
Recommendation System for

Qualitative Data Analysis

MASTER THESIS

Dominik Schöpf

Submitted on 31 August 2023

Friedrich-Alexander-Universität Erlangen-Nürnberg

Faculty of Engineering, Department Computer Science

Professorship for Open Source Software

Supervisor:
Julia Mucha M.Sc.

Prof. Dr. Dirk Riehle, M.B.A.

Declaration of Originality

I con�rm that the submitted thesis is original work and was written by me
without further assistance. Appropriate credit has been given where reference
has been made to the work of others. The thesis was not examined before,
nor has it been published. The submitted electronic version of the thesis
matches the printed version.

Erlangen, 31 August 2023

License

This work is licensed under the Creative Commons Attribution 4.0 Interna-
tional license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.
0/

Erlangen, 31 August 2023

i

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

ii

Abstract

QDAcity is a cloud-based application for performing qualitative data analy-
sis. The analysis takes place within the coding editor enabling users to assign
codes to various text segments across multiple documents. These text seg-
ments are called codings. Besides its task-solving capabilities, collaboration
plays a central role in QDAcity. Teams can be organized through di�erent
project types, with role-based permissions. It does o�er technical support
for data synchronization via its real-time service and a service for concurrent
text editing is currently in development. These services, however, primarily
target the technical aspects of collaborating on shared data. Currently, there
is little support for communicating change proposals regarding the content
of the data.

The goal of this thesis is to design and implement a recommendation system
for QDAcity. As an integral part of QDAcity, this system enables users
to create and review codesystem recommendations. The system focuses on
codes while placing an emphasise on extensibility to include other entities
such as codings or documents in the future. As a result, users are now
able to communicate potential changes within QDAcity without leaving the
platform. This improves the collaborative working capabilities of QDAcity
and, consequently, improves the overall user experience.

iii

iv

Contents

1 Introduction 3
1.1 Thesis Structure . 3
1.2 QDAcity . 4
1.3 Problem Statement . 6
1.4 Objective and Approach . 7

2 Related Work 9
2.1 Literature Review . 9
2.2 Applications Supporting Recommendations 9

2.2.1 Collaborative Editing 10
2.2.2 Collaborative Reviewing 12
2.2.3 Discussion . 15

3 Requirements 17
3.1 Constraints . 17
3.2 Functional Requirements . 19

3.2.1 General Functionality 19
3.2.2 Code-related Functionality 20

3.3 Quality Requirements . 21

4 Architecture 27
4.1 Background . 27
4.2 Re�ned Layered Architecture 29
4.3 Recommendation Controller Design 32
4.4 Recommendation Life Cycle 32

5 Implementation 35
5.1 Backend . 35

5.1.1 General Recommendation Classes 35
5.1.2 Action Classes . 38

v

5.2 Frontend . 39
5.2.1 Creation Flow . 40
5.2.2 Review Flow . 41
5.2.3 Review Editor and Modals 43
5.2.4 Con�ict Handling . 44
5.2.5 Noti�cations . 45

5.3 RTCS . 46

6 Evaluation 49
6.1 Usability Test . 49

6.1.1 Design . 49
6.1.2 Results . 52

6.2 Functional Requirements . 57
6.2.1 General Functionality 57
6.2.2 Code-related Functionality 58

6.3 Quality Requirements . 59

7 Discussion 65
7.1 Findings and Limitations . 65
7.2 Future Work . 67

8 Conclusion 71

Appendices 73
A Usability Test Notes . 75

A.1 Expert 1 . 75
A.2 Expert 2 . 76
A.3 Expert 3 . 77

B Questionnaire Results . 78
B.1 Custom . 79
B.2 The System Usability Scale (SUS) 80

References 81

vi

List of Figures

1.1 QDacity's coding editor . 5
1.2 Real-time Collaborative Service (RTCS) Overview 6

2.1 Simple comment in Google Docs 10
2.2 Review panel in Google Docs 11
2.3 Text segment with suggestions in Google Docs 11
2.4 "Review suggested edits" component in Google Docs 12
2.5 Merge Request (MR) entry page in GitLab 13
2.6 "Activity" list on the "Overview" tab of an MR in GitLab . . 13
2.7 Threaded comments within the "Activity" list of an MR in

GitLab . 14
2.8 Commented change of an MR in GitLab 14

3.1 FunctionalMASTeR template 19
3.2 Quality characteristics of ISO/IEC 25010 21
3.3 PropertyMASTeR template 22

4.1 Re�ned Layered Architecture 30
4.2 Recommendation controller design 32
4.3 Flowchart of the recommendation life cycle 33

5.1 UML class diagram of the Recommendation class 36
5.2 UML class diagram of the recommendation controller 37
5.3 UML class diagram of RecommendationAction class 38
5.4 UML class diagram of the Action controllers 39
5.5 Recommendation mode button 40
5.6 User Interface (UI) of the creation modal 41
5.7 UI of the review component 42
5.8 UI of a deleted comment . 42
5.9 UI of the recommendation list. 43
5.10 UI of the review editor tabs. 44

vii

5.11 UI of a recommendation with a terminal invalid action. 44
5.12 Red dot on code (left) and recommendation level (right). . . . 45
5.13 Data �ow of a RTCS request. 46
5.14 Relationships between recommendation and code handlers. . . 47

6.1 Global noti�cation feature . 55
6.2 Project settings modal . 57
6.3 Unittest coverage of the recommendation system. 63

viii

List of Tables

3.1 Permissions matrix for actions and project roles. 24

5.1 Extended RTCS messages (left) and events (right). 47

6.1 Added permissions to the ProjectPermissions enum class. . 61

ix

x

Acronyms

API Application Programming Interface

CES Collaborative Editing Service

CD Continuous Delivery

CI Continuous Integration

DAO Data Access Objects

JDO Java Data Objects

LoC Lines of Code

MR Merge Request

PM PersistenceManager

PR Pull Request

QDA Qualitative Data Analysis

RTCS Real-time Collaborative Service

SUS System Usability Scale

UI User Interface

1

List of Tables

2

1 Introduction

Qualitative Data Analysis (QDA) is a process consisting of multiple activi-
ties. In general, QDA methods emphasize extracting pertinent information
from qualitative data, analyzing its content, and deriving abstract interpre-
tations. As collaboration in research increases, so does the coordination
overhead. While having multiple researchers brings diverse perspectives, it
may also result in varied interpretations. QDA Software (QDAS) aids by pro-
viding platforms that allow concurrent analysis of shared datasets, streamlin-
ing communication and ensuring consistent interpretation among researchers.
Nevertheless, collaborating on shared data often involves iterative data ad-
justments before consensus is reached. Recommendations ensure that data
changes occur once consensus is achieved. In the context of this thesis, the no-
tion of a recommendation is restricted to user-to-user recommendations. In
contrast, the more commonly used interpretation encompasses system-to-user
recommendations. In this case, the system utilizes some type of algorithm
to provide personalized recommendations based on user data. While there is
some overlap in requirements, the focus of this thesis is on the user-to-user
case. The terms recommendation and suggestion are used interchangeably
throughout the thesis.

1.1 Thesis Structure

Chapter 1 starts with a brief overview of QDAcity1. and introduces related
QDA concepts. The chapter continues with the objectives and the general
approach of this project. In chapter 2, related research and systems that o�er
similar functionalities are examined. Inspired by the related work, chapter 3
provides an outline of the requirements for the recommendation system. The
chapter is divided into sections covering constraints (3.1), functional require-
ments (3.2), and quality requirements (3.3). Chapter 4 is dedicated to the

1https://qdacity.com/

3

https://qdacity.com/

1. Introduction

architectural design of the system. Building upon this, chapter 5 delves into
the system's implementation. The �rst section of chapter 6 examines the
usability test conducted as an integral part of this thesis. The chapter then
proceeds with an evaluation of the requirements de�ned in chapter 3. In
chapter 7, a discussion of the �ndings from the previous chapters and their
implications is provided, addressing any limitations or challenges encoun-
tered during the project. This chapter also brie�y presents prospects for
future work. Finally, the thesis is concluded with a summary of the results
in chapter 8.

1.2 QDAcity

QDAcity is a cloud-based web application for QDA. In addition to conven-
tional QDA methods, it is speci�cally designed to support QDAcity-RE, a
domain analysis method for requirements engineering (Kaufmann & Riehle,
2018). The primary artifact of QDAcity is the codesystem, which can be
developed through the QDAcity-RE method or other QDA methods. The
codesystem forms a hierarchical structure of codes, representing a model that
encapsulates concepts, categories, their properties, and interactions. There-
fore, a code represents a single concept. The code system emerges as a
consequence of an iterative coding process. According to (Corbin & Strauss,
1990), the coding process of a single document is divided into three phases.
The initial phase is to annotate relevant text segments (open coding), fol-
lowed by a restructuring of the codesystem (axial coding). Finally, the last
phase entails arranging and relating codes to the core category, resulting in
a re�ned focus (selective coding) Every code represents a concept rooted in
the collected data, encompassing attributes such as the label, a de�nition,
and instructions for its intended usage.

The coding editor is the central feature of QDAcity. It supports various QDA-
related work�ows, which are beyond the scope of this thesis. Figure 1.1
shows the coding editor in action. The editor is divided into three main
sections. The left section contains the codesystem, which is represented as a
tree structure. The middle section displays the document to be coded. The
bottom section presents details about the currently selected code, including
its associated codings and properties.

QDAcity allows teams to work on projects through various organizational
forms. Access to projects can be controlled on an individual user level
through default permission roles: Owner, Organizer, Editor, and Viewer.
When creating a brand-new project, it is of type Project. Alongside the

4

1. Introduction

Figure 1.1: QDacity's coding editor

project itself, this encompasses a fresh codesystem. Initially, no documents
or codings are included in the project. The remaining project types stem
from the original project. A ProjectRevision can be regarded as a project
snapshot. It replicates the entire codesystem, all codings, and documents.
Separated from the original data, the revision project serves as a reference
for recodings. For this practice, researchers recode the documents based on
an existing codesystem. A ValidationProject enables this by duplicating all
documents, but excluding any codings. It uses the same codesystem as the
ProjectRevision, while not allowing any changes to it. The ExerciseProject
shares the same characteristics as the ValidationProject, with the addition of
duplicating all codings.

As a cloud-based platform, QDAcity places signi�cant emphasis on collab-
orative work. The RTCS is the central feature that enables a collaborative
work�ow. Its responsibility is to synchronize various entity types among col-
laborators, such as codes, codings, documents, and users. Figure 1.2 shows
a high-level overview of the RTCS.

For better coordination, the coding editor showcases active collaborators and
the current document for each user. Additionally, to further enhance these
capabilities, a dedicated Collaborative Editing Service (CES) is currently
under development.

5

1. Introduction

Figure 1.2: RTCS Overview

1.3 Problem Statement

As described in the previous section, QDAcity already o�ers various features
to facilitate collaborative work. The RTCS enables multiple users to collab-
orate on a codesystem while maintaining an up-to-date2 view of its current
state. However, this mechanism solely addresses changes where the user has
already made the decision and then proceeded to enact it. Where QDAcity
lacks support is in a process that enables teams to coordinate what changes
need to be made in the �rst place. This absence of a coordination mechanism
can lead to several negative consequences for the codesystem's state. This
might lead to needless changes, which require extra revision e�orts. In such
cases, it also introduces additional noise to evaluation methods reliant on
tracking codesystem changes. The worst-case scenario is that changes might
go unnoticed entirely or receive insu�cient attention, resulting in an incon-
sistent model. Even when a speci�c change is conceptually agreed upon,
errors can still occur without mechanisms in place to visualize and apply
it automatically. While the primary focus of this project is on codesystem
changes, this problem is also relevant to document changes (or any other
form of shared data).

