
Hierarchical Open Data Source
Import for the JValue ODS

MASTER THESIS

Fischer Benjamin

Submitted on 29 July 2021

Friedrich-Alexander-Universität Erlangen-Nürnberg
Technische Fakultät, Department Informatik

Professur für Open-Source-Software

Supervisors:
Georg Schwarz, M. Sc.

Prof. Dr. Dirk Riehle, M.B.A.

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teileiner Prüfungsleistung angenommen wurde.Alle Ausführungen,
die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 29 July 2021

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 29 July 2021

i

ii

Abstract

Open Data has become more popular in the last few years due to its value to
society.Governments,institutions,companies or individuals can make use of
Open Data and add to economic growth or extract new knowledge from publicly
available data.The Open Data Service (ODS) is a software developed by the
Professorship ofOpen Source that aims to simplify the consumption ofOpen
Data and make it more reliable.
The goal of this thesis is to extend the functionality of the ODS by the support of
hierarchically structured data sources, in particular, File Transfer Protocol (FTP)
based data sources.Due to the simplicity and reliability ofthe FTP, it is an
appropriate solution for providing Open Data.This thesis aims to enable the
user to explore and configure FTP data sources by developing a new microservice
with a proof-of-concept user interface.As a result,consuming Open Data from
FTP data sources is simplified and becomes more flexible.

iii

iv

Contents

1 Introduction 1

2 Problem Identification 3

3 Fundamentals 5
3.1 File Transfer Protocol (FTP). 5

3.1.1 Communication between the Client and the Server. . . . 5
3.1.2 Technical Limitations .. 6
3.1.3 Advantages for Open Data 7

3.2 Microservices. 8
3.2.1 Scaling .. 9

3.3 Architectural Styles of Application Programming Interfaces (API)9
3.3.1 Simple Object Access Protocol (SOAP) 10
3.3.2 Representational State Transfer (REST). 10

4 Objectives 13
4.1 Exploration of FTP Data Sources. 13
4.2 Support of Archive Inspection 13
4.3 Intuitive User Interface .. 14

5 Solution Design 15
5.1 Model of Hierarchical Data Sources. 15

5.1.1 Definition of a Data Source Node. 15
5.1.2 Extendability for Other Types of Data Sources 16
5.1.3 FTP Specific Properties. 17

5.2 Inspection of Archives. 18
5.3 Caching and Scalability .. 19
5.4 Compatibility with the Open Data Service (ODS). 21

5.4.1 Adaption to the Pipeline Mechanism 23

6 Implementation 25
6.1 The Hierarchical Open Data Service (HDS) 25

v

6.1.1 Application Programming Interface. 26
6.1.2 Connection to Data Sources. 28
6.1.3 Exploration of Data Sources. 29
6.1.4 Symbolic Links. 29
6.1.5 Archive Extraction .. 30

6.2 Export Configuration of the ODS Pipeline. 31
6.2.1 Support of Regular Expressions. 31
6.2.2 Structure of a Configuration File. 32
6.2.3 Resolving a Configuration. 33

6.3 File System as the Distributed Cache. 34
6.3.1 Hierarchical Structure. 34
6.3.2 Concurrent Access. 35
6.3.3 Updating Cached Archives 36

6.4 User Interface. 37

7 Demonstration 39

8 Evaluation 43
8.1 Functionality of the HDS .. 43
8.2 User Interface. 44
8.3 Automated Tests with a Custom FTP Server 44

8.3.1 Concurrency .. 45
8.3.2 Recursively Structured Archives 46
8.3.3 Update Mechanism of the File System Cache 46

9 Conclusion 47

Appendices 49
A Conceptual Designs .. 51
B User Interface. 52
C Miscellaneous. 58
D Application Programming Interface (API). 63

vi

Acronyms

ODS Open Data Service
FTP File Transfer Protocol
API Application Programming Interface
REST Representational State Transfer
HDS Hierarchical Datasource Service
URL Uniform Resource Locator
CRUD Create Read Update Delete
RPC Remote Procedure Call
HTTP Hypertext Transfer Protocol
SPA Single Page Application
IP Internet Protocol
NAT Network Address Translation
SSH Secure Shell
SSL Secure Sockets Layer
TCP Transmission Control Protocol
IPC Inter-process communication
SOAP Simple Objects Access Protocol
HATEOAS Hypermedia As The Engine Of Application State

vii

viii

1 Introduction

The amount of digital data created increased significantly in the last years, driven
by the digitaltransformation.Due to new sensors,IoT devices,and the rising
awareness about the value of data in general,a growing number and variety of
data is generated each day.For example,the InternationalData Corporation
estimated that the amount of digital data would increase rapidly in the following
years, reaching up to 163 zettabytes by 2025 (Reinsel et al., 2017).
Dealing with this sheer amount of data introduces additional problems regarding
storing,providing,accessing,and processing this data.The difficulty ofthese
challenges also depends on the data type,primarily if the data is structured or
unstructured, and whether access is restricted or not.Furthermore, the raw data
itself is not useful unless it is processed and the encoded information is extracted.
Consequently,automated processes have to be developed in order to make the
value of the underlying data accessible.
As a developer who,for example,wants to build a new weather application,
the process ofretrieving the required data can be a tedious task.First, the
required data might not be completely available at a single source but could be
split between different servers.Second,the data might be available in different
formats and could be incomplete sometimes.In addition, it might be required to
periodically retrieve the data, e.g., each hour and persist it in a separate database.
Consequently,much effort is spent on retrieving the underlying data instead of
working on the actual application itself.
Facing these challenges,the JValue ODS is developed by the Professorship for
Open Source Software at the Friedrich-Alexander University Erlangen-Nürnberg.
The ODS aims to simplify consuming data sources and thereby focuses on Open
Data, which is data that “[...]can be freely used, modified, and shared by anyone
for any purpose”(Open Knowledge Foundation,n.d.). In more detail,the ODS
periodically retrieves, processes, and persists this data from various data sources
and provides this data to third-party applications.As a result, the time and effort
spent on the overallprocess ofmaking the desired data available are reduced.
Developers then can focus on extracting information from the data by creating

1

1. Introduction

new applications or improving already existing software.
This thesis aims to extend the existing functionality of the ODS by hierarchically
structured data sources, in particular FTP data sources.Hence, a new variety of
data sources willbe supported by the ODS,and developers could benefit from
the advantages ofthe ODS when working with data that is available via FTP
servers.
In the next chapter,it is outlined which specific problems have to be solved in
order to support FTP data sources for the ODS,followed by a summary of the
essentialtechnicalfundamentals for the context ofthis thesis.Chapter 4 lists
the single objectives that were derived from the previous problem specification.
Afterwards,the conceptualsolution design is described and potentialsolution
approaches are explained.In chapter 6, the concrete implementation of the new
functionality is discussed in detailand demonstrated in chapter 7.Finally,the
implementation is evaluated concerning the objectives,and a short outlook is
given.

2

2 Problem Identification

This chapter willexplain what specific problems arise when trying to support
FTP data sources for the ODS.The underlying goalof this approach is to
extend the accessibility ofOpen Data sources by the ODS due to the positive
influence ofOpen Data.Therefore,it is important to understand the specific
characteristics of Open Data.Similar to the Open Knowledge Foundation,the
European Commission also emphasizes the value of Open Data in their definition:

“Open data is data that anyone can access,use and share.Govern-
ments,businesses and individuals can use open data to bring about
social,economic and environmentalbenefits.”(European Commis-
sion, n.d.)

This definition already shows the possible gains which Open Data can provide.
Due to that,many Open Data initiatives have been created in order to meet
this goal.For example, the number of datasets published by the European Data
Portal has more than doubled from May 2016 to August 2019 (Publications Office
of the European Union, 2020).Unfortunately, this published data is often barely
documented, lacks machine readability, or uses data formats that require propri-
etary software for further processing (Braunschweig et al., 2012).As a result, the
data is often hard to use and thus, can not unfold its true value.
Improving this situation,in particular providing more effortless ways to access
and work with Open Data,is a crucialaspect the ODS focuses on.In order to
reliably consume a new data source via the ODS, a pipeline for this data source
has to be configured.This pipeline specifies the data source configuration,its
content type,additionalmetadata,and a (periodic) trigger that defines when
the data should be retrieved.According to such a configuration,the ODS will
(periodically) fetch the data from the data source and persist it.First designed as
a monolith,the ODS and its components were transformed into a microservice-
based software architecture (Schwarz, 2019).Over time, the ODS was subject to
many engineering theses that focused on improving the software’s functionality.
However, at the time of writing this thesis, the ODS only supports data sources
that are accessible via single Hypertext Transfer Protocol(HTTP) endpoints,

3

2. Problem Identification

leaving many data sources using other protocols like the FTP uncovered.
Contrary to the generalconception,the FTP is still widely used,especially for
openly accessible data.Due to its simplicity and usage over decades,the FTP
poses a reliable and viable solution to provide Open Data.Unfortunately,ac-
cessing FTP data sources is fundamentally different from retrieving data from
a single HTTP endpoint.Thus,a new microservice shallbe implemented that
fits into the existing ODS infrastructure.In this context, the following problems
arise, which have to be solved in the scope of this thesis:

• How to model hierarchical data sources and FTP data sources in particular?
• How to handle (parallel) FTP connections efficiently?
• How to enable accessing archived files without major effort for the user?
• How to explore data sources manually/automatically?
• How to generate powerful data source configurations for all major use cases?
• How to integrate these configurations into the ODS pipeline mechanism?
• How to achieve scalability of this microservice?

As a result, the user should be able to explore and configure a FTP data source
using this microservice.Once the user has defined a list offiles that contain
the desired data,these files should be downloadable by the ODS,similar to
the already existing mechanism for HTTP endpoints, making FTP data sources
consumable by the ODS.

4

3 Fundamentals

This chapter will provide the background knowledge which is mandatory to un-
derstand the proposed solution design and its concrete implementation.Due to
the engineering focus of this thesis, this chapter is kept as concise as possible.

3.1 File Transfer Protocol (FTP)
The specification ofthe FTP was released as an RFC standard in 1985.The
following excerpt is the first paragraph of its introduction.

“The objectives of FTP are 1) to promote sharing of files (computer
programs and/or data), 2) to encourage indirect or implicit (via pro-
grams) use of remote computers,3) to shield a user from variations
in file storage systems among hosts,and 4) to transfer data reliably
and efficiently.FTP, though usable directly by a user at a terminal,
is designed mainly for use by programs.”(Postel & Reynolds, 1985)

This is an accurate summary of the purpose of the standardization of this protocol
in 1985.Since then, various extensions have been published, such as introducing
new optionalcommands for authentication (Lunt,1997) or adding support of
encrypted file transfer (Housley & Yee, 2000).Nevertheless, the basic functioning
of the protocol is unchanged since its first publication.The upcoming two sections
will provide a short overview of how the protocol in general works and its technical
limitations.

