
Task-focused Editor for Qualitative
Data Analysis

BACHELOR THESIS

Leonie Färber

Submitted on 23 October 2023

Friedrich-Alexander-Universität Erlangen-Nürnberg
Faculty of Engineering, Department Computer Science

Professorship for Open Source Software

Supervisor:
Julia Mucha, M.Sc.

Prof. Dr. Dirk Riehle, M.B.A.

Declaration of Originality

I confirm that the submitted thesis is original work and was written by me without
further assistance. Appropriate credit has been given where reference has been
made to the work of others. The thesis was not examined before, nor has it been
published. The submitted electronic version of the thesis matches the printed
version.

Erlangen, 23 October 2023

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 23 October 2023

i

https://creativecommons.org/licenses/by/4.0/

ii

Abstract

Qualitative Data Analysis (QDA) requires a researcher to perform a wide range of
tasks, such as editing text documents, defining codes, coding documents, refining
the code system, etc. Software supporting qualitative research can assist in many
of these processes. However, providing all functionality in one place can lead to
distraction, potentially complicating a focused workflow. To address this issue, it
is beneficial to divide functionalities based on tasks and present them in separate
views. Furthermore, these views allow for a better use of available space, ensuring
only relevant functionality is displayed, thereby allowing the user to work more
efficiently.

In this thesis, we apply the concept of task-focused views to QDAcity, a cloud-
based web application supporting QDA. Currently, the Coding Editor provides
a multitude of functionalities without a clear overarching structure. To facilitate
task-focused work, we restructure the Coding Editor, enabling users to select
tasks from a central tab header. Additionally, this thesis extends the existing
functionality by developing two new task views. The first concentrates on refining
the code system, offering information on selected codes, and allowing users to
restructure associated codings. The second view is customizable, permitting users
to define new tasks and arrange editor elements efficiently.

iii

iv

Contents

1 Introduction 1
1.1 Goal of this Thesis . 2

2 Related Work 3
2.1 Qualitative Data Analysis . 3

2.1.1 Grounded Theory . 3
2.1.2 Common Procedures in QDA 5
2.1.3 Identification of tasks in QDA 5

2.2 CAQDAS comparison . 6
2.2.1 MaxQDA . 6
2.2.2 WebQDA . 9

2.3 QDAcity . 9
2.4 Discussion . 15

3 Requirements 19
3.1 Coding Editor . 19
3.2 Codebook Refinement . 20
3.3 Custom View . 21

4 Architecture 23
4.1 Task Navigation . 23
4.2 Code Editor View . 25
4.3 Custom Editor View . 26

5 Design and Implementation 31
5.1 Task Navigation . 31
5.2 Code Editor View . 33
5.3 Custom Editor View . 35
5.4 Other Features . 43

6 Evaluation 45
6.1 Requirements Assessment . 45

v

6.1.1 Coding Editor . 45
6.1.2 Codebook Refinement . 46
6.1.3 Custom View . 47

6.2 User Evaluation . 48
6.2.1 Procedure . 48
6.2.2 Results . 49
6.2.3 Implementation of Issues 51

7 Future Work 53

8 Conclusion 57

Appendices 59
A Evaluation of QDA-Expert 1 . 61
B Evaluation of QDA-Expert 2 . 64

References 67

vi

List of Figures

2.1 Coding editor in MaxQDA . 7
2.2 Memo window in MaxQDa . 8
2.3 Coding editor in WebQDA . 10
2.4 Coding editor in QDAcity . 12
2.5 Sidebar in QDAcity . 13
2.6 Coding editor with code view footer in QDAcity 14
2.7 Project settings modal in QDAcity 16

4.1 State diagram of the tab-switching logic between the coding, ed-
itor, and other (including UML, glossary, specification, visualiza-
tion, and recommendations) tabs 24

4.2 UI of the CodeProperties component 25
4.3 UI of the CodeMemo component 25
4.4 UI of the CodebookEntry component 26
4.5 UI of the CodingsOverview component in the coded text segments

modal . 26
4.6 Basic layout structures for the custom editor view 27
4.7 ER diagram of the custom view components 29

5.1 UML diagram of the editor settings DTO 32
5.2 UI of the tab header . 32
5.3 UI of the tab configuration drop-down 32
5.4 UI of the tab header for small page sizes 33
5.5 UI of the code editor view . 34
5.6 UI of the coding overview menu 35
5.7 Save button UI for unsaved changes 35
5.8 UI of the disabled code editor view 36
5.9 UML diagram of the custom view data model 37
5.10 UI of the custom editor view in the edit mode 41
5.11 Example UI of the custom editor view in the work mode 42
5.12 Drop-down UI of a custom view tab 43
5.13 Dialogue window for renaming a custom editor view 43

vii

5.14 UI of the code system statistics 43

6.1 New save button design . 51

7.1 Frame of a possible future code editor view 54
7.2 Frame of a possible future custom editor view 55

viii

List of Tables

2.1 Compatible views for document types 11

4.1 Editor elements and their dependencies 28
4.2 Status types for custom editor views 29

5.1 Element types in custom editor views 39

ix

x

Acronyms

API Application Programming Interface

CAQDAS Computer Assisted Qualitative Data Analysis Software

DTO Data Transfer Object

GT Grounded Theory

GUI Graphical User Interface

QDA Qualitative Data Analysis

UI User Interface

UML Unified Modeling Language

xi

xii

1 Introduction

Qualitative Data Analysis (QDA) is a valid research method aiming at the de-
velopment of theories (Stol et al., 2016). QDA is especially popular in the field
of social science and arts but can also be applied to research in other areas such
as software engineering (Dey, 1993; Stol et al., 2016).
CAQDAS can aid many of the tasks performed in QDA. Several software tools
support storing and structuring text and image data, coding documents, ana-
lyzing and displaying code information, and numerous other features (Creswell
& Creswell, 2018). Using CAQDAS has various benefits for the user such as al-
lowing for more time-efficiency that requires less effort, inspiring a more precise
analysis of data as well as performing graphic visualization of findings. However,
these benefits have to outweigh the disadvantages of having to learn how any of
these software tools work (Merriam & Tisdell, 2015).
There are several approaches to qualitative research that imply different prac-
tices for the analysis process (Graue, 2015). While all of these approaches differ
in some way or another, there are common components or tasks to be found
between many of them (Miles & Huberman, 1994). When developing software
for assisting QDA, it is important to consider how to provide the functionality
for performing these tasks in a user-friendly manner. As discussed before, using
a QDA tool should benefit a user in their workflow rather than requiring more
effort. This implies structuring the functionality in a way that is efficient for a
QDA workflow. Some tools such as MaxQDA will provide all functionality in
one place. This approach may be overwhelming for new users which will in turn
require more support in the form of tutorials and other explanatory content.1
To avoid overwhelm, the available features can also be provided in the form of
task-focused views. Here, the functionality for each task will be displayed in a
different view. Therefore, a user will only see features that may support the
currently performed task. This is also a more space-efficient approach, allowing
task-related interfaces to be larger.

1https://www.g2.com/products/maxqda/reviews/maxqda-review-4552929

1

1. Introduction

1.1 Goal of this Thesis

This thesis aims at developing a task-focused editor for QDAcity, a cloud-based
web application supporting QDA. The coding editor is a central part of the
tool and provides most of the features necessary for performing QDA. It already
contains a number of functionalities that are mostly provided in one place. The
goal of this thesis is to restructure the editor allowing for task-focused work,
and efficient task-switching. Additionally, we ensure that the editor is capable
of supporting most of the standard tasks performed in QDA. The developed
task-focused interface should allow for more efficient and focused work.

2

2 Related Work

This chapter briefly outlines common QDA practices and emphasizes potential
tasks that can be derived from them. Then we go into detail on other CAQDAS
tools before discussing the current functionality and interfaces of QDAcity.

2.1 Qualitative Data Analysis

Qualitative Data Analysis (QDA) is part of the process of qualitative research.
Researchers in this field can collect data using a variety of strategies, which in
turn shape the general course of the research process (Creswell & Creswell, 2018).
As a result, different approaches and coding strategies can be formulated for QDA.

2.1.1 Grounded Theory

One approach to deriving theories from data in qualitative research is Grounded
Theory (GT). GT is an inductive strategy, generating theory from the gathered
data (Stol et al., 2016). GT is a broad framework but also consists of the per-
formance of QDA. We will now take a closer look at its implications on QDA.
While there is some level of agreement on key elements of the QDA process,
such as continuous comparison in data and developed concepts, there are differ-
ent approaches on how to develop a grounded theory. One of these approaches
is formulated by Corbin and Strauss which we will analyze as an example for
QDA procedures. We will omit other aspects of this approach that go beyond
the performance of QDA since they go beyond the scope of this thesis.

Grounded Theory after Corbin and Strauss

This approach applies three iterative activities to the coding process, "open cod-
ing", "axial coding" and "selective coding". These three activities are often not
entirely separate, rather a researcher can alternate between the three or even
combine them. However, one procedure might be prevalent depending on which
phase a researcher is in. Usually, the research process begins with open coding

3

2. Related Work

while the end phase of research often contains more analysis supported by the
selective coding approach (Flick, 2009).
Open coding aims at identifying categories in the form of codes and attaching
them to the data which is called coding. Throughout open coding, the data is
often segmented and then analyzed (Corbin & Strauss, 1990). Consequently, it
encourages a better understanding of the gathered data. The researcher is going
through segments, comparing the data, and formulating new concepts. Open
coding is usually the initial step in coding the data (Flick, 2009).
In axial coding, the aim is to refine categories that have already been identified.
This refinement can be in the form of developing subcategories, formulating rela-
tionships between categories, and verifying categories in the data. In this coding
strategy, the researcher has to switch between identifying concepts and relations
on the one hand and validating and testing these concepts on the other hand
(Flick, 2009). Verifying concepts with new data is crucial because a theory needs
multiple indications to be considered valid (Corbin & Strauss, 1990).
Selective coding focuses on central categories and their relationships. The re-
searcher can further elaborate on these categories by looking at more evidence.
The aim is to identify one core category and formulate the developed theory
(Flick, 2009). Hence, the analyst must integrate all categories around this cent-
ral category (Corbin & Strauss, 1990). This procedure is usually the final step
performed in QDA. When theoretical saturation is reached, which implies that
further analysis will not provide any new insights, the analysis of data ends (Flick,
2009).

