
Customizable Dashboards for
QDAcity

BACHELOR THESIS

Hoang Pham Minh Khai

Submitted on 11 September 2023

Friedrich-Alexander-Universität Erlangen-Nürnberg
Faculty of Engineering, Department Computer Science

Professorship for Open Source Software

Supervisor:
Julia Mucha, M.Sc

Prof. Dr. Dirk Riehle, M.B.A.

Declaration of Originality

I confirm that the submitted thesis is original work and was written by me without
further assistance. Appropriate credit has been given where reference has been
made to the work of others. The thesis was not examined before, nor has it been
published. The submitted electronic version of the thesis matches the printed
version.

Erlangen, 11 September 2023

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 11 September 2023

i

https://creativecommons.org/licenses/by/4.0/

ii

Abstract

QDAcity is a cloud-based web application that allows users to collaborate on
qualitative data analysis. Qualitative data can come in an enormous amount of
information and will need to be organized and managed. Therefore, qualitative
data analysis software should provide proper tools for users to organize their
data and optimize their workflow. However, the current implementation of the
QDAcity dashboards is not competent enough in comparison to other qualitative
data analysis software on the market. In the context of this thesis, we will analyze
how we can design a dashboard that suits the users and present a solution for
a new dashboard that can be customized accordingly for individual users. The
implementation is required to be compatible with the current design of QDAcity,
maintainable, and extendable.

iii

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Thesis structures . 2

2 Related work 3
2.1 QDAcity . 3

2.1.1 Component architecture of QDAcity 3
2.1.2 Features . 4

2.2 Analyse QDA software dashboards 6
2.2.1 Investigate other QDA software dashboards 7
2.2.2 Conclusion from the research 12

2.3 QDAcity Dashboard . 13
2.3.1 Personal Dashboard . 13
2.3.2 List of projects view . 16
2.3.3 Project Dashboard . 17
2.3.4 Navigation structure . 17

3 Requirement 19
3.1 Functional Requirement . 19
3.2 Non-Functional Requirement . 21

4 Architecture 23
4.1 Initial architecture of the dashboard 23
4.2 Redesigned QDAcity dashboard 23
4.3 Data modeling . 24

4.3.1 Dashboard Settings with Cards 24
4.3.2 Using only Card Entity to store configuration 25
4.3.3 Using Dashboard Settings to store configuration 26

4.4 Data flow in QDAcity . 27

5 Design and implementation 31

v

5.1 Frontend . 31
5.1.1 Reactjs . 31
5.1.2 Card and Dashboard implementation 33

5.2 Backend . 37
5.2.1 DashboardSettings data model 38
5.2.2 DashboardSettingsDAO 39
5.2.3 DashboardController . 40
5.2.4 DashboardEndpoint Backend 40

6 Evaluation 43
6.1 Functional Requirements . 43
6.2 Nonfunctional Requirements . 45

7 Conclusions 49

References 51

vi

List of Figures

2.1 QDAcity coding editor of an exercise 4
2.2 QDAcity create/upload document window 4
2.3 QDAcity tutorial . 5
2.4 QDAcity revision history . 5
2.5 QDAcity role-based access control 6
2.6 QDAcity course-system . 6
2.7 Atlas.ti projects dashboard . 7
2.8 Atlas.ti document manager . 7
2.9 Atlas.ti codes manager . 8
2.10 Dovetail dashboards . 9
2.11 Dovetail tags dashboard . 9
2.12 Aurelius projects list . 10
2.13 Aurelius project dashboard . 10
2.14 Condens home dashboard . 11
2.15 Condens tags dashboard . 11
2.16 Condens project with right sidebar expanded 12
2.17 Old Personal Dashboard . 13
2.18 Logic Layout: The Inverted Pyramid 14
2.19 Two versions of cards . 15
2.20 Dashboard design from the student from FHOÖ 16
2.21 Qdacity Project Dashboard . 17
2.22 Qdacity Coding Editor . 17
2.23 Navigation Design . 18

3.1 Functional Requirements Template 19
3.2 Condition of functional requirements 20
3.3 EnvironmentMASTeR . 21

4.1 Dashboard Settings with Cards 25
4.2 Using only card entity to store configuration 26
4.3 Using only Dashboard Settings entity to store configuration 27
4.4 OSI Model . 28

vii

4.5 Dashboard Settings Architecture 29

5.1 Prop drilling vs Context API . 32
5.2 Projects card in edit mode . 35
5.3 DashboardSettings Data model 38

viii

List of Tables

ix

x

List of Code Examples

5.1 Card Style Container . 33
5.2 Button with FormattedMessage as label 34
5.3 Props passed down from Personal dashboard 35
5.4 History and location provider . 36
5.5 Project items filter . 37
5.6 Class and attributes annotations 39
5.7 getDashboardSettingsForUser method in DAO class 40
5.8 initDashboardSettings method in Controller class 40
5.9 Dashboard Settings Endpoing example 41

xi

xii

Acronyms

FACR First Acronym

QDA Qualitative Data Analysist

CAQDAS Computer assisted qualitative data analysis software

HTTPS Hypertext Transfer Protocol Secure

REST Representational state transfer

RESTful A web API that obeys the REST constraints

GCE Google Cloud Endpoint

GCP Google Cloud Platform

FAQ Frequently asked questions

PDF Portable Document Format

RTF Rich Text Format

RBAC Role-based access control

API Application programming interface

DAO Data Access Object

GAE Google App Engine

SPA Single Page Application

CSR Client Side Rendering

DOM Document Object Model

PWA Progressive Web Application

URL Uniform Resource Locator

ID Identifier

xiii

DB Database

xiv

1 Introduction

1.1 Motivation

QDA software has evolved the field of qualitative research by providing powerful
tools for organizing, analyzing, and interpreting a big amount of data. As re-
searchers increasingly rely on QDA software to extract meaningful insights from
textual and multimedia data, the design and usability of the software interfaces
become paramount in ensuring efficient and effective data analysis.

An essential part of developing QDA Software is a dashboard design. Dashboard
design plays an important role in user experience in QDA software, as it not only
helps the users manage the projects they are working with, but also supports
collaboration between researchers on the same projects, keeping track of the
deadline, task tracking, and ensuring their progress. In particular, well-designed
dashboards within QDA software can significantly enhance the user experience by
offering intuitive navigation, visual representations of data, smooth interaction
with analytical tools, and hence, increasing overall productivity.

The current QDAcity dashboard provides users with basic functionalities. How-
ever, we can improve the user experience by allowing them to be able to customize
the dashboard matching with their needs. So each individual user, they can inter-
pret their needed information faster. This thesis contributes to the dashboard,
by making the dashboard easily configurable and intuitive to use. This thesis
aims to investigate the principles and practices of dashboard design in QDA soft-
ware, as well as they affect how the data analysis procedure. While analyzing
the difference between the old dashboard and the new one and understanding the
specific requirements, procedures, and cognitive processes involved in QDA, we
will get an idea for creating a dashboard that has efficient navigation, effective
visualization, and meaningful interpretation of data.

To address these challenges, this thesis will delve into the theoretical foundations,
studies, and practical considerations of dashboard design within QDA software.
By studying existing QDA software tools, and analyzing user requirements and
preferences. Together with the student at the University of applied science Ober-

1

1. Introduction

österreich, we identify the key factors contributing to successful dashboard design
in QDA.

1.2 Objectives

In the context of QDAcity, this thesis should explore dashboard design’s theoret-
ical principles and enable a modern-looking dashboard for researchers to complete
their work. The process requires identifying the essential components, function-
alities, and visualization that can enhance the usability and effectiveness of QDA
software dashboard. The frontend is going to be customizable and together with
the backend the configuration of the users can be stored in a database. The
implementation should have some tests to control the functionality, as well as
make sure it works if there is any update in components in the future. Also, the
dashboard template should be generic so that it can be reused for the projects
dashboard and the courses dashboard in the future.