3.1.1 Communication between the Client and the Server
The FTP defines a standardized communication between a clientand a server
for file sharing purposes.The communication is implemented using two separate
connections, a controland a data connection.The control connection is for send-
ing/receiving FTP commands,whereas the data connection is used to transfer
the actualdata,like the content of a file or a directory listing.The conceptual
design of the FTP is shown in figure 3.1.

5

3. Fundamentals

Figure 3.1:Overview about the FTP

At first, the client initiates a controlconnection from its port X to port A (21
by default) of the server, which is maintained during the communication.Then,
the data connection is usually initiated by the server from port B (20 by default)
to port Y of the client which was signaled by the client upon establishing the
control connection.This mode is also commonly referred to as the active mode,
whereas the standardization describes this as the active state of the data transfer
process.(Postel & Reynolds, 1985)
In contrast, the client can also signal to the server by the PASV command that the
client should initiate the data connection instead of the server.As a response, the
server sends its Internet Protocol (IP) address and port number B to which the
client can connect to establish the data connection.This mode is also commonly
referred to as the passive mode.(Postel & Reynolds, 1985)
For each data transfer,e.g.,listing a directory or downloading a file,a new
data connection is established.This introduces additional overhead, because an
additionalTransmission ControlProtocol(TCP) connection must be initiated.
After the data was transferred or the transfer was aborted, the data connection
is closed again, usually by the server.(Postel & Reynolds, 1985)

3.1.2 Technical Limitations
When the FTP was standardized in 1985,it provided a new way ofsharing
files between multiple host systems.However,due to the consistent change in
technology,the FTP now contains some drawbacks that might disqualify it for
modern applications.Some of these issues were addressed by making use of other
protocols like Secure Shell (SSH) or Secure Sockets Layer (SSL) and thus do not
provide a flexible solution (Xia et al., 2010).
The usage of two separate connections is not only problematic regarding a secure
communication channel, but also with respect to network or routing issues.At the
time when the FTP was standardized,more complex network setups,including
(reverse) proxies,firewalls,or Network Address Translation (NAT),were not as
frequently used as nowadays.These setups complicate establishing connections
between the client and the server, especially in the active mode when the server
initiates the data connection.This connection attempt might be blocked by a

6

3. Fundamentals

firewallthat is protecting the client.In addition,the IP address sent by the
server might be its internalIP in a private network,which is hidden behind a
NAT. When the client tries to connect to this IP address with the given port, a
connection can not be established (Gleason, 2005).
Furthermore, the number of active connections to the FTP server is often limited
by the FTP server itself.This limit of concurrent connections might depend on
the specific FTP server and its configuration.FTP servers often restrict access to
a certain number of connections per IP address (or range) and a total maximum
number of connections.For example, the popular pure-ftpd1 FTP server restricts
the maximum number of users to 50 and the maximum number of clients with the
same IP address to 8 by default2. This is especially problematic when multiple
connections should be used, for example, for parallel file downloads.

3.1.3 Advantages for Open Data
Although the FTP has some technical drawbacks, it is still widely used nowadays.
For certain cases,the FTP still provides a suitable solution due to its stability
and simplicity.Especially Open Data sources can profit from its advantages and
therefore often use it to provide the data.Table 1 contains some exemplary Open
Data sources which make use of the FTP.
Most importantly,Open Data sources do not require encrypted communication
between the client and the server or any secure authentication mechanism due
to the nature of the data.This data is supposed to be publicly available,so it
should neither be restricted in access nor contain confidentialdata that has to
be protected.Furthermore,the FTP is a straightforward solution for providing
file-based data via a FTP server.This is even more relevant when the provided
data is already contained in files.In contrast to other APIs that might be based
on a whole technology stack (database, middleware, etc.), FTP based Open Data
sources only require a comparatively simple to setup and maintain FTP server,
making a dedicated directory tree accessible for clients.This can reduce the
overhead of developing and maintaining an Open Data source tremendously, es-
pecially when the provider’s resources are limited.Because of that, many public
institutions, authorities, or software publishers still use the FTP.

1https://github.com/jedisct1/pure-ftpd/
2https://raw.githubusercontent.com/jedisct1/pure-ftpd/master/pure-ftpd.conf.in

7

3. Fundamentals

3.2 Microservices
Over the last years, software development has become more complex due to the
rapidly growing technology change, and the way software is deployed.Nowadays,
cloud computing services like Amazon Web Services or Microsoft Azure provide
an easy to use,flexible,and often cheap way to deploy software.Due to that,
the way software is designed and developed has changed as well.(NGINX Inc.,
2016)
Coming from a monolithic architectural style where all logic is bundled in a single
software artifact that usually runs as a single process, the trend has changed to
a finer granular,so-called microservice architecture.Martin Fowler and James
Lewis describe microservices in the following way:

“In short, the microservice architectural style is an approach to devel-
oping a single application as a suite ofsmallservices,each running
in its own process and communicating with lightweight mechanisms,
often an HTTP resource API.” (Lewis & Fowler, 2014)

Similar to this, Newman defines microservices as “[...]small, autonomous services
that work together”(Newman,2015,p. 2). He further describes loose coupling
and high cohesion as a key concept of the microservice architectural style, which
states that similar functionality should be bundled into the same service, whereas
communication (coupling) between services should be reduced to a minimum
(Newman,2015,p. 30). This way,various benefits like resilience,technology
heterogeneity,or ease of deployment can be achieved by this architecturalstyle
(Newman, 2015, chap. 1).
Figure 3.2 shows the conceptualdifference between a monolith and its corres-
ponding architecture as microservices and was derived from figure 4 (Lewis &
Fowler,2014).As a result,communication between the single services is only
possible over the network.Thus, the importance ofwell-designed and concise
APIs is increasing,summarized by Lewis et al.as “smart endpoints and dumb
pipes” (Lewis & Fowler, 2014).

3.2.1 Scaling
A fundamentaldifference between the monolithic and microservice-based ap-
proach is the ability to scale and how data is stored.Whereas both approaches can
benefit from vertical scaling, horizontal scaling is realized differently.A monolith
can only be duplicated as a whole,even though only a particular component of
it would require increased system resources.This scaling can be performed more
precisely with microservices, leading to more efficient utilization of the available
resources,since only the service which requires additionalsystem resources can

8

3. Fundamentals

Figure 3.2:Monolith and Microservice architecture

be replicated.(Lewis & Fowler, 2014)
Furthermore,microservices are different regarding persisting data.Whereas a
monolith often uses a single database,each microservice is supposed to store
its own data.As Newman describes,this helps to hide specific implementation
details from the stable public interface and reduces coupling between the ser-
vices.Ultimately,sharing databases violates the concept ofloose coupling and
high cohesion and complicates changing implementations ofthe corresponding
microservices.(Newman, 2015, pp. 41-42)

3.3 Architectural Styles of Application Program-
ming Interfaces (API)

As described in the previous section,splitting monolithic architectures into a
set of independent microservices shifts the communication from Inter-process
communication (IPC) to the network.As a consequence,the importance of
well-designed and concise APIsis increasing.When describing APIs,terms
like Simple Objects Access Protocol(SOAP), RepresentationalState Transfer
(REST), Remote Procedure Call(RPC), or GraphQL are often used to specify
the architecturalstyle of the corresponding API.This section willgive a short
overview of the REST architectural style by comparing it to the SOAP approach,
which was mainly used before the introduction ofREST. Finally,the advant-
ages of REST compared to SOAP regarding microservices are highlighted.Other
architectural styles like RPC and GraphQL are omitted in this comparison.

9

3. Fundamentals

3.3.1 Simple Object Access Protocol (SOAP)
The SOAP specification first became a World Wide Web Consortium recom-
mendation in the year 2003 with version 1.2.In its latest specification, SOAP is
described in the following way:

“SOAP is a lightweight protocolintended for exchanging structured
information in a decentralized, distributed environment.It uses XML
technologies to define an extensible messaging framework providing a
message construct that can be exchanged over a variety of underlying
protocols.”(Lafon et al., 2007)

The description already emphasizes two essentialaspects of SOAP,namely the
tight coupling to XML technologies and the independence of the underlying pro-
tocol.Furthermore, the SOAP itself is designed to be independent of the under-
lying platform or operating system,since it only relies on XML.The messages
sent using a SOAP API consist of the overall envelope, a header, and a body.The
body can contain an optionalfault that provides additionalinformation about
errors and error handling.XML technologies are then used to reliably validate,
parse and process the messages.(Lafon et al., 2007)
Messages are sent from the SOAP sender to the ultimate SOAP receiver via
optionalSOAP intermediaries.Those intermediaries can process the message
(headers) and forward the message to the ultimate SOAP receiver, extending the
original communication between a single client and server.Hirsch et al.describe
a practical use case for these intermediary nodes as corporate security gateways
used for encryption/authentication across corporate boundaries, which eventually
increases the security of the communication between those parties (Hirsch et al.,
2007, chap. 3.2.1.3).
In summary,the advantages ofthe SOAP are its platform and protocolinde-
pendence and its standardized way of communication using XML messages.This
makes the SOAP stilla reliable solution for many enterprise or corporate solu-
tions,e.g.,financialservices.Its major disadvantages are the tight coupling to
XML and the large message size due to the XML structure.Furthermore,the
strict XML schema definition ofthe message decreases flexibility and adaption
when developing SOAP based APIs (Mumbaikar, Padiya et al., 2013).
Both the lack of flexibility and the significant overhead when transferring data
make SOAP an unfavorable solution for the communication between microservices,
which heavily depend on these characteristics.

3.3.2 Representational State Transfer (REST)
Contrary to the SOAP architectural style, REST is a more flexible architectural
style that is based on the REST principles.In his dissertation from 2000,Roy

10

3. Fundamentals

T. Fielding introduced the REST architecturalstyle and defined the six REST
principles.The following list is a short summary of the principles stated in section
5.1 of the dissertation (Fielding, 2000):

1. Client-Server
The communication takes place between a client and a server,separating
the user interface from the backend.

2. Stateless
The communication between the client and the server must be stateless.
The client is responsible for storing the session state.

3. Caching
Responses from the server must be implicitly/explicitly labeled as cacheable
or non-cacheable.

4. Uniform interface
Implementations are decoupled from services they provide.Data is trans-
ferred in a standardized form and is not adjusted to the specific needs of
an application.

