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Abstract

Besides the Open Source approach for software, there is a steadily growing adop-
tion of the Inner Source concept for projects in the software development domain.
Inner Source promotes an Open Source way of thinking inside the boundaries of
a company and enables closer collaboration and code reuse among different pro-
jects. To get a better grasp on how well Inner Source performs and also potentially
support projects in improving their Inner Source processes, development data of
projects should be gathered and analyzed. This thesis focuses on extracting,
cleaning and unifying development data from various data sources to provide a
foundation for various types of analysis.

iii



iv



Contents

1 Introduction 1

2 Literature Review 3

3 Requirements 5
3.1 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Non-Functional Requirements . . . . . . . . . . . . . . . . . . . . 6

4 Analysis 7
4.1 Capabilities of GrimoireLab . . . . . . . . . . . . . . . . . . . . . 7
4.2 Research of Viable Data Sources . . . . . . . . . . . . . . . . . . . 8

4.2.1 GitHub . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2.2 Gitlab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2.3 REST and GraphQL APIs . . . . . . . . . . . . . . . . . . 10
4.2.4 JSON as the Main Data Format . . . . . . . . . . . . . . . 11
4.2.5 Unification of Data Responses . . . . . . . . . . . . . . . . 11

4.3 Visualizing a Data Metric . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Conclusion of Analysis . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Architecture 15
5.1 The ETL Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 The Provided ETL Pipeline Framework . . . . . . . . . . . . . . . 16

5.2.1 The Basic Concept . . . . . . . . . . . . . . . . . . . . . . 16
5.2.2 Orchestration of an ETL Pipeline . . . . . . . . . . . . . . 17

6 Design and Implementation 19
6.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 The Data Gatherer Pipeline . . . . . . . . . . . . . . . . . . . . . 20

6.2.1 Requestor . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2.2 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2.3 Writer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.3 The Metric Generator Pipeline . . . . . . . . . . . . . . . . . . . . 23

v



6.4 Visualizing the Metric . . . . . . . . . . . . . . . . . . . . . . . . 24

7 Evaluation 27
7.1 Evaluation of Functional Requirements . . . . . . . . . . . . . . . 27
7.2 Evaluation of Non-Functional Requirements . . . . . . . . . . . . 28

8 Conclusions 29

References 31

vi



List of Figures

4.1 Screenshot of GrimoireLab Supported Data Source Topics . . . . 8

6.1 The Data Gatherer Pipeline . . . . . . . . . . . . . . . . . . . . . 19
6.2 The Metric Generator Pipeline . . . . . . . . . . . . . . . . . . . . 20
6.3 Box Plot of Pipeline Execution Time In Seconds . . . . . . . . . . 25

vii



viii



Listings

4.1 A Simple JSON Object . . . . . . . . . . . . . . . . . . . . . . . . 11
5.1 The Abstract Requestor Class . . . . . . . . . . . . . . . . . . . . 16
5.2 Assembly of a Pipeline . . . . . . . . . . . . . . . . . . . . . . . . 17
6.1 Recursive Removal of Unwanted Data Fields . . . . . . . . . . . . 21
6.2 Parsing Method for the Unified IssueEvent Class . . . . . . . . . . 22
6.3 A Custom Dataclass JSON Encoder . . . . . . . . . . . . . . . . . 23
6.4 Unified JSON Object for a Pipeline Job . . . . . . . . . . . . . . 24
6.5 A Pipeline Job Metric Object . . . . . . . . . . . . . . . . . . . . 24

ix



x



Acronyms

API Application Interface

CICD Continuous Integration Continuous Deployment

DevOps Development and IT Operations

ETL Extract-Transform-Load

HTTP Hypertext Transport Protocol

JSON JavaScript Object Notation

REST Representational State Transfer

SDK Software Development Kit

SVN Apache Subversion

URI Unique Resource Identifier

MSR Mining Software Repositories

YAML Yet Another Markup Language

xi



xii



1 Introduction

The term Open Source is a relatively new term in software development. Although
the idea of free software reaches further back in time, the official Open Source
Definition is based on the Debian Free Software Guidelines which were established
in 1997. (Perens et al., 1999) Debian itself is a Linux distribution that was entirely
built on free software and had issues with defining what free actually meant, hence
the release of said guidelines.

The Open Source definition expands on the free software movement by demanding
criteria not only focusing on code. (Perens et al., 1999) Today, projects that
follow this Open Source definition are often hosted on various platforms, such as
GitHub. (Alamer and Alyahya, 2017) GitHub has had large success in the recent
years judging by their user count which reportedly has grown from 3.5 million
users in 2013 (Lima et al., 2014) to over 100 million in 2023 (Dohmke, 2023).

