
Design and Implementation of a
web-based Editor for Data Pipelines

BACHELOR THESIS

Maximilian Ackermann

Submitted on 13 November 2023

Friedrich-Alexander-Universität Erlangen-Nürnberg
Faculty of Engineering, Department Computer Science

Professorship for Open Source Software

Supervisor:
Philip Heltweg M.Sc.

Prof. Dr. Dirk Riehle, M.B.A.

Declaration of Originality

I confirm that the submitted thesis is original work and was written by me without
further assistance. Appropriate credit has been given where reference has been
made to the work of others. The thesis was not examined before, nor has it been
published. The submitted electronic version of the thesis matches the printed
version.

Erlangen, 13 November 2023

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 13 November 2023

i

https://creativecommons.org/licenses/by/4.0/

ii

Abstract

This goal for this thesis is to contribute to the JValue Hub. The thesis is cover-
ing the design and development of the new ad-hoc runtime feature for the JValue
Pipeline Editor. During the process, pipeline and code editor market were as-
sessed and a new layout for the JValue editor was created. The new added
functionality of an ad-hoc runtime was added to the pipeline editor. Major de-
cisions that were taken during the implementation of this feature are presented
and evaluated.

iii

iv

Contents

1 Introduction 1
1.1 JValue Project . 2

1.1.1 Jayvee . 2
1.1.2 JValue Hub . 2

2 Common interfaces of editors 5
2.1 Editor categories . 5

2.1.1 Pipeline editors . 6
2.1.2 Code editors . 6

2.2 Common layout for code editors 7

3 Scope and requirements 9
3.1 User story . 10
3.2 Scope definition . 10

3.2.1 In scope . 10
3.2.2 Out of scope . 10

3.3 Requirements . 10
3.4 Non-functional requirements . 11
3.5 Functional requirements . 12

3.5.1 Ad-hoc runtime . 13
3.5.2 Runtime information . 13

4 JValue Hub Architecture 15
4.1 Hub-web . 15
4.2 Hub-backend . 15

4.2.1 Project, repository and versioning 16
4.3 Pipeline service . 17
4.4 Runtime service . 17
4.5 File service . 17
4.6 Important frameworks and libraries 17

4.6.1 React and Redux . 17
4.6.2 NestJS and typeORM . 18

v

4.7 Communication . 18
4.8 Data storage . 19

5 development and implementation 21
5.1 Layout and design . 21

5.1.1 Design . 22
5.1.2 States of the pipeline editor 22

5.2 Implementation into existing architecture 25
5.2.1 Additional libraries and framesworks 26
5.2.2 Runtime environment . 26
5.2.3 New architecture . 26
5.2.4 Repository, version and pipeline relation 27
5.2.5 Editor page . 29
5.2.6 Sink storage . 30

6 Evaluation of requirements 33
6.1 Demo and code review . 33
6.2 End-to-End-Testing . 33
6.3 Frontend testing . 34
6.4 Limitations . 34

7 Conclusion and outlook 37

Appendices 39
A Test scenarios . 41

A.1 Testing existing functionality 41
A.2 Testing new functionality 41

B Editor overview . 43

References 47

vi

List of Figures

4.1 Repository pipeline relation - fact check!!! 16
4.2 Simplified class diagram . 18
4.3 Pipeline API . 19
4.4 Communication between services of a single pipeline run 20

5.1 Mock layout with console . 21
5.4 State for the pipeline editor page 22
5.2 Final design editor page . 23
5.3 Final design runtime information 24
5.5 Mock up: Editor page state S1 and S4 24
5.6 Mock up: Editor page state S1 and S5 24
5.7 Mock up: Editor page state S3 and S4 24
5.8 Mock up: Editor page state S2 and S6 24
5.9 New simplified class diagram . 25
5.10 Implementation for pipelines module including adhocPipelines . . 25
5.11 Option 1-4 for pipeline information entity integration 28
5.12 Repository ad-hoc pipeline relation 29
5.13 Pipeline inheritance . 30

vii

viii

List of Tables

3.1 Non-functional requirements . 11
3.2 Functional requirements . 12

6.1 Functional requirements . 34

1 Overview of test scenarios for existing features 41
2 Overview of test scenarios for new features 41
3 IDE overview . 44
4 ODE overview . 45

ix

x

Acronyms

ETL Extract, Transform and Load

E2E End to End

IDE Integrated Development Environment

NF.R. Non-functional requirement

F.R. Functional requirement

DOM Document Object Model

xi

xii

1 Introduction

This bachelor thesis covers the approach and documentation of my implement-
ation of new features to a web-based code editor for data pipelines. The goal
of this work was to contribute to the JValue Project, a research project from
the Professorship for Open Source Software at Friedrich-Alexander-University in
Erlangen.

The overall target of this thesis is to further improve and implement new features
to the already existing code editor of the JValue Hub. The JValue Hub is the
collaboration platform of the JValue project, which focuses on building a new
programming language for data pipelines while also improving the collaboration
between data engineers and research scientists. A more detailed overview of the
project will be provided in chapter 1.1.

The long term goal for the JValue Hub is to create a dedicated collaboration
platform specifically designed for data engineering that can be used from data
engineering experts but also from experts within a respective research field. As of
now there is now common standard or tailored solution for working large data sets,
but rather existing platforms for software engineering get repurposed. The most
dominant platform for sharing data engineering projects at the moment is Git-
Hub. A platform specifically designed for software engineering. This means that
essential functionality is missing for data engineering and collaborating on data
projects, e.g. the direct access to output data and thereby effectively presenting
the projects. In order to create a new and competitive platform that gets both
equally adopted by the community of data engineers and research scientists, it
is thereby important to provide well-built and to both user groups well-known
functionality. 1

In collaboration with a key member of the JValue team, we decided that an ad-
hoc runtime for the pipeline editor would be the best first step to improve the
capabilities of the existing editor and the JValue Hub respectively. This feature
would include receiving runtime information and the pipeline model output from
the ad-hoc run, and thereby introduce the capability to debug a pipeline model

1Heltweg and Riehle, 2023

1

1. Introduction

from the editor page.