5. Layered system
Enabling hierarchical layers and restricting knowledge only to a single layer.

6. Code on Demand (optional)
Extend the client functionality by downloading and executing code on de-
mand.

In contrast to SOAP,these principles define constraints an API should apply
to instead of a standardized protocol.Once an API applies to these constraints
(to a certain degree),it is referred to as a REST or RESTfulAPI. The REST
architecturalstyle does not require using the HTTP as the application layer
protocol, but since it was designed concerning it, many RESTful APIs make use
of it.Furthermore, REST does not restrict the media type of the content (JSON,
XML, etc.). A fundamentalconcept ofthe REST architecturalstyle is that
endpoints provide access to resources instead of specific methods or procedures
which is encapsulated in the fourth REST principle (Fielding,2000).Due to
this, REST is often described as noun-centric,whereas RPC/SOAP is mostly
verb-centric.
For example,a RESTful API might provide an endpoint /users for modeling
the resource users.This resource can be accessed or modified via the standard
HTTP verbs, e.g., via GET /users for listing all users (or GET /users/{userId}
for a single user) or POST /users for adding a new user.In the latter case,the
actualuser data would be contained in the request body.In contrast,a RPC
API would instead provide multiple endpoints such as getUsers and addUser to
provide this functionality.

11

3. Fundamentals

Fielding furthermore specifies the fourth REST principle by four additional con-
straints that are substantial for a uniform interface (Fielding, 2000, p. 82):

• Identification of resources
• Manipulation of resources through representations
• Self-descriptive messages
• Hypermedia As The Engine Of Application State (HATEOAS)

The last one,HATEOAS, states that a client using a RESTfulAPI should not
need any additionalknowledge about the API itselfbut should be driven via
hypermedia (e.g., links).This enables the client to dynamically interact with the
API and rely on the relations provided by the server.In a blog post,Fielding
mentioned that this constraint is often misunderstood or ignored by developers
when labeling an API as RESTful (Fielding, 2008).
However,the REST architecturalstyle provides a convenient framework when
developing APIs for a microservice architecture due to the aspects mentioned
above.Especially the provided flexibility, support of scaling through the layered
system and statelessness make RESTfulAPIs a suitable choice for it,since this
matches the requirements that a microservice architecture should fulfill.

12

4 Objectives

This chapter lists the objectives that were established for this thesis.The object-
ives are referenced using the combined section and listing number, e.g.4.1.1 for
the first objective of section 4.1.

4.1 Exploration of FTP Data Sources
1. The modelling of data sources shall generalize the structure of hierarchical

Open Data sources while providing a mechanism to annotate data source
nodes with specific properties without loss of generality in order to create a
universal abstraction that can easily be extended for specific types of data
sources.

2. The software shall include a mechanism to create an intuitive configuration
that stores information about relevant data source nodes and their specific-
ation (update intervals, request parameters, etc.) in order to use the results
from the exploration process for the existing ODS pipeline infrastructure.

3. The software shallprovide a RESTfulAPI that enables third-party ap-
plications to use the functionality provided by the Hierarchical Datasource
Service (HDS).

4. The software shallfulfill the above-mentioned objectivesfor FTP data
sources,fit into the existing microservice environment,and apply to com-
mon programming and documentation guidelines in order to simplify ex-
panding and collaborative work.

4.2 Support of Archive Inspection
1. The software shallsupport the extraction of .zip archives on the server-

side.The archives shallbe extracted on the server,so the client does not
have to install additional software or download the archives.

13

4. Objectives

2. The content of the extracted directory shallbe handled as the content of
a regular directory that is directly accessible via the FTP data source.It
shall be possible to download files that are located in an archive and export
them periodically later on via the ODS pipeline.

4.3 Intuitive User Interface
1. The user interface shall be web-based, responsive, and focus on the design of

desktop devices in order to provide the best user experience for the common
use cases.

2. The user interface shall use VueJS as the JavaScript framework and Boot-
strap as a styling framework and apply to common programming and doc-
umentation guidelines in order to achieve code maintainability and expand-
ability.

3. The user interface shallmirror the sequentialworkflow ofadding a data
source,exploring it,and selecting relevant nodes for the export to cor-
responding pages/screens with back and forth navigation in order to be
self-explanatory and intuitive to use.

4. The user interface shallallow the user to explore the data source in a file
browser-like manner with the opportunity to show additionalinformation
and view the content of a data source node on demand in order to provide
an easy and revealing exploration of the data source.

5. The user interface shall support the selection of multiple files and directories
(recursively) for the export into the ODS pipeline in order to be practicable
for applications that require the data provided by multiple data source
nodes.

14

5 Solution Design

5.1 Model of Hierarchical Data Sources
The fundamental concept of hierarchical data sources is their inherent hierarchy.
This hierarchy can be interpreted as an arbitrary tree structure,which enables
structured traversaland exploration of the data source.Thus,the data source
can be abstracted using basic graph theory in which a graph G = (V, E) is defined
as a tuple of nodes and edges.Using this abstraction, FTP data sources publish
a file system in which the files and directories are nodes of the graph and edges
between nodes define the hierarchical structure.Furthermore, files are always leaf
nodes,whereas directories always willhave children nodes and thus are further
traversable unless they are empty.It is important to note that this approach is not
restricted to FTP data sources or file systems in general.A HTTP data source
which follows the RESTfuldesign approach models the hierarchy ofdescribed
entities by their Uniform Resource Locator (URL).For example,a RESTful
data source provides the list of users at /users and information about a specific
user John at /users/john.Similar to FTP data sources,this hierarchy can be
abstracted using an arbitrary tree structure.
In contrast to the raw graph theory in which the nodes are often unique identifiers
such as vi , the nodes ofhierarchicaldata sources have additionaldata tied to
them. This data depends on the actualtype ofthe data source and the node
itself. An endpoint ofa RESTful API, for example,has a dedicated HTTP
method tied to it (GET,POST, etc.),whereas a file has a certain size.On the
other hand, both nodes are identified within the data source by their URL/path
and are also leaf or no leaf nodes within the data source.

5.1.1 Definition of a Data Source Node
As described above,the fundamentalconceptof modelling hierarchicaldata
sources is the definition of their components (nodes) and the inherent hierarchy,
which is introduced by their relation to each other (edges).Due to the hier-
archicalstructure of the data source,each node has a parent node and a set of

15

5. Solution Design

children nodes.Exceptions are the root node for which the parent is undefined
and leaf nodes with an empty set of children nodes.Furthermore, each node has
a name and is uniquely identifiable by a URL.
At this point, these properties would allow modelling the hierarchical data source
sufficiently for traversal, but without any additional functionality such as display-
ing specific properties or downloading a file from a FTP data source.In order to
achieve this, each node also has a set ofproperties and a set ofactions that
can be performed on it as shown in figure 5.1.

Figure 5.1:Definition of a data source node

The isLeaf attribute indicates if the node is a leaf node and was added for simpli-
city.It is important to note that no dedicated parent attribute for bidirectional
tree traversal exists.This is due to the fact that traversals start at the root node
and thus,the parent node was already known before accessing the node itself.
In addition,the URL of the parent node can be retrieved from the URL of the
node.
The properties store additional information about the node itself, whereas actions
are basically plain objects that define an action for a node.These actions are
implemented separately,and each node stores the identifiers of the actions that
are applicable for it.This design decision is explained in the upcoming section.

5.1.2 Extendability for Other Types of Data Sources
A significant issue of this conceptualmodelling is that it should cover as many
use cases as possible.Thus, it must be general enough not to restrict specific use
cases and adaptable enough to fit as many different situations as possible.The
previous section described the generalattributes of every hierarchicalstructure
and its specific properties and actions.Both of these attributes are used
to store additionalinformation dependent on the type ofthe data source.For
example, a file of a FTP data source can have a download action that downloads

16

5. Solution Design

this specific file from the data source,whereas a HTTP endpoint of a RESTful
API can have a request action which sends a request to the specific endpoint.The
same applies to the properties attribute,which can store the file size of a file
or the HTTP request method for an RESTful endpoint.With this concept, new
types of data sources can be supported by adding the properties and implementing
the applicable actions for this type of data source.All conceptual functionality,
such as data source exploration and accessing individualnodes,is independent
of this and is not required to be modified.

5.1.3 FTP Specific Properties
This section willdescribe the FTP-specific properties due to the FTP-focused
scope ofthis thesis (see objective 4.1.4).The nodes ofa FTP data source are
similar to those ofa hierarchicalfile system,namely files and directories.In
addition, there are also symbolic links that can reference other files or directories.
A special case of a regular file within this thesis is an archive that must be handled
separately.Compressed files, such as .gz files that are compressed using gzip, are
also viewed as an archive since the actualfile content is not directly accessible.
These different kinds ofnodes also have different properties as shown in figure
5.2. Regular files (including archives) have a file size,a modification time,and
an extension, whereas symbolic links have a destination they link to.Directories
do not have additional properties.

Figure 5.2:Definition of the FTP specific properties (1)

Additionalto the url attribute of the node itself,the FTP properties store an
extra path attribute that is a list of path components of the URL (figure 5.3).
For regular files and directories, this path consists of simply one entry for which
the path is equal to the URL and the type to the node type.However, a problem
arises when a file is hidden inside of an archive.In this case, a single URL is not
sufficient to encode that this file is not directly accessible at the data source, and
further steps must be taken in order to access this file (see section 6.1.5).

17

5. Solution Design

Figure 5.3:Definition of the FTP specific properties (2)

An example of a file in an archive is given in figure 5.4 below.

Figure 5.4:Example of a file inside an archive

5.2 Inspection of Archives
A major problem this thesis deals with is simplifying the process to retrieve
data from (compressed) archives.Archives are a practicalway to group files
and provide allthe contained files in a single download compared to regular
directories, where each file has to be downloaded individually.With compression,
the actual size of the archive can be crucially reduced compared to providing the
raw files.Compression algorithms primarily perform wellfor similar data like
measurement data,which is especially usefulfor many Open Data when this
kind of data is provided.Thus, the usage of archives reduces network traffic and
the required disk space.
Unfortunately, these advantages come with additional drawbacks.First of all, the
structure of the archive is not remotely viewable anymore.Similar to common
file browsers, the FTP does not provide the functionality to inspect (compressed)
archives remotely.While decompressing an archive on the localfile system is

18

5. Solution Design

relatively fast,a remote archive first has to be downloaded,which might take
some time depending on the size of its content and the network connection.This
is especially laborious when the user wants to browse through the content of
the archive quickly and is only interested in specific files based on their name.
Furthermore, it is an additional overhead for the user to download and extract the
archive, in particular when extra software is required to extract the archive.The
user might also use a mobile device, which does not necessarily provide software
to, for example, extract a gzipped .tar archive.
In most cases,an archive stores a set of files or a directory tree with a recurs-
ive directory structure.Unfortunately,data sources like opendata.dwd.de also
expose archives that contain archives themselves or store compressed files.Com-
pared to the example in figure 5.4,the path attribute ofa file in a recursively
structured archive would consist of multiple path components of the type archive
instead ofa single one.In this case,extracting the root archive does not en-
able the user to inspect the files of interest.Instead,all other archives must be
extracted recursively in order to gain access to the contained files.