1.3 Thesis structures

In Chapter 1 we describe the motive of the thesis, its objects, and its struc-
ture. Here we present the context of the research topic, our intent on what to
achieve, and an overview of the thesis. Chapter 2 is about the most relevant re-
lated work and research for the thesis, we conduct a literature review, exploring
studies and projects that are related to our thesis. Chapter 3 talks about the
requirements for the thesis, here we will gather and specify the functional and
non-functional requirements for our dashboard. Chapter 4 presents the architec-
ture of our dashboard and its relevant parts, which are our detailed overview of
the system structure, explaining the reasons for our choices, the different com-
ponents, and their interconnections. In Chapter 5 we focus on the design and
implementation of our reusable dashboard, we provide translation between re-
quirements and architecture into a functioning dashboard, code examples, and
diagrams. Chapter 6 gives us an evaluation of our system, which include self
reflect on the requirements, as well as user feedback, usability tests will tell us
how well the dashboard meets our user needs and identify areas for improvement.
Finally, chapter 7 summarizes and concludes the thesis, highlights key findings
from each chapter, and warp up important information.

2

2 Related work

In this chapter, we present a summary of related work that is relevant to this
thesis, as well as identify tasks and appropriate functionalities for each dashboard.
Initially, section 2.1 offers a basic overview of QDAcity. In section 2.2, we will
analyze and discuss different types of dashboards and their impacts on the users,
along with how we should implement them.

2.1 QDAcity

QDAcity is a single-page application (SPA) with client-side rendering (CSR)
computer-assisted qualitative Data analysis software (CAQDAS) based in the
cloud, providing tools and an environment for multiple analysts to work and
collaborate. QDAcity is also a Progressive Web App (PWA)1 since it’s imple-
mentation contains Service Worker APIs2 (according to Lygenda, 2022).

2.1.1 Component architecture of QDAcity

The frontend is implemented using Javascript with React library3. The backend
is a RESTful web service built with Google’s cloud infrastructure, called Google
Cloud Platform (GCP)4, including Google Cloud Endpoints frameworks5 in Java,
firestore database6, cloud run7. These components communicate with each other
via HTTPS requests.

1https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Guides/What_
is_a_progressive_web_app#progressive_web_apps

2https://web.dev/learn/pwa/service-workers/
3https://react.dev/
4https://cloud.google.com/
5https://cloud.google.com/endpoints
6https://cloud.google.com/firestore
7https://cloud.google.com/run

3

https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Guides/What_is_a_progressive_web_app#progressive_web_apps
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Guides/What_is_a_progressive_web_app#progressive_web_apps

2. Related work

2.1.2 Features

QDAcity’s wide range of features includes:

• Coding editor is the core of the tool, where a user can annotate segments
of text (codings) with more abstract concepts (so-called code) with a doc-
ument overview inside the code system (an organized structure of codes
used to categorize and analyze qualitative data). Figure 2.1 shows a coding
example of an exercise.

Figure 2.1: QDAcity coding editor of an exercise

• Import/export data in various formats like PDF-, RTF-, and interview
media data (figure 2.2).

Figure 2.2: QDAcity create/upload document window

• Tutorials for beginners and FAQ sections (figure 2.3).

4

2. Related work

Figure 2.3: QDAcity tutorial

• Project revision history (snapshots of the state of a project) (figure 2.4).

Figure 2.4: QDAcity revision history

• Role-based access control (RBAC), permissions are assigned to users by
roles, allowing multiple users to work on shared projects (figure 2.5).

5

2. Related work

Figure 2.5: QDAcity role-based access control

• Course-system to support the teaching of QDA. (figure 2.6)

(a) QDAcity exercises list view (b) QDAcity exercise dashboard

Figure 2.6: QDAcity course-system

• Dashboards that display information, the information depends on the type
of dashboard, we have three different dashboards: Personal, project, and
course. These are the main focus of the thesis and will be explained in more
detail in section 2.3.

Our focus of this thesis is to make the dashboard customizable and design a new
visual for it. To do that, we will first do research on other QDA software in
section 2.2.

2.2 Analyse QDA software dashboards

To design the QDAcity dashboard, we are going to do research on other QDA
software on the market8, a look at how the QDA software dashboard looks like,
and how they are structured.

There is a design rule created in 2001 by Jeffrey Zeldman9, called Three-click-rule,
states that "a user should always be able to find their desired information within

8https://renaissancerachel.com/best-qualitative-data-analysis-software/
9https://tillerdigital.com/glossary/3-click-rule/

6

2. Related work

three clicks or less"10. However, another study shows that "if the progressive
revelation of information takes the user down a path towards refinement that
feels like progress and gets them where they need to be, they will give you up to
twelve clicks before turning grumpy" (Shah, 2014). So it’s important for us to
also analyze the task flows, from the moment users log in until they start coding
each dashboard.

As a result, we will draw some insights taken from the analysis of these dash-
boards.

2.2.1 Investigate other QDA software dashboards

ATLAS.ti11

When first logging in to Atlas.ti, the user will have access to a projects dashboard,
each project is presented as a card (see Figure 2.7).

These cards can be opened and will redirect the user to the project dashboard.
The user can now access the document manager with an overview of the project
(figure 2.8). Additionally, there is a codes manager that presents all the codes
(code in some other QDA software is also called tag) of that project (figure 2.9).
The user can now open a document and start coding/tagging the information.

Figure 2.7: Atlas.ti projects dashboard

Figure 2.8: Atlas.ti document manager

10https://brand-experience.ieee.org/the-3-click-rule-myth-or-fact/
11https://atlasti.com/

7

2. Related work

Figure 2.9: Atlas.ti codes manager

Atlas.ti has a straightforward task flow, directly navigating user to the important
section of their software, which is the coding of the documentation. Additionally,
a lot of information is provided, but they still leave a lot of space and don’t
overwhelm users with too much information.

Dovetail12

In Dovetail each user is provided with two dashboards (figure 2.10), a home
dashboard, and a projects dashboard. A home dashboard by default presents the
recently opened projects by the user, a search block feed for new insights into the
software, and a suggestion tutorial/guide. These sections are placed below each
other and the user can edit them when upgrading to premium. For the projects
dashboard, there are two views, one for the organized folders and one for all the
projects of a user.

12https://dovetail.com/

8

2. Related work

(a) Dovetail personal dashboard (b) Dovetail projects dashboard (list view)

Figure 2.10: Dovetail dashboards

Similar to Atlas.ti, Dovetail also offers a tag dashboard to present all the tags of
the projects, these tags can be organized into groups, with each group card can
be visually distinguished by colors (figure 2.11).

Figure 2.11: Dovetail tags dashboard

Once users log in, they can access the project directly with the recently opened
project functionality, or create a new one in the projects list view. Once a project
is selected the user is directed to the notes (similar to documents in QDAcity
software), select a note then the user can start coding/tagging. Dovetail also has
a simple and direct workflow, making an easy for the user to use their software.

Aurelius13

Aurelius has a similar project dashboard design to Dovetail with a project list
(figure 2.12), some additional information about the project like the last updated

13https://www.aureliuslab.com/

9

2. Related work

time, and a search bar. From here user can navigate to the dashboard of each
project to have an overview of the project (figure 2.13). Aurelius also has a tags
dashboard to keep track of all tags. To start coding, the user needs to navigate to
the notes area, and then open/create a note. In comparison, Aurelius has a basic
task flow, but it can create user confusion due to its use of similar terminology
for both notes and documents.

Figure 2.12: Aurelius projects list

Figure 2.13: Aurelius project dashboard

Condens14

Another QDA software dashboard here to analyze has a lot in common with the
others. Condens offers the user the following dashboards, a home dashboard, a
project dashboard, a participants dashboard, and a tags dashboard. They all have

14https://app.condens.io/

10

2. Related work

a list view for their items (figure 2.14). The tags dashboard has an additional
function that allows user to group their tag into cards for easier management
(figure 2.15). Using drag and drop functionality, the user can easily change the
position of the cards to fit their priority, moving the tags between cards. The
right sidebar can be expanded or collapsed based on the user’s need and provides
additional tools for users, such as pinning the dashboard, adding notes, and
navigating (figure 2.16).

