
Processing Open Transport Data:
Design and Implementation of an

Extension for a Data Pipeline
Modeling Language

MASTER THESIS

Johannes Noah Schilling
Submitted on 30 June 2023

Friedrich-Alexander-Universität Erlangen-Nürnberg
Faculty of Engineering, Department Computer Science

Professorship for Open Source Software

Supervisor:
Philip Heltweg, M.Sc.

Prof. Dr. Dirk Riehle, M.B.A.

Declaration of Originality

I confirm that the submitted thesis is original work and was written by me without
further assistance.Appropriate credit has been given where reference has been
made to the work of others.The thesis was not examined before, nor has it been
published.The submitted electronic version ofthe thesis matches the printed
version.

Erlangen, 30 June 2023

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 30 June 2023

i

ii

To Barbara, Arnd, Franzi, and Paul— who are always helping me
to become the best version of myself

iii

iv

Acknowledgements

I deeply appreciate Philip for his invaluable time,insightfulfeedback,and un-
wavering support throughout this thesis journey as well as the entire JValue Team
for their consistent encouragement and assistance.
Furthermore, I acknowledge the help of ChatGPT in improving the writing and
nothing but the writing of this thesis.
And lastly,I am truly thankfulto all the proofreaders for their significant con-
tributions in improving this thesis.

v

vi

Abstract

Open transport data enables innovation by offering a vast amount of information
for developers, researchers, urban planners, and entrepreneurs to create new ap-
plications, services, and business models.However, the lack of specific guidelines
for making data “open” has led to the existence of diverse proprietary and hetero-
geneous open data platforms.Open transport data formats,such as static and
real-time General Transit Feed Specification (GTFS), provide a standardized way
to share information about public transit systems, including schedules and vehicle
positions.Since this data is difficult to access and often times volatile, archiving
GTFS data has severaladvantages,including the possibility ofpassenger rout-
ing and traffic flow analysis.The JValue research project aims to democratize
collaborative data engineering by providing,among other components,Jayvee,
a domain-specific language for data pipeline modeling.This thesis focuses on
extending Jayvee to support processing of GTFS static and real-time data.The
development process involves defining functional requirements through a Request
for Comments (RFC) process and implementing the extension incrementally by
introducing new language features such like a data extractor for HTTP content,
an interpreter for ZIP-files, or a filesystem component.Providing a demonstrator,
an evaluation phase showcases proper system execution and the periodic archival
mechanism.As a result, it is now possible for users of Jayvee, to access, process,
and archive GTFS static and realtime data periodically.Future improvements
include automating optionalfields and tables handling,providing user-friendly
pre-configured GTFS dataset layouts,and introducing a concept for composite
pipelines.This engineering thesis serves as a guide for the open transport data
research community, on how to extend open source software like Jayvee to reduce
barriers accessing and processing open transport data.

vii

viii

Contents

1 Introduction 1

2 Fundamentals 5
2.1 GTFS: Static and Realtime Datasets. 5
2.2 JValue Tooling Ecosystem .. 10

3 Requirements 15
3.1 Definition Procedure and Representation 15
3.2 Functional Requirements for GTFS Support. 17
3.3 Functional Requirements for GTFS-RT Support. 19
3.4 Non Functional Requirements. 21

4 Architecture 23
4.1 GTFS Support . 23
4.2 GTFS-RT Support . 25
4.3 Periodical Archival Mechanism 26

5 Design and Implementation 29
5.1 GTFS Support . 29
5.2 GTFS-RT Support . 40
5.3 Combining GTFS with GTFS-RT 43

6 Evaluation 45
6.1 Demonstrator. 45
6.2 Functional Requirements. 50
6.3 Non-Functional Requirements. 52
6.4 Limitations . 52

7 Conclusion 55

Appendices 57
A RFC Document for GTFS Support (RFC-0002). 59

ix

B GitHub Issue for RFC-0002 GTFS Support 65
C RFC Document for GTFS-RT Support (RFC-0006). 71
D GitHub Issue for RFC-0006 GTFS-RT Support. 75
E Bill of Materials .. 78
F GTFS Static Pipeline .. 79
G GTFS Realtime Pipeline. 84
H GTFS Static and Realtime Pipeline 86
I Execution Output Logs .. 92

References 97

x

List of Figures

2.1 Data model of a GTFS file collection including GTFS-RT 9
2.2 Sequence diagram of the JValue tooling ecosystem (extracted and

adapted from the JValue documentation) 12
3.1 Requirement engineering and implementation process applied in

this thesis. 16
4.1 GTFS pipeline model. 24
4.2 GTFS-RT pipeline model .. 26
4.3 Schematic pipeline containing segments for GTFS and GTFS-RT27
5.1 Class diagram of FileSystem and File using the composite design

pattern .. 31
5.2 GTFS-RT element index of TripUpdate-Entity, having stop_tim

e_update as collection with maximum depth (simplified version) .41
6.1 Validation console output for GTFS data 47
6.2 Validation console output for GTFS-RT data 48
6.3 Increase of SQLite database file size over a period of 2 hours when

archiving data periodically .. 49

xi

xii

List of Tables

2.1 GTFS static specification adapted from developer reference (Google,
2022b). 6

2.2 Exemplary content of calendar.txt representing a weekly timetable
of services. 7

2.3 Exemplary content of calendar_dates.txt used in conjunction
with calendar.txt. 7

3.1 Stage, Scope, and Pull Request of different iterations for RFC0002
GTFS support .. 17

3.2 Stage, Scope, and Pull Request of different iterations for RFC0006
GTFS-RT support . 19

6.1 GTFS related endpoint ofmetropolis region around the city of
Brest used for validation .. 46

6.2 File size extrapolated from the growth rate observed in the demon-
strator by different periods .. 49

6.3 User Acceptance criteria of GTFS User Story by their acceptance
status and corresponding Pull Request in GitHub. 51

6.4 User Acceptance criteria of GTFS-RT User Story by their accept-
ance status and corresponding Pull Request in GitHub. 51

xiii

xiv

List of Listings

2.1 Exemplary content of a decoded feed message of type vehicle .. 10
2.2 Example of a Jayvee pipeline. 14
5.1 Retrieving a node recursively in FileSystemDirectory 32
5.2 Storing a node recursively while creating new directories. 32
5.3 Interface FileSystem .. 33
5.4 Getting a file from the InMemoryFileSystem 33
5.5 Storing a file into the InMemoryFileSystem. 33
5.6 Processing a path into its parts. 34
5.7 Abstract class FileSystemFile. 34
5.8 Interface None .. 35
5.9 Block of type HttpExtractor (example). 36
5.10 Simplified version of method for fetching http data. 36
5.11 Block of type ArchiveInterpreter (example). 37
5.12 Simplified version of method for unpacking zip archives. 37
5.13 Block of type FilePicker (example). 37
5.14 Block of type CSVInterpreter (example) 38
5.15 Block of type TableInterpreter for validating dimension agency

of a GTFS dataset (example). 38
5.16 Block of type SQLiteSink (example). 39
5.17 Simplified version of a GTFS-static pipeline. 39
5.18 Block of type GtfsRTInterpreter (example) 40
5.19 Feed message of type TripUpdate decoded as JSON (example) .. 42
5.20 Resulting extracted TripUpdate row as CSV including header. . 42
5.21 Block of type SQLiteLoader (example). 43
5.22 Simplified version of a GTFS-RT pipeline. 43
5.23 Simplified version of a pipeline loading both GTFS and GTFS-RT

data . 44
6.1 Exemplary execution output for section trips 46

xv

xvi

Acronyms

API Application Programming Interface
AST Abstract Syntax Tree
ETL Extract-Transform-Load
ITS Intelligent Transportation System
GTFS General Transit Feed Specification
GTFS-RT General Transit Feed Specification - Realtime
NAP National Access Point
NFR Non Functional Requirement
PR Pull Request
PSI Public Sector Information
RFC Request for Comments
UAC User Acceptance Criteria

xvii

xviii

1 Introduction

“Withoutdata we can’tbuild information,and withoutinformation
there is no new knowledge.”(European Commission, 2022)

With this statement the European Commission’s official platform — the European
Data Portal— encapsulates the fundamental purpose of open data.The concept
comprises data that is commonly available and can be used and republished
without restrictions from copyrights or patents (Braunschweig et al.,2012).As
of 2022, the portal hosts over 1.5 million public sector datasets, which represent
just one of the many available access points for open data (European Commission,
2022).
The movement towards providing free access to public data is primarily driven
by legislative efforts,such as the European Public Sector Information Directive
of 2003 (European Commission,2003) or the United States Open Government
Initiative directive (Obama, 2009).These policies establish the right for all indi-
viduals to reuse public information.However, there may be a misunderstanding
when comparing the terms “open”data and “public”data. To clarify,we adopt
the Open Knowledge Foundation’s recommendation that “public”data may be
restricted to non-commercialusage purposes,whereas “open”data has no such
limitations on usage (Mahajan et al., 2022; Molloy, 2011).
Open data encompasses various domains,including geographic data,tourist in-
formation, statistical and business data, meteorological data, and more.Its ori-
ginal motivation was to promote government accountability and citizen particip-
ation in political progress (Janssen, 2011).One of the unintended advantages of
this practice is its ability to foster a whole new ecosystem ofinnovation.Nu-
merous studies have demonstrated that taking a proactive approach to releasing
public and private data in open formats not only benefits companies, the research
community,citizens,and other stakeholders but also creates fresh business op-
portunities, enhances innovative capacity, and catalyzes transformative potential
(Conradie & Choenni, 2014; Zuiderwijk et al., 2014).
Given the increasing pace ofurbanization and mobility demands,significant
changes in transportation infrastructure are necessary (Dimitrakopoulos & De-

1

1. Introduction

mestichas,2010).Hereby,computer systems such as the Intelligent Transport-
ation System (ITS) encompass various fields,including transportation manage-
ment, traffic control and operations.They provide a reliable platform for address-
ing transportation-related issues and promoting cooperation within users of the
transportation system.In addition to highway traffic, ITS should also provide ac-
cess to public transport infrastructure (Qureshi & Abdullah, 2013).To harmonize
European efforts for a standardized ITS,the European Commission released a
set of directives in 2010, based on the Public Sector Information (PSI) directive
from 2003, providing a framework for the deployment of such a system (European
Commission, 2010).One outcome of the standardization directive is the obliga-
tion of each country to establish a dedicated National Access Point (NAP) that
publishes static and dynamic mobility data applying the open data approach
(European Commission, 2021).
Over the years a vast amount of data has been collected and published by public
and governmentalinstitutions,due to the open data directives.However,these
directives do not specify the methodology for making data “open”,resulting in
a diverse set ofopen data platforms that are often proprietary,heterogeneous,
and poorly documented.As a consequence,a majority ofthese platforms lack
proper standards and Application Programming Interfaces (APIs), making it dif-
ficult for data scientists and data engineers to collaborate on open data projects
(Braunschweig et al.,2012).To address these challenges,the Professorship of
Open Source Software at the University ofErlangen-Nuremberg has launched
the “JValue” project.This initiative aims atprovide a platform solution for Data
Scientists and Data Engineers to collaborate on open data projects in an easy,
safe, and reliable manner (Professorship of Open Source Software at the Univer-
sity of Erlangen, 2022).
GTFS and GeneralTransit Feed Specification - Realtime (GTFS-RT) are open
data standards which enable sharing information about public transit systems, in-
cluding schedules, routes, and stops (Google, 2022b).These formats have gained
widespread adoption among transit agencies worldwide and are publicly accessible
for utilization by anyone.Consequently,numerous applications and tools have
been developed, aiding riders in trip planning, route visualization, and real-time
information access.GTFS-RT is a real-time extension ofGTFS that provides
dynamic information,such as vehicle locations (Koetsier et al.,2017).The es-
tablishment of open data standards in the transportation industry demonstrates
how open data can improve transparency, planning, management, and accessibil-
ity to public transportation information for the benefit of riders and the general
public (Antrim, Barbeau et al., 2013).
Since this data is often times difficult to access and volatile,archiving GTFS
data has several benefits.First, by creating a national centralized transportation
data hub, organizations and individuals can access and utilize the data for various

2

1. Introduction

purposes, such as passenger routing and traffic flow analysis (Kujala et al., 2018).
Second, timetable data for a city is often fragmented, making it difficult to access
complete and accurate information.Archiving the data allows for consolidation
of these fragmented feeds,ensuring accessibility,even ifcertain endpoints are
down. Third, archiving the data allows for time-series analyses for identifying
trends and patterns in transportation usage over time (Kaeoruean et al.,2020).
Fourth,when providing GTFS data for large areas,such as entire countries,
spatialfiltering based on city boundaries is necessary.Archiving the data in
this case allows for easier spatialfiltering.However,GTFS data may contain
logicalerrors and thus validation is necessary to ensure accuracy (Harding &
Davies,2012).In conclusion,archiving GTFS and GTFS-RT data is crucial for
improving transportation planning, management, and decision-making.
The objective of this engineering thesis is to extend the JValue Project’s capab-
ilities to process and archive both static and real-time GTFS data.In Chapter
2, the fundamental concepts of a GTFS and an introduction to the JValue pro-
ject and its components,particularly the domain-specific language Jayvee,are
presented.Chapter 3 outlines the process of requirements engineering and lists
the extracted requirements.The software artifact’s architecture is described in
Chapter 4, and Chapter 5 presents details on the design and implementation.In-
troducing a demonstrator, Chapter 6 evaluates the developed artifact against the
functionalrequirements from the previous chapter,highlighting the limitations
of the implementation.The evaluation process exemplary utilizes open transport
data from the NAP of France.As GTFS and its dynamic counterpart GTFS-RT
are globally established static and dynamic transport feed specifications, the res-
ults obtained can be potentially applied to any GTFS data source.The work’s
conclusion is presented in Chapter 7.

3

1. Introduction

4

2 Fundamentals

Section 2.1 provides an overview of the essentialcharacteristics of data models
for both static GTFS files and their dynamic real-time counterpart,GTFS-RT.
Furthermore,Section 2.2 introduces the context ofthe JValue project,with a
particular emphasis on Jayvee, where the relevant system components and design
paradigms are emphasized.

2.1 GTFS: Static and Realtime Datasets
GTFS has gained widespread popularity over the past decade as an open-source
industry standard.It is published under the Create Commons Attribution 3.0
License for describing and publishing fixed- and dynamic-route transit operations
(Google,2022b).It is a data standard that defines how public transit agencies
should provide schedule information to developers.The specification includes in-
formation about stops, routes, and schedules for various forms of transportation
like buses and trains (Wu et al.,2022).The open design and clear document-
ation ofGTFS, along with input and feedback from the user community,have
contributed to its evolution into a robust and widely-used data format (Koetsier
et al., 2017).
The specification was originally introduced in 2005 as a collaboration between
Google and TriMet to create a web-based transit trip planner application.In
2007,it was made public for generaluse (Goldstein & Dyson,2013).In 2011,
Google released an extension to the static GTFS schedule called GTFS-RT,
which aimed to standardize real-time information feeds, such as real-time vehicle
positions or service alerts.In 2017,a revised version ofGTFS-RT, known as
GTFS-RT v2.0, was released in order to address limitations of the previous ver-
sion,particularly the lack of proper documentation and open source validation
tools (Lim et al., 2019).
GTFS is a collection ofCSV files that are packaged within a ZIP file.Each
CSV file can be viewed as a table ofdata. The primary purpose ofGTFS is
to facilitate passenger routing for public transportation.However,it can also

5

2. Fundamentals

be utilized for research purposes, such as modeling the accessibility provided by
public transportation (Kujala et al.,2018).GTFS establishes its own termino-
logy for data modeling,drawing from widely accepted data modeling languages
(Google, 2022b):

• Dataset- A collection of files,wrapped in an archive file (ZIP) describing
a transit system.The granularity is not further defined which can be for
example on a city-level, on a community-level, or on a country-level.

• Record - Multiple field values that describe a single entity such as a transit
agency, a stop, or a route (represented in a table as row).

• Field - Property of an entity (represented in a table as column).
• Field Value - Individual entry in a field (represented in a table as cell).

The specification differs between the status of files, records and fields:
• required - must be provided
• optional- may be ommitted
• conditionally optional- required under certain conditions

Required files for a GTFS dataset consist ofsix dimensions:agency.txt, st
ops.txt, routes.txt, trips.txt, stop_times.txt and one of two possible
representations of the calendar.Table 2.1 provides a detailed description of the
contents of a GTFS dataset.
Filename Required Definition
agency.txt Required Transit agencies with service.
stops.txt Required Defines stations and entrances.
routes.txt Required A group of trips displayed to riders as a single service.
trips.txt Required Trips for each route.
stop_times.txt Required Times that a vehicle arrives at and departs from stops for each trip.
calendar.txt Conditionally requiredService dates using a weekly schedule (timetable).
calendar_dates.txtConditionally requiredExceptions for the services defined in the calendar.txt (date oriented).
fare_attributes.txtOptional Fare information for a transit agency’s routes.
fare_rules.txt Optional Rules to apply fares for itineraries.
shapes.txt Optional Rules for mapping vehicle travel paths.
frequencies.txt Optional Time between trips for headway-based service.
transfers.txt Optional Rules for making connections at transfer points between routes.
pathways.txt Optional Pathways linking together locations within stations.
levels.txt Optional Levels within stations.
feed_info.txt Conditionally requiredMetadata, including publisher, version, and expiration information.
translations.txt Optional Translated information of a transit agency.
attributions.txt Optional Specifies the attributions, applied to the dataset.

Table 2.1:GTFS static specification adapted from developer reference (Google,
2022b)

As an example of conditionally required dimensions,we consider the represent-
ation ofthe calendar.An GTFS endpoint developer can choose to publish a

6

2. Fundamentals

timetable in a weekly format using calendar.txt, exemplary depicted in Table
2.2.The column service_id uniquely identifies a set of dates when a service is
available for one or more routes.The column for each day of a week indicates
whether the service operates on that weekday in the date range specified by the
columns start_date and end_date (Google, 2022b).

service_id monday ... sunday start_date end_date
1 0 ... 0 20230510 20230614
2 1 ... 0 20230509 20230616
3 1 ... 0 20230509 20230616
4 0 ... 0 20230512 20230616
5 1 ... 1 20230519 20230619

...

Table 2.2:Exemplary content of calendar.txt representing a weekly timetable
of services

Further, calendar_dates.txt can be used in conjunction with calendar.txt to
define exceptions to the default service patterns.In Table 2.3 the exception type
indicates whether service is available on the date specified (1 = Service has been
added for the specified date, 2 = Service has been removed for the specified date).
Alternatively,if calendar.txt is omitted, calendar_dates.txt can be used
to define a service for each date, accommodating services without normal weekly
schedules.Therefore,both files are classified as conditionally optional(Google,
2022b).

service_id date exception_type
2 20230518 2
2 20230519 2
3 20230518 2
3 20230519 2
4 20230519 2

...

Table 2.3:Exemplary content ofcalendar_dates.txt used in conjunction
with calendar.txt

In addition to GTFS, Google introduced the GTFS-RT specification specifically
for real-time updates.This extension enables developers to access real-time in-
formation regarding vehicle location, status, and any service disruptions or delays
(Barbeau, 2018).Typically, GTFS-RT data is provided through streaming data
feeds that are continuously updated in real-time as events occur.It is important
to note that the real-time feed is always accompanied by its corresponding static
feed, which defines the schedule and essential dimensions such as agency.txt or

7

2. Fundamentals

routes.txt in relation to the live updates (Koetsier et al., 2017).The GTFS-RT
specification encompasses three types ofadditionalinformation,which can be
combined into a single feed to enhance the static GTFS data (Google, 2022a):

• Trip updates - cancellations, delays and changed routes
• Service alerts - unforeseen events with impact on the transportation net-

work
• Vehicle positions - real-time information on vehicles position in coordinates

Unlike static GTFS data,which changes only when new schedules are released
manually,real-time feeds necessitate frequent updates at a high rate (typically
in the range of seconds) due to the involvement of live locations.Consequently,
GTFS-RT is specifically designed to be streamed using the protocol buffer format,
which offers an efficient binary representation of the data (Wu et al., 2022).
So, consuming and processing a GTFS-RT feed entails an additionalencoding
step to convert the messages into human-readable plain text as well as a mapping
logic to extract the corresponding information from the static GTFS schedule.
The combined data modelresulting from the integration of both specifications,
GTFS and GTFS-RT, is illustrated in Figure 2.1.Due to space limitations, only
the required dimensions and fields are included in the data model1.
Furthermore,each protobuf-encoded file is required to specify the structure of
its elements and their corresponding type definitions in a text file known as
gtfs-real-time.proto. This file is provided by the GTFS reference and serves
as a means to parse the protocol buffer data into a programming language specific
class representation.An example ofa decoded feed message,which includes
details about a vehicle’s current position at the time the request was sent to the
endpoint, is illustrated in Listing 2.1.
GTFS and GTFS-RT are used by a wide range of applications, including trip plan-
ning and navigation apps,as wellas tools for managing and optimizing transit
systems.These standards have greatly improved the availability and accessibility
of public transit information, making it easier for people to use public transport-
ation and leading to increased ridership and reduced congestion in cities around
the world (Goliszek & Połom, 2016).
One significant benefit of GTFS and GTFS-RT is their ability to support the de-
velopment of applications that can seamlessly work with multiple transit agencies,
even if those agencies utilize different systems or technologies.This interoperabil-
ity is possible because GTFS and GTFS-RT establish a standardized data struc-
ture and format, as described earlier, that can be utilized to represent information
from any agency.As a result,developers are empowered to create applications

1A complete reference can be accessed at https://developers.google.com/transit/site-map

8

2. Fundamentals

that can seamlessly connect with any transport agency that has adopted these
standards.This facilitates easier access and usage ofpublic transportation for
individuals (Kujala et al., 2018).

agency

agency_id

agency_name

agency_url

...

stops

stop_id

stop_name

stop_lat / stop_long

...

trips

trip_id

route_id

service_id

...

stop_times

stop_sequence

stop_id

trip_id

arrival / departure time

...

calendar_dates

service_id

date

exception_type

calendar

service_id

monday

tuesday

...

alert

feed_id

timestamp

trip_id

active_period

cause

effect

...

trip_update

feed_id

timestamp

trip_id

delay / time / uncertainy

...

vehicle

feed_id

timestamp

trip_id

latitude

longitude

...

GTFS-RT: realtime updatesGTFS: static timetable

routes

route_id

route_type

agency_id

...

Dataset packed in a static zip file, consisting of several CSV text
files, served via HTTP

Feed message encoded in a binary file, served via
HTTP and updated frequently

gtfs-
realtime.proto

defines

defines

defines

Figure 2.1:Data model of a GTFS file collection including GTFS-RT

9

2. Fundamentals

1 {
2 " entity ": [
3 {
4 " id ": " vehicle :268435809" ,
5 " vehicle ": {
6 " current_status ": " IN_TRANSIT_TO ",
7 " position ": {
8 " bearing ": 184.0 ,
9 " latitude ": 48.39114761352539 ,

10 " longitude ": -4.436010360717773
11 },
12 " trip ": {
13 " route_id ": "03" ,
14 " trip_id ": "15797257"
15 },
16 " vehicle ": {
17 " id ": "268435809"
18 },
19 // ...
20 }
21 },
22 // ...
23]
24 }

Listing 2.1:Exemplary content of a decoded feed message of type vehicle

2.2 JValue Tooling Ecosystem
Data engineering is the process oftransforming and preparing raw data into a
format that is ready for analysis,modeling,or other downstream uses (Ram-
amoorthy & Wah,1989).In open data,data engineering is even more crucial
due to the varying quality of data provided by publishers.Open collaboration,
which is similar to open-source development in software engineering context, can
help reduce individual costs by allowing separate parties to collaborate on shared
artifacts.By collaborating to improve data quality,open data users can avoid
relying solely on slow or poorly-structured data publishers (Heltweg & Riehle,
2022).
The primary objective ofJValue is to achieve “[...]a world that utilizes open
data to its fullest.”(Professorship ofOpen Source Software at the University
of Erlangen,2022).JValue is a project initiated by the Professorship ofOpen
Source Software at Friedrich-Alexander University Erlangen-Nürnberg.It offers
a collaborative open-source software solution for Extract-Transform-Load (ETL)
pipelining.The distinguishing and integral feature of JValue lies in its capacity
to facilitate collaborative data engineering projects, marking a vital step towards
democratizing open data utilization.(Professorship of Open Source Software at
the University of Erlangen, 2022).