5.3 Caching and Scalability
Section 3.2 gave a short overview ofhow the microservice architecture can be
beneficialfor tailored horizontalscaling ofservices.Whereas different services
should be decoupled from each other and should not use the same data, instances
of the same service might benefit from shared access or caching of the data for
increased performance.
In the context of the HDS, the term cached data is interchangeably used with ex-
tracted archives.Since archives can not be inspected on the remote data sources,
they have to be downloaded, extracted (locally), and stored.The extracted data
is not required to be persisted permanently (unlike user credentials, for example)
since it is only used for performance improvements.Instead of downloading and
extracting the same archive each time it is requested to be inspected, performance
can be increased by only doing this once and storing the extracted archive for
further requests.Once it changes, the cached entry can be replaced (see section
6.3.3).Sharing this extracted archive between multiple HDS instances can lead
to further performance improvements since additionaldownloading/extracting
overhead is skipped.
There are various solutions for sharing the content of extracted archives between
multiple HDS instances.First of all, it would be imaginable that - after an archive
was extracted - its content is inserted into a database which is shared across HDS
instances, as shown in figure 5.5.The dotted lines indicate the boundaries of the
host a HDS instance is running on.

19

5. Solution Design

Figure 5.5:Database as the shared cache

This way,a HDS instance would query the database before downloading and
extracting the archive again,potentially profiting from the cached entries.The
major downside of this approach is the increased network traffic, which is intro-
duced by transferring large amounts of data between the database and the HDS
instances.On the other hand, HDS instances could share this data between host
boundaries.
Instead of using an externaldatabase,another approach would be to make use
of the local file system as the shared cache as shown in figure 5.6.

Figure 5.6:File system as the shared cache

First of all, this is a solution that removes the complexity of an additional data-
base. Secondly,there is no additionalnetwork traffic introduced in order to
persist the data after extraction.The disadvantage is that HDS instances can
only share cached data when they have access to the same local file system.The-
oretically,this can be bypassed by using a network file system,but this would
again introduce high network traffic when persisting the data.

20

5. Solution Design

For both solutions, two problems still exist:
• even though cached data can be added,there is no mechanism to remove

already cached data in order to free space
• cached data can be modified concurrently, leading to unspecified results

The mechanism to remove already cached data could be either integrated to the
HDS itself or to another service that solely keeps track of the cache and removes
unused entries by a predefined cache policy (e.g., last-frequently-used, last-recently
used, etc.).Restricting the concurrent access can be implemented by either using
already existing locking mechanisms like table/row locks (database) or lockfiles
(file system).
While both approaches come with their advantages and disadvantages, both can
be used to allow multiple instances to use the same cache leading to reduced
network traffic and increased performance.In the scope of this thesis, the caching
was realized using a shared file system,whereas the mechanism ofremoving
cached entries was ignored due to its low priority.The implementation of the file
system as the shared cache is described in detail in section 6.3.

5.4 Compatibility with the Open Data Service (ODS)
The HDS aims to add support of FTP data Sources to the ODS.In the scope of
this thesis, the HDS is implemented as a standalone microservice that is entirely
independent of the ODS.The same applies to the proof-of-concept user interface,
which was implemented to demonstrate the functionality of the HDS for the user.
The ODS currently consists of several microservices as shown in figure 5.7.Here
is a short overview about the purpose of each component:

• Datasource - Fetch the data from the data sources
• Pipeline - Transform the fetched data according to ETL
• Query - Persist the data and make it accessible
• Notification - Send notifications on events
• Scheduler - Orchestrate tasks and schedule pipeline executions
• Web-Client - User interface for creating pipelines and data sources

Regarding the HDS,the Datasource service is ofspecialinterest since it is re-
sponsible for (periodically) fetching the data from the external Open Data source.
Contrary to the HDS, the Datasource service does not provide any functionality
to explore the data source itself and create a configuration based on this explor-
ation but simply expects a single URL,which must be given by the user.Such

21

5. Solution Design

Figure 5.7:Architecture of the ODS.
Reference:

https://github.com/jvalue/open-data-service/blob/main/doc/service_arch.png

a configuration contains allrequired information about the data source and is
essentialfor both services.The HDS defines such a configuration with some
modifications compared to the Datasource service, as shown in figure 5.8.
First of all, the metadata and id properties are omitted due to simplicity, whereas
the trigger property is the same for both configurations.The primary differences
are the protocol/format and connection/entries properties,which specify
how to connect to the data source and which data should be fetched.In contrast
to the protocol property, the connection property stores the URL of the FTP
server, its port and the user/password.The entries property extends the format
property by the support of configuring multiple file paths via regular expressions
instead of just a single URL.This is due to the fact that the path of files is often
not known beforehand due to components in the filename or directory structure
that are due to change over time,e.g.,dates,indices,and so on.As a result,
a single item of the entries list can match an arbitrary number of files which
ideally should apply to the same schema.It is further described in section 6.2
how these regular expressions are generated and resolved.
Another difference is that the HDS itself does not store any data source config-
urations or triggers the execution to fetch new data, since the focus of this thesis

22

5. Solution Design

Figure 5.8:Data source configuration of the Datasource service and the HDS

is the accessibility ofFTP data sources.Besides that,the HDS would mostly
fit into the ODS ecosystem.Chapter 9 gives a short outlook about how this
integration can be accomplished.

5.4.1 Adaption to the Pipeline Mechanism
Once a data source configuration is created, it can be used to configure a pipeline.
A pipeline represents the process of fetching the data that is specified by a par-
ticular data source configuration, applying an optional data transformation, and
persisting the result through the Query service.The various services are notified
via the Message Broker once new data is available.
The core concept ofthe HDS works in a similar manner,but it provides some
additionalchallenges.As mentioned in the previous chapter,the data source
configuration of the HDS can contain multiple files which should be fetched upon
its execution due to its configuration via regular expressions.As a result,the
content processed in a pipeline is no longer a single JSON/CSV/XML resource.
This introduces a problem when the retrieved data should be queried via the
Query service.In the example of the repository, the latest entry of such a pipeline
is retrievable via the link

http:// localhost:9000/storage| {z }
URL of Query service

/ 2|{z}
Pipeline ID

? order=id.desc&limit=1| {z }
Query parameter

which willreturn the JSON/CSV/XML content.In order to illustrate the new
challenges,a short example is introduced.The assumption is a configuration
with three ExportRegex entries,which resolve to nine files that the HDS/ODS
should export.When retrieving the data via the Query service, the user should
be able to distinguish between the single files.Therefore, it is required to specify

23

5. Solution Design

the corresponding ExportRegex entry and the index of the file of interest within
this entry.A possible solution could extend the existing link structure with two
additional query parameters, e.g.:

entry=2| {z }
Index of the ExportRegex entry

& index=1| {z }
Index of the file within this entry

Accessing a file that does not exist via invalid entry and index values could
simply result in an error response by the Query service.Otherwise,the file
content of the corresponding file will be returned.

24

6 Implementation

6.1 The Hierarchical Open Data Service (HDS)
The HDS is implemented as a microservice in Typescript1 and available on Git-
Hub2. Its coarse structure is shown in figure 6.1.

Figure 6.1:Architecture of the HDS

The HDS is accessible via its RESTfulAPI that exposes the functionality of
the HDS and forwards incoming requests to the corresponding functions of the
Manager module, which is the central component of the HDS.It implements the
business logic and uses the Cache and Adapter in order to access the remote data
source or locally stored data respectively.The Adapter abstracts the access to
remote data sources and relies on a corresponding Connector which establishes
the actual connections.
In the following sections,the word node willbe used as a placeholder for FTP
specific nodes such as files, directories, archives and symbolic links.Finally, here
is a short overview about the most important software packages being used by
the HDS:

1https://www.typescriptlang.org/
2https://github.com/jvalue/hierarchical-datasources

25

6. Implementation

• basic-ftp (MIT) - FTP client
• decompress (MIT) - Extracting (compressed) archives
• proper-lockfile (MIT) - File locking utility

6.1.1 Application Programming Interface
The HDS provides a RESTful API for stateless communication between the client
and the HDS service.The API neither provides an authentication mechanism
for restricted access nor encryption for secure communication.The content type
for all API endpoints is JSON. According to the REST principles, the API aims
to model data sources and their content as entities.The GitHub repository also
contains an OpenAPI v3 specification3 of the API.
The data source entity provides two endpoints for listing and adding FTP data
sources.

• GET /datasources
Get allimported data sources
The response body contains a list of ConnectionInfo items (see figure 6.2).

• POST /datasources
Add a new data source
The request body contains the connection information (see figure 6.2).

Figure 6.2:Definition of a data source connection

The node entity provides a single GET endpoint to retrieve the content ofthe
node and a single POST endpoint to perform actions on the node.It is important
to note that the node URL is sufficient for the HDS to reconstruct the path
components of the path attribute.Therefore,the URL is split upon the known
archive borders (see section 6.1.5).

3https://github.com/jvalue/hierarchical-datasources/blob/main/backend/static/swagger.
yml

26

6. Implementation

• GET /datasources/{dsUrl}/{nodeUrl}
Get the content of the node
The placeholder {dsUrl} and {nodeUrl} contain the URI encoded URL of
the data source/node.This endpoint returns the content of the node (see
figure 5.1), independent of the type of the node.

• POST /datasources/{dsUrl}/{nodeUrl}
Perform an action on the node
The placeholder {dsUrl} and {nodeUrl} contain the URI encoded URL
of the data source/node.The request body contains a JSON object with
an identifier property (string) that specifies the action to perform.The
response content is dependent on the action.

Supported actions are download and extract to download a single file or extract
an archive.The former transfers the file content as a blob, the response body of
the latter is empty.Following a symbolic link or inspecting an extracted archive
can be reduced to the GET endpoint by requesting it with the link destination
or the URL ofthe archive.This implementation violates the design principles
of REST since these actions are not modelled with the Create Read Update
Delete (CRUD) operations.Instead,this implementation applies to an RPC
based design.Nevertheless,this approach was chosen due to its simplicity and
extendability.
Section D ofthe appendix shows some exemplary API calls with the content
of the opendata.dwd.de data source.The usualprocedure is to first add the
data source to explore (example D.1), then request the content of the root node
(example D.3) and navigate through the data source until, for example, a file was
found that should be downloaded (example D.4).Furthermore, the API provides
a single POST endpoint for exporting a data source configuration (see section 6.2).

