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Abstract

This thesis investigates obstacle avoidance strategies for cleaning robots in
industrial environments with a present Automated Guided Vehicle (AGV) fleet
and presents a comparative evaluation of these strategies. The study aims
to enable safe and efficient navigation for cleaning robots by addressing the
challenge of obstacle avoidance. A comprehensive system architecture is proposed
based on a thorough literature review of obstacle avoidance techniques. The
system is implemented and tested with Robot Operating System (ROS) and the
simulation environment Gazebo. The implemented obstacle avoidance strategies
are evaluated using three comparable metrics: cleaning time, reached coverage,
and multi-coverage. The best-performing strategies depending on the user’s
preferences are the follow-reorder and the replan strategy. Overall, this research
provides valuable insights into obstacle avoidance strategies for cleaning robots
in industrial environments.
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1 Introduction

The development of robots has revolutionised the way we live and work. In
recent years, robots have been used in various industries to increase efficiency and
productivity. One area where robots have made significant progress is in cleaning
services. Cleaning robots have become progressively more popular in recent years
due to their ability to automate the cleaning process and improve efficiency with
minimal human intervention. Manual cleaning can be risky, exposing human
operators to hazardous materials or environments.

This work’s focus lies on cleaning robots in an environment of a working
Automated Guided Vehicle (AGV) fleet. AGV fleets are becoming increasingly
common in warehousing, logistics, and manufacturing industries. These vehicles
transport goods, materials, and equipment within a facility, and with a tight
schedule in transportation, the fleet should be disturbed minimally. With the
increasing popularity of AGV fleets, automation in such an environment can
provide significant benefits. These benefits include the uninterrupted working
time of the fleet and human safety.

The specific use case is as follows:
A warehouse with a working AGV fleet, not being further specified, should be
cleaned as efficiently as possible, while not interfering with the movement of the
AGV fleet. This means the AGVs should not stop moving or change their paths
for the robot to be able to clean the area. The cleaning solution provides multiple
strategies for avoiding collisions with the AGV fleet, and the results achieved by
the different strategies will be discussed. The primary objective of this research is
the design and development of these strategies for a cleaning robot in a dynamic
industrial environment in the presence of a separate mobile robot fleet to create
a comprehensive cleaning solution.

The remainder of this thesis is organised as follows. A short overview of the
related work is given in Chapter 2. In Chapter 3 the requirements necessary for
the successful implementation of the strategies are presented. Chapter 4 details a
comprehensive overview of the systems architecture. In Chapter 5, the system’s
design elements and implementation details are thoroughly discussed. Continuing
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1. Introduction

with Chapter 6, the evaluation of the proposed requirements is executed and the
strategies’ performance results are discussed. Finally, in Chapter 7 a conclusion
and outlook is given.

For better readability, the following work will display implemented nodes and
modules by typewriter font.
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2 Literature Review

One crucial part of robotic navigation is path planning, which describes the
planning of a suitable route for the robot to drive. Typically the shortest path is
desired. Yet for Coverage Path Planning (CPP), the path needs to be different.
In this case, the task can be described as a specification of the Traveling Salesman
Problem (TSP) (Bellmore and Nemhauser, 1968), in which the salesman has to
visit every travel location given in an area with the shortest possible route. In
the cleaning task, the travel locations are not points of interest but the entirety
of locations in the given environment and the shortest, most efficient route is still
desirable. The solution for this problem is given by Complete Coverage Path
Planning (CCPP) algorithms.

Additionally, within the cleaning task in an industrial environment other
requirements, such as collision avoidance with traffic from other vehicles or human
workers also have to be met. This topic is very well-researched and numerous
approaches have been developed of which only the most relevant algorithms are
described in this work. Additionally, complete solutions for cleaning robots in
various environments have been developed. A couple of interesting ones are
also described in this chapter. First, this chapter introduces CCPP algorithms in
Section 2.1, then some background on already existing cleaning strategy solutions
and collision avoidance approaches is given in Section 2.2.

2.1 CCPP

In the field of CCPP, many algorithms have been developed (Jan et al., 2014;
Luo and Yang, 2008; Oh et al., 2004; Viet et al., 2013; Yang and Luo,
2004). To give a good overview, three surveys are studied and the most
interesting mentioned algorithms are explained. The first survey from Choset,
2001 summarises the different algorithms proposed until 2001 and categorises
the algorithms into heuristic and cell decomposition approaches. These heuristic
algorithms select random driving directions and continue to drive there until
an object is detected. This behaviour is not mathematically complete and the
resulting error would significantly impact large areas, like the one given in this
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2. Literature Review

research. Therefore, heuristic approaches are not relevant to this work. Also,
time and energy are limiting factors in industrial settings, and with heuristic
approaches, an optimisation in this regard is not possible. This leads the focus
for the CCPP algorithm search to the cell decomposition approaches. The cellular
decomposition approaches decompose the desired area into cells. This class of
algorithms can be further distinguished into approximative and exact cellular
decompositions.

In the Approximate Cellular Decomposition (ACD) algorithms, all cells are of the
same size and once every cell is covered the area is considered clean. One example
of ACD algorithms is the wavefront algorithm by Zelinsky et al., 1993. For this
approach, a goal point needs to be set and the distance of each cell to the goal is
calculated by propagating a wavefront. A path can be planned with the obtained
distances. For simple navigation, the shortest path is chosen by following the cells
with the smallest distance to the goal point. In complete coverage, the robot first
visits all cells with the same furthest distance to the goal and only moves closer to
the endpoint when that’s the furthest point away. This solution produces paths
with too many turns so an optimisation was introduced. This optimisation does
not only calculate the distance to the goal but also takes the distance to obstacles
into account. Another example is the spanning tree algorithm by Gabriely and
Rimon, 2001. A further distinction of ACD approaches is Semi-ACD algorithms,
which only discretise space partially. For example in Lumelsky et al., 1990 cells
only have a fixed width and the planning is also done in a zig-zag manner.

In exact cellular decompositions, cells are no longer uniform but nonintersecting
regions, which make up the whole environment. An example is the trapezoidal
decomposition by Latombe, 2012, which parts the environment into trapezoidal
regions that can be swept in a back-and-forth motion. These regions are ordered
in a connectivity graph and a path is planned with this information. An
improvement of this algorithm is the Boustrophedon algorithm developed by
Choset and Pignon, 1998. In this decomposition algorithm, the cells are bigger
and decomposed through connectivity information. Just as in the trapezoidal
decomposition the boustrophedon also parts the region into cells that together
cover the entire area. The cells are again ordered in an adjacency graph. In this
approach, however, the environment does not have to be discretised and the cells
can have different shapes. Additionally, the algorithm connects cells that can be
cleaned in one motion, as fewer cells are better for the efficiency of the execution.

According to Choset, CCPP algorithms can also be classified into offline and
online. The environment has to be known prior to planning for methods to
be classified offline. Therefore, dynamic changes in the environment can not
be integrated into the initial planning. Online algorithms on the other hand
don’t acquire full information about the surroundings beforehand but use sensors
for information gathering while planning. The scenario in this work allows a
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combination of online and offline planning. As a map is most likely given through
the present Automated Guided Vehicle (AGV) fleet manager and the environment
itself does not change it could be classified offline. But with the AGVs moving, the
cleaning robot needs a sensor for detecting the obstacles and adjusting the path.
As online algorithms are more complex and need to get to know the environment
first, the arising question is whether an offline algorithm is more efficient than an
online algorithm by using the given information. In general, the usage of given
information should have better results than not taking it into account.

In another survey by Galceran and Carreras, 2013, the most successful CCPP
algorithms until 2013 are compared. They mention cellular decomposition
methods as well as grid and graph-based algorithms. Apart from already
introduced algorithms trapezoidal and boustrophedon, Galceran and Carreras
also address the morse-based cellular decomposition, which was introduced by
Acar et al., 2002. In the Morse-based approach, a decomposition similar to the
boustrophedon decomposition is proposed. The area is sliced by a predefined
method, e.g. circles or in a star pattern, and in the slices, critical points are
searched by deriving the functions describing the connectivity in the given cells.
These critical points are checked for degenerability. If they are nondegenerable,
they are viewed as critical points and included in the path planning algorithm
that is similar to a potential field algorithm, where these critical points attract
or repel the cleaning robot.

The third survey by Bormann et al., 2018 compares the performance of six CPP
algorithms, some already described by Galceran and Carreras, 2013 and Choset,
2001. These algorithms are classified as CPP and therefore are not focussing on
reaching every point. Some of them may not be as relevant but most of them
can be used for CCPP as well. The first algorithm they chooe is the classic
Boustrophedon CCPP as already described earlier. For the evaluation with the
other algorithms the optimised version by Huang, 2001 is implemented.

The second algorithm is the Grid-Based TSP CPP, where the area is parted into
regular-shaped cells at all accessible locations. Each cell needs to be visited and
the resulting path is obtained, by searching for the shortest travelling path either
with an exact solution by the TSP solver Concorde, an approximate solution by
a genetic algorithm or a nearest neighbour search.

The third approach is a Neural Network based algorithm developed by Yang
and Luo, 2004, which solves the CCPP problem in a varying environment. The
neurons in the network describe the activity landscape of the environment and
represent one cell of the grid each. The cleaning robot is then attracted by not
yet cleaned cells and repelled by obstacles.
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The fourth algorithm is the grid-based local energy minimisation introduced by
Bormann et al., 2015. In their approach, the grid is shaped the same approximate
way as in the previous two algorithms. The visited cells are remembered and a
new neighbour cell is found with an energy function. With the proposed method
the cleaning robot starts in a corner and prefers to drive straight rather than
turning which results in track-following-like behaviour.

Contour line-based CPP is the only approach that works on the original map
without discretisation and finds local minima in the Voronoi graph generated for
this map. Between these critical points and the closest point to the obstacle
contour lines are chosen with respect to the robot’s size.