JValue’s Components Overview
Since the project is currently under continuous development, the state described
in this thesis relates to the beginning of 2023.Back then,the project consisted
of three main parts:

10

2. Fundamentals

Jayvee A domain specific language for declarative description of ETL-pipelines
stored in human-readable Jayvee files (file-extension .jv).The project also
includes an interpreter for processing and executing Jayvee files.

JValue Hub A web frontend,which enables users to define and collaborate
on data pipeline models using Jayvee as a modeling language.The Hub
communicates with the backend and controls the execution of the defined
pipelines.

JValue Pipeline Service A backend service, which uses a runtime for execut-
ing Jayvee pipeline descriptions coming from the Hub by interpreting the
Jayvee models using a Jayvee-interpreter.

Interactions between the overallJValue tooling ecosystem are visualized as a
sequence diagram in Figure 2.2.After the user has defined and configured a
pipeline, the execution of the pipeline can be triggered.For that, the Hub initiates
a pipeline run by calling the Pipeline Service.The Pipeline Service then sends
a request to the Runtime for executing the run using the pipeline model.The
Jayvee Interpreter starts executing the pipeline defined.The current status of
the pipeline execution (e.g., “running” or “success”) is shown in the Hub.
The project’s source code is managed via a GitHub Organisation containing re-
positories for Jayvee2 as wellas for the Hub and Pipeline Service.The whole
project is written in TypeScript,each repository consisting ofmultiple pack-
ages which are organized in a monorepository approach.This improves code
consistency, reusability, developer experience, and code quality while supporting
the JValue team working on complex projects.TypeScript provides tooling and
static typing which can help catch errors early and make the code more robust
and maintainable.Additionally,it allows for the creation of reusable types and
interfaces which can be shared across multiple packages in the monorepository,
leading to more efficient development and fewer bugs.

2GitHub Repository:https://github.com/jvalue/jayvee

11

2. Fundamentals

Hub

Create pipeline instance

Pipeline Service

pipeline instance id

updateStatus(runId, "running")

loop
[status ==
"running"]

updateStatus(runId, "success", data)

Runtime Interpreter

Start pipeline run
from instance id

Execute run
from pipeline model

ok, started <runId>

Run result

ok, received run result

ok, started <runId>

interpret pipeline model

interpretation completed

 Get run status by id

"running"

Get run status by id

 "success", data

Figure 2.2:Sequence diagram of the JValue tooling ecosystem (extracted and
adapted from the JValue documentation)

Jayvee’s Conceptual Foundation
This Section serves as a foundation for the architecture draft and design de-
cisions discussed in Chapters 4 and 5.Specifically,it provides an overview of
Jayvee,a domain-specific language designed for the declarative description of
ETL-pipelines.
The codebase ofJayvee consists mainly ofthese packages relevant for this re-
search:

• language-server - defines and implements the domain specific language us-

12

2. Fundamentals

ing Langium3

• interpreter - Command line tool for interpreting Jayvee files)
• extension - Implementations of language features

– std - Standard functionality
– rdbms - Extension for support of relational databases
– tabular - Extension for support of tabluar data like CSV files

• execution - Execution related code used by the interpreter and by the ex-
tensions

The Jayvee language’s grammar primarily comprises three, basic entities:
• Pipeline - holds a collection of Block and Pipe entities
• Block - performs an ETL-related task, such as data extraction, transform-

ation, or loading
• Pipe - specifies the execution order of multiple Blocks within a pipeline

A Block has a key-value map syntax that is used to configure them.The keys
and their corresponding ValueTypes depend on the type of the Block,which is
indicated by the identifier that comes after the keyword oftype.A ValueType
is a data type that is used to define the type of the data that a Block processes
(e.g., primitive ValueTypes like integer or text).
Further, Jayvee differs between three basic block types:

• Extractor - represents a data source and has only a default output, no input
• Transformator - represents a transformation and has both a default input

and output
• Loader - represents a data sink and has only a default input

Data is conveyed through the pipeline as an io-type (e.g.,Sheet,Table, or
void). To illustrate the use of Jayvee in describing an ETL pipeline,a sample
pipeline is presented in Listing 2.2.This pipeline is designed to extract informa-
tion about cars from a CSV file, interpret it as a table, and then load it into an
SQLite database.

3https://langium.org

13

2. Fundamentals

1 pipeline CarsPipeline {
2 block CarsExtractor oftype CSVFileExtractor {
3 url : " https :// example . org / cars . csv ";
4 }
5 block CarsTableInterpreter oftype TableInterpreter {
6 header : true ;
7 columns : [
8 " name "typed text ,
9 " mpg "typed decimal ,

10];
11 }
12 block CarsLoader oftype SQLiteLoader {
13 file : " ./ cars . db ";
14 }
15 CarsExtractor
16 -> CarsTableInterpreter
17 -> CarsLoader ;
18 }

Listing 2.2:Example of a Jayvee pipeline

For transforming an input string (e.g., the example pipeline defined in Listing 2.2)
into a semantic model,Jayvee uses Langium.It constructs an Abstract Syntax
Tree (AST) by generating a lexicalanalyzer and parser based on the grammar
rules defined by Jayvee.Validation is performed to ensure compliance with the
language rules,encompassing type checking,name resolution,and scoping.An
AST is a tree-like data structure that represents the syntactic structure of source
code while abstracting away details such as formatting,punctuation,and com-
ments.The nodes of the tree represent constructs such as expressions, statements,
and declarations, while the edges of the tree represent the relationships between
them (Noonan, 1985).

14

3 Requirements

Requirements in software engineering are the specifications that define what a
software system should do to meet the needs ofits stakeholders (Nuseibeh &
Easterbrook, 2000).They guide our design, development and testing of the arte-
fact implemented later on.

3.1 Definition Procedure and Representation
Contributing to Jayvee follows a common RFC process to propose and develop
new features,typically established in open-source communities.This process
allows anyone to submit a proposalfor a new feature or to suggest changes to
an existing standard.Once a proposal is submitted, it is reviewed and discussed
by the community,and if approved,it is implemented as an officialpart of the
project.For that, JValue uses well-established features for collaborative software
development in GitHub.This includes branching for parallel development, issues
for bug tracking,and PullRequests (PRs) for proposing and merging changes.
The RFC process in JValue covers the following steps:

1. Drafting an RFC - The person proposing the change or standard drafts an
RFC document that outlines the proposal.The document must include a
clear description of the problem the proposal is trying to solve, the proposed
solution, and the potential impact of the change.

2. Community review - The RFC document is then committed onto a new git
branch in the RFC-folder of the project and feedback from the community
is requested by opening a PR referencing the branch.The community will
typically discuss the proposal, provide feedback, and suggest changes.

3. Revision -Based on the feedback received,the proposer may revise the
RFC document and resubmit it for further review.

4. Final approval- Once the RFC document has been revised and reviewed,
it may be approved by the community.

15

3. Requirements

5. Implementation - The RFC and its requirements can now be implemented
and shipped to the project, using GitHub Issues and further PRs.

The RFC process ensures that proposals are thoroughly reviewed and discussed
by the community before being adopted as officialstandards within the project
and also provides an historic perspective on the evolution ofthe project itself.
Figure 3.1 visualizes the process applied in this thesis, consisting of requirement
engineering and implementation phase.

D
ev

el
op

er Draft RFC
document

Extract User
Stories and
UAC into

Issues

Raise Pull
Request for

Issue

Implement
Issue

No

Yes

All Issues for RFC
implemented?

Issue left?

Raise Pull
Request for

RFC
document RFC shipped

Merge
implementation
to main branch

Got
RFC
idea

JV
al

ue
 c

om
m

un
ity

Review and
discuss RFC

document
Accepted?

Review Pull
Request for

Issue
Accepted?

RFC status
"Accepted"

Yes

Pull Request status
"Approved"

Yes

No No

Requirement engineering Implementation

Figure 3.1:Requirement engineering and implementation process applied in
this thesis

By following the iterative evolution and detailed description process outlined
earlier,a comprehensive understanding ofthe implementation requirements is
achieved.In the context of this thesis, the upstream RFC serves as the foundation
for extracting all the necessary requirements.In the next step,User Stories are
formulated, encompassing a set of User Acceptance Criteria (UAC) that directly
incorporate the requirements derived from the corresponding RFC.
User Stories are a technique applied in agile software development to capture
requirements from the perspective of end-users or customers.A User Story is a
short,simple statement that describes a specific feature or function that a user
needs or wants to perform a particular task or achieve a particular goal (Dalpiaz
& Brinkkemper, 2018).
In JValue, User Stories follow a common format “As a ⟨user/persona⟩, I want ⟨to
perform this action⟩, so that ⟨I can accomplish this goal⟩.”.
UAC are a set of conditions or requirements that must be met for a single User
Story to be accepted by the end-users or customers.These are used to validate
that the outcome meets their expectations and requirements.UAC are typically

16

3. Requirements

written in plain language and should be testable and measurable, so that it is clear
when they have been met (Pandit & Tahiliani, 2015).Following this definitions,
an RFC can be seen as finally shipped to the project once the complete set of its
User Stories (including their UAC) are implemented and accepted.

3.2 Functional Requirements for GTFS Support
The capability to process GTFS files using the Jayvee interpreter, as seen in the
components in Figure 2.2, was introduced into the project through the RFC-0002
Mobility Extension1.
This document underwent five iterations, with community and developer discus-
sions and reviews.Table 3.1 displays the scope and changes of each iteration.In
the digital version of this paper, the column labeled PR contains a hyperlink to the
relevant details on GitHub.Otherwise,details can be accessed manually using
the URL pattern https://github.com/jvalue/jayvee/pull/<PR>. Further
details on significant design decisions and specific implementation approaches are
discussed in Chapter 4 and Chapter 5.

Iteration Package Stage Scope PR
1 Jayvee Initial concept File processing using collections111
2 Jayvee Refinement File processing using collections115
3 Jayvee Change of conceptFile processing using file-pickers116
4 Jayvee Refinement File processing using file-pickers117
5 Jayvee ACCEPTED File processing using file-pickers119

Table 3.1:Stage,Scope,and PullRequest of different iterations for RFC0002
GTFS support

All requirements extracted from RFC-0002 result in one User Story2:
1. As a user of Jayvee,
2. I want to archive GTFS-data from an http-endpoint,
3. so that this kind ofdomain specific data gets stored in a SQLite database

file according to the GTFS-relationalmodel

The requirement to store data in SQLite-format is based on the fact that SQLite
is a recommended format for long term archival of structured data according to

1RFC document can be found in Appendix Section A and on GitHub:https://github.com
/jvalue/jayvee/tree/main/rfc/0002-mobility-extension

2User Story document can be found in Appendix Section B and on GitHub:https://gith
ub.com/jvalue/jayvee/issues/123

17

3. Requirements

the US Libary of congress (SQLite Consortium, 2018).Further, archiving GTFS-
data in an tabular way offers the possibility to validate the underlying schema
right away during the load.Lastly, SQLite-sinks are already supported by Jayvee,
which integrates well with our overall goal to archive GTFS-data using the JValue
tooling ecosystem.
To fulfill the expectation of that User Story, following UAC must be met:

□ UAC-1 Implement io-type File - A new io-type File is implemented.
□ UAC-2 Implement io-type FileSystem - A new io-type FileSystem is im-

plemented.
□ UAC-3 Implement io-type None - A new io-type None is implemented.
□ UAC-4 Extend io-type Table - The io-type Table stores the table’s name.
□ UAC-5 Process table name - The block LayoutValidator processes the

new table name coming from Table.
□ UAC-6 Refactor Jayvee-examples using table name - The exsiting Jayvee-

examples-files are storing the table’s name in Table-Block.
□ UAC-7 Abort execution - If a precessor of a block outputs None, the execu-

tion of the current pipeline aborts.
□ UAC-8 Introduce Folderstructure - A folderstructure for io-types is intro-

duced.
□ UAC-9 Implement HTTPExtractor - A new blocktype HTTPExtractor is

implemented in the standard-extension of Jayvee.
□ UAC-10 Implement ArchiveInterpreter - A new blocktype ArchiveInter

preter is implemented in the standard-extension of Jayvee.
□ UAC-11 ImplementFilePicker - A new blocktype FilePicker is imple-

mented in the standard-extension of Jayvee.
□ UAC-12 Implement CSVInterpreter - The current blocktype CSVFileExt

ractor is refactored to an CSVInterpreter.
□ UAC-13 Refactor CSVFileExtractor - The former extractor-functionality of

CSVFileExtractor is covered by the new HTTPExtractor and ArchiveI
nterpreter.

□ UAC-14 Refactor Jayvee-examples to new blocks - The Jayvee-examples-
files are adapted using the new blocks HTTPExtractor and ArchiveInter
preter.

□ UAC-15 ConditionalGTFS-columns - All conditional required columns of
the GTFS schema are considered as required.

18

3. Requirements

□ UAC-16 Multiple block inputs- The current block SQLiteSink accepts
multiple inputs (For a proof of concept, multiple sinks are accepted, rather
than multiple inputs for one sink).

□ UAC-17 Processing table name - The current block SQLiteSink processes
the new table’s name.

□ UAC-18 Database creation - The current block SQLiteSink does not recre-
ate a database each call.

□ UAC-19 Parallel processing - Parallel processing of independent blocks does
not interfere the overall execution of a pipeline.

□ UAC-20 Sucessful execution - Jayvee successfully processes a GTFS pipeline.

3.3 FunctionalRequirements for GTFS-RT Sup-
port

The concept of Jayvee to processes real-time is outlined in RFC-0006 GTFS-RT
support3. This document underwent three iterations,which were reviewed and
discussed by both the community and developers.Table 3.2 provides a summary
of the scope and changes made during each iteration.In the digitalversion
of this paper,the column PR contains a hyperlink to the relevant details on
GitHub. Otherwise, the details can be accessed manually using the URL pattern
https://github.com/jvalue/jayvee/pull/<PR>. Further details on major
design decisions and specific implementation approaches are provided in Chapters
4 and 5.
Iteration Package Stage Scope PR
1 Jayvee Initial conceptFile processing using GtfsRTInterpreter200
2 Jayvee Refinement File processing using GtfsRTInterpreter201
3 Jayvee ACCEPTED File processing using GtfsRTInterpreter311

Table 3.2:Stage,Scope,and PullRequest of different iterations for RFC0006
GTFS-RT support

3RFC document can be found in Appendix Section C and on GitHub:https://github.com
/jvalue/jayvee/tree/main/rfc/0006-gtfs-rt-support

19

3. Requirements

The User Story4 pertains to process both, static and real-time GTFS data using
Jayvee, and is stated as followed:

1. As a user of Jayvee,
2. I want to archive GTFS-RT-data from an http-endpoint,
3. so that multiple executions of a pipeline containing both, GTFS and GTFS-RT

sections,demonstrate an archiving process ofstatic as wellas real-time
GTFS data

To fulfill the expectation of that User Story, following UAC must be met:
□ UAC-1 Implement GtfsRTInterpreter - A new blocktype GtfsRTInterpre

ter is implemented in std-extension.
□ UAC-1.1 Define simple GTFS-RT pipeline - A new demo pipeline gtfs-r

t-simple.jv is implemented.
□ UAC-2 Implement DropTable attribute - The current blocktype SQLiteSink

is configurable by an attribute dropTable indicating to drop data before
loading to the sink.

□ UAC-3 Showcase GTFS and GTFS-RT data processing - A new pipeline
gtfs-static-and-rt.jv is added to showcase the processing of real world
GTFS as well as GTFS-RT data.

□ UAC-4 Create/Update SQLite file - Every run of gtfs-static-and-rt.jv
creates/updates one single SQLite database.

□ UAC-5 Overwrite GTFS data -Every run ofgtfs-static-and-rt.jv
downloads GTFS data and overwrites GTFS tables.

□ UAC-6 Append GTFS-RT data - Every run of gtfs-static-and-rt.jv
downloads GTFS-RT data and appends to GTFS-RT tables.

□ UAC-7 Sucessfulexecution - Jayvee processes gtfs-static-and-rt.jv
successfully.

4User Story document can be found in Appendix Section D and on GitHub:https://gith
ub.com/jvalue/jayvee/issues/219

20

3. Requirements

3.4 Non Functional Requirements
To ensure Jayvee’s robust performance it’s essential to examine Non Functional
Requirements (NFRs), as they shape system constraints like reliability, usability
and scalability (Chung et al.,2012).Both extensions,GTFS and GTFS-RT,
encompass the following:

• NFR-1 Using compositions - To increase the reliability and reusability of
the implemented block types and artifacts,a generic approach should be
adopted.Specifically,utilizing a composition of blocks should be applied,
as this approach involves breaking down the functionality into smaller pack-
ages rather than relying on domain-specific blocks.It enables the seamless
integration of the artifacts and block types into any ETL-pipeline, thereby
enhancing their overall applicability.

• NFR-2 Seamless integration -The extension should integrate seamlessly
with the existing Jayvee implementation and should not introduce signific-
ant logical modifications to the grammar.

• NFR-3 High execution performance - The implementation must exhibit high
execution performance and should not give rise to any significant runtime
issues.

These non-functional requirements for both extensions, including using compos-
itions, seamless integration, and high execution performance, guide the develop-
ment process towards achieving a reliable, versatile, and efficient system.

21

3. Requirements

22

4 Architecture

Architecture refers to the high-levelstructure ofa software system.It defines
the overall organization of the system, including the major components and their
relationships, as well as the constraints and principles that guide the design and
implementation of the system.The architecture of a system defines the funda-
mentaldecisions that shape the system and its ability to meet the needs of its
users (Garlan & Shaw, 1993).
The development of JValue and Jayvee is still in its early stages, which means that
changes to the architecture and core principles can be expected during the course
of this thesis and after its publication.Consequently,every concept described
here refers to the point in time when the corresponding PR was merged into the
main repository branch, unless explicitly stated otherwise.In order to maintain
coherence in our arguments, we will also discuss the core concepts and approaches
that have undergone minor modifications when necessary.It is important to note
that these changes are a natural part of the software development process and are
aimed at enhancing the overall functionality and performance of the platform.

4.1 GTFS Support
In the domain of processing GTFS files,we utilize the pipeline design pattern,
which is thoroughly explained in Section 2.2.This pattern consists of multiple
stages, namely an Extractor, several Interpreters, some Validators, and finally a
Loader that directs the processed data to a designated sink.The main goal is to
load a GTFS dataset into a tabular representation, as illustrated in Figure 2.1.
In the initial stages ofthe project,the proposed plan outlined in RFC-0002
iteration 11 was to develop a GtfsInterpreter block type capable of handling
collections of io-type to process the GTFS archive file.The idea was to unpack
the GTFS archive and process a set of CSV files within the GtfsInterpreter
block.However,this implementation was found to be impractical as it required

1RFC-0002 iteration 1:https://github.com/jvalue/jayvee/pull/111

23

4. Architecture

substantial modifications to the grammar to support the concept of collections of
io-type.
Instead offollowing the idea ofio-type collections,a concept ofa filesystem
containing multiple files,accessed by file pickers was proposed and finally ac-
cepted2. This approach avoids a fundamental change in the grammar of Jayvee
which would have been caused by supporting collections.To achieve this goal,
all underlying CSV files that comprise the GTFS archive file are processed using
a separate track in the pipeline, with each CSV file processed with its dedicated
blocks.
After unarchiving the GTFS archive file, the individual CSV files containing the
dimension’s data are selected based on their filename and processed independ-
ently in parallel3. In Figure 4.1 a model of the GTFS pipeline discussed is shown,
including all necessary blocks highlighted by their implementation status (Imple-
mentation from scratch / Changes to existing artifacts).However, if a file is not
found in the GTFS file collection as expected, the processing of that file is imme-
diately halted, and no table is generated from it.This prevents the accumulation
of incomplete or erroneous data in the database,reducing the risk oferrors or
inconsistencies in downstream applications that depend on the processed data.
Finally,each successfully generated table is loaded into the same SQLite sink,
consolidating all the relevant data into a single database.This approach ensures
the capture of allcrucialdata from the GTFS file,while excluding any missing
or incomplete data, thereby guaranteeing the integrity of the processed data.

HTTPExtractor
void → File

ArchiveInterpreter
File → FileSystem

FilePicker
FileSystem → File

FilePicker
FileSystem → File

FilePicker
FileSystem → File

CSVInterpreter
File → Sheet

CSVInterpreter
File → Sheet

CSVInterpreter
File → Sheet

LayoutValidator
Sheet → Table

LayoutValidator
Sheet → Table

LayoutValidator
Sheet → Table

SQLiteSink
Table → void

Requires implementation from scratch Requires changes to existing artifacts

Figure 4.1:GTFS pipeline model

In more detail,the pipeline begins with a HttpExtractor that sends a HTTP-
GET request to an endpoint, which provides a GTFS dataset.The output of this
block is the HTTP response, which is stored as a binary file.Next, an instance of
the ArchiveInterpreter is employed to parse the downloaded file, assuming it

2RFC-0002 iteration 5:https://github.com/jvalue/jayvee/pull/119
3From an execution perspective, the Jayvee interpreter still executes each pipeline sequen-

tially based on a total order of all blocks

24

4. Architecture

follows an archive file format.This interpreter initializes an in-memory filesystem
based on the content of the input file.
After the preparation phases have been successful,the following steps are ex-
ecuted in parallel.A FilePicker is responsible for selecting a specific File from
the incoming FileSystem and forwarding it to the downstream CSVInterpreter.
The CSVInterpreter then interprets the selected File as a tabular-like Sheet.
This Sheet is then evaluated against an expected schema by the subsequent
LayoutValidator.
Finally,the Table parsed from the input GTFS archive is loaded into a user-
named table in a SQLite database.This ensures that each Table is stored
separately, maintaining organization and avoiding data overlap.
With this setup, the user can control which dimensions of the the GTFS-schema
should be loaded to the sink by adding or removing accordingly the parallel
streams ofFilePicker, CSVInterpreter and LayoutValidator, since every
dimension needs their own stream.Overall, this pipeline design pattern provides
a reliable and scalable solution for processing large GTFS-datasets.Additionally,
the newly introduced concept offiles,filesystems and file pickers can be used
generically with every kind offolder structure,since this concept is not GTFS
specific.

4.2 GTFS-RT Support
The integration ofGTFS-RT support can be viewed as a further extension of
the GTFS foundation in the Jayvee architecture enabling real-time update pro-
cessing.By incorporating GTFS-RT, Jayvee can process pipelines that not only
extract static public transportation schedules and associated geographic inform-
ation but also real-time updates about associated fleets such as delays, cancella-
tions, and vehicle positions, among others.As described in Chapter 2, GTFS-RT
data is typically provided in the form of streaming data feeds that are updated
in real-time as events occur.It is specified that GTFS-RT is streamed using the
protocolbuffer format.So, to store human-readable plain text in the SQLite
sink, an additional decoding stage is required to convert the feed’s messages.
Figure 4.2 illustrates a simplified modelof a GTFS-RT pipeline capable of pro-
cessing allpossible entities within a GTFS-RT feed.This concept,proposed
in the accepted RFC-00064, utilizes artifacts implemented in the former GTFS
architecture proposal.
The pipeline begins with an HTTPExtractor responsible for downloading the
protobuf file from an endpoint.Next,a parallelconfiguration of GtfsRTInterp

4RFC-0006 iteration 2:https://github.com/jvalue/jayvee/pull/201

25

4. Architecture

reters is employed to extract entities such as trip updates,alerts,and vehicle
positions, as defined in the GTFS-RT reference.These interpreters are designed
to work in parallel, enabling efficient processing of the data.
Following the extraction of entities,the TableInterpreter block is introduced
to match the extracted data against an expected schema.Due to parallel changes
by the JValue team, the TableInterpreter replaces the previous LayoutValida
tor block. However,it is important to note that there have been no functional
changes, only differences in syntax.
Finally, the SQLiteSink block saves the processed data as tables within a SQLite
database.This ensures the persistence of the extracted information for further
analysis and utilization.