• POST /export
Get the matching nodes of an export configuration
The request body contains the export configuration (see figure 6.4).The
response body contains a list of Node objects (see figure 5.1), which are the
matching nodes of the export configuration (example D.5).

Finally,the API provides another events entity that is mainly used for devel-
opment and testing purposes.These endpoints are disabled when the HDS is
running in production mode and their usage is further described in section 8.3.

• GET /events
Get the registered events
The response body contains the list of registered events.

• DELETE /events
Delete allregistered events

27

6. Implementation

Deletes all registered events.
The following events are recorded:

• archiveLockIsHeld - The archive is currently locked
• archiveLocked - The archive lock was acquired
• archiveReleased - The archive lock was released
• archiveUpdated - The cached archive was updated
• archiveCached - The archive was cached and is still up to date
• archiveExtracted - The archive was extracted

6.1.2 Connection to Data Sources
The first step that has to be taken when exploring a data source is establishing
a connection to the data source.Therefore, several parameters must be known:

• the protocol that is used to access the data source
• the URL and port at which the data source is accessible
• the username and password for accessing the data source

The HDS only supports FTP data sources (see figure 6.2) which require a user-
name/password combination.In general, authentication can also make use of an-
other mechanism like an authentication token, which is often the case for RESTful
APIs. The HDS provides an endpoint POST /datasources (see 6.1.1) that ex-
pects a JSON object containing this information in the request body.Based
on this connection data,a connection to the data source is established.If the
connection to the data source fails,e.g. due to an unreachable URL or invalid
port number, the error is returned to the client.On success, an internal mapping
stores the connection objects for this data source.An exemplary API request is
shown in example D.1.
By default, up to five connections are established to each data source for parallel
access.The number of available connections could be even increased by sequen-
tially opening new connections untilthe first one is rejected by the server.All
these connections are established in the passive mode by default.While the HDS
is running, these connections are kept alive, which means that once the connec-
tion is closed by the server,they are automatically reconnected the next time
this connection object is used.In the case of the FTP,this might happen after
a certain timeout defined by the FTP server itself.Different clients of the HDS
share the same connections for the same data source.This is because many FTP
servers restrict the number of connections for specific IP ranges.Since the data

28

6. Implementation

sources are public,this approach was chosen to prevent constantly establishing
and closing client-specific connections, which would reduce performance.

6.1.3 Exploration of Data Sources
The exploration ofthe data source is implemented by the single API endpoint
GET /datasources/{dsUrl}/{nodeUrl} (see section 6.1.1).Sending a request to
this endpoint will return the content of the corresponding node in JSON format.
Once a connection to the data source is established,this endpoint can be used
to explore the data source in a structured way.Without previous knowledge, the
first request starts at the root node "/" (encoded %2F) of the data source.The
response contains the properties of the root node itself and the list of its children
nodes.The same API endpoint can then be requested again with one of the now
known child URLs,which has the isLeaf property set to false.Requesting a
leafnode again willsimply return the already known content.This procedure
can be repeated in order to fully explore the whole data source.
In order to navigate back from a child node to its parent node, either the URL of
the parent node must be stored or its URL is retrieved by the dirname of the URL
of the child node.Of course, the application can also maintain a stack of parent
nodes.It is important to note that symbolic links can introduce cycles in this
exploration when they are followed (see section 6.1.4).The data source can also
be explored fully automatically without any user interaction, for example, when
searching for a specific file.Therefore,this search would also start at the root
node - assuming there is no previous knowledge about specific URLs - and use
the API endpoint to explore the data source using a depth-first or breadth-first
search.The search can also follow symbolic links when a set of already visited
nodes is maintained.

6.1.4 Symbolic Links
Symbolic links provide a usefulway to have a static reference to files or dir-
ectories that are due to change.For example,the latest measurement file of
a seriesof .csv files could be referenced by a symbolic link with the name
latest_measurement.This link then can be used to access the latest meas-
urement data without actually knowing the name of the file which contains this
data. In this scenario,the symbolic link acts like an intermediate node for ac-
cessing the referenced node.
Since symbolic links are files themselves,it is a specialnode with an additional
link property which distincts them from regular files.Consequently,there is a
difference between the content ofthe link it points to and the node itself.In
order to retrieve the content of the linked node,the nodeUrl parameter of the
API endpoints (see section 6.1.1) must be replaced with the value ofthe link

29

6. Implementation

property.Symbolic links are also restored when an archive is extracted.The link
property is joined with the dirname of the symbolic link when the destination is a
relative path to retrieve the correct destination.If the destination is an absolute
path, the link property will be simply set to this path.

6.1.5 Archive Extraction
As described in section 5.2,the inspection of archives is a centralproblem this
thesis is trying to solve.While archives provide advantages, such as reduced file
size for the data source provider, they add additional overhead for the user when
trying to access the contained data.
Archives themselves are regular files and can be downloaded from the data source
using the POST /datasources/{dsUrl}/{nodeUrl} endpoint (see 6.1.1).This
will download the archive as it is from the data source,providing no additional
benefit to the user who still has to store, extract and inspect the archive locally.
Instead, the same endpoint can be requested with the extract action which will
download the archive from the data source to the cache of the HDS and extract
it. The extraction of the archive is performed recursively, because an archive can
contain multiple other archives or compressed files.This procedure simplifies the
process when accessing a node from the cache since it can be safely assumed that
each node is already accessible.The HDS supports the extraction of the following
archive types:

• .zip
• .tar.gz / .tgz
• .tar.bz2
• .tar

After extracting the archive,the modification timestamp ofthe extracted root
directory is updated with the originalmodification timestamp from the data
source.This is because the downloaded archive has its modification timestamp
set to the point oftime when the download process started.The modification
timestamp is essential to find out if an archive was updated on the data source.
This process is described in detail in section 6.3.3.
Besides archives,there are also often solely compressed files.A very popular
compression toolis gzip4 which is developed for the GNU project.In contrast
to archives which can store multiple files and directories, gzip will only compress
single files.In order to treat both archives and solely compressed files simil-
arly,decompressing with gzip compressed files has to be adapted.First, the
compressed file is downloaded and extracted to a temporary file.Afterwards,a

4https://www.gnu.org/software/gzip/

30

6. Implementation

directory with the name of the compressed file is created and the temporary file
is moved into this directory.In the last step,the extracted file is renamed to
the originalfilename without the compressed .gz extension and the modifica-
tion timestamp of the directory is updated similar to regular archives.This way,
solely compressed files are handled the same way as regular archives,reducing
complexity and edge cases in the implementation.The HDS only supports this
procedure for with gzip compressed files.

6.2 Export Configuration of the ODS Pipeline
The finalresult ofthe exploration ofthe data source is a set offiles selected
by the user that contain the required data for the third-party application.The
goalis to periodically retrieve those files by the ODS and provide them to the
third-party application.The configuration which specifies this result set should
be only created once and should contain allrelevant information for connecting
to the data source and retrieving the desired files.
As described in section 3.2,the concept ofmicroservices is based on a clear
separation ofresponsibility and functionality.Thus, the ODS should be fully
independent ofany FTP related functionality ofthe HDS. Since the configur-
ation must be stored by the ODS anyway,this should be allthe information
required in order to retrieve the specified files.As a result,the ODS can send
this configuration to the HDS and download each file of the returned result set
from the HDS using its RESTfulAPI. This way,the HDS acts as a proxy for
retrieving the files from the FTP server such that the ODS can make use of its
existing HTTP functionality.In the upcoming sections, it will be described first
how regular expressions are used to enable dynamically resolving the result set
of the configuration, and afterwards how the configuration is structured and the
final result set is determined.

6.2.1 Support of Regular Expressions
During the exploration process,the user selects the files ofinterest which are
statically determined by their URL.Unfortunately,these paths often contain
components that are due to change.The opendata.dwd.de data source,for
example,provides .zip archives like {...}_20210322_{...}.zip with the cor-
responding date (3rd March 2021) in the filename.Consequently,a dashboard
application that uses the daily measurement data relies on a way to dynamic-
ally determine the location of the latest measurement instead of using statically
specified paths.
A common approach to solve this kind of problem is the usage of regular expres-
sions.Regular expressions provide a powerfulmechanism to statically specify a

31

6. Implementation

pattern for strings which then is dynamically applied at runtime to see ifthe
string matches this pattern.In this context,the strings are the URLs ofthe
desired files of the FTP data source.Whereas a static file path is unique, regular
expressions can be matched arbitrary times, creating a result set.This result set
should be further adjustable in order to select certain important files instead of
a whole collection of data.In general, the result set should be

• sortable by applying a predefined order, converting the set into a list
• sliceable by selecting a range of the original list with an offset and size

Figure 6.3:Definition of a regular expression for the export configuration

The regular expression regex is defined according to the JavaScript format5.
The regex must be specified as a single string without the leading and end-
ing slash and is applied case-insensitive.For example,the regular expression
data/(.*).csv would match all .csv files in the data directory.
As shown in figure 6.3,the ExportRegex also contains a type attribute that
specifies for which type of nodes the regular expression should match, e.g., only
files by setting its value to file.Supported values ofthe sort order are asc
or desc for alphanumeric ascending or descending order.The offset and size
parameters must be positive integers including zero.When the size property is
set to zero, all matches are taken into account.

6.2.2 Structure of a Configuration File
The previous section described the structure of a single regular expression.These
are the fundamental components of the overall export configuration that can be
sent to the HDS to dynamically determine the list of matching files.Therefore,
the configuration must contain the following data:

• a trigger configuration
• the connection data of the data source (see figure 6.2)

5https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions

32

6. Implementation

• a list of regular expressions that specify the files of interest
The final goal is that the ODS periodically retrieves the files from the HDS and
persists those files for the third-party application.Because ofthat, the trigger
configuration specifies when the ODS is supposed to download those files.This
is due to the adaption to the current implementation of the ODS,as described
in section 5.4.Hence,the interval parameter specifies the periodic intervalin
seconds (ifperiodic is true) and the firstExecution parameter defines the
date and time of the first execution.The finalstructure of the configuration is
shown in figure 6.4.

Figure 6.4:Definition of the export configuration

It is noticeable that the entries parameter is a list of ExportRegex lists.This is
due to the fact that the overallregular expression must be split upon the archive
borders,since the content of archives is not directly accessible.Thus,it is only
required to have multiple ExportRegex items defined when the desired files are
located in at least one archive.The type attribute of the last ExportRegex must
always be set to file. For the sake ofsimplicity,the term ExportEntry will
be used interchangeably for a list ofExportRegex items.The next section will
describe how the list ofmatching files is determined based on such an export
configuration.