The last algorithm is the convex sensor placement CPP which is based on the
art gallery problem and does not result in complete coverage. So this algorithm
is not relevant to this work.

Bormann et al., 2018 shows the differences in the planned paths as well as an
evaluation of the algorithms concerning the metrics computation time, path
length, number of rotations, travelling time, and coverage percentage for the
different algorithms. Their work results in the Boustrophedon algorithm as the
overall best appeal with minimal travelling time and rotation as well as one of
the highest coverage percentages.

The proposed algorithms could all be used for the stated research problem. Yet to
be able to focus on the main objective to develop and evaluate obstacle avoidance
strategies the simplest algorithm is implemented; the trapezoidal decomposition.

2.2 Existing Strategies

A cleaning solution in an industrial environment with a working AGV fleet does
not only need a planning algorithm. Reacting to the environment is just as
important. As the subject has been researched extensively the given setting is
important for the choice of a fitting strategy. For example, if the setting is known
and static, a simple planning algorithm is sufficient but if the environment is
dynamic like in a warehouse, where palettes can be stored in any position the
environment changes and brings more challenges.

A solution provided by Yan et al., 2020 is the FLOBOT which is designed to
clean highly visited large public areas like supermarkets or airports. Yan et al.,
2020 developed a human detection and tracking module, a method to detect
dirty areas and use the information gathered for further improvements of the
navigation. The robot should clean the floor during the opening hours. This
scenario is interesting in the approach to handling collisions. Yet in public places,
human safety has a higher priority such that the cleaning robot just needs to
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wait as humans are more flexible in circumnavigating the cleaning robot than
other robots. In this research scenario, the AGVs also have priority, as they
might have a restricted driving area or the overall task of the fleets vehicles is
more time relevant. However, they follow specific paths and therefore can be
navigated around more easily. Additionally, the necessary safety precautions are
not as strict as for human interference. Whereas the shoppers in a supermarket
roam around without specified paths and change direction easily.

An approach for a mowing robot with mobile obstacle avoidance is introduced
by Hsu and Lin, 2014. They focus on efficiency in the planning algorithm and
introduce three modes, one with minimal time and one with efficient energy
consumption. The third mode is mixed. Their approach for obstacle avoidance is
based on a potential field method and assigning avoidance difficulty values to the
obstacles. The mowing robot, however, does not return to the avoided sequence,
which does not guarantee full coverage especially not on the route of the moving
obstacle.

Other examples of collision avoidance come from the area of robot navigation
in general. The most interesting part for the adaption into a cleaning strategy
is the dynamic window approach. This algorithm described by Fox et al., 1997
searches for paths directly in the velocity space. All paths that are reachable
with the mobility constraints given for the cleaning robot and which are safe
regarding obstacles are considered. Then the option which maximises an objective
function describing the goal is chosen. The approach of Seder and Petrovic, 2007
adapts this algorithm to work with moving obstacles. In this adaption, multiple
alternative trajectories are computed between the minimal and maximal speed
of the motor and depending on the location and velocity of the obstacle. Out
of these options, the optimal solution is chosen and a route back to the original
path is found. The knowledge about the obstacles’ location relies on an estimation
from sensor data.

In the presented approaches the aspect of complete coverage has been neglected in
the execution. Even when the path planning was complete, the obstacle avoidance
leads to uncovered areas. So this research approach will focus on the complete
execution, especially on coverage of the fleet’s route. This is necessary as the
AGV’s might rely on visual aids for localisation and navigation and a clean path
reduces the probability of the AGVs parts. So a simple approach of just driving
around the object and continuing the path planned is not sufficient.

An entirely different approach to avoid collisions with the present AGV fleet
is by including the cleaning robot into the fleet and letting the fleet manager
handle the heterogeneous fleet. Fleets generally can be managed centralised or
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decentralised. An example of centralised fleets is given by Akkaya and Gökçe,
2022. In this approach a central module schedules and routes the paths for the
AGVs. In the decentralised approach examples are proposed by Fragapane et
al., 2021 and Azarm and Schmidt, 1997 . Here the AGVs communicate with
each other for path allocation. Literature on heterogeneous fleets mostly covers
different sizes of AGVs with fairly similar tasks. As in our case, the cleaning robot
has an entirely different task, the portability of the approaches onto a mixed fleet
with cleaning robots and AGVs is questionable. As this thesis work focuses
on the cleaning solution solely, a decentralised version of fleet management can
not be assumed and would limit the usage of the proposed system, as hardware
restriction would be necessary. Thus, no communication with the AGV fleet is
allowed in the cleaning solution.

8



3 Requirements

To design and implement a solution for the given research problem, first, the
requirements have to be formulated. These can be divided into functional and
non-functional requirements.

3.1 Functional Requirements

The functional requirements state requirements for the function of the system.
The software solution for the cleaning process in an environment with an
Automated Guided Vehicle (AGV) fleet can further be parted into the subsections
of path planning and collision avoidance. The requirements are established
according to these subsections, starting with general requirements needed for
the entire system in Section 3.1.1. Continuing with the requirements for the
path planning algorithm in Section 3.1.2 and the collision avoidance module in
Section 3.1.3.

3.1.1 General Requirements

The scenario stated in the introduction can be directly translated into the
requirements given in Table 3.1.

In general, the cleaning solution should be able to avoid all obstacles, static
as well as dynamic ones resulting from the AGV driving in the environment.
Furthermore, the AGV fleet must not be disturbed by the cleaning vehicle as
their work is more time-dependent and therefore has a higher priority. The
system should also be able to work in arbitrary environments, and a map of the
environment should always be given for the system to be able to plan the cleaning
path offline. Details regarding this topic are given in Section 3.1.2. The solution
is meant to work for any size or model of cleaning robot. Multiple obstacle
avoidance strategies should be implemented to provide a choice for the best option
in different use cases and a choice to prioritize different metrics. Additionally,
the fleets routes should be cleaned. In the given scenario, the course of the fleet
should be clean for different reasons. If the path is dirty, the work of the fleet may

9
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Requirements ID
During cleaning, all collisions with obstacles are avoided. FR_G1

All collisions with static obstacles are avoided. FR_G1.1
All collisions with dynamic obstacles are avoided. FR_G1.2

The AGV fleet is not actively disturbed. FR_G2
Cleaning can be executed in any enclosed environment. FR_G3
The cleaning solution takes a map of the cleaning environment as
input.

FR_G4

Cleaning can be executed with various kinds of cleaning robots. FR_G5
Multiple obstacle avoidance strategies are implemented. FR_G6
The cleaning robot needs to be equipped with an onboard sensor. FR_G7
The fleets routes are cleaned. FR_G8

Table 3.1: Summary of the general requirements and their IDs

be disturbed because they have to circumnavigate trash, or localisation might be
more difficult as some AGVs rely on external markers located on the floor or on
the track.

3.1.2 Path Planning Requirements

The requirements of the path planning aspect of the cleaning solution, including
the Complete Coverage Path Planning (CCPP) algorithm, are summarized in
Table 3.2.

The most essential requirement in this subsection is the coverage of the entire
area or a specified fraction by the user. The executed coverage percentage can
be measured in the covered area compared to the free space before the cleaning
process. Sufficient full coverage is 95%, as reaching into every corner in a complex
environment is unrealistic for this simulation. The planning module has to be
able to reach this specified percentage. Another requirement resulting from the
discussion in Chapter 2 is the usage of all given information for the planning
process. An optimal choice for the Coverage Path Planning (CPP) algorithm
should be made considering this information. By requiring a map as input, the
cleaning task gets significantly more straightforward because the environment
discovery is omitted. In a setting with an AGV fleet, a map for the given
environment is usually given as the AGV routes have to be planned as well.
The chosen algorithm should therefore utilise the information given by the map.
The obtained planned path may be updated during the cleaning process if that
is necessary for the execution of obstacle avoidance strategies. Additionally, the
planned path has to be drivable, which means if executed, the cleaning robot will
not crash into static obstacles.

10
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Requirements ID
A cleaning path has to be planned. FR_PP1
The given map has to be used. FR_PP2
A required coverage percentage can be set by the user. FR_PP3
The selected percentage has to be reached by the planning
algorithm.

FR_PP4

The planned paths have to be drivable. FR_PP5

Table 3.2: Summary of path planning requirements and their IDs

3.1.3 Collision Avoidance Requirements

The second aspect of the cleaning solution is the detection and avoidance of
obstacles during cleaning. The requirements defining this part of the solution are
again parted into two fields: collision detection and collision avoidance strategies.

For collision detection, the system must not communicate with the fleet. This
requirement ensures that the provided solution can work with any fleet and that
no restrictions to the fleet have to be made, as discussed in Section 2.2. The
collision detection should be active at all times during the cleaning process of
the robot to prevent all collisions with any obstacle at any time. All possible
collisions have to be detected, starting with obstacles detected from the sensor
information. For each obstacle, a collision point has to be calculated, and all
detected collision points have to be avoided by one of the strategies. The stated
requirements are listed in Table 3.3 with their respective IDs for evaluation.

Requirements ID
No communication with the AGV fleet is used for collision
detection.

FR_CD1

Collision detection is always active. FR_CD2
All obstacles are detected. FR_CD3
Collision points to all detected obstacles are calculated. FR_CD4
All collision points are avoided. FR_CD5

Table 3.3: Summary of collision detection requirements and their IDs

Concerning the collision avoidance strategies, the requirements extend some of
the general requirements of the system in more detail and are listed in Table 3.4.
One requirement all of the strategies have to manage is the avoidance of all
calculated collision points stated by FR_CD5. No collisions are allowed, which
can be ensured if the cleaning robot keeps a safe distance from static obstacles,
for example, the room walls and if moving obstacles are not disturbed. Each
strategy should also be targeted to prioritise fulfilling as many of the following
requirements as possible to achieve the best efficiency. These requirements
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Requirements ID
Strategies can be chosen by the user. FR_S1
Collision avoidance is executed efficiently. FR_S2

No coverage percentage is lost. FR_S2.1
Cleaning time is increased minimally. FR_S2.2
Overlapping cleaning path is kept at a minimum. FR_S2.3

Table 3.4: Summary of collision avoidance strategy requirements and their IDs

include the maximal possible coverage percentage fulfilling FR_PP3, minimal
cleaning time, and minimal overlapping of newly planned paths. As some of these
measures are not achievable when prioritising the nondisturbance requirements
of the system FR_G2, it is sufficient to fulfil as many as possible, yet the more
constraints are satisfied, the better the strategy. As the best-performing strategy
might depend on the given environment, the user should be able to choose a
suitable strategy for their specific environment.