Besides only hosting Open Source software - based on the Git version control
system - GitHub offers additional features to its users. These include among
others: project management capabilities, automatic testing and code deployment.
Another Git hosting platform that provides this feature set is GitLab. GitLab is
an Open Source project itself and in addition allows its service to be self-hosted.
(Schreiber et al., 2021)

By leveraging the self-hosting feature of GitLab, many companies try to project
the benefits and culture of Open Source onto their own projects. The movement
of doing so is termed Inner Source. (Capraro and Riehle, 2016) It promises
multiple benefits compared to a conservative approach of software development
in companies. Some of these are "more successful reuse [of code, ] more flexible
utilization of developers [and the] overcoming of organizational unit boundaries".
(Capraro and Riehle, 2016)

To prove these claims and back the adaption of Inner Source, development data
of software projects should be extracted and analyzed. In the scope of this thesis,
plausible data sources were identified and requestors for them were implemented
as Extract-Transform-Load (ETL) pipelines. Based on the extracted data, a
metric was computed to showcase the datas usefulness for analysis purposes.
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2 Literature Review

To present an overview of the work that has already been done on the topic
of gathering and analyzing software development data, this section features a
collection of related scientific publications.

Studies have been conducted showing that developers often times have informa-
tion needs in software projects. Ko et al. identified some of these needs through
interviews and pointed out that automating information acquisition could prove
useful. They also concluded that there is a demand for innovative tools that help
in these regards. (Ko et al., 2007)

Adding to the work of Ko et al., Buse and Zimmermann present information
needs of project managers as they also depend on meaningful project insights
to be able to make good decisions. (Buse and Zimmermann, 2012) Through
surveys of 110 software engineers and project managers, they found that part of
these insights can be delivered by artifacts generated throughout the lifetime of
a software project.

Working out software project insights has already been done for quite some time,
as Weiss and Basili discussed on how to obtain information since 1979. (Weiss
and Basili, 1985) They followed up on this work by presenting insights on a data
collection from five different software development projects, mostly concerning
software errors.

In 1993, Weller conducted code inspections also focusing on defects in code.
(Weller, 1993) Through these inspections and by feeding insights from them back
to the software projects, developers and project managers were able to improve
product quality and also their decision making.

The approaches of Weiss and Basili, as well as Wellers, mostly depended on
manual data acquisition which proves to be quite time consuming. In modern
software development, projects accumulate information by default as they often
use a multitude of software tools, ranging from issue tracking programs up to ver-
sion control systems that generate data. Olatuji et al. presented a comparative
analysis of Mining Software Repositories (MSR) tools that allow automated ana-
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2. Literature Review

lysis of software development projects based on such data, including SoftChange
(Crawford et al., 2003), Hipikat and Dynamine.(Olatunji et al., 2010) Another
similar analysis was done more recently by Siddiqui and Ahmad covering many
of the same MSR tools. (Siddiqui and Ahmad, 2018) In more recent years, ad-
ditional mining projects emerged. Counting to them are among others Gitana
(Cosentino et al., 2018), Kibble (Apache, 2022) or GrimoireLab (Duenas et al.,
2021). Toolsets like the ones mentioned provide a variety of options for collecting
data while also providing means of analysis and visualization. (Duenas et al.,
2021)

Judging from these scientific publications there was and still is a high demand
for software development data analysis. This analysis is mostly done in the
context of data mining, which usually requires large data sets. GrimoireLab and
other projects try to provide means of extracting data sets from various data
sources, such as GitHub or GitLab, but usually miss extracting some worthwhile
information.

This leaves room for further improvements and implementation efforts regarding
data extraction. The decisions on what is going to be implemented will mainly
revolve around the GrimoireLab toolset.
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3 Requirements

To be able to define a scope of what is to be implemented for this thesis, it is
important to define some requirements. There are two types of requirements to
distinguish - functional and non-functional ones.

Functional requirements describe mandatory features a result has to cover. If one
or many of these are not met, it can safely be assumed that the aimed for goal was
not achieved. Non-functional requirements further define properties concerning
quality or constraints inside of which the thesis results should operate (Glinz,
2007).

The following two chapters define both functional and non-functional require-
ments this thesis should meet.

3.1 Functional Requirements

Complete Data Extraction of Chosen Data Sources: The data gathering
part of the implementation should cover all endpoints, which serve currently
unsupported development data. The decision on whether a data endpoint is
viable or not remains subjective, thus it should be discussed at least once with
the supervisor of the thesis.

Cleaning of Data: The Application Interface (API) responses of a data source
are prone to contain data that might not be necessary for analysis. This type of
data should be identified and removed.

API for Calling the Functionality: The implementation should not be isol-
ated, but callable by other users or programs. For this to be possible, it should
provide an API that allows configuration and execution of its functionality.

Implement a New Data Metric: To prove the viability of the newly gathered
data, a metric should be computed showcasing exactly that. The metric has to
have a reasonable meaning that may e.g. be used to optimize a process within a
software project.
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3. Requirements

3.2 Non-Functional Requirements

Easy Onboarding of New Developers: As the implementation is meant
to be used in a running project, the ease of onboarding new developers should
be taken into account. By reducing onboarding time, developers can transition
to be effective project members more quickly. The architecture and design of
the program should thus avoid complexity and be as easily understandable as
possible.

Seamless Integration of Additional Data Sources: With time a need for
the integration of additional data sources may arise. To keep adding data sources
as simple as possible for the developers, this should follow a simple process.

