Hierarchical Open Data Source
Import for the JValue ODS

MASTER THESIS

Fischer Benjamin

Submitted on 29 July 2021

Friedrich-Alexander-Universitat Erlangen-Nurnberg
Technische Fakultat, Department Informatik
Professur fur Open-Source-Software

Supervisors:
Georg Schwarz, M. Sc.
Prof. Dr. Dirk Riehle, M.B.A.

A
e
——
FRIEDRICH-ALEXANDER

UNIVERSITAT

ERLANGEN-NURNBERG

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ahnlicher Form noch keiner anderen Prafungsbehorde vorgelegen hat und von
dieser als Te#iner Prufungsleistung angenommen wAltdeAusfihrungen,

die wortlich oder sinngemal tUbernommen wurden, sind als solche gekennzeichnet.

Erlangen, 29 July 2021

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 29 july 2021

Abstract

Open Data has become more popular in the last few years due to its value to
society.Governmentsnstitutionscompanies or individuals can make use of

Open Data and add to economic growth or extract new knowledge from publicly
available dataThe Open Data Service (ODS) is a software developed by the
Professorship dpen Source that aims to simplify the consumpti@peh

Data and make it more reliable.

The goal of this thesis is to extend the functionality of the ODS by the support of
hierarchically structured data sources, in particular, File Transfer Protocol (FTP)
based data sourceBue to the simplicity and reliabilitytbé FTP, it is an

appropriate solution for providing Open Ddtds thesis aims to enable the

user to explore and configure FTP data sources by developing a new microservice
with a proof-of-concept user interfasa. resultconsuming Open Data from

FTP data sources is simplified and becomes more flexible.

Contents

1 Introduction 1
2 Problem Identification 3
3 Fundamentals 5
3.1 File Transfer Protocol (FTP). 5
3.1.1 Communication between the Client and the Server 5
3.1.2 Technical Limitations 6
3.1.3 AdvantagesforOpenData................ 7
3.2 MICrosServiCes v v i i i e e e e e e e 8
3.2.1 Scaling e 9

3.3 Architectural Styles of Application Programming Interfaces (8PI)
3.3.1 Simple Object Access Protocol (SOAP)... 10
3.3.2 Representational State Transfer (REST). 10
4 Objectives 13
4.1 Exploration of FTP Data Sources 13
4.2 Support of Archive Inspection. 13
4.3 Intuitive UseriInterface 14
5 Solution Design 15
5.1 Model of Hierarchical Data Sources 15
5.1.1 Definition of a Data Source Nade. 15
5.1.2 Extendability for Other Types of Data Sources 16
5.1.3 FTP Specific Properties 17
5.2 Inspectionof Archives. 18
5.3 Caching and Scalability 19
5.4 Compatibility with the Open Data Service (QDS). 21
5.4.1 Adaption to the Pipeline Mechanism... 23
6 Implementation 25
6.1 The Hierarchical Open Data Service (HDS)... 25

.1.1 Application Programming Interface.
.1.2 Connectionto Data Sources.
.1.3 Exploration of Data Sources
.1.4 SymbolicLinks. L.
.1.5 Archive Extraction
xport Configuration of the ODS Pipeline.
.2.1 Support of Regular Expressions.
6.2.2 Structure of a Configuration File
6.2.3 Resolving a Configuration
6.3 File System as the Distributed Cache
6.3.1 Hierarchical Structure.
6.3.2 Concurrent Access. i
6.3.3 Updating Cached Archives
6.4 Userlinterface.

6
6
6
6
6
6.2 E
6

Demonstration

Evaluation

8.1 Functionality ofthe HDS

8.2 Userinterface. e

8.3 Automated Tests with a Custom FTP Server.
8.3.1 Concurrency i
8.3.2 Recursively Structured Archives
8.3.3 Update Mechanism of the File System Cache

9 Conclusion

Appendices
A ConceptualDesigns e
B Userinterface.,
C Miscellaneous e
D Application Programming Interface (APl)

Vi

Acronyms

ODS Open Data Service

FTP File Transfer Protocol

APl Application Programming Interface
REST Representational State Transfer
HDS Hierarchical Datasource Service
URL Uniform Resource Locator

CRUD Create Read Update Delete

RPC Remote Procedure Call

HTTP Hypertext Transfer Protocol

SPA Single Page Application

IP Internet Protocol

NAT Network Address Translation

SSH Secure Shell

SSL Secure Sockets Layer

TCP Transmission Control Protocol

IPC Inter-process communication

SOAP Simple Objects Access Protocol
HATEOAS Hypermedia As The Engine Of Application State

Vii

viii

1 Introduction

The amount of digital data created increased significantly in the last years, driven
by the digitatransformatiorDue to new sensots,T devicesand the rising

awareness about the value of data in geamgralwing number and variety of

data is generated each d&pr examplethe Internationddata Corporation

estimated that the amount of digital data would increase rapidly in the following
years, reaching up to 163 zettabytes by 2025 (Reinsel et al., 2017).

Dealing with this sheer amount of data introduces additional problems regarding
storing,providingaccessin@nd processing this datédhe difficulty ofthese

challenges also depends on the datagyiperily if the data is structured or
unstructured, and whether access is restricteddorthetmore, the raw data

itself is not useful unless it is processed and the encoded information is extracted.
Consequentlputomated processes have to be developed in order to make the
value of the underlying data accessible.

As a developer whdpr examplewants to build a new weather application,

the process ofetrieving the required data can be a tedious tdskst, the

required data might not be completely available at a single source but could be
split between different serv@esondthe data might be available in different

formats and could be incomplete somdtiraddition, it might be required to
periodically retrieve the data, e.g., each hour and persist it in a separate database.
Consequentlymuch effort is spent on retrieving the underlying data instead of
working on the actual application itself.

Facing these challengd® JValue ODS is developed by the Professorship for

Open Source Software at the Friedrich-Alexander University Erlangen-Nurnberg.
The ODS aims to simplify consuming data sources and thereby focuses on Open
Data, which is data that “€an] be freely used, modified, and shared by anyone

for any purpos€Open Knowledge Foundatiorg.). In more detaithe ODS

periodically retrieves, processes, and persists this data from various data sources
and provides this data to third-party applicAE@sesult, the time and effort

spent on the overgltocess omaking the desired data available are reduced.
Developers then can focus on extracting information from the data by creating

1. Introduction

new applications or improving already existing software.

This thesis aims to extend the existing functionality of the ODS by hierarchically
structured data sources, in particular FTP data sdignee, a new variety of

data sources witle supported by the OD&nd developers could benefit from

the advantages tfe ODS when working with data that is available via FTP
servers.

In the next chaptett, is outlined which specific problems have to be solved in
order to support FTP data sources for the Gblfowed by a summary of the
essentidlechnicafundamentals for the contextho$ thesis.Chapter 4 lists

the single objectives that were derived from the previous problem specification.
Afterwardsthe conceptualolution design is described and potestialtion
approaches are explainadthapter 6, the concrete implementation of the new
functionality is discussed in dedtad demonstrated in chaptefFihally,the
implementation is evaluated concerning the objemmid@sshort outlook is

given.

2 Problem Identification

This chapter wilexplain what specific problems arise when trying to support

FTP data sources for the ODS.The underlying goaif this approach is to

extend the accessibilityQgen Data sources by the ODS due to the positive
influence o®pen Data. Thereforeit is important to understand the specific
characteristics of Open Da&milar to the Open Knowledge Foundatiom,

European Commission also emphasizes the value of Open Data in their definition:

“Open data is data that anyone can aaressnd sharesovern-
mentspusinesses and individuals can use open data to bring about
social,economic and environmemefits.”(European Commis-

sion, n.d.)

This definition already shows the possible gains which Open Data can provide.
Due to that,many Open Data initiatives have been created in order to meet

this goalFor example, the number of datasets published by the European Data
Portal has more than doubled from May 2016 to August 2019 (Publications Office
of the European Union, 202fortunately, this published data is often barely
documented, lacks machine readability, or uses data formats that require propri-
etary software for further processing (Braunschweig et Ak,a22032i)t, the

data is often hard to use and thus, can not unfold its true value.

Improving this situatiom particular providing more effortless ways to access
and work with Open Dat, a cruciabspect the ODS focuses dm.order to

reliably consume a new data source via the ODS, a pipeline for this data source
has to be configuredhis pipeline specifies the data source configuritdion,
content typeadditionametadataand a (periodic) trigger that defines when

the data should be retrievéd.cording to such a configuratibwe, ODS will
(periodically) fetch the data from the data source and piessidesigned as

a monoliththe ODS and its components were transformed into a microservice-
based software architecture (Schwarz,@Q@d9jime, the ODS was subject to

many engineering theses that focused on improving the software’s functionality.
However, at the time of writing this thesis, the ODS only supports data sources
that are accessible via single Hypertext Transfer Prgtbick?) endpoints,

2. Problem Identification

leaving many data sources using other protocols like the FTP uncovered.

Contrary to the generanceptiorthe FTP is still widely usedgspecially for
openly accessible dataue to its simplicity and usage over dectdue§TP

poses a reliable and viable solution to provide Open Dafartunatelygc-

cessing FTP data sources is fundamentally different from retrieving data from
a single HTTP endpointThus,a new microservice shalimplemented that

fits into the existing ODS infrastructiarthis context, the following problems
arise, which have to be solved in the scope of this thesis:

* How to model hierarchical data sources and FTP data sources in particular?

How to handle (parallel) FTP connections efficiently?

How to enable accessing archived files without major effort for the user?

How to explore data sources manually/automatically?

How to generate powerful data source configurations for all major use cases?

How to integrate these configurations into the ODS pipeline mechanism?

How to achieve scalability of this microservice?

As a result, the user should be able to explore and configure a FTP data source
using this microservic@nce the user has defined a listfidés that contain

the desired datahese files should be downloadable by the Oddx®ijlar to

the already existing mechanism for HTTP endpoints, making FTP data sources
consumable by the ODS.

3 Fundamentals

This chapter will provide the background knowledge which is mandatory to un-
derstand the proposed solution design and its concrete implentargdtion.
the engineering focus of this thesis, this chapter is kept as concise as possible.

3.1 File Transfer Protocol (FTP)

The specification ahe FTP was released as an RFC standard in 198he
following excerpt is the first paragraph of its introduction.

“The objectives of FTP are 1) to promote sharing of files (computer
programs and/or data), 2) to encourage indirect or implicit (via pro-
grams) use of remote compuBar shield a user from variations

in file storage systems among hasts4) to transfer data reliably

and efficientlf¢.TP, though usable directly by a user at a terminal,

is desighed mainly for use by progréPostel & Reynolds, 1985)

This is an accurate summary of the purpose of the standardization of this protocol
in 1985Since then, various extensions have been published, such as introducing
new optionatommands for authentication (LUr®97) or adding support of

encrypted file transfer (Housley & Yee, #6@&ntheless, the basic functioning

of the protocol is unchanged since its first puldlf@tpaoming two sections

will provide a short overview of how the protocol in general works and its technical
limitations.

3.1.1 Communication between the Client and the Server

The FTP defines a standardized communication between amtienserver

for file sharing purposBlse communication is implemented using two separate
connections, a contamfl a data connectidhe control connection is for send-
ing/receiving FTP commandghereas the data connection is used to transfer
the actuatata,like the content of a file or a directory lisfihg.conceptual
design of the FTP is shown in figure 3.1.

3. Fundamentals

Control Connection

Port A€ » Port X
FTP Server FTP Client
\Port Ble >Port Y'

Data Connection

Figure 3.10verview about the FTP

At first, the client initiates a contcohnection from its port X to port A (21

by default) of the server, which is maintained during the commuh&mtion.

the data connection is usually initiated by the server from port B (20 by default)
to port Y of the client which was signaled by the client upon establishing the
control connectiomfhis mode is also commonly referred to as the active mode,
whereas the standardization describes this as the active state of the data transfer
process(Postel & Reynolds, 1985)

In contrast, the client can also signal to the server by the PASV command that the
client should initiate the data connection instead of tiAs seregponse, the

server sends its Internet Protocol (IP) address and port number B to which the
client can connect to establish the data conAddsionode is also commonly

referred to as the passive m@dstel & Reynolds, 1985)

For each data transfee.qg.,listing a directory or downloading a fieenew

data connection is establisfAduls introduces additional overhead, because an
additionalfransmission ContrBrotocol(TCP) connection must be initiated.

