Computing, 221–228. https : / /doi . org/10 . 1109/
CLOUD.2012.12

Ellis, C. A., & Gibbs, S. J. (1989). Concurrency control in groupware systems.
Proceedings of the 1989 ACM SIGMOD International Conference on Man-
agement of Data, 399–407. https://doi.org/10.1145/67544.66963

Etherpad: A real-time collaborative editor for the web. (2011, March 26). Retrieved
March 10, 2023, from https ://github.com/ether/etherpad- lite/blob/
48381de576909bc1db5c9dd30ae9495ec0ae55c1 /doc / easysync / easysync -
full-description.pdf

Fowler, M. (2005, June 26). InversionOfControl. martinfowler.com. Retrieved
April 7, 2023, from https://martinfowler.com/bliki/InversionOfControl.
html

Fraser, N. (2009a, January). Writing: Differential Synchronization. Retrieved
March 9, 2023, from https://neil.fraser.name/writing/sync/

Fraser, N. (2009b). Differential synchronization. Proceedings of the 9th ACM
Symposium on Document Engineering, 13–20. https://doi.org/10.1145/
1600193.1600198

Gentle, J. (2016, August 18). On: A Conflict-Free Replicated JSON Datatype.
https://news.ycombinator.com/item?id=12311984

Gilbert, S., & Lynch, N. (2012). Perspectives on the CAP Theorem. Computer,
45 (2), 30–36. https://doi.org/10.1109/MC.2011.389

Graue, C. (2015). Qualitative Data Analysis. International Journal of Sales, Re-
tailing and Marketing, 4 (9), 5–14.

Hedkvist, P. (2021, February 28). Introduction to Conflict Free Replicated Data-
type. The Startup. Retrieved March 12, 2023, from https://medium.com/
swlh/introduction-to-conflict-free-replicated-data-type-959a944098c4

Herron, A. (2020, January 13). Building real-time collaboration applications: OT
vs CRDT. Blueprint - Blog by Tiny. Retrieved March 3, 2023, from https:
//www.tiny.cloud/blog/real-time-collaboration-ot-vs-crdt/

Jahns, K. (2020, August 10). Are CRDTs suitable for shared editing? Kevin’s
Blog. Retrieved April 7, 2023, from https://blog.kevinjahns.de/are-crdts-
suitable-for-shared-editing/

Kleppmann, M. (2017). Designing data-intensive applications: The big ideas be-
hind reliable, scalable, and maintainable systems (First edition). O’Reilly
Media
OCLC: ocn893895983.

Kleppmann, M. (2018, March 5). CRDTs and the Quest for Distributed Con-
sistency. London. https ://martin.kleppmann.com/2018/03/05/qcon-
london.html

80

https://doi.org/10.1109/CLOUD.2012.12
https://doi.org/10.1109/CLOUD.2012.12
https://doi.org/10.1145/67544.66963
https://github.com/ether/etherpad-lite/blob/48381de576909bc1db5c9dd30ae9495ec0ae55c1/doc/easysync/easysync-full-description.pdf
https://github.com/ether/etherpad-lite/blob/48381de576909bc1db5c9dd30ae9495ec0ae55c1/doc/easysync/easysync-full-description.pdf
https://github.com/ether/etherpad-lite/blob/48381de576909bc1db5c9dd30ae9495ec0ae55c1/doc/easysync/easysync-full-description.pdf
https://martinfowler.com/bliki/InversionOfControl.html
https://martinfowler.com/bliki/InversionOfControl.html
https://neil.fraser.name/writing/sync/
https://doi.org/10.1145/1600193.1600198
https://doi.org/10.1145/1600193.1600198
https://news.ycombinator.com/item?id=12311984
https://doi.org/10.1109/MC.2011.389
https://medium.com/swlh/introduction-to-conflict-free-replicated-data-type-959a944098c4
https://medium.com/swlh/introduction-to-conflict-free-replicated-data-type-959a944098c4
https://www.tiny.cloud/blog/real-time-collaboration-ot-vs-crdt/
https://www.tiny.cloud/blog/real-time-collaboration-ot-vs-crdt/
https://blog.kevinjahns.de/are-crdts-suitable-for-shared-editing/
https://blog.kevinjahns.de/are-crdts-suitable-for-shared-editing/
https://martin.kleppmann.com/2018/03/05/qcon-london.html
https://martin.kleppmann.com/2018/03/05/qcon-london.html

References

Kleppmann, M., & Beresford, A. R. (2017). A Conflict-Free Replicated JSON
Datatype. IEEE Transactions on Parallel and Distributed Systems, 28 (10),
2733–2746. https://doi.org/10.1109/TPDS.2017.2697382

Kreps, J., Narkhede, N., & Rao, J. (2011). Kafka: A Distributed Messaging Sys-
tem for Log Processing. Retrieved April 5, 2023, from https : / /www .
semanticscholar.org/paper/Kafka-%3A-a-Distributed-Messaging-System-
for-Log-Kreps/ea97f112c165e4da1062c30812a41afca4dab628

Kwan, A., Wong, J., Jacobsen, H.-A., & Muthusamy, V. (2019). HyScale: Hybrid
and Network Scaling of Dockerized Microservices in Cloud Data Centres.
2019 IEEE 39th International Conference on Distributed Computing Sys-
tems (ICDCS), 80–90. https://doi.org/10.1109/ICDCS.2019.00017

Lamport, L. (1978). Time, Clocks, and the Ordering of Events in a Distributed
System. 21 (7).