Lightweight and Intuitive API Design: The API is the only interface a
developer has to the implementation. For a convenient developer experience this
API should be lightweight and intuitive to use.

Comprehensible User- and Developer Documentation: Good documenta-
tion is often times crucial for the adaption of a library or program, as it minimizes
errors and frustration. By providing a thought-through documentation, the pro-
gram should become even more accessible to new users and developers.

Make Use of the Provided Pipeline Framework: With the goal in mind
that the implementation results of this thesis are going to be used in a project
and multiple people might work with it, the code should follow common patterns.
To guarantee this, a provided ETL pipeline framework should be utilized.

6



4 Analysis

Before implementing a program that fulfills the previously mentioned require-
ments, a few questions have to be answered.

• What functionality does GrimoireLab currently support?

• Which data sources are viable for an implementation?

• How can data be extracted from these data sources?

• How do their API responses look like - can some be semantically unified?

• What would be a good way to visualize a metric?

For this, an extensive analysis was conducted that provided a ground for future
work done on the practical part of this thesis.

4.1 Capabilities of GrimoireLab

GrimoireLab is the main tool that the supervisor currently uses to extract and
analyze data. The data (sources) implemented by GrimoireLab can be put into a
range of different topics. The official GrimoireLab website gives a quick overview
on what is already supported by providing a short list of said topics (Fig. 4.1).

As this thesis mainly focuses on retrieving the development data of software
projects, the relevant topics consist of Source Code Management, Issues /
Task Management and Source Code Review.

GrimoireLab already supports a vast range of data sources that would have also
been viable for an implementation on behalf of this thesis, namely Git, GitHub
Issues (and Events) and GitLab Issues.

The service in GrimoireLab that is responsible for gathering data is called Per-
ceval. As the code for Perceval is open sourced, a more elaborate look at the
implementation of the GitHub Issue Events requestor showed, that not all Git-
Hub events are accounted for.
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4. Analysis

Figure 4.1: Screenshot of GrimoireLab Supported Data Source Topics

In order of getting an even better overview of GrimoireLabs coverage, a publicly
hosted analytics dashboard was browsed. The dashboard uses the GrimoireLab
toolset to extract and visualize demo data from a range of data sources. Suppor-
ted data sources that were identified that way include GitHub Repositories
and Git Releases.

4.2 Research of Viable Data Sources

With having the data sources and API endpoints in mind that are already sup-
ported by the GrimoireLab tool chain, additional viable data sources and API
endpoints can now be identified.

A starting point for doing so is g2.com, which is a website that gathers reviews
of software- and service users to derive data that enables others to find the best
fit software for their specific use case. For this thesis, data of interest could
be discovered by browsing the category Version Control Hosting Software.
After analyzing the search results, following list of version control hosting software
was considered. (g2.com, 2023)

• Azure DevOps Server

• Bitbucket

• GitHub

• Gitlab

• Jetbrains Space

• JFrog

• SourceForge

8



4. Analysis

Azure DevOps Server is a viable option for implementation in the context of
this thesis, but was not prioritized after consulting with the supervisor.

Bitbucket does not have a broad REST API to fetch data from and was not
prioritized for this thesis.

GitHub is besides GitLab and Bitbucket one of the most used hosting platforms
available. It provides an extensive API that is already partly implemented by
GrimoireLab. As GitHub hosts many large Open Source projects and can also
be used for Inner Source practices it is a good fit for this thesis.

GitLab is a Git hosting platform with a broad set of features that also enable
Development and IT Operations (DevOps) and project management processes.
It is used by companies for Inner Source development which makes it an eligible
option for further implementation.

Jetbrains Space provides an extensible REST API to gather data from, but is
mainly focused on closed teams. As it seems like there is no support for open- or
Inner Source development planned, it is not a suitable implementation candidate.

JFrog is a widely used DevOps and Artifactory platform. It currently doesn’t
support any project management related functionality such as issue boards and
thus is not prioritized.

SourceForge is not particularly used for hosting repositories, but rather binaries
or executables. Git or Apache Subversion (SVN) repositories are at most linked
to, which eliminates SourceForge from being a viable implementation candidate.

Besides the version control hosting systems that are predominantly built for Git,
SVN also makes for an interesting data source. SVN predates Git and there are
assumably also still companies that use it for version control.

After evaluating each of the considerable data source options, reasonable ones
ended up being GitHub, GitLab and SVN. Only limited effort will be put into
the parsing of SVN commit logs, as there’s also a SVN to Git repository migration
possible. This migration allows any SVN repository to be analyzed by the existing
Git capabilities of GrimoireLab.

4.2.1 GitHub

GitHub offers a vast REST API that lets users request data ranging from com-
municational and organizational data to development data. The latter is the one
interesting for this project. After perusing the API, the following endpoints were
selected for implementation after also discussing them with the supervisor.

• Commit Statuses

• Deployments and Releases
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• Environments

• Issue Events (missing ones)

• Workflows and Workflow Runs

4.2.2 Gitlab

While not being as elaborate as the GitHub API, the GitLab API still provides
many endpoints with semantically similar or even the same data as GitHub.
Most of the selected development data endpoints are - even though with slightly
different names - covered by the list in the GitHub section.