6.2.3 Resolving a Configuration
Once a request is sent to the POST /export endpoint, it is checked if the request
body contains a valid export configuration.If this is the case,a connection to
the data source is established if there is not already an existing connection.At
this point, the setup is completed and the list ofExportEntry items is iterated.
For each ExportEntry, the following algorithm is executed:

1. Initialize the result list for the i -th ExportEntry as the empty list
2. Iterate over the corresponding ExportRegex items and determine the match-

ing files
(a) Split the regex with the path separator "/" and apply the regular

expression component by component

33

6. Implementation

• The next component is only applied relative to the matches of the
previous one

(b) The result of the previous step is a set of URLs that match the regex
of the ExportRegex

i. Sort the result set using the sort order specified by sort
ii. Slice the result list using the size and offset parameters

(c) The result contains the URLs with which the next ExportRegex item
starts

• If the type is set to archive,the result contains archives which
must be extracted before continuing

(d) Apply steps (a) - (c) untilthe last ExportRegex is resolved and add
each matching file to the result list

The final result is a list ofNode lists,similar to the list ofExportRegex lists of
the configuration.For example, the fourth Node list of the result contains all files
that matched the fourth ExportEntry item of the export configuration.Since all
these nodes are downloadable files, the ODS can simply request the corresponding
API endpoint for each node URL in order to download and store the file.
To demonstrate this procedure, listing C.1 contains an exemplary export config-
uration for which the trigger property is dismissed due to simplicity.Therefore,
a single ExportEntry will be used with two ExportRegex entries.The specified
FTP data source is the custom FTP server that is also used for the automated
testing described in section 8.3.Its content is displayed in figure 15.Finally,
figure 16 shows in detailhow the configuration is evaluated using the above-
mentioned procedure.For easier understanding, the intermediate steps with the
matching nodes are listed as well.

6.3 File System as the Distributed Cache
6.3.1 Hierarchical Structure
The file system cache is,similar to the data sources themselves,hierarchically
structured.The root directory of the cache is defined by the environment variable
HDS_CACHE.For each connected data source,a subdirectory named by the data
source URL is created in the cache root directory.This directory is referenced
as the data source root directory.Relative to this directory, the URL of a node
is equal to its path on the file system.As a consequence, no additional mapping
or state keeping is required by the cache about the location of single nodes.This

34

6. Implementation

makes the solution flexible, error-prone, and fulfills the imposed state restrictions
for the HDS.
When an archive is requested to be extracted,the archive must be downloaded
first. In this example,it is assumed that the path ofthe archive within the
data source is /directory/archive.zip. The destination within the cache is
the joined path of the cache root directory,the data source root directory and
the path of the archive, e.g., ${HDS_CACHE}/{dsUrl}/directory/archive.zip.
Each intermediate directory,which does not already exist,is created.After ex-
tracting the archive, the URL of a node of that extracted archive can be simply
computed from its path on the file system by cutting off the cache prefix.This
cache prefix consists of the cache root directory and the data source root directory.

6.3.2 Concurrent Access
As described in section 5.3,it is beneficialfor multiple instances of the HDS to
share the same cache in order to improve performance,reduce network traffic
and disk space.Unfortunately,these advantages introduce additionaloverhead
since various HDS instances can now access and modify the same files.This can
result in race conditions or lost update problems between two or more concurrent
HDS instances, when for example two HDS instances are downloading the same
archive at the same time in order to extract it afterwards.Due to the implement-
ation as a microservice and the horizontalscaling,HDS instances do not share
communication data that would enable the services to mutually lock the access
to a certain file.
Therefore,a solution is required that is solely based on the already shared file
system cache.Similar to other applications that concurrently access the same
file system, the mechanism of lockfiles is used.These lockfiles indicate that a file
is currently locked by another application and should not be modified.Usually,
these lockfiles are located in the same directory as the file they lock with a suffix
indicating that this is a dedicated lockfile (e.g..file.lock). This practice is
infeasible for the HDS since it is not guaranteed that there is no such file provided
by the data source itself.Thus, these lockfiles must be separated from the actual
data ofthe data source,thus outside ofthe data source root directories.The
path of the lockfile must be fully determined by the URL of the data source and
the URL of the file it should lock.
For this, a special directory .locks in the cache root directory is created that will
be referenced as the cache locks directory.This directory solely stores the lock-
files in the same hierarchicalstructure.For example,the lockfile of the archive
/directory/archive.zip of the data source datasource.de will be located at
${HDS_CACHE}/.locks/datasource.de/directory/archive.zip.In case of re-
cursive archives, only the root archive must be locked since the extraction is per-

35

6. Implementation

formed recursively after the lock had been acquired.The library proper-lockfile6

is used for the lockfile mechanism.The implemented locking mechanism is based
on the modification timestamp of the corresponding file and thus also works to re-
strict concurrent access within the same process.It was tested (see section 8.3.1)
on a ext4 file system but also supports network-based file systems according to
its documentation.

6.3.3 Updating Cached Archives
The previous section described how concurrent access for the same cached file
is synchronized using the mechanism oflockfiles.This will become important
when an archive is requested to be extracted.What seems like a straight-forward
operation at first requires some additionalmechanism to prevent concurrency
problems when multiple HDS instances are using the same cache and receive
multiple of these requests at the same time.
The general procedure is depicted in figure 1.The local and remote modification
timestamps are used to detect if the archive was modified on the data source in
the meantime.If the remote modification timestamp is more current than the
localone,the archive changed and must be updated.Consequently,there is no
need to update the archive when the archive already exists in the cache and is
still up to date.For any other case, the archive must be locked by acquiring its
corresponding lockfile.After the lockfile was acquired successfully,the modific-
ation timestamps are checked again since another HDS instance, which held the
lockfile before,could have already updated the archive.If this is not the case,
the archive must be downloaded and extracted.After the extraction, the modi-
fication timestamp is updated as described in section 6.1.5.Finally,the archive
is unlocked by releasing the lockfile.
Without this locking mechanism,two HDS instances could potentially write to
the same file when downloading and extracting the same archive.This could
result in an unpredictable state of the file.Furthermore, the repeated timestamp
comparison prevents lost updates.Another advantage of this update mechanism
is that it reduces the network traffic ofthe HDS since archives willonly be
updated when changed on the data source.
It is important to note that this mechanism only prevents concurrent write access,
thus reading the content ofthe archive is allowed while it is locked.This is
due to the fact that the archive is actually downloaded and extracted using a
temporary location and is only moved to the actualpath once this process is
finished.Theoretically,there is a time frame in which one service can read the
content of the archive while another one replaces the extracted archive.Since this
can only happen when reading the content is slower than locking,downloading,

6https://www.npmjs.com/package/proper-lockfile

36

6. Implementation

extracting and moving the extracted archive,this problem was neglected in the
scope of this thesis.

6.4 User Interface
The web-based user interface was built using the JavaScript frameworks Vue.js7

3 and Bootstrap8 5. It is implemented in the class style syntax with property
decorators9 and uses the Vuex10 store for state sharing and the communication
between the single components.It consists offour generalviews as shown in
figure 6.5.

Figure 6.5:Architecture of the user interface
7https://vuejs.org/
8https://getbootstrap.com/
9https://www.npmjs.com/package/vue-property-decorator

10https://vuex.vuejs.org/

37

6. Implementation

Each of these views serves one single purpose in the sequential workflow:
1. Home - The user can add data sources.
2. Exploration - The user can explore the data source in a file browser like

manner and add files to the selection to export.
3. Configuration - The user can create the export configuration based on

the added files from the previous step.
4. Result - The user can run the finalconfiguration in order to check if the

result meets his expectations.
The user can navigate between these views using the navigation buttons which
are included in the header bar.The user interface is not implemented as a Single
Page Application (SPA) but uses the the Vue Router11 to serve the different views
as single pages.

11https://router.vuejs.org/

38

7 Demonstration

In this chapter,the usage ofthe HDS via the user interface willbe demon-
strated.Therefore,an exemplary use case ofexploring and configuring a FTP
data source via its user interface is shown.This example was executed on a
single host system where the HDS was running on localhost:8080,and the user
interface was served by a simple HTTP server on localhost:8081.For that,the
docker-compose.yml file was used to start the two Docker containers by running
the command docker-compose up in the project root directory.The screenshots
which are displayed in figures 2 - 9 are recorded with a display size of 1920x1200
px and a device pixel ratio of 3.
At first, the URL of the user interface was opened in the browser,displaying
the Home view of the user interface.At this step, the user can add and remove
data sources.In this example,the opendata.dwd.de data source was added as
shown in figure 2.Once a data source is added,adding the same URL again is
disabled.When trying to add a data source that does not exist, an error message
is displayed after the attempt to connect finally fails.After clicking the Explore
button, the user interface will switch to the Exploration view, in which the user
can explore the data source.
The Exploration view consists ofthe Browser,the Inspectorand the Actions
component (see figure 3).The Browser is the central component of this view and
works similar to a regular file browser.It is used to navigate through the data
source and supports pagination within the current directory.The Browser also
provides a search bar, a button for navigating back in the history, and a refresh
button for reloading the current directory content.The search bar can be used
to filter the displayed entries,which is especially usefulto find files in a large
directory.It can also be used to filter all added files (via @added) or all extracted
archives (via @extracted).The Inspector displays the properties of the selected
file. The Actions section provides a list ofapplicable actions for the currently
selected node, such as downloading a file or extracting an archive.These actions
are executed in the background and are displayed in a separate list that is only
visible when at least one action is still running (see figure 9).By clicking the Add
button, the selected file is added to the export selection.This is also indicated by