After the data was transferred or the transfer was aborted, the data connection
is closed again, usually by the seRastel & Reynolds, 1985)

3.1.2 Technical Limitations

When the FTP was standardized in 1985 provided a new way ofharing

files between multiple host systdtosveverdue to the consistent change in
technologyhe FTP now contains some drawbacks that might disqualify it for
modern applicatiorme of these issues were addressed by making use of other
protocols like Secure Shell (SSH) or Secure Sockets Layer (SSL) and thus do not
provide a flexible solution (Xia et al., 2010).

The usage of two separate connections is not only problematic regarding a secure
communication channel, but also with respect to network or rodétingassues.

time when the FTP was standardizadre complex network setupsuding

(reverse) proxidwmewallspr Network Address Translation (NA¥¢re not as

frequently used as nowaddysse setups complicate establishing connections
between the client and the server, especially in the active mode when the server
initiates the data connectidrhis connection attempt might be blocked by a

6

3. Fundamentals

firewallthat is protecting the clientn addition,the IP address sent by the
server might be its intermRlin a private networkyhich is hidden behind a

NAT. When the client tries to connect to this IP address with the given port, a
connection can not be established (Gleason, 2005).

Furthermore, the number of active connections to the FTP server is often limited
by the FTP server itselfhis limit of concurrent connections might depend on

the specific FTP server and its configurBfiBrservers often restrict access to

a certain number of connections per IP address (or range) and a total maximum
number of connectiolfsr example, the popular puré-FifRiserver restricts

the maximum number of users to 50 and the maximum number of clients with the
same IP address to 8 by defadttis is especially problematic when multiple
connections should be used, for example, for parallel file downloads.

3.1.3 Advantages for Open Data

Although the FTP has some technical drawbacks, it is still widely used nowadays.
For certain casethe FTP still provides a suitable solution due to its stability

and simplicityEspecially Open Data sources can profit from its advantages and
therefore often use it to provide theldbta.1 contains some exemplary Open

Data sources which make use of the FTP.

Most importantlyQpen Data sources do not require encrypted communication
between the client and the server or any secure authentication mechanism due
to the nature of the dat@his data is supposed to be publicly availabli,

should neither be restricted in access nor contain confidé¢atibat has to

be protectedturthermorghe FTP is a straightforward solution for providing
file-based data via a FTP servEhnis is even more relevant when the provided

data is already contained in filesontrast to other APIs that might be based

on a whole technology stack (database, middleware, etc.), FTP based Open Data
sources only require a comparatively simple to setup and maintain FTP server,
making a dedicated directory tree accessible for clidrisscan reduce the

overhead of developing and maintaining an Open Data source tremendously, es-
pecially when the provider’s resources are lfadaase of that, many public
institutions, authorities, or software publishers still use the FTP.

Ihttps://github.com/jedisct1/pure-ftpd/
2https://raw.githubusercontent.com/jedisctl/pure-ftpd/master/pure-ftpd.conf.in

7

3. Fundamentals

3.2 Microservices

Over the last years, software development has become more complex due to the
rapidly growing technology change, and the way software idldepldyes).

cloud computing services like Amazon Web Services or Microsoft Azure provide
an easy to usdlexibleand often cheap way to deploy softwawe.to that,

the way software is designed and developed has changeN&iNvelhc.,

2016)

Coming from a monolithic architectural style where all logic is bundled in a single
software artifact that usually runs as a single process, the trend has changed to
a finer granulaso-called microservice architectaetin Fowler and James

Lewis describe microservices in the following way:

“In short, the microservice architectural style is an approach to devel-
oping a single application as a suitenodliservicessach running

in its own process and communicating with lightweight mechanisms,
often an HTTP resource APL.” (Lewis & Fowler, 2014)

Similar to this, Newman defines microservicesmrmali[.altonomous services

that work togethetRewman2015p. 2). He further describes loose coupling

and high cohesion as a key concept of the microservice architectural style, which
states that similar functionality should be bundled into the same service, whereas
communication (coupling) between services should be reduced to a minimum
(Newman2015p. 30). This way,various benefits like resilierteehnology
heterogeneity; ease of deployment can be achieved by this archiigdeural
(Newman, 2015, chap. 1).

Figure 3.2 shows the conceptiiffierence between a monolith and its corres-
ponding architecture as microservices and was derived from figure 4 (Lewis &
Fowler,2014).As a result,communication between the single services is only
possible over the networkhus, the importance ofell-designed and concise

APIs is increasinggummarized by Lewis et ak “smart endpoints and dumb
pipes” (Lewis & Fowler, 2014).

3.2.1 Scaling

A fundamentadifference between the monolithic and microservice-based ap-
proach is the ability to scale and how data i8véteress both approaches can
benefit from vertical scaling, horizontal scaling is realized diffecemtiyh

can only be duplicated as a whelen though only a particular component of

it would require increased system resdinisescaling can be performed more
precisely with microservices, leading to more efficient utilization of the available
resourcesjnce only the service which requires addaysbamn resources can

3. Fundamentals

Monolith Architecture Microservice Architecture

Monolith R g

A
>
Network

=
o
=
o
(2]
@D
=
<.
o
(0]
w

o

=)

QD

o

QD

(7]

D

oy)

\ 4

Database Ly i i
/ ; Microservice C Database C | !

Figure 3.2Monolith and Microservice architecture

be replicatedLewis & Fowler, 2014)

Furthermoramicroservices are different regarding persistingMatacas a
monolith often uses a single databaseh microservice is supposed to store

its own dataAs Newman describébjs helps to hide specific implementation
details from the stable public interface and reduces coupling between the ser-
vices.Ultimatelysharing databases violates the concéphss coupling and

high cohesion and complicates changing implementatiensosfesponding
microservicelNewman, 2015, pp. 41-42)

3.3 Architectural Styles of Application Program-
ming Interfaces (API)

As described in the previous sectigplitting monolithic architectures into a

set ofindependent microservices shifts the communication from Inter-process
communication (IPC) to the networlAs a consequencéhe importance of
well-designed and concise AR$sincreasing.When describing APIsterms

like Simple Objects Access Proto(®DAP), Representationgtate Transfer
(REST), Remote Procedure C&RPC), or GraphQL are often used to specify

the architecturatyle of the corresponding AFhis section wildive a short
overview of the REST architectural style by comparing it to the SOAP approach,
which was mainly used before the introductiRBS3f. Finally,the advant-

ages of REST compared to SOAP regarding microservices are hi@hthghted.
architectural styles like RPC and GraphQL are omitted in this comparison.

9

3. Fundamentals

3.3.1 Simple Object Access Protocol (SOAP)

The SOAP specification first became a World Wide Web Consortium recom-
mendation in the year 2003 with versidn klatest specification, SOAP is
described in the following way:

“SOAP is a lightweight protoaotended for exchanging structured
information in a decentralized, distributed envirdnusestxML
technologies to define an extensible messaging framework providing a
message construct that can be exchanged over a variety of underlying
protocols.{Lafon et al., 2007)

The description already emphasizes two esaepéicis of SOAMamely the

tight coupling to XML technologies and the independence of the underlying pro-
tocol.Furthermore, the SOAP itself is designed to be independent of the under-
lying platform or operating systemmgce it only relies on XMIThe messages

sent using a SOAP API consist of the overall envelope, a header, dhe@ a body.
body can contain an optioriallt that provides additiomaformation about

errors and error handlingML technologies are then used to reliably validate,
parse and process the messlgden et al., 2007)

Messages are sent from the SOAP sender to the ultimate SOAP receiver via
optionalSOAP intermediariesThose intermediaries can process the message
(headers) and forward the message to the ultimate SOAP receiver, extending the
original communication between a single client anHiserhiert aldescribe

a practical use case for these intermediary nodes as corporate security gateways
used for encryption/authentication across corporate boundaries, which eventually
increases the security of the communication between those parties (Hirsch et al.,
2007, chap. 3.2.1.3).

In summarythe advantages tiie SOAP are its platform and protodonte-
pendence and its standardized way of communication using XMLTimaessages.
makes the SOAP stid reliable solution for many enterprise or corporate solu-
tions,e.q.,financiakerviceslts major disadvantages are the tight coupling to
XML and the large message size due to the XML strucEuréhermorehe

strict XML schema definitiontbfe message decreases flexibility and adaption
when developing SOAP based APIs (Mumbaikar, Padiya et al., 2013).

Both the lack of flexibility and the significant overhead when transferring data
make SOAP an unfavorable solution for the communication between microservices
which heavily depend on these characteristics.

3.3.2 Representational State Transfer (REST)

Contrary to the SOAP architectural style, REST is a more flexible architectural
style that is based on the REST principleshis dissertation from 2080y

10

3. Fundamentals

T. Fielding introduced the REST architectstgle and defined the six REST
principlesThe following list is a short summary of the principles stated in section
5.1 of the dissertation (Fielding, 2000):

1. Client-Server
The communication takes place between a client and aepavating
the user interface from the backend.

2. Stateless
The communication between the client and the server must be stateless.
The client is responsible for storing the session state.

3. Caching
Responses from the server must be implicitly/explicitly labeled as cacheable
or non-cacheable.

4. Uniform interface
Implementations are decoupled from services they Padaidetrans-
ferred in a standardized form and is not adjusted to the specific needs of
an application.

5. Layered system
Enabling hierarchical layers and restricting knowledge only to a single layer.

6. Code on Demand (optional)
Extend the client functionality by downloading and executing code on de-
mand.

In contrast to SOAP these principles define constraints an API should apply

to instead of a standardized protdxote an API applies to these constraints

(to a certain degred),s referred to as a REST or RESTf&lPl. The REST
architecturadtyle does not require using the HTTP as the application layer
protocol, but since it was designed concerning it, many RESTful APls make use
of it. Furthermore, REST does not restrict the media type of the content (JSON,
XML, etc.). A fundamentatoncept othe REST architecturastyle is that
endpoints provide access to resources instead of specific methods or procedures
which is encapsulated in the fourth REST principle (Fieldf§0).Due to

this, REST is often described as noun-centwibgereas RPC/SOAP is mostly
verb-centric.

For examplea RESTful APl might provide an endpoint /users for modeling

the resource usefBhis resource can be accessed or modified via the standard
HTTP verbs, e.q., via GET /users for listing all users (or GET /users/{userld}

for a single user) or POST /users for adding a newlodde latter caséhe
actualuser data would be contained in the request boayntrasta RPC

APl would instead provide multiple endpoints such as getUsers and addUser to
provide this functionality.

11

3. Fundamentals

Fielding furthermore specifies the fourth REST principle by four additional con-
straints that are substantial for a uniform interface (Fielding, 2000, p. 82):

* |dentification of resources

* Manipulation of resources through representations

» Self-descriptive messages

* Hypermedia As The Engine Of Application State (HATEOAS)

The last oneHATEOAS, states that a client using a RESTARI should not

need any addition&ghowledge about the API itsddfit should be driven via
hypermedia (e.g., linkEhis enables the client to dynamically interact with the
API and rely on the relations provided by the setaar.blog postFielding
mentioned that this constraint is often misunderstood or ignored by developers
when labeling an APl as RESTful (Fielding, 2008).

Howeverthe REST architecturatyle provides a convenient framework when
developing APIs for a microservice architecture due to the aspects mentioned
aboveEspecially the provided flexibility, support of scaling through the layered
system and statelessness make REAFFIk suitable choice for since this
matches the requirements that a microservice architecture should fulfill.