The topic of permission structures is always an important aspect when ad-
dressing change management of shared data. A closer examination of the
permission roles Editor and Viewer reveals an interesting dichotomy. While
the former allows users to make changes to the codesystem without any gate-
keeping mechanism, the latter completely prohibits any form of interaction.

2Up-to-date here means that the RTCS works as expected with a delay of a few seconds
at most.

6

1. Introduction

A recommendation feature can introduce new policies by which users can
actively contribute to the project without having the permission to make
changes directly.

1.4 Objective and Approach

Derived from the problem statement, the primary objective of this thesis is
de�ned as follows:

Design and implement a user-to-user recommendation
system for QDAcity that allows users to create and review

recommendations for potential changes.

In terms of project management, an agile approach was employed. This
approach extended beyond the development work�ow, shaping the emergence
of the thesis through an iterative process. Due to the high-level nature of
the functional requirements, a majority of them became evident after a few
iterations. On the contrary, a signi�cant portion of the quality requirements
were implicitly established during the review process at QDAcity. They
were later formalized as concrete requirements. This was primarily done
for documentation purposes. Typically, an iteration encompassed sections
that targeted related requirement de�nitions, their implementation, and their
evaluation.

Tightly connected to the project management process are the software de-
velopment practices that accompany it. However, it is di�cult to point to
a single practice constantly followed across QDAcity. Due to their oversight
of multiple independent projects, the practices they adopt often vary among
projects. Another factor is that time and frequency are key di�erentiators
among the various strategies. Unlike teams primarily consisting of full-time
developers, most members of QDAcity simultaneously engage in research ac-
tivities. Consequently, even short development and integration cycles can
span days, often with minimal divergence to the mainline. The following ter-
minology is based on the works of Fowler (2020). Depending on the project,
elements of traditional feature branching, trunk-based development, as well
as Continuous Integration (CI) can be identi�ed. As these branches are
frequently integrated prior to being fully developed features, this approach
would typically be considered trunk-based development or CI. Furthermore,
not only are these branches integrated frequently, but they are also deployed
to production, which constitutes a key aspect of Continuous Delivery (CD).
At the same time, certain feature branches have lifespans extending beyond a

7

1. Introduction

month. Generally, the team advocates for small, short-lived feature branches.

The approach adopted in this project evolved over time. In the beginning,
features were already divided into smaller chunks of work. Nevertheless, the
review process extended over weeks due to the scale of code changes. As time
progressed, the integration units decreased in size, leading to development-
review-integration cycles lasting only a few days. Another contributing factor
was the growing usage of follow-up integrations, rather than re�ning a single
integration request.

8

2 Related Work

Section 2.1 presents a review of related literature on the topic. Then, sec-
tion 2.2 examines two examples of applications that o�er recommendation
features.

2.1 Literature Review

The �eld of system-to-user recommendation systems is actively researched
(Ko et al., 2022; Roy & Dutta, 2022). While much of the research on recom-
mendation systems centers on algorithmic accuracy, Knijnenburg et al. (2012)
adopts a user-centric approach to evaluating such systems. Nonetheless, this
remains limited to system-to-user recommendations. Recommendations are
also studied exclusively from a UI perspective (Harley, 2018a, 2018b). Yet,
these research outcomes largely relate to system-to-user recommendations,
given their focus on content and product suggestions. However, despite ex-
tensive exploration, no speci�c research on user-to-user recommendations
was identi�ed. This can largely be attributed to the fact that user-to-user
recommendations are highly application-dependent. Even so, given the UI's
central role in the recommendation feature, general UI principles are still
relevant. Most notably, the usability heuristics by Nielsen (1994), serve as
general principles for interaction design.

2.2 Applications Supporting Recommendations

When examining relevant applications, the �rst category of interest is QDAc-
ity's competitors. At the time of the review, none of its competitors provides
a feature of this nature.1 There are, however, promising examples outside
the space of specialized QDA software. By focusing on the general concept of

1MAXQDA, NVivo, ATLAS.ti, WebQDA, Taguette, Dedoose; as of 2023-08-30

9

2. Related Work

recommendations, two discernible categories can be identi�ed: collaborative
editing and collaborative reviewing.

2.2.1 Collaborative Editing

Two prominent products in the text editing space are Google Docs '2 Sugges-
tion Mode and Microsoft Word 's3 Track Changes feature. To ensure con-
sistency, the following analysis will be con�ned to Google Docs. However,
within the scope of this thesis, Microsoft Word's Track Changes o�ers similar
capabilities.

Google Docs supports three distinct modes: Editing, Viewing, and Suggest-

ing. The meaning and functionality of the �rst two modes are self-evident.
In Suggestion Mode, every text change is interpreted as a suggestion. Hence,
the actual content of the document is not modi�ed. Before exploring the
Suggestion Mode, we examine the comment feature. Comments can be used
to communicate change requests or to get feedback on speci�c segments of
the document. Additionally, they are an integral component of suggestions.
A comment can contain plain text or links to other users, which allow to as-
sign the comment to a particular user. Comments can be marked as resolved,
which hides them from the regular view. However, they can still be seen in
the comment history. Figure 2.1 shows a simple example of a comment.

Figure 2.1: Simple comment in Google Docs

Interestingly, Google Docs largely provides multiple ways to achieve the same
task. In total, there exist four ways to enter the Suggestion Mode. Either
through the top toolbars or by using a context menu near the target. To
further highlight a mode change, an extra noti�cation-like pop-up brie�y
appears in the lower left corner. On a surface level, the UI appears unchanged
apart from the selected mode. However, upon closer examination, it becomes
apparent that extensions are disabled. This indicates, that all remaining
actions are regarded as suggestions.

2https://docs.google.com
3https://www.microsoft.com/en-ww/microsoft-365/word

10

https://docs.google.com
https://www.microsoft.com/en-ww/microsoft-365/word

2. Related Work

Figure 2.2: Review panel in Google Docs

After creating the suggestion, the review component appears on the right
side of the document. Figure 2.2 illustrates the review component, which
can be further divided into sub-components.

1. The author and the creation date of the suggestion

2. Controls to resolve the suggestion (accept or reject)

3. A textual representation of the change

4. A comment section

Considering the context of text editing, the mode supports several actions,
most notably: add, delete, and replace. Relocating text segments is achieved
through a combination of delete and add actions. Apart from text changes,
it o�ers numerous types of formatting changes. In addition to the textual
representation, suggestions are displayed inline within the document. When
selecting a suggestion, the corresponding text segment is further highlighted.
Figure 2.3 showcases a text segment featuring several suggestions.

Figure 2.3: Text segment with suggestions in Google Docs

Once a suggestion is accepted, the corresponding change is automatically
applied, and the suggestion disappears.

11

2. Related Work

Figure 2.4: "Review suggested edits" component in Google Docs

Apart from manually selecting and reviewing individual suggestions, Google
Docs o�ers a collective review titled "Review suggested edits". This feature
allows users to browse through their suggestions sequentially and provides
options to preview and resolve all suggestions at once. Figure 2.4 shows the
corresponding element, which is located in the top toolbar.

2.2.2 Collaborative Reviewing

The process of code review is especially interesting for the scope of this
thesis. In GitLab4 they are called MR while in GitHub5 they are called Pull
Request (PR). Considering the context of this thesis, they o�er equivalent
features. For simplicity, only UI elements from GitLab are shown in the
following �gures. The screenshots used in this section are taken from the
o�cial GitLab repository.6

GitLab o�ers a dedicated page for managing MRs. When a new MR is
created, it is listed under the "Open" tab. Additionally, the pages include
"Merged", "Closed", and "All" tabs. For every MR, an overview is displayed,
which is divided into two sections: left and right. The left side provides
details such as the name, ID, author, labels, and the creation date. The right
section displays information like the last update, assigned users, comment
count, and the current pipeline status. Except for the content of the MR,
including comments, this encompasses all the vital information about the

4https://gitlab.com
5https://github.com
6https://gitlab.com/gitlab-org/gitlab

12

https://gitlab.com/gitlab-org/gitlab

2. Related Work

MR. To better manage multiple MRs, the entry page features a search bar
that allows users to search and �lter through existing MRs. All attributes of
an MR, such as the author or labels, are integrated into the search, enhancing
user-friendliness.

Figure 2.5: MR entry page in GitLab

Following the same layout, the review page for an individual MR features
the following tabs: "Overview", "Commits", "Pipelines", and "Changes".
The "Overview" and the "Changes" tabs are particularly interesting for our
purposes. The "Overview" tab provides a textual description of the MR,
typically explaining the rationale behind the request and o�ering additional
context information. In software projects, traceability is a prevalent require-
ment. Thus, the "Overview" tab features an "Activity" list, which showcases
the initiator, the corresponding action, and the date of each MR update. Fig-
ure 2.6 displays parts of the "Activity" list of an MR.

Figure 2.6: "Activity" list on the "Overview" tab of an MR in GitLab

Given the complexity of MRs, GitLab provides a comprehensive comment-
ing feature. Beyond supporting markdown text, it enables user tagging,
the attachment of �les, and emoji reactions. Users can reply to individual
comments up to one level deep. Moreover, comments within MRs support
threaded discussions that can be resolved. The thread status allows distinct
issues to be addressed within an MR. Figure 2.7 shows a threaded comment
within an MR.

13

2. Related Work

Figure 2.7: Threaded comments within the "Activity" list of an MR in
GitLab

The "Changes" tab presents a list of all proposed changes. Since code is
primarily structured by lines rather than words, modi�cations are displayed
as a line-by-line delta. However, the precise alterations within those lines
are also highlighted for clarity. While the comment feature is intrinsically
valuable, reviewers frequently want to discuss speci�c sections of code. To
accomplish this, comments can be anchored directly to a designated range of
lines. Figure 2.8 showcases a commented change within an MR.

Figure 2.8: Commented change of an MR in GitLab

MRs can be approved by users possessing the appropriate permissions. No-
tably, this does initiate the merging process but rather conveys the approval
status of the MR. The act of merging remains a separate action.

14

2. Related Work

2.2.3 Discussion

Google Docs and GitLab both provide features for suggesting and reviewing
changes. Yet, their design and extent of functionality greatly di�er due to
their di�erent users needs. By comparing these two applications and iden-
tifying similarities we can get insights into the design of a recommendation
feature for QDAcity.