HTTPExtractor
void → File

GtfsRTInterpreter
File → Sheet

entitiy="trip_update"

GtfsRTInterpreter
File → Sheet

entitiy="vehicle"

GtfsRTInterpreter
File → Sheet
entitiy="alert"

SQLiteSink
Table → void

TableInterpreter
Sheet → Table

TableInterpreter
Sheet → Table

TableInterpreter
Sheet → Table

Requires implementation from scratch Requires changes to existing artifacts

Figure 4.2:GTFS-RT pipeline model

4.3 Periodical Archival Mechanism
Since the overallgoalof this thesis is to enable a periodicalload of GTFS- and
related GTFS-RT-data, the concept for the archival mechanism is:

1. One pipeline containing both, GTFS and GTFS-RT sections.
2. Periodical execution of the whole pipeline.
3. An additional attribute for SQLite-sink indicates whether tables should be

dropped before load starts.GTFS-tables are dropped every run, GTFS-RT-
tables not, which leads to a dataset containing the static information as well
as the incrementally growing real-time data tables.

26

4. Architecture

GTFS section
drops data before load

GTFS-RT section
appends data during load

1)

2)

3)

Figure 4.3:Schematic pipeline (3), which executes segments for GTFS (1) and
GTFS-RT (2) periodically

The proposed concept results in a pipeline that contains two sections,as illus-
trated in Figure 4.3.By including both static GTFS-information and real-time
updates from GTFS-RT in the same pipeline, this approach provides a compre-
hensive and up-to-date archive of transportation data that can be accessed at any
time.Additionally,the periodic execution of the pipeline ensures that the data
remains current,and any updates to the transportation system are captured in
a timely manner.

27

4. Architecture

28

5 Design and Implementation

Design refers to the detailed implementation of the system.It includes the specific
choices made about data structures,algorithms,and interfaces,as wellas the
organization of the codebase.Design decisions are based on the architecture and
they determine how the system will function (Perry & Wolf, 1992).
The subsequent sections provide a detailed description of the design and imple-
mentation phase, which encompasses interfaces, design decisions, and implement-
ation approaches.The complete source code can be accessed through the GitHub
references provided in the footnotes.A bill of materials, which includes all newly
introduced libraries and their corresponding licenses,is available in Appendix
Section E.
It is important to note,as the development ofJayvee is progressing rapidly,
some ofthe fundamentalconcepts and approaches have been subject to minor
adjustments during the design and implementation phase ofthis thesis.Also,
minor improvements of a concept were introduced, after the initial PR has already
been merged.Hence,any explanation ofa concept presented herein refers to
the time when the corresponding PR was merged into the main branch ofthe
repository, unless specified otherwise.

5.1 GTFS Support
To enable Jayvee to process GTFS data,the following components need to be
added:

• New io-types:The introduction of File and FileSystem io-types is neces-
sary.These willhandle file-related operations and manage the file system
within Jayvee.

• Enhancing the Table io-type:The Table io-type needs to be modified to
include the ability to store a table’s name.This enhancement will allow for
the handling of multiple tables as input within the framework.

• New blocktypes:The addition ofnew blocktypes is required to support

29

5. Design and Implementation

GTFS data processing.These blocktypes include HTTPExtractor,which
handles downloading data from HTTP endpoints,ArchiveInterpreter,
which interprets archive file formats,and FilePicker, responsible for se-
lecting specific files from a file system for further processing.

• Implementation of an abort mechanism:To incorporate an abort mechan-
ism,a new io-type called None must be introduced.This io-type willbe
utilized to halt the execution ofsubsequent blocks ifa predecessor block
outputs None.

IO-Types for GTFS Support
In a pipeline, data is encapsulated within an io-type, with each block expecting
a specific type.Typically, the output type of a preceding block must correspond
to the input type of the subsequent block.However,in the case of extractors/-
loaders, the input and output types are naturally defined as void.

Filesystem Design1

To simplify the retrievaland storage offiles within directories,we propose the
implementation of a new class hierarchy that adheres to the commonly-used com-
posite design pattern, as discussed by Gamma et al. (1996) among others.A UML
class diagram depicting the implemented classes and interfaces is illustrated in
Figure 5.1.Implementing a filesystem using this pattern offers severaladvant-
ages.Firstly, it provides a unified interface for accessing both files and directories,
which simplifies the code and reduces complexity.This unified interface allows
clients to treat both files and directories in the same way,making it easier to
work with the filesystem.In our case, we treat the InMemoryFileSystem as the
client using the abstract FileSystemNode class.Secondly, the composite pattern
allows for the creation ofcomplex hierarchicalstructures,with directories con-
taining subdirectories and files.This enables the creation of a more organized and
efficient filesystem, with a clear hierarchy that can be easily navigated.Thirdly,
the composite pattern allows for the implementation of recursive algorithms that
can be applied to the entire filesystem.
In the initial version, the implementation differed from the current version,and
the composite pattern was incorporated later for optimization purposes.As a
result, some of the code artifacts are associated with more than one PR.

1PR on GitHub: https://github.com/jvalue/jayvee/pull/256

30

5. Design and Implementation

<<uses>>

<<abstract>>
FileSystemNode

name: string

getNode(pathParts: string[]): FileSystemNode | null

putNode(pathParts: string[], node: FileSystemNode):
FileSystemNode | null

<<class>>
FileSystemDirectory

name: string

children: FileSystemNode[]

getNode(pathParts: string[]): FileSystemNode | null

putNode(pathParts: string[], node: FileSystemNode):
FileSystemNode | null

addChild(fileSystemNode: FileSystemNode):
FileSystemNode | null

-nodeHasAlreadyChildDirectoryWithSameName(rest:
string[]): boolean

-nodeHasAlreadyChildFileWithSameName(rest:
string[]): boolean

<<class>>
TextFile

name: string

ioType: IoType
= TEXT_FILE

...

0...* children

1 parent

<<interface>>
FileSystem

getFile(path: string): FileSystemFile | null

putFile(path: string, node: FileSystemFile):
FileSystem | null

<<class>>
InMemoryFileSystem

- rootDirectory: FileSystemDirectory

- PATH_SEPARATOR: string = "/"

- PATH_SEPARATOR: string = "/"

- CURRENT_DIR: string = "."

- PARENT_DIR: string = ".."

getNode(pathParts: string[]): FileSystemNode | null

putNode(pathParts: string[], node: FileSystemNode):
FileSystemNode | null

- processPath(path: string): string[] | null

<<interface>>
IOTypeImplementation

ioType: T

<<class>>
BinaryFile

name: string

ioType: IoType = FILE

...

<<abstract>>
FileSystemFile

name: string

extension: FileExtension

mimeType: MimeType

content: T

getNode(pathParts: string[]): FileSystemNode | null

putNode(pathParts: string[], node: FileSystemNode):
FileSystemNode | null

Figure 5.1:Class diagram of FileSystem and File using the composite design
pattern

For instance, in our implementation, the process of retrieving a file (Listing 5.1)
and storing a file (Listing 5.2) is executed recursively by traversing through the
directories specified in the filepath across the entire filesystem.This is achieved
by considering each node as a composite ofsubnodes.Furthermore,when us-
ing the putNode() method,new directories are dynamically created as needed.
Therefore,if a file is to be stored in a directory path where some parts ofthe
path do not yet exist, the method generates new directories.Also, the composite
pattern allows for the creation of abstract base classes that can be extended to

31

5. Design and Implementation

implement specific functionality for different types of nodes.In our case this is
represented by the abstract FileSystemFile where BinaryFile and TextFile
extend from.

1 override getNode (pathParts : string []) : FileSystemNode | null {
2 const [firstPart , ... rest] = pathParts ;
3 // Base case : Called a wrong node
4 if (firstPart !== this . name) {
5 return null ;
6 }
7 // Base case : Called the right node
8 if (rest . length ===0) {
9 return this ;

10 }
11 // Recursion case : Traverse child nodes
12 for (const child of this . children) {
13 const f = child . getNode (rest);
14 if (f) {
15 return f;
16 }
17 }
18 return null ;
19 }

Listing 5.1:Retrieving a node recursively in FileSystemDirectory (filesyst
em-node-directory.ts)

1 override putNode (pathParts : string [] , node : FileSystemNode) : FileSystemNode | null {
2 const [firstPart , ... rest] = pathParts ;
3 // Base case : Called a wrong node
4 if (firstPart !== this . name) {
5 return null ;
6 }
7 // Base case : One path part left (which is the filename)
8 if (rest . length ===1) {
9 if (

10 ! this . nodeHasAlreadyChildFileWithSameName (rest) &&
11 node . name===rest [0]
12) {
13 this . addChild (node);
14 return node ;
15 }
16 return null ;
17 }
18 // Case : Add directory , because it does not exist
19 if (
20 ! this . nodeHasAlreadyChildDirectoryWithSameName (rest) &&
21 rest [0] != null
22) {
23 const newdir = new FileSystemDirectory (rest [0]) ;
24 this . addChild (newdir);
25 return newdir . putNode (rest , node);
26 }
27 // Recursion case : Traverse child nodes
28 for (const child of this . children) {
29 const f = child . putNode (rest , node) ;
30 if (f) {
31 return f;
32 }
33 }
34 return null ;
35 }

Listing 5.2:Storing a node recursively while creating new directories (filesy
stem-node-directory.ts)

32

5. Design and Implementation

IO-Type FileSystem2

An io-type FileSystem (Listing 5.3) allows for a hierarchicalrepresentation of
multiple files through the unpacking of, for instance, a GTFS ZIP file containing
multiple text files.The interface defines generic methods for accessing and storing
files.The getFile-method retrieves a file by its absolute path starting at the root
of the file sytem,returning a null value if the file does not exist.The putFile-
method stores a file using its absolute path, returning the FileSystem if the file
is stored successfully.This return value enables method chaining, which increases
the usability (e.g., fs.putFile("/file1")?.putFile("/file2")).

1 export interface FileSystem extends IOTypeImplementation < IOType . FILE_SYSTEM > {
2 getFile (path : string): FileSystemFile < unknown > | null ;
3 putFile (path : string , file : FileSystemFile < unknown >) : FileSystem | null ;
4 }

Listing 5.3:Interface FileSystem (filesystem-io-type.ts)

We present an implementation of a FileSystem in shape of FileSystemInMemory.
The implementing methods (Listings 5.4 and 5.5) process the incoming path and
subsequently delegate the callto the dedicated methods described earlier.Pro-
cessing a path involves validating if it starts with a PATH_SEPARATOR,removing
empty path components,and handling current and parent directory references.
The processed path components are then returned as an array (Listing 5.6).

1 getFile (path : string) : FileSystemFile < unknown > | null {
2 const processedParts = this . processPath (path);
3 if (processedParts != null) {
4 const node = this . rootDirectory . getNode (processedParts);
5 if (node instanceof FileSystemFile) {
6 return node ;
7 }
8 }
9 return null ;

10 }

Listing 5.4:Getting a file from the InMemoryFileSystem (filesystem-inmem
ory.ts)

1 putFile (path : string , file : FileSystemFile < unknown >) : FileSystem | null {
2 const processedParts = this . processPath (path);
3 if (processedParts != null) {
4 const node = this . rootDirectory . putNode (processedParts , file);
5 if (node instanceof FileSystemFile) {
6 return this ;
7 }
8 }
9 return null ;

10 }

Listing 5.5:Storing a file into the InMemoryFileSystem (filesystem-inmem
ory.ts)

2PRs on GitHub:https://github.com/jvalue/jayvee/pull/126 and https://github.com/jva
lue/jayvee/pull/256

33

5. Design and Implementation

1 private processPath (path : string) : string [] | null {
2 if (! path . startsWith (InMemoryFileSystem . PATH_SEPARATOR)) {
3 return null ;
4 }
5 const parts = path
6 . split (InMemoryFileSystem . PATH_SEPARATOR)
7 // Process paths like " folder1 // folder1 " to " folder1 / folder2 "
8 . filter ((p) => p !== "");
9 const processedParts : string [] = [];

10 for (const part of parts) {
11 if (part ===InMemoryFileSystem . CURRENT_DIR) {
12 continue ; // Skip current dirs in path
13 }
14 if (part ===InMemoryFileSystem . PARENT_DIR) {
15 // Go level up in folder hierarchy , max level up is root dir
16 const poppedPath = processedParts . pop () ;
17 // If Path ascend beyond root , error
18 if (poppedPath ===undefined) {
19 return null ;
20 }
21 } else {
22 processedParts . push (part);
23 }
24 }
25 return ["" , ... processedParts];
26 }

Listing 5.6: Processing a path into itsparts resolving currentand parent
directory indicators (filesystem-inmemory.ts)

IO-Type FileSystemFile3

The io-type FileSystemFile (Listing 5.7) and its implementations BinaryFile
and TextFile is used for managing the GTFS-archive file and later unpacked
CSV files. It defines a data type for an object that represents a file,which has
four properties.The first property, name, represents the filename as a string.The
second property, extension, stores common extensions, including extensions like
ZIP or TXT, in an enumeration oftype FileExtension. The third property,
mimeType,stores common MIME types,such as APPLICATION_OCTET_STREAM,
in an enumeration oftype MimeType.Finally,the fourth property,content is
capable of storing various types of data, including binary data, and gets initialized
by its implementing child classes.

1 export abstract class FileSystemFile <T > extends FileSystemNode {
2 public override readonly name : string ;
3 public readonly extension : FileExtension ;
4 public readonly mimeType : MimeType ;
5 public readonly content : T;
6 }

Listing 5.7:Abstract class FileSystemFile (file-io-type.ts)

3PRs on GitHub:https://github.com/jvalue/jayvee/pull/125 and https://github.com/jva
lue/jayvee/pull/256

34

5. Design and Implementation

IO-Type None4

In order to indicate skipping of downstream block execution in the interpreter, the
io-type None (Listing 5.8) is utilized.If a GTFS endpoint fails to provide a table
expected by a defined pipeline, the execution of that particular pipeline section5

should be halted.This is because GTFS serves as a reference that outlines both
mandatory and optionaltables. In a future scenario,the inclusion ofGTFS
support will facilitate data archiving from various endpoints.The intention is to
develop a pipeline that encompasses all possible tables and fields, ensuring that
execution is terminated if a file is not present.

1 export interface None {
2
3 }

Listing 5.8:Interface None (none-io-type.ts)

IO-Type Table6

During the discussion regarding the addition ofthe table name to the io-type,
these proposed changes were already implemented by different team members.

Block Types for GTFS Support
In order to comply with the proposed concept (Section 4.1),it is necessary to
implement new block types, namely HttpExtractor, ArchiveInterpreter, and
FilePicker from the ground up.Conversely,pre-existing block types such as
CSVExtractor and SQLiteSink require only minor refactoring or modification
to conform to the proposed specifications.

Block Type HttpExtractor7

Input: void → Output:File
A HttpExtractor block (Listing 5.9) is designed to retrieve data from an HTTP
endpoint by sending an HTTP GET request to a specified URL, and then output-
ting the response as a File.Such a block is versatile and can be used to obtain
a wide range of data types via HTTP.As a result,it has been implemented in
the std-extension for general use.

4PR on GitHub: https://github.com/jvalue/jayvee/pull/126
5Pipeline section refers back to the parallel sections shown in the demo pipeline in Figure

4.1
6PRs on GitHub:https://github.com/jvalue/jayvee/pull/164 and https://github.com/jva

lue/jayvee/pull/165
7PR on GitHub: https://github.com/jvalue/jayvee/pull/134

35

5. Design and Implementation

1 block MyHttpExtractor oftype HttpExtractor {
2 url : " https :// developers . google . com / static / transit / gtfs / examples / sample - feed . zip " ;
3 }

Listing 5.9:Block of type HttpExtractor (example)

Listing 5.10 presents a simplified implementation ofthe core functionality of
the HttpExtractor block for fetching data from an HTTP endpoint.After
successfully fetching the data, this method endeavors to extract metadata, such
as the file name,extension,and MIME type of the output file.In situations
where the metadata cannot be inferred,fallback values are utilized to ensure
valid output. A new file oftype BinaryFile is then instantiated using the
previously inferred metadata.It is worth noting that BinaryFile is a child class
that implements the introduced abstrac class FileSystemNode .

1 private fetchRawDataAsFile (
2 url : string ,
3 context : ExecutionContext ,
4): Promise <R. Result < BinaryFile > > {
5 // Logging
6 // ..
7 return new Promise ((resolve) => {
8 https . get (url , (response) => {
9 // Catch errors

10 // ..
11 // Get chunked data and store to ArrayBuffer
12 let rawData = new Uint8Array (0) ;
13 response . on (’ data ’, (chunk : Buffer) => { /* ... */ }) ;
14 // When all data is downloaded
15 response . on (’ end ’ , () = >{
16 // Infer metadata (name , extension , MIME type) and create file
17 // ...
18 const file = new BinaryFile (/* ... */);
19 resolve (R. ok (file));
20 }) ;
21 response . on (’ error ’, (errorObj) => { /* ... */ }) ;
22 }) ;
23 }

Listing 5.10:Simplified version ofmethod for fetching HTTP data as File
(http-extractor-executor.ts)

Block Type ArchiveInterpreter8

Input: File → Output: FileSystem
An ArchiveInterpreter block (Listing 5.11) accepts a File as input and
interprets it as an archive file.It then proceeds to unpack the archive and initialize
a FileSystem with the contents ofthe unpacked files.This block is designed
to work with any archive file and has therefore been implemented in the std-
extension.

8PR on GitHub: https://github.com/jvalue/jayvee/pull/135

36

5. Design and Implementation

1 block ZipArchiveInterpreter oftype ArchiveInterpreter {
2 archiveType : " zip "
3 }

Listing 5.11:Block of type ArchiveInterpreter (example)

To extract zipped files,we utilize an additional library namely JSZip9, which is
published under the MIT license (Bill of Materials in Appendix Section E). JSZip
offers a straightforward API for creating, reading, and modifying zipped files.The
code snippet shown in Listing 5.12 demonstrates how the library is employed to
initialize an pathInMemoryFileSystem with the content of the zipped file.Prior
to adding a File object to the InMemoryFileSystem,the method attempts to
deduce the metadata.In cases where the metadata cannot be inferred,default
values are used to guarantee accurate output.

1 private async loadZipFileToInMemoryFileSystem (
2 archiveFile : BinaryFile ,
3 context : ExecutionContext ,
4): Promise <R. Result < FileSystem > >{
5 // Logging
6 // ..
7 const jszip = JSZip () ;
8 const root = new InMemoryFileSystem () ;
9 const archivedObjects = await jszip . loadAsync (archiveFile . content);

10 for (const [relPath , archivedObject] of Object . entries (
11 archivedObjects . files ,
12)) {
13 // Infer metadata (name , extension , MIME type) and create file ...
14 // ...
15 root . putFile (relPath , file);
16 // Assert correct result
17 // ...
18 }
19 return R. ok (root);
20 }

Listing 5.12:Simplified version of method for unpacking zip archives (archiv
e-interpreter-executor.ts)

Block Type FilePicker10

Input: FileSystem → Output:File
A FilePicker block (Listing 5.13) takes a FileSystem as input and uses the
path specified in the path attribute to navigate to the file.If the file is found,
the block outputs an initialized File object.

1 block AgencyFilePicker oftype FilePicker {
2 path : "/ agency . txt ";
3 }

Listing 5.13:Block of type FilePicker (example)

9https://github.com/Stuk/jszip
10PR on GitHub: https://github.com/jvalue/jayvee/pull/136

37

5. Design and Implementation

Block Type CSVInterpreter11

Input: File → Output: Sheet
In the Jayvee extension tabular, a CSVFileExtractor is implemented to load a
CSV file from a URL and output a Sheet.However, this violates the separation
of block types into Extractor and Transformers blocks.To address this, we refact-
ored the CSV-related functionality from CSVFileExtractor into a new dedicated
block namely CSVInterpreter (Listing 5.14).It takes in a File assumed to be a
CSV file and outputs the file as a Sheet.The delimiter can theoretically be any
string value and is set to a comma by default for convenience reasons.Former
extractor functionality is then provided by the HttpExtractor.

1 block MyCSVInterpreter oftype CSVInterpreter {
2 delimiter : " ,";
3 }

Listing 5.14:Block of type CSVInterpreter (example)

Block Type LayoutValidator replaced by TableInterpreter

Input:Sheet → Output:Table
The LayoutValidator has already been implemented prior to this thesis and
hence there is no need for further change.Since JValue is under heavy devel-
opment,during the implementation phase,the LayoutValidator got replaced
by a TableInterpreter, which has the same functionality but slightly different
syntax.It is important to note that we consider conditionaloptionalcolumns
of an GTFS dimension in a first draft as required (e.g.,column agency_id in
Listing 5.15).

1 block AgencyTableInterpreter oftype TableInterpreter {
2 header : true ;
3 columns :[
4 " agency_id " oftype text ,
5 " agency_name " oftype text ,
6 " agency_url " oftype text ,
7 " agency_timezone " oftype text
8];
9 }

Listing 5.15:Block of type TableInterpreter for validating dimension agency
of a GTFS dataset (example)

11PRs on GitHub:https://github.com/jvalue/jayvee/pull/168 and https://github.com/jva
lue/jayvee/pull/169

38

5. Design and Implementation

Block Type SQLiteSink12

Input: Table → Output:void
Based on the requirements defined in Section 3.2,it is necessary to modify this
block’s specification to accommodate multiple inputs.This modification would
entail a change in the execution logic.Therefore, for an initial demonstration, we
have made the decision to create a separate SQLiteSink (Listing 5.16) for each
dimension ofthe GTFS dataset,all using the same database for storing data.
This approach allows us to assess the project’s results more quickly.

1 block GtfsLoader oftype SQLiteLoader {
2 file : " ./ gtfs . sqlite ";
3 }

Listing 5.16:Block of type SQLiteSink (example)

Resulting GTFS Pipeline
After implementing aforementioned components,it becomes feasible to process
a complete GTFS dataset.This results in a GTFS-static pipeline (Listing 5.17,
complete excerpt in Appendix Section F). As elucidated in Chapter 4, a pipeline
executes an HttpExtractor once and allocates distinct sections for each dimen-
sion. Each section consumes data from the identicalZipArchiveInterpreter
instance.

1 pipeline GtfsPipeline {
2 // GTFS related blocks
3 // ...
4 // GTFS related pipes
5 MyHttpExtractor
6 -> ZipArchiveInterpreter
7 -> AgencyFilePicker
8 -> AgencyCSVInterpreter
9 -> AgencyTableInterpreter

10 -> AgencyLoader ;
11 ZipArchiveInterpreter
12 -> CalendarDatesFilePicker
13 -> CalendarDatesCSVInterpreter
14 -> CalendarDatesTableInterpreter
15 -> CalendarDatesLoader ;
16 // ...
17 }

Listing 5.17:Simplified version of a GTFS-static pipeline which loads agencies
and calendar_dates (gtfs-static.jv)

12PR on GitHub: https://github.com/jvalue/jayvee/pull/164

39

5. Design and Implementation

5.2 GTFS-RT Support
As the former extension builds the foundation for real-time support, Jayvee needs
to be extented by following parts to be able to process GTFS-RT-data:

• New blocktype GtfsRTInterpreter
• The blocktype SQLiteSink needs a mechanism to append data during load

Block Types for GTFS-RT Support
Given that the data format and structure of GTFS-RT is highly specific to its use
case, we have decided to provide a dedicated GtfsRTInterpreter that performs
the entire processing of real-time data instead of splitting the functionality into
a composition of blocks.For retrieving a GTFS-RT protobuf file,we can make
use of the previously implemented HttpExtractor.