3.2 Non-Functional Requirements

In contrast to the functional requirements, the non-functional indicate the
requirements for the implementation and execution of the system that do not
affect the functionality itself. In this work, this is mainly needed for the evaluation
of the designed strategies and therefore affects the simulation requirements for
debugging and evaluating the proposed system.

These requirements, shown in Table 3.5, concern the reliability of the evaluation
of the functional requirements and the ability to use the implementation for
a real cleaning robot. To begin with, the simulation should be realistic so
that the physics and movements of the cleaning robot can be compared to
real physical motion. The simulation should also help develop the solution by
providing debug information and showing wrong behaviour. Additionally, the
simulation should provide measures for the evaluation of the developed strategies.
The simulation results and the cleaning processes itself should be visualised for
the developer so debugging and evaluation can be simplified. A suited map
should be used in the simulation to ensure the fulfilment of all the requirements.
Another non-functional requirement not only concerning the simulation is that
the developed system should be given as a Robot Operating System (ROS)
package, as it is a common interface.

12



3. Requirements

Requirements ID
The physical motion in the simulation has to be realistic. NFR_1
The simulation can be used for code testing. NFR_2
The results have to be visualised for evaluation. NFR_3
The simulation has to provide evaluating measures for the
strategies.

NFR_4

A realistic map has to be used for testing. NFR_5
The system has to be provided as a ROS package NFR_6

Table 3.5: Summary of non-functional requirements and their IDs
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4 Architecture

Controller

Drive to goal
point

CCPP Algorithm

Trajectories

Map
Single
execution
before the
start of the
cleaning
motion

Collision Point

Strategy Handler

Collision Detection
Module

Strategy

Scan Data

Reached
trajectory
goal point

Local Planner

Next Goal Point

Strategy Execution

Figure 4.1: The system architecture can be separated into three main
components. The Complete Coverage Path Planning (CCPP) implementation
(orange), which is responsible for the path planning before the execution of the
cleaning itself, the Collision Avoidance component (green) realised by the
developed strategies, and the execution node (blue) with the Local Planner
and robot controller.

The architecture for the cleaning solution of the proposed scenario is shown
in Figure 4.1. This solution can further be separated into the CCPP module,
the Collision Avoidance node, and execution of the cleaning plan through
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4. Architecture

the Local Planner node. After a trajectory plan is received from the path
planning module, the Local Planner, depicted in blue, handles the execution
of the derived plan. Simultaneously, the Collision Avoidance node in green
detects and chooses a strategy for collision avoidance to be executed by the Local
Planner. The detailed architecture of each module is described in Sections 4.1
to 4.3.

4.1 CCPP Module

Process Map

Area Decomposition

Trajecory Planning

Map Input

Internal Map

Decomposition

Trajectory Plan

Figure 4.2: CCPP architecture: The required map is processed and transformed
into an internal map. Then the free area is decomposed into segments. The
trajectory goal points are then planned in the Trajectory Planning module
and forwareded to the Local Planner node for execution.

The proposed architecture depicted in Figure 4.2 requires a map as input and
processes it to receive an internal map used for the planning process. In the
internal map, the cell size equals the cleaning robot’s size to ensure coverage of
the cell once it is reached. In the next step, the Area Decomposition module
finds fitting segments according to the chosen algorithm. With the gained
decomposition, the Trajectory Planner then finds the needed goal points for
the execution. The CCPP algorithm is executed by the Local Planner so that
all relevant information for the execution of the other modules is processed in
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4. Architecture

a single point. These pieces of information include the processed map and
decomposition that is also needed for the execution of the collision avoidance
strategies. The parameters for the planning process are given in a parameter file
shown in Figure 6.1 for ease of use.

4.2 Collision Avoidance Node

Obstacle Detection

Scan Data

Collision Point
Calculation

Collision Point
Correctness Check

Obstacle Position
and Orientation

Collision Point

Activate Collision
Avoidance

Strategy Handler

Strategy

Figure 4.3: The architecture of the Collision Avoidance node can
be separated into modules: Obstacle Detection (OD), Collision Point
Calculation (CPC), and Strategy Handler. The chosen strategy is executed
by the Local Planner.

In Figure 4.3 the architecture of the Collision Avoidance node of the cleaning
solution is described. This node can further be separated into the OD module,
the CPC module, and the Strategy Handler module. In OD, the scan data needs
to be clustered into objects and tracked over time. The obtained obstacles are
further filtered into moving and non-moving obstacles, and the moving objects
are then published for usage by the CPC module. The CPC has to compute a
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collision point from the cleaning robot’s pose and the pose information of the
obstacles detected by OD. The obstacle’s and cleaning robot’s speed are also
taken into account in the collision point calculation. A validation check for
each calculated collision point, which determines whether the collision point will
be reached by the cleaning robot, is performed, and then the collision point
information is transmitted to the Strategy Handler. The Strategy Handler
chooses a strategy fitting to the given collision point and defined parameters
by the user seen in Figure 5.7. This strategy is then executed by the Local
Planner. The Collision Avoidance node is executed simultaneously with the
Local Planner node in Robot Operating System (ROS).

4.3 Execution

The Local Planner node is the primary execution node, and all other
components are managed from this node. The initial plan starts from here, and
the trajectory points are sent to the controller one by one to control the cleaning
robot’s movement. Additionally, the necessary strategy nodes are initialised and
started here. The primary execution node ensures that all information is gathered
and large amounts of data do not have to be sent between different ROS nodes.

For the execution in ROS, the used communication tools and topics are defined
in Section A.
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5 Design and Implementation

This chapter focuses on the design and implementation choices of the described
architecture from Chapter 4. For the execution and validation of the implemented
algorithms, first, a simulation is set up, which is described in Section 5.1. Next,
the Path Planning module is explained in Section 5.2, followed by the description
of the visualisation implementations in Section 5.3, which are part of the planning
module. In Section 5.4, the controller used in the simulation is described and
how it can be substituted in the short validation simulation. The Collision
Avoidance implementation is described in Section 5.5. Finally, in Section 5.6, the
different collision avoidance strategies and their implementation are explained.

5.1 Simulation

A common package for controlling robots in the Robot Operating System
(ROS) is the TurtleBot31 system. The package provides steering, Simultaneous
Localisation and Mapping (SLAM), and further methods to control physical
robots. Additionally, the XML-descriptions of their robots for simulation in
Gazebo2 or RViz3 are included.

In the developed simulation, the XML robot description of the TurtleBot3 waffle
pi (see Figure 5.1) is used for the active cleaning robot, as this robot resembles
the size of regular cleaning robots and is equipped with a LiDAR that is used
for localisation in the environment and obstacle detection. In the XML robot
description, the two-dimensional LiDAR is mounted on top of the robot. This
physical restriction means only objects with a height larger than the robot are
detected in the scan. As the simulation environment is built manually for the
particular requirement of this task, this restriction can be compensated during
the setup of the environment. On account of simplicity, the same base robot
model is also used for the simulation of the surrounding fleet Automated Guided
Vehicle (AGV) but is modified for specific use. An additional box is added to

1http://wiki.ros.org/turtlebot3 with ROS noetic
2https://gazebosim.org version 11
3http://wiki.ros.org/rviz for ROS noetic
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5. Design and Implementation

the AGV’s top so the cleaning robot can observe it. For better visualisation,
the colour of the robot representing the AGV is changed so its role can be seen
directly.

Figure 5.1: The physical TurtleBot3 waffle pi robot model, which
xml-description is used for the simulation

With a functioning robot model, the simulation further needs a realistic
environment, which is built with fundamental building blocks in an empty Gazebo
world model. The simple self-built environment is shown in Figure 5.2. This
environment allows the simulation of complex arrangements in the mapping and
planning process while also providing enough space for multiple robots to drive
around and simulate fleet AGVs executing orders. The simulation environment’s
size is chosen due to the simple sensor equipment on the robot. The larger
the room is, the more static obstacles are needed for the robot to still be able to
localise itself through the LiDAR. The small room size also reduces the simulation
time for showcasing the different behaviours, as collisions occur more frequently
the smaller the room is.

Figure 5.2: This is the simple simulation environment that is built in Gazebo
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Although this realistic simulation is well suited for showing the behaviour of the
cleaning robot in the environment and comes close to testing on a physical robot,
it is not optimal for generating evaluation results. As it is executed in real-world
time, generating the necessary number of simulations is very time-consuming.
The cleaning time of this small environment with a size of 10 by 10 meters already
takes 37 minutes without an AGV fleet present. A second faster simulation is
implemented to speed up the evaluation process, which runs no longer in realistic
time as the discrete time steps are shortened.