The most prominent di�erence is the scale of changes they manage. Col-
laborative text editing, typically, centers around individual documents, often
involving modi�cations of small text segments. In contrast, code reposito-
ries deal with entire projects where changes can span over hundreds of �les.
In our context, the extent of changes would be more similar to the text
editing scenario. The codes within codesystem possess only a handful of
attributes that can be changed. The similarity becomes even more evident
when considering coding recommendations, which essentially are annotated
text segments. Thus, in-line changes, similar to those in Google Docs, are
appropriate for coding recommendations. When designing a UI for code rec-
ommendations, it is important to factor in the existing UI of the coding edi-
tor. The codesystem is presented as a tree, showcasing only the name and a
few icons. The properties of a code are accessed by opening a separate panel.
Therefore, any UI designed for code recommendation must integrate into the
codeystem component and the properties panel. While recommendations for
updating code attributes could be shown in-line, the limited space for each
attribute might lead to a cluttered UI. Displaying the proposed change in-
side a separate modal seems more suitable since QDAciy already relies on
modals for various user interactions. A UI similar to how GitLab presents
changes seems suitable for displaying the proposed changes of a codesystem
code. The codesystem element should indicate existing recommendations.
However, given the limited space, only visual cues are practical. For consis-
tency, it is logical to reuse the modal for the remaining actions (e.g. relocate,
remove). Another consequence of the scale of changes is the expected commu-
nication needed for individual changes. This is re�ected in how sophisticated
the comment features are. Given the anticipated communication for individ-
ual recommendations is relatively small, a comment feature similar to Google
Docs should su�ce.

15

2. Related Work

16

3 Requirements

The objective of this project is to design and implement a recommendation
system for QDAcity. This chapter outlines the requirements that are essential
for achieving this goal. Requirements are divided into functional and qual-
ity (or non-functional) requirements. To reduce language ambiguities and
minimize e�orts in determining, communicating, and documenting require-
ments, a template-based approach is adopted (Rupp & SOPHISTen, 2020).
It is important to note, however, that the authors' recommendation is to use
the following templates for projects where the requirements are known be-
forehand. Commonly, a waterfall approach is used in these types of projects.
Despite this, due to their simplicity and the fact that the requirements target
relatively high-level functions, it was deemed appropriate in this context.

3.1 Constraints

The recommendation system shall be integrated into QDAcity's core tech-
nology stack.1 Unlike a micro-service, which typically comes with a higher
degree of freedom in terms of technology choices 2, the technologies used in
this project are entirely determined by the surrounding system. The follow-
ing is an overview of the current stack at QDAcity.

Backend

� Programming language: Java 83

� Cloud infrasructure: Google Appengine4

1Separate services (e.g. collaborative-editing) are not considered part of the core.
2Independent technology stacks are actually one of the main bene�ts of micro-services.
3https://openjdk.org/projects/jdk8/
4https://cloud.google.com/appengine

17

https://openjdk.org/projects/jdk8/
https://cloud.google.com/appengine

3. Requirements

� Database: (Google) Datastore5

� Data Access APIs:

� Java Data Objects (JDO)6,

� Objectify7,

� App Engine API8,

� Testing framework: JUnit 59

Frontend

� Programming language: JavaScript10 (Node v16)11

� Framework: React (v18)12

� Styling library: Styled-components13

The CI/CD approach, described in section 1.4, puts additional constraints
on the project. While CI primarily impacts the development process, CD
has additional implications regarding data consistency. Given that real users
have access to intermediate versions of the recommendation system, new
releases may have to be accompanied by data migration tasks.

During the duration of this project, the development team decided to migrate
from JDO to Objectify. To speed up the process it is desirable to extend the
backend architecture described in chapter 4 to other existing classes.

QDAcity uses the frontend framework React. Due to an ongoing migration
within the maintenance of the overall QDAcity codebase, the frontend con-
sisted of a mix of functional and class-based components. A requirement
for this thesis was to write new react components as functional components.
Section 3.3 details these migration tasks from the standpoint of compatibility
and maintainability.

5https://cloud.google.com/datastore
6https://db.apache.org/jdo/
7https://github.com/objectify/objectify
8https://cloud.google.com/appengine/docs/legacy/standard/java/datastore/
9https://junit.org/junit5/

10https://developer.mozilla.org/en-US/docs/Web/JavaScript
11https://nodejs.org/en
12https://react.dev/
13https://styled-components.com/

18

https://cloud.google.com/datastore
https://db.apache.org/jdo/
https://github.com/objectify/objectify
https://cloud.google.com/appengine/docs/legacy/standard/java/datastore/
https://junit.org/junit5/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://nodejs.org/en
https://react.dev/
https://styled-components.com/

3. Requirements

3.2 Functional Requirements

The functional requirements de�ned in this section adhere to the Functional-
MASTeR template (Rupp & SOPHISTen, 2020) depicted in �gure 3.1.

Figure 3.1: FunctionalMASTeR template

The auxiliary verbs shall, should, and will are used to express a degree of
importance. In practice, they are associated with legal bindings. Manda-
tory requirements are expressed with the keyword shall. The keyword should

is used for requirements that are desirable but not mandatory. The will

keyword allows making statements about the future, thereby facilitating de-
velopment e�orts in anticipation of future requirements.
The following conventions are used to further improve readability. The
<subject matter> is the system and always refers to the recommendation
system that is developed in this project. Instead of PROVIDE <whom?/what?>

WITH THE ABILITY TO, the phrase allow users to is used. The authors' rec-
ommendation is to use more speci�c terms than users because it is too
generic. However, in this particular scenario for the development of a recom-
mendation system, alternatives like "QDA practitioners" or "coding editor

users" do not add much value either.

The requirements de�ned in this section assume that the user is authorized
to perform the respective operation. Details on the permission structure
associated with each action are discussed in section 3.3.

3.2.1 General Functionality

The following requirements are related to the general functions of the rec-
ommendation system. They are independent of the supported entities or
actions.

19

3. Requirements

FR1 The system shall allow users to enable/disable recommenda-
tions on a project level throughout the duration of the project.

FR2 The system shall allow users to access a recommendation
mode to create new recommendations.

FR3 The system shall allow users to access to all recommendations
for a given project through a dedicated editor.

FR4 The system shall allow users to accept and reject recommen-
dations.

FR5 The system shall allow users to vote on recommendations.

FR6 The system shall allow users to discuss recommendations via
a comments section.

FR7 The system shall allow users to identify unseen changes in
recommendations.

3.2.2 Code-related Functionality

While there are general requirements that apply to all entities, the primary
focus of this project is on code-related recommendations.

FR8 The system shall allow users to create a recommendation to
add a new code.

FR8.1 The system shall allow users to work with a partially func-
tional code draft.

FR8.2 The system shall be able to remove the code draft after the
recommendation is rejected or deleted.

A code draft refers to a code generated as a recommendation. While it is inte-
grated into the codesystem, it is marked as a draft until the recommendation
is accepted.

FR9 The system shall allow users to create a recommendation to
relocate a code.

20

3. Requirements

FR10 The system shall allow users to create a recommendation to
update a code.

FR11 The system shall allow users to create a recommendation to
remove a code.

FR12 The system shall be able to apply the action of a recommen-
dation after the recommendatoin is accepted.

For the rest of this thesis, if not speci�ed otherwise, the terms AddCode,
UpdateCode, RelocateCode, RemoveCode, refer to the recommended code
action. Note that this is di�erent from the actual code action. It is also
di�erent from the responsible controller classes which would be denoted as
AddCode and so on.

3.3 Quality Requirements

The requirements outlined in the previous section are essential for evaluating
the outcome of this project. However, the quality of a software system cannot
be properly assessed solely through functional requirements.

Figure 3.2: Quality characteristics of ISO/IEC 25010

According to ISO2501014, the quality of a system is determined by how well
it meets the needs of its stakeholders (e.g. usability, security, maintainabil-
ity). For this project, the two most important stakeholder groups are the
users and the developers at QDAcity. The quality model categorizes prod-
uct quality into characteristics and sub-characteristics. Figure 3.2 shows the
eight di�erent quality characteristics.

14https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

21

3. Requirements

The requirements de�ned in this section follow the PropertyMASTeR tem-
plate (Rupp & SOPHISTen, 2020), shown in �gure 3.3.

Figure 3.3: PropertyMASTeR template

Functional Suitability

QR1 The system shall not break any existing functionality of
QDAcity.

Because of the CI/CD process, QR1 is applicable not only to the �nal out-
come but also to every integration.

QR2 The system shall support a fully functional end-to-end rec-
ommendation work�ow.

Due to the agile nature of the project, the set of supported entities and
actions was always open for reevaluation. However, end-to-end functionality
means that regardless of how the scope of this set of entities and actions
is de�ned, the work�ow from creation, review, to resolution shall be fully
covered.

Performance E�ciency

QR3 The system shall provide the same synchronization capabili-
ties as the rest of the code system.

QR4 The system shall only load open recommendations by default.
Resolved or deleted recommendations shall be loaded on de-
mand.

22

3. Requirements

Compatibility

QR5 The system shall be integrated into the existing QDAcity
technology stack.

QR6 The system should be integrated into the technology stack
according to the roadmap.

See section 3.1 for details on the technology stack.

Usability

QR7 The system shall provide users a localized (German) version
for all user-facing text.

QR8 The system shall provide a UI that is consistent with the rest
of the QDAcity design.

Security

The scope of security is limited to extending the respective modules. It is
assumed that the existing checks work as expected.

QR9 Each endpoint shall check the authentication of a request.
This shall be the �rst course of action.

QR10 Each endpoint shall check the authorization of a request.

QR10.1 The check shall be as early as possible. No data shall be
persisted before the check.

QR10.2 The check shall implement the permission structure de�ned
in Table 3.1.

Maintainability

Quality requirements for self-contained projects are typically con�ned by the
boundaries of the project. Projects that consist of a feature for an ongoing
project can adopt a wider view. This can include the degree to which the
maintainability of the project as a whole was a�ected. To ful�ll such a
requirement the concept of a refactoring radius was utilized. It involves

23

3. Requirements

Table 3.1: Permissions matrix for actions and project roles.

Type of action Owner Organizer Editor Viewer

Enable/disable service (FR1) Yes Yes No No
Accept and reject
recommendations (FR4,12)

Yes Yes No No

Enable/disable
recommendation mode (FR2)

Yes Yes Yes No

Create, update, delete
recommendations
(FR5,6,8-11)

Yes Yes Yes No

View recommendations Yes Yes Yes No

refactoring code that is in close proximity to the code that is currently being
developed. Proximity is determined by a cost-bene�t analysis on a case-by-
case basis. Even though this will not be de�ned as a formal requirement, it
was always an important aspect of the development process. There will be
references to the refactoring e�orts throughout this thesis.

The recommendation system is supposed the handle various entity types.
Thus, modularity, reusability, and modi�ability are particularly important
for this project.

QR11 The system shall be open to extension for additional entities
and actions. The extension shall be possible without modify-
ing any code related to the general functionality.

The quality of a test suite of a system has a direct impact on multiple quality
characteristics. In most applications, the functional correctness (functional
suitability) of a system can only be assessed by an automated test suite. In
general, the more test coverage a system has, the easier it is to maintain and
modify. Additionally, test suites can serve as a form of documentation.

QR12 The system shall include an endpoint unit-test suite.

QR12.1 The suite shall have at least an 85% Lines of Code (LoC)
coverage.

QR12.2 The suite shall have a 100% function coverage (of public end-
points methods.

24

3. Requirements

QR12.3 The suite shall include authorization and authentication tests
for all public endpoints methods.

QR13 The system should include acceptance tests that cover the
features de�ned in 3.2.