Figure 2.14: Condens home dashboard

Figure 2.15: Condens tags dashboard

11

2. Related work

Figure 2.16: Condens project with right sidebar expanded

Condesn requires a bit more navigation to start coding. The user has to choose
a project, instead of being navigated to the documents/notes list view as other
QDA software, a README about the project is opened. The user will have
to click on "SESSIONS" in the left sidebar to open/create a document/note to
start coding. This has the advantage of giving more information to users, but it
doesn’t quite follow the prototype of other QDA software, making it a bit hard
approach for new users.

2.2.2 Conclusion from the research

We can find some common in these dashboards that we analyze. From a function-
ality perspective, they all have a list of projects view to present all the projects,
along with a filtering mechanism. In addition, these software applications separ-
ate the document/note manager with code manager into two views for managing
them. In QDAcity, when the project expands over time, adding more documents
and codes can potentially overwhelm the user with an increasing amount of in-
formation displayed on the screen. Also, the documents and codes also take
up more space in the coding editor, reducing the visual clarity of coding tasks.
Therefore, we will design a separate document management and code manage-
ment view in the future. From the UI we can see that they have centralized
their tools, and the box/card’s corners are rounded. Among the four, three QDA
software are using a left sidebar for navigating. Furthermore, we can see that
they have a lot of space between them, group up their information, and create a
highly prototypical site. That is also something we can notice when designing a
new look for QDAcity.

12

2. Related work

2.3 QDAcity Dashboard

In this section, we are going to present the implementation of a dashboard, how
a modern dashboard should look in general, and how we can give it a better look.
Additionally, we are going to analyze how a dashboard interacts with the users,
in our case they are researchers, students, and teachers.

2.3.1 Personal Dashboard

This dashboard should be a default for newly registered users, where she or he
can see and manage projects, access courses, and get news about the application.

The current personal dashboard

In the current state, a screenshot of the current online version of QDAcity with
test projects and courses was taken as a reference (figure 2.17).

Figure 2.17: Old Personal Dashboard

As we can see the personal dashboard has a very basic approach. The logical
layout does not follow the Inverted Pyramid design principle (Sisense, 2023).
The concept of this is to divide the contents into three tiers, ranked in decreasing
order of importance. The most significant information should be placed at the
top, followed by details that help provide more context, and at the bottom the

13

2. Related work

information there is general and background information that offers more detail
and allows users to dive deeper(as seen in figure 2.18). Our old dashboard has but
a huge welcome and latest changes panel in the middle of the dashboard. This
might be interesting for first-time sign-in users, but ultimately they are not the
most noteworthy information for the users. Since their most important concern
here is the projects and courses area, we should have this area placed at the top
of the dashboard. In the old one they are but a very small part on the right side
of the dashboard.

Figure 2.18: Logic Layout: The Inverted Pyramid 14

The new personal dashboard

Here we have screenshots for the first approach of designing the dashboard with
the cards and how the dashboards will look with the result working of the design
of the student project. Figure 2.19 illustrates the idea of cards in two variations,
one with a sharp corner and the other with a rounded corner.

14https://datameaning.com/dashboard-design/dashboard-design-best-practices/

14

2. Related work

Figure 2.19: Two versions of cards

Our initial idea for designing the dashboard is to use cards for different types
of content, they have a cleaner look and the users can configure their own cards
easily. We also want to improve this by following the visual hierarchy, "[...]
the most important content should stand out the most, and the least important
should stand out the least", and the visual flow, "[...] a well-designed visual hier-
archy sets up focal points on the page wherever you need to draw attention to the
most important elements, and visual flow leads the eyes from those points into
the less-important information" (Tidwell, 2005). Therefore, we will create some
initial most important cards with bigger card sizes for our users, for example, the
projects and courses cards. We also value a minimalist design, which is not only
a trend for website design(Abbas, 2023), but also plays a role in our cognitive
fluency and visual information processing (Walker, 2022). According to Miller,
1956, the average adult brain’s short-term memory (where people temporarily
store and process information) is limited between five to nine "chunks" of in-
formation (a chunk is the most significant and recognizable unit in the presented
material that the person recognizes). Information overload can result in diverting
attention, distraction, and decreased productivity (Malak, 2022). Additionally, a
study from Google has also shown that users prefer websites with low visual com-
plexity and high prototypicality15. Therefore, we want our design to be simple,
less visually complex, follow the QDA software layout theme, and be open using
spaces. Another aspect affecting user experience is the loading speed (Georgiou,
2014). According to the findings of Anderson (Anderson, 2023), 47 percent of
consumers expect a page to load in two seconds or less, this also shows that a
fast-loading site is a crucial factor in web design.

15https://static.googleusercontent.com/media/research.google.com/en/us/pubs/archive/38315.pdf

15

2. Related work

Figure 2.20: Dashboard design from the student from FHOÖ

This new design (figure 2.20) not only follows the design principles but also
provides a modern-looking dashboard with quick navigation and interpretation
of information. Our design and implementation will be based on this design and
the analysis of other tools.

2.3.2 List of projects view

A list of projects view can be accessed by selecting an all-project link on the
personal dashboard (the navigation structure can be seen in subsection 2.3.4).
Here a list of all projects in which a user participates, irrespective of their desig-
nated role within the project, is presented. In addition, a list of filters is provided
so that the user can effectively retrieve their preferred projects. Project details
can be accessed by either clicking on the project in the Personal Dashboard or
selecting a project in the list of projects view. The users will be redirected to
the project dashboard, which provides an overview of the project and contains
management functions and metrics about the project. It is intended to serve as
a collaboration point for several project participants to exchange information or
inform each other.

16

2. Related work

2.3.3 Project Dashboard

QDAcity has a project dashboard that displays information static information
about the project and manages the user, to-do, and revision (see figure 2.21).
From here the user can access the coding editor, where users can start coding
(2.22). Here the coding editor also displays the information about the documents
of that project and all code (in other QDA software also called tag) created in
the code system and their frequency of utilization.

Figure 2.21: Qdacity Project Dashboard

Figure 2.22: Qdacity Coding Editor

2.3.4 Navigation structure

To be able to use the personal dashboard, the user must first register an account
in QDAcity. This can be done via Email/Password Registration or with Google
OAuth 2.016. After registration, the users will be directed to the personal dash-
board and have access to their personal dashboard. From there the user will
have access to different pages, such as the list of projects view, list of courses
view, and news-feed site updating news about the development/functionalities of
QDAcity. The cards should provide a link that leads to a more specific site about
the information being displayed on the cards. From the list of projects/courses
view, users can select a project/course to get more detailed information about
them, get access to the coding editor, or get back to the personal dashboard.

16https://developers.google.com/identity/protocols/oauth2

17

2. Related work

The concept is to use different pieces of information layer to reduce the amount
of information as well as the complexity of each site, therefore enhancing the
readability of them. Figure 2.23 shows the navigation of the dashboard.

Figure 2.23: Navigation Design

18

3 Requirement

This chapter states the requirements for the new personal dashboard, divided
into 2 categories, the functional requirements (FR) and nonfunctional require-
ments (NFR) using the template provided by Rupp and SOPHISTGesellschaft
für Innovatives Software-Engineering (SOPHIST, 2016). In each section, we will
have a brief description of the template before jumping into the details of the
requirements.

3.1 Functional Requirement

The syntax and semantics of the FR follow the template FunctionalMASTeR as
seen in the figure below.

Figure 3.1: Functional Requirements Template

FR sentences will be structured based on this template as a blueprint with five
steps total. Starting with our system, which is given, we define in step one the
importance of the system’s functionality with three keywords "shall", "should",
and "will" in descending order before defining that functionality in step 2 in
process verb. We will then specify the type of functionality in step 3 and define
our object in step 4. The condition in step 5, by putting in a square bracket is
defined as optional and can be added using the following syntax. The condition
is put in a square bracket, which means it is optional for the requirements.

19

3. Requirement

Figure 3.2: Condition of functional requirements

The conditions template is categorized into three groups. Conditions based on
logical expressions using the keyword "If", conditions triggered by events using
the keyword "As soon as", and conditions tied to a specific time using the keyword
"As long as".

We will proceed to label the FR following the above-explained template.

FR-1 If the user logs in for the first time, the personal dashboard shall provide
the user a personal dashboard with two default project and course cards.

FR-2 The personal dashboard shall provide users with the ability to save their
dashboard configuration.