At the beginning of this thesis, the JValue project will be briefly introduced
and some necessary context for this thesis is provided. The following chapter
summarizes the benchmarking that was performed during the research on web
editors. For this benchmark, common code and pipeline editors on the market
were assessed and a common default layout familiar to the end user was derived.

Later on, the requirements of the new features are introduced, followed by the
most relevant aspects of the current JValue Hub architecture and consequently
highlights of the implementation are discussed. In the final chapter, the im-
plementation and what has been achieved during this thesis is evaluated and a
possible roadmap for future features that would enhance the capabilities of the
online pipeline editor of the JValue Hub is provided.

1.1 JValue Project

The JValue Project is an ongoing research project of the Professorship of Open-
Source Software at Friedrich-Alexander-University in Erlangen. The overall goal
is to provide (data) scientists easy access to open data and enable them to share,
discuss and collaborate. In order to achieve shareable and consistent ETL (Ex-
tract, Transform and Load) Pipelines, the project team is developing a new mod-
eling language called jayvee.
In addition to the language, the team is creating the JValue Hub. This hub offers
the ability to create, share and contribute to data pipeline projects written with
jayvee. It allows the user to directly run their data pipeline model within the
hub.

1.1.1 Jayvee

The Jayvee language is a domain-specific language which is currently developed
at the professorship for open source software at Friedrich-Alexander-University in
Erlangen. The language is used to model ETL data pipelines. The targeted user
varies from experienced developer to research scientists across different expertises.
The language itself is currently developed and follows its own syntax. Pipeline
models written in jayvee are either developed on a local machine or web based
via the collaboration platform JValue Hub.

1.1.2 JValue Hub

The JValue Hub is a collaboration platform for developing data pipeline models
that are built with the jayvee language. The hub itself separates into two main
components. The first component is the hub itself, including several user facing

2

1. Introduction

functionalities such as creating new pipeline models, forking and contributing to
existing project of other users. Another functionality is the possibility to edit
projects in the web editor directly. As of release v0.5.0-alpha, the web editor
supports basic syntax highlighting. The pipeline code can be executed from the
hub itself. The second component includes cloud features of the Hub such as the
model and file storage, the runtime services to execute data pipeline models and
the versioning of projects for the user and between them.

3

1. Introduction

4

2 Common interfaces of editors

While the typical software engineer and data scientist does not necessarily spend
the majority of his or her time programming with an editor, it still is one of
the most important tools that can have a crucial effect on the result of your
work. Whereas the editor itself is not the main contributor to your work, a
poorly designed editor or an interface that requires time for accommodation can
increase the risk of decelerating the process. Whereas, an editor with proper
functionality and a well-equipped toolbox of functionality can enhance your work
significantly.

Based on the foundations of the jayvee language and its current state of develop-
ment, the assumption was made that for now, the typical JValue Hub user already
has preliminary skills in programming and data science in general. Consequently,
the typical user is already familiar with existing code and pipeline editors.

To get a better understanding of the current industry standards and reduce my
own bias towards an optimal editor, an industry benchmark among different
software providers was performed and taken into consideration. Comparing dif-
ferent editors and deriving common characteristics helped to design relevant fea-
tures and a familiar UI layout. During my research I focused on well established
code and pipeline editors such as VS Code by Microsoft, IntelliJ by JetBrains or
Apache StreamPipes.

2.1 Editor categories

Editors can be separated into multiple categories. First, they can be split into
code and pipeline editors, and second into offline and online editors. Going
further, editors could be separated into code editors and integrated development
environments short IDEs, but in the context of this thesis, a focus on IDEs was
decided, with no further classification.

5

2. Common interfaces of editors

2.1.1 Pipeline editors

During the initial explorative research on ’ETL pipelines’ and ’ETL pipeline edit-
ors’, similarities across a majority of editors and ETL pipeline solution providers
could quickly be derived. Common editors to model ETL pipelines are often based
on low code solutions. Low code ETL pipeline solutions are commonly build by
adding elements to a graph which is centered in the middle of the screen, with
information about components and elements being on the side of the screen or in
a menu on the top. Low code solutions often use an existing language to generate
code based on user input. In the case of Apache StreamPipes it is built with Java.
Similar to Jayvee, Apache Streampipes includes prebuilt extractors, transformers
and loaders which can be configured via the GUI. In order to add functionality
and own components to the editor, the user needs to create and add a new file,
e.g. a new Java file, to the project. The coding of this element is then performed
in a separate code editor, which in most cases is not integrated in the pipeline
editor.

Since javee is by design not a low code solution, I focused on conventional code
editors instead.

2.1.2 Code editors

As explained in chapter 2.1, code editors can be separated into different cat-
egories. The biggest difference is between regular code editors and Integrated
Development Environments or IDEs. IDEs often come with a wide variety of
functionality. Predominantly, they can be separated from code editors by the
possibility to execute and compile code from within the editor itself. While regu-
lar code editors by themselves do not offer more pronounced functionalities than
editing files and syntax highlighting, I will focus on IDEs for my comparison.

IDEs can as well be sub-categorized. It is differentiated between Online Devel-
opment environment (ODE) which can be used from the browser and regular
IDEs which are run locally. As locally installed IDEs provide more functions and
have a broader user base, I will include them in my comparison, even though the
JValue Pipeline Model Editor is developed to be an ODE.

To compare different editors and get a good understanding of the current industry
standard, I decided to compare the most popular IDEs and ODEs from the "IDE"
and "ODE index" 1 published on GitHub. The data is based on the total google
search results for a given editor in a certain time period. For each editor, the
latest build as of October 2023 has been taken into consideration. The detailed
overview of editors and their characteristics can be seen in appendix B.