25

3. Requirements

26

4 Architecture

This chapter presents the backend architecture of the recommendation sys-
tem. First, section 4.1 elaborates on several aspects of the backend codebase
that guided the architecture design. Following this, section 4.2 outlines the
overarching architecture that aims to address these concerns. Equipped with
the core concepts, section 4.3 delves into the architecture of the recommenda-
tion system. Shifting the focus to the user, the last section (4.4) is dedicated
to the modeling of the recommendation life cycle.

4.1 Background

The fact that the recommendation feature is embedded in a larger system
has implications for the architecture design. The pattern not only has to be
appropriate for the problem, but it also has to �t into the overall system.
Otherwise, it becomes challenging to maintain and encourages developers to
add additional patterns that may not align with the overall system. The
goal of the exploration phase of the backend was to better understand the
di�erent patterns that were being used throughout the codebase. This in-
volved consultation with the core team to assess whether certain patterns
are in line with the overall strategy. During this process, it became clear
that the pattern, which eventually emerged, serves a dual purpose. It is not
only appropriate for the recommendation feature but also has the potential
to improve the overall system when applied. The list below presents the key
observations derived from the exploration.

Google Cloud Endpoints Framework

Endpoint classes and methods make use of Google's Cloud Endpoints Frame-
work annotations for endpoint con�guration. The key consideration for us is
that these methods have the requesting user as the last parameter.

27

4. Architecture

Anemic Domain Model

The backend predominantly adheres to an Anemic Domain Model, implying
that most (domain) objects are simple data classes containing minimal logic.
As a result, all business logic and persistence access must be located else-
where. Primarily, this responsibility is managed by the endpoint methods.
Consequently, all processing requires the user as a parameter. This binds
permissions more to business logic than to individual requests. Although
the testing strategy is intentionally centered around endpoint testing, this
approach inherently leaves no alternatives.

The question of whether this constitutes good or bad practice is not within
the scope of this thesis (Fowler, 2003). As previously mentioned, the goal is
to devise a pattern that �ts into the current system.

Authentication and Authorization

Given the absence of an explicit authentication concept, an invalid user pa-
rameter would lead to authorization checks failing. Typically, each endpoint
employs authorization check(s) via the Authorization.check method. Im-
portantly, this approach already separates this concern. However, because
endpoints frequently invoke other endpoints, authorization is checked multi-
ple times. This not only lacks clarity but is also ine�cient.

Peristence Layer

Due to historical factors, the backend employs multiple persistence Application
Programming Interface (API)s. The formerly used JDO library, which is now
deprecated, is still present in the code base. The Objectify library is adopted
for new features and is intended to replace JDO in the future. Nonethe-
less, this migration will require a substantial amount of time. The App
Engine Datastore API is a low-level API, designed speci�cally for the data-
store. This stands in contrast to JDO, a standardized API that makes no
assumptions about the underlying technology. The low-level API is used in
cases where the inheritance structure permits datastore access via JDO. The
DatastoreFacade is a simple wrapper for the low-level API, which can be
seen as an initial attempt to wrap vendor APIs. Additionally, the Cache class
provides a cache layer to increase performance. However, it is not used con-
sistently across the code base. Data access in JDO works distinctly from all
other APIs. Whereas the other APIs provide functionality via static meth-
ods, JDO requires the caller to manage a PersistenceManager (PM) object
manually. This led to extensive nested PM handling across the codebase.

28

4. Architecture

Typically, endpoints combine direct data access through JDO with other
functions, which manage their own PM instance.

This amalgamation of APIs is a result of multiple factors. Primarily, the
vendor APIs lack custom interface wrappers. Additionally, QDAcity's orga-
nizational structure (see section 1.4), makes it di�cult to perform large-scale
restructurings in a short timeframe.

As a result, the development of high-level features often requires low-level
knowledge that is not directly related to the task at hand.

4.2 Re�ned Layered Architecture

Following the explanations of Richards (2015, Chapter 1), the Layered Ar-
chitecture Pattern is the most common architecture pattern, especially for
Java applications. In a layered architecture, components are organized into
horizontal layers. Each layer is concerned with a speci�c concern within the
application. While the pattern itself does not speci�y the number or type of
layers, the majority of applications have four layers: presentation, business,
persistence, and database.

The separation of concerns is also one of the main advantages of this pattern.
Layers can be categorized into two groups: open and closed. A closed layer
strictly requires that higher layers only interact with that layer. In contrast,
open layers permit higher layers to bypass them. This is an important feature
to avoid ine�ciencies and unnecessary complexity solely based on a rigid
architecture de�nition.

While QDAcity already implements a layered architecture with its founda-
tional business and persistence layers, addressing the issues outlined in the
previous section requires a more re�ned approach. Figure 4.1 shows a high-
level overview of the re�ned layered architecture.

Endpoints

Endpoint methods are primarily tasked with handling authorization and au-
thentication of requests. Additionally, in certain cases, they handle unpack-
ing request objects or managing response objects. They should be devoid
of any business logic and de�nitely not interact with any of the persistence
layer interfaces.

The endpoint layer is by default a closed layer because the presentation layer

29

4. Architecture

Figure 4.1: Re�ned Layered Architecture

is located on the client side.

Controllers

Controllers play the central role in this design approach. Within the system,
they have multiple responsibilities. Primarily, every endpoint must have an
associated controller function that encompasses the required logic to process
the request. Often, these functions mirror the endpoints, but without the
dependency on a user. Simultaneously, controllers act as an API for other
controllers. This approach also prevents multiple authentication checks, del-
egating this concern to the calling endpoint. Owning to the Anemic Do-
main Model, they also provide public interfaces to interact with semantically
related objects. This implies that not every object requires its own con-
troller class. Controllers encapsulate all interactions with the persistence
layer, enabling a smoother migration of persistence APIs without modifying
any endpoints or calling functions. Such decoupling, also has advantages for
testing, allowing the testing of functionality irrespective of authorization and
authentication.

30

4. Architecture

The controller layer functions as a closed layer, as endpoints are prohibited
to access the persistence layer directly.

Data Access Objects (DAOs)

The Data Access Objects (DAO) pattern is a structural design pattern that
enables the separation of the business layer from the persistence layer. While
this concept is applicable to most environments that deal with persistence,
it is predominantly used in Java applications and relational databases. Orig-
inally, the pattern features a relatively intricate class structure that involves
abstract factories. However, the primary objective at this stage was to em-
bed the logic within controllers and delegate datastore access to the DAOs.
Instead of de�ning a �xed interface to encapsulate several interfaces up-
front, the intention was to let the interfaces converge from slightly varying
signatures. The majority of the DAOs employ either JDO or Objectify to
perform datastore access. Merging these two into a uni�ed interface remains
signi�cantly simpler than replacing the direct usage of the public APIs. Ad-
ditionally, DAOs are responsible for simple caching mechanisms.

The DAO layer acts as an open layer, allowing controllers to directly interact
with the di�erent persistence APIs for operations like custom caching or
complex queries.

Context Object

One observation described in section 4.1 indicates that two predominant de-
pendencies: the user and the PM object. The purpose of the context object is
to encapsulate these entities while making them accessible to all controllers.
The context object manages the PM (i.e. opening and closing) and provides
the methods (execute(func), executeWith(user, func)), which allow the
execution of arbitrary code without the necessity to manage PM directly.
Additionally, it initializes the UserSerivce which provides access to the cur-
rently authenticated user. In the case of a non-authenticated user, it throws
an exception. The creation of the context object is handled by the endpoint
layer and is supposed to be the �rst action of every endpoint function. Sub-
sequently, this object is passed to the controller constructors. Given that the
context object encapsulates all shared data for a request, the construction
of controllers is less likely to change. This stability allows for the develop-
ment of controller functions without requiring speci�c knowledge about their
usage.

The context object enables the passing of data from the endpoint layer to

31

4. Architecture

the DAO layer. While this is generally regarded as an anti-pattern, it is a
necessary evil that expedites the migration process.

4.3 Recommendation Controller Design

The previous section introduced the key components of the re�ned layered
architecture. While it later evolved into a broader strategy, its initial design
was tailored for the recommendation system. In alignment with the layered
pattern, the recommendation system comprises a RecommendationEndpoint,
RecommendationController, and a RecommendationDAO class. Notably, the
recommendation controller exclusively interacts with action controllers. A
crucial element of this design is that the recommendation controller remains
unaware of the speci�c types of recommendations supported. Instead, it only
interacts with an action controller interface. These action controllers in turn
interact with controllers responsible for the respective entity types. The sep-
aration of controllers and endpoints, allows us to de�ne di�erent permission
requirements when accessed through the recommendation work�ow. Figure
4.2 shows the component view of the system.

Figure 4.2: Recommendation controller design

4.4 Recommendation Life Cycle

Section 3.2.1 has already outlined the various features that a single recom-
mendation must encompass. However, solely based on the requirements, it

32

4. Architecture

remains unclear how these individual features �t into the end-to-end recom-
mendation work�ow. There are multiple bene�ts to explicitly modeling the
recommendation life cycle. Foremost, it enables us to verify our understand-
ing of the problem. Consequently, it aids in determining the correctness and
completeness of the requirements. Moreover, a model serves as documenta-
tion and a point of reference for future developments. Figure 4.3 depicts the
�owchart of the recommendation life cycle.

Figure 4.3: Flowchart of the recommendation life cycle

The recommendation's life cycle starts with its creation. In principle, it is
possible to model the �ow of the creation process too. However, this depends
on the type of recommendation, and the life cycle model should remain in-
dependent of the speci�c type. After the creation of the recommendation, it
transitions into the review phase, which essentially involves a loop of voting
and commenting. This continues until a decision is reached regarding the
resolution of the recommendation. However, a recommendation can only be
accepted if its action can be applied. Whether an action can be applied or not
depends on the codesystem state. The action of a recommendation can be
seen as a deferred change, which implies that the state of the data may have
changed between the creation and the review of the recommendation. When
human decisions are involved, this can take days or even weeks. This makes
outdated reference values a very common scenario. However, this does not
necessarily mean that the action cannot be applied anymore. For example,
the recommendation to change the name of a code is still valid, even if the
name has already been changed. On the other hand, the recommendation to
change the name of a code, that has already been deleted, is not valid any-
more. In case the user disapproves (or the action cannot be applied), there

33

4. Architecture

are two possible ways to dismiss a recommendation. Depending on whether
the recommendation should still be traceable, the user can reject or delete
it.

34

5 Implementation

Chapter 5 describes the implementation of the most important classes and
components of the recommendation system. The chapter is divided into three
sections. The �rst section (5.1) focuses on the core backend classes involved
in the recommendation work�ow. Following that, section 5.2 discusses the
frontend implementation and UI elements. In the last section (5.3), the RTCS
extension is explained, which is responsible for the synchronization.

5.1 Backend

To ensure a clean separation of concerns, the functionality of the recom-
mendation system is divided into two distinct groups of classes. Subsection
5.1.1, focuses on classes concerned with general functionality. Then, subsec-
tion 5.1.2 describes the classes that handle code-related functionality.

5.1.1 General Recommendation Classes

As outlined in the previous chapter the RecommendationController (Fig-
ure 5.2) acts as the central class, encompassing the entirety of the recommen-
dation system's functionality. This section omits the RecommendationEndpoint
class because its sole purpose is to check authorization and then delegate the
task to the controller. Figure 5.1 shows the class diagram of the Recommendation
class, while Figure 5.2 depicts the class diagram of the RecommendationController
class.