For this faster simulation, the controller module is replaced by a simulator module
that publishes the cleaning robot’s pose once it is computed. The module takes
the trajectory goal point like the controller and visits every point between its
current position and the goal point. For every cell, an average time derived
from the robot’s speed in the Gazebo simulation is added to the simulation time.
Additionally, the moving obstacles’ positions are computed and published. To
compute the obstacle’s position in each time step, the route of the obstacle AGV
needs to be given at the beginning of the simulation. These positions are given
via the tb3_1_poses parameter in the parameter file in Figure 6.1. This route
has to have the same form as the trajectory calculated for the cleaning robot
to be able to reuse the controller. The trajectory goal points always have to
be in the direction of the four direct neighbour cells and can not be diagonal.
Additionally, the goal points have to form a loop such that the start point can
be reached from the endpoint in a straight line. The speed of the cleaning robot
and the simulated AGVs are assumed to be the same in this faster simulation,
so in a single time step, both the cleaning robot’s and the AGV’s positions can
be updated. If it was not the same this had to be done in different time steps
and more adaptions would be necessary in the collision avoidance module. As
the strategies should show the general behaviour when a collision is detected, the
overall behaviour will not change with this assumption.

loc = po[t mod np] (5.1)

At the beginning of the simulation, all location points loc of the obstacle po
are calculated and stored as simulation information in the current map. The
current obstacle location is then looked up, as shown in Equation 5.1, with the
current simulation time t and the number of location points np = len(po). In this
simulation, the speed for the obstacle and the cleaning robot are assumed to be
the same.
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5.2 Complete Coverage Path Planning (CCPP)
Algorithm

The decision to implement a CCPP Algorithm was made to provide a complete
solution in the package developed. By implementing the CCPP algorithm and not
using an existing implementation, changes required to work with the implemented
strategies can be made more easily. In addition, the ROS packages providing
already implemented CCPP Algorithms require specific maps that would limit
the usage of the cleaning solution as a whole. The following data structures are
developed to implement the algorithm as described in Chapter 4: An internal
Map for planning, the Area Decomposition module, which divides the area into
segments, a Decomposition class and the Segment itself.

Figure 5.3: Process of Area Decomposition into segments. The x is the
position the segment is planned from; the blue arrows show the maximal
dimensions in each direction. The red segment would be the original segment
before checking for inlying obstacles. The black segment is the correction of the
coordinates

The internal Map consists of the occupation grid, which shows the static obstacles
in the map used for initialisation, and the cleaning grid, which holds the cleaning
information during the execution of the cleaning process by assigning specified
values for cleaned and not cleaned to each cell. During initialisation, the original
map is resized into cells the size of the cleaning robot by eroding the picture and
then interpolating the values during the resizing with OpenCV’s resize functions
INTER_AREA option. Resizing the grid to the robot’s size ensures coverage in
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(a) expensive cleaning motion (b) more efficient cleaning motion

Figure 5.4: Trajectory planning in a segment

the cleaning process as soon as the cleaning robot reaches the centre of the cell,
facilitating the planning process. The map module also transforms the trajectory
point coordinates between global ROS coordinates and local coordinates, which
results from resizing the original map. In addition, it plots the state of the map
for visualisation.

The data structure Segment consists of the corner points that define the area
and a list of the planned trajectory for this segment. Each segment has an ID
according to the order in which the segments are planned to be processed. Every
segment also holds the segment ID of the next segment. The segment is used in
the area decomposition process. The data structure Decomposition stores a list
of segments and all trajectory points combined in a single route.

The Area Decomposition algorithm parts the given area into segments similar to
the trapezoidal exact cell decomposition algorithm. Each segment must be shaped
such that a back-and-forth motion can be planned. A segment can not contain
static obstacles. The process to get such a decomposition is shown in Figure 5.3.
The Area Decomposition process starts at the cleaning robot’s starting position
and finds the furthest distances in each direction with no obstacle present. These
distances are combined into four corner points representing the biggest possible
segment from this start point. If the obtained area is free of obstacles, it is stored
as a segment. If it is not free, the area is decreased by using the next furthest
static object. The next starting point is chosen randomly from the remaining not
planned cells of the map.

In the next step of planning the cleaning route for the robot, the Trajectory
Planner module finds intermediate goal points for each gained segment shown in
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Figure 5.4. For the simple controller to work, the path between two trajectory
points always has to be directed in north, east, south, or west direction. They can
not be diagonal. The obtained segments must be ordered so that the path between
the segments is minimal to obtain an optimal route. The segment sequence
is determined by a greedy algorithm which always takes the segment with the
shortest distance between one of its corner points and the corner points of the
last chosen segment. Once the order is obtained, each segment is planned with
a zig-zag pattern from the start corner point to the last. The zig-zag pattern is
always planned in a way such that the turning points are at the maximum lateral
distance. The distance between two planned trajectory points has the maximum
length of the global parameter traj_length.

5.3 Visualisation

(a) Full Map

(b) Detailed snippet

Figure 5.5: Visualisation in RViz: The red robot is the cleaning robot. The
second robot(grey) represents a fleet AGV. The red dots mark the LiDAR data
and the small arrow shows the estimated velocity

To visualise the real-world time simulation RViz is used. Here the cleaning robot’s
movement is shown on the original map of the room, obtained by using the SLAM
feature of the TurtleBot3 mapping tool. The LiDAR data is visualised as the red
dots in Figure 5.5. Additionally, the clustered objects from the Detection and
Tracking of Moving Objects (DATMO)4 package can be seen as boxes, and the
estimated speed of the object is displayed by the arrows at each obstacle. With
the grid and the top view, RViz is chosen over Gazebo in this work. To prevent

4https://github.com/kostaskonkk/datmo
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(a) Planned route (b) Current trajectory section

Figure 5.6: Visualisation plots of the internal Map. Black are the static and
known obstacles; the crosses mark the trajectory goals. The current trajectory
plot shows the current cleaning progress. The greener a cell, the more times the
cell was cleaned, while light blue shows the yet to be cleaned area.

the computationally demanding Gazebo visualisation from interfering with the
planning execution, it is deactivated.

The internal grids of the planning maps are plotted with matplotlib5 to visualise
the planning of the CCPP algorithm. In Figure 5.6a the initially planned
trajectory points are shown. The subsequently updated current trajectory plot in
Figure 5.6b shows the cleaning progress updated with the robot’s location. Once
the cleaning robot reaches the new trajectory goal point, the plot is updated.
The different shades of green seen in this plot demonstrate the number of times
the cleaning robot passed the individual cell. The greener the tone is, the more
often the cell was visited. Black shows the static obstacle, and light blue is the
not yet cleaned area.

For the faster simulation, these plots are the only visualisation available as the
odometry of the robots is not constantly being published, and RViz can not
visualise it. This means that in this simulation type, the position of the fleet
AGV can only be monitored by checking the topics of the respective robots.

5.4 Robot Controller

A simple point-to-point controller is implemented to control the robot model.
It uses the current position and orientation of the robot by listening to the
odometry topic of the respective robot. The controller is driving straight

5https://matplotlib.org/ version 3.1.2
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towards a goal position and calculates the angle between the robot’s orientation
and the orientation of the goal position. If the angle exceeds a holistically
chosen threshold, the controller stops moving forward and turns in the desired
orientation. Once the angle is small enough again, the forward motion continues.
The robot’s movement is realized by publishing the odometry topic of each robot.

As the fleet AGVs are modelled and controlled by the same robot description
and controller during the simulation, and each has to be piloted individually, a
separate namespace for each robot and AGV is introduced. For the fleet AGV,
the controller receives the goal point from a list of points that form its route. This
route is repeated until the simulation is stopped. The fleet AGV has no collision
avoidance and constantly drives between its start and end point. Its trajectory
is not separated into smaller sections unlike the cleaning robot’s since the exact
following of a line to get coverage is unnecessary.

The local planner initialises and runs the cleaning robot controller, combining
the execution of obstacle avoidance and general steering. The subsequent
trajectory goal points are published to the /predictions/trajectories topic for
visualisation and debugging purposes. The number of points published is defined
as num_trajectories in the parameter file Figure 6.1. To execute the strategies
the original controller returns and a new instance depending on the strategy is
started once the new trajectory is planned.

5.5 Collision Avoidance

The distances received from the LiDAR data must be filtered first, so points
within a threshold are clustered together to recognise obstacles with LiDAR
scans. For realistic estimation of the moving obstacle’s location, the ROS package
DATMO is used for filtering as well as tracking the filtered objects. The identified
clusters that match a specific form are tracked over time, and the estimated track
information is published for usage. Each of these tracks gets an ID, a position,
and orientation in the form of an odometry message type and the size of the
tracked object. As this detection works with an estimation rather than known
positions, a certain amount of error is introduced, which will affect the evaluation
of the strategies in the simulation and execution of obstacle avoidance; a different
detection approach is chosen for the evaluation with the simulation. In ROS, the
position and orientation of a controlled vehicle are known through the odometry
topic and can be used by any other active node. Using this information eliminates
the error from the estimation for evaluating purposes. The DATMO solution is
still necessary for the execution on a physical robot.

The possible collision point with the cleaning robot’s trajectory is calculated
from the odometry information of the obstacle derived in the last step in the
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Collision Avoidance node. The obstacle’s velocity is calculated as the mean
value of the distance between each detected obstacle position in a specified time
interval. The collision point is then calculated between the cleaning robot and
a number of its following trajectory goal points, set by num_trajectories in
Figure 6.1, and the current and extrapolated position of the moving obstacle.
The estimation of the collision point does not only rely on space but also on time.
If the time until the collision occurs is longer or shorter than the cleaning robot
takes to reach that position, the collision point is invalid. After the temporal
validation check, every collision is published to the /predictions/collisions topic
for debugging and visualisation purposes. If the point is valid and the time to
reach the position lies within a threshold set by the max_time_step parameter,
the collision point is sent to the strategy handler to choose a collision avoidance
strategy. The Collision Avoidance node continues by checking if the collision
with this obstacle is still valid. Once it is free, either because the obstacle is
no longer detected or the estimated orientation changes, the cleaning robot can
continue with its path.

5.6 Collision Avoidance Strategies

Once a collision point is detected and the Strategy Handler node receives
the collision point and time, a fitting strategy is chosen. These decisions
are influenced by parameters set by the user in the strategy_params.yaml
file in Figure 5.7. If none of the strategies are chosen a default strategy is
used, set at the overall best-performing strategy evaluated in Section 6.3. The
Strategy Handler node then sends a service message to the local planner node
for the execution of the chosen strategy. As all data structures needed for
planning are initialised in the Local Planner, and it would be inefficient to
send the data structures to different ROS nodes, the strategies must also be
executed here. In this work, four strategies are implemented and Replan is
described in Section 5.6.1, Reorder in Section 5.6.2, and both Follow strategies
in Section 5.6.3.