4.2.3 REST and GraphQL APIs

Both GitHub and GitLab offer a Representational State Transfer (REST) API
as well as a GraphQL API to retrieve data from. To be called a REST API
a programming interface has to implement specific behavioral characteristics.
(Fielding et al., 2017) REST is closely coupled with the Hypertext Transport
Protocol (HTTP), which is e.g. used to power web services.

The protocol is built upon so called resources. Every resource is identified by
a unique address. That said, a GitHub API address that points to a list of
commits of a GitHub REPO(sitory) created by some OWNER would be ht-
tps://api.github.com/repos/OWNER/REPO/commits. As many pro-
gramming runtimes support the HTTP protocol natively, there is often no need
for additional libraries to connect to a REST API.

GraphQL on the other hand is a language specifically invented for querying a
programming API. As it is not based solely on commonly known technologies,
additional libraries have to be installed and some extra learning effort is required
to get it running.

The key difference between REST and GraphQL APIs is their philosophy on
requesting data. The resources for a REST API are statically predefined by
their developers. If there are for example two different resources for users
and commits and the goal is to have this data merged, two API requests would
have to be issued to accomplish this. GraphQL servers on the other hand only
offer a single endpoint that accepts queries. These queries are user generated
and highly dynamic. For the same task of merging user and commit data in
GraphQL, it would be sufficient to construct a single query and thus issue a
single API request. (Hartig and Pérez, 2018)

The choice between using the REST or the GraphQL approach comes down to
a question of complexity. As GraphQL requires additional learning effort, it is
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4. Analysis

not suitable for the scope of this thesis. Using the REST APIs seems to be more
feasible.

4.2.4 JSON as the Main Data Format

Responses from both GitHubs and GitLabs REST API are mostly messages in
the JavaScript Object Notation (JSON) format. The JSON format is, just as
HTTP, a widely adopted standard in the web service domain. (Peng et al., 2011)
A JSON object consists of key-value-pairs that are used to store information.

1 {
2 "author ": "John Doe",
3 "sha": "9 d840faf0c1c1cc283ed9349b86a7a5a1838cc9f",
4 "created_at ": "2023 -07 -31 T11 :33:23Z"
5 }

Listing 4.1: A Simple JSON Object

This example shows how some basic commit information could be encoded in
JSON. This specific commit has a sha starting with 9d840faf and was issued by
John Doe on the 31.07.2023 at 11:33 UTC time.

4.2.5 Unification of Data Responses

While different vendor APIs may practically offer the same data, their structuring
of data might still be completely different. This is also the case for two of the data
sources to be implemented - GitHub and GitLab. While they e.g. both offer an
endpoint to retrieve information about issue label changes, their API responses
differ drastically. The GitHub API for instance returns many attributes that
are not mandatory for data analysis. These include among others links to user
related resources.

To not trouble a data analyst with polluted data of this kind and enable him to
only focus on important information, some data cleaning has to be conducted.
The task of data cleaning in this context means removing unnecessary attributes
on one hand and the introduction of a common naming scheme on the other.
The latter is most important as attributes conveying the same information may
have received different names from their vendors and should not be confused to
resemble different things.

A simple example that demonstrates this, is the handling of user information. In
GitHub JSON responses, a user is referenced through different terms that range
from creator over reviewer to author. GitLab on the other hand almost always
refers to a user as user. Such differences are most likely not exclusive to the user
term, but could affect many more.

11
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GrimoireLab has addressed this issue by introducing a common vocabulary for
core terms. This vocabulary acts as an abstraction for the vendors individual
naming schemes. By reusing it and introducing new common terms for not
already defined ones, API responses should be cleaned into unified data objects.
This task is to be done for all responses that share a similarity with another
response from a different data source, e.g. issue label changes.

4.3 Visualizing a Data Metric

Besides integrating data sources and cleaning their data responses, another goal
of this thesis is to compute a meaningful metric. Not visualizing said metric
though would mean trouble interpreting it. That said, it’s reasonable to find a
fitting visualization tool to present the metric properly.

There is a potentially unmanageable amount of libraries that are applicable for
this use case. To narrow the options down, a few constraints had to be made.
First, the library should be accessed on a high level only. High level in that
case means, that the visualizing process should be powered by writing configura-
tions rather than code. This should minimize the learning effort and thus decrease
complexity. Also, if possible, the library should have a scientific background.

After conducting a research with these constraints in mind, two libraries seemed
to fit the criteria.