39

7. Demonstration

the blue highlighted number of added nodes in the top bar.A previously added
file can also be removed again, consequently reducing the number of added files
by one.
In this example, two files were added.First, the file /weather/alerts/content.l
og.bz2 was downloaded and added afterwards.Afterwards, the archive jahreswe
rte_KL_00044_akt.zip in the directory /test/CDC/observations_germany/cl
imate/annual/kl/recent was extracted and inspected.This archive contains 16
files (seven .html files and nine .txt files).The file Metadaten_Geographie_0004
4.txt was successfully downloaded and added afterwards.Following a symbolic
link was tested in the directory /weather/alerts/cap/COMMUNEUNION_EVENT_ST
AT,which stores severalsymbolic links to the latest .zip archive.It should be
noted that the loading screen is displayed when a response of the HDS exceeds a
specific timeout.A good example is the directory /test/weather/weather_repo
rts/synoptic/germany/geojson, which contains about 59000 items and there-
fore takes some time to get listed (see figure 8).
After the exploration of the data source is finished and all files of interest are iden-
tified and added to the export selection, the export configuration has to be created
(see figure 4).Therefore, the user navigates to the Configuration view.The Con-
figuration view lists alladded files from the previous step.Once such an entry
is selected, a configuration form is displayed that enables the user to create such
a configuration as described in section 6.2.The user can save the configuration
by clicking on the Add button or remove the whole entry from the export config-
uration by clicking the Remove button.The regular expressions provide a help
message which is displayed in a new modal.This help message explains how to
use the single forms in detail with some short examples (see figure 7).An invalid
definition of a regular expression or the other parameters is indicated by red col-
our. In this example, the entry for the file /weather/alerts/content.log.bz2
was added unmodified.Thus,only the single file should be retrieved when the
configuration is evaluated.The other entry is modified to match the second to
fifth .txt files in the archive when the alphanumericaldescending sort order is
applied (see figure 5).Once all entries have been configured, the user can move
to the last step and evaluate the resulting configuration.
The Resultview is the last view ofthe exploration process.It provides two
buttons to view the finalJSON configuration and comfortably copy it to the
clipboard.In contrast, the major task of this step is to execute the configuration
and check if the result matches the expectation.When clicking the Try it!button,
the configuration is sent to the HDS and the matching files are resolved.In
the meantime,the user interface displays the loading screen untila response is
retrieved.On success,the list ofthe matching files is displayed,so that the
user can check if the result matches the expectations.Otherwise, a simple error
message is displayed.If the result does not match the expectations,the user

40

7. Demonstration

can navigate back to the Configuration view and modify the configuration again.
When executing the exemplary configuration, a result list of four files is retrieved
which is depicted in figure 6 and matches the expected outcome.

41

7. Demonstration

42

8 Evaluation

8.1 Functionality of the HDS
The HDS enables the user to explore FTP data sources in a structured way,
based on the inherent file system hierarchy.In section 5.1,the definition of
the data structures is described with respect to its extendability and specific
FTP implementation.The implementation details are outlined in section 6.1,
especially regarding the extraction of archives and symbolic links.It is shown that
archived files can be accessed through the HDS by downloading and extracting
the archive via the HDS without major effort of the user.
Therefore, objectives 4.1.1, 4.2.1 and 4.2.2 are fulfilled.
The HDS implements a simple RESTfulAPI that provides allof the above-
mentioned functionality.The API was described in detail in section 6.1.1, espe-
cially with respect to the violations of the RESTful design.The proof-of-concept
user interface uses the API in order to enable the user to explore and config-
ure FTP data sources.Of course,the API can also be used for automating the
exploration of FTP data sources.
Therefore, objective 4.1.3 is only partly fulfilled.
Regarding the configuration of data sources, a more complex configuration mech-
anism based on regular expressions is presented in section 6.2.It is discussed in
section 5.4 how this configuration fits into the existing ODS ecosystem and what
the potential drawbacks are.Furthermore, a detailed example of how the config-
uration is resolved is given in section 6.2.3.Finally, the HDS is implemented as a
standalone microservice which is categorized into the existing ODS architecture
in section 5.4.The source code of the HDS is linted using eslint1 and contains
helpful comments to ensure its code quality.
Therefore, objectives 4.1.2 and 4.1.4 are fulfilled.

1https://github.com/jvalue/hierarchical-datasources/blob/main/backend/.eslintrc.js

43

8. Evaluation

8.2 User Interface
The proof-of-concept user interface enables the user to explore and configure
FTP data sources easily.It is implemented using VueJS and Bootstrap as both
of these frameworks provide flexible and robust solutions for building frontend
applications.Similar to the backend implementation,the source code is linted
using eslint2 in order to apply to common programming guidelines.The respons-
ive layout ofthe user interface stacks the standard horizontallayout and was
realized using the Bootstrap grid system to provide a comfortable user experience
on mobile devices.Figures 10 - 13 show the responsive layout for all four views
on a display with a resolution of 767x1200 px and a device pixel ratio of 3.
Therefore, objectives 4.3.1 and 4.3.2 are fulfilled.
The user is guided through the process of connecting to, exploring and configuring
a data source by the sequential workflow of the user interface.This workflow is
described in detailin chapter 7.The user can navigate between the four views
Home,Exploration,Configuration and Resultwith simple navigation buttons.
The Exploration view enables the user to navigate through the data source with
the Browser component.In addition,the user can select single files in order to
display additional information about them or even download the file to view its
content.
Therefore, objectives 4.3.3 and 4.3.4 are fulfilled.
Finally,the user can add single files to the export selection and further specify
the data source configuration in the Configuration view.Multiple files can be
specified in the data source configuration by using regular expressions in the
configuration step.However,the selection of,for example,all files ofa single
directory is not supported in the Exploration view.
Therefore, objective 4.3.5 is only partly fulfilled.

8.3 Automated Tests with a Custom FTP Server
This section focuses on automated tests to evaluate the implemented mechan-
isms described in sections 6.2.3, 6.3.2, and 6.3.3.For this, the data source must
provide special kind of data (e.g., recursive archives), and this data must also be
modifiable,for example,when the update mechanism is tested.Thus,it is not
feasible to perform those tests on any publicly available data source.In order to
provide a flexible test setup,these tests are executed within a docker-compose
setup.It consists of a FTP server3 that provides the custom data directory (Fig-

2https://github.com/jvalue/hierarchical-datasources/blob/main/frontend/.eslintrc.js
3https://github.com/stilliard/docker-pure-ftpd

44

8. Evaluation

ure 15) and two HDS instances.All these services, including the tests themselves,
are executed in separate Docker containers.The integration tests are implemen-
ted using the jest4 framework and can be run with the Makefile target make it.
This target starts all required Docker containers and executes the tests.There is
a detailed description of all executed tests in figure 14.

8.3.1 Concurrency
A crucial aspect of the implementation is the shared caching and its locking mech-
anism (see section 6.3.2).The corresponding tests are located in the concurrency
.test.ts file of the integration tests directory.The contained tests are ofthe
following pattern:

1. A request to extract the same archive is sent to each HDS instance n times
2. Once allrequests finished,the events for this archive are retrieved from

both HDS instances
3. The actual tests are performed on those retrieved events

The archive that is requested to be extracted should be of a noticeable size,so
that the extraction will not be finished before all initial requests have been sent.
The following properties are tested and depend on this assumption.

• The number of archiveLocked and archiveReleased events must be equal
for each instance
Reason:Each lock must be acquired and released in order to prevent dead-
locks

• The number of archiveLockIsHeld events of both services must be at least
2n - 1
Reason:Only the firstrequestimmediately acquires the lock,whereas all
other requests failto acquire the lock at least once

• The number of archiveCached events of both services must be equal to 2n
- 1
Reason:After the first request releases the lock, all other requests make use
of the cached entry

This test is performed on both archives bash-5.1-rc1.tar.gz (10.4 MB) and
data/exiftool.tar.gz (4.9 MB) with n = 5.Of course, additional archives can
be used and the number of concurrent requests could be increased as well.

4https://jestjs.io/

45

8. Evaluation

8.3.2 Recursively Structured Archives
The behavior ofextracting recursively structured archives is tested in the test
cases ofthe file recursiveArchives.test.ts. These tests extract the recurs-
ive archives /data/code/lib.zip and /data/code/archiveA.zip (see figure 15)
and check afterwards if the files within the inner archives are accessible,down-
loadable,and contain the correct information.In addition,it is checked that
symbolic links at various depths of the recursive archive are extracted properly,
and relative and absolute paths are properly constructed.

8.3.3 Update Mechanism of the File System Cache
The update mechanism of previously extracted archives is tested with some com-
paratively straightforward test cases that are contained in the update.test.ts
file.These tests check three use cases:

1. An archive is extracted again after it had been updated on the data source
Expected outcome:The event archiveUpdated must occur exactly once

2. An archive is extracted twice without being modified in between
Expected outcome:The event archiveUpdated must not occur and the event
archiveCached must occur exactly once

3. An archive is extracted again after its modification time had been set to a
timestamp previous to the first extraction
Expected outcome:The event archiveUpdated must not occur and the event
archiveCached must occur exactly once

46

9 Conclusion

In summary,the outweighing majority of objectives were met.The implement-
ation demonstrates the benefits when dealing with FTP data sources, especially
regarding archived data.The HDS furthermore supports complex configurations
based on regular expressions without major effort for the user.Consequently,
this software provides additional value to developers who are working with FTP
based data sources.
Therefore,it would be beneficialto integrate the HDS into the ODS.A reas-
onable solution for the long term would be to merge the HDS with the existing
Datasource service to combine similar functionality into one single service.In
this step, the support of parameterizable data sources could be integrated as well
(Wächtler, 2021).
Due to the limited time of this thesis, there are some additional improvements for
the HDS which already have been identified.First of all,an advanced solution
for removing cached archives (see section 5.3) must be developed.Furthermore,
clickable path components can be integrated into the user interface for a better
navigation experience, symbolic links can be supported by the export configura-
tion,and an additional regular expression search on the overall data source can
be added in order to simplify the process of finding files based on their name.
Whereas these changes improve or extend the current functionality for FTP data
sources, another benefit would be the support of other hierarchical data sources
like RESTful APIs.Supporting this kind of API would increase the value of the
software by covering an additional variety of use cases and could be implemented
in the scope of an upcoming thesis.