1 f o l l ow_st ra t egy : True
2 s t r a t e gy : " rep lan "

Figure 5.7: Strategy Parameter File strategy_params.yaml

5.6.1 Replan Strategy

The Replan strategy is a simple strategy based on the random factor in the
planning algorithm. If a collision is detected, the cleaning robot stops and waits
a previously chosen time. Either the collision resolves in this time, e.g., because

27



5. Design and Implementation

the estimated orientation of the obstacle or the cleaning robot changes, or the
current execution plan is deleted and an entirely new path starting from the
current position is planned as described in Section 5.2. This replanning only
decomposes the not yet cleaned area of the map. The rest of the planning process
is the same as at the beginning of the cleaning process. As the collision point
with the obstacle lies ahead, stopping prevents a collision in the immediate future.
Due to the random factor in the planning algorithm, the chance of finding a new
path that will not cross the AGVs path is high. Once the plan is calculated,
the cleaning robot starts driving to the new goal points, and the procedure is
repeated once a new collision point is determined.

5.6.2 Reorder Strategy

Contrary to the Replan strategy, upon a detected collision this strategy will
only reorder the given segments from the decomposition into a new driving path.
Again, as in the Replan strategy, the cleaning robot stops when a collision is
detected and waits for a specified amount of time set by max_waiting_time
parameter to dissolve the collision automatically. Instead of finding a new
decomposition after the waiting period, the existing decomposition is used for
calculating the new cleaning path. The segments assigned to the estimated
positions of the obstacle that were received during the waiting time are sought,
and these segments are excluded from the reordering process to avoid the
currently blocked area. The blocked segments are added at the end of the segment
queue, as they are more likely to be accessible later. In future work, the segments
could be tagged for considering the amount of blocked time for planning at the
beginning of the next cleaning task. The reordering process is very similar to the
original planning process. First, the segments are again ordered greedily by the
smallest distance between the end and start points of the segments. Secondly,
the trajectory between the endpoint of the last segment and the start point of
the next segment is computed and queued with the other trajectory goal points.
If the Reorder strategy is chosen, the maximum waiting time can be chosen
longer than for the Replan strategy, as the replaning calculations are much more
computationally expensive than the reordering.

5.6.3 Follow Strategies

The Follow strategy is the third strategy implemented in this work. It is more
complex and can be combined with the two previously described options, namely
Follow-Replan and Follow-Reorder. The idea for this strategy stems from
typical robot navigation and orientation problems. Some providers use codes on
the ground for navigating through the environment, resulting in high motivation
to keep these marks on the driving path clean. Also, the cleaner the path for
the fleet AGVs is, the less interruption they will get from mechanical failures.
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Additionally, if the cleaning robot follows the driving path of the fleet AGV, the
most frequented part of the area is already cleaned and can be excluded from
the future path. This will also result in reduced future collisions, because if the
frequented areas do not have to be crossed again the collision probability reduces,
and no collisions will occur during the following as the fleet management usually
keeps a distance between the driving AGVs.

1 de f check_i f_fo l l ow ing_poss ib l e ( robot , obj ) :
2 ang le = robot . o r i e n t a t i o n − obj . o r i e n t a t i o n
3 d i s t = robot . pose − obj . pose
4 i f the abs ( ang le ) i s sma l l e r than 90 degree s :
5 i f abs ( d i s t ) i s b i gge r than max_obstacle_dist :
6 s t a r t f o l l ow i n g
7 e l s e :
8 wait
9 e l s e

10 i f f i r s t check :
11 do not s t a r t
12 e l s e :
13 stop f o l l ow i ng
14

Figure 5.8: Pseudo code following check

When this strategy is chosen, the cleaning robot, in contrast to the other
strategies, starts following the obstacle immediately if following would not result
in a collision. The related checks, visualised in the pseudo-code in Figure 5.8,
are performed once at the beginning and repeatedly during the following process.
They rely on the position and orientation information of the obstacle and cleaning
robot. If the cleaning robot and the obstacle are oriented in a similar direction,
the cleaning robot starts or continues to follow. Suppose the cleaning robot is or
gets too close to the AGV while following it. In that case, it stops and resumes
following once the distance is big enough again or, in the beginning, wait until the
appropriate distance is given before the following process is started. If the desired
objects’ orientations lie opposite, the cleaning robot will not start following or
stop the following process. In the first check, the cleaning robot will not start
following at all and directly execute the secondary given strategy, Replan or
Reorder. During a later check, a new path must be planned using the already
implemented Replan strategy. This replan is necessary as parts of the old route
might have already been cleaned during the following process. Figure 5.9a shows
the affected segments in red. If the original path is used, the benefits of cleaning
the obstacle path first and having fewer collisions are diminished. Even with
an immediate reordering process described by the numbers of the segments in
Figure 5.9a, the benefits would be minor. Contrary to a replaning action after
the following process, the results in Figure 5.9b show that no revisiting is caused
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through the segmentation alone. A drawback is that the obtained segments are
smaller than the original ones, and the paths between the segments increase. The
effects of this behaviour are evaluated in Section 6.2.3.

(a) Follow-Reorder strategy without
additional replanning

(b) Follow-Reorder strategy with
replanning

Figure 5.9: This plot shows the necessity for an additional replanning after the
following procedure in the Follow-Reorder strategy

The obstacle’s poses are stored in the Follow module during the checking and
waiting time. If the criteria are met, the cleaning robot will approach the stored
locations of the obstacle. The interval between the goals used for following is set
at a defined distance between the goal points and can be adjusted to the need
of the specific environments. The coarser the interval is set, the more inaccurate
the Follow procedure gets. Once the cleaning robot reaches a goal location, the
point is added to a list which is used for the end check of the Follow procedure. If
the new goal point received while following the obstacle is too close to an already
reached following goal point from the same obstacle, the following ends there,
and a new trajectory path is planned.

During the Follow procedure, the needed criteria are checked repeatedly to be
able to stop the process if a collision with the followed obstacle is detected. The
Follow module also takes over the controller during the strategy execution. If the
following process does not start, one of the other strategies can be chosen. Which
strategy combination, Follow-Replan or Follow-Reorder, is more efficient is
discussed in Section 6.3.
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6 Evaluation

In this chapter, the proposed cleaning solution is evaluated. First, the fulfilment
of the requirements is checked in Section 6.1. In Section 6.2, the four
introduced obstacle avoidance strategies for cleaning robots are evaluated by their
performance achieved in the simulation. Finally, the obtained strategy results are
compared, and an optimal strategy suggestion is made in Section 6.3.

6.1 Requirements Evaluation

The proposed solution is evaluated in terms of fulfilling the requirements stated
in Chapter 3. An overview of the fulfilment status is also given in Table 6.1.
First, the non-functional requirements listed in Table 3.5 are evaluated, as these
are relevant for checking the fulfilment of the functional requirements.

NFR_1 is fulfilled by using the Gazebo simulation and the definition of the
TurtleBot description. The Gazebo simulation was used for testing and debugging
the implemented solution (NFR_2) and provided a realistic physical simulation.
Through the visualisation in RViz and the plotting of the internal map, the
position of the cleaning robot was tracked and verified. In addition, the
visualisation described in Section 5.3 shows the results necessary for fulfilling
NFR_3. In Section 5.1, the second simulation was introduced to speed up the
evaluation process such that sufficient results could be generated for evaluating
the strategies. The necessary implementations for generating evaluation metrics
(NFR_4) were made and described in Section 6.2. Regarding NFR_5, the
environment introduced in Section 5.1 is big enough for having multiple obstacles
in the cleaning area and realistic scenarios for the fleet’s movement. Requirement
NFR_6 is satisfied through the design of the system itself.

Regarding the general functional requirements listed in Table 3.1, FR_G1 can
be verified by the simulation shown in RViz. Sub-requirements FR_G1.1 and
FR_G1.2 are also fulfilled since neither non-moving nor moving obstacles were hit
during the testing of the software and the evaluation of the strategies. Through
the same observations, FR_G2 is fulfilled since no disturbances were noted. The
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given map is preprocessed into the internal map and used in the planning process,
meeting the requirement FR_G3. The path to the map is set in the parameter
file in Figure 6.1, and through the design of the system, FR_G4 is also attained.
The cell size of the internal map is adapted to the cleaning robot’s size to satisfy
FR_G5 since the Complete Coverage Path Planning (CCPP) algorithm does
not depend on other features of the robot. The parameter robot_size needs
to be set correctly by the user, with which the grid of the cleaning map is
initialised. As stated in Section 5.6, four different collision avoidance strategies
were implemented; therefore, FR_G6 is fulfilled. Requirement FR_G7 is fulfilled
as the simulation works with the given LiDAR scan from the TurtleBot3 robot
description. Requirement FR_G8 can be evaluated by comparing the obstacle’s
known positions with the updated cleaning process map provided, by the Local
Planner. As a reminder, an example of this cleaning map can be seen in
Figure 5.6. In the full coverage case this is implicitly given, for the other strategies
with lower required settings, only the follow strategy fulfils this requirement.

Continuing with the path planning requirements stated in Table 3.2, the
implemented path planning algorithm decomposes and plans paths for the
cleaning robot to follow. As described in more detail in Section 6.2, the cleaning
motion works, thus FR_PP1 is satisfied. As shown for requirement FR_G4 a
path to the map is given and in the map processing module, the map is used,
so FR_PP2 is fulfilled. FR_PP3 is assured by the parameter stop_criterion in
the parameter file in Figure 6.1. If this is not set, the percentage defaults to full
coverage. However, FR_PP4 is not fulfilled, since the required percentage is not
always reached which will be discussed in Section 6.2. The trajectory plans were
checked during the evaluation process, and no invalid trajectories were planned.
Hence, FR_PP5 is fulfilled.