The majority of the controller functions follow a two-step control �ow. The
initial step varies based on the speci�c function, primarily focusing on up-
dating the recommendation's target �elds The subsequent step is a universal
update procedure, invoking setLastUpdate() and updateSeenByUsers().
The former simply modi�es the lastUpdate �eld with the current user and
timestamp. Meanwhile, the latter pertains to the noti�cation feature. To

35

5. Implementation

Figure 5.1: UML class diagram of the Recommendation class

implement the noti�cation feature, it is essential to track whether a user
has seen a recommendation. since its most recent update. The private at-
tribute seenByUsers serves this purpose. Upon entering the coding editor,
recommendations for the respective project are loaded. During this opera-
tion, the isSeen attribute is set dynamically according to the seenByUsers
entry corresponding to the requesting user. For requests, that update the
recommendation, all users are removed and only the user that initiated the
request is set. The controller function updateSeenByUsers() manages this
action. As soon as a user opens the review (see subsection 5.2.2), of an
unseen recommendation, the setSeen() endpoint is invoked, updating the
seenByUsers attribute.

The VotingStatus class is employed for storing user votes and acts as a
wrapper around a Map<String, Boolean>. In this structure, the user ID
serves as the key, while the vote itself is stored as a boolean value. Naturally,
true represents an upvote, and false a downvote. The controller functions
vote() and retractVote() are used to modify the voting status for the
current user.

Due to the adoption of a �at comment structure, a basic List<Comment>

su�ces. As a result, it is only possible to append a new comment but not

36

5. Implementation

Figure 5.2: UML class diagram of the recommendation controller

to reply to an existing comment. Because a recommendation is always asso-
ciated with a single code, the set of changes stays small. Consequently, the
comment structure is not expected to grow very complex. Hence, this limita-
tion is acceptable. The comment feature is fully supported with the following
API endpoints and their corresponding controllers functions: addComment(),
updateComment(), and deleteComment(). Naturally, only the author of the
comment is authorized to update or delete it. The Comment class is a simple
data class that contains the following attributes: authorId, author, text,
createdAt, modifiedAt, isDeleted. As indicated by the isDeleted at-
tribute, comments are not actually removed from the database. Subsection
5.2.2 explains the reasoning behind this decision.

37

5. Implementation

5.1.2 Action Classes

The RecommendationAction class is a data class that contains all data nec-
essary to perform a code action. The class diagram is shown in Figure 5.3.

Figure 5.3: UML class diagram of RecommendationAction class

The targetType speci�es the entity type. The RecommendationType enum
currently only contains the CODE enum. In the case of code recommendations,
the targetId refers to the code ID. The Long data type is su�cient since
all potential entity candidates have IDs of type Long. The type attribute is,
again, an enum of RecommendationActionType with values CREATE, UPDATE,
RELOCATE, and DELETE that mirror the regular code actions. The actual pa-
rameters of the operation are stored in the JSON-formatted String attribute
arguments. The contextData �eld is used to store additional information,
such as the values of the target object at the time of the creation of the rec-
ommendation. Following the described controller approach the actual logic
is implemented in action controllers.

Controller classes

For every valid pair of RecommendationType and RecommendationActionType,
one action controller has to be implemented. This controller has to implement
at least the top-level interface RecommendationActionController. In this
case, only the apply(RecommendationAction) method has to be overridden.

38

5. Implementation

Based on the values of RecommendationType and RecommendationActionType
the factory method createInstance returns the responsible action con-
troller. Additionally, it contains a default implementation for hasDependencies
which simply returns false. The concrete action controllers UpdateCode,
RelocateCode, and RemoveCode implement this interface directly because
they reference already existing codes. However, for AddCode recommenda-
tions the code draft needs to be created and inserted into the actual code sys-
tem during the creation process. More generally, actions that have some sort
of dependency associated with them implement the DependentActionController
interface. While setupDependecies() is called inside of
initAndInsertRecommendation(), removeDependecies() is called inside
rejectRecommendation() and
deleteRecommendation(). Figure 5.4. shows the class diagram of the action
controllers.

Figure 5.4: UML class diagram of the Action controllers

As described in 4.4, values in arguments may be outdated. Therefore, one
would expect the interface to have a method like checkForConflicts().
However, the controllers can just assume that the data is still valid. The con-
�ict handling is done on the frontend, which is explained in subsection 5.2.4.

5.2 Frontend

The �rst two subsections (5.2.1 and 5.2.2) address the fundamental com-
ponents of the recommendation life cycle. Subsection 5.2.3 discusses the
similarities and di�erences between the editor and the modals. The question

39

5. Implementation

of whether an action can be applied or not is explored in 5.2.4 Con�ict Han-
dling. To make this feature practical for collaborative work, subsection 5.2.5
explains the implementation of the noti�cation feature.

5.2.1 Creation Flow

The codesystem supports four high-level code operations: insert, update, re-
locate, and remove. The recommendation system has counterparts for all
four. While having a consistent overall UI for recommendations, an impor-
tant goal of the creation process was to align the di�erent operations with
their counterparts. There are essentially two di�erent approaches when de-
signing the creation process for a feature of this type. The �rst one is to
simply extend the existing UI with all the necessary components, resulting
in a new element for each action. Once the recommendation system supports
more entities and actions this would result in a very cluttered UI. The sec-
ond approach is to introduce a new mode in which the familiar actions are
executed as recommendations. We took the second approach.

So, to create any kind of recommendation the user has to �rst activate the
recommendation mode. Figure 5.5 shows the button to toggle the recommen-
dation mode, which is located at the top right corner of the coding editor.

Figure 5.5: Recommendation mode button

When the recommendation mode is activated, the UI is slightly altered, hid-
ing components that are not relevant to the recommendation work�ow. An
example of this is the documents' toolbar.

The initial step mirrors the procedure of its counterpart. The AddCode,
UpdateCode, and RemoveCode recommendations are crafted using the (rec-
ommendation mode) codesystem toolbar. Meanwhile, a RelocateCode rec-
ommendation is created via drag and drop. In normal mode, the process
ends at this point and the action is executed. In recommendation mode, the
second step opens a modal that displays the resulting action and a comment
�eld to add a rationale. Figure 5.6 shows the �nal modal for an UpdateCode

recommendation.

40

5. Implementation

Figure 5.6: UI of the creation modal

5.2.2 Review Flow

The review of a single recommendation is the cornerstone of the entire work-
�ow. It has to provide all relevant information and encompass every interac-
tion associated with it. This is encapsulated within the RecommendationReview
component, which is showcased in Figure 5.7.

Voting mechansim

The VotingController component displays existing votes and enables users
to vote. When a user votes, the associated button is highlighted and the
number of votes is increased by one. In adherence to the UI principle of
providing undo operations, a subsequent click retracts the vote (Nielsen,
1995). Currently, both buttons only display the vote count. An option for
future enhancement could involve displaying the individual users who have
voted. However, because of its low priority, this has not been implemented
yet.

Comments Section

The comments section consists of two main components: CommentInput and
Comment. In addition to presenting the content, the Comment component
provides various related features. To mitigate cognitive load, icons are only

41

5. Implementation

Figure 5.7: UI of the review component

displayed when the user hovers over the comment area. If there is no di�er-
ence between the original comment and the input, saving does not trigger an
updateComment call, which avoids unnecessary API requests.

There are two approaches to deleting comments: either the comment is en-
tirely removed, or it is marked as deleted. The latter approach is implemented
to prevent misunderstandings, especially when comments refer to other com-
ments that have been deleted. Figure 5.8 shows a deleted comment.

Figure 5.8: UI of a deleted comment

Recommendation Action

The RecommendationAction serves as the central component of any rec-
ommendation, de�ning the actual suggested action. Unlike the preceding
elements, this aspect varies based on the action type.

42

5. Implementation

The �rst line (ActionStatement) articulates the operation to be executed.
For RelocateCode and RemoveCode actions, this su�ciently represents the
action. In the case of UpdateCode operations, the section below is utilized to
give a detailed overview of the speci�c attributes that are being changed. To
accurately assess the value of the proposed changes, users need to be able to
identify both the proposed and current values. This is visually highlighted in
the form of a red background for the current values and a green background
for the new values.

5.2.3 Review Editor and Modals

The previous subsection discussed the review of a single recommendation.
However, typically, there are multiple recommendations to consider, necessi-
tating the use of a list component. Figure 5.9 displays two items
(RecommendationOverview) from the RecommendationList component. The
left side presents details about the action, author, and creation date. For Up-
dateCode recommendations, only the �rst attribute is shown. Moreover, it
indicates the count of upvotes, downvotes, and comments.

Figure 5.9: UI of the recommendation list.

By combining both components, the review �ow is almost complete. In fact,
from the user's perspective, the modal version consists primarily of these
two components. To ensure consistent modal behavior, these components
are incorporated into generic modal components.

Unlike the modal version, the editor functions as a central hub for all types
of recommendations. Furthermore, it o�ers distinct tabs for open, accepted,
and reject recommendations (Figure 5.10). The RecommendationReview

component for resolved recommendations closely resembles the one described
in the previous subsection. However, votes are disabled and the toolbar is
concealed, leaving only the comment section functional.

43

5. Implementation

Figure 5.10: UI of the review editor tabs.

5.2.4 Con�ict Handling

Modifying the codesystem state can result in varying impacts on the valid-
ity of an action. The ActionStatus constants are employed to encompass
these di�erent scenarios. A value of VALID signi�es that none of the val-
ues related to the action changed. An action that remains applicable but
includes outdated reference data is labeled STALE_VALID. When an action
becomes irrecoverably invalid, it is assigned the status TERMINAL_INVALID.
This typically arises when the target code has been removed or, in the case of
a RelocateCode action, when the new parent code has been removed. Conse-
quently, the only way to resolve such recommendations is to either reject or
delete them. Figure 5.11 shows an example of a TERMINAL_INVALID action.

Figure 5.11: UI of a recommendation with a terminal invalid action.

The evaluation of the ActionStatus occurs entirely on the client side. The
function setActionStatus(recommendation, codes) is used to set the sta-
tus �eld of the action based on the state of the codesystem. This function
is invoked within the state update function setCodes(codes) located in
CodingEditor. Hence, whenever the codes are updated, the status of each
action is reevaluated.

44

5. Implementation

5.2.5 Noti�cations

The �rst instance of what can be considered a noti�cation is the appear-
ance of a light bulb when a recommendation is created. However, this is
inadequate for two reasons. The light bulb solely indicates the presence of
recommendations but does not specify whether they are new. Moreover, it
fails to provide any indications of updates to recommendations, such as new
votes or comments. In essence, the role of a noti�cation feature is to track
unseen changes. In this context, changes encompass both updates as well as
new recommendations.

Figure 5.12: Red dot on code (left) and recommendation level (right).

Visually, the noti�cation takes the form of a red dot (Figure 5.12). The red
dot can appear in two locations. On the code level (left), the dot indicates
whether any of the recommendations associated with that speci�c code con-
tain changes. The dot on the right is integrated into the recommendation
overview and is associated with the recommendation itself. As anticipated for
unseen changes, the red dot vanishes once the user accesses the corresponding
review.