FR-3 As soon as users log in to QDA, the personal dashboard shall provide users
with the ability to retrieve the dashboard configuration they saved before.

FR-4 If users enter edit mode, the dashboard shall provide users with the ability
to add/remove/move cards.

FR-5 The projects list view shall be able to present all the projects.

FR-6 If the user wants to have a view of only pinned projects, the projects list
view should be able to filter only pinned projects.

FR-7 If there are projects that the user frequently uses, these projects shall be
able to be pinned to the pinned projects card in the personal dashboard.

FR-8 If users want to navigate between the personal dashboard, projects list
view, and project dashboard, the dashboard system shall provide the user
a clickable link to navigate between them.

FR-9 If users follow a course/project, they are able to turn on the notification
in customized dashboard mode by clicking on the alarm icon, so that they
will receive news about that course/project.

20

3. Requirement

FR-10 If the project is pinned by a user, the database shall be able to store the
pinned project information only for the user who pinned it.

FR-11 If the pinned project is deleted, the database shall delete the information
about the pinned project.

FR-12 If the user profile is deleted, the dashboard settings profile shall be deleted.

3.2 Non-Functional Requirement

The operating environment of the dashboard is formulated as shown in the figure,
3.3, based on the template by MASTER – Schablonen für alle Fälle (SOPHIST,
2016)

Figure 3.3: EnvironmentMASTeR

NFR-1 The dashboard should be designed in a way that can be used easily by the
users without the need for any tutorials.

NFR-2 The dashboard should be designed in a way that allows users to quickly
access projects/courses and interpret relevant information to the project/-
courses such as their titles or user’s role in that project/course.

NFR-3 The buttons in the dashboard should be designed in a way that interacts
with users and helps people use their functionality by providing a tooltip.

NFR-4 The components and styling should be designed in a way that is compact
for different web browsers, such as Google Chrome, Mozilla Firefox, and
Brave.

NFR-5 The color scheme should be designed in a way that matches the color scheme
of QDAcity.

21

3. Requirement

NFR-6 The dashboard settings of each user shall be designed in a way that can
only be modified by its owner, which means the cards can be added/de-
leted/positioned only by the user who created them.

NFR-7 The dashboard should be designed in a way that is easily reusable for project
and course dashboards.

NFR-8 QDA Dashboard should be designed in a way that gives users a good user
experience, including the intuitiveness of the dashboard, ease of navigation
between projects, and the ability to quickly access relevant information.

NFR-9 The Dashboard must be designed in a way that will adjust responsively to
the width of other devices outside of a computer such as a phone or tablet.

22

4 Architecture

The dashboard architecture follows the design of QDAcity software in general, the
dashboard frontend is going to be implemented in Javascript language with React
library. Our backend and database are implemented with services provided by
GCP1. Here we are using GCE platform as an extensible service proxy to develop,
deploy, and manage APIs in the backend. For the database, we are going to use
Google Cloud Storage2 and Redis3.

4.1 Initial architecture of the dashboard

The dashboard consists of several key components, including a welcome panel, a
list of projects and courses, a news feeds panel, and a navigation bar. However,
the current distribution of space is not optimal, as it devotes too much area to
the welcome and news feed panels. Considering that the primary purpose of
the software is to access projects and courses and perform analysis tasks, this
imbalance needs to be addressed. In the upcoming section, we will outline a
redesigned dashboard that addresses these issues and improves usability, as well
as add more notable features that should be presented in the dashboard.

4.2 Redesigned QDAcity dashboard

The new personal dashboard provides users the ability to be able to configure
the dashboard themself with the concept of cards. Cards are predefined, such as
projects-card, courses-card, newsfeed-card, etc... This allows users to easily add,
remove, or change the order of the cards as they want to. However, to give the
user an intuitive navigation when first logging in, the dashboard will provide two
default important cards for users to work with, the projects card and the courses
card.

1https://cloud.google.com/
2https://cloud.google.com/storage
3https://redis.com/

23

4. Architecture

Despite being called customizable, the users may not have access to every attrib-
ute of the cards as well as the dashboard. Because there are some features that
most QDAcity users don’t need and they don’t provide much value. For instance,
"adding too many colors is one of the most important don’ts in dashboard design"
(Stojanovic, 2022), the color-changing functionality is decided not needed for the
card, as the color theme for the whole QDAcity software is already defined by a
UI/UX team for the best overall user experience when using the software. Adding
functionality to change the card’s color will not only break the color theme but
also reduce the minimalism of the design by overpopulating the dashboard with
buttons and colors. Therefore we don’t implement the adding color functionality
for the cards. Another example of redundant information is the card height, we
generally want the card to line up together instead of taking their own lines and
leaving a lot of white space, this is another feature that can lead to adverse effects
for a customizable dashboard.

4.3 Data modeling

To store the dashboard settings configuration of the users in the database, three
data models are being considered. According to the first law of software archi-
tecture (N. Ford & M. Richards, 2020) "Everything in software architecture is a
trade-off". There is no perfect solution that fits all, we need to decide by doing
our trade-off analysis (Magri, 2022). This section examines the advantages and
disadvantages of each data model and outlines the ultimate selection and the
reasoning behind it.

4.3.1 Dashboard Settings with Cards

Our initial idea of storing the configuration is using both dashboard settings
entity and card entities. Each user will have a dashboard settings entity, and
each dashboard settings entity will contain multiple card entities, see Figure 4.1

24

4. Architecture

Figure 4.1: Dashboard Settings with Cards

Since each card is independent and the dashboard settings of each user can store
as many cards as it needs, this approach has the advantage of storing as much
information as we want in each card. Another benefit is that the dashboard set-
tings can be easily extended and can be used not only for the personal dashboard
but also the project dashboard and course dashboard by having a list of cards as
attributes for each dashboard configuration.

One downside of this approach is that having two separate entities demands more
storage in a database. The bigger disadvantage is that having two entities to
store information requires more DB requests when loading the dashboard, which
increases the loading time when first logging into the new personal dashboard or
making changes to the dashboard. One solution to reduce the query time is using
the entity groups concept (T. Siu & K. Ardiff, 2019). However, after considering
the pros and cons we decided it was not worth using two separate entities. There
isn’t that much information to store in each dashboard and this will make the
implementation unnecessarily more complicated. For the personal dashboard, we
only need the card type information and the IDs of pinned projects and courses.

4.3.2 Using only Card Entity to store configuration

Since we don’t want to make too many queries, another idea is to eliminate
the dashboard settings part and directly point the card to the user, figure 4.2.

25

4. Architecture

Because we don’t want to make changes to the user entity to avoid data migration.
We will store the owner’s value in the card entity instead of making a card list
attribute in the user entity, resulting in multiple cards having the same owner.

Figure 4.2: Using only card entity to store configuration

The advantage of this is we are still able to store as much information as we
want on each card and have faster, simpler queries than the previous data model.
We have different card types for different types of information, such as pinned
projects, pinned courses, personal state, etc... However, there will be a card that
may contain an empty body for their triviality. For example, the news feed card
just needs the ID of its owner, once we can get the card type the frontend can
easily read the news from the code base without needing to touch the card’s
information from the backend, it duplicated to have the same piece of card type
with just different owner’s id. Besides, each user will have several cards, so going
through an entire database to retrieve cards corresponding to the user might not
be a good idea, as it might slow down the system. We also need extra attributes
for the order of the cards, as we don’t want to make changes to the user. Making
changes to the order of the cards or deleting one of the cards is not ideal because
we have to make a lot of changes to not only one but a lot of cards.

4.3.3 Using Dashboard Settings to store configuration

Another model we considered is using the dashboard settings entity to store all
the information needed for the user’s configuration (figure 4.3). By using the
DashboardSettings entities, we trade off the amount of information that each
card can hold for query speed. Although some information about each card is
limited, we have decided that they are not needed in 4.2. Therefore, here we
will select the important information to store in our database, which is about the
card order, and list of pinned projects and courses.

Our advantage of using this model is not only avoiding over-complicated imple-

26

4. Architecture

mentation but also saving redundant information. For example, the news-feed
card will be duplicated with the same information if we implement using only a
card entity (from subsection 4.3.2, every user will have one news feed card using
that data model). Most importantly the query efficiency is increased when either
loading the page or making changes to the page, which play an important role in
the user experience (Georgiou, 2014).