All collision detection requirements given in Table 3.3 are fulfilled. By
design, FR_CD1 is fulfilled, since the collision detection is performed with the
simulated LiDAR data, and no communication is necessary to detect collisions.
Additionally, the collision detection node is started by the Robot Operating
System (ROS) launch file and has a parameter set to required. Thus, if the
node fails, the whole process is stopped. Hence at no time during the cleaning
process the collision detection is inactive, and FR_CD2 is satisfied. The obstacle
detection was verified in the simulation and by checking the topic information
of the collision detector. By performing the same way of validation, FR_CD3
is also fulfilled. The designed collision point calculation is implemented and its
functionality verified, and therefore FR_CD4 is accomplished. Moreover, all
valid collisions trigger a service call to the Strategy Handler, which leads to
the execution of the collision avoidance. If all collision avoidance strategies are
valid, FR_CD5 is fulfilled as well. This was checked in the simulation using the
known positions of the Automated Guided Vehicle (AGV)s and the robot.
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Regarding the strategy requirements from Table 3.4, the first requirement FR_S1
is fulfilled by defining the strategy parameter in the strategy_params_file.yaml
given in Figure 5.7. The best collision avoidance strategy for fulfilling FR_S2 and
its sub-requirements is yet to be determined in the results evaluation subsection
6.3.

ID Fulfilled
NFR_1 yes
NFR_2 yes
NFR_3 yes
NFR_4 yes
NFR_5 yes
NFR_6 yes
FR_G1 yes
FR_G1.1 yes
FR_G1.2 yes
FR_G2 yes
FR_G3 yes
FR_G4 yes
FR_G5 yes
FR_G6 yes
FR_G7 yes
FR_G8 yes

ID Fulfilled
FR_PP1 yes
FR_PP2 yes
FR_PP3 yes
FR_PP4 no
FR_PP5 yes
FR_CD1 yes
FR_CD2 yes
FR_CD3 yes
FR_CD4 yes
FR_CD5 yes
FR_S1 yes
FR_S2 see 6.2
FR_S2.1 yes
FR_S2.2 yes
FR_S2.3 yes

Table 6.1: Summary of requirement fulfillment

6.2 Simulation Results

Simulation runs of every strategy have been executed with different required
cleaning percentages set by stop_criterion in the simulation environment
introduced in Section 5.1. The used parameter values can be seen in Figure 6.1
and will now be explained in more detail. For the parameter traj_length
choosing a high value is desirable. Yet the larger it gets the more inaccurate
the driving of the robot gets and the driven path does not clean the desired
area. However, high values also lead to a more cautious system as the detection
range of the system increases. The higher range leads to more information and
therefore earlier and more frequent detection of collisions. The detection range
is also affected by the num_trajectories parameter, which selects the number of
trajectory points looked ahead during collision detection. The more trajectory
points are included in the collision detection the earlier collisions are recognised.
If traj_length is already chosen high, num_trajectories can be selected smaller,
yet the bigger it is, the more collisions are detected. The parameter robot_size
is chosen to match the TurtleBot3 robot size, wherease max_object_dim limits
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the size of objects that are detected by the Detection and Tracking of Moving
Objects (DATMO) package. The parameter max_waiting_time sets the seconds
the robot waits until the strategy is executed.

1 map_path : "/ ccpp_fleet_env/maps/simple_sim_big_mod . yaml"
2 t ra j_length : 10
3 robot_s ize : 0 .35
4 max_robot_dim : 0 .35
5 max_object_size : 0 . 4
6 max_time_step : 4
7 num_trajector ies : 3
8 max_waiting_time : 4
9 s t op_c r i t e r i on : 0 .001

10

11 tb3_1_poses : [ 5 , 9 , 20 , 9 , 20 , 15 , 4 , 15 , 4 , 9 ]
12

13 s t a r t x : 1 . 0
14 s t a r t y : 1 . 0

Figure 6.1: Simulation parameter file showing the values used for simulation

For each strategy and desired cleaning percentage, 50 simulation runs with five
different starting points (startx, starty) have been executed. By varying the
starting position of the cleaning robot the places of detected collisions vary from
run to run. With the additional inconsistency of the planned path caused by
the random factor in the decomposition, even more variety in collision points is
generated. As this behaviour can already result in very different results and the
room size is still relatively small, no second fleet AGV was introduced in the
evaluation simulations.

The metrics used for the evaluation are derived from the sub-requirements of
FR_S2. The first metric that is used for comparison is the execution time
texec. This is the runtime of the fast simulation used for evaluating. As the
execution of the calculated paths can be much faster than real-time, texec does
not represent the time the cleaning process needs but gives some information on
the path planning calculation time and complexity of the algorithm. This time is
also influenced by the performance of the simulation host and as a consequence
is inconclusive for the strategy’s actual performance. The cleaning time tclean
is the time estimated for the cleaning process by assuming the cleaning robot
takes two seconds per cell to clean. This value is derived from evaluating the
runtime of the realistic Gazebo simulation and its cleaning percentages. The
third metric is the coverage percentage pc, which is expected to be higher than
the required percentage and is used for comparing the performance of the cleaning
strategies. It is acquired by counting the covered cells in the cleaning grid after
execution and setting it in relation to the initial free area. The fourth metric used
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for comparison is the percentage of repeatedly visited cells during the cleaning
process; the multi-coverage percentage pmc. This metric counts the cells in the
cleaning grid which were visited multiple times and puts it in relation to the
cleaned cells. This behaviour increases tclean and wastes resources by cleaning
an already cleaned area. From the 50 runs of each parameter set, the mean
values for each metric are compared, and for the coverage percentage metric pc a
normalisation with tclean is also given for better comparison.

Base Run texec [s] tclean [min]
p∗c mean std-dev mean std-dev
50% 44.3 10.25 12.5 1.85
75% 87.6 19.52 19.9 2.15
90% 134.6 24.24 26.3 2.62
100% 253.8 34.98 37.3 2.67

pc [%] pmc [%]
p∗c mean std-dev norm [%/min] mean std-dev
50% 52.4 5.74 4.18 7.2 3.23
75% 72.7 3.97 3.65 13.1 3.97
90% 86.0 2.99 3.28 19.1 5.03
100% 94.9 1.38 2.55 33.8 3.43

Table 6.2: Base run simulation results for different required cleaning percentages
(p∗c) in terms of execution time (texec), cleaning time (tclean), covered percentage
(pc) and multi-coverage percentage (pmc)

For a better assessment of the proposed strategies, simulation runs with no
moving obstacles were performed 50 times with varying starting positions as
well. The results of these base runs are shown in Table 6.2. Runs with 50%,
75%, 90%, and 100% required cleaning percentage p∗c were executed to recognise
the behaviour of the planning algorithm. The lower percentages are unlikely to
be chosen by a user but can still give insight into the behaviour of the algorithm
in general. Looking at the results concerning texec the mean values almost double
for each required p∗c . Additionally, with a standard deviation of 10 compared to
44 seconds runtime overall for 50% p∗c the results already vary a lot. This might
be caused by the algorithm of the planning process leading to a high variance
in the coverage percentage as well as varying computation times of the planning
process. In contrast, tclean is more suitable for comparison and also the deviation
is smaller. This metric is directly related to pc. As more percentage is reached
for every p∗c the runtime is supposed to rise.

The pc values reach p∗c in the 50% case only, in the other cases p∗c is not reached.
This behaviour was not intended and means that the requirement FR_PP4 is not
fulfilled. The implemented CCPP algorithm is not planning a path covering the
entire area. During the decomposition, the desired area is still planned almost
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completely. Only single cells, which are too small for a segment, are left out in
the planning process as shown in Section B. The minimal unplanned cells here are
however not the main cause of the low pc. Therefore the error of not reaching p∗c
must be caused by the trajectory planning module, as the cleaning robot follows
the planned route directly, the segments could not have been planned completely.

The standard deviation for pc gets smaller the higher p∗c is. Putting that
into relation to the highly varying texec this means the execution time is more
dependent on the path planning time than the variance of cleaning percentage.
Looking at the normalised values of pc, the cleaning time does not only increase
due to the higher percentage reached but also less coverage is executed in the
same cleaning time. This can possibly be explained by the increase of pmc for
the different measurements. For 100% p∗c a third of the cleaned area is cleaned
multiple times. As the segments are planned randomly into the free area, the
remaining free areas get smaller the bigger p∗c is, and therefore also the segments
that are planned at the end of the planning process. The path planning between
the segments then increases the pmc, as already cleaned areas have to be crossed.
For example, if a newly planned segment is surrounded by cleaned cells, the
path between the segments has to revisit the already cleaned area. To keep
the algorithm’s complexity manageable, it does not check whether the area was
already cleaned or not for the paths to and from this segment. Additionally, the
more segments there are, the more paths between segments have to be planned.
Therefore pmc rises as well and adds to the impracticability of the implemented
planning algorithm.

The following subsections introduce and discuss the obtained results for each
strategy compared to these reference results. Concluding, a comparison between
the strategies is discussed.