• Observable Plot

• Vega Lite

Observable Plot is - judging by its GitHub repository insights - a relatively
young project, having its first commit in 2020. It is developed by the same team
that maintains the D3.js (Bostock et al., 2011) library and is also powered by
it. D3 itself is one of the most widely adopted JavaScript charting libraries and
is also used to power others, similar to Observable Plot (C3.js, NVD3.js). It is
based on scientific work of the Interactive Data Lab. (IDL, 2013)

Vega Lite (Satyanarayan et al., 2017) on the other hand is not based on D3, but
built from ground up. It was also first announced and developed by members of
the the Interactive Data Lab. (IDL, 2013)

Both of these libraries serve a very similar purpose and an official article from
the Observable Plot team also states that their product is indeed inspired by
Vega Lite. (Johnson, 2023) The article further explains the differences between
the two and ends with the statement that Observable Plot is still evolving, while
Vega Lite has been used over the past decade and thus is more mature. Based
on this fact, the library used for visualizing the metrics will be Vega Lite.
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4.4 Conclusion of Analysis

After researching the available data sources and arguing their viability for the
project, the relevant ones that are to be implemented are GitHub, GitLab and
SVN.

An analysis of GitHubs and GitLabs APIs and JSON responses suggested to
make use of their REST interfaces and to conduct some data cleaning in order
to generate unified data objects, only containing crucial information. Finally, to
visualize a metric, Vega Lite will be used.

The next task, following the research and analysis of the projects key components,
is getting familiar with the proposed code architecture. A current state of the art
approach for extracting, transforming and saving data, is using ETL pipelines.
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5 Architecture

Software architecture in principle is the description of a systems gross structure.
This structure is most often displayed in one or more views that explain design
decisions, interactivity between components and the key properties of a system.
(Garlan, 2008)

Through this kind of explanation, software architecture is able to assist in multiple
aspects of software development. It helps in better understanding a system as a
whole, promotes component reuse and can provide a blueprint for development
efforts.

There are several different software architectures suited for various use cases.
(Richards, 2015) An architecture often used in the context of extracting and
manipulating data, is the ETL concept. (Raj et al., 2020).

5.1 The ETL Concept

A program that follows the ETL concept is split into three phases - the extraction,
transforming and loading of data. Each of these phases has a distinct job that
its meant to fulfill. (El-Sappagh et al., 2011) The following phase explanations
concentrate on their core tasks only.

Extraction

The extraction phase is responsible for requesting data from potentially multiple
different data sources. This phase is usually split into initially fetching all data
possible from a data source and requesting solely data changes thereafter. (El-
Sappagh et al., 2011)

Transforming

After extracting data, it has to be processed. This is done by e.g. cleaning
the data and also conforming it in a way that eliminates any ambiguities or
inconsistencies it may present. (El-Sappagh et al., 2011)

15



5. Architecture

Loading

The last phase of the ETL concept is called loading. Its job is to store the
previously transformed data into target structures that are then accessed by
applications and users alike. (El-Sappagh et al., 2011)

To assist in writing ETL typed programs that implement the mentioned three
phases, a pipeline framework was provided prior to the start of this thesis.

5.2 The Provided ETL Pipeline Framework

The pipeline framework that this section is devoted to, was not written in the
scope of this thesis, but provided by the supervisor. The basic motivation and
design decisions of the implementation will be explained shortly, based upon
provided documentation and discussions with the supervisor.

5.2.1 The Basic Concept

Using the pipeline framework, one should be able to construct pipelines which
consist of multiple jobs. To resemble this in code, the framework offers the classes
Pipeline and PipelineStep.

The responsibility of the Pipeline class is to coordinate the execution of multiple
pipeline steps and pass arguments between them. The PipelineStep class itself is a
generic wrapper for the actual ETL concept implementation, as it can incorporate
any of its three phases - extraction, transforming and loading.

As the PipelineStep is only a wrapper for the actual logic, the framework fore-
sees classes to be implemented that are derived from some abstract classes -
a requestor, transformer and writer. These abstract classes have a one to one
mapping to the ETL concept - the requestor being responsible for the extraction
phase, the transformer and writer for transforming and loading, respectively.

Contained in their class definitions are certain methods that classes derived from
them should or can implement.

1 class RequestImplementation(ABC):
2 @abstractmethod
3 def sync_request(self , pipeline_step , custom_args):
4 pass
5

6 def delta_request(self , pipeline_step , custom_args):
7 pass
8 ...

Listing 5.1: The Abstract Requestor Class
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An implementation (e.g. a GitHubIssueEventsRequestor) derived from a re-
questor could e.g. support the sync_request or the delta_request method. These
two methods in particular resemble the phases an extraction process of an ETL
pipeline should consist of. (El-Sappagh et al., 2011)

The same idea and steps for implementing a requestor goes for transformers and
writers alike.

5.2.2 Orchestration of an ETL Pipeline

After implementing the required abstract classes, one can proceed in assembling
a pipeline. This is done by creating objects of said classes, wrapping them inside
PipelineStep objects and finally feeding them to a Pipeline object.