1GitHub, 2023

6

2. Common interfaces of editors

2.2 Common layout for code editors

In comparison, 18 out of 20 editors provided a customizable interface, of which
16 were shipped with a similar default layout: In the center the code editor is
located, more information like a file explorer are on the left or right side of the
center window. Additional information or input options such as a terminal or
runtime information are found on the bottom. Menu items and extra buttons
are often located above the code window. All the 16 editors used similar symbols
to visualize commands, such executing the code from the editor or stopping the
execution. The two of the other four editors did place the console on the right
side of the window. The remaining two editors were either developed for a dif-
ferent use case (Sublime Text is primarily a text editor with customizable coding
capabilities) or no longer developed (Koding).

7

2. Common interfaces of editors

8

3 Scope and requirements

One of the goals for the JValue Hub is to offer a collaboration platform for re-
searchers and data scientists to collaborate on date pipeline models. Multiple
steps are necessary to set up your local IDE for developing with the jayvee lan-
guage. Some of them require a certain understanding on how to configure your
own IDE. Besides experienced data engineers, another target user for the jayvee
language are scientists from different research areas who need to explore large
data sets. The second user does not necessarily have the skill set to set up a
local version of jayvee neither to build large data pipelines on their own. This
group might only need to make minor changes or updates to an existing pipeline
model. In order to enable this user to work with the jayvee language and provide
the necessary tools to use larger data pipeline models, the current online editor
requires additional features to enhance the development experience and truly
enable collaboration.

Currently, the JValue Hub pipeline editor is missing some essential development
features to develop sophisticated and large jayvee models online. One of them
is an ad-hoc runtime that enables the user to run their model from within the
editor. Another important aspect of data engineering that is missing, is evalu-
ating the output that is generated by the pipeline model. Both functionalities
would enable the user to continuously develop while debugging without having
to switch between contexts.

To enhance the development experience, both functionalities were added to the
JValue Hub in the course of my thesis. The goal was to provide the JValue Hub
user with the ability to run their code and get instant feedback that supports
debugging or improving an existing model without leaving the editor and having
to switch between pages on the hub. Therefore, the Ad-Hoc runtime will be
implemented which enables the user to execute the code as well as provides him
with additional information in the form of the console output from the jayvee
run, additional runtime information and the output sink that is produced by the
jayvee model.

As the code editor did not provide any additional functionality other than editing

9

3. Scope and requirements

your model and having syntax highlighting, the current layout and design was
extended to integrate into the existing interface.

3.1 User story

In agile projects, it is common practice to formulate new features in the form
of user stories. A user story helps to define and communicate the scope for the
project or work. It also helps as a base if fundamental decisions have to be made.
They are typically written in one specific format: As a "Role", I want "what",
so "that".

Based on the practice of formulating user stories, the following user story was
used:

As a JValue Hub User, I want to run my model from within the editor page and
receive the console output as feedback so that I can verify if my model is working
and debug directly if necessary.

3.2 Scope definition

The thesis was implemented in an agile project set-up. To remain in time and
achieve respective deliverables, it was crucial to define a clear scope for the pro-
ject. This scope helped to define if new requirements would be added or should
be part of future research outside this thesis.

3.2.1 In scope

The definition of the target implementation requires changes to layout and im-
plementation of the frontend layout that is related to the code editor. To link the
frontend layout with functionality from the backend, it is also in scope to include
every change to initiate and display the console output from the ad-hoc run.

3.2.2 Out of scope

As the output data that is received from the jayvee model is not generated by
the JValue Hub but the jayvee language instead, I decided to define any changes
to the output data as out of scope for this thesis.

3.3 Requirements

To measure the quality of my implementation and to verify if everything works
as intended, certain requirements had to be defined beforehand. Additionally,

10

3. Scope and requirements

I had to add or changed certain requirements during the development process
when new functionality or change requests came up during my exchanges with
stakeholders.

Requirements can be split into two categories. Functional and non-functional
requirements. Non-functional requirements group requirements do not influence
the behavior of the implementation, but rather ensure code quality and consist-
ency within the project. Functional requirements define expected behavior of the
final implementation.

The next two chapters describe the functional and non-functional requirements
that were set for this thesis in more detail.

3.4 Non-functional requirements

Non-functional requirements (NF.R.) are shared across the entire development
process and therefore not listed individually per development story. The NF.R.s
are defined with main focus on the quality of the implementation itself and how
it can be integrated into an existing code base of the JValue Hub. Table 3.1
provides an overview of all non-functional requirements.

Req. ID Description
NF.R.1 Use existing architecture
NF.R.2 Follow current implementation
NF.R.3 Reusable and clean code
NF.R.4 Follow design principles and general layout
NF.R.5 No side effects on existing implementation

Table 3.1: Non-functional requirements

NF.R.1 - Use existing architecture

The goal of this requirement is to reduce the amount of code that needs to be
maintained throughout the lifetime of the project. One way to achieve this is
by reusing an existing component instead of building a new one with a single
purpose only.

NF.R.2 - Follow current implementation

One key aspect of maintainable code is to be persistent with implementation
throughout the code base. This supports the readability of the code itself and
thereby makes maintaining the code easier.

11

3. Scope and requirements

NF.R.3 - Reusable and clean code

There should not be any repetitive code within the implementation itself. If code
repeats itself, best practice would be to create an own component that handles
the repeating part of the code. This makes refactoring easier when changes are
required later on.

NF.R.4 - Follow design principles and general layout

The entire interface and layout should be in line with the JValue hub design. This
ensures a persistent look and feel for the user throughout the entire application.

NF.R.5 - No side effects

The implementation does not interfere or change any existing implementation
to the extent that an already designed element of the JValue Hub needs to be
changed.