Block Type GtfsRTInterpreter13

Input: File → Output: Sheet
A block GtfsRTInterpreter (Listing 5.18) is designed to receive a binary
protobuf-encoded File as input from an upstream HttpExtractor.A spe-
cific GTFS-RT entity to be processed from a incoming protobuffile, such as
vehicle, trip_update, or alert, is specified in a block parameter.Fur-
thermore,a block decodes a protobuffile and outputs the respective entity as
a Sheet. In the initial version,only the required columns ofthe entity,as
defined in gtfs-realtime.proto, are considered.Since there is no dedic-
ated mobility-extension folder in Jayvee,the new block type is implemented in
the std-extension.

1 block MyGtfsRTInterpreter oftype GtfsRTInterpreter {
2 entity : " vehicle ";
3 }

Listing 5.18:Block of type GtfsRTInterpreter (example)
The block implementation employs the gtfs-realtime-bindings library14

(licensed under Apache 2.0),which supplies language bindings generated from
the real-time protocolbuffer. These classes facilitate the construction ofdata
modelobjects for GTFS-RT,which can then be serialized into binary data or
conversely, parsed from binary data and converted back into data model objects.
The process of transforming an object containing nested objects and arrays into

13PR on GitHub: https://github.com/jvalue/jayvee/pull/223
14https://github.com/MobilityData/gtfs-realtime-bindings

40

5. Design and Implementation

a flattened table representation is referred to as “flattening” a object’s data.This
involves converting the hierarchical structure of a object into a two-dimensional
table format, where each row corresponds to a unique combination of the original
object’s properties and values.
To ensure a static data schema in the resulting Sheet, which can be processed by
the subsequent TableInterpreter,we opted to employ entity-specific parsing
methods.These methods navigate through the entity based on a predefined
expected output schema.They unfold and flatten the nested data structure into
a row.To achieve consistent entity flattening,it is crucialto identify the index
of the collection type (in this case, an Array) with the highest depth.The depth
determines the number ofrollups that must be applied during the flattening
process.
The overall methodology of the entity-specific parsing methods is similar:

1. Select a specific entity collection to parse.
2. Create an empty Sheet and add the entity header.
3. Iterate over the collection of the selected entity:

3.1.Select the nested collection of the current iteration.
3.2.Iterate through the selected nested collection:

3.2.1.Create a row containing all information, including that of its par-
ent, and add it to the Sheet.

4. Return the resulting Sheet.

message: FeedMessage
header: FeedHeader

gtfs_realtime_version: string
incrementality: Incrementality

value: string (FULLDATASET or DIFFERENTIAL)
timestamp: uint64

entity: FeedEntity
trip_update: TripUpdate (Array)

trip: TripDescriptor
trip_id: string
route_id: string

stop_time_update: StopTimeUpdate (Array)
stop_sequence: uint32
stop_id: string
arrival: StopTimeEvent

time: int64
departure: StopTimeEvent

time: int64
id: string

Figure 5.2:GTFS-RT element index of TripUpdate-Entity,having stop_tim
e_update as collection with maximum depth (simplified version)

Figure 5.2 illustrates an simplified element index containing the required and
necessary conditionalrequired fields for the TripUpdate message entity ofa

41

5. Design and Implementation

GTFS-RT feed. In this example,the field stop_time_update is the collec-
tion with the maximum depth,and therefore defines the granularity ofa row.
This information is explicitly outlined in the GTFS-RT reference and is therefore
incorporated as a type definition in the GtfsRTInterpreter.
In order to enhance the understanding of the implementation’s behavior, we con-
ducted JSON decoding on a TripUpdate feed message,as illustrated in Listing
5.19.The resulting row is presented as CSV in Listing 5.20.This demonstra-
tion effectively showcases the functionality ofthe flattening mechanism,which
proficiently converts the hierarchical JSON structure into a two-dimensional row
representation.

1 {
2 " header ": { " gtfsRealtimeVersion ": "2.0" , " incrementality ": " FULL_DATASET " , " timestamp ": "1685198944" },
3 " entity ": [
4 {
5 " id ": " trip :15833110" ,
6 " tripUpdate ": {
7 " trip ": { " tripId ": "15833110" , " routeId ": "17" } ,
8 " stopTimeUpdate ": [{ " stopSequence ": 0 , " arrival ": { " time ": "1685199579" }, " departure ": { " time ":

"1685199579" } , " stopId ": " ST_JJ " }]
9 }

10 },
11 // ...
12]
13 }

Listing 5.19:Feed message of type TripUpdate decoded as JSON (example)

1 header . gtfs_realtime_version , header . timestamp , header . incrementality , entity . id , entity . trip_update . trip .
trip_id , entity . trip_update . trip . route_id , entity . trip_update . stop_time_update . stop_sequence , entity .
trip_update . stop_time_update . stop_id , entity . trip_update . stop_time_update . arrival . time , entity .
trip_update . stop_time_update . departure . time

2 2.0 ,1685198944 , FULL_DATASET , trip :15833110 ,15833110 ,17 ,0 , ST_JJ ,1685199579 ,1685199579

Listing 5.20:Resulting extracted TripUpdate row as CSV including header

Block Type SQLiteSink15

Input: Table → Output:void
The SQLite (Listing 5.21) sink is augmented with an extra attribute to indicate
whether a table should be dropped before a load operation begins.Given that
blocks presently support only one input, a boolean data type suffices for dropping
a table.The existing implementation of this block is modified to verify whether
to drop any existing tables prior to the load operation.

15PR on GitHub: https://github.com/jvalue/jayvee/pull/254

42

5. Design and Implementation

1 block VehicleLoader oftype SQLiteLoader {
2 file : "./ gtfs . db ";
3 dropTable : false ;
4 }

Listing 5.21:Block of type SQLiteLoader (example)

Resulting GTFS-RT Pipeline
With these contributions, we are now able to utilize the append-data functionality
of the SQLiteSink and seamlessly process GTFS-RT data (Listing 5.22, complete
excerpt in Appendix Section G).

1 pipeline GtfsRTSimplePipeline {
2 // GTFS - RT related blocks
3 // ...
4 // GTFS - RT related pipes
5 GTFSRTTripUpdateFeedExtractor
6 -> GtfsRTTripUpdateInterpreter
7 -> TripUpdateTableInterpreter
8 -> TripUpdateLoader ;
9 // ...

10 }

Listing 5.22:Simplified version of a GTFS-RT pipeline which loads entities of
type TripUpdate (gtfs-rt-simple.jv)

5.3 Combining GTFS with GTFS-RT
Placing the entire implementation within its context:Jayvee now has the ability
to load an entire GTFS dataset, including real-time data.To accommodate both
types ofdata,a single pipeline is established with separate sections dedicated
to each (Listing 5.23,complete excerpt in Appendix Section H).By periodic-
ally executing this pipeline, we can now archive static and real-time GTFS data
in a SQLite database.In the pipeline defined,the loader-blocks ofthe GTFS
part do not have an attribute dropTable as it defaults to true.However,the
GTFS-RT loader has explicitly set this attribute to false.The JValue team is
currently working on “composite blocks”that allow users to combine multiple
existing blocks into a new block type, simplifying the pipeline.

43

5. Design and Implementation

1 pipeline GtfsStaticAndRealtimePipeline {
2 // GTFS related blocks
3 // ...
4 block TripsLoader oftype SQLiteLoader {
5 table : " static_trips ";
6 file : " ./ gtfs - static - and - rt . sqlite ";
7 }
8 // ..
9 // GTFS related pipes

10 GTFSExtractor -> ZipArchiveInterpreter ;
11 // ...
12 ZipArchiveInterpreter
13 -> TripsFilePicker
14 -> TripsTextFileInterpreter
15 -> TripsCSVInterpreter
16 -> TripsTableInterpreter
17 -> TripsLoader ;
18 // ...
19 // GTFS - RT related blocks
20 // ...
21 block VehicleLoader oftype SQLiteLoader {
22 table : " rt_vehicle_position " ;
23 file : " ./ gtfs - static - and - rt . sqlite ";
24 dropTable : false ;
25 }
26 // ...
27 // GTFS - RT related pipes
28 // ...
29 GTFSRTVehiclePositionFeedExtractor
30 -> GtfsRTVehiclePositionInterpreter
31 -> VehiclePositionTableInterpreter
32 -> VehicleLoader ;
33 // ...
34 }

Listing 5.23:Simplified version of a pipeline loading both GTFS and GTFS-RT
data (gtfs-static-and-rt.jv)

44

6 Evaluation

In this Chapter,we present a demonstrator to showcase the functionalrequire-
ments of the system.This demonstrator will provide a real-world example of how
the system can be used to address the problem statement.Overall, the evaluation
will provide insights into the effectiveness and usability of the system, as well as
highlight any areas where improvements can be made.Furthermore, in reference
to the demonstrator, we will evaluate our system against the requirements defined
in Chapter 3.

6.1 Demonstrator
To demonstrate and validate the functionality ofthe implemented system,we
have undertaken two actions.First, we have designed a pipeline (complete excerpt
in Appendix Section H) that retrieves both static and real-time data from a
specific area provided by the NAP ofFrance.Second,we have implemented a
dedicated GtfsDemonstrator1 that utilizes the aforementioned pipeline, validates
the output and demonstrates the usage.
The city ofBrest2 and its surrounding region serve as an idealillustration for
showcasing the implemented artifacts detailed in Chapter 4 and 5.With a pop-
ulation of approximately 140,000 residents and 1062 bus stops, Brest provides a
compelling case study.It offers four distinct endpoints from which GTFS data
can be obtained,as outlined in Table 6.1.The pipeline utilized in this context
features dedicated sections for each static file and each ofthe three real-time
entities, effectively querying these endpoints.Upon execution, the pipeline gen-
erates a comprehensive GTFS dataset that encompasses both static and real-time
data for the Brest region.

1Repository on GitHub:https://github.com/schlingling/jayvee-gtfs-demonstrator
2French NAP site for Brest:https://transport.data.gouv.fr/datasets/horaires-theoriques-e

t-temps-reel-des-bus-et-tramways-circulant-sur-le-territoire-de-brest-metropole

45

6. Evaluation

Kind of data offeredEndpoint
GTFS static https://ratpdev-mosaic-prod-bucket-raw.s3-eu-west-1.amazonaws.com/11/exports/1/gtfs.zip
GTFS-RT trip_update https://proxy.transport.data.gouv.fr/resource/bibus-brest-gtfs-rt-trip-update
GTFS-RT alert https://proxy.transport.data.gouv.fr/resource/bibus-brest-gtfs-rt-alerts
GTFS-RT vehicle https://proxy.transport.data.gouv.fr/resource/bibus-brest-gtfs-rt-vehicle-position

Table 6.1:GTFS related endpoint of metropolis region around the city of Brest
used for validation

The implemented pipeline comprises a totalof 60 blocks and incorporates 12
distinct instances ofthe SQLiteLoader. The average execution time ofthe
pipeline is 9194ms,as determined by 10 runs carried out on an Apple M1-Pro
machine.An exemplary execution output displayed in Listing 6.1 demonstrates
a successful extraction, interpretation, and loading of a GTFS file into an SQLite
database (complete excerpt in Appendix Section I).The raw data is fetched,
parsed, and inserted into a new table named static_trips.Detailed execution
logs for all dimensions are available in the appendix.

1 [GTFSExtractor] Fetching raw data from https :// ratpdev - mosaic - prod - bucket - raw . s3 -eu - west -1. amazonaws . com
/11/ exports /1/ gtfs . zip

2 [GTFSExtractor] Successfully fetched raw data
3 [GTFSExtractor] Execution duration : 540 ms .
4 [ZipArchiveInterpreter] Loading zip file from binary content
5 [ZipArchiveInterpreter] Execution duration : 95 ms .
6 [TripsFilePicker] Execution duration : 0 ms .
7 [TripsTextFileInterpreter] Decoding file content using encoding " utf -8"
8 [TripsTextFileInterpreter] Splitting lines using line break /\ r ?\ n/
9 [TripsTextFileInterpreter] Lines were split successfully , the resulting text file has 5901 lines

10 [TripsTextFileInterpreter] Execution duration : 2 ms .
11 [TripsCSVInterpreter] Parsing raw data as CSV using delimiter " ,"
12 [TripsCSVInterpreter] Parsing raw data as CSV - sheet successful
13 [TripsCSVInterpreter] Execution duration : 258 ms .
14 [TripsTableInterpreter] Matching header with provided column names
15 [TripsTableInterpreter] Validating 6471 row (s) according to the column types
16 [TripsTableInterpreter] Validation completed , the resulting table has 6471 row (s) and 10 column (s)
17 [TripsTableInterpreter] Execution duration : 2 ms .
18 [TripsLoader] Opening database file ./ gtfs - static - and - rt . sqlite
19 [TripsLoader] Dropping previous table " static_trips " if it exists
20 [TripsLoader] Creating table " static_trips "
21 [TripsLoader] Inserting 6471 row (s) into table " static_trips "
22 [TripsLoader] The data was successfully loaded into the database
23 [TripsLoader] Execution duration : 35 ms .

Listing 6.1:Exemplary execution output for section trips

To assess the performance ofthe implemented system,the following assertions
are be verified:

1. All records from the raw source files which are provided by the endpoints
listed in Table 6.1 have been saved to the database.

2. There are no extraneous records present in the sink database.
Assuming the conditions hold true for each dimension/entity,it can be inferred
that the pipeline has successfully processed the data.To facilitate easy verifica-
tion, the GtfsDemonstrator provides dedicated methods for validating both the
GTFS and GTFS-RT data.This involves comparing the raw data with the out-
put generated by the pipeline, as described previously.For this, the pipeline was

46

6. Evaluation

run once to generate the SQLite database, which served as the sink reference for
verification purposes.At the same point in time, all the endpoints consumed by
the pipeline were queried manually to obtain the raw data for comparison.By
using this approach, both the raw files (GTFS and GTFS-RT) and the processed
output of the pipeline are available, enabling the verification of assertions made
earlier.

GTFS Validation
In the domain of the GtfsDemonstrator, the validation of GTFS involves several
steps for each raw GTFS CSV file3:

1. Retrieval of the content of the raw CSV file, such as the agency dimension.
2. Retrievalof the content of the corresponding table from the SQLite sink,

such as the static_agency table.
3. Comparison ofthe contents obtained in 1) and 2).If both contents are

semantically equivalent, then both assertions are deemed to be fulfilled.
The logs generated during the validation process (Figure 6.1) provide evidence
that the number of rows in each dimension of the raw data matches the number
of rows in the corresponding sink, as well as semantic equivalence between both.
These results serve to verify the correctness of the GTFS extension in handling
the data.With that,we have demonstrated that our system loads static GTFS
data to a relational database.

Figure 6.1:Validation console output for GTFS data

3Method validateGtfs() of GtfsDemonstrator: https://github.com/schlingling/jayve
e-gtfs-demonstrator

47

6. Evaluation

GTFS-RT Validation
The procedure for verifying the output of the GTFS-RT component operates as
follows for each entity4:

1. Decoding the protobuf files acquired from the designated endpoint.
2. For each event contained within the entity, the validation process retrieves

the row of the corresponding table from the SQLite sink utilizing a com-
posite key comprised of the current event’s attributes.

3. If the single row precisely matches the event,it is inferred that the raw
record has been stored in the sink.

For instance,in the case ofthe entity trip, a distinct composite key can be
constructed by combining the following columns:

• entity.id
• entity.vehicle_position.vehicle_descriptor.id
• entity.vehicle_position.trip.trip_id
• entity.vehicle_position.trip.route_id

The validation output logs (Figure 6.2) demonstrate that for each entity,the
number of events in the raw data matches the number of rows in the sink,and
the rows match each other.Therefore,it can be concluded that the GTFS-RT
extension accurately processes the data.

Figure 6.2:Validation console output for GTFS-RT data

Periodical Archival Mechanism
The GtfsDemonstrator proposes a methodology for executing a defined pipeline
periodically.The pipeline is executed periodically and the output of each run is
logged in a dedicated logging folder, while the increase in sink file size is tracked.
Since the real-time endpoints offer a refresh rate of 30 seconds, the demonstrator
is configured to operate at the same rate to not miss any updates.To observe the
system’s behavior and the increase in archived data over time, the demonstrator

4Method validateGtfsRT() of GtfsDemonstrator:https://github.com/schlingling/jayve
e-gtfs-demonstrator

48

6. Evaluation

is run for a duration of2 hours (Figure 6.3).After the first run,the database
file has an initialsize of 14.48 MB,where 13,7 MB are allocated by GTFS and
0.78 MB by GTFS-RT data, increasing by around 0.78 MB per execution as new
real-time data is appended.It sums up to a totalof 169.9 MB after 2 hours.
We observe a nearly linear growth of data over time, with minor deviations that
could be related to a fluctuation of streamed vehicle positions or service alerts.

15 30 45 60 75 90 10
5

12
0

50

100

150

Minute

Size in MB

GTFS-(RT) database

Figure 6.3:Increase of SQLite database file size over a period of 2 hours when
archiving data periodically

In Table 6.2,we have extrapolated the estimated size ofthe SQLite file based
on a one-year period.This extrapolation is performed by utilizing the observed
growth rate in the demonstrator.

Period Extrapolated SQLite file size in GB (precision of MB)
2 hours 0.17
1 day (24 hours) 2.0392
1 week (7 days) 14.274
1 month (30 days) 61.175
1 year (365 days) 744.293

Table 6.2:File size extrapolated from the growth rate observed in the demon-
strator by different periods

Assuming a consistent growth rate throughout the year,the projected file size
would be 744.29 GB.While this size may initially appear substantial,it is im-
portant to consider the context of the Brest region,which consists of over 1000
bus stops and captures real-time data at a granularity of30 seconds over the

49

6. Evaluation

course of a year.When compared within this context, the file size becomes more
relative.It is worth noting that in a real-world scenario,the growth rate is un-
likely to remain strictly consistent due to various factors such as events, seasons,
weekends, or holidays, which can influence the data growth.
By leveraging the capabilities ofrelationaldatabases,optimization techniques
such as indexing can be applied to rapidly retrieve data based on specific criteria,
such as location, time, or service provider.Moreover, downstream processes can
enforce data consistency and integrity via relationships and constraints between
tables, ensuring accurate and complete GTFS data, which is critical for scheduling
and planning transit services.This implementation is especially beneficialas it
enables “everyone”,as stated by Professorship ofOpen Source Software at the
University ofErlangen (2022),to handle open transport data using common
relationaldatabase operations instead ofraw CSV or protobufencoded files.
These insights gained through relationaldata can then be utilized to optimize
transit services, improve route planning, and enhance the passenger experience.
One potential drawback of using the provided implementation to archive data is
the substantialamount of data that is stored,particularly when handling real-
time updates.This considerable volume ofdata is primarily attributed to two
factors:

1. The real-time data is stored in plain text format in the sink
2. The real-time data is flattened into a relationaldata model,leading to a

large number of rows with redundant data
Multiple approaches exist to mitigate the aforementioned drawback, each of which
involves a trade-off between reducing storage requirements for archiving and in-
creasing computational power for analysis, or vice versa.One potential solution is
to store real-time data in an encoded format rather than plain text, which would
require an additionaldecoding stage prior to analysis.Depending on the use
case,another approach is to keep relatively recent data in the relational format
discussed but handle long term archiving with encoded files again.Alternatively,
normalization of real-time data can be leveraged either during the load process
into the sink or in a downstream computation step.However,these approaches
may introduce additional complexity into the pipeline and its underlying imple-
mentation.

6.2 Functional Requirements
In the context ofthis thesis,a User Story is considered accepted only when it
satisfies the agreed upon UAC by both the team and the product owner, who in
this case is the JValue team.To provide an overview of the functional complete-

50

6. Evaluation

ness of the discussed implementation, we have created two tables:Table 6.3 and
Table 6.4.These tables map the UAC defined in Section 3.2 and Section 3.3 to
their respective statuses after the completion ofthe implementation.A status
shown in parentheses indicates that the corresponding UAC became obsolete due
to parallelprogress made in the project.In the digitalversion ofthis paper,
the column labeled PR contains a hyperlink to the relevant details on GitHub5.
Finally, the comment column in the tables provides additional context regarding
the status.
No. Name Accepted PR Comment
UAC-1 Implement io-type File ✓ 125, 256Approach described in Chapter 5.1
UAC-2 Implement io-type FileSystem ✓ 126, 256Approach described in Chapter 5.1
UAC-3 Implement io-type None ✓ 126 Approach described in Chapter 5.1
UAC-4 Extend io-type Table (✓) 165 Has already been implemented
UAC-5 Process table name in LayoutValidator (✓) 164 Has already been implemented
UAC-6 Refactor Jayvee-examples using table name✓ 166 Approach described in Chapter 5.1
UAC-7 Abort execution ✓ 136 Approach described in Chapter 5.1
UAC-8 Introduce Folderstructure ✓ 126, 256Approach described in Chapter 5.1
UAC-9 Implement HTTPExtractor ✓ 134 Approach described in Chapter 5.1
UAC-10 ImplementArchiveInterpreter ✓ 135 Approach described in Chapter 5.1
UAC-11 Implement FilePicker ✓ 136 Approach described in Chapter 5.1
UAC-12 Implement CSVInterpreter ✓ 168 Approach described in Chapter 5.1
UAC-13 Refactor CSVFileExtractor ✓ 169 Approach described in Chapter 5.1
UAC-14 Refactor Jayvee-examples to new blocks ✓ 169 Validated with demonstrator
UAC-15 Conditional GTFS-columns (✓) 85 Covered by assumption
UAC-16 Multiple block inputs (✓) na Has already been implemented
UAC-17 Process table name in SQLiteSink (✓) 164 Has already been implemented
UAC-18 Database creation (✓) na Has already been implemented
UAC-19 Parallel processing (✓) na Has already been implemented
UAC-20 Sucessful execution ✓ 180 Validated with demonstrator

Table 6.3:User Acceptance criteria of GTFS User Story6 by their acceptance
status and corresponding Pull Request in GitHub

No. Name Accepted PR Comment
UAC-1 Implement GtfsRTInterpreter ✓ 223 Approach described in Chapter 5.2
UAC-1.1 Define simple GTFS-RT pipeline ✓ 223 Approach described in Chapter 5.2
UAC-2 Implement DropTable attribute ✓ 254 Approach described in Chapter 5.2
UAC-3 Showcase GTFS and GTFS-RT data processing ✓ 255 Validated with demonstrator
UAC-4 Create/Update SQLite file (✓) 255 Validated with demonstrator
UAC-5 Overwrite GTFS data (✓) 255 Validated with demonstrator
UAC-6 Append GTFS-RT data ✓ 255 Validated with demonstrator
UAC-7 Sucessfull execution ✓ 255 Validated with demonstrator

Table 6.4:User Acceptance criteria of GTFS-RT User Story7 by their accept-
ance status and corresponding Pull Request in GitHub

5The details can be accessed manually using the URL pattern https://github.com/jva
lue/jayvee/pull/<PR>

6GTFS User Story on GitHub:https://github.com/jvalue/jayvee/pull/123
7GTFS-RT User Story on GitHub:https://github.com/jvalue/jayvee/pull/219

51

6. Evaluation

Moreover, the complete integration of both GTFS support and GTFS-RT support
RFCs into the project’s main branch, following the requirement definition process
outlined in Section 3.1, signifies the acceptance of the associated User Stories by
the JValue community.The satisfaction of all UAC demonstrates that both User
Stories have been accepted, confirming their functional suitability.