47

9. Conclusion

48

Appendices

49

Appendix A: Conceptual Designs

A Conceptual Designs

Figure 1:Flowchart of the caching procedure

51

Appendix B: User Interface

B User Interface

Figure 2:The Home view of the user interface

Figure 3:The Exploration view of the user interface

52

Appendix B: User Interface

Figure 4:The Configuration view of the user interface (1)

Figure 5:The Configuration view of the user interface (2)

53

Appendix B: User Interface

Figure 6:The Result view of the user interface

Figure 7:The help message of the Configuration view

54

Appendix B: User Interface

Figure 8:The loading screen of the user interface

Figure 9:Display of running actions in the Exploration view

55

Appendix B: User Interface

Figure 10:Responsive layout of the Home view

Figure 11:Responsive layout of the Exploration view

56

Appendix B: User Interface

Figure 12:Responsive layout of the Configuration view

Figure 13:Responsive layout of the Result view

57

Appendix C: Miscellaneous

C Miscellaneous
1. Basic setup

• Test if the API is accessible
• Test not existing API endpoint ’/idontexist’

2. Data Sources
• Test if the API is accessible
• Test not existing API endpoint ’/idontexist’

3. Node
• Check content of the root
• Check the content of a .tar.gz archive
• Extract an empty .zip archive
• Extract an .zip archive and check its content

4. Recursive Archives
• Test archive ’/data/code/lib.zip’
• Test archive ’/data/code/archiveA.zip’

5. Update archives
• Extract archive again after it was updated
• Extract an archive twice
• Extract an archive with past modified timestamp

6. Concurrency
• Extract the archive ’/bash-5.1-rc1.tar.gz’ concurrently
• Extract the archive ’/data/exiftool.tar.gz’ concurrently

7. Exports
• Simple export configuration with a single file
• Export configuration with ignore case
• Export configuration with sort order and slicing
• Export configuration with archived files

Figure 14:List of all integration tests

58

Appendix C: Miscellaneous

/
archive.zip
bash-5.1-rc1.tar.gz
readme.md
README.md
README.txt
README.TXT
data

audio.tar.gz
audio.tgz
data
data_20200502_raw.csv
data_20200601_raw.csv
data_20210502_raw.csv
empty.zip
exiftool.tar.gz
images.zip

image_1.jpg
image_2.png
image_3.jpeg

code
lib.zip

lib/
share.zip

share/
binary

usr.zip
usr/

binary
archiveA.zip

archiveA/
archive1.zip

archive1/
test.txt
wow
wow1
archive2.zip

archive2/
file42.txt

Figure 15:Structure of the test data

59

Appendix C: Miscellaneous

URL Port Description

ftp.wwpdb.org 21 • Protein Data Bank
• 3-D structure of biological macromolecules

ftp.cdc.gov 21
• The National Center for HealthStatistics

(NCHS)
• Health statistics information
• Survey data

ofacftp.treas.gov 21
• Office of Foreign Assets Control(OFAC)
• List of imposed sanctions by the U.S
• Specially Designated Nationals And Blocked

Persons Lists (SDNs)

opendata.dwd.de21 • Deutscher Wetterdienst
• German weather and climate data

ftp.census.gov 21 • United States Census Bureau
• American Community Survey (ACS) data files

ftp.esrf.eu 21 • EUMETSTAT
• Global and regional marine/atmosphere data

Table 1:Exemplary list of public FTP servers

60

Appendix C: Miscellaneous

{
"trigger": {

...
},
"connection": {

"type": "ftp",
"url": "localhost",
"port": 21,
"user": "user",
"password": "password"

},
"entries": [

[
{

"offset": 0,
"size": 0,
"sort": "asc",
"type": "archive",
"regex": "/data/images.zip"

},
{

"offset": 1,
"size": 1,
"sort": "desc",
"type": "files",
"regex": "image_(.*)"

}
]

]
}

Listing C.1:Example of an export configuration

61

Appendix C: Miscellaneous

1. ExportRegex for regular expression /data/images.zip on result list []
(a) Apply the regular expression for each path component

i. Regular Expression:data
• Nodes of[/]:

[archive.zip, bash-5.1-rc1.tar.gz, ..., data]
• Result:[/data]

ii. Regular Expression:images.zip
• Nodes of[/data]:

[audio.tar.gz, audio.tgz, ..., code]
• Result:[/data/images.zip]

(b) Slice the result list
i. Apply type archive:[/data/images.zip]
ii. Apply sort asc:[/data/images.zip]
iii. Apply offset 0:[/data/images.zip]
iv. Apply size 0:[/data/images.zip]

(c) Result of first ExportRegex:[/data/images.zip]
• Extract the archive before continuing

2. ExportRegex for regular expressionimage_(.*) on result list
[/data/images.zip]
(a) Apply the regular expression for each path component

i. Regular Expression:image_(.*)
• Nodes of[/data/images.zip]:

[image_1.jpg, image_2.png, image_3.jpeg]
• Result:

[/data/images.zip/image_1.jpg,
/data/images.zip/image_2.png,
/data/images.zip/image_3.jpeg]

(b) Slice the result list
i. Apply type file:

[/data/images.zip/image_1.jpg, ...,
/data/images.zip/image_3.jpeg]

ii. Apply sort desc:
[/data/images.zip/image_3.jpeg, ...,
/data/images.zip/image_1.jpg]

iii. Apply offset 1:
[/data/images.zip/image_2.png,
/data/images.zip/image_1.jpg]

iv. Apply size 1:[/data/images.zip/image_2.png]
(c) Result of second ExportRegex:[/data/images.zip/image_2.png]

• Final result
Figure 16:Example of resolving an export configuration

62

Appendix D: API

D API
/*
* POST /datasources
*
* Add a new data source.
*/

// Request body
{

"type": "ftp",
"url": "opendata.dwd.de",
"port": 21,
"user": "anonymous",
"password": "anonymous"

}
Listing D.1:API example:Add a new data source

/*
* GET /datasources
*
* Get all imported data sources.
*/

// Response body
[

{
"type": "ftp",
"url": "opendata.dwd.de",
"port": 21,
"user": "anonymous",
"password": "anonymous"

}
]

Listing D.2:API example:Get all imported data sources

63

Appendix D: API

/*
* GET /datasources/opendata.dwd.de/%2F
*
* Get the content of a node.
*/

// Response body
{

"url": "/",
"name": "/",
"properties": {

"path": [
{

"path": "/",
"type": "directory"

}
],
"type": "directory"

},
"isLeaf": false,
"actions": [],
"children": [

{
"url":"/README.txt",
"name":"README.txt",
...

}
...

]
}

Listing D.3:API example:Get the content of a node

64

Appendix D: API

/*
* POST /datasources/opendata.dwd.de/%2FREADME.txt/
*
* Download a file.
*/

// Request body
{

"identifier": "download"
}

// Response body
Im Rahmen seines gesetzlichen Auftrags stellt der DWD ...

...

Ihre Daten werden nicht an Dritte weitergegeben.
Listing D.4:API example:Download a file

65

Appendix D: API

/*
* POST /export
*
* Get the matching nodes of an export configuration.
*/

// Request body
{

"trigger": {
"periodic": true,
"firstExecution": "2021-07-15T10:15",
"interval": 86400

},
"connection": {

"type": "ftp",
"url": "opendata.dwd.de",
"port": 21,
"user": "anonymous",
"password": "anonymous"

},
"entries": [

[
{

"offset": 0,
"size": 0,
"sort": "asc",
"type": "file",
"regex": "/(.*).txt"

}
]

]
}

// Response body
[

[
{

"url": "/erklaerung_barrierefreiheit.txt",
"name": "erklaerung_barrierefreiheit.txt",
"properties": {

"type": "file",
"extension": ".txt",

66

"modification": "Sep 18 2020",
"size": 3312,
"path": [

{
"path": "/erklaerung_barrierefreiheit.txt",
"type": "file"

}
]

},
...

},
{

"url": "/README.txt",
"name": "README.txt",
"properties": {

"type": "file",
"extension": ".txt",
"modification": "Jul 25 2017",
"size": 528,
"path": [

{
"path": "/README.txt",
"type": "file"

}
]

},
...

}
]

]
Listing D.5:API example:Get the matching nodes of an export configuration

67

68

References

Braunschweig, K., Eberius, J., Thiele, M. & Lehner, W. (2012). The state of open
data.

European Commission. (n.d.). What is open data. Retrieved June 21, 2021, from
https://data.europa.eu/elearning/en/module1/#/id/co-01

Fielding,R. T. (2008).Restapis mustbe hypertext-driven.Retrieved July 22,
2021,from https : / / roy. gbiv . com / untangled / 2008 / rest - apis - must - be -
hypertext-driven

Fielding, R. T. (2000). Architecturalstyles and the design of network-based soft-
ware architectures (Doctoral dissertation). University of Californa, Irvine.

Gleason,M. (2005).The file transfer protocol(ftp) and your firewall/ network
address translation (nat) router / load-balancing router.Retrieved June
16,2021,from https : / / www . ncftp . com / ncftpd / doc / misc / ftp _ and _
firewalls.html

Hirsch,F., Kemp,J. & Ilkka, J. (2007).Mobile web services - architecture and
implementation. John Wiley & Sons.

Housley, R. & Yee, P. E. (2000). Encryption using KEA and SKIPJACK (RFC
No. 2773). RFC Editor. RFC Editor. https://doi.org/10.17487/RFC2773

Lafon, Y., Mendelsohn, N., Hadley, M., Karmarkar, A., Nielsen, H. F., Moreau,
J.-J. & Gudgin, M. (2007). SOAP version 1.2 part 1: Messaging framework
(second edition) (W3C Recommendation) [https://www.w3.org/TR/2007/
REC-soap12-part1-20070427/]. W3C.

Lewis,J. & Fowler,M. (2014).Microservices - a definition ofthis new archi-
tecturalterm.Retrieved June 21,2021,from https://martinfowler.com/
articles/microservices.html

Lunt, S. J. (1997). FTP Security Extensions. https://doi.org/10.17487/RFC2228
Mumbaikar,S., Padiya,P. et al. (2013).Web services based on soap and rest

principles.InternationalJournal of Scientific and Research Publications,
3 (5), 1–4.

Newman, S. (2015). Building microservices: Designing fine-grained systems (1st).
O’Reilly Media.

NGINX Inc. (2016). Nginx announces results of 2016 future of application devel-
opment and delivery survey. Retrieved June 21, 2021, from https://www.

69

References

nginx.com/press/nginx-announces-results-of-2016-future-of-application-
development-and-delivery-survey/

Open Knowledge Foundation.(n.d.).Open definition.Retrieved June 21,2021,
from http://opendefinition.org/

Postel,J. & Reynolds,J. (1985).File Transfer Protocol.https : / / doi . org / 10 .
17487/RFC0959

Publications Office ofthe European Union.(2020).The benefits and value of
open data.Retrieved June 21,2021,from https : / / data . europa . eu / en /
highlights/benefits-and-value-open-data

Reinsel,D., Gantz,J. & Rydning,J. (2017).Data age 2025:The evolution of
data to life-critical(tech. rep.). International Data Corporation (IDC).

Schwarz, G. (2019). Migration the JValue ODS to Microservices (Master’s thesis).
Friedrich-Alexander Universität Erlangen-Nürnberg.

Wächtler, J. (2021). Design and Implementation of Parameterizable Data Import
for the JValue ODS (Bachelor’s Thesis). Friedrich-Alexander Universität
Erlangen-Nürnberg.

Xia, L., Chao-sheng, F., Ding, Y. & Can, W. (2010). Design of secure ftp system.
2010 International Conference on Communications, Circuits and Systems
(ICCCAS), 270–273. https://doi.org/10.1109/ICCCAS.2010.5582002

70

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80