Li, D., & Li, R. (2006). A performance study of group editing algorithms. 12th In-
ternational Conference on Parallel and Distributed Systems - (ICPADS’06),
1, 8 pp.-. https://doi.org/10.1109/ICPADS.2006.18

Lindholm, T. (2004). A three-way merge for XML documents. Proceedings of the
2004 ACM Symposium on Document Engineering, 1–10. https://doi.org/
10.1145/1030397.1030399

Lorido-Botran, T., Miguel-Alonso, J., & Lozano, J. A. (2014). A Review of
Auto-scaling Techniques for Elastic Applications in Cloud Environments.
Journal of Grid Computing, 12 (4), 559–592. https://doi.org/10.1007/
s10723-014-9314-7

Mihas, P. (2019, May 23). Qualitative Data Analysis. In Oxford Research Encyc-
lopedia of Education. Oxford University Press. https://doi.org/10.1093/
acrefore/9780190264093.013.1195

Mor, S. (2018). Scaling Redis PubSub. Retrieved April 5, 2023, from https://
www.slideshare.net/RedisLabs/redis-day-tlv-2018-scaling-redis-pubsub

Nichols, D. A., Curtis, P., Dixon, M., & Lamping, J. (1995). High-latency, low-
bandwidth windowing in the Jupiter collaboration system. Proceedings of
the 8th Annual ACM Symposium on User Interface and Software Techno-
logy, 111–120. https://doi.org/10.1145/215585.215706

Nicolaescu, P., Jahns, K., Derntl, M., & Klamma, R. (2016). Near Real-Time
Peer-to-Peer Shared Editing on Extensible Data Types, 39–49. https://
doi.org/10.1145/2957276.2957310

Oster, G., Molli, P., Urso, P., & Imine, A. (2006). Tombstone Transformation
Functions for Ensuring Consistency in Collaborative Editing Systems. In-
ternational Conference on Collaborative Computing: Networking, Applic-
ations and Worksharing, 0. https://doi .org/10.1109/COLCOM.2006.
361867

Peter Bourgon on CRDTs, Go at SoundCloud. (2015, January 15). Retrieved
March 12, 2023, from https://www.infoq.com/interviews/bourgon-crdt-
go/

81

https://doi.org/10.1109/TPDS.2017.2697382
https://www.semanticscholar.org/paper/Kafka-%3A-a-Distributed-Messaging-System-for-Log-Kreps/ea97f112c165e4da1062c30812a41afca4dab628
https://www.semanticscholar.org/paper/Kafka-%3A-a-Distributed-Messaging-System-for-Log-Kreps/ea97f112c165e4da1062c30812a41afca4dab628
https://www.semanticscholar.org/paper/Kafka-%3A-a-Distributed-Messaging-System-for-Log-Kreps/ea97f112c165e4da1062c30812a41afca4dab628
https://doi.org/10.1109/ICDCS.2019.00017
https://doi.org/10.1109/ICPADS.2006.18
https://doi.org/10.1145/1030397.1030399
https://doi.org/10.1145/1030397.1030399
https://doi.org/10.1007/s10723-014-9314-7
https://doi.org/10.1007/s10723-014-9314-7
https://doi.org/10.1093/acrefore/9780190264093.013.1195
https://doi.org/10.1093/acrefore/9780190264093.013.1195
https://www.slideshare.net/RedisLabs/redis-day-tlv-2018-scaling-redis-pubsub
https://www.slideshare.net/RedisLabs/redis-day-tlv-2018-scaling-redis-pubsub
https://doi.org/10.1145/215585.215706
https://doi.org/10.1145/2957276.2957310
https://doi.org/10.1145/2957276.2957310
https://doi.org/10.1109/COLCOM.2006.361867
https://doi.org/10.1109/COLCOM.2006.361867
https://www.infoq.com/interviews/bourgon-crdt-go/
https://www.infoq.com/interviews/bourgon-crdt-go/

References

Ptaszek, M. (2014, September 20). Scaling League of Legends Chat to 70 million
Players. Retrieved March 12, 2023, from https ://thestrangeloop.com/
2014/scaling-league-of-legends-chat-to-70-million-players.html
https://youtu.be/_jsMpmWaq7I