1 pipeline = Pipeline ()
2

3 request_impl = SomeRequestor (...)
4 request = SyncRequest(request_impl)
5

6 transform_impl = SomeTransformer (...)
7 transform = CleanDataTransformer(transf_impl)
8

9 write_impl = SomeWriter (...)
10 write = Writer(write_impl)
11

12 step1 = PipelineStep(request , "request ")
13 step2 = PipelineStep(transform , "transform ")
14 step3 = PipelineStep(write , "write ")
15

16 pipeline.add(step1)
17 pipeline.add(step2)
18 pipeline.add(step3)
19

20 pipeline.execute ()

Listing 5.2: Assembly of a Pipeline

This illustration shows an example of how a pipeline might be assembled. After
calling the execute method on the Pipeline object, it handles the sequential ex-
ecution of pipeline steps 1 to 3. Any number of PipelineSteps can be processed
by a single Pipeline object and individual steps can also be reused for assembling
other pipelines.
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6 Design and Implementation

With knowledge on what an ETL pipeline is and on how the provided pipeline
framework can be used, a program can now be designed and implemented.

6.1 Design

The goal the implementation has to accomplish can basically be divided into two
tasks.

1. Fetch and Clean Data

2. Compute a Data Metric

Multiple, but still a fixed amount, of data sources are to be implemented in
the scope of this thesis. As for the metric computation, a single one has to
be computed and show cased. The resulting code should nevertheless be easily
extendable so it is able to host even more data sources and metrics if necessary.
To make adding to the code as simple as possible, it’s going to be based on
the design idea that there are two types of pipelines - data gatherer and metric
generator pipelines.

Request Data Clean Data

Requestor
Requests data from various
data sources.

Transformer
Unify and clean the raw data.

Writer
Write unified and cleaned
data to a file in the JSON
format

Write Data to File

Figure 6.1: The Data Gatherer Pipeline

The first type of pipeline is the data gatherer pipeline. Its job is to request
data from multiple determined data sources. After requesting, it should clean
the individual data objects and parse them - if possible - into unified ones (e.g.
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semantically merging GitLab pipelines and GitHub workflow runs). The last task
it has, is to write the results of the transform step to a file.

Get Cleaned Data Compute Metrics

Requestor
Get the necessary cleaned
data from the data gatherer
pipelines.

Writer
Write the computed metrics
to a file in the JSON format.

Write Metrics to File

Transformer
Compute metrics based on
the data.

Figure 6.2: The Metric Generator Pipeline

The metric generator pipeline succeeds the execution of one or multiple data
gatherer pipelines. Different to the requestors, it uses the already cleaned data
to compute some kind of metric from it. After this, it stores the metric in a file
so it can be read by another third party program that could e.g. visualize it.

Built upon these two pipeline design templates there is going to be a collection
of pipelines implemented that gather data and one that computes a metric. The
exact implementation details will be explained in the following sections.

6.2 The Data Gatherer Pipeline

As each pipeline follows the ETL concept, it is split into multiple phases which
were discussed in the architecture and design sections. To best explain what has
been implemented for each of these phases, they are going to be visited one by
one and in doing so their logic components shall be illustrated.

There won’t be too many code examples as this thesis mainly focuses on portray-
ing the decision making process and the thoughts that went into the making of
the implementation. In-detail descriptions of the inner workings of the code are,
as demanded by the non-functional requirements, located in the corresponding
code repository.

6.2.1 Requestor

The first step every pipeline has to go through is the one of data requesting. The
goal is to have requestors for GitLab, GitHub and SVN data endpoints.

Prior research showed that for each GitLab and GitHub, open source Python
Software Development Kit (SDK)s for their APIs already existed. These SDKs
covered a lot of data endpoints, but not all of the needed ones, thus a few had
to be requested from scratch. To have a common interface to both the SDK
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methods and the newly implemented ones, wrapper classes were implemented for
GitHub and GitLab respectively.

SVN doesn’t have a REST API as the other data sources do, but can only be
accessed through a SVN client that prints data to a console. Thus the SVN
requestor was written from ground up and is able to parse such a log from disk.

The requestors (ETL) all generate output in the form of JSON objects, which
are then passed to a transformer (ETL).

6.2.2 Transformer

The task of the transformer is the cleaning of data objects and unifying semantic-
ally similar data objects from different data sources.

The cleaning of data is a process of "(...) removing errors and inconsistencies from
[it]" (Rahm, Do et al., 2000). Following the article of Rahm, the term "cleaning
data" mainly focuses on logical errors in the data, which to discover would mean
defining data constraints and issuing in-detail inspections of data objects.

After perusing the data objects the requestors return, this definition of "cleaning
data" mentioning "removing errors" goes further than needed, as there are no
real data errors to be fixed. Instead there are only data fields to be removed and
naming inconsistencies to be resolved. Nevertheless "cleaning" will stay the term
for this, even though its not meant as strictly as previously defined.

The fields to be removed are mostly Unique Resource Identifier (URI)s that link
to related resources of the data objects, but are not necessary for analysis. These
URIs do predominantly have keys with the suffix _url which enables a recursive
function that traverses said data objects to be very effective. While traversing,
this function identifies all _url fields and removes them.

1 def remove_keys_from_dict(d: dict[str , typing.Any], suf: str):
2 remove_keys = find_all_keys_to_be_removed(d, suf)
3

4 for k in remove_keys:
5 del d[k]
6

7 for k, v in d.items():
8 if type(v) == dict:
9 remove_keys_from_dict(v, suf)

Listing 6.1: Recursive Removal of Unwanted Data Fields

Unifying data proved to be very time consuming - both gathering the information
and implementing the unification code. The main task lay in reading over the
data objects from one data source and comparing them with semantically similar
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ones from another. After gathering information on overlapping data fields, new
unified objects had to be created from them. When a pipeline is executed, these
unified objects are filled by designated parsing methods, unique for each data
object of each data source.