6.3 Non-Functional Requirements
As we stated in Section 3.4 both extensions should satisfy the same non-functioncal
requirements.This section validates the fulfillment of the three prior defined ones.

NFR-1 Using Compositions
The functional requirement is fully met by the GTFS component, as it has been
broken down into various block types, such as HttpExtractor, ArchiveInterpr
eter, and FilePicker. These block types have already been utilized by other
pipelines in the project.
However,the GTFS-RT extension requires the utilization ofa domain-specific
block type,GtfsRTInterpreter, which fails to satisfy the non-functionalre-
quirement.This decision was necessitated by the current limitation of Jayvee to
process only tabular data structures.At the time of implementation, document-
oriented data structures like JSON files were not supported by the language’s
features,and adopting them would have necessitated significant logicalchanges
that would have violated NFR-2.

NFR-2 Seamless Integration
Both implementations integrate seamlessly into Jayvee without necessitating any
significant logical changes to the language’s grammar.

NFR-3 High Execution Performance
Both implementations have demonstrated effective performance,as evidenced
by the example pipeline consisting of60 blocks and processing approximately
260,000 rows per run.The average execution time of the pipeline,based on 10
runs conducted on an Apple M1-Pro machine, is determined to be 9194ms.

6.4 Limitations
However, it must be noted that the current implementation is merely a proof of
concept, and as such, there exist several limitations that need to be addressed in
the future:

52

6. Evaluation

1. The current implementation treats conditionaloptionalfields within the
table as mandatory,lacking a mechanism to handle them dynamically at
runtime.This limitation arises from Jayvee’s inability to handle optional
values.Consequently,in our schema definitions,we have assumed that
conditional optional fields defined by the GTFS reference are required.

2. The system does not support optional tables, necessitating the creation of
specific pipeline definitions for each endpoint.

3. The example pipeline was designed to treat allfields as text,resulting in
a decrease in data quality during the ETL process,as numeric and date
data types are converted into text format.It is important to note that this
limitation is specific to the defined pipeline and does not reflect any inherent
issues with the implementation itself.This simplification was implemented
to prevent potentialparsing errors during execution.In essence,Jayvee’s
interpreter would discard rows containing parsing errors.

4. The periodic archival mechanism employed for static data, as demonstrated,
discards the previous version ofthe static dataset before loading the up-
dated one.This can introduce inconsistencies in the dataset,as real-time
data may reference dropped static entities.To address this issue,Jayvee
requires a history mechanism to track and flag outdated data.

5. The implementation utilized a tabularsink, but alternative sink types
should be explored for improved performance, such as a flat file sink (which
needs to be implemented).

6. Due to the loading of data into a tabular sink, the flattening of nested event
objects in real-time data resulted in a significant increase in the number of
rows stored in the sink.To mitigate this issue, a normalization step should
be introduced or different sink types should be evaluated.

7. The GtfsRTInterpreter currently functions as a black box.It would be
beneficial to decompose its functionality into a composition of blocks, such
as a JsonInterpreter, to enhance modularity and flexibility.However,
supporting these types of data would require major changes to the Jayvee
grammar, as they are not yet supported.

In the long run,it is desirable to offer users a generic schema for both GTFS
and GTFS-RT, which would be accessible and allow for data extraction from
any GTFS endpoint, regardless of the specific tables provided.Such an approach
would greatly enhance usability, particularly for automated data archiving from
diverse endpoints.The JValue team is currently exploring the concept of “com-
posite blocks”which would enable users to combine multiple existing blocks to
create a new block type.This could also be employed to streamline existing
extensive pipelines.Nonetheless,these advanced concepts proposed can be de-

53

6. Evaluation

veloped based on the groundwork laid by the current implementation.

54

7 Conclusion

Open Transport Data enables innovation by providing abundant information for
developers, researchers, urban planners, and entrepreneurs to create applications,
services,and business models.However,the lack of specific guidelines for open
data has resulted in the proliferation ofproprietary data platforms.Standard-
ized references like GTFS and GTFS-RT facilitate the sharing of public transit
information,but processing and archiving this data can be challenging.This
thesis introduces an extension to the open source domain specific language for
data pipelining, namely Jayvee, to process and archive GTFS(-RT) data.
We outline the requirement definition phase, where we extract functional require-
ments using the research project’s RFC process.We incrementally carry out the
architecture, design, and implementation phases, including GTFS static support,
GTFS-RT support, and a concept for the periodic archival mechanism.For each
extension,we provide a high-levelarchitecture ofthe resulting pipeline’s com-
ponents, which are then implemented according to the defined UAC.To ensure
a valid evaluation basis, we introduce a demonstrator that validates the system’s
correct behavior.To this end, we design an example pipeline that processes static
and real-time GTFS data from a real-world GTFS scenario using the French met-
ropolitan region of Brest.The demonstrator confirms the expected functionality
of the implementation and successfully archives static and real-time data for a
time-boxed experimentalperiod,allowing us to validate the data growth effi-
ciency.Finally, we highlight aspects for future work to enhance the implementa-
tion’s user-friendliness and efficiency, such as handling optional fields and tables,
providing generic GTFS schemata out of the box, and introducing a concept for
block compositions.
Our approach not only facilitates the seamless integration ofstatic and real-
time GTFS data but also serves as a valuable guide for the open transport data
research community in extending open-source software like Jayvee.By leveraging
the wealth of information embedded within GTFS datasets, we contribute to the
broader goal of reducing barriers and fulfilling the mission of making the use of
open data easy, safe, and reliable, as stated by the Professorship of Open Source
Software at the University of Erlangen (2022).

55

7. Conclusion

56

Appendices

57

<!--
SPDX-FileCopyrightText: 2023 Friedrich-Alexander-Universitat Erlangen-Nurnberg

SPDX-License-Identifier: AGPL-3.0-only
-->

Feature Tag mobility-extension

Status ACCEPTED
<!-- Possible values: DRAFT, DISCUSSION,
ACCEPTED, REJECTED -->

Responsible @schlingling
Implemented
via

#123
(https://github.com/jvalue/jayvee/issues/123)

Disclaimer: This RFC is part of my master-thesis "Archiving open transport data using the JValue tooling
ecosystem" supervised by @rhazn.

Summary
This RFC enables a pipeline extracting, validating and loading GTFS-data (part of domain mobility-data) by
providing an GTFS-endpoint under consideration of the GTFS-specification
(https://developers.google.com/transit/gtfs/reference). For that reason some changes and extensions of
Jayvee have to be made. The overall goal of this RFC is processing GTFS-data with a minimum of
changes/extensions in Jayvee.

Motivation
GTFS has gained widespread popularity over the past decade as an open-source industry standard for
describing and publishing fixed- and dynamic route transit operations. It is a data standard that defines how
public transit agencies can provide schedule information to developers. It is used by agencies around the
world to publish their transit data in a common format, allowing developers to create applications that can
access and use this data. GTFS data includes information about stops, routes, and schedules for buses,
trains, and other forms of public transportation. GTFS-data is provided by an endpoint, which publishes a zip-

Appendix A: RFC Document for GTFS Support (RFC-0002)

A RFC Document for GTFS Support (RFC-0002)

59

file, consisting of a collection of comma-separated-values in plain text files. A example of a gtfs-zip-file could
result in this datamodel (this visualization just includes required dimensions).

Explanation
The following picture is a visualization of the corresponding example.jv (example.jv)-file. A GTFS-pipeline
follows the overall pipeline pattern, consisting of an Extractor, some Interpreters, some Validators and finally
a Loader to a sink (in our case all gtfs-csv-files are loaded into a SQLite database, each csv-file into its
corresponding table). The individual GTFS files are picked out using their filename and further processed
independently in parallel using block types that already exist (or at least in a similar form). In the image, there

Appendix A: RFC Document for GTFS Support (RFC-0002)

60

are three such parallel processing steps as an example. In practice, there would be one for each GTFS file in
the ZIP archive. In case a file are not present, the further processing of that file is aborted and hence no table
is created from that file. At the end, each successfully created table is loaded into the same SQLiteSink.

The red block types need to be created from scratch whereas the blue block types are either already present
or only require minor changes (this classification is also reflected in the following chapter titles).

Jayvee needs to be extented by following parts to be able to process GTFS-data:

New io-datatypes called File and FileSystem
New blocktypes HTTPExtractor, ArchiveInterpreter and FilePicker
The io-datatype Table needs to store its name to be able to handle multiple tables as input
An abort-mechanism must be implemented, for that we need a new io-type None to abort, if a
precessor outputs None

Each of the following subchapters explains the idea behind.

New io-datatypes

io-datatype File (Requires implementation from scratch)

A File datatype could look like this and should be added to io-datatypes.ts.

export interface File {
 name: string // The name of the file, excluding its file extension

 extension: string //The file extension

 filetype: string //The MIME type of the file taken from the Content-Type header (for HTTP requests only)
Otherwise inferred from the file extension, default application/octet-stream for unknown or missing file
extensions

 content: ArrayBuffer //The content of the file as a ArrayBuffer
}

io-datatype FileSystem (Requires implementation from scratch)

A FileSystem could look like this and should be added to io-datatypes.ts. Provides generic methods for
navigating in the file system using paths and for accessing files. In order to implement the interface, we
create a class which provides the attributes / methods demanded by the interface.

Appendix A: RFC Document for GTFS Support (RFC-0002)

61

export interface FileSystem {
 //Methods as needed
}

io-datatype None (Requires implementation from scratch)

A None type could look like this and should be added to io-datatypes.ts. If a block output emits a None value,
downstream blocks are not executed for that value.

export interface None {
 //Methods as needed
}

io-datatype Table (Requires minor change)

The io-datatype Table should be adapted, to store its name to be able to handle multiple tables as input later
in an DB-Loader. This leads also to a minor change in the LayoutValidator and the example to process the
additional attribute tableName.

export interface Table {
 tableName: string;
 columnNames: string[];
 columnTypes: Array<AbstractDataType | undefined>;
 data: string[][];
}

Change of folderstructure

Since we are introducing multiple new io-datatypes and some implemenations of them, we move the file io-
datatype.ts to a new folder, holding all types and implemenations.

New Block Types

1) HttpExtractor (Requires implementation from scratch)

Input: void, Output: File

A HttpExtractors gets an Url, sends an HTTP-GET-REQUEST to that URL and outputs the response as File.
This block can be used for getting any kind of data via a HTTP-Endpoint. It should be implemented in the
std-extension.

block MyHttpExtractor oftype HttpExtractor {
 url: "https://www.data.gouv.fr/fr/datasets/r/c4d9326f-9f41-4dfb-9746-31bc97a31fc6";
}

2) ArchiveInterpreter (Requires implementation from scratch)

Input: File, Output: FileSystem

A ArchiveInterpreter gets a File, and initializes an FileSystem ontop of the file (open filestream etc.). Provides
generic methods for navigating in the file system using paths and for accessing files. As it is not clear, what
the file contains. It should be implemented in the std-extension. The ArchiveInterpreter needs to be able to
instantiate a FileSystem instance in order to output it as a result.

Appendix A: RFC Document for GTFS Support (RFC-0002)

62

block ZipArchiveInterpreter oftype ArchiveInterpreter{
 archiveType: string //now only accepting the string "zip"
}

3) FilePicker (Requires implementation from scratch)

Input: FileSystem, Output: File

A FilePicker gets an FileSystem, navigates to the file, and initializes an file via the path. The FilePicker needs
to work with methods provided by a FileSystem instance in order to read the file according to the provided
path.

block MyFilePicker oftype FilePicker{
 path: string // Absolute path to file (from the root folder) eg. /agency.txt
}

4) CSVInterpreter (Requires minor change)

Input: File, Output: Sheet

In the package tabular a CSVFileExtractor is already implemented, which loads a CSV from an URL and
outputs a Sheet. We need to rewrite the existing example pipelines (gas and cars), to use the new
HTTPExtractor as well, then we just need one CSVFileInterpreter and now longer an CSVFileExtractor.

5) LayoutValidator and Layouts (Requires minor change)

The following description is out of scope for this RFC, will be considered in future but is important for
understanding the gtfs-specification:

Some columns in GTFS-csv-files are optional and conditional optional
For an implementation of an optional mechanism, we need to present the optional columns with
their datatype, e.g. saying their datatype is text or undefined.
So, we'd need an undefined datatype in Jayvee and a way to combine these types using an or-
expression (see chapter datatypes).

For a first draft, we only consider required columns and reuse the existing language features for that.

layout agencyLayout {
 header row 1: text;
 column agency_id: text; //Conditional columns are considered as required
 column agency_name: text;
 column agency_url: text;
 column agency_timezone: text;
 }

A vision is, that the GTFS-pipeline later on processes a list of GTFS-Endpoints. Because every endpoint has
at least the required-columns, we need to have the optional-mechanism in our layout.

In a GTFS-Validator, some conditional (aka logical) checks could possibly be applied during the validation
(not just a static header/datatype validaton). This could be done by checking required columns. If in future an
conditional required is not longer considered as required, we could also implement conditional logical
validation. An example for that is the columns agency_id in table agencies. The specification states, that the
agency_id is optional, when the whole dataset just contains data from one agency.

Appendix A: RFC Document for GTFS Support (RFC-0002)

63

IMPORTANT: In the GTFS specifiation, the order of the columns is not defined, so we need to access the
columns by their names, not their index as every GTFS-endpoint could possibly have a different order!!

6) SQLiteSink (Requires minor change)

Input: Table, Output: void
This Block needs to be adapted, to handle multiple Inputs. As the parallel processing of the differnt files does
not depend on each other, for an inital demonstration if the PoC we use each own SQLiteSinks without the
effort of modifying the execution logic (here we have to change the SQLite sink, to not recreate the DB each
call). We also change the SQLiteSink to receive the table name via the io-datatype Table itself.

block GtfsLoader oftype SQLiteTablesLoader {
 file: "./gtfs.db";
 }

Appendix A: RFC Document for GTFS Support (RFC-0002)

64

jvalue / jayvee Public

Jump to bottom

[FEATURE] Mobility Extension (RFC0002) #123
Closed 24 tasks done schlingling opened this issue on Feb 4 · 3 comments

Assignees

Labels enhancement

Code Issues 22 Pull requests 5 Actions Projects Wiki Security 2 Ins

Edit New issue

schlingling commented on Feb 4 •

User Story

. As a {user}

. I want {to archive GTFS-data from an http-endpoint}

. So that {this kind of domain specific data gets stored in an SQLite-Database according to the GTFS relational model}

Notes

A basis for all UACs is the corresponding RFC0002 Mobility extension. The RFC got qualified by multiple iterations, which
are listed below. One UACs represents a single requirement, extraced from the final, accepted iteration.
Iterations of RFC0002 Mobility extension:

Iteration Scope PR

1 RFC mobility extension using collections: inital concept #111

2 FC mobility extension using collections: refinement after feedback-loop #115

3 RFC mobility extension using file-pickers: change of concept #116

4 RFC mobility extension using file-pickers: refinement after feedback-loop #117

5 RFC mobility extension using file-pickers: RFC-status ACCEPTED #119

User Acceptance Criteria

edited

 [UAC-1] New io-datatype File is implemented. Via New io-datatype File (UAC-1 of #123) #125 and
Implemented composite pattern for filesystem #256

 [UAC-2] New io-datatype FileSystem is implemented. Via New io-datatype FileSystem, None, Folderstructure
(UAC-2-3-8 of #123) #126 and Implemented composite pattern for filesystem #256

 [UAC-3] New io-datatype None is implemented. Via New io-datatype FileSystem, None, Folderstructure (UAC-
2-3-8 of #123) #126

[UAC-4] The io-datatype Table stores the table's name. Obsolet via [UAC-5] DISCUSSION The block
LayoutValidator process the new table name coming from Table. #164 and [UAC-4] The io-datatype

Table stores the table's name (UAC-4 of #123) #165

[UAC-5] The block LayoutValidator process the new table name coming from Table. Obsolet via [UAC-5]
DISCUSSION The block LayoutValidator process the new table name coming from Table. #164

Appendix B: GitHub Issue for RFC-0002 GTFS Support

B GitHub Issue for RFC-0002 GTFS Support

65

Examples

A detailled explanation of all UACs and further context is provided by the RFC0002

Definitions of Done

[UAC-6] The example.jv-files holds the tables name in Table-Block. Obsolet via [UAC-5] DISCUSSION The
block LayoutValidator process the new table name coming from Table. #164

 [UAC-6.1] The example.jv-files holds the tables name in Loaderblocks. via Refactor mobility.jv to
tableInterpreter #166

 [UAC-7] If a precessor of a block outputs None , the execution aborts. via New blocktype FilePicker and abort
mechanism (UAC-7-11 of #123) #136

 [UAC-8] Folderstructure for io-datatypes is introduced. Via Folderstructure for io-types (UAC-8 of #123) #124
and via New io-datatype FileSystem, None, Folderstructure (UAC-2-3-8 of #123) #126 and via Implemented
composite pattern for filesystem #256

 [UAC-09] New blocktype HttpExtractor is implemented in std-extension. via New blocktype HttpExtractor
(UAC-09 of #123) #134

 [UAC-10] New blocktype ArchiveInterpreter is implemented in std-extension. via New blocktype
ArchiveInterpreter (UAC-10 of #123) #135

 [UAC-11] New blocktype FilePicker is implemented in std-extension. via New blocktype FilePicker and abort
mechanism (UAC-7-11 of #123) #136

 [UAC-12] The current blocktype CSVFileExtractor is refactored to an CSVInterpreter . via [UAC-12] The
current blocktype CSVFileExtractor is refactored to an CSVInterpreter. #168

 [UAC-13] The former extractor-functionality of CSVFileExtractor is covered by the new HTTPExtractor and
ArchiveInterpreter . via [UAC-13] The former extractor-functionality of CSVFileExtractor is covered by the

new HTTPExtractor and ArchiveInterpreter #169

 [UAC-14] The example.jv-files are adapted to using the new blocks HTTPExtractor and ArchiveInterpreter . via
[UAC-13] The former extractor-functionality of CSVFileExtractor is covered by the new HTTPExtractor and

ArchiveInterpreter #169 and TODO

 [UAC-15] All conditional columns of an GTFS-Layout are considered as required --> out of scope, via Unified cell
range model for CSV Layouts #85

 [UAC-16] The current block SQLiteSink accepts multiple inputs. --> for a PoC, multiple sinks are used, rather
than multiple inputs for one sink, this works out of the box

[UAC-17] The current block SQLiteSink process the new tables' name. obsolet via [UAC-5] DISCUSSION
The block LayoutValidator process the new table name coming from Table. #164

 [UAC-18] The current block SQLiteSink does not recreate an DB each call. --> already implemented, if an
database exists, the db gets opened, otherwise created.

 [UAC-19] Parallel processing of independ blocks does not interfer the overall execution .--> already implemented

 [UAC-20] Jayvee processes successfully 0002-mobility.jv via [UAC-20] Jayvee processes successfully
mobility.jv #180

 All PRs has been opened and accepted

 All user acceptance criteria are met

 All tests are passing

schlingling added the enhancement label on Feb 4

schlingling self-assigned this on Feb 4

Appendix B: GitHub Issue for RFC-0002 GTFS Support

66

schlingling changed the title [DRAFT] [FEATURE] Mobility Extension (coming from RFC0002) [FEATURE] Mobility
Extension (RFC0002) on Feb 4

schlingling commented on Feb 4 •

@rhazn May you have a short look, if this issue fits your expectation? Then i would start the implementation.

edited

rhazn commented on Feb 4

Sounds good 👍 , also FYI @felix-oq

 👍 1 🎉 1

schlingling mentioned this issue on Feb 5

Folderstructure for io-types (UAC-8 of #123) #124

 Merged

1 task

schlingling linked a pull request on Feb 5 that will this issue

Folderstructure for io-types (UAC-8 of #123) #124 Merged

1 task

close

schlingling removed a link to a pull request on Feb 5

Folderstructure for io-types (UAC-8 of #123) #124 Merged

1 task

schlingling mentioned this issue on Feb 5

New io-datatype File (UAC-1 of #123) #125

 Merged

1 task

schlingling added a commit that referenced this issue on Feb 5

Merge pull request #124 from jvalue/feat-mobility-extension-uac-8 b307423…

schlingling added a commit that referenced this issue on Feb 5

Merge pull request #125 from jvalue/feat-mobility-extension-uac-1 1706112…

schlingling mentioned this issue on Feb 5

New io-datatype FileSystem, None, Folderstructure (UAC-2-3-8 of #123) #126

 Merged

3 tasks

Appendix B: GitHub Issue for RFC-0002 GTFS Support

67

schlingling added a commit that referenced this issue on Feb 9

Merge pull request #126 from jvalue/feat-mobility-extension-uac-2-fil… f418f69…

This was referenced on Feb 12

New blocktype HttpExtractor (UAC-09 of #123) #134

 Merged

New blocktype ArchiveInterpreter (UAC-10 of #123) #135

 Merged

New blocktype FilePicker and abort mechanism (UAC-7-11 of #123) #136

 Merged

schlingling added a commit that referenced this issue on Feb 13

Merge pull request #135 from jvalue/feat-archive-interpreter-uac-10 0b40c01…

schlingling added a commit that referenced this issue on Feb 13

Merge pull request #134 from jvalue/feat-mobility-ext-uac-9 ead1df5…

This was referenced on Feb 18

[UAC-5] DISCUSSION The block LayoutValidator process the new table name coming from Table.
#164

Closed

[UAC-4] The io-datatype Table stores the table's name (UAC-4 of #123) #165

Closed

Refactor mobility.jv to tableInterpreter #166

 Merged

closed #167

Closed

[UAC-12] The current blocktype CSVFileExtractor is refactored to an CSVInterpreter. #168

 Merged

[UAC-13] The former extractor-functionality of CSVFileExtractor is covered by the new HTTPExtractor
and ArchiveInterpreter #169

 Merged

schlingling added a commit that referenced this issue on Feb 20

Merge pull request #136 from jvalue/feat-mobility-ext-uac-11 76febcf…

schlingling mentioned this issue on Feb 25

[UAC-20] Jayvee processes successfully mobility.jv #180

Appendix B: GitHub Issue for RFC-0002 GTFS Support

68

schlingling

enhancement

None yet

No milestone

 Merged

1 task

schlingling commented on Feb 26

Successfully extended Jayvee by GTFS-Support as proposed in RFC0002. See #180 for an detailed perspective on the
result. RFC0002 is therefore fully implemented.

FYI @georg-schwarz @felix-oq @rhazn

schlingling closed this as completed on Feb 26

This was referenced on Feb 26

RFC for gtfs extension #111

 Closed

RFC for mobility extension #115

 Merged

This was referenced on Feb 26

RFC 0002 for mobility extension #116

 Merged

RFC 0002 for mobility extension #117

 Merged

RFC 0002 for mobility extension #119

 Merged

schlingling mentioned this issue 3 weeks ago

Implemented composite pattern for filesystem #256

 Merged

Assignees

Labels

Projects

Milestone

Appendix B: GitHub Issue for RFC-0002 GTFS Support

69

Create a branch for this issue or link a pull request.

2 participants

Pin issue

Development

Appendix B: GitHub Issue for RFC-0002 GTFS Support

70

<!--
SPDX-FileCopyrightText: 2023 Friedrich-Alexander-Universitat Erlangen-Nurnberg

SPDX-License-Identifier: AGPL-3.0-only
-->

RFC 0006: GTFS-RT Support

Feature Tag gtfs-rt-support

Status ACCEPTED
<!-- Possible values: DRAFT, DISCUSSION,
ACCEPTED, REJECTED -->

Responsible @schlingling
Implemented
via

#219
(https://github.com/jvalue/jayvee/issues/219)

<!--
Status Overview:

DRAFT: The RFC is not ready for a review and currently under change. Feel free to already ask for
feedback on the structure and contents at this stage.
DISCUSSION: The RFC is open for discussion. Usually, we open a PR to trigger discussions.
ACCEPTED: The RFC was accepted. Create issues to prepare implementation of the RFC.
REJECTED: The RFC was rejected. If another revision emerges, switch to status DRAFT.
-->
Disclaimer: This RFC is part of my master-thesis "Archiving open transport data using the JValue
tooling ecosystem" supervised by @rhazn.