Other Approaches to Grounded Theory

Other approaches differ more or less from GT. In addition to GT, Flick (2009)
names the approach of theoretical coding, developed by Glaser. That approach
differs from Corbin and Strauss by proclaiming that axial coding does not encour-
age the categories to emerge from the data. Instead, theoretical coding suggests
formulating groups of basic codes which are called coding families. These are
then the foundation for further code development (Flick, 2009).
Charmaz developed another approach to coding in GT, as mentioned by Flick
(2009). This strategy begins with line-by-line coding, which is utilized to exclude
personal bias from the coding process and focus more closely on the content.
Then focused coding is performed. That approach delves deeper into the collec-
ted data, with a particular focus on certain developed codes.
When analyzing these three approaches one can see that there are common ele-
ments between them. All of them see open coding as a vital element of QDA and
finish their analysis when theoretical saturation is reached. Another similarity is
the emphasis on constant comparison between the data segments as well as the
categories (Flick, 2009).

4

2. Related Work

2.1.2 Common Procedures in QDA

As mentioned before, GT is not the only approach to qualitative research. When
utilizing different approaches the coding strategies will be different. Neverthe-
less, there are some common components to many of the derived strategies for
QDA (Mayer, 2015; Miles & Huberman, 1994). The QDA components include
data collection, data display, data reduction, and conclusion drawing/verification,
between which a researcher may alternate. The researcher iterates between com-
ponents until theoretical saturation is reached and the data collection is finished.
Data reduction describes the simplification and abstraction of data. In data re-
duction, an analyst can select, summarize, or paraphrase data. Data display
focuses on organizing the data so that a researcher may draw conclusions more
easily. Strategies for drawing and verifying conclusions are asking questions and
noticing patterns in the data (Miles & Huberman, 1994).
Miles and Huberman (1994) derive some specific practices from these compon-
ents. One of the practices is the revision of codes, where a researcher reevaluates
the structure and content of codes. Deleting, adding and redefining codes may
be part of this process. Another step is the definition of new codes. When a
researcher defines new codes, it’s important to concentrate on providing clear
definitions and names, ensuring that these codes can be used for subsequent data
analysis. Corbin and Strauss (1990) and Miles and Huberman (1994) also men-
tions the step of memoing. Analysts record their ideas and thoughts in memos,
which can be written at various points during the coding process. Memos might
encompass additional relationships or supplementary conceptual insights about a
code, which can be integrated and utilized at a later point. (Miles & Huberman,
1994).
One can identify further tasks outside of the data collection and coding process.
An area that might imply more possible tasks for QDA is the evaluation of the
reliability of theories. Concepts such as intercoder reliability, which requires the
collaboration of multiple researchers, can help in developing more criteria for
tasks (Campbell et al., 2013). We limit the scope of this thesis to tasks directly
derived from QDA procedures.

2.1.3 Identification of tasks in QDA

From the previously presented processes in QDA, we can obtain a number of
tasks. While some tasks may be specific to an approach to qualitative research,
others may generally help in conducting QDA. In this thesis, we will focus on
the latter group of tasks, specifically tasks that software can actively support.
A task that we can deduce from the process of data collection is the storing and
editing of documents. This task is crucial for any QDA software since it is the
basis of working with data. Furthermore, when looking at the steps of data dis-
play and reduction, the coding process formulates multiple required tasks.

5

2. Related Work

As discussed above, open coding is a widely accepted step in performing QDA.
Therefore, CAQDAS should support the task of coding text segments while al-
lowing the user to quickly create new codes.
The concept of axial coding might vary in different QDA approaches, but com-
paring and refining codes is generally a vital step for QDA. This step indicates
the task of codebook refinement. Codebook refinement includes the quick re-
structuring of the code system, redefining codes, and deriving new theories from
the existing codes and their codings.
Moreover, the area of conclusion drawing and verification has an implication on
QDA tasks. This step overlaps in many aspects with the selective coding strategy
of Corbin and Strauss. From this step, we will develop the task of analysis. For
analysis, an overview of the developed concepts is important. Information on
codes and the relationships between them is crucial for the researcher.
The activity of writing memos is necessary for all coding steps. The researcher
should always have the option of quickly noting down ideas and thoughts with
minimal disruptions in the workflow.
When evaluating different QDA approaches more closely, more tasks can be spe-
cified. But for the purpose of this thesis, we will focus on the discussed basic
tasks that can support a variety of approaches.

2.2 CAQDAS comparison

Several tools can be used to perform QDA. Many of these tools supply a num-
ber of generic features such as storing and organizing documents, analysis tools,
and search functionality (Creswell & Creswell, 2018). Therefore, working with a
large amount of data is more feasible and efficient since software can automate
many monotonous tasks. Using CAQDAS tools is not only time efficient but
also enables a more detailed analysis of the data as well as better visualization
of theories (Merriam & Tisdell, 2015). In the following sections, we will analyze
two different CAQDAS tools, MaxQDA and WebQDA. This analysis will include
a focus on whether the tools support the prior formulated tasks as well as how
the functionality is provided. Therefore, the main focus of this analysis will be
the coding editor interface of both tools. We will omit any other functionality.

2.2.1 MaxQDA

MaxQDA1 is a software tool for qualitative and mixed-methods research that
is commonly used. The tool has a coding editor interface providing different
elements that the user can enable and disable. Figure 2.1 gives an overview of
this interface. Additionally, there are separate windows for some features. There

1https://www.maxqda.com

6

2. Related Work

F
ig

u
re

2.
1:

C
od

in
g

ed
it

or
in

M
ax

Q
D

A

7

2. Related Work

is one main menu in the top column of the page that modifies the content and
layout of the rest of the editor. For layout configuration, MaxQDA provides four
different layouts. The layouts allow the user to modify the size of the elements.
The main elements are a code system list, a documents list, a document browser
with code brackets, text, and comments, as well as a coding overview.
Since all elements can be activated and deactivated individually, a user can adapt
the coding editor to the workflow. However, this absolute configurability is not
compatible with providing any task-focused views. A user has to find all necessary
elements in the provided functionality depending on the task. This might be
overwhelming and hard to learn for new users. In addition, MaxQDA provides
all functionality in one place which is not space-efficient.
When analyzing the previously defined tasks, all of them can be performed in
MaxQDA. A user may carry out the task of storing and editing documents using
the documents list and the documents browser. The task of coding while defining
new codes can easily be executed using the aforementioned elements in addition
to the code system list. The code system offers the option of adding, defining,
renaming, and deleting codes which makes quick code modification very efficient.
MaxQDA also supports the task of codebook refinement. However, there is no
view of all code information in one place. The user can modify the code properties
through the context menu of the code system. The same context menu offers
the option to open a separate window with the code memo. This window also
displays other properties such as a code summary. Figure 2.2 shows the content
of the code memo window. However, the window has to be opened for each code

Figure 2.2: Memo window in MaxQDa

8

2. Related Work

individually and does not allow for switching between codes. While there are
other options such as displaying all code memos, there is no way of viewing and
modifying all fields related to codes while being able to switch from one code to
another. Hence, the task of codebook refinement will require multiple clicks and
windows. The task of analysis is well supported. MaxQDA offers a variety of
visualization tools to analyze the code system. The tool also offers several memo
options. A user may write memos in an individual window and those memos can
refer to most of the MaxQDA elements such as codes, documents, and projects.
Consequently, MaxQDA allows the performance of all basic QDA tasks but could
benefit from better supporting codebook refinement. Additionally, providing all
functionality in one space might overwhelm new users and generally distract
from focused work. On the other hand, an experienced QDA user might prefer
the flexibility and modification options that MaxQDA allows.

2.2.2 WebQDA

WebQDA2 is a web-based tool that has a coding editor interface allowing little
modification. This interface is displayed in Figure 2.3. The left sidebar is a menu
divided into the sections "sources", "code", "questioning", and "management".
These sections function as task dividers. The sources view permits the modifica-
tion and coding of documents as well as the quick initiation of codes in a smaller
code system view in the right column. Therefore, the view allows for data modi-
fication and coding while defining new codes. The sources view also provides the
option of adding notes and comments that can be used to write down thoughts
and ideas. The task of codebook refinement is supported in the code section of
the editor. This section provides a bigger view of codes that enables the user
to restructure and redefine codes. The questioning section permits the analysis
of the gathered data and concepts. It provides analysis and search functionality.
The last section for management contains other functionality.
The task division enables the tool to display less functionality in each view, which
is not only more space-efficient but also allows for a less overwhelming interface.
However, an experienced user might miss the option of modifying the layout.
Most elements are fixed and not modifiable in size. The user may at most col-
lapse a small number of elements.

2.3 QDAcity

QDAcity is a cloud-based web tool supporting QDA. The focus is on the storing
and structuring of data, while best assisting the process of analysis as well as
allowing for collaboration.3 This thesis focuses on the functionality provided in

2https://www.webqda.net
3https://qdacity.com

9

2. Related Work

F
igu

re
2.3:

C
oding

editor
in

W
ebQ

D
A

10

2. Related Work

the coding editor which a user can access from the project overview. There are
various other functionalities that are beyond the scope of this thesis.