6.2.1 Replan Strategy

The results of the Replan strategy can be seen in Figure 6.2, and mean, standard
deviation and normalised values are given in Table 6.3. For the Replan strategy
compared to the base runs, both texec and tclean increase. texec grows drastically
to 436 s from 253 s in the full coverage case and tclean rises significantly from
48 min to 37 min in the base runs. As for pc, the effectively covered area is
larger than p∗c and also than in the reference runs with 57%, 7Yet, as expected,
the required 100% is not reached, but the strategy exceeds the 95% required for
full coverage. Comparing the normalised pc values to the base runs, the Replan
strategy reaches slightly less coverage per minute for 50% and 100% p∗c ; in the
other cases the normalised pc increases. Looking at the area that was visited
multiple times by the cleaning robot, the percentage increases when an obstacle
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Replan texec [s] tclean [min]
p∗c mean std-dev mean std-dev
50% 73.74 19.25 15.47 2.72
75% 162.50 37.70 27.14 3.25
90% 262.36 49.97 36.49 4.50
100% 436.24 101.42 48.63 6.46

pc [%] pmc [%]
p∗c mean std-dev norm [%/min] mean std-dev
50% 57.10 7.03 3.69 9.07 4.14
75% 78.46 3.18 2.89 17.49 4.76
90% 91.12 3.56 2.50 23.79 4.92
100% 99.12 0.77 2.04 36.55 5.85

Table 6.3: Replan simulation results for different required cleaning percentages
(p∗c) in terms of execution time (texec), cleaning time (tclean), covered percentage
(pc) and multi-coverage percentage (pmc)

is met. The highest pmc resulting from the 100% p∗c run is 36.55%, which is
3% higher than in the reference. In general, the higher the required coverage
percentage p∗c is, the bigger pmc gets, just like in the reference runs.

Since in the base runs, no obstacles must be avoided, the increase of texec is
expected for all strategies. The higher pc compared to the base runs show that an
obstacle avoidance strategy actually benefits the cleaning solution in this work. pc
exceeding the values from the reference run could result from the implementation
detail of only checking for completion of the cleaning process when a collision
is detected. This behaviour was implemented intentionally because as long as
no obstacles have to be avoided, a higher percentage of clean area is usually
desirable, and no extra time for collision avoidance is used. The additional
covered percentage is similar across the runs with different p∗c , which means the
area cleaned until the subsequently detected collision is similar. The decrease of
the normalised pc values could result from the waiting time before the execution
of the strategy. In this time the robot does not clean any cells and therefore, in
the same time, less area is cleaned. Additionally, the higher pmc influences these
results as the cleaned area also does not increase here. The higher pmc stems
most likely from the implementation of the planning algorithm in the same way
as discussed in the base runs described in Section 6.2.
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Figure 6.2: The comparison of metrics between the base runs with no obstacles,
and the Replan strategy with obstacles for different required coverage percentages
(p∗c) is shown

6.2.2 Reorder Strategy

Similar to the Replan strategy, both texec and tclean of Reorder also increase
compared to the base runs, except for the full coverage case. The results can be
seen in Table 6.4 and Figure 6.3. In the full coverage case, Reorder takes 245
s for texec and 33 min for tclean. Compared to the base runs, these values are
smaller. Regarding the desired coverage percentage, p∗c is usually not reached
and pc is even smaller than for the base runs, as the mean pc values are 50%,
72%, 84%, and 91%. The normalised pc does not vary much from the base runs
with below 0.2 % per minute less coverage. pmc is relativley small with 25.3% in
the full coverage case compared to the base mean pmc is 33.8%.

The most unexpected results are the lower pc compared to the p∗c . This most likely
results from the CCPP implementation already explained in the interpretation of
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Figure 6.3: The comparison of metrics between the base runs with no
obstacles, and the Reorder strategy with obstacles for different required coverage
percentages (p∗c) is shown

the reference results in Section 6.2. The Reorder strategy deletes already covered
trajectory points from the trajectory list and only the paths between the segments
are planned again. Therefore, the overall percentage can be reduced even more,
as routes may be planned in already cleaned areas instead of uncleaned cells.
This phenomenon is also more significant the higher the desired clean area is.
The low pmc could be explained by the overall smaller pc, as for both the base
runs as well as the Replan strategy pmc is lower for lower coverage percentages.

6.2.3 Follow Strategies

For the Follow strategy, the combinations with both replanning and reordering
are evaluated.
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Reorder texec [s] tclean [min]
p∗c mean std-dev mean std-dev
50% 53.28 13.12 12.42 1.56
75% 112.14 30.74 20.66 2.48
90% 171.38 30.58 27.27 2.43
100% 245.22 31.24 33.30 2.23

pc [%] pmc [%]
p∗c mean std-dev norm [%/min] mean std-dev
50% 50.40 3.75 4.06 6.09 3.16
75% 72.38 3.87 3.50 12.26 4.00
90% 84.26 3.45 3.09 18.28 4.12
100% 91.17 2.57 2.74 25.31 3.92

Table 6.4: Reorder simulation results for different required cleaning percentages
(p∗c) in terms of execution time (texec), cleaning time (tclean), covered percentage
(pc) and multi-coverage percentage (pmc)

Starting with the replanning combination Follow-Replan, the results are shown
in Figure 6.4 and Table 6.5. texec and estimated tclean are again, as expected,
higher than for the base runs. Follow-Replan has extremely high execution
times with 661.28 seconds for the full coverage and 317 seconds for 90% p∗c . This
is more than double the time needed in the base runs. These results, on the other
hand, have a high deviation from the mean value, so the results very much depend
on coincidental collisions caused by a specific trajectory plan, and a comparison
is not very reliable. tclean also increases; with 52 min, it takes 20 min longer to
clean the area than without obstacle avoidance for a similar pc. Additionally, the
desired percentage in these cases is also not reached with 88% and 95% for pc.
The normalised pc shows an increase of about 0.7 per cent per minute compared
to the base run in all required p∗c . Also, pmc is a lot higher than in the base
runs, which shows that combining Follow and Replan is not very well suited as
a cleaning strategy.

A lot of computing time is needed to find a suitable trajectory plan for only
a few free cells at the end of the cleaning process. The smaller the number
of free cells gets, the more difficult it is to find a decomposition. The high
deviation of texec and tclean could be explained by taking the number of strategy
executions into account. This varies notably from a minimum of 25 to a maximum
of 241 collisions avoided. This could result from the random planning of the new
decomposition. If the new path directly collides with the moving obstacle, a new
collision is directly detected, and the planer will continue replanning until no
collision is detected with the course. The time from waiting before the execution
and planning the new path reduces the active cleaning time yet is included in
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Follow-Replan texec [s] tclean [min]
p∗c mean std-dev mean std-dev
50% 104.44 63.57 16.56 3.99
75% 193.41 69.92 26.91 4.53
90% 317.17 93.43 35.18 7.65
100% 661.28 208.89 52.72 10.53

pc [%] pmc [%]
p∗c mean std-dev norm [%/min] mean std-dev
50% 57.70 8.12 3.48 10.60 6.51
75% 78.88 3.57 2.93 19.13 5.60
90% 88.70 15.11 2.52 27.75 5.64
100% 95.84 6.66 1.82 41.29 7.15

Table 6.5: Follow-Replan simulation results for different required cleaning
percentages (p∗c) in terms of execution time (texec), cleaning time (tclean), covered
percentage (pc) and multi-coverage percentage (pmc)

both time metrics. Similar to the Replan strategy, the paths are extensively
covered multiple times. The path of the followed obstacle still is crossed often,
and as a new trajectory plan has to be found, each time a collision is detected,
the segments get smaller and smaller. Overall this strategy is very unreliable and
influenced by the randomness of the CCPP algorithm with high deviations from
the mean, especially in the high p∗c cases.

Follow-Reorder texec [s] tclean [min]
p∗c mean std-dev mean std-dev
50% 94.22 44.01 19.32 6.17
75% 320.85 85.47 40.69 6.85
90% 458.35 163.20 42.16 3.02
100% 347.40 50.98 42.88 2.62

pc [%] pmc [%]
p∗c mean std-dev norm [%/min] mean std-dev
50% 68.61 13.46 3.55 12.48 7.02
75% 95.24 5.07 2.34 36.37 7.69
90% 97.09 1.63 2.30 38.20 4.39
100% 96.61 1.97 2.25 40.60 3.82

Table 6.6: Follow-Reorder simulation results for different required cleaning
percentages (p∗c) in terms of execution time (texec), cleaning time (tclean), covered
percentage (pc) and multi-coverage percentage (pmc)

For the Follow-Reorder combination, the results are very different from the
other strategies. The results can be seen in Table 6.6 and Figure 6.5. texec, as
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Figure 6.4: The comparison of metrics between the base run with no obstacles,
and the Follow-Replan strategy with obstacles for different required coverage
percentages (p∗c) is shown

well as tclean, are significantly higher than the base runs, especially for the results
in 75% and 90% p∗c . Follow-Reorder takes 458 s to execute the simulation and
42 min to clean the area with p∗c 90%; the base runs for comparision is at 134 s
texec and 26 min tclean. This is related to the unexpectedly high pc. The pc for
the simulation with 50% p∗c is already at 68% and for the higher p∗c simulations,
all reach a similar percentage above 95%. The highest pc results from 90% p∗c .
This behaviour also affects the other statistics tclean and pmc. Worth mentioning
is also the deviation for the coverage percentages. In the 50% and 75% cases, the
deviations are especially high.