3.5 Functional requirements

To manage work packages efficiently, the implementation was split into two major
development stories. Consequently, there were two sets of functional requirements
(F.R.), one for each development story. The first story implemented all changes to
the backend and frontend that are necessary to trigger an ad-hoc run. The second
story included displaying the console output, additional runtime information and
adding functionality to download the output sink from the ad-hoc run in the user
interface.

Req. ID Development story Description
F.R.1.1 Ad-hoc runtime Meaningful layout
F.R.1.2 Ad-hoc runtime Information on the latest run
F.R.1.3 Ad-hoc runtime Execute runtime from editor
F.R.1.4 Ad-hoc runtime The entire ad-hoc run is stored permanently
F.R.2.1 Console output Layout for console output
F.R.2.2 Console output Display console output
F.R.2.3 Console output Previous run result on page load
F.R.2.4 Console output Storage of console output from jayvee model
F.R.2.5 Console output Additional run result information in extra tab
F.R.2.6 Console output Download of output sink

Table 3.2: Functional requirements

12

3. Scope and requirements

3.5.1 Ad-hoc runtime

This development story included the ad-hoc execution of the current model that is
displayed in the editor including all necessary changes in the front- and backend.
The following requirements were defined for this story.

F.R.1.1 - Meaningful layout

Buttons with self explaining icons are added to the interface of the editor. The
ad-hoc run will later be started with these buttons. New users should be able to
understand the functionality of the interface intuitively.

F.R.1.2 - Information on the latest run

The current state of the ad-hoc run is displayed in the frontend. As pipeline
models for large datasets can take longer to execute, visual feedback about the
running state is displayed in the frontend.

F.R.1.3 - Execute runtime from editor

The user is able to initiate an ad-hoc run from the editor page itself.

F.R.1.4 - The entire ad-hoc run is stored permanently

To potentially access the information and output sink of the ad-hoc run later on,
the run should be stored permanently in the database.

3.5.2 Runtime information

The console output and runtime information of the ad-hoc run are displayed in a
dedicated window within the page. I defined the following requirements for this
story.

F.R.2.1 - Layout for console output

A new layout for displaying the console output from the ad-hoc run is implemen-
ted. The layout should be in line with industry standards and be intuitive.

F.R.2.2 - Display console output

The output from the jayvee model of the ad-hoc run is displayed in the output
window.

13

3. Scope and requirements

F.R.2.3 - Previous run result on page load

On reloading the page or when the editor is accessed after re-logging, the console
output from the previous ad-hoc run is displayed in the console output window.

F.R.2.4 - Storage of console output from jayvee model

The console output from the jayvee model is permanently stored with the run
result from the ad-hoc run. This requirement is essential for the development
story.

F.R.2.5 - Additional run result information in extra tab

Additional information on run results are displayed in an additional tab within
the console box.

F.R.2.6 - Download of output sink

The output sink that resulted from the ad-hoc run is accessible within the runtime
information tab. The user is able to download the file.

14

4 JValue Hub Architecture

The following chapters will provide an overview of the existing architecture of the
JValue hub. Herein, I will explain the individual services and their functionality.
This thesis includes the latest changes up to release v0.5.0-alpha of the JValue
hub.

The application can be split into the frontend implementation called the "hub-
web" as well as the following services which are consumed by hub-backend: the
pipeline service, the runtime service and the file service. The majority of code
is written in TypeScript and facilitates the Node.js framework. The frontend is
implemented using ReactJS. Services communicate via HTTP requests that are
described with the OpenAPI specification. First, I will explain the individual
functionality of each service in the following chapters. Thereafter, an overview of
the most important frameworks and libraries that are used by the JValue Hub is
being provided.

4.1 Hub-web

The frontend application of the JValue Hub, the hub-web, is developed with
TypeScript and uses the React library. React enables the use of reusable com-
ponents. To ensure consistent design, the JValue Hub implemented a JValue
Design System, which provides guidelines and a collection of assets for use in
the JValue frontend. In the hub-web API, endpoints from the hub-backend are
described with the help of Redux. The endpoints are used to trigger events and
retrieve information from the JValue file storage.

4.2 Hub-backend

The hub-backend handles all requests originating from hub-web, as well as com-
munication between other services. All data that is directly processed from the
hub is stored and handled in the hub-backend. The backend handles requests
related to the project, the corresponding repository and all user related topics

15

4. JValue Hub Architecture

Figure 4.1: Repository pipeline relation - fact check!!!

such as authentication and creation. Requests related to pipeline management,
runtime and file storage are passed on to the individual service. The hub-backend
is build with the NestJS framework, and HTTP endpoints are described and made
available to the frontend and other services.

4.2.1 Project, repository and versioning

The JValue Hub implements a git service for handling the versioning of projects
that are developed in the hub. By forking and contributing to an existing project,
multiple repositories can exist for a single project. Within a repository, the JValue
model is stored and versioned. This information is then used to link a pipeline to
a specific version of a repository. The relation between the entities can be seen
in figure 4.1.

16

4. JValue Hub Architecture

4.3 Pipeline service

The pipeline service handles requests for the data pipeline itself. A pipeline
represents a container for a specific version of a jayvee model. The pipeline can
be executed and scheduled for runs. The current state of the jayvee model and
additional metadata is stored in a pipeline entity. For handling the actual runtime
and retrieving information about past runs, the pipeline service communicates
with the runtime service.

4.4 Runtime service

The runtime service handles requests for pipeline model runs and individual runs
of a jayvee model. The runtime calls the jayvee interpreter and initiates the
run for the model. The output is passed on and stored by the file service. The
simple runtime also actively calls the pipeline service to update the run status of
individual runs.

4.5 File service

The file service receives requests originating from the runtime service when ex-
ecuting a jayvee model in order to store the resulting output. It also handles all
requests from the backend that require the storage of permanent data. Currently,
all jayvee models store the output that is generated. The resulting file sink is
handled by the file service. This service is also used to store and retrieve data
sinks and provide it to the user.