Coding Editor

The coding editor is the main feature in supporting a QDA workflow. Figure 2.4
shows an exemplary view of this coding editor. The interface is split into three
sections, a sidebar on the left, a main editor interface on the right, and a footer
element on the bottom of the page. Figure 2.5 shows all sidebar elements.
A user may select the content of the sidebar and the editor interface through
buttons in the project section. This section is located at the top of the sidebar
and is visible in all editor views. In addition, the project section contains a button
for navigating back to the project overview as well as a display of collaborators
active in the editor. The buttons that allow for navigating between editor views
change depending on the selected document.
A user may select a document in the document view located beneath the project
section in the sidebar. There are three different types of documents, PDF, text,
and audio file. As mentioned before, the type of the selected document determines
the editor view buttons in the project section. The available editor views for each
document type are displayed in Table 2.1. The document view that allows the

Table 2.1: Compatible views for document types

Document type Compatible views

PDF coding, UML, glossary, specification, visualization, recom-
mendations

text coding, editor, UML, glossary, specification, visualization,
recommendations

audio transcription editor, UML, glossary, specification, visualiza-
tion, recommendations

user to change the selected document, is not displayed in all editor views.
The last section of the sidebar is the code system. The code system is the central
feature of the coding editor since it is also at the core of QDA. Therefore, all
editor views contain this section. The code system allows for adding, deleting,
and accessing codes as well as further functionality such as giving the option of
opening code-related interfaces.
The content of the editor interface on the right depends on which editor view is
selected in the project section. The content of the editor views will be discussed
further later on.

11

2. Related Work

F
igu

re
2.4:

C
oding

editor
in

Q
D

A
city

12

2. Related Work

Figure 2.5: Sidebar in QDAcity

The last section of the coding editor is the code view footer which is displayed
over the full width of the page and has a fixed height. Figure 2.6 displays the code
view footer in the coding editor. The code view footer allows the user to access
further information on the selected code including the code properties, a meta-
model, the code memo, and the codebook entry. A user may enable and disable
this footer element in all editor views allowing for quick access when necessary.
As mentioned above there are different editor views that we may already interpret
as different task views. These currently include:

1. Coding

2. Editor

3. Transcription Editor

4. UML

5. Glossary

6. Specification

13

2. Related Work

F
igu

re
2.6:

C
oding

editor
w

ith
code

view
footer

in
Q

D
A

city

14

2. Related Work

7. Visualization

8. Recommendations

Coding The coding view includes the document section in the sidebar. When
selecting a document in the document view, the editor interface on the right will
display its content. Moreover, the editor view includes a column showing the
coding brackets that a user may modify in size. These brackets visualize any
codings that have already been applied. This view allows the user to add and
remove codings for the selected document.

Editor A user may edit text documents in the editor view. The view displays
the same elements as the coding view in addition to a toolbar for editing text at
the top of the editor interface. In the editor view, a user may edit the content of
the selected document but cannot modify the applied codings.

Transcription Editor Transcribing audio files can be performed in the tran-
scription editor view. This view displays the audio track as well as the transcribed
text. Additionally, it contains the document view in the sidebar. In the tran-
scription editor view, a user may listen to an audio file and correct or modify the
automated description. When reaching an adequate result the user may export
the file to a text document to start the coding process.

UML, Glossary, Specification, Visualization These views provide the user
with further functionality that is not part of the focus of this thesis. Some of
these views are still being developed.

Recommendations The Recommendations view allows users to review recom-
mendations made for codes and other elements. This view is part of the recom-
mendation service. The recommendation service can be enabled and disabled and
the recommendations view will only be visible if the recommendation service is
enabled. The feature of writing and reviewing recommendations is outside of the
scope of this thesis.

A user may enable or disable most of the above editor views to adjust the editor
interface to the workflow. The modification of visible editor views can be done
in the project settings which are located in the project overview and can be seen
in Figure 2.7. Excluded from this are the coding, editor, and transcription editor
views. Furthermore, a user may enable the recommendation service in the project
settings which determines whether the recommendations view is enabled.

2.4 Discussion

QDAcity contains different views that a user can switch between in the coding
editor. We may already interpret these views as task views. In the following dis-

15

2. Related Work

Figure 2.7: Project settings modal in QDAcity

cussion, we will evaluate, how well they support the aforementioned basic tasks
for QDA.
The task of storing and organizing data is well supported in QDAcity. The docu-
ment list gives quick access to all documents as well as an option of sorting them
alphabetically. The editor and the transcription editor view allow for modifying
text and transcribing audio files. These two views allow the user to quickly add,
store, and sort a number of data sources. A possible improvement for the clarity
of the views is the removal of the add and remove coding buttons from the code
system. These buttons currently have no functionality in any view apart from the
coding view. Therefore, they should only be displayed in this view and otherwise
be hidden when adding and removing codings is not allowed. Another task that
is well supported is the task of coding and adding new codes. In the coding view,
the code system allows for adding and removing codes as well as codings. For
more information on codes, the codebook entry, and the code memo, a user may
enable the code view footer. The footer element is displayed in Figure 2.6. This
footer allows for even better quick access to codes. However, the footer leaves
room for improvement. The element currently spans over the whole width of the
page, causing the view of the code system to be smaller. Therefore, fewer codes
are visible, requiring more scrolling from the user when switching the selected
code. We can avoid this by decreasing the width of the footer to fit in the editor

16

2. Related Work

interface so that the code system view can remain the same size as before.
The task of codebook refinement requires improvements in the QDAcity inter-
faces. Similarly to MaxQDA, QDAcity allows access to code information in dif-
ferent areas. There is a separate overlay for displaying codings for a selected code.
When this coding overview is enabled, the selected code cannot be changed. A
user may not access any other elements until the overlay is closed. Moreover, the
code view footer allows for quick access to the code properties, code memo, and
codebook entry but it does not enable a user to see all elements at once. The
footer is fixed in size which implies that when refining the codebook a large part
of the page containing the editor interface and possibly the documents view is
not being used. Therefore, a new task view focusing on the task of codebook
refinement will allow for a better QDA workflow.
The task of analysis is supported in QDAcity. There is a code analysis view that
the user can access through the code system. However, the functionality of this
view needs to be revised. Furthermore, the coding editor provides the option of
constructing UML models and meta-models to better visualize code relationships.
QDAcity well supports memoing. The code view footer enables the user to write
memos at any point in the workflow.
A feature that improves both codebook refinement and analysis is the code status
bar next to each code in the code system. Additionally to the number of codings
for each code, the status bar displays whether a memo, a codebook entry, or
meta-model information has been added to the code.
QDAcity allows for little modification, similar to WebQDA. An experienced user
who wants to perform more complex tasks might know best what interfaces are
necessary as well as what size these interfaces should have. While QDAcity sup-
ports a number of tasks through the different editor views a user could benefit
from the option of creating custom task views. A custom view would not only
maximize the tasks that users can perform in QDAcity but also exploit the be-
nefits of more customizable tools such as MaxQDA.
Another aspect that we should regard when evaluating task-focused work is how
efficient task navigation can be performed. The current design where the dis-
played navigation buttons depend on the selected document is not beneficial and
confusing in the workflow. Moreover, the task navigation elements should be
a central focus of the coding editor to show a user that the view selection will
determine the displayed editor content.

17

2. Related Work

18

3 Requirements

This chapter presents the requirements for this thesis structured thematically.
There are three main thematic areas. First, we focus on requirements that are
valid across all editor views and are thus formulated for the entire coding editor.
Then requirements that are limited to the task of codebook refinement and the
customization of views. For all requirements, we give a short description that
we could convert into further more fine-grained sub-requirements. However, this
thesis focuses on satisfying the main requirements given in this section. We
adopted a template-based approach to improve the clarity of the requirements.
(Sophisten, 2016).

3.1 Coding Editor

Req 1.0 - All task views in the coding editor should not include any
functionality or information that is unrelated to their task.

All existing and newly created task views should be space efficient, thus only
displaying functionality required to perform its task. Any elements providing no
functionality should be removed. In the existing task views, this mostly concerns
the add and remove coding buttons in the code system. These buttons should
only be visible when they are functional.

Req 2.0 - The coding editor shall provide the user with the ability to
easily switch between task views.

To make the user’s workflow more efficient, the selection of task views shall not
depend on any other elements in the coding editor. There shall be a navigation
element that is superordinate to the rest of the coding editor elements.

Req 2.1 - The coding editor shall provide the user with the option of
quickly adding and removing displayed task views.

The displayed task views in the coding editor shall be modifiable to adjust to the
user’s workflow. To make customization more time-efficient and user-friendly,

19

3. Requirements

this functionality shall be provided directly in the coding editor rather than the
project settings.

Req 2.2 - The display of the task views should be space-efficient for
smaller window sizes.

To make the navigation element space efficient, the navigation element should
not display the names of the editor view for smaller window sizes. Instead, an
icon should be associated with each editor view that will be present for all screen
sizes.

Req 2.3 - The display of the task views should provide the user with
the ability to change the order of the tasks.

The user should be able to rearrange the task views via drag-and-drop. Therefore,
task switching becomes more efficient and the user may group tasks depending
on the workflow.

3.2 Codebook Refinement

Req 3.0 - The coding editor shall provide the user with the ability to
select a view that supports the task of codebook refinement.

The user shall have access to an editor view that provides functionality for the
task of codebook refinement. The following requirements establish the required
content of this editor view.

Req 3.1 - The codebook refinement view shall provide the user with
the ability to see and modify the code properties, code memo, and
codebook entry of a selected code.

The user shall have the option to see and modify all information assigned to a
code. The code information enables the user to get a better overview of the code
system as well as refine definitions and theories.

Req3.2 - The codebook refinement view shall provide the user with the
ability to see all codings of a selected code as well as quickly switch to
a specific coding in the coding view.