Pujol, J. M., Erramilli, V., Siganos, G., Yang, X., Laoutaris, N., Chhabra, P., &
Rodriguez, P. (2010). The little engine(s) that could: Scaling online social
networks. Proceedings of the ACM SIGCOMM 2010 Conference, 375–386.
https://doi.org/10.1145/1851182.1851227

Rossi, F., Nardelli, M., & Cardellini, V. (2019). Horizontal and Vertical Scaling of
Container-Based Applications Using Reinforcement Learning. 2019 IEEE
12th International Conference on Cloud Computing (CLOUD), 329–338.
https://doi.org/10.1109/CLOUD.2019.00061

Rupp, C., & SOPHIST-Gesellschaft für Innovatives Software-Engineering (Eds.).
(2014). Requirements-Engineering und -Management: aus der Praxis von
klassisch bis agil (6., aktualisierte und erw. Aufl). Hanser.

Seers, K. (2012). Qualitative Data Analysis. Evidence Based Nursing, 15 (1), 2–2.
https://doi.org/10.1136/ebnurs.2011.100352

Shapiro, M., Preguiça, N., Baquero, C., & Zawirski, M. (2011). Conflict-free Rep-
licated Data Types.

Sheikhan, M., & Ahmadluei, S. (2013). An intelligent hybrid optimistic/pessimistic
concurrency control algorithm for centralized database systems using mod-
ified GSA-optimized ART neural model. Neural Computing and Applica-
tions, 23 (6), 1815–1829. https://doi.org/10.1007/s00521-012-1147-3

Shi, X., Pruett, S., Doherty, K., Han, J., Petrov, D., Carrig, J., Hugg, J., &
Bronson, N. (2020). FlightTracker: Consistency across Read-Optimized
Online Stores at Facebook.

Sotiriadis, S., Bessis, N., Amza, C., & Buyya, R. (2019). Elastic Load Balancing
for Dynamic Virtual Machine Reconfiguration Based on Vertical and Ho-
rizontal Scaling. IEEE Transactions on Services Computing, 12 (2), 319–
334. https://doi.org/10.1109/TSC.2016.2634024

Sun, C., Sun, D., Agustina & Cai, W. (2018, October 4). Real Differences between
OT and CRDT for Co-Editors. arXiv: arXiv:1810.02137. https://doi.org/
10.48550/arXiv.1810.02137

Van Den Hoogen, I. (2004, January 8). Deutsch’s Fallacies, 10 Years After. Re-
trieved March 8, 2023, from https://web.archive.org/web/20070811082651/
http://java.sys-con.com/read/38665.htm

Vidot, N., Cart, M., Ferrié, J., & Suleiman, M. (2000). Copies convergence in
a distributed real-time collaborative environment, 171–180. https://doi.
org/10.1145/358916.358988

Vitillo, R. (2022). Understanding Distributed Systems (Version 2.0.0. Second edi-
tion). Roberto Vitillo
OCLC: 1348952627.

82

https://thestrangeloop.com/2014/scaling-league-of-legends-chat-to-70-million-players.html
https://thestrangeloop.com/2014/scaling-league-of-legends-chat-to-70-million-players.html
https://doi.org/10.1145/1851182.1851227
https://doi.org/10.1109/CLOUD.2019.00061
https://doi.org/10.1136/ebnurs.2011.100352
https://doi.org/10.1007/s00521-012-1147-3
https://doi.org/10.1109/TSC.2016.2634024
https://arxiv.org/abs/arXiv:1810.02137
https://doi.org/10.48550/arXiv.1810.02137
https://doi.org/10.48550/arXiv.1810.02137
https://web.archive.org/web/20070811082651/http://java.sys-con.com/read/38665.htm
https://web.archive.org/web/20070811082651/http://java.sys-con.com/read/38665.htm
https://doi.org/10.1145/358916.358988
https://doi.org/10.1145/358916.358988

	Introduction
	Motivation
	Objective
	Thesis Structure

	Related Work
	QDAcity
	Real-time Collaborative Editing
	Collaborative Editing
	Real-Time Reads
	Real-Time Writes
	Differential Synchronization
	Operational Transformation
	Conflict-Free Replicated Data Types

	Scaling a Cloud-Based Web Application
	Cloud Computing
	Vertical Scaling
	Horizontal Scaling
	Elasticity

	Requirements
	Functional Requirements
	Nonfunctional Requirements

	Architecture
	Research Conclusions
	Initial Architecture of QDAcity
	Reworked Architecture of QDAcity
	Document Storage Format
	Horizontal Scaling Design Drafts
	Initial Situation without Horizontal Scaling
	Stateful Instances with Service Discovery/Routing
	Stateless Instances with Log-Based Message Broker
	Stateless Instances with Pub/Sub Service

	Design and Implementation
	Libraries
	Implementation

	Evaluation
	Functional Requirements
	Nonfunctional Requirements

	Discussion
	Network Model
	Hybrid Model for Collaborative Editing Sessions
	Development Process and Future Work

	Conclusion
	References