12

4 Objectives

This chapter lists the objectives that were established for thietblegst-
ives are referenced using the combined section and listing ndnib&rfoe.g.
the first objective of section 4.1.

4.1 Exploration of FTP Data Sources

1. The modelling of data sources shall generalize the structure of hierarchical
Open Data sources while providing a mechanism to annotate data source
nodes with specific properties without loss of generality in order to create a
universal abstraction that can easily be extended for specific types of data
sources.

2. The software shall include a mechanism to create an intuitive configuration
that stores information about relevant data source nodes and their specific-
ation (update intervals, request parameters, etc.) in order to use the results
from the exploration process for the existing ODS pipeline infrastructure.

3. The software shafrovide a RESTfulAPI that enables third-party ap-

plications to use the functionality provided by the Hierarchical Datasource
Service (HDS).

4. The software shalfulfill the above-mentioned objectifioesF TP data
sourcedit into the existing microservice environamehapply to com-
mon programming and documentation guidelines in order to simplify ex-
panding and collaborative work.

4.2 Support of Archive Inspection

1. The software shaupport the extraction of .zip archives on the server-
side.The archives shdlke extracted on the sergerthe client does not
have to install additional software or download the archives.

13

4. Objectives

2.

The content of the extracted directory bhdlandled as the content of

a regular directory that is directly accessible via the FTP data Hource.

shall be possible to download files that are located in an archive and export
them periodically later on via the ODS pipeline.

4.3 Intuitive User Interface

14

1.

The user interface shall be web-based, responsive, and focus on the design o
desktop devices in order to provide the best user experience for the common
use cases.

. The user interface shall use VueJS as the JavaScript framework and Boot-

strap as a styling framework and apply to common programming and doc-
umentation guidelines in order to achieve code maintainability and expand-
ability.

. The user interface shalflirror the sequentiabrkflow oédding a data

sourcegexploring itand selecting relevant nodes for the export to cor-
responding pages/screens with back and forth navigation in order to be
self-explanatory and intuitive to use.

. The user interface shalllow the user to explore the data source in a file

browser-like manner with the opportunity to show additfiormabtion
and view the content of a data source node on demand in order to provide
an easy and revealing exploration of the data source.

. The user interface shall support the selection of multiple files and directories

(recursively) for the export into the ODS pipeline in order to be practicable
for applications that require the data provided by multiple data source
nodes.

5 Solution Design

5.1 Model of Hierarchical Data Sources

The fundamental concept of hierarchical data sources is their inherent hierarchy.
This hierarchy can be interpreted as an arbitrary tree strwttiahegnables
structured traversahd exploration of the data sourfdeus, the data source

can be abstracted using basic graph theory in which a graph G = (V, E) is defined
as a tuple of nodes and eddesqg this abstraction, FTP data sources publish

a file system in which the files and directories are nodes of the graph and edges
between nodes define the hierarchical stFuctheemore, files are always leaf
nodeswhereas directories alwayshawke children nodes and thus are further
traversable unless they are elnistymportant to note that this approach is not
restricted to FTP data sources or file systems in gexelalP data source

which follows the RESTfuesign approach models the hierarchgsiribed

entities by their Uniform Resource Locator (UREpr examplea RESTful

data source provides the list of users at /users and information about a specific
user John at /users/john.Similar to FTP data source)is hierarchy can be
abstracted using an arbitrary tree structure.

In contrast to the raw graph theory in which the nodes are often unique identifiers
such as ¥ the nodes ofierarchicalata sources have additiodata tied to

them. This data depends on the actipgpe ofthe data source and the node

itself. An endpoint ofa RESTful API, for examplehas a dedicated HTTP

method tied to it (GETROST, etc.),whereas a file has a certain dbrethe

other hand, both nodes are identified within the data source by their URL/path
and are also leaf or no leaf nodes within the data source.

5.1.1 Definition of a Data Source Node

As described abovéhe fundamentalonceptof modelling hierarchicdata

sources is the definition of their components (nodes) and the inherent hierarchy,
which is introduced by their relation to each other (edBe®) to the hier-
archicaktructure of the data soureach node has a parent node and a set of

15

5. Solution Design

children nodeg£xceptions are the root node for which the parent is undefined
and leaf nodes with an empty set of childrenfuosttesrmore, each node has
a name and is uniquely identifiable by a URL.

At this point, these properties would allow modelling the hierarchical data source
sufficiently for traversal, but without any additional functionality such as display-
ing specific properties or downloading a file from a FTP daténsordeeto

achieve this, each node also has a pebpdrties and a set oéctions that

can be performed on it as shown in figure 5.1.

Node
url: String
name: String Action
isLeaf: boolean = fp--------------d > identifier: String
properties: Properties description: String
actions: Action[]
children: Node(]

Figure 5.1Definition of a data source node

The isLeaf attribute indicates if the node is a leaf node and was added for simpli-
city.It is important to note that no dedicated parent attribute for bidirectional
tree traversal existhis is due to the fact that traversals start at the root node
and thusthe parent node was already known before accessing the node itself.

In additionthe URL of the parent node can be retrieved from the URL of the
node.

The properties store additional information about the node itself, whereas actions
are basically plain objects that define an action for a Mbdee actions are
implemented separatehd each node stores the identifiers of the actions that

are applicable for his design decision is explained in the upcoming section.

5.1.2 Extendability for Other Types of Data Sources

A significant issue of this conceptu@dielling is that it should cover as many

use cases as possiblaus, it must be general enough not to restrict specific use
cases and adaptable enough to fit as many different situations adlpessible.
previous section described the gem#rddutes of every hierarchitalcture

and its specific properties and actions. Both of these attributes are used

to store additionahformation dependent on the typehefdata sourcetor

example, a file of a FTP data source can have a download action that downloads

16

5. Solution Design

this specific file from the data sowbereas a HTTP endpoint of a RESTful

API can have a request action which sends a request to the specificeendpoint.
same applies to the properties attribukich can store the file size of a file

or the HTTP request method for an RESTful endpW@lith this concept, new

types of data sources can be supported by adding the properties and implementing
the applicable actions for this type of data sdlircenceptual functionality,

such as data source exploration and accessing indivitksis independent

of this and is not required to be modified.

5.1.3 FTP Specific Properties

This section wiltlescribe the FTP-specific properties due to the FTP-focused

scope ofhis thesis (see objective 4.1T4)e nodes o& FTP data source are

similar to those oé hierarchicdfile systemnpamely files and directorids.

addition, there are also symbolic links that can reference other files or directories.
A special case of a regular file within this thesis is an archive that must be handled
separatelyCompressed files, such as .gz files that are compressed using gzip, are
also viewed as an archive since the ddtuabntent is not directly accessible.

These different kindsrddes also have different properties as shown in figure
5.2.Regqular files (including archives) have a fila sresjification timend

an extension, whereas symbolic links have a destination thB&yréototes

do not have additional properties.

FTPProperties

type: FTPType

path: PathComponent][]
A

FTPPropertiesFile FTPPropertiesSymbolicLink FTPPropertiesDirectory

size: int link: string

extension: String

modification: Date

Figure 5.2Definition of the FTP specific properties (1)

Additionalto the url attribute of the node itselig FTP properties store an

extra path attribute that is a list of path components of the URL (figure 5.3).

For regular files and directories, this path consists of simply one entry for which
the path is equal to the URL and the type to the nodéotyeeer, a problem

arises when a file is hidden inside of an althihie.case, a single URL is not
sufficient to encode that this file is not directly accessible at the data source, and
further steps must be taken in order to access this file (see section 6.1.5).

17

5. Solution Design

<<enumeration>>
FTPType
PathComponent file
path: String ~ feoemmeomooooooe > directory
type: FTPType archive
symlink

Figure 5.3Definition of the FTP specific properties (2)

An example of a file in an archive is given in figure 5.4 below.

ExampleCSV: Node

Actions: Actions

isLeaf = true actions[0]

identifier = "download"

name = "example.csv" - X
description = "Download the file"

url = "/root/directory/archive.zip/measurements/example.csv”

properties

path[0] PathA: FTPPropertiesFile

type = "archive"
Properties: FTPPropertiesFile

type = ‘file'
size = 4711

path = "/root/directory/archive.zip"

extension = ".csv"
PathB: FTPPropertiesFile

type = "file"

path = "/measurements/example.csv"

modification = "Tue, 15 Jul 2021 10:15:10 GMT"

path[1]

Figure 5.4Example of a file inside an archive

5.2 Inspection of Archives

A major problem this thesis deals with is simplifying the process to retrieve

data from (compressed) archiv&schives are a practicalay to group files

and provide althe contained files in a single download compared to regular
directories, where each file has to be downloaded indfiféibduadhppression,

the actual size of the archive can be crucially reduced compared to providing the
raw files.Compression algorithms primarily performfavaedimilar data like
measurement datahich is especially usefor many Open Data when this

kind of data is providé&dus, the usage of archives reduces network traffic and
the required disk space.

Unfortunately, these advantages come with additional dfaatbaickH, the
structure of the archive is not remotely viewable ang§muila: to common
file browsers, the FTP does not provide the functionality to inspect (compressed)
archives remotelWhile decompressing an archive on the fdeaystem is

18

5. Solution Design

relatively fasta remote archive first has to be downloadkith might take

some time depending on the size of its content and the network Thisnection.

is especially laborious when the user wants to browse through the content of

the archive quickly and is only interested in specific files based on their name.
Furthermore, it is an additional overhead for the user to download and extract the
archive, in particular when extra software is required to extract tbarchive.

user might also use a mobile device, which does not necessarily provide software
to, for example, extract a gzipped .tar archive.

In most casegn archive stores a set of files or a directory tree with a recurs-

ive directory structurdnfortunatelyjata sources like opendata.dwd.de also

expose archives that contain archives themselves or store comgi@assed files.
pared to the example in figure thé,path attribute of file in a recursively
structured archive would consist of multiple path components of the type archive
instead of single oneln this casegextracting the root archive does not en-

able the user to inspect the files of inténsstéadall other archives must be
extracted recursively in order to gain access to the contained files.

5.3 Caching and Scalability

Section 3.2 gave a short overvietvoef the microservice architecture can be
beneficiafor tailored horizontataling ofervicesWhereas different services

should be decoupled from each other and should not use the same data, instances
of the same service might benefit from shared access or caching of the data for
increased performance.

In the context of the HDS, the term cached data is interchangeably used with ex-
tracted archiveSince archives can not be inspected on the remote data sources,
they have to be downloaded, extracted (locally), andseoeatracted data

is not required to be persisted permanently (unlike user credentials, for example)
since it is only used for performance improvdnstaésl of downloading and
extracting the same archive each time it is requested to be inspected, performance
can be increased by only doing this once and storing the extracted archive for
further request®nce it changes, the cached entry can be replaced (see section
6.3.3).Sharing this extracted archive between multiple HDS instances can lead

to further performance improvements since adddoamaloading/extracting

overhead is skipped.

There are various solutions for sharing the content of extracted archives between
multiple HDS instancégst of all, it would be imaginable that - after an archive

was extracted - its content is inserted into a database which is shared across HDS
instances, as shown in figureTh&dotted lines indicate the boundaries of the

host a HDS instance is running on.

19

5. Solution Design

Figure 5.5Database as the shared cache

This way,a HDS instance would query the database before downloading and
extracting the archive agpimtentially profiting from the cached enties.

major downside of this approach is the increased network traffic, which is intro-
duced by transferring large amounts of data between the database and the HDS
instancedOn the other hand, HDS instances could share this data between host
boundaries.

Instead of using an exterdatabaseanother approach would be to make use
of the local file system as the shared cache as shown in figure 5.6.

Filesystem

Figure 5.6File system as the shared cache

First of all, this is a solution that removes the complexity of an additional data-
base. Secondlythere is no additionaletwork traffic introduced in order to
persist the data after extractidime disadvantage is that HDS instances can

only share cached data when they have access to the same localliide system.
oreticallythis can be bypassed by using a network file sy=stebhjs would

again introduce high network traffic when persisting the data.