The user shall be able to see all codings in the code editor view since knowing what
codings exist for a code can help in refining definitions and theories. Switching
to a specific coding in the coding view can give further context on a coding as
well as allow the user to quickly modify the coded data section. This context
on codings can assist the user in further understanding the data and developing
more concise theories.

20

3. Requirements

Req 3.3 - The codebook refinement view should provide the user with
the ability to move or copy codings from one code to another as well
as delete codings efficiently.

The task of codebook refinement includes the restructuring of the code system.
To ensure that codings can quickly be adapted to a new code system structure,
the user needs to be capable of quickly modifying which code a coding belongs
to.

Req 3.4 - The codebook refinement view should allow the user to write
comments for codings.

Comments on codings enable users to quickly note down thoughts about a specific
data segment. These notes may include summaries, further ideas, theories, etc.
A user can then use these comments to refine the codebook further.

3.3 Custom View

Req 4.0 - The coding editor shall provide the user with the ability to
add custom editor views to the selectable task views.

The user shall have an editor interface to customize the editor content to their
liking. The following requirements establish the content and functionalities of
this editor view.

Req 4.1 – The custom editor views shall provide the user with the
ability to name each view.

To ensure that the user can differentiate between multiple custom editor views,
these views must be nameable. Naming views also allows the user to clearly
assign a task to a view so that other collaborators in the project may know its
purpose instantly.

Req 4.2 - The custom editor views shall provide the user with the
ability to change the visibility of each view in the project.

The user must have the option of changing the visibility of a custom editor
view. There must at least be a distinction between editor views that are private,
thus can only be seen by the user themselves or public, thus being visible to all
collaborators on the project.

Req 4.3 - When selecting a custom view, the user should be able to
choose which elements out of the available coding editor elements the
view should display.

The user should be able to choose the content of the custom editor view from the
most common coding editor elements. Regrouping editor elements in different

21

3. Requirements

views maximizes their usability.

Req 4.4 - The custom editor should be highly modifiable regarding the
size and layout of its components.

The user should be able to size all elements according to their needs. Moreover,
the user should be allowed to choose the position of an element in the layout.

22

4 Architecture

This chapter describes the developed architecture based on the requirements for-
mulated in the previous chapter.

4.1 Task Navigation

The task navigation element shall be efficient and as independent from the rest
of the editor as possible. However, there are constraints on which editor views a
document type can support. Table 2.1 shows the compatible editor views for each
document type. For an overview of the existing editor views refer to Chapter 2.3.
We need to address these limitations in a way that is user-friendly. The initial
step toward an independent navigation element involves merging the editor and
the transcription editor view. Both views are concerned with the editing of a doc-
ument and thus have the same overarching task. The merging of the two editor
views is possible since there is at most one of them available for any document
type. Therefore, no distinction is necessary.
We also have to address the issue of the dependency of the coding and the edit-
ing view on the selected document type. Merging the coding and the editing
view is impractical due to the fact that for text documents both views have to be
available. However, the disappearing and reappearing of navigation elements, de-
pending on the selected document, may cause confusion. Therefore, all available
navigation elements shall be visible at all times. Consequently, we must answer
the question of what to display, when an incompatible editor is selected. It’s pos-
sible to display a replacement message for unavailable views, but it’s advisable
to avoid doing so in order to reduce empty, non-functional interfaces. Therefore,
we will implement an automatic tab-switching logic that reduces the usage of re-
placement messages. Figure 4.1 shows the final tab-switching logic for all editor
views.
For the editor view, we developed the following solution. The editor naviga-
tion element will appear disabled if a PDF document is selected. Additionally,
when a PDF document is selected while in the editor view, the selected view will
automatically switch to coding. This switching logic allows a constant display of

23

4. Architecture

Figure 4.1: State diagram of the tab-switching logic between the coding, editor,
and other (including UML, glossary, specification, visualization, and recommend-
ations) tabs

the editor navigation element, while not requiring a replacement message. We
considered the same approach for the coding view. However, there are conflicts
with this solution. When disabling the coding navigation element for audio files,
a user may still switch to any other view. Some views, such as the UML, the
specification, and the recommendations view, do not contain a document list. In
these views the user cannot change the document, thus the coding view cannot
be directly enabled. Therefore, a user must now switch back to a view containing
the documents list before being able to select a text or PDF document. Only then
can the user switch back to the coding view. This behavior is inefficient since
the coding view is at the core of performing QDA. A user may often want to
access this view. Consequently, the coding navigation element should always be
enabled. To minimize the use of a replacement message when the coding editor
view is unavailable, the view is switched automatically to editor when selecting
an audio file. However, users may still return to the coding view, where they will
be notified of the coding view being unavailable.
Another conceptual change to the navigation logic is the enabling and disabling

24

4. Architecture

of views while remaining in the coding editor. Thereby, it is possible to disable
a currently selected task view. When this occurs, the view has to automatically
switch to a default value. We select the coding view for this purpose since it is a
central view in the coding editor.

4.2 Code Editor View

The main task of the code editor view is a visualization of already existing data,
that is better suited for the task of codebook refinement. Since we are displaying
already existing data, sufficient backend structures for storing and retrieving this
data are already present. Therefore, introducing new Application Programming
Interface (API) methods or data models is not necessary. When constructing
the code editor view in the frontend, we focus on reusing the existing QDAcity
components where possible. Reusing components not only improves the main-
tainability of the code but also allows the usage of interfaces already known to
the user.
The CodeProperties, CodeMemo, and CodebookEntry components that are part
of the CodeView footer can be reused. Figures 4.2, 4.3, and 4.4 show the UI of
these three components. However, these elements require some minor changes

Figure 4.2: UI of the CodeProperties component

Figure 4.3: UI of the CodeMemo component

to better adjust to the code view. On the one hand, the components have a fixed
height because the footer element itself is consistent in height. The code editor
view requires them to be flexible in size since the interfaces should be responsive
to page size changes. On the other hand, all of the reused components have a save
button. In the code editor view, having one central save button is more efficient

25

4. Architecture

Figure 4.4: UI of the CodebookEntry component

than having to save changes in all fields individually. Therefore, the code editor
view does not require the individual save buttons.
We could not reuse the CodingsOverview component, which can be seen in Fig-
ure 4.5, since the code editor view requires more than a simple display of the
coding instances. Instead, the new coding overview should allow the selection

Figure 4.5: UI of the CodingsOverview component in the coded text segments
modal

and moving of codes. The existing component structure does not allow for that.
Therefore, a new component must be implemented.

4.3 Custom Editor View

This section explores the architectural development of the custom editor view.
The necessary frontend and backend architecture is considered separately.

Frontend

To increase space efficiency and decrease distractions in the workflow, two differ-
ent modes are required. The "edit" mode should allow the user to edit the layout

26

4. Architecture

and content of the custom editor. When saving a layout the custom editor view
will switch to the "work" mode. Here, no configuration elements are displayed,
thus the layout can fill the entire screen.
To make the development of the custom editor view fit into the scope of this
thesis, we must make some constraints. While a layout that is completely con-
figurable in size and content may be most beneficial for the custom view, we can
also achieve many of the same benefits through a simpler approach. The user
will not be able to configure the layout structure but rather the edit mode will
provide a number of layout structures to select from. These are configurable in
size and content. The user may choose between eight different layout structures
or "basic layouts". Figure 4.6 shows the developed layout structures. These ba-
sic layouts contain from one up to five fields. Each field can contain one coding
editor element. The approach of supplying basic layouts is also advantageous for

Figure 4.6: Basic layout structures for the custom editor view

users who might be overwhelmed when facing the task of configuring the layout.
Therefore, we should extend rather than substitute the option of basic layouts
when implementing further configuration options in the future. Consequently,
the basic layouts are an excellent starting point for the custom view functionality
since they remain useful in future work.
The elements provided in the custom editor need further consideration. A first
constraint for all elements is, that they should allow for as much dynamic size
modification as possible. Static sizes should be avoided since the elements are
supposed to adjust to the layout. Furthermore, we must examine the dependen-
cies between elements. Table 4.1 shows the existing element dependencies. An
example of a dependent element would be the coding element. It cannot function
without a code system and a document view. Both elements are necessary to
allow for document selection and the coding of segments. When an element is
added, that has dependencies missing from the layout, the view must display a
message to inform the user. In the edit mode, this message should ask the user to
add all required missing elements. In the work mode, the message should instruct
the user to switch back to the edit mode to add the missing elements.
For the scope of this thesis, a user may only add each element once to each custom
view to clearly dissolve the aforementioned dependencies. Developing a custom
editor view that supports multiple uses of an element is possible and allows for
comparisons. This could be explored in future work.

27

4. Architecture

Table 4.1: Editor elements and their dependencies

Element Dependencies

code system none

documents none

code memo code system

code properties code system

codebook entry code system

coding overview code system

specification code system

UML code system

editor documents

coding editor code system, documents

glossary code system, documents

Backend

The backend functionality for the custom view is mostly concerned with storing
and accessing the necessary data. The data model should be expandable for fu-
ture features that allow for more customization of the layout. Figure 4.7 shows
the developed data model. For each Project, a user may store multiple Cus-
tomEditor views. Each of these views contains a CustomEditorElement which
is the root element of the layout. Each CustomEditorElement can be the par-
ent element of multiple other CustomEditorElements. A CustomEditorElement
that contains child elements will be a row or a column and its children make up
the content of the element. Thus the CustomEditorElement components support
the flexible building of layouts since they allow for free composition of rows and
columns.
The status of a custom editor view will distinguish two values. These values
are "private" and "public" and control the visibility of the custom view in the
project. Table 4.2 describes the differences between the two status types.
The API methods for the custom view should only allow access to the full Cus-
tomEditor object. These methods will also initiate, update, or delete the belong-
ing CustomEditorElement objects. This approach allows for fewer mistakes and
inconsistencies in the data.