4.6 Important frameworks and libraries

4.6.1 React and Redux

The open-source library React is used to create dynamic User interfaces. Its
component-based architecture supports modular and reusable components. The
actual Document Object Model (DOM) that is used to render the website is
updated by the virtual DOM of React. This reduces re-rendering of the whole
web page and ensures a responsive and performant usage.

Redux is an open-source state management library for JavaScript applications. It
enables the developer to handle data and state changes. The application state is
stored in a single, immutable object called store. State modifications are driven
by dispatching actions. Functions that update the state of an application are

17

4. JValue Hub Architecture

Figure 4.2: Simplified class diagram

called reducers. For the JValue Hub, Redux is mainly used to describe and
handle all API consumption by the frontend.

React components can connect to the Redux store and access and update the
application state. In addition, React components can trigger reducers in Redux.
The interaction between React and Redux enable components to reflect the state
changes from Redux and ensure a consistent state across the application.

4.6.2 NestJS and typeORM

NestJS is a Node.js framework designed to build scalable and maintainable server-
side applications. NestJS enables a modular and component-based architecture
and thereby emphasizes on code reusability. With its built-in features, it simpli-
fies the creation of web APIs and microservices. NestJS’s has a strong orientation
on TypeScript.

TypeORM is an Object-Relational Mapping (ORM) library for TypeScript and
JavaScript, which simplifies database integration in Node.js applications. TypeORM
translates classes and object structures from Typescript into relational database
schemas such as PostgreSQL. Without any SQL queries, the developer can query
and perform data manipulations in an object-oriented and type safe manner.

4.7 Communication

The communication between services is done via HTTP-requests. The endpoints
are described with NestJS which implements the OpenAPI standard for Restful
APIs. In figure 4.3 an example of the pipeline API with all involved classes is
shown. As this thesis mainly focuses on implementing new features to call the
runtime, only the use case for creating a pipeline is shown in the communications
diagram in figure 4.4. The diagram shows the interaction between the hub-
backend, the pipeline-service, the runtime and file service when a run is triggered
by the end user.

18

4. JValue Hub Architecture

Figure 4.3: Pipeline API

4.8 Data storage

The data of the JValue Hub is stored in a Postgres database. As described in
section 4.6 the TypeORM library is used to describe database schemas based on
the implementation in Typescript. The table structure of the database is thereby
an exact representation of figure 4.2. Information entities are created to store
relevant information, e.g. foreign keys, within a service. This allows for faster
queries for a specific entity and reduces inter service communication.

19

4. JValue Hub Architecture

Figure 4.4: Communication between services of a single pipeline run

20

5 development and implementation

In the following chapters, I will describe my implementation, elaborate on certain
decisions and my way forward.

5.1 Layout and design

Information about runtime or console is located at the bottom of the screen.
Among the top ten editors, most editors provide a customizable interface. This
feature will not be implemented. The current focus of the JValue project and
this thesis is to generate new functionality features. Implementing the most
common default layout to the editor would allow adding new functionality to the
existing editor layout and still provide a familiar user experience to developers.
A visualization of the interface can be seen in figure 5.1.

Figure 5.1: Mock layout with console

21

5. development and implementation

5.1.1 Design

For the final design of the layout implementation, no new components were in-
troduced. The new editor page was built by reusing existing components from
either the JValue Design System or external components that have already been
introduced within the project, such as icons from the react-md library. This
allows to maintain the current appearance and ensures a continuous experience
throughout the usage of the JValue Hub. The final design and implementation
is shown in figure 5.2 and 5.3

5.1.2 States of the pipeline editor

To provide visual feedback to the user, I decided to integrate the current state
of the ad-hoc run into the interface. Based on the different states, the interface
would slightly change to let the user know if a pipeline is still running and if the
result should be available in the output box of the layout. A simple represent-
ation of the different states can be seen in the state machine in figure 5.4. The
corresponding mock-ups can be seen in figure 5.5 to 5.8. I decided to use common
symbols and colors instead of written titles for the buttons. Well selected sym-
bols allow users to use the JValue Hub even though the implemented languages
might not be their native language. In terms of accessibility, I decided that it
should be sufficient to use symbols. Additional color coding is only optional and
redundant information. It is worth mentioning that there is no implementation
of common standards for accessibility in web design.

Figure 5.4: State for the pipeline editor page

22

5. development and implementation

Figure 5.2: Final design editor page

23

5. development and implementation

Figure 5.3: Final design runtime information

Figure 5.5: Mock up: Editor page state S1 and S4

Figure 5.6: Mock up: Editor page state S1 and S5

Figure 5.7: Mock up: Editor page state S3 and S4

Figure 5.8: Mock up: Editor page state S2 and S6

24

5. development and implementation

Figure 5.9: New simplified class diagram

Figure 5.10: Implementation for pipelines module including adhocPipelines

5.2 Implementation into existing architecture

Like in chapter 3.4, non-functional requirements described, it should be achieved
to minimize changes to the existing logic within the JValue Hub code base and
create an implementation that minimizes the effort to refactor any component
or service later in the development process. Respectively, the existing architec-
ture was expanded as shown in figure 5.10 and 5.9. In the following chapters,
I will explain different options for some major decisions that lead to the final
implementation.

25

5. development and implementation

5.2.1 Additional libraries and framesworks

During the implementation of the ad-hoc runtime and console output functional-
ity, no additional libraries or frameworks were added to the project. By primarily
reusing existing libraries, frameworks and components, no additional external de-
pendencies were required. Consequently, no bill of materials was added to this
thesis.