20

5. Solution Design

For both solutions, two problems still exist:

* even though cached data can be adderk is no mechanism to remove
already cached data in order to free space

* cached data can be modified concurrently, leading to unspecified results

The mechanism to remove already cached data could be either integrated to the
HDS itself or to another service that solely keeps track of the cache and removes
unused entries by a predefined cache policy (e.q., last-frequently-used, last-recently
used, etc.Restricting the concurrent access can be implemented by either using
already existing locking mechanisms like table/row locks (database) or lockfiles

(file system).

While both approaches come with their advantages and disadvantages, both can
be used to allow multiple instances to use the same cache leading to reduced
network traffic and increased perforrnmatiee scope of this thesis, the caching

was realized using a shared file syst&rhereas the mechanismrefnoving

cached entries was ignored due to its low gheritpplementation of the file

system as the shared cache is described in detail in section 6.3.

5.4 Compatibility with the Open Data Service (ODS)

The HDS aims to add support of FTP data Sources to thdrOth®. scope of

this thesis, the HDS is implemented as a standalone microservice that is entirely
independent of the OD&e same applies to the proof-of-concept user interface,
which was implemented to demonstrate the functionality of the HDS for the user.

The ODS currently consists of several microservices as shown inHignee 5.7.
is a short overview about the purpose of each component:

» Datasource - Fetch the data from the data sources

* Pipeline - Transform the fetched data according to ETL

* Query - Persist the data and make it accessible

* Notification - Send notifications on events

* Scheduler - Orchestrate tasks and schedule pipeline executions

* Web-Client - User interface for creating pipelines and data sources

Regarding the HDShe Datasource service ispéciainterest since it is re-

sponsible for (periodically) fetching the data from the external Open Data source.
Contrary to the HDS, the Datasource service does not provide any functionality
to explore the data source itself and create a configuration based on this explor-
ation but simply expects a single URhich must be given by the uSerch

21

5. Solution Design

AMQP Message Broker

Matasources | <

,,,,,,,,,,,,,

Datasource-Service!

pipeline.config.*
topic
'v RS = U | pipeline. execution.
v/ (a5) postaresaL
N fapi v 1 : ReverseProxy/ e
| — .. APIGatewa y
tre=fik (

Web-Client / Ul
° FPosigREST

5 Query-Service?
&

mmmmmmmmmmmmmm

Figure 5.7Architecture of the ODS.
Reference:
https://github.com/jvalue/open-data-service/blob/main/doc/service_arch.png

a configuration contains buired information about the data source and is
essentiaflor both servicesThe HDS defines such a configuration with some
modifications compared to the Datasource service, as shown in figure 5.8.

First of all, the metadata and id properties are omitted due to simplicity, whereas
the trigger property is the same for both configufétomsmary differences

are the protocol/format and connection/entries propertiesshich specify

how to connect to the data source and which data should bie fedobedt

to the protocol property, the connection property stores the URL of the FTP
server, its port and the user/passiarentries property extends the format
property by the support of configuring multiple file paths via regular expressions
instead of just a single URhis is due to the fact that the path of files is often

not known beforehand due to components in the filename or directory structure
that are due to change over timg,.,dates,indicesand so on.As a result,

a single item of the entries list can match an arbitrary number of files which
ideally should apply to the same schdimsa further described in section 6.2

how these regular expressions are generated and resolved.

Another difference is that the HDS itself does not store any data source config-
urations or triggers the execution to fetch new data, since the focus of this thesis

22

5. Solution Design

Datasource Service HDS
Datasource Config Datasource Config
id: number connection: Connectioninfo
protocol: ProtocolConfig entries: ExportRegex[][]
format: FormatConfig trigger: TriggerConfig
trigger: TriggerConfig
metadata: Metadata

Figure 5.8Data source configuration of the Datasource service and the HDS

is the accessibility BTP data sources.Besides thatthe HDS would mostly
fit into the ODS ecosystentChapter 9 gives a short outlook about how this
integration can be accomplished.

5.4.1 Adaption to the Pipeline Mechanism

Once a data source configuration is created, it can be used to configure a pipeline.
A pipeline represents the process of fetching the data that is specified by a par-
ticular data source configuration, applying an optional data transformation, and
persisting the result through the Query sd@hecearious services are notified

via the Message Broker once new data is available.

The core concept tiie HDS works in a similar mannleut it provides some
additionakhallengesAs mentioned in the previous chaptke data source
configuration of the HDS can contain multiple files which should be fetched upon
its execution due to its configuration via regular expregsiansesult,the
content processed in a pipeline is no longer a single JSON/CSV/XML resource.
This introduces a problem when the retrieved data should be queried via the
Query servicén the example of the repository, the latest entry of such a pipeline
is retrievable via the link

http:// localhost-gOOO/stO{age |{%} ? Prder=id.gesc&limi§=1

{ AT
URL of Query service Pipeline ID Query parameter

which willreturn the JSON/CSV/XML contentln order to illustrate the new
challenges short example is introduce@ihe assumption is a configuration

with three ExportRegex entrigbjch resolve to nine files that the HDS/ODS
should exportWhen retrieving the data via the Query service, the user should
be able to distinguish between the singlEhilesore, it is required to specify

23

5. Solution Design

the corresponding ExportRegex entry and the index of the file of interest within
this entryA possible solution could extend the existing link structure with two
additional query parameters, e.q.:

P2 > ndexsl
Index of the ExportRegex entrindex of the file within this entry

Accessing a file that does not exist via invalid entry and index values could
simply result in an error response by the Query servtherwisethe file
content of the corresponding file will be returned.

24

6 Implementation

6.1 The Hierarchical Open Data Service (HDS)

The HDS is implemented as a microservice in Typesudipivailable on Git-
Hul?. Its coarse structure is shown in figure 6.1.

|

Data Source HDS Cache
API

h B
. -

Cache
A
\ 4

A
\ 4
10j08uUu0)
Jadepy

Figure 6.1Architecture of the HDS

The HDS is accessible via its RESTfPI that exposes the functionality of

the HDS and forwards incoming requests to the corresponding functions of the
Manager module, which is the central component of thiermid&ments the

business logic and uses the Cache and Adapter in order to access the remote data
source or locally stored data respectiVee/Adapter abstracts the access to

remote data sources and relies on a corresponding Connector which establishes
the actual connections.

In the following sectiorike word node witle used as a placeholder for FTP
specific nodes such as files, directories, archives and symbiwlallinkere

is a short overview about the most important software packages being used by
the HDS:

Ihttps://www.typescriptlang.org/
https://github.com/jvalue/hierarchical-datasources

25

6. Implementation

* basic-ftp (MIT) - FTP client
» decompress (MIT) - Extracting (compressed) archives

* proper-lockfile (MIT) - File locking utility

6.1.1 Application Programming Interface

The HDS provides a RESTful API for stateless communication between the client
and the HDS servicelhe API neither provides an authentication mechanism

for restricted access nor encryption for secure communieatarent type

for all APl endpoints is JSON. According to the REST principles, the APl aims

to model data sources and their content as efthigi€stHub repository also
contains an OpenAPI v3 specificdtodrthe API.

The data source entity provides two endpoints for listing and adding FTP data
sources.

* GET /datasources
Get allimported data sources
The response body contains a list of Connectioninfo items (see figure 6.2).

* POST /datasources
Add a new data source
The request body contains the connection information (see figure 6.2).

ConnectionInfo

url: string

<<enumeration>>

type: ConnectionType .
ConnectionType

port: number f-emeemmmmeemeeee- >
fip

user: string

password: string

Figure 6.2Definition of a data source connection

The node entity provides a single GET endpoint to retrieve the cothent of
node and a single POST endpoint to perform actions on this imogertant

to note that the node URL is sufficient for the HDS to reconstruct the path
components of the path attribdteereforethe URL is split upon the known
archive borders (see section 6.1.5).

3https://github.com/jvalue/hierarchical-datasources/blob/main/backend/static/swagger.
yml

26

6. Implementation

* GET /datasources/{dsUrl}/{nodeUrl}
Get the content of the node
The placeholder {dsUrl} and {nodeUrl} contain the URI encoded URL of
the data source/nodéhis endpoint returns the content of the node (see
figure 5.1), independent of the type of the node.

e POST /datasources/{dsUrl}/{nodeUrl}
Perform an action on the node
The placeholder {dsUrl} and {nodeUrl} contain the URI encoded URL
of the data source/nod&he request body contains a JSON object with
an identifier property (string) that specifies the action to peffaem.
response content is dependent on the action.

Supported actions are download and extract to download a single file or extract
an archiveThe former transfers the file content as a blob, the response body of
the latter is emptiyollowing a symbolic link or inspecting an extracted archive
can be reduced to the GET endpoint by requesting it with the link destination
or the URL ofthe archiveThis implementation violates the design principles

of REST since these actions are not modelled with the Create Read Update
Delete (CRUD) operationslnstead,this implementation applies to an RPC

based desiglevertheleskhis approach was chosen due to its simplicity and
extendability.

Section D ofthe appendix shows some exemplary API calls with the content

of the opendata.dwd.de data sourddne usualprocedure is to first add the

data source to explore (example D.1), then request the content of the root node
(example D.3) and navigate through the data source until, for example, a file was
found that should be downloaded (examplBubtAermore, the API provides

a single POST endpoint for exporting a data source configuration (see section 6.2).

* POST /export
Get the matching nodes of an export configuration
The request body contains the export configuration (see figueet.4).
response body contains a list of Node objects (see figure 5.1), which are the
matching nodes of the export configuration (example D.5).

Finally,the API provides another events entity that is mainly used for devel-
opment and testing purposé&bese endpoints are disabled when the HDS is
running in production mode and their usage is further described in section 8.3.

* GET /events
Get the registered events
The response body contains the list of registered events.

* DELETE /events
Delete altegistered events

27

6. Implementation

Deletes all registered events.
The following events are recorded:
» archivelLocklsHeld - The archive is currently locked

* archiveLocked - The archive lock was acquired

archiveReleased - The archive lock was released

archiveUpdated - The cached archive was updated

archiveCached - The archive was cached and is still up to date

archiveExtracted - The archive was extracted

6.1.2 Connection to Data Sources

The first step that has to be taken when exploring a data source is establishing
a connection to the data soufberefore, several parameters must be known:

* the protocol that is used to access the data source
» the URL and port at which the data source is accessible
* the username and password for accessing the data source

The HDS only supports FTP data sources (see figure 6.2) which require a user-
name/password combinatinrgeneral, authentication can also make use of an-
other mechanism like an authentication token, which is often the case for RESTful
APIs. The HDS provides an endpoint POST /datasources (see 6.1.1) that ex-

pects a JSON object containing this information in the request bdalsed

on this connection dataconnection to the data source is establishéle

connection to the data source faity,due to an unreachable URL or invalid

port number, the error is returned to the @hesiiccess, an internal mapping

stores the connection objects for this data sdumeamplary APl request is

shown in example D.1.

By default, up to five connections are established to each data source for parallel
accessThe number of available connections could be even increased by sequen-

tially opening new connections uhélfirst one is rejected by the seri#r.

these connections are established in the passive mode WhidefindtiDS

is running, these connections are kept alive, which means that once the connec-
tion is closed by the servéney are automatically reconnected the next time

this connection object is uskdthe case of the FTRhis might happen after

a certain timeout defined by the FTP server ibs&férent clients of the HDS

share the same connections for the same datdlsisusckecause many FTP

servers restrict the number of connections for specific IFnaogéke data

28

6. Implementation

sources are publihis approach was chosen to prevent constantly establishing
and closing client-specific connections, which would reduce performance.