28

4. Architecture

Figure 4.7: ER diagram of the custom view components

Table 4.2: Status types for custom editor views

Status Visible for Allowed to update

PRIVATE owner owner

PUBLIC all users in the project users with create, update, de-
lete permission

29

4. Architecture

30

5 Design and Implementation

This chapter explores the design and implementation based on the developed
architecture. The technologies employed for the implementation are in line with
those generally utilized in QDAcity. The frontend of the application is built with
React1 and a JavaScript framework, while the backend service operates on Google
App Engine2 and is developed in Java 8.

5.1 Task Navigation

Regarding the task navigation element, we implemented frontend and backend
changes, which are presented in this section.

Backend

For each editor view that can be disabled, a state is stored in the project entity.
Initially, the project settings also controlled the editor settings. Therefore, we
first removed all attributes related to the editor settings from the project settings
API method and DTO. Then, the relocation of the editor settings required a
separate API method as well as a separate DTO, which is visible in Figure 5.1.

Frontend

The new navigation element is located at the top of the page in the form of a tab
header. Figure 5.2 displays the UI of this new tab header. This header includes
all elements that were previously located in the project section of the coding
editor. For the implementation of the task navigation, we will focus on the tabs
at the center of the header. When accessing a coding editor of a new project the
coding and the editor tabs are displayed in the header. When the editor tab is
disabled it is displayed in gray and does not react on hovering by changing its
color. We describe the disabling logic for the editor tab in Chapter 4.1. Instead,
a tooltip gives information on why the view is not supported.
The user may enable other views in a drop-down menu that is located to the

1https://react.dev/
2https://cloud.google.com/appengine

31

5. Design and Implementation

Figure 5.1: UML diagram of the editor settings DTO

Figure 5.2: UI of the tab header

right of the tabs using a configuration icon. The drop-down menu is displayed
in Figure 5.3. When selecting or deselecting an editor from the list the tabs will

Figure 5.3: UI of the tab configuration drop-down

appear or disappear instantly. However, the new settings state will only be stored
when closing the drop-down menu to reduce traffic.
The navigation element has been developed to support smaller User Interfaces.
The small navigation UI can be seen in Figure 5.4. When the window size is not
big enough to display all tabs in one row, the tab header does not include the
tab titles. Then, only the tab icons are shown and allow for navigating between
views.

32

5. Design and Implementation

Figure 5.4: UI of the tab header for small page sizes

5.2 Code Editor View

The implementation of the code editor view required no new backend function-
ality. All required features can be implemented using existing API methods and
data models.
The frontend GUI (Graphical User Interface) is displayed in Figure 5.5. The
interface is split into three rows. The first contains the code properties and the
code memo. This section can be collapsed by clicking the icon on the right. The
collapsing feature provides users who do not want to edit the properties or the
memo with a more space-efficient view. In the collapsed state, a user may see
but not edit the code name and a shortened preview of the code memo.
The codebook entry fills the second row of the code view. The three different
elements "definition", "when to use" and "when not to use" are arranged vertic-
ally. The third row contains a coding overview. This overview allows the user
to read all codings belonging to a code sorted by documents. Additionally, the
coding overview provides quick access to a coded data segment. When hovering
over a coded segment, an arrow icon appears. On clicking this icon the coded
segment is displayed in the coding view. This access to the coding in the coding
view permits the user to quickly change the scope of the coding as well as read
surrounding text to get context on a coding. The coding overview also permits
the user to collapse documents to shorten the codings list and focus on specific
segments. Moreover, there is an option to select codings or documents. When
a document is selected or deselected, the same is done for all codings in said
document. In addition, it is possible to select or deselect all codings in the list
with one click. When at least one coding is selected a menu appears on the top
of the section. This menu provides three actions that a user can perform for
selected codes: move, copy, and delete. Figure 5.6 shows the UI for copying and
moving codings. When copying or moving codings a drop-down menu allows the
selection of a code. This is the code that the selected codings will be moved or
copied to. When deleting codings a confirm dialogue opens, requesting the user
to verify the action.
At the bottom of the page, a save button allows the user to save changes made in
any input field. This button will communicate the state of the data by displaying
an "unsaved changes" message when at least one field has been updated. When
storing the changes the message disappears. Figure 5.7 shows the save button UI
when there are unsaved changes.

33

5. Design and Implementation

F
igu

re
5.5:

U
I

ofthe
code

editor
view

34

5. Design and Implementation

Figure 5.6: UI of the coding overview menu

Figure 5.7: Save button UI for unsaved changes

The implementation of the code editor view requires the support of some other
existing QDAcity features. When the recommendation mode is enabled, any
changes made in the input fields should be stored as recommendations and not
overwrite the current data. Therefore, when saving changes in the recommend-
ation mode, the corresponding recommendation dialogue is opened. Another
feature that has to remain consistent in the coding editor is the use of permis-
sions for different collaborator roles in a project. All updates in the coding editor
view require permission to create, update, or delete elements in the coding editor.
The save button and coding overview functionality check the user permissions ac-
cordingly. If the permissions are not given, the input fields are disabled, the save
button is hidden and the coding overview does not allow the selection of docu-
ments. The disabled UI can be seen in Figure 5.8. A change to the UI of the code
system is that the improved code system will not display the code view button
in the code editor view. If the code view footer is enabled in other views, it does
not appear in this view since it would provide redundant information.

5.3 Custom Editor View

The following section explores the implementation of the custom editor view.
First backend changes are discussed before going into depth on developed frontend
elements.

Backend

The data model for storing the custom editor views follows the architecture de-
scribed in Chapter 4.3. It is displayed in Figure 5.9. The CodingEditor entity
stores the ID, the project ID, the user ID of the creator, an isEnabled field, and
the status of the type statusType. These fields aid in accessing views.

35

5. Design and Implementation

F
igu

re
5.8:

U
I

ofthe
disabled

code
editor

view

36

5. Design and Implementation

Figure 5.9: UML diagram of the custom view data model

The statusType enumeration contains the values "PUBLIC" and "PRIVATE"
and determines the visibility of a view. The entity also includes the fields name,
basicLayoutID, and rootElement. These are concerned with the content of the
view. The rootElement contains a CodingEditorElement which is the outer ele-
ment of the view’s layout.
The CodingEditorElement entity stores an elementType property, a list of child
element IDs, and a list of divider positions. The elementType declares the content
of an editor element. This type can either indicate that an element is empty, that
it is a row or a column, or that it contains a coding editor element. All possible
values of this property can be seen in Table 5.1. The lists childElements and
dividerPositions are only used for elements of the type "ROW" or "COLUMN".
For these element types the childElements determine the content of the row or
column while the dividerPositions determine their size. The number of children
determines how many rows or columns are displayed.
For transferring data to the frontend a DTO is used for each entity. The objects
differ from the data model displayed in Figure 5.9 in how they store references to
coding editor elements. Instead of the ID or an array of IDS, a single CodingEd-
itorElementDAO or an array of them is stored. Therefore, accessing an entire
coding editor view in the frontend without having to load singular elements is
possible. The API operations available for a custom editor view are the following:

• initCustomEditor

37

5. Design and Implementation

• getCustomEditorsForProjectAndUser

• renameCustomEditor

• updateCustomEditor

• updateIsEnabled

• deleteCustomEditor

The initCustomEditor method returns the DTO for a new coding view that
is initialized with default values. The status is set to PRIVATE, it is named
"Custom" and the basicLayoutId is 1 which refers to a one-element layout. Ad-
ditionally, the method initializes a CustomEditorElement that is referred to in
the rootElement property. This element is of the type "EMPTY" and therefore
has no child elements or divider positions.

When loading the custom views for a coding editor the getCustomEditorsFor-
ProjectAndUser method can be used. This method returns all views that
belong to the corresponding project and are visible to the current user. The
ownerID and the status of a custom view determine the visibility. Views with
the statusType PUBLIC are visible to everyone in the project, while PRIVATE
views can only be seen by the owner of the view.

The methods renameCustomEditor, updateCustomEditor, and updateIs-
Enabled enable a user to update the properties of a custom view. RenameCus-
tomEditor will only update the property name whereas updateCustomEditor
edits multiple properties. These include the name, status, basicLayoutId and all
necessary CustomEditorElements that are referenced as the root or child element
of this view. The updateIsEnabled allows the separate updating of the isEn-
abled property. This property will only be set in the editor settings and thus
we must handle it separately from the other properties that we may set in the
custom view.

The last method, deleteCustomEditor, allows the removal of a custom view
from the database. Consequently, all related CustomEditorElements are deleted
as well.

All API methods apart from getCustomEditorsForProjectAndUser check whether
the user has permission to create, update, and delete elements in the coding
editor. Additionally, all methods perform a check on whether the user is an
authenticated QDAcity user. We added unit tests for the API methods that
verify the correct authentication check as well as appropriate behavior for basic
use cases.