Summary

Introduces support for GTFS-RT (https://developers.google.com/transit/gtfs-realtime) (realtime) endpoints
and extends therefore functionality of 0002-mobility-extension
(https://github.com/jvalue/jayvee/tree/main/rfc/0002-mobility-extension). With this RFC, Jayvee can then
process pipelines, which are extracting static public transportation schedules and associated geographic
information and on top realtime updates about associated fleets like delays, cancellations, vehicle positions,
etc.

Motivation

When it comes to nearly realtime updates, Google introduced an additional specification GTFS-RT on top of
GTFS. This specification provides real-time up-dates to transit schedules and locations. It allows developers
to access real-time
information about the location and status of vehicles, as well as any disruptions
or delays in service. GTFS-RT data is typically provided in
shape of streaming data feeds that are updated in real-time as events occur.
This realtime-feed always needs its corresponding static feed, which defines the
schedule and dimensions like agency.txt or routes.txt around live updates. The realtime specification can be
divided into three types
of additional information, which enriches the static GTFS-feed:

Trip updates - cancellations, delays and changed routes

Appendix C: RFC Document for GTFS-RT Support (RFC-0006)

C RFC Document for GTFS-RT Support (RFC-
0006)

71

Service alerts - unforeseen events with impact on the transportation net-
work
Vehicle positions - realtime information on vehicles position in coordinates

Explanation

In contrast to static GTFS, which only changes manually, when new schedules are
released, realtime feeds require a frequent update rate (in the range of seconds),
since live locations are played out. For this reason, it is specified that GTFS-RT is
streamed using the protocol buffer format, which corresponds to a very efficient
binary representation of the data. As a result, consuming
and processing a GTFS-RT-feed needs an additional encoding stage to convert
the messages to human readable plain text. The gtfs-realtime.proto textfile is used for parsing the protocol
buffer into an JSON-like representation.

Appendix C: RFC Document for GTFS-RT Support (RFC-0006)

72

A simple GTFS-RT-Pipeline is shown in the picture below.

The red block types need to be created from scratch whereas the green block types are either already
present or only require minor changes (this classification is also reflected in the following chapter titles).

Since realtime feeds require a frequent update rate, we enable a periodical load from GTFS and GTFS-RT
data by following concept already discussed with @rhazn:

1. One pipeline containing both, GTFS and GTFS-RT sections.
2. Periodical execution of the pipeline.
3. An additional attribute for SQLite-sink indicates whether tables should be dropped before load

starts. GTFS-tables are dropped every run, GTFS-RT-tables not, which leads to the dataset
visualized above in the Output-SQLite-Database containing the static GTFS-information as well as
the incrementally growing RT-tables.

This concept results in following pipeline.

Appendix C: RFC Document for GTFS-RT Support (RFC-0006)

73

Block Types

1) GtfsRTInterpreter (Requires implementation from scratch)

Input: File, Output: Sheet

A GtfsRTInterpreter gets an entity ("vehicle", "trip_update" or "alert") to process from the incoming protobuf-
file, decodes the protobuf-file and outputs the entity as a sheet. In a first step, just required columns (defined
in gtfs-realtime.proto) are considered. As we dont have a dedicated mobility-extension folder in Jayvee this
should be implemented in the std-extension (already discussed with @rhazn).

block MyGtfsRTInterpreter oftype GtfsRTInterpreter {
 entity: "vehiclePosition"; // TEXT: "vehiclePosition", "tripUpdate" or "alert"
}

2) SQLiteSink (Requires minor change)

The SQLite sink needs an additional attribute indicating whether table should be dropped before load starts.
Since blocks currently just support one input, a boolean data type for dropping a table is enough.

block VehicleLoader oftype SQLiteLoader {
 file: "./gtfs.db";
 dropTable: false // BOOLEAN
}

Drawbacks

The proposed concept is functional, but it could be more efficient if it would not involve dropping static data
with each run. However, since addressing this issue would make the RFC more complex, we have decided
to implement this optimization at a later stage, and focus on creating a first proof of concept for now.

Alternatives

An alternative approach could involve using a generic block type called JsonInterpreter instead of the
proposed GtfsRTInterpreter. This block type would parse incoming files into a new io-datatype called JSON.
A downstream block type JsonFlattener would then flatten the JSON into a tabular sheet representation (eg.
by having a file map to some form of tree structure for JSON which maps to sheets). Since the flattening of
generic JSON files into tabular representation is a fundamental topic for ETL systems, this approach should
be discussed in a separate RFC as it falls outside the scope of the master thesis.

Outlook

Once we want to logically validate the data model during load, we have the dependency to first load the
static data and afterwards the realtime data because realtime depends on static. We just want to load
realtime data to the sink, if the data is conform to the static data which was loaded in advance. Unfortunally
state now we cannot model this sequential dependency in one pipeline(eg. by connecting the GTFS-sink with
the GTFS-RT-Extractor) but to shed light on this the dependcy this is mentioned as an outlook.

Appendix C: RFC Document for GTFS-RT Support (RFC-0006)

74

jvalue / jayvee Public

Jump to bottom

[FEATURE] GTFS-RT Support (RFC0006) #219
Closed 11 tasks done schlingling opened this issue on Mar 20 · 2 comments

Assignees

Labels enhancement

Code Issues 22 Pull requests 5 Actions Projects Wiki Security 2 Ins

Edit New issue

schlingling commented on Mar 20 •

User Story

. As a {user}

. I want {to archive GTFS-RT-data from a http-endpoint}

. So that {multiple executions of a pipeline containing both, GTFS and GTFS-RT sections, demonstrate an archiving
process of static as well as realtime GTFS data}

Notes

A basis for all UACs is the corresponding RFC0006 GTFS-RT Support. The RFC got qualified by multiple iterations, which
are listed below. One UACs represents a single requirement, extraced from the final, accepted iteration.
Iterations of RFC0006 GTFS-RT Support:

Iteration Scope PR

1 GTFS-RT file processing using GtfsRTInterpreter: inital concept #200

2 GTFS-RT file processing using GtfsRTInterpreter: refinement after feedback-loop #201

User Acceptance Criteria

edited

 [UAC-1] New blocktype GtfsRTInterpreter is implemented in std-extension. via New blocktype
GtfsRTInterpreter is implemented in std-extension (UAC-1 of #219) #223

 [UAC-1.1] A new demo pipeline gtfs-rt-simple.jv is implemented. via New blocktype GtfsRTInterpreter is
implemented in std-extension (UAC-1 of #219) #223

 [UAC-2] The current blocktype SQLiteSink is configurable by an attribute dropTable indicating to drop data before
loading to the sink. iva The current blocktype SQLiteSink is configurable by an attribute dropTable indicating to
drop data before loading to the sink (UAC-2 of #219) #254

 [UAC-3] gtfs-static-and-rt.jv is added to showcase the processing of GTFS-RT data as well as GTFS data. via
gtfs-static-and-rt.jv is added to showcase the processing of GTFS-RT data as well as GTFS data (UAC-3 of

#219) #255

 [UAC-4] Every run of gtfs-static-and-rt.jv creates/updates ONE sqlite file via gtfs-static-and-rt.jv is added
to showcase the processing of GTFS-RT data as well as GTFS data (UAC-3 of #219) #255

 [UAC-5] Every run of gtfs-static-and-rt.jv downloads GTFS data and overwrites GTFS tables via gtfs-static-
and-rt.jv is added to showcase the processing of GTFS-RT data as well as GTFS data (UAC-3 of #219) #255

Appendix D: GitHub Issue for RFC-0006 GTFS-RT Support

D GitHub Issue for RFC-0006 GTFS-RT Support

75

Examples

A detailled explanation of all UACs and further context is provided by RFC0006 GTFS-RT Support

Definitions of Done

 [UAC-6] Every run of gtfs-static-and-rt.jv downloads GTFS-RT data and appends it to GTFS-RT tables via
gtfs-static-and-rt.jv is added to showcase the processing of GTFS-RT data as well as GTFS data (UAC-3 of

#219) #255

 [UAC-7] Jayvee processes successfully gtfs-static-and-rt.jv via gtfs-static-and-rt.jv is added to showcase
the processing of GTFS-RT data as well as GTFS data (UAC-3 of #219) #255

 A PR has been opened and accepted

 All user acceptance criteria are met

 All tests are passing

schlingling added the enhancement label on Mar 20

schlingling self-assigned this on Mar 20

schlingling commented on Mar 20

@rhazn May you have a short look, if this issue fits your expectation? Then i would start the implementation.

rhazn commented on Mar 20

Yeah, sounds good.

 👍 1

schlingling mentioned this issue on Mar 20

New blocktype GtfsRTInterpreter is implemented in std-extension (UAC-1 of #219) #223

 Merged

2 tasks

This was referenced on Apr 8

[FEATURE] [UAC-2] The current blocktype SQLiteSink is configurable by an attribute dropTable
indicating to drop data before loading to the sink #253

Closed

The current blocktype SQLiteSink is configurable by an attribute dropTable indicating to drop data
before loading to the sink (UAC-2 of #219) #254

 Merged

Appendix D: GitHub Issue for RFC-0006 GTFS-RT Support

76

schlingling

enhancement

None yet

No milestone

Create a branch for this issue or link a pull request.

2 participants

Pin issue

gtfs-static-and-rt.jv is added to showcase the processing of GTFS-RT data as well as GTFS data (UAC-
3 of #219) #255

 Merged

schlingling added a commit that referenced this issue on Apr 10

Merge pull request #255 from jvalue/feat-gtfs-rt-uac-3-gtfsjv-both 8d90c2b…

schlingling added a commit that referenced this issue on Apr 10

Merge pull request #254 from jvalue/fet-gtfs-rt-uac2-droptable-indicator 2d17b70…

schlingling added a commit that referenced this issue on Apr 12

Merge pull request #223 from jvalue/feat-gtfs-rt-uac1-gtfsrtinterpreter d1db034…

schlingling closed this as completed 3 weeks ago

schlingling mentioned this issue 3 weeks ago

Implemented composite pattern for filesystem #256

 Merged

Assignees

Labels

Projects

Milestone

Development

Appendix D: GitHub Issue for RFC-0006 GTFS-RT Support

77

Appendix E: Bill of Materials

E Bill of Materials
Bill of materials with packages which were additionally introduced by the imple-
mentations of this thesis:
Name Version License Used in Comment
gtfs-realtime-bindings1.1.1 Apache 2.0gtfs-rt extension, demonstratorBindings for gtfs realtime
jszip 3.10.1 MIT gtfs extension Unarchiver for zip files
mime-types 2.1.35 MIT gtfs and gtfs-rt extension Maps file extensions to common mimetypes
csv-parser 3.0.0 MIT demonstrator API for CSV files
sqlite 4.1.2 MIT demonstrator API for sqlite databases

78

Appendix F: GTFS Static Pipeline

F GTFS Static Pipeline
GitHub: https://github.com/jvalue/jayvee/blob/98fedbef2b717b1bb586593502
804fa2ad3dba06/example/gtfs-static.jv

1 pipeline GtfsPipeline {
2 block GTFSSampleFeedExtractor oftype HttpExtractor {
3 url : " https :// developers . google . com / static / transit / gtfs / examples / sample - feed . zip ";
4 }
5
6 block ZipArchiveInterpreter oftype ArchiveInterpreter {
7 archiveType : " zip ";
8 }
9

10 block AgencyFilePicker oftype FilePicker {
11 path : "/ agency . txt ";
12 }
13
14 block CalendarDatesFilePicker oftype FilePicker {
15 path : "/ calendar_dates . txt ";
16 }
17
18 block CalendarFilePicker oftype FilePicker {
19 path : "/ calendar . txt ";
20 }
21
22 block FareAttributesFilePicker oftype FilePicker {
23 path : "/ fare_attributes . txt ";
24 }
25
26 block FareRulesFilePicker oftype FilePicker {
27 path : "/ fare_rules . txt ";
28 }
29
30 block FrequenciesFilePicker oftype FilePicker {
31 path : "/ frequencies . txt ";
32 }
33
34 block RoutesFilePicker oftype FilePicker {
35 path : "/ routes . txt ";
36 }
37
38 block ShapesFilePicker oftype FilePicker {
39 path : "/ shapes . txt ";
40 }
41
42 block StopTimesFilePicker oftype FilePicker {
43 path : "/ stop_times . txt ";
44 }
45
46 block StopsFilePicker oftype FilePicker {
47 path : "/ stops . txt ";
48 }
49
50 block TripsFilePicker oftype FilePicker {
51 path : "/ trips . txt ";
52 }
53
54 block AgencyTextFileInterpreter oftype TextFileInterpreter {
55 }
56
57 block CalendarDatesTextFileInterpreter oftype TextFileInterpreter {
58 }
59
60 block CalendarTextFileInterpreter oftype TextFileInterpreter {
61 }
62
63 block FareAttributesTextFileInterpreter oftype TextFileInterpreter {
64 }
65
66 block FareRulesTextFileInterpreter oftype TextFileInterpreter {
67 }
68
69 block FrequenciesTextFileInterpreter oftype TextFileInterpreter {
70 }
71
72 block RoutesTextFileInterpreter oftype TextFileInterpreter {
73 }
74
75 block ShapesTextFileInterpreter oftype TextFileInterpreter {
76 }
77

79

Appendix F: GTFS Static Pipeline

78 block StopTimesTextFileInterpreter oftype TextFileInterpreter {
79 }
80
81 block StopsTextFileInterpreter oftype TextFileInterpreter {
82 }
83
84 block TripsTextFileInterpreter oftype TextFileInterpreter {
85 }
86
87 block AgencyCSVInterpreter oftype CSVInterpreter {
88 }
89
90 block CalendarDatesCSVInterpreter oftype CSVInterpreter {
91 }
92
93 block CalendarCSVInterpreter oftype CSVInterpreter {
94 }
95
96 block FareAttributesCSVInterpreter oftype CSVInterpreter {
97 }
98
99 block FareRulesCSVInterpreter oftype CSVInterpreter {

100 }
101
102 block FrequenciesCSVInterpreter oftype CSVInterpreter {
103 }
104
105 block RoutesCSVInterpreter oftype CSVInterpreter {
106 }
107
108 block ShapesCSVInterpreter oftype CSVInterpreter {
109 }
110
111 block StopTimesCSVInterpreter oftype CSVInterpreter {
112 }
113
114 block StopsCSVInterpreter oftype CSVInterpreter {
115 }
116
117 block TripsCSVInterpreter oftype CSVInterpreter {
118 }
119
120 block AgencyTableInterpreter oftype TableInterpreter {
121 header : true ;
122 columns :[
123 " agency_id " oftype text , // Conditional columns are considered as required
124 " agency_name " oftype text ,
125 " agency_url " oftype text ,
126 " agency_timezone " oftype text
127];
128 }
129
130 block CalendarDatesTableInterpreter oftype TableInterpreter {
131 header : true ;
132 columns : [
133 " service_id " oftype text ,
134 " date " oftype text ,
135 " exception_type " oftype text
136];
137 }
138
139 block CalendarTableInterpreter oftype TableInterpreter {
140 header : true ;
141 columns : [
142 " service_id " oftype text ,
143 " monday "oftype text ,
144 " tuesday " oftype text ,
145 " wednesday " oftype text ,
146 " thursday " oftype text ,
147 " friday " oftype text ,
148 " saturday " oftype text ,
149 " sunday " oftype text ,
150 " start_date " oftype text ,
151 " end_date " oftype text
152];
153 }
154
155 block FareAttributesTableInterpreter oftype TableInterpreter {
156 header : true ;
157 columns : [
158 " fare_id " oftype text ,
159 " price " oftype text ,
160 " currency_type " oftype text ,
161 " payment_method " oftype text ,
162 " transfers " oftype text ,
163 " transfer_duration " oftype text
164];
165 }

80

Appendix F: GTFS Static Pipeline

166
167 block FareRulesTableInterpreter oftype TableInterpreter {
168 header : true ;
169 columns : [
170 " fare_id " oftype text ,
171 " route_id " oftype text ,
172 " origin_id " oftype text ,
173 " destination_id " oftype text ,
174 " contains_id " oftype text
175];
176 }
177
178 block FrequenciesTableInterpreter oftype TableInterpreter {
179 header : true ;
180 columns : [
181 " trip_id " oftype text ,
182 " start_time " oftype text ,
183 " end_time " oftype text ,
184 " headway_secs " oftype text
185];
186 }
187
188 block RoutesTableInterpreter oftype TableInterpreter {
189 header : true ;
190 columns : [
191 " route_id " oftype text ,
192 " agency_id " oftype text ,
193 " route_short_name " oftype text ,
194 " route_long_name " oftype text ,
195 " route_desc " oftype text ,
196 " route_type " oftype text ,
197 " route_url " oftype text ,
198 " route_color " oftype text ,
199 " route_text_color " oftype text
200];
201 }
202
203 block ShapesTableInterpreter oftype TableInterpreter {
204 header : true ;
205 columns : [
206 " shape_id " oftype text ,
207 " shape_pt_lat " oftype text ,
208 " shape_pt_lon " oftype text ,
209 " shape_pt_sequence " oftype text ,
210 " shape_dist_traveled " oftype text
211];
212 }
213
214 block StopTimesTableInterpreter oftype TableInterpreter {
215 header : true ;
216 columns : [
217 " trip_id " oftype text ,
218 " arrival_time " oftype text ,
219 " departure_time " oftype text ,
220 " stop_id " oftype text ,
221 " stop_sequence " oftype text ,
222 " stop_headsign " oftype text ,
223 " pickup_type " oftype text ,
224 " drop_off_time " oftype text ,
225 " shape_dist_traveled " oftype text
226];
227 }
228
229 block StopsTableInterpreter oftype TableInterpreter {
230 header : true ;
231 columns :[
232 " stop_id " oftype text ,
233 " stop_name " oftype text ,
234 " stop_desc " oftype text ,
235 " stop_lat " oftype text ,
236 " stop_lon " oftype text ,
237 " zone_id " oftype text ,
238 " stop_url " oftype text
239];
240 }
241
242 block TripsTableInterpreter oftype TableInterpreter {
243 header : true ;
244 columns : [
245 " route_id " oftype text ,
246 " service_id " oftype text ,
247 " trip_id " oftype text ,
248 " trip_headsign " oftype text ,
249 " direction_id " oftype text ,
250 " block_id " oftype text ,
251 " shape_id " oftype text
252];
253 }

81

Appendix F: GTFS Static Pipeline

254
255 block AgencyLoader oftype SQLiteLoader {
256 table : " agency ";
257 file : "./ gtfs . sqlite ";
258 }
259
260 block CalendarDatesLoader oftype SQLiteLoader {
261 table : " calendar_dates ";
262 file : "./ gtfs . sqlite ";
263 }
264
265 block CalendarLoader oftype SQLiteLoader {
266 table : " calendar ";
267 file : "./ gtfs . sqlite ";
268 }
269
270 block FareAttributesLoader oftype SQLiteLoader {
271 table : " fare_attributes ";
272 file : "./ gtfs . sqlite ";
273 }
274
275 block FareRulesLoader oftype SQLiteLoader {
276 table : " fare_rules ";
277 file : "./ gtfs . sqlite ";
278 }
279
280 block FrequenciesLoader oftype SQLiteLoader {
281 table : " frequencies ";
282 file : "./ gtfs . sqlite ";
283 }
284
285 block RoutesLoader oftype SQLiteLoader {
286 table : " routes ";
287 file : "./ gtfs . sqlite ";
288 }
289
290 block ShapesLoader oftype SQLiteLoader {
291 table : " shapes ";
292 file : "./ gtfs . sqlite ";
293 }
294
295 block StopTimesLoader oftype SQLiteLoader {
296 table : " stop_times ";
297 file : "./ gtfs . sqlite ";
298 }
299
300 block StopsLoader oftype SQLiteLoader {
301 table : " stops ";
302 file : "./ gtfs . sqlite ";
303 }
304
305 block TripsLoader oftype SQLiteLoader {
306 table : " trips ";
307 file : "./ gtfs . sqlite ";
308 }
309
310 GTFSSampleFeedExtractor -> ZipArchiveInterpreter ;
311
312 ZipArchiveInterpreter
313 -> AgencyFilePicker
314 -> AgencyTextFileInterpreter
315 -> AgencyCSVInterpreter
316 -> AgencyTableInterpreter
317 -> AgencyLoader ;
318
319 ZipArchiveInterpreter
320 -> CalendarDatesFilePicker
321 -> CalendarDatesTextFileInterpreter
322 -> CalendarDatesCSVInterpreter
323 -> CalendarDatesTableInterpreter
324 -> CalendarDatesLoader ;
325
326 ZipArchiveInterpreter
327 -> CalendarFilePicker
328 -> CalendarTextFileInterpreter
329 -> CalendarCSVInterpreter
330 -> CalendarTableInterpreter
331 -> CalendarLoader ;
332
333 ZipArchiveInterpreter
334 -> FareAttributesFilePicker
335 -> FareAttributesTextFileInterpreter
336 -> FareAttributesCSVInterpreter
337 -> FareAttributesTableInterpreter
338 -> FareAttributesLoader ;
339
340 ZipArchiveInterpreter
341 -> FareRulesFilePicker

82

Appendix F: GTFS Static Pipeline

342 -> FareRulesTextFileInterpreter
343 -> FareRulesCSVInterpreter
344 -> FareRulesTableInterpreter
345 -> FareRulesLoader ;
346
347 ZipArchiveInterpreter
348 -> FrequenciesFilePicker
349 -> FrequenciesTextFileInterpreter
350 -> FrequenciesCSVInterpreter
351 -> FrequenciesTableInterpreter
352 -> FrequenciesLoader ;
353
354 ZipArchiveInterpreter
355 -> RoutesFilePicker
356 -> RoutesTextFileInterpreter
357 -> RoutesCSVInterpreter
358 -> RoutesTableInterpreter
359 -> RoutesLoader ;
360
361 ZipArchiveInterpreter
362 -> ShapesFilePicker
363 -> ShapesTextFileInterpreter
364 -> ShapesCSVInterpreter
365 -> ShapesTableInterpreter
366 -> ShapesLoader ;
367
368 ZipArchiveInterpreter
369 -> StopTimesFilePicker
370 -> StopTimesTextFileInterpreter
371 -> StopTimesCSVInterpreter
372 -> StopTimesTableInterpreter
373 -> StopTimesLoader ;
374
375 ZipArchiveInterpreter
376 -> StopsFilePicker
377 -> StopsTextFileInterpreter
378 -> StopsCSVInterpreter
379 -> StopsTableInterpreter
380 -> StopsLoader ;
381
382 ZipArchiveInterpreter
383 -> TripsFilePicker
384 -> TripsTextFileInterpreter
385 -> TripsCSVInterpreter
386 -> TripsTableInterpreter
387 -> TripsLoader ;
388
389 }
390 }

83

Appendix G: GTFS Realtime Pipeline

G GTFS Realtime Pipeline
GitHub: https://github.com/jvalue/jayvee/blob/98fedbef2b717b1bb586593502
804fa2ad3dba06/example/gtfs-rt-simple.jv

1 pipeline GtfsRTSimplePipeline {
2 block GTFSRTTripUpdateFeedExtractor oftype HttpExtractor {
3 url : " https :// proxy . transport . data . gouv . fr / resource / bibus - brest - gtfs - rt - trip - update ";
4 }
5
6 block GTFSRTVehiclePositionFeedExtractor oftype HttpExtractor {
7 url : " https :// proxy . transport . data . gouv . fr / resource / bibus - brest - gtfs - rt - vehicle - position ";
8 }
9