Figure 4.3: Using only Dashboard Settings entity to store configuration

4.4 Data flow in QDAcity

Like the OSI model (J. Day & H. Zimmermann, 1983) as shown in Figure
4.4, we want to divide the networking of QDAcity into layers in order to easily
organize the protocols. For the QDAcity dashboard, we divide the system into
the following layers, they are Frontend Endpoint, Backend Endpoint, Controller,
DAO, domain classes, and Firestore, see Figure 4.5.

27

4. Architecture

Figure 4.4: OSI Model

The dashboard on the client side uses the frontend endpoint to communicate
with the server side by making API Requests. The backend endpoint is the first
layer of the server side, which defines the endpoints of the API. The main goal
of the backend endpoint is to offer logic regarding data transport and provide
valid routes for the user, here an authentication check for the registered user is
provided. Some examples of endpoints here are reading (GET), updating (PUT),
or deleting (DELETE). The backend endpoint utilizes the Controller provided by
the Controller layer to serve the client. The controller layer is meant to implement
business logic and orchestration of DAOs and other controllers. The main goal
of the Controller layer is to offer services to the backend endpoint later. The
DAO will then take the responsibility to persist the data for the domain classes,
create new entities, apply changes, or delete the data from the database. Data
persistence and providing services to the Controller is the main goal of this layer.
Finally, the data is persisted in Firestore4 (also known as Datastore), which is a
highly scalable NoSQL database running on Google Cloud Platform.

4https://cloud.google.com/firestore

28

4. Architecture

Figure 4.5: Dashboard Settings Architecture

29

4. Architecture

30

5 Design and implementation

This chapter describes the details of the design of the implementation of the new
dashboard based on the architecture presented in chapter 4. The goal is to fulfill
the requirements from chapter 3. We are going to divide the implementation into
two parts, the backend part and the frontend part.

5.1 Frontend

In this section, the implementation of the personal dashboard on the client side
is described. This involves how the dashboard component is built, its integration
with the backend, and the management of data using Javascript with the React
library.

5.1.1 Reactjs

Functional components against class components

Starting from React version 16.8, "Anything that can be done using class com-
ponents can also be done using functional components" (Kong, 2022). Functional
components are clearer to read and less complex, with less code than class com-
ponents. Some features that we could not previously use in class components,
for example, the lifecycle hooks are now can be substitution with the useEffect
hook in functional components. Given that QDAcity is using React 18.2.0, we
are going to write new components using functional components.

Prop drilling versus Context API

In order to pass data between components in React, we use something called
props, also known as properties. Without using a state management library such
as Redux1 there are two mechanisms to transmit data through the component
tree, either manually passing the data through multiple layers of a component
hierarchy until the data reaches the desired component, which is prop drilling2,

1https://redux.js.org/
2https://dev.to/codeofrelevancy/what-is-prop-drilling-in-react-3kol

31

5. Design and implementation

or directly passing the data to the components in the tree that needed it with
the Context API3 (see Figure 5.1). Considering that our dashboard architecture
in the front contains only three layers, with only the personal dashboard as the
parent component and the default card / specialized card using the default card as
the children component, and the fact that context API might cause unnecessary
re-rendering in Application, it’s decided better, in this case, to use the drilling
strategy to passing card’s props through the component tree. For props that are
passed down from higher or the root component (the App.jsx) we are going to use
the provided context hook (for example useAuth hook) to keep our code clean.

Figure 5.1: Prop drilling vs Context API

Styling

For our styling, we are going to use the styled component library4, which is a
CSS in JS writing technique. Writing actual CSS in react components keeps the
flexibility to make changes or reuse the CSS code, as well as makes code easier
to read and maintain. Some features of styled components over traditional CSS
classes are simpler extending, nesting styles, and especially dynamic styling, as
written in the motivation on the library’s website "Adapting the styling of a com-
ponent based on its props or a global theme is simple and intuitive without having
to manually manage dozens of classes"5. By making use of that we can have a
consistent color theme, which is defined in a common file in the project, passing
down the props theme color and we are ready to use, we can see in example
5.1. This also makes implementing of dashboard and card a lot easier, as we can
reuse a lot of styling code, such as button components. In this thesis, we are try-
ing to use as much reusable code as possible to help maintain the project later on.

3https://react.dev/reference/react/useContext
4https://styled-components.com/
5https://styled-components.com/docs/basics#motivation

32

5. Design and implementation

const StyledCardContainer = styled.div`
background-color: ${(props) => (props.isDragOver ?

props.theme.bgSecondaryHover : props.theme.bgDefault)};
height: ${CommonDimensions.card.heightPx}px;
width: ${(props) => props.cardWidth}
padding: 16px;
& > h1 {

font-size: 24px;
font-weight: bold;

}
& > p {

font-size: 16px;
}

`;

Code Example 5.1: Card Style Container

5.1.2 Card and Dashboard implementation

Desktop first design

Most QDA software users use the software on a desktop, and the product is
intended for desktop use. We will start our design based on a desktop computer,
hence start writing CSS for large viewport sizes first. Then we use CSS media
queries to alter the experience for smaller ones.

FormatMessage, Button, ToolTip

We have several rules for the front-end conventions. The first one is all the colors
must be defined in the Theme.js file. Subsequently, in QDAcity there are two
main languages being used, English by default and German. This is why every
user-facing string has to be formatted so that we can serve them both in English
and German. We use the React integration of Format.js API6 called React-Intl
with FormatedMessage component (see code example 5.2) to implement that.

<StyledEditButtonContainer>
<PrimaryButton

id="EditDashboardButton"
onClick={handleEditClick}
label={

6https://formatjs.io/docs/react-intl/

33

5. Design and implementation

isEditing ? (
<FormattedMessage id="personalDashboard.saveDashboard"

defaultMessage="Save Dashboard" />
) : (

<FormattedMessage id="personalDashboard.editDashboard"
defaultMessage="Edit Dashboard" />

)
}

></PrimaryButton>
</StyledEditButtonContainer>

Code Example 5.2: Button with FormattedMessage as label

As for the buttons, if the buttons contained text, they would have to follow the
above convention. For buttons that are only icons or the usage of the buttons is
not clear, tooltips are needed for more information about it, these tooltip has to
follow the format convention as well. An exception for the tooltip is if the button
already has text to explain itself and is too simple that they don’t need a tooltip
to provide more information about it (for example the edit dashboard button).

Card

Our card implementation comes with three different types of default card tem-
plates. These default cards are only different in their container, which defines
the width of those cards. These cards’ names are DefaultCard which will take
a width in pixels as props for their width, by default the same size as the small
card. The BigCard and SmallCard widths are defined in two different screen sizes
to keep them responsive to the MediaSize.js used for screen size breakpoints and
CommonDimensions used for the common width files defined in common assets
of the QDAcity codebase. In medium screen size and more, the big card will take
about half the width of its parent component’s width while the small card will
take about one-quarter. The reason for those approximate laying is to fit the card
on the screen with the distance of the gap between each card, which is designed
to be responsive with percentage value also. These cards have their isEditMode
and isDragOver state, passed down from the personal dashboard to handle their
visual. If the isEditMode condition is true, two icons are being shown for deleting
and moving the cards around. We also have the hovering effect (icon gets bigger
or changes color, pagination has underline) to help the users interact with the
buttons (figure 5.2).

34

5. Design and implementation

(a) Move icon not hovered (b) Move icon hovered with tooltip

Figure 5.2: Projects card in edit mode

The three cards stated above work only as a holder without any content. To fully
create a card, we wrap one of the default cards with its title and contents, then
pass it down to the default card with children-prop. The default card will then
take the children’s element and generate it inside the StyledCardContainer. After
this step, we can import our desired card and render it in the personal dashboard
as wanted. (Code example 5.3).

<PersonalDashboard>
...
/// props from Personal Dashboard
<ProjectsCards>

...
/// props passed down from Personal Dashboard
<BigCard>

....
/// props passed down from Personal Dashboard and the

children of Projects Card
{children}

</BigCard>
...

></ProjectsCards>
...