The high cleaning percentage in this strategy combination could be explained
through the mix of replanning and reordering already shown in Figure 5.9b. After
the follow execution was successful, the single replan order results in a higher pc,

42



6. Evaluation

Figure 6.5: The comparison of metrics between the base runs with no obstacles,
and the Follow-Reorder strategy with obstacles for different required coverage
percentages (p∗c) is shown

which is explained in Section 6.2.1. In the Follow-Replan strategy discussion
the results from high pc are already explained by the small segments planned at
the end of the process. In Follow-Reorder, however, reordering the remaining
segments leads to an overall better pc as no additional area is planned after the
first replan. Nevertheless, as the p∗c completeness check is only performed when
all trajectory points are reached, or a collision is detected, Follow-Reorder also
reaches high pc. The high deviations in the 50% case could result from the
different timing of detecting a new collision. The cleaning stops when a collision
is detected and p∗c is reached. This can happen sooner or later, depending on the
planned path. As the mean pc is much higher than p∗c , this more often happens
later than sooner resulting in high deviations. The closer the pc is to p∗c , the
smaller the deviation gets.
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6.3 Comparison of Strategies

(a) cleaning time tclean (b) coverage percentage pc, showing the
relevant sector 80% to 100%

(c) multi-coverage pmc

Figure 6.6: These box plots show the comparison of metrics between the
implemented strategies for 100% required coverage percentage
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100% p∗c texec [s] tclean [min] pc [%] pmc[%]
mean std-dev mean std-dev mean std-dev mean std-dev

Base 253.83 34.98 37.25 2.67 94.92 1.38 33.84 3.43
Replan 436.24 101.42 48.63 6.46 99.12 0.77 36.55 5.85
Reorder 245.22 31.24 33.30 2.23 91.17 2.57 25.31 3.92
F-Replan 661.28 208.89 52.72 10.53 95.84 6.66 41.29 7.15
F-Reorder 347.40 50.98 42.88 2.62 96.61 1.97 40.60 3.82

100% p∗c normalised pc [%/min]
Base 2.55
Replan 2.04
Reorder 2.74
Follow-Replan 1.82
Follow-Reorder 2.25

Table 6.7: Camparison of simulation results from all strategies including the
reference runs, showing the metrics execution time (texec), cleaning time (tclean),
covered percentage (cp) and multi-coverage percentage (pmc)

The Box plots in Figure 6.6 show the three comparable metrics of tclean, pc,
and pmc for each strategy with 100% p∗c . The mean and normalised values
of the runs are shown in Table 6.7. Replan has the best results in terms of
coverage. However, tclean is higher than for the other strategies, only topped
by the Follow-Replan strategy. Regarding pmc, the results of Replan are good
compared to both Follow strategies. Only Reorder has better results, even lower
than the reference runs. The second-best coverage percentage is achieved by the
Follow-Reorder strategy. This strategy is also competitive in terms of tclean,
yet it has the second highest pmc. Follow-Reorder’s high pmc is only topped
by Follow-Replan, which does not perform well in any other metric also. The
Reorder strategy alone performs well for pmc and tclean, yet pc is lower than the
base runs, which equalises the good results from the other criteria. However,
the cause for this behaviour could be resolved with a different segmentation and
planning algorithm. The Follow-Replan strategy is not reliable enough, as the
variation in the results shows. Therefore this strategy will not be discussed further
as an optimal cleaning solution.

To be able to compare the strategies better, the relations of tclean and pc in
Figure 6.7a and pmc and pc in Figure 6.7b are shown. In Figure 6.7a, the
optimal solution would be at the top left with the highest coverage and minimum
tclean. The two strategies worse than the base are Reorder and Follow-Replan.
Reorder’s lower cleaning percentage means that the requirements are not fulfilled
and therefore the strategy is rated lower than the other strategies. The other
worse strategy is Follow-Replan with 95.8% pc in 52 min resulting in 1.82
%/min. The results from this strategy also deviate from the average relation
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(a) relation cleaning time tclean to coverage percentage pc

(b) relation multi-coverage pmc to coverage percentage pc

Figure 6.7: Box plot showing the relations between metrics for the introduced
simulation environment and full coverage of all collision avoidance strategies

and are slower compared to the other strategies. Follow-Reorder and Replan
both have similar relations to the reference with Replan resulting in a higher pc.
Follow-Reorder covers 96.6% in 42 min resulting in 2.25 %/min, while Replan
covers 99% in 49 min resulting in 2.04 %/min. The normalised values can also be
seen in Table 6.7. The higher the priority of tclean is set by the user, the better
the results of Follow-Reorder are.

The upper left corner would be the optimum in Figure 6.7b again. The
two strategies Reorder and Follow-Replan once more have worse performance
compared to the base runs. Replan achieves a higher pc to pmc ratio.
Follow-Reorder with similar results to base. The best choice again results from
the user’s wishes. If a minimum pmc is highly prioritised Replan is the best choice.
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Concluding, the combination of the CCPP algorithm not reaching the required
percentage and Reorder strategy are not achieving good results and regarding the
pending requirement FR_S2 this is not an efficient collision avoidance strategy.
Follow-Replan achieves slightly better results yet is still not very efficient. The
two overall best-performing strategies are Follow-Reorder and Replan. If an
almost perfect coverage is desired the Replan strategy is the best choice, as the
strategy achieves the highest coverage out of the proposed strategies and has a
relatively low multi-coverage percentage. On the other hand, if the time efficiency
is more relevant to the user Follow-Reorder is the best strategy. This strategy
also ensures full coverage of the fleet’s path even for small p∗c .
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7 Conclusion and Outlook

The objective of this work was to develop a strategy for cleaning robots in an
environment with an active mobile robot fleet. The necessary requirements
resulting from this problem were formulated and a structure for the system
could already be derived from the requirements formulation by separating the
solution into collision avoidance and path planning. The software architecture
was designed accordingly in three section. Firstly, the path planning module
implements the Complete Coverage Path Planning (CCPP) algorithm. Secondly,
the collision avoidance module combines the detection node, the collision point
calculation node, and execution by the strategy handler. Lastly the execution of
the software is done by the local planner. During the implementation phase, the
specified architecture was implemented and a simulation for executing and testing
the cleaning solution was built. The result was a Robot Operating System (ROS)
node which decomposes a given map of the surrounding area into rectangular
segments, that are planned with back-and-forth motion. In between the segments,
routes to and from the segments are planned. In parallel, the collision detector
interprets the scan data and calculates collision points.

Additionally the four different collision avoidance strategies, Replan, Reorder,
Follow-Replan, and Follow-Reorder were discussed as well as their
implementations described. The implemented strategies were all evaluated
regarding the metrics cleaning time, achieved coverage percentage, and
multi-coverage percentage and compared to a reference run with no moving
obstacle avoidance. The discussion of the results revealed the two best-performing
strategies Follow-Reorder and Replan. While Follow-Reorder achieves a
better percentage per cleaning time and ensures a cleaning of the fleet’s path when
a collision is detected, Replan accomplishes a higher coverage percentage overall
and shows less multi-coverage. The Reorder strategy instead does not reach the
required cleaning percentage and is therefore not suitable. Follow-Replan is
very inefficient and takes almost double the time to clean the same percentage as
the reference.

During the evaluation of the system, the insufficient coverage of the implemented
CCPP algorithms was discovered. Still, the results from the strategies are
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considered valid at least in comparison to each other, as they were all tested and
compared using the same planning algorithm. Considering the research question
posed in Chapter 2 of whether the usage of prior information in planning is better
than using an online algorithm seems wrong as the best-performing strategies
both use a complete replanning process and can therefore not be considered
offline. However, the evaluated results still leave room for improvements and
some ideas for future work based on optional objectives from Chapter 2 and the
evaluation in Section 6.2 will be given.

The most significant improvement can probably be made by using a different
CCPP algorithm. New algorithms would be relatively easy to integrate into the
developed ROS package as long as they deliver a trajectory plan fulfilling the
restrictions of the implemented controller. Additionally, in the implementation
of the trajectory planner, the given segments should be ordered more efficiently.
Currently, the paths between the segments are relatively long; therefore, a lot
of the multi-coverage percentage comes from this planning. This improvement
would lead to better results immediately. Furthermore, introducing a cleaning
fleet compared to just a single cleaning robot would be beneficial, especially
for huge areas where the cleaning time is very long. The introduction is
straightforward, as the segments can be matched to a region that will be
covered by a selected robot in the cleaning fleet. Another idea resulting
from the evaluation results would be introducing multiple cleaning robots not
communicating with each other and setting a small required cleaning percentage
per cleaning robot. With the random factor and different starting points the
planned path may not overlap much and a better result could possibly be
achieved. For more extensive evaluation, more advanced environments could
be integrated into the simulation, for example, the Gazebo worlds from the
Fraunhofer package cob_environments 1, which include a house or industrial
environment. Then additionally a comparison to the implementations of the
proposed Coverage Path Planning (CPP) algorithms from Bormann et al., 2018
could be made, as their evaluation was made with the cob_environmets package.

Additional strategies should also be considered for implementation. These include
speeding up when the cleaning robot is currently on the fleet’s path and moving
out of the way proactively or speeding up and stopping to clean the already
cleaned areas on the way to a new segment. Additionally, circumnavigating
the obstacle could be considered as well, for example by using the dynamic
window approach. A disadvantage might be, that the cleaning robot leaves the
originally planned path for this and continue to follow the planned trajectory. The
robot later would have to return to a position where most of the area is already
cleaned. Therefore the multi-coverage percentage would increase, decreasing the

1https://github.com/ipa320/cob_simulation
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overall efficiency. Another way to improve the strategies is to consider the fleet’s
routes in the planning algorithm right from the beginning and, alternatively, to
remember the locations from the collision information. The consideration could
be implemented by blocking these paths for trajectory planning completely and
therefore get a safer cleaning process and reduce interruptions of the original
cleaning path. The path planned might get longer, but the planning could be
done more efficiently with this information, as replanning is costly. Moreover, as
seen in the evaluation, the more area was cleaned prior to the replanning process,
the more inefficient the planned path got.

Overall this work showed, that with the input of the map and a LiDAR mounted
on the cleaning robot, the system can successfully navigate a robot through the
given environment. The cleaning strategies provide a solution that does not
disturb the surrounding fleet without communication necessary, so the system is
designed to work with all types of fleets.
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Appendix A: Defined Topics and Services

A Defined Topics and Services

The topics the collision avoidance node is publishing it’s results to and
services necessary for the communication between the local planner and collision
avoidance node.
Topics:

/predictions/collisions
/predictions/velocity
/trajectories

ROS Services:

collision
resolve collision
stop
replan
reorder
follow
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B Full Coverage Decomposition

Figure 1: Full Coverage Decomposition: Regular decomposition shown in the
initialized internal map. Only not planned cells are the single cells too small for
a segment , resulting in pc=98.5% with 8 unplanned cells [(6, 11), (14, 2), (17,2),
(23, 9), (23,17), (27, 9), (27,12), (27, 17)] and 520 initial reachable cells
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