1 class IssueEventUnificator:
2 @staticmethod
3 def from_github(iss_ev: dict[str , object ]) -> UIssueEvent:
4 remove_keys_from_dict(iss_ev , "_url")
5

6 return UIssueEvent(
7 id=to_int(getFieldFromDict ("id", iss_ev)),
8 ...
9 source =" GitHub",

10 data=iss_ev
11 )

Listing 6.2: Parsing Method for the Unified IssueEvent Class

The transformers (ETL) parsing methods return Python dataclass objects, that
are passed along to a writer (ETL).

6.2.3 Writer

Coming up last in an ETL pipeline is the task of loading the transformed data.
To load data in this context means saving it to any kind of storage. This could
mean a database, some other service or simply the file system. In the scope of this
thesis saving to the file system was sufficient as the focus lay on the requesting
and cleaning of data.

As the originally requested data was provided in the JSON format, the trans-
formed data should also be saved as JSON. Building upon the features of Python
dataclasses, a generically applicable Writer class could be implemented for this
task.

Python dataclasses by default can not be output as JSON by the Python runtime
library. What the library supports however are custom JSON encoders, which can
be passed to a json.dump function. Using a custom encoder one can specify how
certain objects should be marshalled. This is were one of the dataclasses interface
methods asdict, comes into play. It is generally available for all dataclasses and
converts the contents of one into a Python dict.

A custom JSON encoder that supports the marshalling of any Python dataclass
can be implemented by extending the json.JSONEncoder class and used as shown
in the following listing.
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1 class DataclassEncoder(json.JSONEncoder):
2 def default(self , o):
3 if dataclasses.is_dataclass(o):
4 return dataclasses.asdict(o)
5

6 return super().default(o)
7

8 ...
9

10 json.dump(content , file_pointer , cls=DataclassEncoder)

Listing 6.3: A Custom Dataclass JSON Encoder

Wrapping the call to json.dump into a Writer class, accompanied by a file pointer,
is for now sufficient to save every data object, as all of them are either a Python
dict or dataclass.

6.3 The Metric Generator Pipeline

The metric generator pipeline should compute a meaningful metric, based on
the data the data gatherer pipelines produced. After some brainstorming and
evaluation of different metric ideas, I settled upon a Continuous Integration Con-
tinuous Deployment (CICD) pipeline jobs metric (workflow run jobs on GitHub).

On GitLab and GitHub, pipeline jobs are parts of larger CICD pipelines. These
can be triggered when e.g. code gets uploaded and can be used for automatic
building, testing and deploying of programs. For a developer working on a coding
task, it may prove tedious to wait on a CICD pipeline that takes long to finish
as he may have to act on its output. Besides that, CICD pipelines might take
up more resources - in the form of memory, bandwidth or CPU-time - than need
be. This said, long running pipelines might waste both time (of developers) and
money (of a company).

Closely analyzing pipeline jobs might prove beneficial as it may help to reveal
bottle necks in a pipeline or unexpected behavior.

A pipeline job is commonly configured in the Yet Another Markup Language
(YAML) format and features bash scripts and other information, like the name of
the job. When a pipeline is run, job configurations get loaded and executed. The
data that can be extracted post-execution is a list of job objects. The duration
attribute of the unified job model acts as a good starting point to compute further
metrics.
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1 ...
2 },
3 {
4 "duration ": 449.784755 ,
5 "finished_at ": "2023 -08 -24 T15 :41:09.819+02:00" ,
6 "name": "go-build",
7 "status ": "success"
8 ...
9 },

10 {
11 ...

Listing 6.4: Unified JSON Object for a Pipeline Job

The metric generator pipeline traverses this list of job objects and aggregates the
absolute duration for all objects with the same name, e.g. go-build. Along side
this information, it also computes its average, min and max execution duration.
On top of this, it also calculates the duration median and its 25%- and 75%
percentile.

1 {
2 "abs": 19347.362822000003 ,
3 "avg": 351.7702331272728 ,
4 "max": 990.994203 ,
5 "median ": 307.472652 ,
6 "min": 179.316715 ,
7 "name": "go-build",
8 "q1": 277.96117300000003 ,
9 "q3": 414.3075705

10 }

Listing 6.5: A Pipeline Job Metric Object

The metric generator produces such objects for all pipeline jobs with distinct
names. These can be fed into a plotting engine and e.g. displayed as box plots.

6.4 Visualizing the Metric

As determined in the analysis section, Vega Lite was used for plotting a graph
from the metrics data. Displaying the data in form of box plots was a relatively
straight forward process, as the Vega Lite documentation already had an example
for one.