6.1.3 Exploration of Data Sources

The exploration ahe data source is implemented by the single APl endpoint
GET /datasources/{dsUrl}/{nodeUrl} (see section 6Skidling a request to

this endpoint will return the content of the corresponding node in JSON format.
Once a connection to the data source is estabtisiseshdpoint can be used

to explore the data source in a structured/ mtagut previous knowledge, the

first request starts at the root node "/" (encoded %?2F) of the datdkeurce.
response contains the properties of the root node itself and the list of its children
nodesThe same APl endpoint can then be requested again with one of the now
known child URLswhich has the isLeaf property set to falsRequesting a
leafnode again wiBimply return the already known conté&hts procedure

can be repeated in order to fully explore the whole data source.

In order to navigate back from a child node to its parent node, either the URL of
the parent node must be stored or its URL is retrieved by the dirname of the URL
of the child nod@f course, the application can also maintain a stack of parent
nodes.lIt is important to note that symbolic links can introduce cycles in this
exploration when they are followed (see sectiofitéelddja source can also

be explored fully automatically without any user interaction, for example, when
searching for a specific fillhereforethis search would also start at the root

node - assuming there is no previous knowledge about specific URLs - and use
the API endpoint to explore the data source using a depth-first or breadth-first
search.The search can also follow symbolic links when a set of already visited
nodes is maintained.

6.1.4 Symbolic Links

Symbolic links provide a usefudy to have a static reference to files or dir-
ectories that are due to chander examplethe latest measurement file of

a seriesof .csv files could be referenced by a symbolic link with the name
latest_measurementThis link then can be used to access the latest meas-
urement data without actually knowing the name of the file which contains this
data. In this scenariche symbolic link acts like an intermediate node for ac-
cessing the referenced node.

Since symbolic links are files themsglises, speciahode with an additional
link property which distincts them from regular Emssequentiyhere is a
difference between the contethefink it points to and the node itselh
order to retrieve the content of the linked tloel@eodeUrl parameter of the
API endpoints (see section 6.1.1) must be replaced with the ¥bhligrdf

29

6. Implementation

propertySymbolic links are also restored when an archive is €kedicied.

property is joined with the dirname of the symbolic link when the destination is a
relative path to retrieve the correct destiffatiendestination is an absolute

path, the link property will be simply set to this path.

6.1.5 Archive Extraction

As described in section %Re inspection of archives is a cepoailem this

thesis is trying to solW&hile archives provide advantages, such as reduced file
size for the data source provider, they add additional overhead for the user when
trying to access the contained data.

Archives themselves are regular files and can be downloaded from the data source
using the POST /datasources/{dsUrl}/{nodeUrl} endpoint (see 6.This).

will download the archive as it is from the data spueajing no additional

benefit to the user who still has to store, extract and inspect the archive locally.
Instead, the same endpoint can be requested with the extract action which will
download the archive from the data source to the cache of the HDS and extract

it. The extraction of the archive is performed recursively, because an archive can
contain multiple other archives or compressédifilecedure simplifies the

process when accessing a node from the cache since it can be safely assumed tha
each node is already acces$h®edDS supports the extraction of the following
archive types:

e .ZIp

» .tar.gz/ .tgz
* .tar.bz2

o tar

After extracting the architke modification timestamlog extracted root
directory is updated with the origimabdification timestamp from the data
source.This is because the downloaded archive has its modification timestamp
set to the point dime when the download process stafflee.modification
timestamp is essential to find out if an archive was updated on the data source.
This process is described in detail in section 6.3.3.

Besides archived)ere are also often solely compressed Algery popular
compression toisl gzig which is developed for the GNU projdntcontrast

to archives which can store multiple files and directories, gzip will only compress
single files.In order to treat both archives and solely compressed files simil-

arly, decompressing with gzip compressed files has to be adBpbsédthe
compressed file is downloaded and extracted to a tempohdirgriilerdsa

4https://www.gnu.org/software/gzip/

30

6. Implementation

directory with the name of the compressed file is created and the temporary file
is moved into this directory the last stepthe extracted file is renamed to

the originafilename without the compressed .gz extension and the modifica-
tion timestamp of the directory is updated similar to regular&richivag,

solely compressed files are handled the same way as regularradiidies,
complexity and edge cases in the implementagadiDS only supports this
procedure for with gzip compressed files.

6.2 Export Configuration of the ODS Pipeline

The finalresult ofthe exploration dhe data source is a set @fes selected

by the user that contain the required data for the third-party applibation.
goalis to periodically retrieve those files by the ODS and provide them to the
third-party applicatioithe configuration which specifies this result set should
be only created once and should conta®le@lbnt information for connecting

to the data source and retrieving the desired files.

As described in section 3.Bhe concept omicroservices is based on a clear
separation ofesponsibility and functionalifjhus, the ODS should be fully
independent @iny FTP related functionality tdfe HDS. Since the configur-

ation must be stored by the ODS anywikhis should be althe information

required in order to retrieve the specifiedAdes resultthe ODS can send

this configuration to the HDS and download each file of the returned result set
from the HDS using its RESTf@PI. This waythe HDS acts as a proxy for
retrieving the files from the FTP server such that the ODS can make use of its
existing HTTP functionalitin the upcoming sections, it will be described first

how regular expressions are used to enable dynamically resolving the result set
of the configuration, and afterwards how the configuration is structured and the
final result set is determined.

6.2.1 Support of Regular Expressions

During the exploration procedws user selects the filesinferest which are
statically determined by their URUnfortunatelythese paths often contain
components that are due to chandée opendata.dwd.de data sourder
exampleprovides .zip archives like {...} 20210322 {...}.zip with the cor-
responding date (3rd March 2021) in the filen@Gomsequentlg, dashboard
application that uses the daily measurement data relies on a way to dynamic-
ally determine the location of the latest measurement instead of using statically
specified paths.

A common approach to solve this kind of problem is the usage of regular expres-
sions.Regular expressions provide a poweefthanism to statically specify a

31

6. Implementation

pattern for strings which then is dynamically applied at runtime tdlsee if

string matches this patterm this contextthe strings are the URLs dhe

desired files of the FTP data souldeereas a static file path is unique, regular
expressions can be matched arbitrary times, creating a fédsltestlt set

should be further adjustable in order to select certain important files instead of
a whole collection of ddtageneral, the result set should be

* sortable by applying a predefined order, converting the set into a list

* sliceable by selecting a range of the original list with an offset and size

ExportRegex

regex: String <<enumeration>>

SortOrder
type: FTPType

sort: SortOrder ~ fr-mmmmmemsomomoees > asc

offset: int dase

size: int

Figure 6.3Definition of a regular expression for the export configuration

The regular expression regex is defined according to the JavaScriptformat
The regex must be specified as a single string without the leading and end-
ing slash and is applied case-insensitiwexampldhe regular expression
data/(.*).csv would match all .csv files in the data directory.

As shown in figure 6.3he ExportRegex also contains a type attribute that
specifies for which type of nodes the regular expression should match, e.g., only
files by setting its value to file.Supported values tiie sort order are asc

or desc for alphanumeric ascending or descendindleddfset and size

parameters must be positive integers includiMjrmardhe size property is

set to zero, all matches are taken into account.

6.2.2 Structure of a Configuration File

The previous section described the structure of a single regularTégseession.

are the fundamental components of the overall export configuration that can be
sent to the HDS to dynamically determine the list of matchimpgdiefare,

the configuration must contain the following data:

* a trigger configuration

* the connection data of the data source (see figure 6.2)

>https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions

32

6. Implementation

* a list of regular expressions that specify the files of interest

The final goal is that the ODS periodically retrieves the files from the HDS and
persists those files for the third-party applicBearause afhat, the trigger
configuration specifies when the ODS is supposed to download tAbse files.

is due to the adaption to the current implementation of thas@ieScribed

in section 5.4dencethe interval parameter specifies the periodic intarval
seconds (iperiodic is true) and the firstExecution parameter defines the

date and time of the first executidre finalstructure of the configuration is
shown in figure 6.4.

ExportConfiguration TriggerConfig
trigger: TriggerConfig firstExecution:String
connection: Connectioninfo ~ f---------------m- >! interval: int
entries: ExportRegex(][] periodic: boolean

Figure 6.4Definition of the export configuration

It is noticeable that the entries parameter is a list of ExportRegexidists.

due to the fact that the oveeglllar expression must be split upon the archive
borderssince the content of archives is not directly acc@ssiblé&. is only

required to have multiple ExportRegex items defined when the desired files are
located in at least one arcHikie.type attribute of the last ExportRegex must
always be set to file. For the sake o§implicitythe term ExportEntry will

be used interchangeably for a lifxpbrtRegex item3.he next section will
describe how the list ofatching files is determined based on such an export
configuration.

6.2.3 Resolving a Configuration

Once a request is sent to the POST /export endpoint, it is checked if the request
body contains a valid export configuratfamis is the cases connection to

the data source is established if there is not already an existing cokinection.
this point, the setup is completed and the EspoftEntry items is iterated.

For each ExportEntry, the following algorithm is executed:

1. Initialize the result list for the i -th ExportEntry as the empty list

2. Iterate over the corresponding ExportRegex items and determine the match-
ing files

(a) Split the regex with the path separator "/" and apply the regular
expression component by component

33

6. Implementation

* The next component is only applied relative to the matches of the
previous one

(b) The result of the previous step is a set of URLs that match the regex
of the ExportRegex

i. Sort the result set using the sort order specified by sort
ii. Slice the result list using the size and offset parameters

(c) The result contains the URLs with which the next ExportRegex item
starts

* If the type is set to archivethe result contains archives which
must be extracted before continuing

(d) Apply steps (a) - (c) untthe last ExportRegex is resolved and add
each matching file to the result list

The final result is a list diiode listssimilar to the list dixportRegex lists of

the configuratioRor example, the fourth Node list of the result contains all files
that matched the fourth ExportEntry item of the export confidinagaal

these nodes are downloadable files, the ODS can simply request the correspondin
APl endpoint for each node URL in order to download and store the file.

To demonstrate this procedure, listing C.1 contains an exemplary export config-
uration for which the trigger property is dismissed due to siftpratyre,

a single ExportEntry will be used with two ExportRegex efbtrespecified

FTP data source is the custom FTP server that is also used for the automated
testing described in section 8t3.content is displayed in figure Eially,

figure 16 shows in detdibw the configuration is evaluated using the above-
mentioned proceduFer easier understanding, the intermediate steps with the
matching nodes are listed as well.

6.3 File System as the Distributed Cache

6.3.1 Hierarchical Structure

The file system cache &milar to the data sources themsehiesarchically
structuredThe root directory of the cache is defined by the environment variable
HDS CACH®r each connected data sowm@bdirectory named by the data

source URL is created in the cache root directbry.directory is referenced

as the data source root directBejative to this directory, the URL of a node

is equal to its path on the file sysfesna. consequence, no additional mapping

or state keeping is required by the cache about the location of sifigi® nodes.

34

6. Implementation

makes the solution flexible, error-prone, and fulfills the imposed state restrictions
for the HDS.

When an archive is requested to be extrébeedrchive must be downloaded

first. In this exampleijt is assumed that the path &he archive within the

data source is /directory/archive.zip. The destination within the cache is

the joined path of the cache root directbeydata source root directory and

the path of the archive, e.g., ${HDS_CACHE}/{dsUrl}/directory/archive.zip.

Each intermediate directevirjch does not already exsttreatedAfter ex-

tracting the archive, the URL of a node of that extracted archive can be simply
computed from its path on the file system by cutting off the cachérefix.

cache prefix consists of the cache root directory and the data source root directory.

6.3.2 Concurrent Access

As described in section 5t3s beneficidbr multiple instances of the HDS to

share the same cache in order to improve performeshaes network traffic

and disk spacdJnfortunatelythese advantages introduce additbeeahead

since various HDS instances can now access and modify the J&iseifes.

result in race conditions or lost update problems between two or more concurrent
HDS instances, when for example two HDS instances are downloading the same
archive at the same time in order to extract it aftBrveatashe implement-

ation as a microservice and the horizeoddihgHDS instances do not share
communication data that would enable the services to mutually lock the access
to a certain file.