38

5. Design and Implementation

Table 5.1: Element types in custom editor views

EMPTY

ROW

COLUMN

CODE_MEMO

CODE_PROPERTIES

CODE_SYSTEM

CODEBOOK_ENTRY

CODING_EDITOR

CODINGS_OVERVIEW

DOCUMENTS

EDITOR

GLOSSARY

SPECIFICATION

UML

39

5. Design and Implementation

Frontend

A user can create a new custom editor view in the editor tab settings. The button
for adding a new view is located at the top of the list which can be seen in Figure
5.3. When adding a new custom view the coding editor will automatically switch
to this view.
The UI for the custom editor view can be split into two separate interfaces for the
different modes of the custom view. We developed the work and the edit mode
in the architecture in Chapter 4.3. When a user creates a new custom view,
initially the work mode interface is displayed. Figure 5.10 shows this interface.
The editor mode offers the option of changing most of the view’s properties. The
menu on top allows the user to name the custom editor and set its status. Status
modification is only possible for the owner of the view. Otherwise, the property
appears disabled. Next to these two properties, a list of eight different layout
options is displayed. These layout options were referred to as "basic layouts" in
Chapter 4.3. The selected layout is framed in blue and is displayed in the lower
section. This section displays the full layout that will be available when storing
the view and switching to the work mode. Each element of the layout contains
a plus icon if empty or a preview of its contained element. The previews will
display the name of an element as well as a message informing the user about
dependencies as discussed in Chapter 4.3. The preview also contains a trash icon
that allows the user to delete an element. In the background, a disabled preview
image of the element will be displayed at a lower opacity. A click on the plus icon
in empty elements opens a drop-down menu displaying all elements that a user
can possibly add to the layout. All elements can only appear once in a layout as
discussed in the architecture section located in Chapter 4.3. The size of elements
can be changed by dragging and dropping dividers between elements. When done
with configuring a custom view the user can store the changes by clicking the save
button in the top right corner. Then the custom editor view switches into the
work mode.
An example of a custom editor in the work mode can be seen in Figure 5.11.
The work mode of a custom view displays only the configured layout. Instead of
the disabled element previews, this interface contains elements that a user can
interact with. These elements are now fixed in size. For further modification, the
user must access the edit mode.
A drop-down menu that the user can find in the tab of the custom view allows
access to further functionality. This drop-down is displayed in Figure 5.12. The
menu contains an option to return to editing the layout, renaming the editor,
which will open a separate dialogue, or deleting the view. Figure 5.13 shows
the dialogue interface for renaming a custom view. The user must confirm the
deletion of an editor view in another dialogue window.
All custom editor views can be enabled and disabled as other coding editor views
in the editor tab settings.

40

5. Design and Implementation

F
ig

u
re

5.
10

:
U

I
of

th
e

cu
st

om
ed

it
or

vi
ew

in
th

e
ed

it
m

od
e

41

5. Design and Implementation

F
igu

re
5.11:

E
xam

ple
U

I
ofthe

custom
editor

view
in

the
w

ork
m

ode

42

5. Design and Implementation

Figure 5.12: Drop-down UI of a custom view tab

Figure 5.13: Dialogue window for renaming a custom editor view

5.4 Other Features

Some of the implemented changes affect more than one view. We removed the
add and remove coding buttons from the code system for all views except coding
and custom. These buttons only offer functionality if the coding editor element
is present in the view. Therefore, they are unnecessary for all other tasks-views.
Additionally, we implemented a code system statistics that can be seen in figure
5.14. We added the statistics to the left sidebar in all views but the custom view.

Figure 5.14: UI of the code system statistics

The custom view does not receive the statistics since it does not necessarily have
a sidebar containing the code system. These statistics display information on
how many codes the code system contains and how many codes have a memo,
codebook entry, or meta-model information added to them. The meta-model
information statistics will only be displayed if there is at least one code containing
it. Therefore, users who do not use the meta modeling do not receive unnecessary
information. This statistics section allows for a better overview of the entire code
system. We first planned the feature for the code editor view to support the task
of codebook refinement. However, since the code system is a central part of all
non-customizable views, an overview can be beneficial wherever the code system
is present.

43

5. Design and Implementation

44

6 Evaluation

This chapter assesses the alignment between the formulated requirements and the
actual implementation of QDAcity. Moreover, the developed GUI was analyzed
in a heuristic Evaluation according to Nielsen (Nielsen, 1995).

6.1 Requirements Assessment

The following section evaluates the realization of the requirements formulated in
Chapter 3.

6.1.1 Coding Editor

Req 1.0 is satisfied

Req 1.0 - All task views in the coding editor should not include any functionality
or information that is unrelated to their task.
Elements that do not have any functionality for a task view, such as the but-
tons for adding and removing codings were removed from the respective views.
Additionally, we only allowed elements that are related to the tasks in new task
views. The code view footer is disabled for the code editor view. For the custom
editor view two different modes have been developed to better divide the tasks
of working in a custom view and editing its content.

Req 2.0 is satisfied

Req 2.0 - The coding editor shall provide the user with the ability to easily switch
between task views.
We eliminated the dependency between the selected document type and the nav-
igation elements as far as possible. By restructuring the coding editor and adding
a tab header to the page, the task navigation element is clearly separated from
the editor content and can be accessed efficiently.

Req 2.1 is satisfied

45

6. Evaluation

Req 2.1 - The coding editor shall provide the user with the option of quickly adding
and removing displayed task views.
The disabling and enabling of task views can be done in the new tab header. Mov-
ing this functionality into the tab header allows the user to modify the displayed
editor views without leaving the coding editor.

Req 2.2 is satisfied

Req 2.2 - The display of the task views should be space-efficient for smaller window
sizes.
Each view has an icon associated with it. When the page size does not allow for
all tab titles and icons to be displayed, the tab titles are removed. Then the icons
can be used to navigate between task views.

Req 2.3 is not satisfied

Req 2.3 - The display of the task views should provide the user with the ability to
change the order of the tasks.
The order of the tab elements cannot be modified. This feature was omitted due
to time constraints and other priorities.

6.1.2 Codebook Refinement

Req 3.0 is satisfied

Req 3.0 - The coding editor shall provide the user with the ability to select a view
that supports the task of codebook refinement.
The user has access to the new code editor view. This view provides an interface
to perform the task of codebook refinement.

Req 3.1 is satisfied

Req 3.1 - The codebook refinement view shall provide the user with the ability to
see and modify the code properties, code memo, and codebook entry of a selected
code.
The codebook refinement view allows the user to see and modify all information
assigned to a code. The information includes the code properties, the code memo,
and the codebook entry. Additionally, a user can prioritize the codebook entry
by decreasing the size of the other two elements.

Req 3.2 and 3.3 are satisfied

Req3.2 - The codebook refinement view shall provide the user with the ability to
see all codings of a selected code as well as quickly switch to a specific coding in
the coding view.
Req 3.3 - The codebook refinement view should provide the user with the ability

46

6. Evaluation

to move or copy codings from one code to another as well as delete codings effi-
ciently.
The codebook refinement view displays all codings in the coding overview sec-
tion. An arrow icon allows for quick access to the coding in the coding view.
Additionally, in the coding overview a user may copy, move, and delete codings.

Req 3.4 is not satisfied

Req 3.4 - The codebook refinement view should allow the user to write comments
for codings.
We did not implement the feature of adding comments on codings. During the
development of concepts and architecture, it became clear that this feature should
be implemented on a bigger scale. A user should be able to write comments not
only in the code editor but rather the functionality should be present in the coding
editor as well. The implementation of this feature should be guided by further
research and will require more time than what was available for this thesis.

6.1.3 Custom View

Req 4.0 is satisfied

Req 4.0 - The coding editor shall provide the user with the ability to add custom
editor views to the selectable task views.
The user has the option of adding custom editor views to the coding editor. These
views can be added in the editor tab settings.

Req 4.1 and 4.2 are satisfied

Req 4.1 – The custom editor views shall provide the user with the ability to name
each view.
Req 4.2 - The custom editor views shall provide the user with the ability to change
the visibility of each view in the project.
The custom editor view allows the user to attach a name to it. Additionally, the
user may change the visibility by updating the status of the view. Both can be
done in the edit mode of the view.

Req 4.3 is satisfied

Req 4.3 - When selecting a custom view, the user should be able to choose which
elements out of the available coding editor elements the view should display.
The custom editor allows the user to add most of the elements in the coding
editor. Some elements such as the visualization element are not available since
they are still being developed.

Req 4.4 is partially satisfied

Req 4.4 - The custom editor should be highly modifiable regarding the size and

47

6. Evaluation

layout of its components.
The custom editor view allows for free size modification of elements. However,
the view does not support the development of custom layouts. Instead, the user
can select out of eight layout structures. This approach is beginner-friendly and
can be extended in future work. More information on how the custom editor can
be developed further can be found in the outlook given in Chapter 7.

6.2 User Evaluation

To evaluate the developed GUI based on usability and clarity, a user test was
performed.

6.2.1 Procedure

The user-test procedure was based on the heuristic evaluation after Nielsen (Nielsen,
1995). In heuristic evaluation, experts called evaluators assess interfaces based
on their usability and identify problems by performing a set number of tasks. An
observer is present at all times and may answer any questions that arise through-
out the process.

Evaluators

A minimum requirement for possible evaluators was previous experience in QDA.
Therefore, the number of available, suitable evaluators was slightly limited. For
this thesis, only two evaluators performed the user test. This number differs
slightly from Nielsen’s suggestion of acquiring a minimum of three evaluators to
better fit the time limitations of this thesis. Out of the two selected evaluators,
both had worked with MaxQDA which allowed for more comparison between
tools. Moreover, one evaluator had limited experience in working with QDAcity.

Example Project

A small-scope example project was set up to provide the test environment. The
project included a project outline, an interview guideline, and some interviews
with company employees. The documents were coded using a limited set of codes.
Prior to the test, all editor views were disabled if possible.

The evaluators then performed the following three tasks:

1. Locating an editor view that provides information on a selected code

2. Dissolving a code, including moving all codings to another code and writing
a short memo text

48

6. Evaluation

3. Creating a customizable editor view containing the coding editor and the
code memo

After each task, the observer initiated a discussion that aimed at answering the
following questions:

• Which steps posed a problem and why?

• Was the GUI intuitively usable?

• Is the GUI efficient in a daily workflow?

• What improvements could be made?

6.2.2 Results

While we can make some improvements in the areas of usability and clarity,
the developed GUI was generally evaluated as very useful for a task-focused
QDA workflow. The following sections describe the user feedback given on the
performed tasks. The full evaluations can be found in the appendix sections A
and B.