10 block GTFSRTAlertFeedExtractor oftype HttpExtractor {
11 url : " https :// proxy . transport . data . gouv . fr / resource / bibus - brest - gtfs - rt - alerts ";
12 }
13
14 block GtfsRTTripUpdateInterpreter oftype GtfsRTInterpreter {
15 entity : " trip_update ";
16 }
17
18 block GtfsRTAlertInterpreter oftype GtfsRTInterpreter {
19 entity : " alert ";
20 }
21
22 block GtfsRTVehiclePositionInterpreter oftype GtfsRTInterpreter {
23 entity : " vehicle ";
24 }
25 block TripUpdateTableInterpreter oftype TableInterpreter {
26 header : true ;
27 columns :[
28 " header . gtfs_realtime_version " oftype text ,
29 " header . timestamp " oftype text ,
30 " header . incrementality " oftype text ,
31 " entity . id " oftype text ,
32 " entity . trip_update . trip . trip_id " oftype text ,
33 " entity . trip_update . trip . route_id " oftype text ,
34 " entity . trip_update . stop_time_update . stop_sequence " oftype text ,
35 " entity . trip_update . stop_time_update . stop_id " oftype text ,
36 " entity . trip_update . stop_time_update . arrival . time " oftype text ,
37 " entity . trip_update . stop_time_update . departure . time " oftype text ,
38];
39 }
40
41 block VehiclePositionTableInterpreter oftype TableInterpreter {
42 header : true ;
43 columns :[
44 " header . gtfs_realtime_version " oftype text ,
45 " header . timestamp " oftype text ,
46 " header . incrementality " oftype text ,
47 " entity . id " oftype text ,
48 " entity . vehicle_position . vehicle_descriptor . id " oftype text ,
49 " entity . vehicle_position . trip . trip_id " oftype text ,
50 " entity . vehicle_position . trip . route_id " oftype text ,
51 " entity . vehicle_position . position . latitude " oftype text ,
52 " entity . vehicle_position . position . longitude " oftype text ,
53 " entity . vehicle_position . timestamp " oftype text
54];
55 }
56
57 block AlertTableInterpreter oftype TableInterpreter {
58 header : true ;
59 columns :[
60 ’ header . gtfs_realtime_version ’ oftype text ,
61 ’ header . timestamp ’ oftype text ,
62 ’ header . incrementality ’ oftype text ,
63 ’ entity .id ’ oftype text ,
64 ’ entity . alert . informed_entity . route_id ’ oftype text ,
65 ’ entity . alert . header_text ’ oftype text ,
66 ’ entity . alert . description_text ’ oftype text ,
67];
68 }
69
70 block TripUpdateLoader oftype SQLiteLoader {
71 table : " gtfs -rt - trip_update ";
72 file : "./ gtfs . sqlite ";
73 dropTable : false ;
74 }
75
76 block VehicleLoader oftype SQLiteLoader {
77 table : " gtfs -rt - vehicle_position ";

84

Appendix G: GTFS Realtime Pipeline

78 file : "./ gtfs . sqlite ";
79 dropTable : false ;
80 }
81
82 block AlertLoader oftype SQLiteLoader {
83 table : " gtfs -rt - alert ";
84 file : "./ gtfs . sqlite ";
85 dropTable : false ;
86 }
87
88 GTFSRTTripUpdateFeedExtractor
89 -> GtfsRTTripUpdateInterpreter
90 -> TripUpdateTableInterpreter
91 -> TripUpdateLoader ;
92
93 GTFSRTVehiclePositionFeedExtractor
94 -> GtfsRTVehiclePositionInterpreter
95 -> VehiclePositionTableInterpreter
96 -> VehicleLoader ;
97
98 GTFSRTAlertFeedExtractor
99 -> GtfsRTAlertInterpreter

100 -> AlertTableInterpreter
101 -> AlertLoader ;
102 }

85

Appendix H: GTFS Static and Realtime Pipeline

H GTFS Static and Realtime Pipeline
GitHub: https://github.com/jvalue/jayvee/blob/98fedbef2b717b1bb586593502
804fa2ad3dba06/example/gtfs-static-and-rt.jv

1 pipeline GtfsStaticAndRealtimePipeline {
2
3 block GTFSExtractor oftype HttpExtractor {
4 url : " https :// ratpdev - mosaic - prod - bucket - raw . s3 -eu - west -1. amazonaws . com /11/ exports /1/ gtfs . zip ";
5 }
6
7 block ZipArchiveInterpreter oftype ArchiveInterpreter {
8 archiveType : " zip ";
9 }

10
11 block AgencyFilePicker oftype FilePicker {
12 path : "/ agency . txt ";
13 }
14
15 block CalendarDatesFilePicker oftype FilePicker {
16 path : "/ calendar_dates . txt ";
17 }
18
19 block FeedInfoFilePicker oftype FilePicker {
20 path : "/ feed_info . txt ";
21 }
22
23
24 block CalendarFilePicker oftype FilePicker {
25 path : "/ calendar . txt ";
26 }
27
28 block RoutesFilePicker oftype FilePicker {
29 path : "/ routes . txt ";
30 }
31
32 block ShapesFilePicker oftype FilePicker {
33 path : "/ shapes . txt ";
34 }
35
36 block StopTimesFilePicker oftype FilePicker {
37 path : "/ stop_times . txt ";
38 }
39
40 block StopsFilePicker oftype FilePicker {
41 path : "/ stops . txt ";
42 }
43
44 block TripsFilePicker oftype FilePicker {
45 path : "/ trips . txt ";
46 }
47
48
49 block AgencyTextFileInterpreter oftype TextFileInterpreter {
50 }
51
52 block CalendarDatesTextFileInterpreter oftype TextFileInterpreter {
53 }
54
55 block CalendarTextFileInterpreter oftype TextFileInterpreter {
56 }
57
58 block FeedInfoTextFileInterpreter oftype TextFileInterpreter {
59 }
60
61
62 block RoutesTextFileInterpreter oftype TextFileInterpreter {
63 }
64
65 block ShapesTextFileInterpreter oftype TextFileInterpreter {
66 }
67
68 block StopTimesTextFileInterpreter oftype TextFileInterpreter {
69 }
70
71 block StopsTextFileInterpreter oftype TextFileInterpreter {
72 }
73
74 block TripsTextFileInterpreter oftype TextFileInterpreter {
75 }
76
77 block AgencyCSVInterpreter oftype CSVInterpreter {

86

Appendix H: GTFS Static and Realtime Pipeline

78 }
79
80 block CalendarDatesCSVInterpreter oftype CSVInterpreter {
81 }
82
83 block CalendarCSVInterpreter oftype CSVInterpreter {
84 }
85
86 block FeedInfoCSVInterpreter oftype CSVInterpreter {
87 }
88
89 block RoutesCSVInterpreter oftype CSVInterpreter {
90 }
91
92 block ShapesCSVInterpreter oftype CSVInterpreter {
93 }
94
95 block StopTimesCSVInterpreter oftype CSVInterpreter {
96 }
97
98 block StopsCSVInterpreter oftype CSVInterpreter {
99 }

100
101 block TripsCSVInterpreter oftype CSVInterpreter {
102 }
103
104 block AgencyTableInterpreter oftype TableInterpreter {
105 header : true ;
106 columns :[
107 " agency_id " oftype text ,
108 " agency_name " oftype text ,
109 " agency_url " oftype text ,
110 " agency_timezone " oftype text ,
111 " agency_lang " oftype text ,
112 " agency_phone " oftype text ,
113 " agency_fare_url " oftype text ,
114 " agency_email " oftype text
115];
116 }
117
118 block CalendarDatesTableInterpreter oftype TableInterpreter {
119 header : true ;
120 columns : [
121 " service_id " oftype text ,
122 " date " oftype text ,
123 " exception_type " oftype text
124];
125 }
126
127 block CalendarTableInterpreter oftype TableInterpreter {
128 header : true ;
129 columns : [
130 " service_id " oftype text ,
131 " monday "oftype text ,
132 " tuesday " oftype text ,
133 " wednesday " oftype text ,
134 " thursday " oftype text ,
135 " friday " oftype text ,
136 " saturday " oftype text ,
137 " sunday " oftype text ,
138 " start_date " oftype text ,
139 " end_date " oftype text
140];
141 }
142
143 block FeedInfoTableInterpreter oftype TableInterpreter {
144 header : true ;
145 columns : [
146 " feed_publisher_name " oftype text ,
147 " feed_publisher_url " oftype text ,
148 " feed_lang " oftype text ,
149 " feed_start_date " oftype text ,
150 " feed_end_date " oftype text ,
151 " feed_version " oftype text ,
152 " feed_contact_email " oftype text ,
153 " feed_contact_url " oftype text ,
154];
155 }
156
157 block RoutesTableInterpreter oftype TableInterpreter {
158 header : true ;
159 columns : [
160 " route_id " oftype text ,
161 " agency_id " oftype text ,
162 " route_short_name " oftype text ,
163 " route_long_name " oftype text ,
164 " route_desc " oftype text ,
165 " route_type " oftype text ,

87

Appendix H: GTFS Static and Realtime Pipeline

166 " route_url " oftype text ,
167 " route_color " oftype text ,
168 " route_text_color " oftype text ,
169 " route_sort_order " oftype text
170];
171 }
172
173 block ShapesTableInterpreter oftype TableInterpreter {
174 header : true ;
175 columns : [
176 " shape_id " oftype text ,
177 " shape_pt_lat " oftype text ,
178 " shape_pt_lon " oftype text ,
179 " shape_pt_sequence " oftype text ,
180];
181 }
182
183 block StopTimesTableInterpreter oftype TableInterpreter {
184 header : true ;
185 columns : [
186 " trip_id " oftype text ,
187 " arrival_time " oftype text ,
188 " departure_time " oftype text ,
189 " stop_id " oftype text ,
190 " stop_sequence " oftype text ,
191 " stop_headsign " oftype text ,
192 " pickup_type " oftype text ,
193 " drop_off_type " oftype text ,
194];
195 }
196
197 block StopsTableInterpreter oftype TableInterpreter {
198 header : true ;
199 columns :[
200 " stop_id " oftype text ,
201 " stop_code " oftype text ,
202 " stop_name " oftype text ,
203 " stop_desc " oftype text ,
204 " stop_lat " oftype text ,
205 " stop_lon " oftype text ,
206 " zone_id " oftype text ,
207 " stop_url " oftype text ,
208 " location_type " oftype text ,
209 " parent_station " oftype text ,
210 " stop_timezone " oftype text ,
211 " wheelchair_boarding " oftype text ,
212 " level_id " oftype text ,
213 " platform_code " oftype text
214];
215 }
216
217 block TripsTableInterpreter oftype TableInterpreter {
218 header : true ;
219 columns : [
220 " route_id " oftype text ,
221 " service_id " oftype text ,
222 " trip_id " oftype text ,
223 " trip_headsign " oftype text ,
224 " trip_short_name " oftype text ,
225 " direction_id " oftype text ,
226 " block_id " oftype text ,
227 " shape_id " oftype text ,
228 " wheelchair_accessible " oftype text ,
229 " bikes_allowed " oftype text
230];
231 }
232
233 block AgencyLoader oftype SQLiteLoader {
234 table : " static_agency ";
235 file : "./ gtfs - static - and - rt . sqlite ";
236 }
237
238 block CalendarDatesLoader oftype SQLiteLoader {
239 table : " static_calendar_dates ";
240 file : "./ gtfs - static - and - rt . sqlite ";
241 }
242
243 block CalendarLoader oftype SQLiteLoader {
244 table : " static_calendar ";
245 file : "./ gtfs - static - and - rt . sqlite ";
246 }
247
248 block FeedInfoLoader oftype SQLiteLoader {
249 table : " static_feed_info ";
250 file : "./ gtfs - static - and - rt . sqlite ";
251 }
252
253 block RoutesLoader oftype SQLiteLoader {

88

Appendix H: GTFS Static and Realtime Pipeline

254 table : " static_routes ";
255 file : "./ gtfs - static - and - rt . sqlite ";
256 }
257
258 block ShapesLoader oftype SQLiteLoader {
259 table : " static_shapes ";
260 file : "./ gtfs - static - and - rt . sqlite ";
261 }
262
263 block StopTimesLoader oftype SQLiteLoader {
264 table : " static_stop_times ";
265 file : "./ gtfs - static - and - rt . sqlite ";
266 }
267
268 block StopsLoader oftype SQLiteLoader {
269 table : " static_stops ";
270 file : "./ gtfs - static - and - rt . sqlite ";
271 }
272
273 block TripsLoader oftype SQLiteLoader {
274 table : " static_trips ";
275 file : "./ gtfs - static - and - rt . sqlite ";
276 }
277
278 GTFSExtractor -> ZipArchiveInterpreter ;
279
280 ZipArchiveInterpreter
281 -> AgencyFilePicker
282 -> AgencyTextFileInterpreter
283 -> AgencyCSVInterpreter
284 -> AgencyTableInterpreter
285 -> AgencyLoader ;
286
287 ZipArchiveInterpreter
288 -> CalendarDatesFilePicker
289 -> CalendarDatesTextFileInterpreter
290 -> CalendarDatesCSVInterpreter
291 -> CalendarDatesTableInterpreter
292 -> CalendarDatesLoader ;
293
294 ZipArchiveInterpreter
295 -> CalendarFilePicker
296 -> CalendarTextFileInterpreter
297 -> CalendarCSVInterpreter
298 -> CalendarTableInterpreter
299 -> CalendarLoader ;
300
301 ZipArchiveInterpreter
302 -> FeedInfoFilePicker
303 -> FeedInfoTextFileInterpreter
304 -> FeedInfoCSVInterpreter
305 -> FeedInfoTableInterpreter
306 -> FeedInfoLoader ;
307
308 ZipArchiveInterpreter
309 -> RoutesFilePicker
310 -> RoutesTextFileInterpreter
311 -> RoutesCSVInterpreter
312 -> RoutesTableInterpreter
313 -> RoutesLoader ;
314
315 ZipArchiveInterpreter
316 -> ShapesFilePicker
317 -> ShapesTextFileInterpreter
318 -> ShapesCSVInterpreter
319 -> ShapesTableInterpreter
320 -> ShapesLoader ;
321
322 ZipArchiveInterpreter
323 -> StopTimesFilePicker
324 -> StopTimesTextFileInterpreter
325 -> StopTimesCSVInterpreter
326 -> StopTimesTableInterpreter
327 -> StopTimesLoader ;
328
329 ZipArchiveInterpreter
330 -> StopsFilePicker
331 -> StopsTextFileInterpreter
332 -> StopsCSVInterpreter
333 -> StopsTableInterpreter
334 -> StopsLoader ;
335
336 ZipArchiveInterpreter
337 -> TripsFilePicker
338 -> TripsTextFileInterpreter
339 -> TripsCSVInterpreter
340 -> TripsTableInterpreter
341 -> TripsLoader ;

89

Appendix H: GTFS Static and Realtime Pipeline

342
343
344 // GTFS -RT - Part
345
346
347 block GTFSRTTripUpdateFeedExtractor oftype HttpExtractor {
348 url : " https :// proxy . transport . data . gouv . fr / resource / bibus - brest - gtfs - rt - trip - update ";
349 }
350
351 block GTFSRTVehiclePositionFeedExtractor oftype HttpExtractor {
352 url : " https :// proxy . transport . data . gouv . fr / resource / bibus - brest - gtfs - rt - vehicle - position ";
353 }
354
355 block GTFSRTAlertFeedExtractor oftype HttpExtractor {
356 url : " https :// proxy . transport . data . gouv . fr / resource / bibus - brest - gtfs - rt - alerts ";
357 }
358
359 block GtfsRTTripUpdateInterpreter oftype GtfsRTInterpreter {
360 entity : " trip_update ";
361 }
362
363 block GtfsRTAlertInterpreter oftype GtfsRTInterpreter {
364 entity : " alert ";
365 }
366
367 block GtfsRTVehiclePositionInterpreter oftype GtfsRTInterpreter {
368 entity : " vehicle ";
369 }
370 block TripUpdateTableInterpreter oftype TableInterpreter {
371 header : true ;
372 columns :[
373 " header . gtfs_realtime_version " oftype text ,
374 " header . timestamp " oftype text ,
375 " header . incrementality " oftype text ,
376 " entity . id " oftype text ,
377 " entity . trip_update . trip . trip_id " oftype text ,
378 " entity . trip_update . trip . route_id " oftype text ,
379 " entity . trip_update . stop_time_update . stop_sequence " oftype text ,
380 " entity . trip_update . stop_time_update . stop_id " oftype text ,
381 " entity . trip_update . stop_time_update . arrival . time " oftype text ,
382 " entity . trip_update . stop_time_update . departure . time " oftype text ,
383];
384 }
385
386 block VehiclePositionTableInterpreter oftype TableInterpreter {
387 header : true ;
388 columns :[
389 " header . gtfs_realtime_version " oftype text ,
390 " header . timestamp " oftype text ,
391 " header . incrementality " oftype text ,
392 " entity . id " oftype text ,
393 " entity . vehicle_position . vehicle_descriptor . id " oftype text ,
394 " entity . vehicle_position . trip . trip_id " oftype text ,
395 " entity . vehicle_position . trip . route_id " oftype text ,
396 " entity . vehicle_position . position . latitude " oftype text ,
397 " entity . vehicle_position . position . longitude " oftype text ,
398 " entity . vehicle_position . timestamp " oftype text
399];
400 }
401
402 block AlertTableInterpreter oftype TableInterpreter {
403 header : true ;
404 columns :[
405 ’ header . gtfs_realtime_version ’ oftype text ,
406 ’ header . timestamp ’ oftype text ,
407 ’ header . incrementality ’ oftype text ,
408 ’ entity .id ’ oftype text ,
409 ’ entity . alert . informed_entity . route_id ’ oftype text ,
410 ’ entity . alert . header_text ’ oftype text ,
411 ’ entity . alert . description_text ’ oftype text ,
412];
413 }
414
415 block TripUpdateLoader oftype SQLiteLoader {
416 table : " rt_trip_update ";
417 file : "./ gtfs - static - and - rt . sqlite ";
418 dropTable : false ;
419 }
420
421 block VehicleLoader oftype SQLiteLoader {
422 table : " rt_vehicle_position ";
423 file : "./ gtfs - static - and - rt . sqlite ";
424 dropTable : false ;
425 }
426
427 block AlertLoader oftype SQLiteLoader {
428 table : " rt_alert ";
429 file : "./ gtfs - static - and - rt . sqlite ";

90

Appendix H: GTFS Static and Realtime Pipeline

430 dropTable : false ;
431 }
432
433 GTFSRTTripUpdateFeedExtractor
434 -> GtfsRTTripUpdateInterpreter
435 -> TripUpdateTableInterpreter
436 -> TripUpdateLoader ;
437
438 GTFSRTVehiclePositionFeedExtractor
439 -> GtfsRTVehiclePositionInterpreter
440 -> VehiclePositionTableInterpreter
441 -> VehicleLoader ;
442
443 GTFSRTAlertFeedExtractor
444 -> GtfsRTAlertInterpreter
445 -> AlertTableInterpreter
446 -> AlertLoader ;
447
448 }

91

Appendix I: Execution Output Logs

I Execution Output Logs
Logs for pipeline gtfs-static-and-rt.jv:

1 [GtfsStaticAndRealtimePipeline] Overview :
2 Blocks (59 blocks with 13 pipes) :
3 -> GTFSExtractor (HttpExtractor)
4 -> ZipArchiveInterpreter (ArchiveInterpreter)
5 -> AgencyFilePicker (FilePicker)
6 -> AgencyTextFileInterpreter (TextFileInterpreter)
7 -> AgencyCSVInterpreter (CSVInterpreter)
8 -> AgencyTableInterpreter (TableInterpreter)
9 -> AgencyLoader (SQLiteLoader)

10 -> CalendarDatesFilePicker (FilePicker)
11 -> CalendarDatesTextFileInterpreter (TextFileInterpreter)
12 -> CalendarDatesCSVInterpreter (CSVInterpreter)
13 -> CalendarDatesTableInterpreter (TableInterpreter)
14 -> CalendarDatesLoader (SQLiteLoader)
15 -> CalendarFilePicker (FilePicker)
16 -> CalendarTextFileInterpreter (TextFileInterpreter)
17 -> CalendarCSVInterpreter (CSVInterpreter)
18 -> CalendarTableInterpreter (TableInterpreter)
19 -> CalendarLoader (SQLiteLoader)
20 -> FeedInfoFilePicker (FilePicker)
21 -> FeedInfoTextFileInterpreter (TextFileInterpreter)
22 -> FeedInfoCSVInterpreter (CSVInterpreter)
23 -> FeedInfoTableInterpreter (TableInterpreter)
24 -> FeedInfoLoader (SQLiteLoader)
25 -> RoutesFilePicker (FilePicker)
26 -> RoutesTextFileInterpreter (TextFileInterpreter)
27 -> RoutesCSVInterpreter (CSVInterpreter)
28 -> RoutesTableInterpreter (TableInterpreter)
29 -> RoutesLoader (SQLiteLoader)
30 -> ShapesFilePicker (FilePicker)
31 -> ShapesTextFileInterpreter (TextFileInterpreter)
32 -> ShapesCSVInterpreter (CSVInterpreter)
33 -> ShapesTableInterpreter (TableInterpreter)
34 -> ShapesLoader (SQLiteLoader)
35 -> StopTimesFilePicker (FilePicker)
36 -> StopTimesTextFileInterpreter (TextFileInterpreter)
37 -> StopTimesCSVInterpreter (CSVInterpreter)
38 -> StopTimesTableInterpreter (TableInterpreter)
39 -> StopTimesLoader (SQLiteLoader)
40 -> StopsFilePicker (FilePicker)
41 -> StopsTextFileInterpreter (TextFileInterpreter)
42 -> StopsCSVInterpreter (CSVInterpreter)
43 -> StopsTableInterpreter (TableInterpreter)
44 -> StopsLoader (SQLiteLoader)
45 -> TripsFilePicker (FilePicker)
46 -> TripsTextFileInterpreter (TextFileInterpreter)
47 -> TripsCSVInterpreter (CSVInterpreter)
48 -> TripsTableInterpreter (TableInterpreter)
49 -> TripsLoader (SQLiteLoader)
50 -> GTFSRTTripUpdateFeedExtractor (HttpExtractor)
51 -> GtfsRTTripUpdateInterpreter (GtfsRTInterpreter)
52 -> TripUpdateTableInterpreter (TableInterpreter)
53 -> TripUpdateLoader (SQLiteLoader)
54 -> GTFSRTVehiclePositionFeedExtractor (HttpExtractor)
55 -> GtfsRTVehiclePositionInterpreter (GtfsRTInterpreter)
56 -> VehiclePositionTableInterpreter (TableInterpreter)
57 -> VehicleLoader (SQLiteLoader)
58 -> GTFSRTAlertFeedExtractor (HttpExtractor)
59 -> GtfsRTAlertInterpreter (GtfsRTInterpreter)
60 -> AlertTableInterpreter (TableInterpreter)
61 -> AlertLoader (SQLiteLoader)
62 [GTFSRTAlertFeedExtractor] Fetching raw data from https :// proxy . transport . data . gouv . fr / resource / bibus - brest

- gtfs - rt - alerts
63 [GTFSRTAlertFeedExtractor] Successfully fetched raw data
64 [GTFSRTAlertFeedExtractor] Execution duration : 115 ms .
65 [GtfsRTAlertInterpreter] Parsing raw gtfs - rt feed data as Alerts "
66 [GtfsRTAlertInterpreter] Execution duration : 3 ms .
67 [AlertTableInterpreter] Matching header with provided column names
68 [AlertTableInterpreter] Validating 47 row (s) according to the column types
69 [AlertTableInterpreter] Validation completed , the resulting table has 47 row (s) and 7 column (s)
70 [AlertTableInterpreter] Execution duration : 1 ms .
71 [AlertLoader] Opening database file ./ gtfs - static - and - rt . sqlite
72 [AlertLoader] Creating table " rt_alert "
73 [AlertLoader] Inserting 47 row (s) into table " rt_alert "
74 [AlertLoader] The data was successfully loaded into the database
75 [AlertLoader] Execution duration : 7 ms .
76 [GTFSRTVehiclePositionFeedExtractor] Fetching raw data from https :// proxy . transport . data . gouv . fr / resource /

bibus - brest - gtfs -rt - vehicle - position
77 [GTFSRTVehiclePositionFeedExtractor] Successfully fetched raw data
78 [GTFSRTVehiclePositionFeedExtractor] Execution duration : 88 ms .