Thereforea solution is required that is solely based on the already shared file
system cache&imilar to other applications that concurrently access the same

file system, the mechanism of lockfiles iSheslockfiles indicate that a file

is currently locked by another application and should not be risddigg.

these lockfiles are located in the same directory as the file they lock with a suffix
indicating that this is a dedicated lockfile (&lg.lock). This practice is

infeasible for the HDS since it is not guaranteed that there is no such file provided
by the data source its&€Hus, these lockfiles must be separated from the actual
data ofthe data sourcéhus outside dfhe data source root directoriébe

path of the lockfile must be fully determined by the URL of the data source and
the URL of the file it should lock.

For this, a special directory .locks in the cache root directory is created that will
be referenced as the cache locks diréldimgirectory solely stores the lock-

files in the same hierarchstalicture For examplehe lockfile of the archive
/directory/archive.zip of the data source datasource.de will be located at
${HDS_CACHE}/.locks/datasource.de/directory/archive.zipn case of re-

cursive archives, only the root archive must be locked since the extraction is per-

35

6. Implementation

formed recursively after the lock had been acHuwérétirary proper-lockfile

is used for the lockfile mechafisenimplemented locking mechanism is based

on the modification timestamp of the corresponding file and thus also works to re-
strict concurrent access within the same gdtogassested (see section 8.3.1)

on a ext4 file system but also supports network-based file systems according to
its documentation.

6.3.3 Updating Cached Archives

The previous section described how concurrent access for the same cached file
is synchronized using the mechaniskoc&files.This will become important

when an archive is requested to be extVdlaéédeems like a straight-forward
operation at first requires some additiomathanism to prevent concurrency
problems when multiple HDS instances are using the same cache and receive
multiple of these requests at the same time.

The general procedure is depicted in fiJine Ibcal and remote modification
timestamps are used to detect if the archive was modified on the data source in
the meantimdf the remote modification timestamp is more current than the
localone,the archive changed and must be upda@bedequentlyhere is no

need to update the archive when the archive already exists in the cache and is
still up to dateFor any other case, the archive must be locked by acquiring its
corresponding lockfilter the lockfile was acquired successhdlgnodific-

ation timestamps are checked again since another HDS instance, which held the
lockfile beforepuld have already updated the archifivthis is not the case,

the archive must be downloaded and extrAftiexdthe extraction, the modi-

fication timestamp is updated as described in sectidfirally5the archive

is unlocked by releasing the lockfile.

Without this locking mechanigmo HDS instances could potentially write to
the same file when downloading and extracting the same afblisvauld
result in an unpredictable state of theufitbermore, the repeated timestamp
comparison prevents lost updArasther advantage of this update mechanism
is that it reduces the network traffictdfe HDS since archives widnly be
updated when changed on the data source.

It is important to note that this mechanism only prevents concurrent write access,
thus reading the contenttfe archive is allowed while it is lockékhis is

due to the fact that the archive is actually downloaded and extracted using a
temporary location and is only moved to the agaidl once this process is

finished Theoreticallythere is a time frame in which one service can read the
content of the archive while another one replaces the extrackadartthsve.

can only happen when reading the content is slower thandowkilogding,

https://www.npmjs.com/package/proper-lockfile

36

6. Implementation

extracting and moving the extracted arthiv@roblem was neglected in the
scope of this thesis.

6.4 User Interface

The web-based user interface was built using the JavaScript framewbrks Vue.js
3 and Bootstrdp5. It is implemented in the class style syntax with property
decoratofsand uses the Vu@store for state sharing and the communication
between the single componeittsonsists offour generaliews as shown in

figure 6.5.

Home Exploration

Header | Header |

| List of Actions |

Search |
Inspector

Connection Form

List of Data Sources Browser .
Actions
Configuration Result
Header | Header |
| Buttons |

Configuration Form
Result

Figure 6.5Architecture of the user interface

"https://vuejs.org/

8https://getbootstrap.com/

https://www.npmjs.com/package/vue-property-decorator
1O0https://vuex.vuejs.org/

37

6. Implementation

Each of these views serves one single purpose in the sequential workflow:
1. Home - The user can add data sources.

2. Exploration - The user can explore the data source in a file browser like
manner and add files to the selection to export.

3. Configuration - The user can create the export configuration based on
the added files from the previous step.

4. Result - The user can run the finahfiguration in order to check if the
result meets his expectations.

The user can navigate between these views using the navigation buttons which
are included in the header Dlae. user interface is not implemented as a Single
Page Application (SPA) but uses the the Vue'Rbubarve the different views

as single pages.

Uhttps://router.vuejs.org/

38

7 Demonstration

In this chapterthe usage ofthe HDS via the user interface whbke demon-
strated.Thereforean exemplary use caseegploring and configuring a FTP

data source via its user interface is showhis example was executed on a

single host system where the HDS was running on localhaatBt8duser

interface was served by a simple HTTP server on localhodto8@8at,the
docker-compose.yml file was used to start the two Docker containers by running
the command docker-compose up in the project root difbetecyeenshots

which are displayed in figures 2 - 9 are recorded with a display size of 1920x1200
px and a device pixel ratio of 3.

At first, the URL of the user interface was opened in the browsgiaying

the Home view of the user interfatéhis step, the user can add and remove

data sourcedn this exampléhe opendata.dwd.de data source was added as
shown in figure Dnce a data source is addadiding the same URL again is
disabledWhen trying to add a data source that does not exist, an error message
is displayed after the attempt to connect finalljfi@itsclicking the Explore

button, the user interface will switch to the Exploration view, in which the user
can explore the data source.

The Exploration view consiststbfe Browserthe Inspectoand the Actions
component (see figurélfBg Browser is the central component of this view and
works similar to a regular file browkds. used to navigate through the data
source and supports pagination within the current dir€atoByowser also

provides a search bar, a button for navigating back in the history, and a refresh
button for reloading the current directory coftentearch bar can be used

to filter the displayed entriedyich is especially usetalfind files in a large
directorylt can also be used to filter all added files (via @added) or all extracted
archives (via @extractedhe Inspector displays the properties of the selected
file. The Actions section provides a liskapplicable actions for the currently
selected node, such as downloading a file or extracting ahhasegha@ions

are executed in the background and are displayed in a separate list that is only
visible when at least one action is still running (see BguléacRing the Add

button, the selected file is added to the export sEhximalso indicated by

39

7. Demonstration

the blue highlighted number of added nodes in the #opieiously added
file can also be removed again, consequently reducing the number of added files
by one.

In this example, two files were &ildédthe file /weather/alerts/content.|

09.bz2 was downloaded and added afteAvtadsards, the archive jahreswe
rte_KL_00044_akt.zip in the directory /test/CDC/observations_germany/cl
imate/annual/kl/recent was extracted and inspedt®d.archive contains 16

files (seven .html files and nine .txt files)file Metadaten_Geographie 0004

4.txt was successfully downloaded and added afteRwHodsng a symbolic

link was tested in the directory /weather/alerts/cap/COMMUNEUNION_EVENT ST
AT,which stores sevesgmbolic links to the latest .zip archilteshould be

noted that the loading screen is displayed when a response of the HDS exceeds a
specific timeouk.good example is the directory /test/weather/weather_repo
rts/synoptic/germany/geojson, which contains about 59000 items and there-
fore takes some time to get listed (see figure 8).

After the exploration of the data source is finished and all files of interest are iden:
tified and added to the export selection, the export configuration has to be create
(see figure 4herefore, the user navigates to the Configuratidhe/i€mn-

figuration view lists altlded files from the previous s@mce such an entry

is selected, a configuration form is displayed that enables the user to create such
a configuration as described in sectiodlee2user can save the configuration

by clicking on the Add button or remove the whole entry from the export config-
uration by clicking the Remove butlidre regular expressions provide a help
message which is displayed in a new mddahelp message explains how to

use the single forms in detail with some short examples (seArfigwalid).

definition of a regular expression or the other parameters is indicated by red col-
our.In this example, the entry for the file /weather/alerts/content.log.bz2

was added unmodifiethus, only the single file should be retrieved when the
configuration is evaluat@te other entry is modified to match the second to

fifth .txt files in the archive when the alphanumelesaending sort order is

applied (see figure ®Dnce all entries have been configured, the user can move

to the last step and evaluate the resulting configuration.

The Resultview is the last view ofhe exploration procesk provides two

buttons to view the fing6ON configuration and comfortably copy it to the
clipboardln contrast, the major task of this step is to execute the configuration
and check if the result matches the expatiteioalicking the Trybtitton,

the configuration is sent to the HDS and the matching files are restived.

the meantiméhe user interface displays the loading screea rasplonse is
retrieved.On successthe list ofthe matching files is displayed,that the

user can check if the result matches the expec@itiensise, a simple error
message is displayeld.the result does not match the expectatidresuser

40

7. Demonstration

can navigate back to the Configuration view and modify the configuration again.
When executing the exemplary configuration, a result list of four files is retrieved
which is depicted in figure 6 and matches the expected outcome.

41

7. Demonstration

42

8 Evaluation

8.1 Functionality of the HDS

The HDS enables the user to explore FTP data sources in a structured way,
based on the inherent file system hierardhysection 5.1the definition of

the data structures is described with respect to its extendability and specific
FTP implementationThe implementation details are outlined in section 6.1,
especially regarding the extraction of archives and symibasichioks that
archived files can be accessed through the HDS by downloading and extracting
the archive via the HDS without major effort of the user.

Therefore, objectives 4.1.1, 4.2.1 and 4.2.2 are fulfilled.

The HDS implements a simple RESTfAPI that provides albf the above-
mentioned functionalityne APl was described in detail in section 6.1.1, espe-
cially with respect to the violations of the RESTful désgroof-of-concept

user interface uses the API in order to enable the user to explore and config-
ure FTP data source®f coursethe API can also be used for automating the
exploration of FTP data sources.

Therefore, objective 4.1.3 is only partly fulfilled.

Regarding the configuration of data sources, a more complex configuration mech-
anism based on regular expressions is presented in selttioai6cussed in

section 5.4 how this configuration fits into the existing ODS ecosystem and what
the potential drawbacks ðermore, a detailed example of how the config-
uration is resolved is given in sectionFnalB/, the HDS is implemented as a
standalone microservice which is categorized into the existing ODS architecture
in section 5.4The source code of the HDS is linted using skt contains

helpful comments to ensure its code quality.

Therefore, objectives 4.1.2 and 4.1.4 are fulfilled.

Ihttps://github.com/jvalue/hierarchical-datasources/blob/main/backend/.eslintrc.js

43

8. Evaluation

8.2 User Interface

The proof-of-concept user interface enables the user to explore and configure

FTP data sources easilf.is implemented using Vue/S and Bootstrap as both

of these frameworks provide flexible and robust solutions for building frontend
applicationsSimilar to the backend implementathrmnsource code is linted

using esliAtin order to apply to common programming gui@ibBmespons-

ive layout ofhe user interface stacks the standard horidagtalt and was

realized using the Bootstrap grid system to provide a comfortable user experience
on mobile devicdsigures 10 - 13 show the responsive layout for all four views

on a display with a resolution of 767x1200 px and a device pixel ratio of 3.

Therefore, objectives 4.3.1 and 4.3.2 are fulfilled.

The user is guided through the process of connecting to, exploring and configuring
a data source by the sequential workflow of the user ifteidfacerkflow is

described in detail chapter 7The user can navigate between the four views

Home ExplorationConfiguration and Resuitith simple navigation buttons.

The Exploration view enables the user to navigate through the data source with
the Browser componeir.additionthe user can select single files in order to

display additional information about them or even download the file to view its
content.

Therefore, objectives 4.3.3 and 4.3.4 are fulfilled.

Finally,the user can add single files to the export selection and further specify
the data source configuration in the Configuration Miehiiple files can be
specified in the data source configuration by using regular expressions in the
configuration stegdoweverthe selection ofpr exampleall files ofa single
directory is not supported in the Exploration view.