At a technical level, two scenarios have to be addressed the achieve this
behavior. Firstly, when a user enters the coding editor, it is necessary to
manage recommendations that have been updated since their last visit. The
paragraph Noti�cations in subsection 5.1.1 describes how this is handled
on the backend. Secondly, changes that occur while the user is actively
using the coding editor must be handled. For this, the event handlers de-
scribed in section 5.3 are utilized. Depending on whether it involves a new
recommendation or an update to an existing one, either the authorId or
lastUpdate.userId is used to determine whether the event was triggered
by a di�erent user, and thus needs to be marked as unseen.

45

5. Implementation

5.3 RTCS

As already described in section 1.2, the RTCS manages the synchronization of
various entities, but most importantly, codes and codings. To equip the rec-
ommendation system with similar functionality, the RTCS must be extended
accordingly. This applies to all write requests that modify data observable by
other users. In the context of the recommendation system, this encompasses
all endpoints except listRecommendations and setSeen. While the former
constitutes a read request, the latter solely modi�es user-speci�c data.

Fortunately, the system is well designed in this aspect, which facilitated a
seamless integration. At its core, the RTCS maps API calls to events and
vice versa. Therefore, any extension requires de�ning new events and their
associated handlers. The remaining section follows the data �ow shown in
Figure 5.13.

Figure 5.13: Data �ow of a RTCS request.

As part of the SyncService, the main class of the RTCS client, the
RecommendationService class exposes the new interface. The methods
within this class simply dispatch the associated messages (along with their
payload) to the RTCS server. The term message is used to refer to events
sent from the client to the server, while events sent from the server to the
client are simply referred to as events. There exists a direct correspondence
between messages and endpoints, which has led to the inclusion of the newly
added messages shown in Table 5.1 (left). On the server side, the task is to
map incoming messages to endpoint requests and responses to events. To
accomplish this, the events shown in Table 5.1 (right) were introduced.

Finally, the SyncService forwards the events to all connected users, prompt-
ing the execution of the associated handlers on the client. These han-
dlers predominantly just update the state containing recommendations and
codes. Updates that only a�ect the recommendation itself are handled by
the recommendationUpdated handler. Since all of these updates are han-
dled the same way, a single event (updated) su�ces. This is di�erent for
the remaining events, since recommendations are never isolated entities and

46

5. Implementation

Table 5.1: Extended RTCS messages (left) and events (right).

Messages Events

insert inserted

accept accepted

reject rejected

delete deleted

vote updated

retractVote (updated)
addComment (updated)

updateComment (updated)
deleteComment (updated)

are always associated with other objects, there is a close relationship to the
handling of code-related events. This relationship is particularly apparent in
the recommendationAccepted handler. For the RelocateCode, UpdateCode,
and RemoveCode operations, the corresponding code-handler is invoked. The
AddCode operation is an exception, as the code was already included during
the creation process. In this case, codeUpdated is invoked with the draft

attribute set to false. The fact that the recommended code is already part
of the codesystem without being accepted has additional implications for
handling recommendationDeleted and recommendationRejected. In both
cases, codeRemoved is called to remove the code draft again. The relation-
ships between the handlers are visualized in Figure 5.14.

Figure 5.14: Relationships between recommendation and code handlers.

47

5. Implementation

48

6 Evaluation

Chapter 6 o�ers a thorough evaluation of the recommendation system. The
�rst section (6.1) presents the usability test conducted to evaluate the sys-
tem's usability. Sections 6.2 and 6.3 then compare the �nal implementation
state against the functional and quality requirements de�ned in chapter 3.

6.1 Usability Test

An essential component of evaluating the system's quality involves obtaining
feedback from users. To accomplish this, a usability test was conducted.
Although the primary focus of a usability test is the system's usability, it
is also possible the gain insights into other quality aspects (e.g. functional
suitability). The initial portion of this section explains the test design, while
the subsequent portion presents the test results.

6.1.1 Design

The method used in this design is based on heuristic evaluation (Nielsen,
1995). Within the scope of this project, heuristic evaluation o�ers multi-
ple advantages over traditional usability testing. Regarded as a "discount
usability engineering" method, it proves to be more cost-e�ective than the
conventional approach. Not only does it require a smaller number of evalu-
ators, but usability experts are also usually very expensive. Nielsen recom-
mends 3-5 evaluators for a heuristic evaluation. In this evaluation, we engage
three evaluators, which meets the suggested minimal number. Since evalua-
tors tend to uncover di�erent usability problems, a relatively small number
su�ces to identify the most important issues. Furthermore, this method
accommodates the presence of an observer who can assist during the test,
making it well-suited for domain-speci�c applications. QDAcity undeniably
falls into this category. Lastly, the evaluators are interviewed individually,

49

6. Evaluation

which signi�cantly reduces the coordination e�orts.

Evaluators

An important aspect when recruiting evaluators is their area of expertise.
The decision to concentrate on work-domain experts is based on several fac-
tors. Users who lack familiarity with a tool like the coding editor would �nd
it challenging to concentrate exclusively on the facets of the recommenda-
tion feature. Additionally, Følstad (2007) suggests that work-domain experts
tend to focus on issues that have a higher impact. Consequently, the criterion
for selecting potential experts was as follows: they should possess substan-
tial knowledge of QDA and some familiarity with QDA software. Beyond
their commonalities, achieving a certain level of diversity was also impor-
tant. Expert 1 is a frequent QDAcity user, with no further involvement in
the project. Expert 2 exhibits some familiarity with QDAcity but primarily
uses MAXQDA. Additionally, they have a strong software engineering back-
ground. Expert 3 serves as the team lead and a key developer at QDAcity.
With these pro�les in mind, the goal was to gather versatile feedback.

Procedure

As all evaluators were familiar with QDAcity, there was no need for a general
introduction to the software. To ensure consistent results, each interview took
place within a distinct but identical demo project. The project's problem
domain was a door communication system, which was already set up as
part of previous research. Besides taking the observer role, I served as a
collaborator. This approach aimed to make the interview more realistic, as
the recommendation system is inherently collaborative in nature. Moreover,
it allowed for the testing of the noti�cation feature.

Given that there are only two core work�ows (creation and review), the
objective was to cover all variations within those two. The evaluators were
encouraged to provide commentary on the following questions throughout
the test:

� What did you expect?

� Were you surprised?

� Is there anything missing?

� What would you improve?

50

6. Evaluation

At the beginning of the session, the evaluator was asked to enter the cod-
ing editor and gain an overview of all the codes, codings, and documents
involved. During this phase, the recommendation service was disabled, mak-
ing it no di�erent from a standard project. Following a period of familiarizing
themselves with the content, the evaluator was directed to re-enter the cod-
ing editor. However, this time, the recommendation service was enabled.
Given that the test project was initially con�gured accordingly, the prepared
recommendations became visible. As part of the initial task, the evaluator
assumed the role of a reviewer, with the objective of assessing the newly
introduced recommendations. For the subsequent task, the evaluator was
tasked with creating their own recommendations. In cases where an evalua-
tor only produced certain types (e.g. add or update), they were instructed
to repeat the process for the remaining types.

After completing both tasks, the interview continues with two open questions.
The �rst question pertains to whether the noti�cation feature adequately
addresses all the requirements of a collaborative work�ow. To gain a deeper
understanding of the di�erent use cases of a recommendation feature, the
second question explores the concept of batch recommendations.

The session proceeds with two concise questionnaires. The �rst consists of
three questions, which aim to capture the impact of this feature on their col-
laborative work�ow. The second questionnaire employs the System Usability
Scale (SUS) (Brooke, 1995). a general-purpose usability assessment tool.

Finally, the evaluators are given the opportunity to share any additional
thoughts. This serves to address any open questions and allows for feedback
within a broader context.

Data Collection

The data collection process involved taking handwritten notes. Upon com-
pletion of the interviews, these notes were transferred to a basic text editor
for additional cleaning and structuring. Furthermore, in some instances, the
�rst evaluator utilized the comment section to provide feedback. Any cryptic
or shorthand notes were augmented with contextual information while the
details were still vivid in memory.

Data Analysis

After the collection phase, the interview notes were organized according to
the individual evaluators. The next step was to restructure the notes based
on topics and to eliminate redundant information.

51

6. Evaluation

6.1.2 Results

This section presents a comprehensive overview of the results. The complete
set of notes and the questionnaires can be found in the appendix.

General Feedback

During the course of the interviews, several statements were made that do
not �t into either the review or the creation �ow. These statements mostly
pertained to the feature as a whole.

First and foremost, it was noted that there should be a tutorial or help
function to introduce this feature.

As part of the review �ow, the evaluators experienced the process with di�er-
ent permission levels. Two evaluators perceived the permission structure as
slightly counter-intuitive, questioning why editors cannot accept recommen-
dations while they have the ability to make direct changes to the codesystem.

One evaluator proposed the idea of recommendations without speci�c actions
(e.g. "Split this code"). Such a feature would resemble the general comment
feature o�ered by Google Docs (2.2.1).

One idea, in a broader context, was aimed at the entire codesystem and
not limited to recommendations alone. In general, users should be informed
about codesystem changes, for example, "SomeUser changed 'group' code to
'Concepts'".

Review Flow

Several interesting observations could be drawn regarding the review work-
�ow in general. Initially, all evaluators opted for the modals to review the
existing recommendations. It was only later, and in two cases with addi-
tional guidance, that they noticed the dedicated editor. It was stated, that
this was primarily attributed to the visual prominence of the red dots within
the codesystem view. During the �rst encounter, the dots were interpreted
as some kind of "to-do" action. Despite this, the editor was universally per-
ceived as an essential feature. Indeed, one evaluator expressed con�dence
that a large portion of their review process would be performed using the
editor. They continued by expressing a desire for an option to hide all rec-
ommendations from the codesystem view. They mentioned having distinct
work�ows and were concerned that the mere presence of recommendations
could introduce bias into their coding process.

52

6. Evaluation

Since the review component is the central component automatically gener-
ated or manually typed. However, after reviewing several other recommen-
dations, became convinced that it must be auto-generated. One signi�cant
criticism was that it is di�cult to quickly identify the values being changed.
Evaluating a change requires understanding the values that are being modi-
�ed, which is nearly as important as the new values. To access these values,
one must �rst search for the code and then open its properties. This issue
was highlighted by all three evaluators. Two improvements were suggested
to address this issue. First, the selection of a recommendation should si-
multaneously select the corresponding target code. This would eliminate the
need for manually searching. Second, the recommendation should display the
changes in the form of a di� or delta, similar to how changes are displayed in
MRs on GitLab. The voting mechanism was deemed essential, as comments
alone often do not make it clear what the current state of approval is. It was
also understood that a vote serves as a form of communication and does not
lead to any further actions (such as applying the action). One critique was
that there was no way to retract a vote once cast. The comments section
was generally considered su�cient for this context. One interesting idea was
to add the capability to enable users to tag or link various entities, like users
or codes ("Hi @someUser, check out #someCode"). The tagging of users
could then be integrated into the noti�cation feature to allow for targeted
communication. Two further comments were provided regarding the styling
of the accept and reject buttons. It was suggested that, in case the user has
the permission, these buttons should be colored green and red respectively.
In case the user lacks the permission, the tooltips appear too slow. This
was followed by the suggestion to display such messages directly next to the
button, rather than only on hover.