Locating an editor view that provides information on a selected code

Initially, both evaluators struggled with locating the tab header. They expected
a view related to code information to be located in the code system. Even when
finding the tab elements the configuration icon was not seen as configuring the
tab elements but rather general settings. Part of this problem might be caused
by the test environment since a new user could normally take the time to perform
the tutorials provided by QDAcity. In these tutorials, the tab header is used to
switch between the coding and the editor view. This might help a new user to
quickly locate and use the tab functionality.
Possible improvements for the tab header would be adding more color to the tabs
or having at least three tabs displayed as the standard tabs to make the tab
header look more clickable. Furthermore, an evaluator proposed changing the
configuration icon to a drop-down icon. However, the suggestion is incompatible
with the display of the custom editor tabs since the drop-down icon is already
used here. Therefore, there might be two drop-down icons directly next to each
other in the header but have different purposes which could confuse users.
Generally, the evaluators assessed the tab header as very useful and even preferred
it to the GUI provided in MaxQDA. The switching of task views using one click
allows for an efficient workflow.

Dissolving a code, including moving all codings to another code and
writing a short memo text

The evaluators expected functionality on moving codings to be located in the

49

6. Evaluation

code system. After searching in the code editor, discovering the coded segments
section was no problem. Both evaluators wished for a drag-and-drop option
on codings to drag them directly into the code system view and possibly user
feedback on moving codings. However, an evaluator also considered, that user
feedback in the form of a confirm dialogue after every action might be tedious
when moving codings to multiple codes. A compromise for this issue might be
an undo option.
The save button in the code editor should be more visible, either by making it
more colorful, moving it further up the page, or displaying a save button in each
input field. An evaluator considered the code memo as a secondary element of the
view and would prefer a smaller display located further down the page. Other
proposed improvements for this view include indenting the coded segments on
different levels to clearly distinguish documents and codings. Furthermore, there
should be an option to quickly see the surrounding text of the codings to give the
user more context when necessary. This functionality could be provided in a spe-
cific view where the user is also allowed to document code themes. Additionally,
linking and viewing deleted codes would be useful, to allow a user to revisit old
codes and make code deletion non-permanent. Moreover, more comment space
would improve communication with collaborators on developing codes. One eval-
uator would also prefer a longer editor name and considered that the tab title
"Codebook" might define the view better than just "Code".
Both evaluators regarded the code editor as very beneficial for performing QDA.
The clear structure of the view and the limited use of color allows for easy use.
One evaluator stated on opening this view while performing the previous task
that this interface was lacking in MaxQDA.

Creating a customizable editor view containing the coding editor and
the code memo

When facing this task, locating the button for adding a custom editor was dif-
ficult. Again, this issue might not come up with users who had more time to
discover the tab header functionality. However, it could be improved by provid-
ing a tutorial for creating a custom editor. Another problem was understanding
the meaning behind the status property. The keywords used here should define
the visibility more clearly. The resizing functionality and the save functionality
are clear to use. The text of the warning message for dependent elements might
be hard to read depending on the element displayed in the background. More user
feedback on adding dependencies in the form of turning added elements green in
the dependency messages would be nice. Loosing previously selected Elements
when changing the layout leads to re-adding multiple elements which is tiresome.
Elements should remain selected when switching between layouts.
It would be an improvement to enable size modification after the layout is saved.
Switching back and forth between editing the layout and working to modify sizes
would be inefficient. Dragging and dropping elements in the layout would make

50

6. Evaluation

the configuration process more efficient. Allowing the user to completely custom-
ize the layout would be a beneficial extension of the current functionality.
The reaction on whether the evaluators would use this view for their QDA work-
flow was mixed. One evaluator was certain that the custom editor view is very
valuable as it provides the option of layout customization that is currently missing
from the rest of the view. The other evaluator was content with using the stand-
ard views but imagined the custom editor view to be useful for more complex
tasks.

Further comments

The naming and icons of the coding editor tabs could be improved. Size modifica-
tion should be allowed in as many coding editor interfaces as possible. Moreover,
the size modification option for the coding brackets in the coding editor view
should be more visible.
Further tasks that could be supported are team polls, commenting, and task
distribution in teams.

6.2.3 Implementation of Issues

After evaluating the user feedback some changes were made to the implemented
GUI.
The design of the save button in the code editor view is now bigger and more col-
orful to increase its visibility. Figure 6.1 shows the new UI. For this, a newly de-
veloped button design was used, which was not yet available when implementing
the code editor view. The warning message for dependent elements in the coding

Figure 6.1: New save button design

editor is now displayed on a white background to improve legibility. Moreover,
the dependencies that are added to the layout are displayed in green. As pro-
posed by an evaluator, the "status" text in the custom editor view was changed
to "visible for" and the selectable options are "me" or "everyone in this pro-
ject". Another improvement in the custom editor view is keeping the elements
on changing the layout. When selecting a new layout with the same or a bigger
number of possible elements, all added elements remain in the new layout. When
changing to a layout with fewer possible elements, the maximal possible number
of elements is kept in the layout. Finally, the code tab has been added to the
standard tabs that cannot be disabled. Including the code view in the standard
views not only increases the visibility of the tab header by always displaying a
minimum of three tabs, but it also establishes the code editor view as a standard

51

6. Evaluation

view for QDA. Further improvements can be made in future work. Chapter 7
explores some possibilities of integrating more user feedback in the UI.

52

7 Future Work

This chapter explores possible areas of future work. The concepts in this section
are mainly based on the performed research or the feedback from the user test.

Code Editor View

The code editor view can be further developed based on the feedback from the
user evaluation. A frame of a possible improved interface can be seen in Figure
7.1. An important point is the restructuring of the coding overview, the coded
segments can be indented to better mark the difference between documents and
codings. Dragging and dropping codings into codes in the code system should
also be allowed.
The input fields for code information can also be improved. The author of a code
should not be modifiable but rather just displayed. The color of the code can be
changed directly in the tag symbol. The code memo is now located beneath the
codebook entry to better state the importance of the codebook.

Custom Editor View

The custom editor view can be further developed in the face of layout modification
as discussed above. Therefore, an interface allowing for complete modification
should be developed. A proposal for this can be seen in the frame in Figure 7.2.
In this frame, new columns and rows can be added to all sides of the layout. Each
element allows the addition of a row or column. This editor frame also allows
for drag-and-drop of fields as well as the content of the fields. Additionally,
allowing for size modification of elements in the work mode of the editor view
would improve the custom editor view further.

Analysis Tools

As mentioned before, performing QDA in QDAcity can be optimized by support-
ing more analysis elements. The visualization of relationships between codes and
theories is a huge benefit that CAQDAS tools can provide. QDAcity’s function-
ality in this area can still be expanded and some features such as the comparing
of codes should be revised to improve their performance.

53

7. Future Work

F
igu

re
7.1:

Fram
e

ofa
possible

future
code

editor
view

54

7. Future Work

F
ig

u
re

7.
2:

Fr
am

e
of

a
po

ss
ib

le
fu

tu
re

cu
st

om
ed

it
or

vi
ew

55

7. Future Work

56

8 Conclusion

The aim of this thesis was to develop a task-focused editor for QDAcity. The
editor was supposed to enable efficient task-switching as well as support most
standard QDA tasks.
First, we analyzed different approaches to qualitative research and their implic-
ations for QDA, going in-depth on the exemplary strategy of grounded theory
(GT). Then different tasks were derived from this overview. In addition, we ana-
lyzed two other computer assisted qualitative data analysis software (CAQDAS)
tools and evaluated their strategy for providing functionality for the developed
tasks. Afterward, QDAcity was introduced, giving a quick overview of existing
features in the coding editor.
In Chapter 3 we stated 15 requirements for the new task-focused editor interface.
Then an architecture was developed that supports the given requirements. The
architecture focuses mainly on three parts: the creation of a task-navigation ele-
ment, a code editor view, and a custom editor view.
Then the implementation of the architectural concepts was described. Addition-
ally, some changes were implemented across multiple editor views. This chapter
especially went in-depth on the developed data models and user interfaces.
We evaluated the implementation based on the requirements formulated in Chapter
3. 12 requirements were satisfied while one requirement was partially satisfied
and can be further developed in future work. Two requirements were not met
because of time limitations for this thesis. We also performed a user test. The
test aimed at evaluating the usability of the developed interfaces. All three main
elements, the tab header for navigation, the code editor view, and the custom
editor view were seen as useful by the evaluators. Some improvements could be
made, of which a couple were already implemented.
We also made some suggestions for future work. The recommended improvements
target the areas of the code and custom editor as well as analysis tools.
This thesis developed a task-focused editor interface for QDAcity, giving users
quick access to different task views. We also achieved the implementation of two
new views that support the task of codebook refinement and the customization
of an editor interface. Therefore, QDAcity is now better equipped to enable a
task-focused workflow.

57

8. Conclusion

58

Appendices

59

Appendix A: Evaluation of QDA-Expert 1

A Evaluation of QDA-Expert 1

The following section presents a user evaluation of the developed UI translated
into English.

1. Locating an editor view that provides information on codes

Initially, locating the tab header posed a problem since the evaluator expected
any functionality related to codes in the code system. Specifically, in the toolbar
or a context menu. The evaluator discovered the code view bottom panel this
way. Even after locating the tabs, the configuration icon did not seem related
to adding more editor views but rather was expected to lead to general settings
such as text size.
To improve the issue of locating the view, the evaluator would prefer a drop-
down icon rather than the current configuration icon. Renaming the editor view
to “Codebook” rather than “Code” would clearly define its task. Generally, the
tab header is helpful and efficiently placed at the top of the page but might not
be instantly noticed by first-time users. The evaluator prefers it compared to the
functionality in MaxQDA.
The code editor view will help refine the code system and is missing in MaxQDA
where you have to navigate to each code individually to modify it. The evalu-
ator would add an interface to the code editor view where code themes can be
documented.