5.2.2 Runtime environment

The first major decision during the implementation of the ad-hoc runtime feature
was the location of where to run the jayvee model. In general, there were two op-
tions to be considered: The model could be run on client or server side. Running
on server side would take up additional resources on the server. However, this
option would allow the JValue hub full control over the output and information
that are generated by running a pipeline model. This way, it would be easier to
implement additional features in the future. Information that is gathered during
the execution of a jayvee model could be analyzed to further improve the jayvee
language. Common errors could be identified and lead to an overall better user
experience.

The benefit of running the model on client side would be less resources required
by the JValue Hub server and simultaneously allow the user to keep data on
premise while still using the online editor. The disadvantage of this option is
that the jayvee interpreter can not be run within the browser. To mitigate this
issue, a local version of the jayvee interpreter would be required. This option
was abandoned, as it would require an additional setup by the user before using
the online editor and could easily increase complexity when dealing with different
versions of the jayvee interpreter. By running the interpreter as a cloud service,
it can be guaranteed that the syntax highlighting and interpreter of the pipeline
editor always match.

As the benefits of option one clearly predominated its downside, the ad-hoc
runtime was implemented on server side.

5.2.3 New architecture

After analyzing the existing architecture of the JValue Hub and the interaction
between the services, four possible implementation options were discussed. Op-
tions 1 to 4 are described in figure 5.11

The first option was to duplicate the existing logic for the creation of a run entity
with only minor adaptations. This implementation would allow for full control
of the new ad-hoc classes. All new requirements could be implemented within
that specific class without any side effects towards existing functionality. The

26

5. development and implementation

downside of this approach would be the complex effort required for refactoring if
any shared logic would need to be changed.

As the pipeline service only transmits the requests between hub-backend and
runtime and does not store any necessary information to differentiate between an
ad-hoc run and a regular run, the second option was to implement an additional
AdhocRunEntity. This still would allow for flexibility to change certain aspects
of the ad-hoc run implementation specifically while reducing the code that needs
to be maintained by the pipeline service component. In case of any fundamental
changes, this option still requires rework of both the ad-hoc run and the run
entity logic.

The third option was to add a new ad-hoc Pipeline Information Entity that would
store information about which pipeline belongs to which version of a repository.
This is possible as the pipeline service, as well as runtime service, do not store nor
require any information about the caller and the context from where it was called.
Thereby, all existing logic for triggering a run can be reused, and no changes are
required for this implementation. In addition, in case any of the services needs
to be refactored, only one component will need to be changed. As this approach
reuses existing architecture, there is no information on the type of run available
at the pipeline and runtime service.

Option four is similar to option three. The idea behind this solution is to add
a boolean value to the pipeline information entity that flags a certain pipeline
as an ad-hoc pipeline or regular pipeline. This implementation would require no
changes in the pipeline or runtime service, however would require refactoring of
existing implementation of any pipeline-information entity implementation.

After reviewing all alternatives, option three was implemented to add the func-
tionality of triggering an ad-hoc pipeline run. This implementation did not re-
quire any changes to the existing code, while on the same side reduces the effort
for any refactoring in the future to a minimum. The downside of this approach
is the lack of flexibility on the resulting runtime, e.g. it is not possible to not
store the target sink of a pipeline run. After discussion and thorough evaluation
together with stakeholders, it was decided that that keeping the sink from the
model was the preferred behavior, as it might be needed in future features. In
addition to that, the extra storage space is not considered to be an issue and
therefore the easier maintainability outweighed the extra storage required.

5.2.4 Repository, version and pipeline relation

The updated relation between repositories, versions and pipelines can be seen
in figure 5.12. While maintaining the 1:1 relation between version and pipeline,
a 1:n relation between version and ad-hoc pipeline was introduced. This was
implemented as the pipeline stores the corresponding jayvee model. As ad-hoc

27

5. development and implementation

Option 1

Option 2

Option 3

Option 4

Figure 5.11: Option 1-4 for pipeline information entity integration

28

5. development and implementation

Figure 5.12: Repository ad-hoc pipeline relation

runs can be executed on uncommitted versions of the jayvee model, this way
multiple ad-hoc runs can be stored within the same version. By keeping the
relation between ad-hoc pipeline and version, indexes can be used to enhance
query performance over the lifetime of the project. In addition, this approach
would allow for easier clean-up of unused ad-hoc pipelines.

Adaption to class hierarchy

Option three was implemented by moving shared logic of the pipeline and ad-hoc
pipeline service and controller in the hub-backend into a base-pipeline class. By
only extending the base-pipeline classes if additional logic is needed for either
the pipeline or ad-hoc pipeline, the code gets easier to maintain in the future. A
visualization of the inheritance logic can be seen in figure 5.13.

5.2.5 Editor page

To reduce the complexity of individual components and pages within the ap-
plication, the implementation for the code editor was moved from a component
mounted in an overlay of the project page into an individual pipeline model editor
page. In React, each page has its own state, therefore, two options on how to

29

5. development and implementation

Figure 5.13: Pipeline inheritance

initialize the editor page were assessed.

One option would be to use the current location object of the React app to pass
on information between pages. This would reduce queries that are executed in the
backend and lead to an overall faster rendering when the page is first visited. The
other option would be to freshly initialize the webpage by passing the project ID
to the page component and query the remaining data directly from the backend.
This option would ensure the latest data to be pulled from the database, and
the possibility to access the editor page from different contexts without the need
to prefetch any data. The downside of this option would be more queries to the
backend, as well as reduced responsiveness if the server is running slowly.

I followed the second option as this would reduce the necessary state management
and allow an easier development of the page. This approach is also more in line
with best practices for React development, and thereby the most suited option.

5.2.6 Sink storage

There were three possible approaches on handling the jayvee model results from
the ad-hoc run.

Option one would be not store the result. This would reduce the amount of data
that is produced by the JValue Hub. This approach, however, would not allow
providing any feedback to the user other than the console output and limit the
development of other new features with regard to visualizing and analyzing the
output sink within the editor.