</PersonalDashboard>

Code Example 5.3: Props passed down from Personal dashboard

Dashboards

To manage the cards in the personal dashboard, we are going to use a state
hook to keep track of the user interface changes. We implement the change card
order for the dashboard by creating drag and drop functionality. In order to
move a card, the dashboard must be in edit mode and the user has to move
the card while holding the move card button. The steps for moving the cards
are as follows, the button being clicked, triggering the handleDragStart function,

35

5. Design and implementation

hovering it in or out a card triggers the hover drag functions in the card. When
the user releases the mouse, the handleDrop function is triggered, changing the
index of the card using the splice function. Although objects in React state are
technically mutable, directly modifying the state array can lead to unexpected
behavior, as recommended in the React document we should treat React objects
as if they were immutable. So we will first need to make a copy of the state,
make changes to it, and replace the original with the copy.

To synchronize changes to the backend we use useEffect7 hooks in two ways. The
one initial hook we use is to initialize our dashboard settings when the dashboard
is first loaded, there for the hook dependency is set empty. The other hooks are
for updating the changes in the card order, so we will set the dependency to the
card’s state. However, the useEffect hook for updating the card is called when
first rendered as well, which will catch a conflict with the first initializing hook.
We will avoid that situation by adding a useRef 8 hook with a boolean value,
which is primarily used to access and manipulate the DOM or to store mutable
values that don’t trigger re-renders. If the condition is true we will set it to false
and return the update hook early. After that, the update useEffect hook should
work as desired and won’t cause any conflict with the first hook.

Navigation

We use useNavigate hook9, a hook that is introduced in React Router v6 to
navigate. This hook is used together with the HistoryAndLocationProvider to
create a history API to go to specific URLs and forward or backward pages (code
example 5.4).

const navigate = useNavigate();
const getNextUrl = useCallBack((url) => {

...
}, []);
const history = {

push: (url, state) => {
return navigate(getNextUrl(url), { state });

},
replace: (url, state) => {

return navigate(getNextUrl(url), { state, replace: true });
},
...

};

Code Example 5.4: History and location provider
7https://react.dev/reference/react/useEffect
8https://react.dev/reference/react/useRef
9https://reactrouter.com/en/main/hooks/use-navigate

36

5. Design and implementation

In some cards, such as NewsFeedCard, only one new is displayed. In order to get
all the changes of QDAcity, we are going to add a link to the bottom right of
the card and use the function history.push(’/latest-changes’) to navigate to the
news feed page. We also provide a navigation menu for the user to go back to
the previous page easily.

Filter

For filtering pinned projects in the projects list view we pass down a boolean
doShowOnlyPinnedProjects props from the parent component to ProjectList. The
project items will be filtered and then passed down to ItemList for item rendering
(code example 5.5).

const isProjectPinned = (project) => {
return pinnedProjects && pinnedProjects.includes(project.id);

};
<ItemList

ref={(r) => {
if (r && !itemList) setItemList(r);

}}
hasSearch={true}
hasPagination={true}
doNotrenderSearch={true}
itemsPerPage={5}
items={

doShowOnlyPinnedProjects
? projectsContext.projects.filter((project) =>

isProjectPinned(project))
: projectsContext.projects

}
renderItem={renderProject}

/>

Code Example 5.5: Project items filter

5.2 Backend

This section describes the implementation of the dashboard settings on the server
side, including the data model, the endpoint, controller, and DAO implementa-
tion in Java programming language.

37

5. Design and implementation

5.2.1 DashboardSettings data model

First, a data model for storing the configuration of the user needs to be created,
using the model we discussed in section 4.3.3. The dashboard settings entity with
an overview of its attributes and relationships are defined as shown in figure 5.3.

The entities from our data model are stored in the GAE datastore, which is a
key-value datastore that is conceptually similar to a HashMap. The operations
in the datastore are handled by a Java library called Objectify10, this will be
discussed in more detail in sub-section 5.2.2. Here we are focusing more on the
properties model and their annotations of the data model. In Objectify, the
DashboardSettings class is marked as an entity with class-annotation @Entity.
After that, we define our ID with @Id annotation. The rest of our attributes are
annotated with @Index to specify that they should be indexed in the data store.
A snapshot of the code is shown below in code example 5.6.

Figure 5.3: DashboardSettings Data model

@Entity
public class DashboardSettings implements Serializable{

@Id
Long id;

10https://github.com/objectify/objectify/wiki

38

5. Design and implementation

@Index
String userId;

@Index
List<CardType> cardsOrder;

@Index
List<Long> pinnedProjects;

@Index
List<Long> pinnedCourses;

Code Example 5.6: Class and attributes annotations

5.2.2 DashboardSettingsDAO

According to Martin (Martin, 1983), create, read, update, and delete (CRUD) are
four basic operations of persistent storage. Our DAO design pattern also provides
these four operations with a Java data access API called Objectify. This pattern
handles all the DB-interface-specific code, which will keep the usage of the data-
base not scattered throughout the code base, keeping the code clean and easy
to refactor/reuse later. Although using different terminology, Objectify is im-
plemented with these basic operations. In DashboardSettingsDAO we also use
the now call to extract value from the asynchronous result and return it to the
DashboardSettingsController (except for the delete method which returns value is
null). Another thing to acknowledge here is when creating a DashboardSettings-
DAO object, we are not going to directly call the constructor but we are using
a Static Factory Methods (Block, 2009), this helps the code easier to read as we
can call the name of the class with the with method to add context parameter.
An example of code is shown below in code-example 5.7.

public static DashboardSettingsDAO with(Context context) {
return new DashboardSettingsDAO(context);

}

public DashboardSettings getDashboardSettingsForUser(String userId) {
Query<DashboardSettings> query =

ObjectifyService.ofy().load().type(DashboardSettings.class);
query = query.filter("userId", userId);
return query.first().now();

}

39

5. Design and implementation

Code Example 5.7: getDashboardSettingsForUser method in DAO class

5.2.3 DashboardController

Within the DashboardController the business logic is managed. While the up-
date calls simply pass down the updated dashboard to the DAO and the delete
call just calls the DAO method, the get method has to check the availability of
the dashboard settings when users first log in. It will have to call the initialize
method if there is no dashboard for that user and return that dashboard setting
for the next sequence calls of the get methods. For initializing we added the two
most basic cards for the user to start with QDAcity coding, the projects card,
and the courses card. Again we are using Static Factory Methods for creating
DashboardController instead of directly calling the Constructor. Code examples
5.8 of the initDashboardSettingsMethod. When removing a user, the deleteDash-
boardSettingsForUser method is called, delete the dashboard before removing the
user.

public DashboardSettings initDashboardSettings(String userId, User
user) {
DashboardSettings dashboardSettings = new DashboardSettings();
List<CardType> initialCardsOrder = new ArrayList<>();
initialCardsOrder.add(CardType.PROJECTSCARD);
initialCardsOrder.add(CardType.COURSESCARD);
dashboardSettings.setUserId(userId);
dashboardSettings.setCardsOrder(initialCardsOrder);
return

dashboardSettingsDAO.insertDashboardSettings(dashboardSettings);
}

Code Example 5.8: initDashboardSettings method in Controller class

5.2.4 DashboardEndpoint Backend

The DashboardEndpoint, using GCE in the backend works as an authorization
layer, defines the REST endpoint for the frontend, and transmits data between the
frontend and the business layer. The @Api annotates for API-wide configuration
and @ApiMethod marks a method as an Endpoint with the function name to be
called at the front end, the HTTP method, and the web path parameters. An
example of code 5.9 is shown below.

40

5. Design and implementation

The Context.executeWith method has two parameters, a User parameter, and a
ContextExecuteable. This method will check for the authentication information of
the user and throw an UnauthenticatedException if the user is not authenticated.
If the user is authenticated it will then execute the given unit of work.