2. Dissolving a code, including moving all codings to another code and
writing a short memo text

Initially, the evaluator expected the codings as elements of the code system. After
further consideration, this idea could not be implemented efficiently. Locating
the coded segments section was uncomplicated when searching in the code editor
view. The evaluator would prefer to drag and drop codings. Selecting and mov-
ing codes was swift. The evaluator expected a confirm dialog on moving codings
but also considered that it might be tedious. A compromise might be an undo
option. When merging two codes showing both code entries would be helpful to
compare and contrast. Linking a deleted code that was merged would be help-
ful in understanding the development of the code system at a later point. This
would also allow the user to delete codes non-permanently by having the option
to revisit old codes. The evaluator expected a context menu for deleting codes.
The coded segments view could be improved by indenting elements on different
levels so that the distinction between documents and coding is clear. The under-
standing of codings would be better if there was an option to show surrounding
text for each coding. This would give the user context without having to switch

61

Appendix A: Evaluation of QDA-Expert 1

the view to the coding editor. This could be done in a specific task view that
could then also allow for theme definitions and summaries. Another possibility
would be to show more context to a code when hovering over it. The arrows
allowing to switch to the coding in the respective documents are only notice-
able when working in the coded segments section. Additionally, the save button
should be more visible if there are unsaved changes. Moving the button closer to
the text input fields would also improve its visibility. Another option would be
to have a save icon in each input field. The evaluator considers the code memo
as a secondary element and would prefer the codebook entry in its position. The
code memo could be moved to a speech bubble that is used to make a new note.
Collapsing the first section does not have the wanted effect since changing the
color of a code should remain possible.

3. Creating a new customizable editor view containing the coding
editor and the code memo

Initially, the evaluator was surprised that QDAcity offers customizable interfaces
since most of the views are static. When looking at the tab configuration settings,
the create editor button could be located at the end of the list rather than at the
beginning. The status message in the new custom editor view could be longer
and thus easier to understand. The different options could be renamed to “visible
for me” / “visible for the team”. The evaluator found the resizing functionality,
save button, and warning of missing elements message instantly. The custom tab
drop-down options are also easily identifiable. The text of the warning message
was hard to read over the coding editor element and the evaluator would prefer
a set of missing elements for the entire custom editor layout. When a required
element has been added to the custom editor the warning message should show
this element in green rather than black. The selected elements should stay in the
custom editor on updating the layout and an option of moving elements from one
field to another would be more efficient.
Resizing the elements is very helpful and makes the provided layouts work for
multiple purposes. Enabling the user to define their own layouts would be a
beneficial extension of the current functionality. It would also be nice to have
more options for layout and size modification in the other editor views. Further
improvements for the custom editor view would include allowing drag-and-drop
for modification but the current element for adding elements is very space-efficient
and intuitive.

Further comments

The tab header is very intuitive to use after spending some time with the tool
and differs quite a bit from comparable QDA tools. A full-screen view of only the
selected editor view might be beneficial for focused work that does not require
switching between editor views. The naming of tasks in the tab header should be
improved to make them more cohesive. The tag- and tags-icon of the coding and

62

Appendix A: Evaluation of QDA-Expert 1

the code editor view are too similar. Building a custom view is very helpful for
the user. Size modification in the custom editor views should always be allowed.
In the coding editor view, the size modification is not visible.

63

Appendix B: Evaluation of QDA-Expert 2

B Evaluation of QDA-Expert 2

The following section presents a user evaluation of the developed UI translated
into English.

1. Locating an editor view that provides information on codes

The evaluator was looking for a code editor view in the three dots code menu
and the code system toolbar and found the code view bottom panel instantly.
Finding the tab configuration icon required a hint even though using the tabs for
navigating back to the coding editor view was clear.
The tab bar was not seen as clickable because of a lack of colors. Including
at least 3 tabs in the standard view makes it easier to notice the tab options.
Aligning the tabs to the left would also make them look more like a selectable
menu. Generally, the tab header is very efficient. Switching the editor view with
one click is key for a good workflow.

2. Dissolving a code, including moving all codings to another code and
writing a short memo text

When moving codings a drag-and-drop option would be very intuitive. Initially,
dragging and dropping a code into another code seemed like the best solution
for merging codes. However, that turned the code into a new subcode. After
receiving a hint of manually moving the codings to a different code, the evaluator
found the coded segments view easily. User feedback on moving the codings
would be helpful to know that the changes were made. It was unclear whether
moving the codings required pressing the save button. Generally, saving changes
can be forgotten easily.
The coded segments view does not receive instant attention at the end of the
page. The save button should be more visible. Generally, it is positive that the
editor has a clear structure. The limited use of color makes using it feel more
relaxed than other tools. Further improvements would include more comment
space to communicate with colleagues on developing codes.

3. Creating a new customizable editor view containing the coding
editor and the code memo

The use of the tab configuration icon for adding a custom editor view is intuitive
but the button was not found which could be improved by making it look more
clickable. Selecting a layout, adding elements and saving the layout was clear.
The custom tab drop-down with further functionality was also found easily when
wanting to edit the layout after saving it. The warning message for missing
elements was noticed but should be more extensive. It should clearly note all
steps that should be taken to solve the issue of missing elements. After further
hints selecting a bigger layout for more elements was clear but the evaluator did

64

not know immediately where to find the missing elements.
Customizing the size of elements is clear but should also be possible after saving
the layout. Switching back and forth between the edit and work mode of the view
to change sizes would be frustrating. Changing sizes accidentally while working
should not be an issue. For this user test the button for adding a custom editor
view could have been more prominent but in a normal workflow it might not be
as important. Generally, making the button look more clickable would suffice.
The editor might be helpful for complex tasks but the evaluator is content using
standard views for now.

Further comments

Further tasks for the coding editor that the evaluator would benefit from are
a view for team polls, more commenting functionality, more options for adding
notes, and a view that can be used for distributing tasks in a team. The size
modification in the coding editor view is not visible.

65

66

References

Campbell, J. L., Quincy, C., Osserman, J., & Pedersen, O. K. (2013). Coding in-
depth semistructured interviews: Problems of unitization and intercoder
reliability and agreement. Sociological Methods and Research, 42 (3), 294–
320. https://doi.org/https://doi.org/10.1177/0049124113500475

Corbin, J. M., & Strauss, A. (1990). Grounded theory research: Procedures, can-
ons, and evaluative criteria. Qualitative Sociology, 13 (1), 3–21. https://
doi.org/https://doi.org/10.1007/BF00988593

Creswell, J. W., & Creswell, J. D. (2018). Research design: Qualitative, quantit-
ative, and mixed methods approaches (5th ed.). SAGE.

Dey, I. (1993). Qualitative data analysis: A user friendly guide for social scient-
ists. Routledge. https://doi.org/https://doi.org/10.4324/9780203412497

Flick, U. (2009). An introduction to qualitative research (Fourth edition). Sage
Publications.

Graue, C. (2015). Qualitative data analysis. International Journal of Sales, Re-
tailing and Marketing, 4 (9), 5–14.

Mayer, I. (2015). Qualitative research with a focus on qualitative data analysis.
International Journal of Sales, Retailing and Marketing, 4 (9), 53–67.

Merriam, S. B., & Tisdell, E. J. (2015). Qualitative research : A guide to design
and implementation. John Wiley; Sons.

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded
sourcebook (Second edition). Sage Publications, Inc.

Nielsen, J. (1995). How to conduct a heuristic evaluation. Nielsen Norman Group,
1, 1–8.

Sophisten. (2016). Schablonen für alle fälle (Third edition). https://www.sophist.
de/fileadmin/user_upload/Bilder_zu_Seiten/Publikationen/Wissen_
for_free/MASTeR_Broschuere_3-Auflage_interaktiv.pdf

Stol, K.-J., Ralph, P., & Fitzgerald, B. (2016). Grounded theory in software
engineering research: A critical review and guidelines. In Proceedings of
the 38th international conference on software engineering (pp. 120–131).
Association for Computing Machinery.

67

https://doi.org/https://doi.org/10.1177/0049124113500475
https://doi.org/https://doi.org/10.1007/BF00988593
https://doi.org/https://doi.org/10.1007/BF00988593
https://doi.org/https://doi.org/10.4324/9780203412497
https://www.sophist.de/fileadmin/user_upload/Bilder_zu_Seiten/Publikationen/Wissen_for_free/MASTeR_Broschuere_3-Auflage_interaktiv.pdf
https://www.sophist.de/fileadmin/user_upload/Bilder_zu_Seiten/Publikationen/Wissen_for_free/MASTeR_Broschuere_3-Auflage_interaktiv.pdf
https://www.sophist.de/fileadmin/user_upload/Bilder_zu_Seiten/Publikationen/Wissen_for_free/MASTeR_Broschuere_3-Auflage_interaktiv.pdf

	Introduction
	Goal of this Thesis

	Related Work
	Qualitative Data Analysis
	Grounded Theory
	Common Procedures in QDA
	Identification of tasks in QDA

	CAQDAS comparison
	MaxQDA
	WebQDA

	QDAcity
	Discussion

	Requirements
	Coding Editor
	Codebook Refinement
	Custom View

	Architecture
	Task Navigation
	Code Editor View
	Custom Editor View

	Design and Implementation
	Task Navigation
	Code Editor View
	Custom Editor View
	Other Features

	Evaluation
	Requirements Assessment
	Coding Editor
	Codebook Refinement
	Custom View

	User Evaluation
	Procedure
	Results
	Implementation of Issues

	Future Work
	Conclusion
	Appendices
	Evaluation of QDA-Expert 1
	Evaluation of QDA-Expert 2

	References