92

Appendix I: Execution Output Logs

79 [GtfsRTVehiclePositionInterpreter] Parsing raw gtfs - rt feed data as VehiclePosition "
80 [GtfsRTVehiclePositionInterpreter] Execution duration : 1 ms .
81 [VehiclePositionTableInterpreter] Matching header with provided column names
82 [VehiclePositionTableInterpreter] Validating 33 row (s) according to the column types
83 [VehiclePositionTableInterpreter] Validation completed , the resulting table has 33 row (s) and 10 column (s)
84 [VehiclePositionTableInterpreter] Execution duration : 0 ms .
85 [VehicleLoader] Opening database file ./ gtfs - static - and - rt . sqlite
86 [VehicleLoader] Creating table " rt_vehicle_position "
87 [VehicleLoader] Inserting 33 row (s) into table " rt_vehicle_position "
88 [VehicleLoader] The data was successfully loaded into the database
89 [VehicleLoader] Execution duration : 2 ms .
90 [GTFSRTTripUpdateFeedExtractor] Fetching raw data from https :// proxy . transport . data . gouv . fr / resource / bibus -

brest - gtfs -rt - trip - update
91 [GTFSRTTripUpdateFeedExtractor] Successfully fetched raw data
92 [GTFSRTTripUpdateFeedExtractor] Execution duration : 168 ms .
93 [GtfsRTTripUpdateInterpreter] Parsing raw gtfs - rt feed data as TripUpdate "
94 [GtfsRTTripUpdateInterpreter] Execution duration : 29 ms .
95 [TripUpdateTableInterpreter] Matching header with provided column names
96 [TripUpdateTableInterpreter] Validating 8917 row (s) according to the column types
97 [TripUpdateTableInterpreter] Validation completed , the resulting table has 8917 row (s) and 10 column (s)
98 [TripUpdateTableInterpreter] Execution duration : 6 ms .
99 [TripUpdateLoader] Opening database file ./ gtfs - static - and - rt . sqlite

100 [TripUpdateLoader] Creating table " rt_trip_update "
101 [TripUpdateLoader] Inserting 8917 row (s) into table " rt_trip_update "
102 [TripUpdateLoader] The data was successfully loaded into the database
103 [TripUpdateLoader] Execution duration : 42 ms .
104 [GTFSExtractor] Fetching raw data from https :// ratpdev - mosaic - prod - bucket - raw .s3 - eu - west -1. amazonaws . com

/11/ exports /1/ gtfs . zip
105 [GTFSExtractor] Successfully fetched raw data
106 [GTFSExtractor] Execution duration : 464 ms .
107 [ZipArchiveInterpreter] Loading zip file from binary content
108 [ZipArchiveInterpreter] Execution duration : 93 ms .
109 [TripsFilePicker] Execution duration : 0 ms .
110 [TripsTextFileInterpreter] Decoding file content using encoding " utf -8"
111 [TripsTextFileInterpreter] Splitting lines using line break /\ r ?\ n/
112 [TripsTextFileInterpreter] Lines were split successfully , the resulting text file has 7078 lines
113 [TripsTextFileInterpreter] Execution duration : 3 ms .
114 [TripsCSVInterpreter] Parsing raw data as CSV using delimiter " ,"
115 [TripsCSVInterpreter] Parsing raw data as CSV - sheet successful
116 [TripsCSVInterpreter] Execution duration : 327 ms .
117 [TripsTableInterpreter] Matching header with provided column names
118 [TripsTableInterpreter] Validating 7077 row (s) according to the column types
119 [TripsTableInterpreter] Validation completed , the resulting table has 7077 row (s) and 10 column (s)
120 [TripsTableInterpreter] Execution duration : 2 ms .
121 [TripsLoader] Opening database file ./ gtfs - static - and - rt . sqlite
122 [TripsLoader] Dropping previous table " static_trips " if it exists
123 [TripsLoader] Creating table " static_trips "
124 [TripsLoader] Inserting 7077 row (s) into table " static_trips "
125 [TripsLoader] The data was successfully loaded into the database
126 [TripsLoader] Execution duration : 41 ms .
127 [StopsFilePicker] Execution duration : 0 ms .
128 [StopsTextFileInterpreter] Decoding file content using encoding " utf -8"
129 [StopsTextFileInterpreter] Splitting lines using line break /\ r ?\ n/
130 [StopsTextFileInterpreter] Lines were split successfully , the resulting text file has 1063 lines
131 [StopsTextFileInterpreter] Execution duration : 0 ms .
132 [StopsCSVInterpreter] Parsing raw data as CSV using delimiter " ,"
133 [StopsCSVInterpreter] Parsing raw data as CSV - sheet successful
134 [StopsCSVInterpreter] Execution duration : 36 ms .
135 [StopsTableInterpreter] Matching header with provided column names
136 [StopsTableInterpreter] Validating 1062 row (s) according to the column types
137 [StopsTableInterpreter] Validation completed , the resulting table has 1062 row (s) and 14 column (s)
138 [StopsTableInterpreter] Execution duration : 0 ms .
139 [StopsLoader] Opening database file ./ gtfs - static - and - rt . sqlite
140 [StopsLoader] Dropping previous table " static_stops " if it exists
141 [StopsLoader] Creating table " static_stops "
142 [StopsLoader] Inserting 1062 row (s) into table " static_stops "
143 [StopsLoader] The data was successfully loaded into the database
144 [StopsLoader] Execution duration : 9 ms .
145 [StopTimesFilePicker] Execution duration : 0 ms .
146 [StopTimesTextFileInterpreter] Decoding file content using encoding " utf -8"
147 [StopTimesTextFileInterpreter] Splitting lines using line break /\ r ?\ n/
148 [StopTimesTextFileInterpreter] Lines were split successfully , the resulting text file has 159967 lines
149 [StopTimesTextFileInterpreter] Execution duration : 17 ms .
150 [StopTimesCSVInterpreter] Parsing raw data as CSV using delimiter " ,"
151 [StopTimesCSVInterpreter] Parsing raw data as CSV - sheet successful
152 [StopTimesCSVInterpreter] Execution duration : 4363 ms .
153 [StopTimesTableInterpreter] Matching header with provided column names
154 [StopTimesTableInterpreter] Validating 159966 row (s) according to the column types
155 [StopTimesTableInterpreter] Validation completed , the resulting table has 159966 row (s) and 8 column (s)
156 [StopTimesTableInterpreter] Execution duration : 19 ms .
157 [StopTimesLoader] Opening database file ./ gtfs - static - and - rt . sqlite
158 [StopTimesLoader] Dropping previous table " static_stop_times " if it exists
159 [StopTimesLoader] Creating table " static_stop_times "
160 [StopTimesLoader] Inserting 159966 row (s) into table " static_stop_times "
161 [StopTimesLoader] The data was successfully loaded into the database
162 [StopTimesLoader] Execution duration : 591 ms .
163 [ShapesFilePicker] Execution duration : 0 ms .
164 [ShapesTextFileInterpreter] Decoding file content using encoding " utf -8"

93

Appendix I: Execution Output Logs

165 [ShapesTextFileInterpreter] Splitting lines using line break /\ r ?\ n/
166 [ShapesTextFileInterpreter] Lines were split successfully , the resulting text file has 81398 lines
167 [ShapesTextFileInterpreter] Execution duration : 7 ms .
168 [ShapesCSVInterpreter] Parsing raw data as CSV using delimiter " ,"
169 [ShapesCSVInterpreter] Parsing raw data as CSV - sheet successful
170 [ShapesCSVInterpreter] Execution duration : 2452 ms .
171 [ShapesTableInterpreter] Matching header with provided column names
172 [ShapesTableInterpreter] Validating 81397 row (s) according to the column types
173 [ShapesTableInterpreter] Validation completed , the resulting table has 81397 row (s) and 4 column (s)
174 [ShapesTableInterpreter] Execution duration : 9 ms .
175 [ShapesLoader] Opening database file ./ gtfs - static - and - rt . sqlite
176 [ShapesLoader] Dropping previous table " static_shapes " if it exists
177 [ShapesLoader] Creating table " static_shapes "
178 [ShapesLoader] Inserting 81397 row (s) into table " static_shapes "
179 [ShapesLoader] The data was successfully loaded into the database
180 [ShapesLoader] Execution duration : 210 ms .
181 [RoutesFilePicker] Execution duration : 0 ms .
182 [RoutesTextFileInterpreter] Decoding file content using encoding " utf -8"
183 [RoutesTextFileInterpreter] Splitting lines using line break /\ r ?\ n/
184 [RoutesTextFileInterpreter] Lines were split successfully , the resulting text file has 66 lines
185 [RoutesTextFileInterpreter] Execution duration : 0 ms .
186 [RoutesCSVInterpreter] Parsing raw data as CSV using delimiter " ,"
187 [RoutesCSVInterpreter] Parsing raw data as CSV - sheet successful
188 [RoutesCSVInterpreter] Execution duration : 3 ms .
189 [RoutesTableInterpreter] Matching header with provided column names
190 [RoutesTableInterpreter] Validating 65 row (s) according to the column types
191 [RoutesTableInterpreter] Validation completed , the resulting table has 65 row (s) and 10 column (s)
192 [RoutesTableInterpreter] Execution duration : 0 ms .
193 [RoutesLoader] Opening database file ./ gtfs - static - and - rt . sqlite
194 [RoutesLoader] Dropping previous table " static_routes " if it exists
195 [RoutesLoader] Creating table " static_routes "
196 [RoutesLoader] Inserting 65 row (s) into table " static_routes "
197 [RoutesLoader] The data was successfully loaded into the database
198 [RoutesLoader] Execution duration : 3 ms .
199 [FeedInfoFilePicker] Execution duration : 0 ms .
200 [FeedInfoTextFileInterpreter] Decoding file content using encoding " utf -8"
201 [FeedInfoTextFileInterpreter] Splitting lines using line break /\ r ?\ n /
202 [FeedInfoTextFileInterpreter] Lines were split successfully , the resulting text file has 2 lines
203 [FeedInfoTextFileInterpreter] Execution duration : 0 ms .
204 [FeedInfoCSVInterpreter] Parsing raw data as CSV using delimiter " ,"
205 [FeedInfoCSVInterpreter] Parsing raw data as CSV - sheet successful
206 [FeedInfoCSVInterpreter] Execution duration : 0 ms .
207 [FeedInfoTableInterpreter] Matching header with provided column names
208 [FeedInfoTableInterpreter] Validating 1 row (s) according to the column types
209 [FeedInfoTableInterpreter] Validation completed , the resulting table has 1 row (s) and 8 column (s)
210 [FeedInfoTableInterpreter] Execution duration : 0 ms .
211 [FeedInfoLoader] Opening database file ./ gtfs - static - and - rt . sqlite
212 [FeedInfoLoader] Dropping previous table " static_feed_info " if it exists
213 [FeedInfoLoader] Creating table " static_feed_info "
214 [FeedInfoLoader] Inserting 1 row (s) into table " static_feed_info "
215 [FeedInfoLoader] The data was successfully loaded into the database
216 [FeedInfoLoader] Execution duration : 2 ms .
217 [CalendarFilePicker] Execution duration : 1 ms .
218 [CalendarTextFileInterpreter] Decoding file content using encoding " utf -8"
219 [CalendarTextFileInterpreter] Splitting lines using line break /\ r ?\ n /
220 [CalendarTextFileInterpreter] Lines were split successfully , the resulting text file has 43 lines
221 [CalendarTextFileInterpreter] Execution duration : 0 ms .
222 [CalendarCSVInterpreter] Parsing raw data as CSV using delimiter " ,"
223 [CalendarCSVInterpreter] Parsing raw data as CSV - sheet successful
224 [CalendarCSVInterpreter] Execution duration : 1 ms .
225 [CalendarTableInterpreter] Matching header with provided column names
226 [CalendarTableInterpreter] Validating 42 row (s) according to the column types
227 [CalendarTableInterpreter] Validation completed , the resulting table has 42 row (s) and 10 column (s)
228 [CalendarTableInterpreter] Execution duration : 0 ms .
229 [CalendarLoader] Opening database file ./ gtfs - static - and - rt . sqlite
230 [CalendarLoader] Dropping previous table " static_calendar " if it exists
231 [CalendarLoader] Creating table " static_calendar "
232 [CalendarLoader] Inserting 42 row (s) into table " static_calendar "
233 [CalendarLoader] The data was successfully loaded into the database
234 [CalendarLoader] Execution duration : 3 ms .
235 [CalendarDatesFilePicker] Execution duration : 0 ms .
236 [CalendarDatesTextFileInterpreter] Decoding file content using encoding " utf -8"
237 [CalendarDatesTextFileInterpreter] Splitting lines using line break /\ r ?\ n/
238 [CalendarDatesTextFileInterpreter] Lines were split successfully , the resulting text file has 153 lines
239 [CalendarDatesTextFileInterpreter] Execution duration : 0 ms .
240 [CalendarDatesCSVInterpreter] Parsing raw data as CSV using delimiter " ,"
241 [CalendarDatesCSVInterpreter] Parsing raw data as CSV - sheet successful
242 [CalendarDatesCSVInterpreter] Execution duration : 5 ms .
243 [CalendarDatesTableInterpreter] Matching header with provided column names
244 [CalendarDatesTableInterpreter] Validating 152 row (s) according to the column types
245 [CalendarDatesTableInterpreter] Validation completed , the resulting table has 152 row (s) and 3 column (s)
246 [CalendarDatesTableInterpreter] Execution duration : 0 ms .
247 [CalendarDatesLoader] Opening database file ./ gtfs - static - and - rt . sqlite
248 [CalendarDatesLoader] Dropping previous table " static_calendar_dates " if it exists
249 [CalendarDatesLoader] Creating table " static_calendar_dates "
250 [CalendarDatesLoader] Inserting 152 row (s) into table " static_calendar_dates "
251 [CalendarDatesLoader] The data was successfully loaded into the database
252 [CalendarDatesLoader] Execution duration : 2 ms .

94

253 [AgencyFilePicker] Execution duration : 0 ms .
254 [AgencyTextFileInterpreter] Decoding file content using encoding " utf -8"
255 [AgencyTextFileInterpreter] Splitting lines using line break /\ r ?\ n/
256 [AgencyTextFileInterpreter] Lines were split successfully , the resulting text file has 3 lines
257 [AgencyTextFileInterpreter] Execution duration : 0 ms .
258 [AgencyCSVInterpreter] Parsing raw data as CSV using delimiter " ,"
259 [AgencyCSVInterpreter] Parsing raw data as CSV - sheet successful
260 [AgencyCSVInterpreter] Execution duration : 1 ms .
261 [AgencyTableInterpreter] Matching header with provided column names
262 [AgencyTableInterpreter] Validating 2 row (s) according to the column types
263 [AgencyTableInterpreter] Validation completed , the resulting table has 2 row (s) and 8 column (s)
264 [AgencyTableInterpreter] Execution duration : 0 ms .
265 [AgencyLoader] Opening database file ./ gtfs - static - and - rt . sqlite
266 [AgencyLoader] Dropping previous table " static_agency " if it exists
267 [AgencyLoader] Creating table " static_agency "
268 [AgencyLoader] Inserting 2 row (s) into table " static_agency "
269 [AgencyLoader] The data was successfully loaded into the database
270 [AgencyLoader] Execution duration : 2 ms .
271 [GtfsStaticAndRealtimePipeline] Execution duration : 9136 ms .

95

96

References

Antrim, A., Barbeau, S. J., et al. (2013). The many uses of gtfs data–opening the
door to transit and multimodal applications. Location-Aware Information
Systems Laboratory at the University of South Florida, 4.

Barbeau, S. J.(2018).Quality control-lessons learned from the deployment and
evaluation of GTFS-realtime feeds. 97th Annual Meeting of the Transport-
ation Research Board, Washington, DC.

Braunschweig,K., Eberius,J., Thiele,M., & Lehner,W. (2012).The state of
open data. Limits of current open data platforms, 1, 72–72.

Chung,L., Nixon,B. A., Yu, E., & Mylopoulos,J. (2012).Non-functionalre-
quirements in software engineering (Vol. 5). Springer Science & Business
Media.

Conradie, P., & Choenni, S. (2014). On the barriers for local government releasing
open data.GovernmentInformation Quarterly,31,10–17.https : / / doi .
org/10.1016/j.giq.2014.01.003

Dalpiaz, F., & Brinkkemper, S. (2018). Agile requirements engineering with user
stories. 2018 IEEE 26th InternationalRequirements Engineering Confer-
ence (RE), 506–507. https://doi.org/10.1109/re.2018.00075

Dimitrakopoulos,G., & Demestichas,P. (2010).Intelligent transportation sys-
tems.IEEE Vehicular Technology Magazine,5 (1),77–84.https : / / doi .
org/10.1109/mvt.2009.935537

European Commission.(2003,December 31).DIRECTIVE 2003/98/EC of the
European Parliament and ofthe Councilof 17 november 2003 on the
re-use ofpublic sector information.https : / / eur - lex . europa . eu / legal -
content/EN/TXT/PDF/?uri=CELEX:32003L0098&from=en

European Commission.(2010,July 7). Directive 2010/40/EU ofthe European
Parliament and ofthe Councilof 7 july 2010 on the framework for the
deployment of intelligent transport systems in the field of road transport
and for interfaces with other modes of transport. https://eur-lex.europa.
eu/legal-content/EN/TXT/PDF/?uri=CELEX:32010L0040&from=EN

European Commission. (2021). Monitoring and harmonisation of national access
points [European ITS platform]. Retrieved December 28, 2022, from https:
//www.its-platform.eu/achievement/monitoring-harmonisation-of-naps/

97

References

European Commission. (2022). What is open data? Retrieved December 28, 2022,
from https://data.europa.eu/elearning/en/module1/#/id/co-01

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1996). Entwurfsmuster. Ele-
mente wiederverwendbarer objektorientierter Software, Deutsche Überset-
zung von Dirk Riehle.In Programmers choice (pp.239–253).Addison–
Wesley–Longman.

Garlan,D., & Shaw,M. (1993).An Introduction To Software Architecture.In
Serieson software engineering and knowledge engineering(pp. 1–39).
World Scientific. https://doi.org/10.1142/9789812798039_0001

Goldstein, B., & Dyson, L. (Eds.). (2013). Beyond transparency: Open data and
the future of civic innovation. Code for America Press.

Goliszek,S., & Połom,M. (2016).The use ofgeneraltransit feed specification
(GTFS) application to identify deviations in the operation of public trans-
port at morning peak hours on the example of szczecin. Europa XXI, 31,
51–60. https://doi.org/10.7163/Eu21.2016.31.4

Google. (2022a). GTFS realtime reference | realtime transit. Retrieved December
29,2022,from https : / / developers . google . com / transit / gtfs - realtime /
reference

Google. (2022b). GTFS static reference | static transit. Retrieved December 29,
2022, from https://developers.google.com/transit/gtfs/reference

Harding, M., & Davies, N. (2012). Citadel: A community platform for archiving
travel data. Proceedings of the 6th ACM workshop on Next generation mo-
bile computing for dynamic personalised travel planning - Sense Transport
’12, 7. https://doi.org/10.1145/2307874.2307881

Heltweg, P., & Riehle, D. (2022). Challenges to open collaborative data engineer-
ing. https://doi.org/10.5281/zenodo.6598447

Janssen, K. (2011). The influence of the PSI directive on open government data:
An overview of recent developments. Government Information Quarterly,
28 (4), 446–456. https://doi.org/10.1016/j.giq.2011.01.004

Kaeoruean,K., Phithakkitnukoon,S., Demissie,M. G., Kattan,L., & Ratti, C.
(2020). Analysis of demand–supply gaps in public transit systems based on
census and GTFS data: A case study of calgary, canada. Public Transport,
12 (3), 483–516. https://doi.org/10.1007/s12469-020-00252-y

Koetsier, S., van Heerden, Q., & Maditse, N. K. (2017). Using the GTFS Format
to Improve Public Transport Data Accessibility In Gauteng. South Africa.

Kujala, R., Weckström,C., Darst,R. K., Mladenović,M. N., & Saramäki,J.
(2018).A collection ofpublic transport network data sets for 25 cities.
Scientific Data, 5 (1), 180089. https://doi.org/10.1038/sdata.2018.89

Lim, A., Sharma, S., Bhaskar, A., & Arkatkar, S. (2019). An open source frame-
work for GTFS data analytics: Case study using the Brisbane TransLink
network.

Mahajan,V., Kuehnel,N., Intzevidou,A., Cantelmo,G., Moeckel,R., & Ant-
oniou,C. (2022).Data to the people:A review ofpublic and propriet-

98

References

ary data for transport models. Transport Reviews, 42 (4), 415–440. https:
//doi.org/10.1080/01441647.2021.1977414

Molloy,J. C. (2011).The open knowledge foundation:Open data means better
science. PLoS Biology, 9 (12), e1001195. https://doi.org/10.1371/journal.
pbio.1001195

Noonan, R. E. (1985). An algorithm for generating abstract syntax trees. Com-
puter Languages, 10 (3), 225–236. https://doi.org/10.1016/0096-0551(85)
90018-9

Nuseibeh, B., & Easterbrook, S. (2000). Requirements engineering: A roadmap.
Proceedings of the Conference on The Future of Software Engineering, 35–
46. https://doi.org/10.1145/336512.336523

Obama,B. (2009,January 21).Transparency and open government.Retrieved
December 28,2022,from https : / / obamawhitehouse . archives . gov / the -
press-office/transparency-and-open-government

Pandit,P., & Tahiliani,S. (2015).AgileUAT:A framework for user acceptance
testing based on user stories and acceptance criteria. International Journal
of Computer Applications,120 (10),16–21.https : / / doi . org / 10 . 5120 /
21262-3533

Perry, D. E., & Wolf, A. L. (1992). Foundations for the study of software archi-
tecture. ACM SIGSOFT Software Engineering Notes, 17 (4), 40–52. https:
//doi.org/10.1145/141874.141884

Professorship ofOpen Source Software at the University ofErlangen.(2022).
The JValue project– on a mission to make using open data easy,safe,
and reliable. Retrieved December 30, 2022, from https://jvalue.org/

Qureshi, K. N., & Abdullah, A. H. (2013). A survey on intelligent transportation
systems. Middle-East Journalof Scientific Research, 15 (5), 629–642.

Ramamoorthy,C., & Wah, B. (1989).Knowledge and data engineering.IEEE
Transactions on Knowledge and Data Engineering,1 (1),9–16.https://
doi.org/10.1109/69.43400

SQLite Consortium.(2018).Recommended storage format.Retrieved March 5,
2023, from https://www.sqlite.org/locrsf.html

Wu, J., Du, B., Gong,Z., Wu, Q., Shen,J., Zhou,L., & Cai, C. (2022).A
GTFS data acquisition and processing framework and its application to
train delay prediction.InternationalJournal of Transportation Science
and Technology,S2046043022000090.https : / / doi . org / 10 . 1016 / j . ijtst .
2022.01.005

Zuiderwijk,A., Janssen,M., & Davis,C. (2014).Innovation with open data:
Essentialelements ofopen data ecosystems.Information Polity,19 (1),
17–33. https://doi.org/10.3233/ip-140329

99

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119