@Api(
name = "qdacity",
version = Constants.VERSION,
namespace = @ApiNamespace(
ownerDomain = "qdacity.com",
ownerName = "qdacity.com",
packagePath = "server.project"),

authenticators = {QdacityAuthenticator.class}
)
public class DashboardSettingsEndpoint {

@ApiMethod(name = "dashboardSettings.initDashboardSettings",
httpMethod = "PUT",
path= "dashboardSettings/users")

public DashboardSettings initDashboardSettings(@Named("userId")
String userId, User user) throws UnauthorizedException {
return Context.executeWith(user, context -> {

return DashboardSettingsController.with(context)
.initDashboardSettings(userId, user);

});
}

Code Example 5.9: Dashboard Settings Endpoing example

41

5. Design and implementation

42

6 Evaluation

In this chapter, we evaluate whether the presented FR and NFR from Chapter 3
are fulfilled.

6.1 Functional Requirements

FR-1 If the user logs in for the first time, the personal dashboard shall provide
two default projects and course cards to the personal dashboard.

When logging in for the first time, the initDashboardSettings method is
called and a DashboardSettings with a default cards order containing pro-
jects card and courses card is created for the user.

✓The requirement FR-1 has been fulfilled.

FR-2 The personal dashboard shall provide users with the ability to save their
dashboard configuration.

With the implementation of two useEffect hooks, one with cardsOrder and
another with pinnedProjects dependency, the updateCardsOrder and the
updatePinnedProjects APIs are called every time the cards order or pinned
projects changes and saves the dashboard configuration.

✓The requirement FR-2 has been fulfilled.

FR-3 As soon as users log in to QDA, the personal dashboard shall provide users
with the ability to retrieve the dashboard configuration they saved before.

With the implementation of the useEffect hook with empty dependency,
the getDashboardSettingsForUser API is called and returns the dashboard
configuration users saved before.

✓The requirement FR-3 has been fulfilled.

FR-4 If the users enter edit mode, the dashboard shall provide the users with the
ability to add/remove/move cards.

43

6. Evaluation

By implementing these buttons with the isEditmode state as in subsection
5.1.2, these buttons appear when the user enters edit mode and can be
interacted with.

✓The requirement FR-4 has been fulfilled.

FR-5 The projects list view shall be able to present all the projects.

The projects list view gets all projects that belong to a user and presents
them in the list view.

✓The requirement FR-5 has been fulfilled.

FR-6 If the user wants to have a view of only pinned projects, the projects list
view should be able to filter only pinned projects.

A pinned projects filter has been implemented in the form of a checkbox
for the user.

✓The requirement FR-6 has been fulfilled.

FR-7 If there are projects that the user frequently uses, these projects shall be
able to be pinned to the pinned projects card in the personal dashboard.

Pinned icons are added to each project in the projects list view.

By implementing the pinnedProjects attribute and adding a pin icon to
the project, the projects can be pinned to the pinned projects card in the
personal dashboard.

✓The requirement FR-7 has been fulfilled.

FR-8 If the users want to navigate between the personal dashboard, projects list
view, and project dashboard, the dashboard system shall provide the user
a clickable link to navigate between them.

In the personal dashboard user can click on > All Projects link to navigate
to the list view. A link at the top of the projects list view and a home
icon that redirects to the personal dashboard in the navigation menu is
provided.

✓The requirement FR-8 has been fulfilled.

FR-9 If the users follow a course/project, they are able to turn on the notification
in customized dashboard mode by clicking on the alarm icon, so that they
will receive news about that course/project.

We haven’t implemented this due to time constraints and lower priority.

X The requirement FR-9 has not been fulfilled.

44

6. Evaluation

FR-10 If the project is pinned by a user, the database shall be able to store the
pinned project information only for the user who pinned it.

With the implementation of the DashboardSettings entity with only one
user ID attribute and the updatePinnedProjects method call only update
the DashboardSettings of that user, only the user who owns that setting can
see the pinned projects.

✓The requirement FR-10 has been fulfilled.

FR-11 If the pinned project is deleted, the database shall delete the information
about the pinned project.

We have added the updatePinnedProjects API call to change the list of
pinned projects when a pinned project is deleted.

✓The requirement FR-11 has been fulfilled.

FR-12 If the user profile is deleted, the dashboard settings profile shall be deleted.

The removeUser function now also deletes the dashboard settings of its user
before deleting that user.

✓The requirement FR-12 has been fulfilled.

6.2 Nonfunctional Requirements

NFR-1 The dashboard should be designed in a way that can be used easily by the
users without the need for any tutorials.

The dashboard’s card has its own information and the buttons are designed
with minimalism, a lot of space, intuitive icons, tooltip for extra informa-
tion.

✓The requirement NFR-1 has been fulfilled.

NFR-2 The dashboard should be designed in a way that allows users to quickly
access projects/courses and interpret relevant information to the project/-
courses such as their titles or user’s role in that project/course.

With the projects card in the personal dashboard, the user can simply
navigate to the project with just a click.

✓The requirement NFR-2 has been fulfilled.

NFR-3 The buttons in the dashboard should be designed in a way that interacts
with users and helps people use their functionality by providing a tooltip.

The tooltips are implemented in both languages for the user.

45

6. Evaluation

✓The requirement NFR-3 has been fulfilled.

NFR-4 The components and styling should be designed in a way that is compact
for different web browsers, such as Google Chrome, Mozilla Firefox, and
Brave.

The dashboard is manually tested using Microsoft Edge, Chromium, Google
Chrome, Mozilla Firefox, Brave and works for all of them.

✓The requirement NFR-4 has been fulfilled.

NFR-5 The color scheme should be designed in a way that matches the color scheme
of QDAcity.

During the implementation of the dashboards, we reused a lot of compon-
ents, such as buttons, item lists, and icons. Additionally, all the colors we
used are defined in a Theme.js file.

✓The requirement NFR-5 has been fulfilled.

NFR-6 The dashboard settings of each user shall be designed in a way that can
only be modified by its owner, which means the cards can be added/de-
leted/positioned only by the user who created them.

Each API call checks for the user authorization of the owner, only the owner
of the dashboard can modify it. If another user tries to make changes to
the other dashboard, an UnauthorizedException is thrown.

✓The requirement NFR-6 has been fulfilled.

NFR-7 The dashboard should be designed in a way that is easily reusable for project
and course dashboards.

We have the card concept developed and can be easily reused on another
dashboard, we just need to wrap them around the list item element.

✓The requirement NFR-7 has been fulfilled.

NFR-8 QDA Dashboard should be designed in a way that gives users a good user
experience, including the intuitiveness of the dashboard, ease of navigation
between projects, and the ability to quickly access relevant information.

All important information is centralized, navigation menu is created. How-
ever, the move card functionality works when dropping one card on top
of another. When moving a card between two cards, the function is not
working, which is not intuitive when managing cards for users.

✓X The requirement NFR-8 has been partially fulfilled.

NFR-9 The Dashboard must be designed in a way that will adjust responsively to
the width of other devices outside of a computer such as a phone or tablet.

46

6. Evaluation

All the components in the dashboard are designed with the query check
for media size and using percentages to adapt to make the dashboard more
responsive.

✓The requirement NFR-9 has been fulfilled.

47

6. Evaluation

48

7 Conclusions

The last chapter concludes the work and sums up the thesis. The goal of this
thesis is written down in Chapter 1, motivated and set the target for this thesis.

Chapter 2 summarizes our related work and research for this thesis. Firstly we in-
troduced QDAcity software, its component architecture, and its most important
features. Subsequently, we discussed how the old implementation of the dash-
board could affect the quality of the software as well as the user experience. To
that, we introduced our new way of designing and implementing a dashboard that
can give users the best experience and a quick look at the navigation structure
of the new dashboard.

In Chapter 3 we formulate functional requirements and non-functional require-
ments of the dashboard. As the thesis focuses on the user experience, our most
important requirements will be the intuition of the dashboard, and how it should
be easy to navigate and use.

Following is the architecture of the dashboard in Chapter 4. Here we had a quick
brief about the old architecture and came up with the new one. We talked about
how the data flows from the client to the server. Then we discussed options for
a data model for the dashboard settings and gave our ultimate decision.

Chapter 5 describes our implementation of the architecture that we had in Chapter
4. Here we had a details description of every component we had for the dash-
board, as well as reasoning for our choices to approach the problems. For each
component that we had, a code example is provided for a better illustration of
our work.

In Chapter 6 we revisited and evaluated the fulfillment of our work regarding
the requirements we stated in Chapter 3. There we had our most significant
requirements fulfilled.