30

5. development and implementation

Option two would be to keep the latest model output in memory during user
sessions. As we can not influence the amount of data that is processed by a
single jayvee model, this approach might quickly lead to memory issues on either
the server or client side. Another downside would be that, once the connection
is lost, the model needs to be executed again.

Option three would be to keep the results the same as in a normal run and store
it permanently. This would allow keeping the output across multiple sessions
and evaluate the latest run whenever needed at the cost of additional file storage
required.

I decided on the third approach as this needed the least amount of changes to
the existing code. In addition, there will be supplementary features implemented
for the code editor with regard to the model output. Though this is against the
agile approach of only developing what is needed for the current feature, this is
the most efficient option.

31

5. development and implementation

32

6 Evaluation of requirements

To verify my implementation and check if all requirements have been met, dif-
ferent approaches were followed. Both, functionality and final implementation
were reviewed by key stakeholders of the JValue team. To test the functionality
beyond a demo to the JValue core team, I tested different use and edge cases
for the front- and backend, as well as implemented additional End-to-End tests
to the existing test suite. Going through multiple instances of evaluation not
only improves the quality of the end result but also ensures a high success rate
in fulfilling all requirements that have been set. An overview of all requirements,
i.e. which evaluation method verified which requirement and if any limitation to
the fulfillment of the requirement were identified, can be found in table 6.1. Any
limitation to the implementation are outlined in chapter 6.4.

6.1 Demo and code review

The entire architecture and code was thoroughly reviewed by a JValue core mem-
ber. Any feedback was discussed, and the resulting improvements were imple-
mented accordingly. In addition, a preview of the implementation and new func-
tionality was demonstrated to the JValue core team. In a Q&A session, the
implementation and integration into the existing architecture was explained in
detail. Any feedback was implemented and then verified in a smaller subgroup
of the core team.

6.2 End-to-End-Testing

To verify backend functionality, additional End-to-End (E2E) tests were imple-
mented. The E2E tests do follow the current standard within the existing JValue
Hub implementation. However, it should be noted that the test setup only focuses
on basic functionality and does not test the functionality in detail. To achieve
higher test coverage, additional tests are necessary.

33

6. Evaluation of requirements

Req. ID description Coverage by limitation
NF.R.1 Use existing architecture code review -
NF.R.2 Follow current implementation code review Yes
NF.R.3 Reusable and clean code code review -
NF.R.4 Follow design principles and demo Yes

general layout
NF.R.5 No side effects FT + E2E Yes
F.R.1.1 Meaningful layout demo Yes
F.R.1.2 Information on the latest demo + FT Yes

run is displayed
F.R.1.3 Execute runtime from editor demo + FT -
F.R.1.4 The entire ad-hoc run is demo + E2E -

stored permanently
F.R.2.1 Layout for console output demo -
F.R.2.2 Display console output demo + FT -
F.R.2.3 Previous run result on page load demo + FT -
F.R.2.4 Storage of console output demo + E2E -

from jayvee model
F.R.2.5 Additional run results demo + FT Yes

information in extra tab
F.R.2.6 Download of output sink demo + FT -

Table 6.1: Functional requirements

6.3 Frontend testing

While E2E testing primarily focuses on backend functionality and does not take
into account any unforeseen user activity, thorough frontend testing closes this
gap and increases the confidence in the implementation. To ensure high code
coverage during frontend testing, detailed test scenarios were defined beforehand
and iteratively tested during the development process to locate side effects to the
existing implementation early on and fix them directly. The test scenarios can
be seen in appendix A.

6.4 Limitations

The overview of limitations can be seen in table 6.1

34

6. Evaluation of requirements

NF.R.2 Follow current implementation

After the first iteration of code review, some minor changes were implemented. At
the time of submission, a final and complete review is still outstanding. Therefore,
this requirement is still under evaluation.

NF.R.3 Reusable and clean code

Considering that the newly introduced component ’AdhocRunPanel’ shows sim-
ilarities with the RunRow component, a joint component would be possible and
increase readability. In addition, further endpoints could have been described
to allow a more direct access to backend services and improve readability of the
editor page implementation. However, this would have been in contrary with
NF.R.2. and was therefore not done. If more functionality is added in the fu-
ture, this might be a good opportunity to maintain readability with increasing
complexity.

NF.R.4 Follow design principles and general layout

The Monaco Editor component that is used for the code editor of the JValue
Hub is not fully in line with the JValue Design in general. Currently, there is a
custom configuration provided by the jayvee team. This configuration could be
extended to perfectly embed with the JValue design.

NF.R.5 No side effects

The implementation itself does not show any side effects with the existing func-
tionalities of the JValue Hub. Over the lifetime of the Hub and with growing
functionalities of the jayvee language, more complex pipeline models might be
developed that require many iterations of development. This will increase the re-
sources required by the editor and ad-hoc pipelines and might lead to implications
on the remaining services.

F.R.1.2 Information on the latest run

The output of the jayvee run with additional information is displayed on the
editor page after the run has finished. The fundamental requirement is fulfilled.
One improvement could be to implement a dynamic and continuous stream of
the output during the execution of the jayvee pipeline model to the frontend to
display data while it is produced.

F.R.2.5 Additional run results information in extra tab

Additional run result information is displayed in the information panel at the
bottom of the screen. The information displayed could be extended and include

35

6. Evaluation of requirements

additional information as well as configuration options, i.e. for the run time
variables.

36

7 Conclusion and outlook

In conclusion, this thesis has revolved around the design and implementation of
a web-based code editor for the JValue Hub. The primary focus has been the
integration of an ad-hoc runtime as a new feature within the existing pipeline
editor. Throughout this project, latest industry standards related to designing
web interfaces for code editors were examined.