When exploring the editor, it was pointed out that the split screen is helpful
as it eliminates the need to switch between views and having to reassess
where to proceed next. One evaluator suggested several improvements for
the editor, particularly if more entities are supported. Firstly, they proposed
standard sorting and �ltering options (author, date, type, etc.). Additionally,
they put forward the idea of assigning labels (e.g. priorities) to individual
recommendations.

Creation Flow

It appears that, without further explanation, the meaning of the recommen-
dation mode depends on the familiarity with other tools, such as Google
Docs. Two out of three evaluators immediately knew what to expect from

53

6. Evaluation

this mode due to their prior experience with Google Docs' Suggestion Mode.
That is, after activating the recommendation mode, all changes are inter-
preted as recommendations. Initially, the evaluator lacking this familiarity
struggled to form a concrete idea of what to expect.

Continuing the exploration of the recommendation mode, it was unexpected
for two evaluators to realize that document-related actions still functioned
as direct changes to the project rather than as recommendations. Apart
from the changed codesystem toolbar, there were no additional visual cues
regarding whether a particular interactive element now operates as a recom-
mendation or not. The expectation was that every visible element would be
connected to the recommendation system. The lack of visual distinctiveness
was also pointed out concerning the mode as a whole, indicating that it might
not be immediately apparent in which mode the user is currently operating.
The button text "Deactivate recommendation mode" was not perceived as
visually prominent enough.

After the initial exploration phase, the evaluators were tasked to create their
own code recommendations. The alignment of the creation of code recom-
mendations with the corresponding code actions was perceived as pleasing.
Because of this, every creation process was self-explanatory. In the begin-
ning, one evaluator, was uncertain if it was possible to add multiple attributes
to an UpdateCode recommendation. Nonetheless, they proceeded with con-
�dence, believing it to be feasible. Overall, the process did not reveal any
issues.

Regarding the creation modal, the action overview was viewed as helpful
because it provides the user the opportunity to review the recommendation
before its creation. One suggested improvement was to add an explanatory
text to the comment �eld that encourages users to add their reasoning behind
the recommendation. The concern was that users might frequently leave the
comment �eld empty.

For all code recommendations except AddCode, the creation process is com-
pleted. The behavior of the newly created code draft matched the expecta-
tions of the evaluators.

Open Question 1 - Noti�cation Feature

The noti�cation feature was universally perceived as satisfactory for the cod-
ing editor. However, it was highlighted that the current version only aids
in identifying updates of recommendations that are still open. Once a rec-
ommendation is either accepted or rejected, it simply disappears from the

54

6. Evaluation

codesystem. There should be some form of noti�cation to indicate that a
recommendation has been resolved. Especially, if this results in a changed
codesystem state.

Moving beyond the boundaries of the coding editor, the idea of integrating
the recommendation-noti�cation feature into QDAcity's global-noti�cation
mechanism (Figure 6.1) was described. As the number of projects a user is
involved with increases, the sign�cance of global noti�cations becomes more
prevalent.

Figure 6.1: Global noti�cation feature

Open Question 2 - Batch Recommendations

First, the concept of batch recommendations was described solely as the
ability to bundle multiple recommendations into a set (batch). Consequently,
the recommendations contained in a batch can only be accepted or rejected
together. However, relying on this description, two evaluators required a
simple example to comprehend the concept.

The value of such a feature was primarily recognized in more complex sce-
narios such as:

� Relocating multiple codes to a new parent

� Updating the same attributes of multiple codes

� Replacing a code by deleting an existing and adding new one

� Adding multiple codings at once (in case coding recommendations are
supported)

55

6. Evaluation

� for multiple codes for a new document

� for single code for multiple documents

However, the frequency of such cases was estimated to be relatively low.
Therefore, batch recommendations were not regarded as a high-priority fea-
ture.

Questionnaire 1 - Custom

The �rst questionnaire focuses on assessing the impact of the recommen-
dation feature (B.1). It consists of three custom questions, which means
that no reference values exist. Even though a statistical analysis is not ap-
plicable, the answers can still be used to gain insights. The scores suggest
that the recommendation feature helps to reduce the communication over-
head (Q1) and make the (collaborative) work�ow more e�cient (Q3). Based
on the scores and the oral feedback for Q2, the current implementation is
not capable of completely replacing the current communication channels. It
was stated that a general-purpose communication channel is almost always
needed. However, in cases where a certain change can be expressed via a
recommendation, communication will shift to the recommendation feature.

Questionnaire 2 - SUS

The total (average) score of the SUS (B.2) is 79.2. When comparing the
individual scores, the two evaluators who are not part of QDAcity average
83.75. In contrast, the internal evaluator gave a signi�cantly lower score
of 70. It is important to emphasize that, statically, an average of three
participants, implies a high level of uncertainty. Especially, since there is
already a large deviation between these three. Despite this limitation, it is
important to understand what a score of 79.2 means. Bangor et al. (2009)
conducted extensive research on the interpretation of individual SUS scores.
As a result of their research, they propose three distinct scales: grade scale,
acceptability ranges, and adjective ratings.

According to these scales, the value 79.2 can be categorized as follows:

� Grade scale: Assignment of C, but very close to B.

� Acceptability ranges: Assignment of ACCEPTABLE

� Adjective ratings: Assignment between GOOD and EXCELLENT

The authors delve into more detail regarding the di�erences among these
methods and the question of which might be more suitable than the others.

56

6. Evaluation

However, such an in-depth discussion is beyond the scope of this thesis.

Based on the implementation (chapter 5) and the test results, the remaining
chapter is concerned with the evaluation of the requirements.

6.2 Functional Requirements

The recommendation feature is very user-centric by its nature. It is, there-
fore, reasonable to evaluate the functional requirements mostly from the
user's perspective.

6.2.1 General Functionality

The project settings now include an option to enable the recommendation
feature (Figure 6.2). A section for services was added to separate it from
the other self-contained editors. As with the rest of the project settings, it is
possible to modify these settings throughout the project's life cycle. In the
case of the recommendation service, this simply means that the codesystem
is loaded without code drafts, and recommendations are not loaded at all.
Thus, it is possible to disable the feature temporarily, without losing any of
the data.

FR1 is satis�ed.

Figure 6.2: Project settings modal

Nevertheless, the recommendation feature comes with a dedicated editor for
reviews. The functionality, as well as the UI of the editor, were discussed in
subsection 5.2.3.

FR3 is satis�ed.

The review process is nearly identical, whether the user opts for the editor or
the modal. Subsection 5.2.2 provided more details about the review process.

57

6. Evaluation

Figure 5.7, speci�cally, shows the review component, encompassing elements
for resolving, voting, and commenting. The necessary backend functionality
was discussed in subsection 5.1.1.

FR4 is satis�ed.

FR5 is satis�ed.

FR6 is satis�ed.

The noti�cation feature is responsible for informing the user about unseen
changes. The elements comprising this feature were elaborated upon in sub-
sections 5.2.5, 5.3, and 5.1.1.

FR7 is satis�ed.

As highlighted in subsection 5.2.1, users are required to enter the recommen-
dation mode to initiate the creation process. The corresponding button is
depicted in �gure 5.5.

FR2 is satis�ed.

6.2.2 Code-related Functionality

In contrast to other code-related actions, AddCode requires special treatment,
as it alters the code system before the recommendation is accepeted. The cre-
ation and deletion of the code draft is handled by the setupDependencies()
and removeDependencies() methods. Both are enforced by the
DependentActionController interface (subsection 5.1.2). From the back-
end perspective, the code draft is fully functional but is restricted by the
frontend to prevent undesired actions.

FR8 (FR8.1, FR8.2) are satis�ed.

The actions UpdateCode, RelocateCode, and RemoveCode are straightforward
as they do not cause any modi�cations to the code system beforehand. Be-
cause of this, their corresponding action controllers only need to implement
the ActionController interface, which contains a single method: apply

(see next paragraph). Subsection 5.2.1 provided a detailed description of the
creation process for each of them.

FR9 is satis�ed.

FR10 is satis�ed.

FR11 is satis�ed.

58

6. Evaluation

Upon acceptance of a recommendation, the apply method of the respon-
sible action controller is invoked. This delegates the actual work to the
CodeController methods, which then apply the changes to the codesystem.
Details regarding the synchronization are outlined in section 5.3.

FR12 is satis�ed.

6.3 Quality Requirements

Given that the recommendation feature is part of a larger system, the quality
requirements are evaluated with respect to the quality features of QDAcity.

Functional Suitability

Any change that would break other parts of the system is expected to be
identi�ed through existing (1) unit tests, (2) acceptance tests, or (3) manual
tests. While each of these tests might not provide full coverage individu-
ally, their collective usage is su�cient to cover the core work�ows. Even
though the recommendation system did temporarily su�er from some bugs,
the overall system remained una�ected.

QR1 is satis�ed.

The evaluation of QR2 encompasses all the sub-features outlined in previous
sections, and the usability tests did not indicate the absence of any signi�cant
features. Therefore, the work�ow can be called end-to-end.

QR2 is satis�ed.

The following example tries to illustrate the impact of QR2 on decision-
making. During a later phase of the development process, the question
emerged, of whether to allocate resources to coding recommendations or the
noti�cation feature. Given that the noti�cation feature was deemed essential
for an end-to-end work�ow, it was prioritized over coding recommendations.

Performance E�ciency

Section 5.3 describes the integration of the recommendation system into the
RTCS. By utilizing the same infrastructure, the recommendation system
is expected to exhibit similar performance characteristics. Although no ex-
plicit measurements were conducted, there were no noticeable performance
di�erences observed in terms of synchronization. However, it is worth noting
that upon entering the coding editor, the initial loading time was slightly

59

6. Evaluation

longer for recommendations than for codes. As a result, there were instances
where code drafts appeared before the corresponding recommendations were
loaded. Unfortunately, due to time constraints, this issue was not addressed.
Consequently, QR3 is not fully satis�ed.

QR3 is partially satis�ed.

When entering the coding editor the status �eld of RecommendationQuery
is set to OPEN, which loads all open recommendations for the current project.
Only upon entering the review editor, the resolved recommendations are
loaded. To ensure e�ciency when dealing with a large number of recommen-
dations, the implementation of a pagination mechanism would be necessary.
In hindsight, the term "on-demand" lacks speci�city, resulting in a conser-
vative evaluation of QR4.

QR4 is partially satis�ed.

Compatibility

Due to the direct integration of the recommendation system into both the
frontend and backend, general compatibility is ensured. No additional ser-
vices were introduced.

QR5 is satis�ed.

Furthermore, neither any frontend nor backend code deviates from the roadmap.
All react components have been implemented using functional components
and hooks, and numerous related components have also been refactored ac-
cordingly. On the backend side, the project initially adopted a JDO-based
class structure but was subsequently migrated to Objectify.

QR6 is satis�ed.

Usability

At QDAcity, the localization strategy was ensured as part of their code re-
views. Indeed, all newly added user-facing strings have corresponding Ger-
man translations.

QR7 is satis�ed.