Therefore, objective 4.3.5 is only partly fulfilled.

8.3 Automated Tests with a Custom FTP Server

This section focuses on automated tests to evaluate the implemented mechan-
isms described in sections 6.2.3, 6.3.2, an@d. 3h3s, the data source must

provide special kind of data (e.g., recursive archives), and this data must also be
modifiablefor examplayhen the update mechanism is tedtedls, it is not

feasible to perform those tests on any publicly available dalta sodercéo

provide a flexible test setlingse tests are executed within a docker-compose
setup It consists of a FTP ser¥é¢hat provides the custom data directory (Fig-

2https://github.com/jvalue/hierarchical-datasources/blob/main/frontend/.eslintrc.js
3https://github.com/stilliard/docker-pure-ftpd

44

8. Evaluation

ure 15) and two HDS instankkdhese services, including the tests themselves,
are executed in separate Docker contdhmeiategration tests are implemen-
ted using the jédtramework and can be run with the Makefile target make it.
This target starts all required Docker containers and executed tiezdeésts.

a detailed description of all executed tests in figure 14.

8.3.1 Concurrency

A crucial aspect of the implementation is the shared caching and its locking mech-
anism (see section 6.3129.corresponding tests are located in the concurrency
test.ts file of the integration tests directoFlie contained tests aretbe

following pattern:

1. A request to extract the same archive is sent to each HDS instance n times

2. Once allrequests finishethe events for this archive are retrieved from
both HDS instances

3. The actual tests are performed on those retrieved events

The archive that is requested to be extracted should be of a noticesble size,
that the extraction will not be finished before all initial requests have been sent.
The following properties are tested and depend on this assumption.

* The number of archiveLocked and archiveReleased events must be equal
for each instance
Reasonfach lock must be acquired and released in order to prevent dead-
locks

* The number of archiveLocklsHeld events of both services must be at least
2n -1
Reason:Only the firstequestimmediately acquires the ladkereas all
other requests failacquire the lock at least once

* The number of archiveCached events of both services must be equal to 2n
-1
ReasonAfter the first request releases the lock, all other requests make use
of the cached entry

This test is performed on both archives bash-5.1-rcl.tar.gz (10.4 MB) and
data/exiftool.tar.gz (4.9 MB) with n = 5.0f course, additional archives can
be used and the number of concurrent requests could be increased as well.

4https://jestjs.io/

45

8. Evaluation

8.3.2 Recursively Structured Archives

The behavior oéxtracting recursively structured archives is tested in the test
cases othe file recursiveArchives.test.ts. These tests extract the recurs-

ive archives /data/code/lib.zip and /data/code/archiveA.zip (see figure 15)

and check afterwards if the files within the inner archives are adoassible,
loadableand contain the correct informatidm.addition,it is checked that

symbolic links at various depths of the recursive archive are extracted properly,
and relative and absolute paths are properly constructed.

8.3.3 Update Mechanism of the File System Cache

The update mechanism of previously extracted archives is tested with some com-
paratively straightforward test cases that are contained in the update.test.ts
file. These tests check three use cases:

1. An archive is extracted again after it had been updated on the data source
Expected outconiée event archiveUpdated must occur exactly once

2. An archive is extracted twice without being modified in between
Expected outcorfike event archiveUpdated must not occur and the event
archiveCached must occur exactly once

3. An archive is extracted again after its modification time had been set to a
timestamp previous to the first extraction
Expected outcorfike event archiveUpdated must not occur and the event
archiveCached must occur exactly once

46

9 Conclusion

In summarythe outweighing majority of objectives werd neeimplement-

ation demonstrates the benefits when dealing with FTP data sources, especially
regarding archived dakbe HDS furthermore supports complex configurations
based on regular expressions without major effort for the€€Caesequently,

this software provides additional value to developers who are working with FTP
based data sources.

Thereforeit would be beneficitd integrate the HDS into the OD®. reas-

onable solution for the long term would be to merge the HDS with the existing
Datasource service to combine similar functionality into one singlelservice.

this step, the support of parameterizable data sources could be integrated as well
(Wachtler, 2021).

Due to the limited time of this thesis, there are some additional improvements for
the HDS which already have been identFiest.of all,an advanced solution

for removing cached archives (see section 5.3) must be daewtlmretbre,

clickable path components can be integrated into the user interface for a better
navigation experience, symbolic links can be supported by the export configura-
tion,and an additional regular expression search on the overall data source can
be added in order to simplify the process of finding files based on their name.

Whereas these changes improve or extend the current functionality for FTP data
sources, another benefit would be the support of other hierarchical data sources
like RESTful APIs.Supporting this kind of APl would increase the value of the
software by covering an additional variety of use cases and could be implemented
in the scope of an upcoming thesis.

47

9. Conclusion

48

Appendices

49

Appendix A: Conceptual Designs

A Conceptual Designs

Va AY
1 1
: Inspecting an archive :
i is requested 1
1 1
i e i ______ 4
No Archive exists Yes
on the
filesystem?
Y
4
~
Yes Archive was
Locl;)[thekgrchlve P modified in
(blocking) the meantime?
/
Yes

Archive exists
on the filesystem?

Archive was
modified in
the meantime?

Download and extract
the archive

{
L

Figure 1:Flowchart of the

Unlock the archive

No

Read the content from
the file system and
return the data

caching procedure

51

Appendix B: User Interface

B User Interface

Hierarchical Open Data Source Import

JValue ODS
URL opendata.dwd.de
Type ftp
Port 21
User anonymous
Password anonymous

Datasources

Figure 2:The Home view of the user interface

<« Exploration >

opendata.dwd.de @

Browser c Inspector
Search (type ‘@added/ @extracted' to filter added/extracted nodes) Properties
Type file
limate vironment
Extension ot
test s
Modification Sep 18 2020
weather 331kB
README txt acea]

i

erklaerung_barrierefreineit. txt

5 total items

s
Path

Name

Actions

“ Add the node to the selection to export

Download Download the file

Figure 3:The Exploration view of the user interface

52

Appendix B: User Interface

< Configuration >
Start 07/15/2021, 10:00 PM [}
Interval ;| o o
Periodic Yes v
Iweather/alertsicontent.log.bz2
Itest/CI KL_00044_akt. Geogra

Iweather/alerts/content.log.bz2

file

Type

phie_00044.txt
/weather/alerts/content. log.bz2

Regular Expressions @

0 0 asc -

offset size Sort Order

Figure 4:The Configuration view of the user interface (1)

Configuration >

Start 07/15/2021, 10:00 PM [a]
Interval 1 4 o
Periodic Yes v
Iweather/alertsicontent.log.bz2 a
testiCt KL _00044_akt. Geogr
aphie_00044.xt
[cone]

/test/CDC/observations_germany/climate/annual/kl/recent/jahreswerte_K

L_00044_akt.zip/(.*).txt

Regular Expressions @

tesUCDC!
archive
Type
()t
file
Type

:_KL_00044_aktzip

offset size Sort Order

1 3 desc -

Offset size Sort Order

Figure 5:The Configuration view of the user interface (2)

53

Appendix B: User Interface

<« Result >

There are 4 matching files (152 kB)

Iweather/alerts/content log.bz2 (145kB) 1
Iweather/alerts/content log.bz2 145k8
ftesUCDC :_KL_00044_akt.zip

()t
(6.82kB) 3
ftes/CDC/ . :_ KL_00044_a
Kt.Zip/Metadaten_Stationsname_00044.txt
2358
JtestCDC! | i :_KL_00044_a
Kt.zip/Metadaten_Parameter_kiima_jahr_00044.txt
5.92k8
ItestCOC/ ¢ :_KL_00044_a
Kt.zip/Metadaten_Geraete_Sonnenscheindauer_00044.txt
6718

Figure 6:The Result view of the user interface

The Basics

In this step, the files of interest must be specified. These files are later downloaded by the ODS and
published for your application. You can either specify a fixed file path or a regular expression to determine
which files are of interest. This is due to the fact that many filenames contain changing components like
dates or indices. By default, the fixed file path of the added file will be used.

How does the regular expression work?

The regular expression is not applied as it is but is spiit into its path components and applied step by step.
For example, the regular expression /(.*)/(.*) . txt will be spit ino the first component (.*) and the
second component (.*).txt. When applied, the first component matches all entries. The second
component is then applied to all matching entries of the previous step, matching all . txt files. The
matching files would then for example be /data/info.txt or /test/README.txt but neither
/data/important/note. txt nor /README. txt.

‘The regular expressions are applied case insensitive and they must match the whole string. For example,
the regular expression data would match the file Data but not the file data.txt. Furthermore, each
regular expression and the combined one must not be empty, contain // or end with a slash.

What are the other configuration parameters?

Since a regular expression can match an arbitrary number of files, the result set should be restrictable.
Therefore, the basic procedure is the following:

+ Match the regular expression; the result is a set of arbitrary size
« Sort the result set with the Sort Order
+ Slice the result list with the Offset and Size parameters; this is the final result

Itis important to note that a Size parameter of © will add all matches to the final result.

Figure 7:The help message of the Configuration view

54

Appendix B: User Interface

Just a second ...

C

Figure 8:The loading screen of the user interface

<« Exploration >

opendata.dwd.de
Actions
U Extracting archive ‘jahreswerte_KL_00044_akt.zip'
+ Browser ¢ Inspector
Search (type ‘@added” @extracted to filter added/extracted nodes) Properties
Aesiera Type archive

jahreswerte_KL_00044_akt.zip Extension zip

jahreswerte_KL_00071_akt.zip Modification Sep 13 2018

jahreswerte_KL_00073_akt.zip .
size 1.5kB

jahreswerte_KL_00078_akt.zip
Itest/CDClobservations_germany/climate/annual

jahreswerte_KL_00091_akt.zip IKilrecent

jahreswerte_KL_00102_akt.zip jahreswerte_KL_00044_alt.zip
jahreswerte_KL_00131_akt.zip

jahreswerte_KL_00142_akt.zip

Path
Name
Actions
m Download and extract the archive on the server
jahreswerte_KL_00150_akt.zip

Inspect an extracted archive

«|1]2|» 505 total items

Figure 9:Display of running actions in the Exploration view

55

Appendix B: User Interface

sadlnosele

snowAuoue
plomssed

snowAuoue

JEEN
14

Hod
dy

adAL
ap'pmp-erepuado

at-Npl

SAo anjear
poduwi|

92In0S ereq uadQ [ealyodielaiy

Figure 10Responsive layout of the Home view

allj 8y peojuMoQ

Jodxa 0} UOII3|aS BUj} 0} BPOU B} PPY

Xr3Inavay
I

a8es

LT02 S¢ InC
wy

aly

J0108dsu|

Sswayl [e10) §

SUonY

aweN
ured

ez
uonealIpoN
uolsuaix3y

adAL

sailadold

PSS IEVENEYET = W T VEENIEY

»INavId

Jayream

1sa1

JUBWIUOIIAUS BjRWID

(sepou pajoelixe/pappe Jaljly 0] pajoenxa®,/papped), adAl) yoreas

o 1asmolg

° ap pmp ‘ejepuado

< uonelojdx3

Figure 11Responsive layout of the Exploration view

56

: User Interface

Appendix B

H
19pI0 Mos
ozs

19540

adfL
aly
2zzq'Bo|'uajuod/suafe/iayyeam/
@ suoissaidx3 renbay

22q'B01 ' JUBIU0D/STUD R/ IBYIROM/

PPr000” 21ydeifoan usrepeld/diZ e ¥r000 X dHIMS
6 suoneAlasqo/oaosal

2zq Bo[usiuogjsysle1ayresm/

~ SOA
dpouiad

0

[

T
reasaqug

Q Wd 0T:0T ‘T202/ST/L0

yeys

& uoneinbiyuod >

on view

Figure 12Responsive layout of the Configurat

8985

1
XI'y7000 WNWIUIN_InyesadwanynT ajeela us)
epeaN/diz die 77000 1M euamsaiyelausdal//
enuue/ayewjo/Auewlal suoneAlasqo/OaD/Asay