By adopting an agile methodology, project requirements were defined during the
development process and continually evaluated through various sources. Suc-
cessfully achieving the initial goal of incorporating the ad-hoc runtime was a
significant milestone. However, it is clear that in order to offer an exceptional
user experience when it comes to developing jayvee models from the JValue Hub,
additional features and improvements to the web editor are essential.

One area of improvement involves the handling of output data. While imple-
menting the option to access the output from the editor page is a significant
improvement for the development experience of the editor, there is potential to
further expand the functionality by implementing options to evaluate the output
sinks from within the editor page. Also providing runtime variables through the
editor itself would increase the development experience as more influence over
the output would be granted.

Additionally, the following performance optimizations could improve the editor
and ad-hoc runtime feature in the future. To reduce data storage, periodically
sweeping saved ad-hoc pipelines would reduce the amount of data drastically.
Currently, there is no possibility to stop or pause any given run. This feature
would allow for better steering of the required resources, as multiple parallel runs
of the same model could be prevented. It would set up the development of further
features that interact with an ongoing run.

This thesis represents another foundational step in the broader journey towards
developing a fully functional Online Editor for Data Pipelines in the JValue Hub.
The ultimate objective is to become a competitive alternative in a market already
populated by established players.

37

7. Conclusion and outlook

38

Appendices

39

Appendix A: Test scenarios

A Test scenarios

A.1 Testing existing functionality

Table 1: Overview of test scenarios for existing features

Scenario expectation

On project page
create pipeline pipeline is created for the specific version

of the pipeline
On pipeline page
create run a new run linked to the pipeline is triggered

and stored
"running" "running" status is indicated
completed on error, error status is indicated

on success, success status is indicated
run success complete download of pipeline model sink provides the

expected file
In database
ProjectPage - create pipeline new pipeline information entity is created

new instance is created
PipelinePage - createRun new run information entity is created

new run entity is created

A.2 Testing new functionality

Table 2: Overview of test scenarios for new features

Scenario expectation

Navigate to page
logged in as Project lead show editor with model from current version

previous run information is displayed in console
is not Project lead empty editor, with indication "not authorized"
Run completed
with run success jayvee model output is displayed in console

information on run are displayed in second tab
with run error error message is indicated in console

41

Appendix A: Test scenarios

Continuation of Table 2
Scenario expectation

jayvee model output is displayed in console
information on run are displayed in second tab

Run is triggered
no run is triggered new ad-hoc pipeline is created and run is initiated
while test is running new run is started

success/error are displayed for new run
new ad-hoc pipeline is created and run is initiated

in database
EditorPage - create ad-hoc Run new ad-hoc pipeline information entity is created

new instance is created

42

Appendix B: Editor overview

B Editor overview

43

A
ppendix

B
:E

ditor
overview

IDEs
Editor code position console position customizable link & comment
1 Visual Studio centered bottom yes https://visualstudio.microsoft.com/downloads/
2 VS Code centered bottom yes https://code.visualstudio.com/docs/?dv=win
3 Eclipse centered bottom yes https://www.eclipse.org/downloads/
4 pyCharm centered bottom yes https://www.jetbrains.com/de-de/pycharm/
5 Android Studio centered bottom yes https://developer.android.com/studio
6 IntelliJ centered bottom yes https://www.jetbrains.com/de-

de/idea/download/?section=windows
7 NetBeans centered bottom yes https://netbeans.apache.org

/front/main/download/nb19/
8 Xcode centered bottom yes https://developer.apple.com/xcode/
9 RStudio centered bottom yes https://posit.co/download/rstudio-desktop/
10 Sublime Text centered none yes https://www.sublimetext.com/3

Table 3: IDE overview

44

A
ppendix

B
:E

ditor
overview

ODEs
Editor code position console position customizable link & comment
1 JSFiddle centered bottom yes https://jsfiddle.net/g6Lu0yro/3/
2 PythonAnywhere centered bottom yes https://www.pythonanywhere.com/
3 Codio centered bottom yes https://www.codio.com/

different use case
4 Koding – – – https://www.koding.com/login/

no longer maintained,
most prominent successor is Codeanywhere

5 DartPad centered right yes https://dartpad.dev/?
6 Repl.it centered right yes https://replit.com/
7 Ideone centered bottom no https://ideone.com/J2uVks
8 Cloud9 AWS centered bottom yes https://aws.amazon.com/cloud9/
9 Goorm centered bottom yes https://ide.goorm.io/
10 Codeanywhere centered bottom yes https://codeanywhere.com/

Table 4: ODE overview

45

46

References

GitHub. (2023). https://pypl.github.io
Heltweg, P., & Riehle, D. (2023). A systematic analysis of problems in open

collaborative data engineering [Just Accepted]. Trans. Soc. Comput., 24.
https://doi.org/10.1145/3629040

47

https://pypl.github.io
https://doi.org/10.1145/3629040

	Introduction
	JValue Project
	Jayvee
	JValue Hub

	Common interfaces of editors
	Editor categories
	Pipeline editors
	Code editors

	Common layout for code editors

	Scope and requirements
	User story
	Scope definition
	In scope
	Out of scope

	Requirements
	Non-functional requirements
	Functional requirements
	Ad-hoc runtime
	Runtime information

	JValue Hub Architecture
	Hub-web
	Hub-backend
	Project, repository and versioning

	Pipeline service
	Runtime service
	File service
	Important frameworks and libraries
	React and Redux
	NestJS and typeORM

	Communication
	Data storage

	development and implementation
	Layout and design
	Design
	States of the pipeline editor

	Implementation into existing architecture
	Additional libraries and framesworks
	Runtime environment
	New architecture
	Repository, version and pipeline relation
	Editor page
	Sink storage

	Evaluation of requirements
	Demo and code review
	End-to-End-Testing
	Frontend testing
	Limitations

	Conclusion and outlook
	Appendices
	Test scenarios
	Testing existing functionality
	Testing new functionality

	Editor overview

	References