The data for this plot was computed by a metrics generator pipeline and originally
extracted from a running Inner Source project. The names of the pipeline jobs
were altered in order to anonymize said project.
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Figure 6.3: Box Plot of Pipeline Execution Time In Seconds

This graph shows a box plot for each pipeline job, identifiable by its name on the
y-axis. The duration of each pipeline job is displayed in seconds along the x-axis.
Every box plot has, additional to the 25%- and 75% percentile indicated by a
colorful box, two ticks that are colored white and black. The white tick resembles
the duration median, the black one the duration average. The start and end of
the black rule of every box plot indicate the minimum and maximum of seconds
reached.

Judging by the box plots, the changelog job seems to be the fastest whereas the
go-build and integration-test seem to take the longest time to execute. Additional
to that, the medians of both of these jobs are located on the far left of the rule,
which might suggest that the execution duration of these jobs spikes from time
to time.

Further taking the purpose of the individual pipeline jobs into consideration, one
could also be able to argue whether or not the execution time of a job is justified
or if there’s room for optimizations.
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7 Evaluation

This chapter recalls the requirements that were set earlier and revisits them,
evaluating if they were met by the implementation efforts.

7.1 Evaluation of Functional Requirements

Concerning functional requirements, four were defined, which present the most
crucial features the implementation should cover.

Complete Data Extraction of Chosen Data Sources: The data sources that
were integrated were GitHub, Gitlab and SVN. For the two Git hosting platform
it was possible to peruse an elaborate API documentation, filter out any devel-
opment specific data and implement requestors for their endpoints accordingly.
For SVN the most pressing task was to integrate the parsing of commits, which
was also implemented. Both of the above conclusions result in this requirement
being met.

Cleaning of Data: Data cleaning consisted of two parts. First, removing all
attributes irrelevant to analysis and second, unifying any data object that se-
mantically appeared to be served by more than one data source. The first task
is implemented by a generic function that is able to remove said attributes from
any JSON object. The latter one is carried out by individually designed Python
dataclass objects which in turn leads this requirement to be met.

API for Calling the Functionality: The implemented functionality is able to
be called from any third party not involved in the development process using the
Python import syntax. Specific classes with a static run method are provided for
executing the pipelines.

Implement a New Data Metric: A basic data metric was thought of and also
implemented. This was addressed in detail in the design and implementation
section of this thesis.
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7.2 Evaluation of Non-Functional Requirements

In contrast to the functional requirements which define the specific workings
of the implementation, the non-functional ones define constraints and quality
concerning properties. These requirements focused on simple extension and un-
derstanding of the implementation.

Easy Onboarding of New Developers: The architecture follows the ETL
pipeline architecture which means that every piece of code, ranging from re-
questing to saving data, has its concrete place. The design in which the pipelines
were implemented also focuses on integrating as less abstraction as possible. Ad-
ditionally there is developer documentation that explains the workings of the
implementation and should make for a good understanding of the used concepts.

Seamless Integration of Additional Data Sources: Adding additional data
sources follows a simple process, which can also be explored by taking a look at
the existing pipelines. There is code in place for easy accessible data cleaning
and saving which means that the main task is mostly implementing a requestor.

Lightweight and Intuitive API Design: The API is held simplistic and rather
uncomplex. Individual types of data are accessible through static methods. These
static methods are always named the same - run - and also mostly take the same
arguments.

Comprehensible User- and Developer Documentation: There is docu-
mentation for both users and developers. User documentation is provided in
form of a getting started inside the working repository. It explains what the im-
plementation does and through an example how it can be used. The developer
documentation is mainly located in a readme file that contains information about
the design, architecture and thoughts that went into the implementations mak-
ing. This should give each user and developer good starting points for further
working on - and with - the project.

Make Use of the Provided Pipeline Framework: While designing and
working on the implementation, the pipeline framework that was introduced prior
to the start of this thesis was always considered and used.

28



8 Conclusions

The aim of this thesis was to implement data requestors for data sources such as
GitHub and Gitlab. Based on extracted data from these sources, a metric had
to be computed, expressive enough to give new insights on a software project.

For this purpose data gatherer- and a metric generator pipeline(s) were imple-
mented following an ETL pipeline architecture. The implementation of these
pipelines had to be compliant with a few functional- and non-functional require-
ments, which have all been met.

The way in which the different tasks of analyzing, designing and implementing
were tackled, proved to work quite well. The extensive analysis that was conduc-
ted prior to the programs implementation, covered most of the open questions
and lead to a mostly smooth working process.

Open issues this thesis did not cover further are first, (very) large data requests.
With the current ETL architecture, the entire requested data has to be stored in
working memory before it is written to disk. For large data requests it may prove
invaluable to constantly write batches of said data to disk, to not overwhelm the
memory.

The second issue is that the access to many APIs is authorized and regulated
through access tokens. These tokens often have a request rate limit, which could
prove to be a problem for large projects. Maybe multiple alternating tokens could
be used for requesting data to circumvent this problem or a completely different
approach may succeed in doing so.

Conclusively it was possible to integrate more development data sources to com-
plement the efforts GrimoireLab undertook up until now. This broadened the
foundation for future analysis on software projects in the Inner Source domain.
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