To conclude the thesis, we have satisfied the implementation of a customizable
dashboard for QDAcity. Giving QDAcity a new look and providing a better
experience for the user.

49

7. Conclusions

50

References

Abbas, T. (2023). Minimalism in graphic design: Top trends to watch in 2023.
https://www.linkedin.com/pulse/minimalism-graphic-design-top-trends-
watch-2023-toqeer-abbas/

Anderson, S. (2023). How fast should a website load in 2023? https ://www.
hobo - web . co . uk / your - website - design - should - load - in - 4 - seconds /
:~ : text= following%20key%20findings%3A- ,47%20percent%20of%
20consumers%20expect%20a%20web%20page%20to%20load , render%
20before%20abandoning%20the%20site.

Block, J. (2009). Effective java.
Georgiou, M. (2014). Need for speed – fast loading the key to a satisfying ux.

https://www.getfeedback.com/resources/ux/need-speed- fast- loading-
key-satisfying-ux/

J. Day & H. Zimmermann. (1983). The osi reference model. IEEE.
Kong, L. (2022). React component guide: Class vs functional. https : //www.

educative.io/blog/react-component-class-vs-functional
Lygenda, D. (2022). Single page application vs. progressive web app: A com-

parison. https://www.microverse.org/blog/single-page-application-vs-
progressive-web-apps-a-comparison

Magri, B. (2022). [summary — chap 2] fundamentals of software architecture.
https://medium.com/@biancamagri/summary-chap-2-fundamentals-of-
software-architecture-ec4532901285

Malak, A. (2022). What is information overload? how to overcome it? https :
//theecmconsultant.com/information-overload/

Martin, J. (1983). Managing the data-base environment. Englewood Cliffs, New
Jersey: Prentice-Hall.

Miller, G. (1956). The magical number seven, plus or minus two: Some limits on
our capacity for processing information. https://psychclassics.yorku.ca/
Miller/

N. Ford & M. Richards. (2020). Fundamentals of software architecture: An en-
gineering approach. O’Reilly Media.

51

https://www.linkedin.com/pulse/minimalism-graphic-design-top-trends-watch-2023-toqeer-abbas/
https://www.linkedin.com/pulse/minimalism-graphic-design-top-trends-watch-2023-toqeer-abbas/
https://www.hobo-web.co.uk/your-website-design-should-load-in-4-seconds/#:~:text=following%20key%20findings%3A-,47%20percent%20of%20consumers%20expect%20a%20web%20page%20to%20load,render%20before%20abandoning%20the%20site.
https://www.hobo-web.co.uk/your-website-design-should-load-in-4-seconds/#:~:text=following%20key%20findings%3A-,47%20percent%20of%20consumers%20expect%20a%20web%20page%20to%20load,render%20before%20abandoning%20the%20site.
https://www.hobo-web.co.uk/your-website-design-should-load-in-4-seconds/#:~:text=following%20key%20findings%3A-,47%20percent%20of%20consumers%20expect%20a%20web%20page%20to%20load,render%20before%20abandoning%20the%20site.
https://www.hobo-web.co.uk/your-website-design-should-load-in-4-seconds/#:~:text=following%20key%20findings%3A-,47%20percent%20of%20consumers%20expect%20a%20web%20page%20to%20load,render%20before%20abandoning%20the%20site.
https://www.hobo-web.co.uk/your-website-design-should-load-in-4-seconds/#:~:text=following%20key%20findings%3A-,47%20percent%20of%20consumers%20expect%20a%20web%20page%20to%20load,render%20before%20abandoning%20the%20site.
https://www.getfeedback.com/resources/ux/need-speed-fast-loading-key-satisfying-ux/
https://www.getfeedback.com/resources/ux/need-speed-fast-loading-key-satisfying-ux/
https://www.educative.io/blog/react-component-class-vs-functional
https://www.educative.io/blog/react-component-class-vs-functional
https://www.microverse.org/blog/single-page-application-vs-progressive-web-apps-a-comparison
https://www.microverse.org/blog/single-page-application-vs-progressive-web-apps-a-comparison
https://medium.com/@biancamagri/summary-chap-2-fundamentals-of-software-architecture-ec4532901285
https://medium.com/@biancamagri/summary-chap-2-fundamentals-of-software-architecture-ec4532901285
https://theecmconsultant.com/information-overload/
https://theecmconsultant.com/information-overload/
https://psychclassics.yorku.ca/Miller/
https://psychclassics.yorku.ca/Miller/

References

Shah, A. (2014). The 3 clicks rule how many clicks should it take to reach your
content? https : //medium.com/@allyshah_design/the - 3 - clicks - rule -
c9bb5eaf7d31

Sisense. (2023). Dashboard design best practices - 4 key principles. https://www.
sisense.com/blog/4-design-principles-creating-better-dashboards/

SOPHIST. (2016). Schablonen für alle fälle. https://www.sophist.de/fileadmin/
user _ upload / Bilder _ zu _ Seiten / Publikationen / Wissen _ for _ free /
MASTeR_Broschuere_3-Auflage_interaktiv.pdf

Stojanovic, F. (2022). Bad dashboard examples: 10 common dashboard design
mistakes to avoid. https://databox.com/bad-dashboard-examples

T. Siu & K. Ardiff. (2019). Entity groups, ancestors, and indexes in datastore-
a working example. https://medium.com/google- cloud/entity-groups-
ancestors-and-indexes-in-datastore-a-working-example-3ee40cc185ee

Tidwell, J. (2005). Designing interfaces. https://www.oreilly.com/library/view/
designing-interfaces/0596008031/ch04.html

Walker, T. (2022). Why simple website design is the best: The scientific reasons.
https://cxl.com/blog/why-simple-websites-are-scientifically-better/

52

https://medium.com/@allyshah_design/the-3-clicks-rule-c9bb5eaf7d31
https://medium.com/@allyshah_design/the-3-clicks-rule-c9bb5eaf7d31
https://www.sisense.com/blog/4-design-principles-creating-better-dashboards/
https://www.sisense.com/blog/4-design-principles-creating-better-dashboards/
https://www.sophist.de/fileadmin/user_upload/Bilder_zu_Seiten/Publikationen/Wissen_for_free/MASTeR_Broschuere_3-Auflage_interaktiv.pdf
https://www.sophist.de/fileadmin/user_upload/Bilder_zu_Seiten/Publikationen/Wissen_for_free/MASTeR_Broschuere_3-Auflage_interaktiv.pdf
https://www.sophist.de/fileadmin/user_upload/Bilder_zu_Seiten/Publikationen/Wissen_for_free/MASTeR_Broschuere_3-Auflage_interaktiv.pdf
https://databox.com/bad-dashboard-examples
https://medium.com/google-cloud/entity-groups-ancestors-and-indexes-in-datastore-a-working-example-3ee40cc185ee
https://medium.com/google-cloud/entity-groups-ancestors-and-indexes-in-datastore-a-working-example-3ee40cc185ee
https://www.oreilly.com/library/view/designing-interfaces/0596008031/ch04.html
https://www.oreilly.com/library/view/designing-interfaces/0596008031/ch04.html
https://cxl.com/blog/why-simple-websites-are-scientifically-better/

	Introduction
	Motivation
	Objectives
	Thesis structures

	Related work
	QDAcity
	Component architecture of QDAcity
	Features

	Analyse QDA software dashboards
	Investigate other QDA software dashboards
	Conclusion from the research

	QDAcity Dashboard
	Personal Dashboard
	List of projects view
	Project Dashboard
	Navigation structure

	Requirement
	Functional Requirement
	Non-Functional Requirement

	Architecture
	Initial architecture of the dashboard
	Redesigned QDAcity dashboard
	Data modeling
	Dashboard Settings with Cards
	Using only Card Entity to store configuration
	Using Dashboard Settings to store configuration

	Data flow in QDAcity

	Design and implementation
	Frontend
	Reactjs
	Card and Dashboard implementation

	Backend
	DashboardSettings data model
	DashboardSettingsDAO
	DashboardController
	DashboardEndpoint Backend

	Evaluation
	Functional Requirements
	Nonfunctional Requirements

	Conclusions
	References