8985

X
1¥7000” WNWiXey Inesadwaing aieels” us)
epelaN/diz e #7000 1M eaUamsaiyelpuadal/py/
enuue/ayewjo/Auewlal suoneAlasqo/DaD/Asay

gzr9

7000 Inteladweanyn elerIen us)
epela\/diz e 77000 T eHemsaiyelausdal//
enuue/ayewjo/Auewlal suoneAlasqo/DaD/Asay

€(aM8LT)
W (x)/dizpre v7000 1M eMamsaiyeljuad
al/pi/lenuue/arewijo/Auewaf suoneA1asqo/OadAsaY

9 9T 22q°Bo|usluoo/suafe/iayieam/

T (2 9vT) 22q°60|")Us)U0D/SLIB[R/IBYIRaM/

(@ 8¥T) sajly Buiyorew ¢ are a1y L

in i

Insay

Figure 13Responsive layout of the Result view

57

Appendix C: Miscellaneous

C Miscellaneous

1. Basic setup
» Test if the API is accessible
» Test not existing APl endpoint '/idontexist’
2. Data Sources
» Test if the API is accessible
* Test not existing APl endpoint '/idontexist’
3. Node
* Check content of the root
* Check the content of a .tar.gz archive
* Extract an empty .zip archive
* Extract an .zip archive and check its content
4. Recursive Archives
» Test archive '/data/code/lib.zip’
» Test archive '/data/code/archiveA.zip’
5. Update archives
* Extract archive again after it was updated
» Extract an archive twice
» Extract an archive with past modified timestamp
6. Concurrency
» Extract the archive '/bash-5.1-rcl.tar.gz’ concurrently
» Extract the archive '/data/exiftool.tar.gz’ concurrently
7. Exports
* Simple export configuration with a single file
* Export configuration with ignore case
* Export configuration with sort order and slicing
* Export configuration with archived files

Figure 141iist of all integration tests

58

Appendix C: Miscellaneous

archive.zip
bash-5.1-rcl.tar.gz
readme.md
README.md
README.txt
README.TXT

data

audio.tar.gz
audio.tgz
data
data_20200502_raw.csv
data_20200601_raw.csv
data_20210502_raw.csv
empty.zip
exiftool.tar.gz
images.zip
image_1.jpg
image_2.png
image_3.jpeg
code
_lib.zip
L_lib/
share.zip
|_share/
| binary
usr.zip
| usr/
| binary
|_archiveA.zip
| archiveA/
| archivel.zip
| _archivel/
test.txt
WOow
wow1l
archive2.zip
| archive2/
| file42.txt

Figure 15Structure of the test data

59

Appendix C: Miscellaneous

URL Port Description

e Protein Data Bank

ftp.wwpdb.org 21 * 3-D structure of biological macromolecules

e The National Center for HealthStatistics
(NCHS)

e Health statistics information

* Survey data

ftp.cdc.gov 21

» Office of Foreign Assets Con{@AAC)

* List of imposed sanctions by the U.S

» Specially Designated Nationals And Blocked
Persons Lists (SDNs)

ofacftp.treas.gov 21

e Deutscher Wetterdienst

opendata.dwd.de 21 « German weather and climate data

e United States Census Bureau

ftp.census.gov. 21 * American Community Survey (ACS) data files

* EUMETSTAT

ftp.esrf.eu 21 « Global and regional marine/atmosphere data

Table 1:Exemplary list of public FTP servers

60

Appendix C: Miscellaneous

{
"trigger": {

,

"connection": {
"type": "ftp",
"url": "localhost",
"port": 21,
"user": "user",
"password": "password"
}
"entries": [
[

{
"offset": 0,

'size": 0,

"sort": "asc",

"type": "archive",

"regex": "/data/images.zip"

"offset": 1,

"size": 1,

"sort": "desc",
"type": "files",
"regex": "image_(.*¥)"

Listing C.1:Example of an export configuration

61

Appendix C: Miscellaneous

1. ExportRegex for regular expression /data/images.zip on result list []
(a) Apply the regular expression for each path component
i. Regular Expressiodata
* Nodes of/]:
[archive.zip, bash-5.1-rcl.tar.gz, ..., data]
* Result:[/data]
ii. Regular Expressioimmages.zip
* Nodes of/datal:
[audio.tar.gz, audio.tgz, ..., code]
* Result:[/data/images.zip]
(b) Slice the result list
i. Apply type archive{/data/images.zip]
ii. Apply sort asc{/data/images.zip]
iii. Apply offset O/data/images.zip]
iv. Apply size Of/data/images.zip]
(c) Result of first ExportRegdxdata/images.zip]
» Extract the archive before continuing
2. ExportRegex for regular expressionimage (.*) on result list
[/data/images.zip]
(a) Apply the regular expression for each path component
i. Regular Expressiommage_(.*)
* Nodes of /data/images.zipl:
[image_l.jpg, image_2.png, image_3.jpeqg]
* Result:
[/data/images.zip/image_1.jpg,
/data/images.zip/image_2.png,
/data/images.zip/image_3.jpeg]
(b) Slice the result list
i. Apply type file:
[/data/images.zip/image_l.jpg, ...,
/data/images.zip/image_3.jpegl
ii. Apply sort desc:
[/data/images.zip/image_3.jpeq, ...,
/data/images.zip/image_1.jpgl
iii. Apply offset 1:
[/data/images.zip/image_2.png,
/data/images.zip/image_1.jpg]
iv. Apply size 1f/data/images.zip/image_2.png]
(c) Result of second ExportReggrata/images.zip/image_2.png]
* Final result

Figure 16 Example of resolving an export configuration

62

Appendix D: API

D API

/*
* POST /datasources

*

* Add a new data source.

*/
/l Request body
{
Iltypell: Ilftpll’
“url": "opendata.dwd.de",
"port": 21,
"user": "anonymous",
"password"; "anonymous"
}
Listing D.1:APlI exampleAdd a new data source
/*

* GET /datasources
b3

* Get all imported data sources.
*/

// Response body
[

{
"type": "ftp",
“url": "opendata.dwd.de",
"port": 21,
"user": "anonymous"”,
"password": "anonymous"
}

Listing D.2:API exampleGet all imported data sources

63

Appendix D: API

/*
* GET /datasources/opendata.dwd.de/%2F
*
* Get the content of a node.
*/
// Response body
{
"url": "/,
"name": "/",
"properties": {
"path": [
{
"path": "/",
"type": "directory"
}
1
"type": "directory"
}
"isLeaf": false,
"actions": [1,
"children": [
{
"url":"/README.txt",
"name":"README.txt",
}
]
}

Listing D.3:API exampleGet the content of a node

64

Appendix D: API

/*
* POST /datasources/opendata.dwd.de/%2FREADME.txt/

X

* Download a file.

*/
// Request body
{
"identifier": "download"
}

// Response body
Im Rahmen seines gesetzlichen Auftrags stellt der DWD ...

Ihre Daten werden nicht an Dritte weitergegeben.

Listing D.4:API exampleDownload a file

65

Appendix D: API

/*
* POST /export
*
* Get the matching nodes of an export configuration.
*/

// Request body
{
"trigger": {
"periodic": true,
“firstExecution": "2021-07-15T10:15",
“interval": 86400
}
"connection": {
“type": "ftp",
“url": "opendata.dwd.de",
"port": 21,
"user": "anonymous",
“password": "anonymous"
b
"entries": [
[
{
"offset": O,
"size": 0,
"sort": "asc",
"type": "file",
"regex": "/(.*).txt"
}
]
]
}

// Response body
[
[
{

"url": "/erklaerung_barrierefreiheit.txt",
"name": "erklaerung_barrierefreiheit.txt",
"properties": {

"type": "file",

"extension": ".txt",

66

"modification": "Sep 18 2020",

"size": 3312,
"path": [
{
"path": "/erklaerung_barrierefreiheit.txt",
“type": "file"
}
]
H
}
{

"url": "/README.txt",
"name": "README.txt",
"properties": {
Iltypell: Ilﬁlell'
"extension": ".txt",
"modification": "Jul 25 2017",

"size": 528,
"path": [
{
"path": "/README.txt",
"type": "file"
}
]
}
}

Listing D.5:API exampleGet the matching nodes of an export configuration

67

68

References

Braunschweiqg, K., Eberius, J., Thiele, M. & Lehner, W. (2012). The state of open
data.

European Commission. (n.d.). What is open data. Retrieved June 21, 2021, from
https://data.europa.eu/elearning/en/modulel/#/id/co-01

Fielding,R. T. (2008)Restapis mustbe hypertext-driv&etrieved July 22,

2021 from https : / / roy. gbiv . com / untangled / 2008 / rest - apis - must - be -
hypertext-driven

Fielding, R. T. (2000). Architectstgles and the design of network-based soft-
ware architectures (Doctoral dissertation). University of Californa, Irvine.

GleasonM. (2005)The file transfer protoctib) and your firewalhetwork
address translation (nat) router / load-balancing rBateeved June
16,2021 from https : / / www . ncftp . com / ncftpd / doc / misc / ftp _and _
firewalls.html

Hirsch,F., Kemp,]. & llkka,]. (2007)Mobile web services - architecture and
implementation. John Wiley & Sons.

Housley, R. & Yee, P. E. (2000). Encryption using KEA and SKIPJACK (RFC
No. 2773). RFC Editor. RFC Editor. https://doi.org/10.17487/RFC2773

Lafon, Y., Mendelsohn, N., Hadley, M., Karmarkar, A., Nielsen, H. F., Moreau,
J.-). & Gudgin, M. (2007). SOAP version 1.2 part 1: Messaging framework
(second edition) (W3C Recommendation) [https://www.w3.0rg/TR/2007/
REC-soapl2-partl-20070427/]. W3C.

Lewis,]. & Fowler,M. (2014)Microservices - a definition @fis new archi-
tecturaterm.Retrieved June 22021from https://martinfowler.com/
articles/microservices.htmi

Lunt, S. J. (1997). FTP Security Extensions. https://doi.org/10.17487/RFC2228

MumbaikarsS., Padiya,P. et al. (2013)Web services based on soap and rest
principlesinternationglournal of Scientific and Research Publications,

3(5), 1-4.

Newman, S. (2015). Building microservices: Designing fine-grained systems (1st).
O’Reilly Media.

NGINX Inc. (2016). Nginx announces results of 2016 future of application devel-
opment and delivery survey. Retrieved June 21, 2021, from https://www.

69

References

nginx.com/press/nginx-announces-results-of-2016-future-of-application-
development-and-delivery-survey/

Open Knowledge Foundatiém.d.).Open definitioRetrieved June 22021,
from http://opendefinition.org/

Postel,]. & Reynolds). (1985)File Transfer Protocohttps : // doi . org/ 10 .
17487/RFC0959

Publications Office dhe European Union2020).The benefits and value of
open dataRetrieved June 22021 from https : // data . europa . eu/en/
highlights/benefits-and-value-open-data

ReinselD., Gantz,]. & Rydning,]. (2017)Data age 2023:he evolution of
data to life-criticétech. rep.). International Data Corporation (IDC).

Schwarz, G. (2019). Migration the JValue ODS to Microservices (Master’s thesis).
Friedrich-Alexander Universitat Erlangen-NUurnberg.

Wachtler, J. (2021). Design and Implementation of Parameterizable Data Import
for the JValue ODS (Bachelor’s Thesis). Friedrich-Alexander Universitat
Erlangen-Nurnberqg.

Xia, L., Chao-sheng, F., Ding, Y. & Can, W. (2010). Design of secure ftp system.
2010 International Conference on Communications, Circuits and Systems
(ICCCAS), 270-273. https://doi.org/10.1109/ICCCAS.2010.5582002

70

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80