Generally, design is much harder to evaluate than other qualities. In the case
of QDAcity, it is even more challenging, given that the software is currently
undergoing a redesign phase. Nonetheless, based on stakeholder feedback it
is possible to make statements with some degree of certainty. From a user

60

6. Evaluation

standpoint, none of the evaluators highlighted any inconsistencies with the
existing design. Internally, most small adjustments were addressed in follow-
ups as part of the iterative development cycle. By the end of the development
phase, there were no signi�cant change requests related to the design. Both
of these factors point to a high level of consistency.

QR8 is satis�ed.

Security

All ten endpoints are implemented following the context pattern described in
section section 4.2. Consequently, authentication takes place during the ini-
tialization of the UserService. This implies that the actual request handling
occurs thereafter.

QR9 is satis�ed.

In light of the architecture refactoring a more explicit
UnauthenticatedException was introduced. Prior to this, any authentica-
tion failure would throw an UnauthorizedException as part of the autho-
rization process. The endpoint tests continue to be a�ected by this lack of
di�erentiation. Numerous tests appear to be testing authorization when in
reality, they are only testing authentication. A systematic solution to address
this problem is described in the Maintainability paragraph.

Authorization, on the other hand, must be checked individually for each end-
point. Each of the ten endpoints evaluates user permissions according to the
structure de�ned in Table 3.1. To accomplish this, the ProjectPermissions
enum class was extended with the values shown in Table 6.1. Furthermore,
the Authorization.check() method was overloaded to include the neces-
sary types: Recommendation, and RecommendationQuery.

Table 6.1: Added permissions to the ProjectPermissions enum class.

RECOMMENDATION_SERVICE_TOGGLE

RECOMMENDATION_RESOLVE

RECOMMENDATION_CUD

The overall system does not di�erentiate between di�erent project settings
but does a general check against ProjectPermissions.SETTINGS_UPDATE.
Therefore, RECOMMENDATION_SERVICE_TOGGLE is currently not used. The
end result still adheres to the requirements. The RESOLVE permission covers
accepting and rejecting recommendations, and CUD is an abbreviation for
create, update, and delete.

61

6. Evaluation

QR10.1 is satis�ed.

QR10.1 is satis�ed.

⇒ QR10 is satis�ed.

Maintainability

Despite the primary focus being on code-related recommendations, the sys-
tem is designed to be extensible to other types of recommendations. The
RecommendationController encapsulates all essential functionality irrespec-
tive of the type. Introducing a new entity type involves the following steps:

1. Add a new RecommendationType enum value.

2. If needed, add a new RecommendationActionType enum value.

3. Implement a RecommendationActionController for each new action-
entity combination.

All of these entail extensions rather than modi�cations.

QR11 is satis�ed.

To address the ambiguity issue discussed in the Security paragraph, a new
class convention was introduced. Prior to this thesis, functional, authoriza-
tion, and authentication tests were consolidated within a single test class,
typically named SomeEndpointTest. The revised convention involves split-
ting the class into three separate classes:
SomeEndpointTest,
SomeEndpointAuthorizationTest,
SomeEndpointAuthenticationTest.
This approach o�ers two main bene�ts with regard to the distinct concerns:
(1) simplifying the identi�cation of missing or ambiguous tests, and (2) sim-
plifying common test setup code.

According to QR12, the recommendation system should include an endpoint
unit-test suite that ful�lls three criteria.

The requirement (QR12.1) for the unit-test suite was to cover at least 85%
of the LoC of the recommendation system. In total, the
com.qdacity.project.recommendations package has an LoC test coverage
of 82% (6.3).

QR12.1 is not satis�ed.

62

6. Evaluation

Figure 6.3: Unittest coverage of the recommendation system.

After the refactoring, the RecommendationEndpointTest is exclusively com-
prised of functional tests. Each endpoint method is tested at least once.

QR12.2 is satis�ed.

Both the authentication and the authorization test classes contain ten tests,
with one dedicated to each endpoint.

QR12.3 is satis�ed.

⇒ QR12 is partially satis�ed.

In addition to the endpoint tests, the recommendation system was intended
to have acceptance tests. However, due to time constraints and other priori-
ties, no such tests were added.

QR13 is not satis�ed.

63

6. Evaluation

64

7 Discussion

Chapter 7 provides an in-depth discussion of the �nal outcome of the project.
Section 7.1 analyzes the �ndings and limitations described in the previous
chapters. Afterward, section 7.2 gives suggestions for future developments.

7.1 Findings and Limitations

Requirements

In retrospect, the requirements were formulated with excessive abstraction.
Consequently, many were satis�ed without having a production-ready feature
In an agile methodology, requirements serve as continuous system documen-
tation. However, their high level of abstraction o�ers limited insights into
the concrete implementation. The ambiguity was not con�ned to the ab-
straction level, the terminology used was also not well de�ned. Instead of
vaguely stating "...allow users to vote ...", requirements should specify the
nature and purpose of a "vote".

Development Process

In the initial stages, the backend structure included an abstract
BaseRecommendation class, which the CodeRecommendation class extended.
This decision was driven by two factors. First, from a design perspective, rec-
ommendations without an identi�ed target entity remain a mere abstract con-
cept, thus justifying the need for speci�c classes for individual entity types.
Second, during the early stages of familiarization with the code base, encoun-
tering foundational classes like BaseProject and BaseCoding was common.
However, as the iterations progressed, the merits of adopting a composition-
based model became apparent. Essentially, the act tied to a recommendation
stands as its distinct notion. Although the advice to favor composition over
inheritance is oft-repeated, its practical application was a valuable learning

65

7. Discussion

gleaned from this project.

The re�ned layered architecture pattern has already demonstrated its use-
fulness through multiple refactorings. Yet, without tangible extensions of
the recommendation system, its extensibility remains speculative. While ar-
chitectural designs often appear bulletproof on paper, they can falter when
faced with the new requirements. To mitigate this risk, the current design
makes almost no assumptions about the distinct entities' characteristics.

Usability Test

To better assess functional appropriateness and usability a heuristic eval-
uation was conducted. However, to make de�nitive statements the recom-
mendation system needs to be in use for a longer period of time by actual
users. This is especially true since the experts were aware of the fact that
the usability test was part of a thesis. If it were facilitated by a company
for a (paid) product, it is not clear if the test would yield the same results.
Interestingly, the team at QDAcity is currently working on a user feedback
system, which could be utilized to gather additional feedback.

Custom questionnaire

With only three questions, the custom questionnaire (B.1) o�ered valuable
insights into the overall impact of the recommendation feature. However,
upon re�ection, Q2 was not optimally phrased. In section 2.2, we saw that
Google Docs provides a general comment feature that is not tied to sugges-
tions. In principle, such a general comment feature might be able to replace
existing communication channels completely. Given that the current im-
plementation only allows comments as part of a recommendation, it seems
unrealistic to assume that it can be used for communication beyond change
proposals. A more �tting question might have been: Assuming that a speci�c
change can be expressed through the recommendation feature, can this feature

encapsulate all related communication?

SUS

Section 6.1.2 highlighted the limitations of the SUS, stemming from high
signi�cant statistical uncertainty. Notably, this is not limited to the SUS.
This generally applies to all forms of quantitative analysis that rely on a
small number of data points. The primary intent behind using the SUS was
to have an indicator for usability issues. Even with statistical uncertainty, a
total sore below 50 would have signaled severe problems.

66

7. Discussion

Improvements

The development phase and the feedback from the usability tests revealed
several areas for improvement. The remaining section will discuss some ele-
ments that have been implemented. Afterward, section 7.2 presents a range
of potential areas for future development.

While familiarizing themselves with the recommendation mode, two experts
encountered di�culties in identifying which actions are considered recom-
mendations. In response, both the document toolbar and the text editor are
now hidden in recommendation mode. Given the ongoing redesign of the
coding editor and the increasing number of task-speci�c editors, this issue is
not limited to the recommendation mode.

Two experts highlighted that, when selecting a recommendation, the cor-
responding target code should be simultaneously selected. This becomes
increasingly crucial, for codesystems with a complex hierarchy. Without this
functionality, a target code located within a collapsed subtree remains en-
tirely concealed. Although the current solution exclusively addresses codes,
the concept of selecting the target object is equally important when incor-
porating new entities.

Previously, repeated up- or downvotes were simply ignored. Consequently,
once a recommendation receives a vote, it can only be changed, but never be
retracted completely. One of the experts characterized this as an unexpected
behavior. Subsequently, this issue was addressed by adding the feature to
a retract vote, which is initiated by clicking the already selected vote for a
second time.

7.2 Future Work

Based on the experts' feedback, the recommendation of codes already pro-
vides a signi�cant improvement to the work�ow of collaborative QDA. Nev-
ertheless, there are various ways in which the system can be further improved.
The following section gives a short overview of ideas that emerged over the
course of the project.

Coding recommendations

Aside from codes, codings are the second most important entities in a codesys-
tem. Especially, because they are instances of applied codes. Once the recom-
mendation system supports codings, the complete codesystem development

67

7. Discussion

process can be realized in the form of recommendations. Unfortunately, due
to time constraints, it was not feasible to extend this feature to codings. Dur-
ing the interviews, two experts already mentioned that they would expect
this feature to be available.

Text recommendations

An important step that is often overlooked is the process of data cleaning.
This step comes after data gathering but before data analysis. This can in-
clude formatting documents so that they can be better analyzed or simply
correcting mistakes that were made during the gathering phase. From a
coordination perspective, this process is very similiar to the analysis. Mul-
tiple people work together on the same set of documents and any changes
should be properly communicated. An example of such a feature was already
discussed in subsection 2.2.1 in the form of Google Docs.

Batch recommendations

In the current implementation, each recommendation is accepted or rejected
individually. Batch recommendations would allow users to accept or reject
multiple recommendations at once. This allows the grouping of recommen-
dations that are related to each other and should only be accepted or rejected
together. Most of the review process would remain the same. However, the
question remains whether the items of the batch should resemble child recom-
mendations or a set of actions. The former would involve a distinct comment
section for each item.

System-to-user recommendations

Chapter 1 introduced the distinction between user-to-user and system-to-
user recommendations. Ultimately, the project was scoped to concentrate
on the former. Initially, however, the recommendation system was supposed
to facilitate system-to-user recommendations created by a machine learning
algorithm. Early on during development, the priority moved away from an
experimental application of machine learning towards a production-ready fea-
ture for user-to-user recommendations. As a result, a much higher emphasis
was put on user interface aspects. There were two primary reasons that led to
this decision. Firstly, it was estimated that the latter would provide greater
business value for QDAcity in the short to mid-term. Secondly, assuming the
developed models produce satisfying results they can only be integrated into
the system if the necessary backend and frontend infrastructure is already

68

7. Discussion

in place. The requirements of such a feature are very similar to the ones for
a user-to-user recommendation system. When looking at the set of features
that are described in the previous chapters, it becomes clear that all of them
are also applicable in the context of system-to-user recommendations. Espe-
cially, since the review process of such recommendations continues to occur
within a collaborative environment.

69

7. Discussion

70

8 Conclusion

The objective of this thesis was to design and implement a user-to-user rec-
ommendation system for QDAcity. Because the goal was to enhance existing
work�ows with new capabilities, rather than developing an independent fea-
ture, we provided an introduction to QDAcity and related QDA concepts. To
better understand the problem and the solution space, we looked at related
work in the area of (user-to-user) recommendation systems. In particular,
Google Docs and GitLab were discussed in more detail. By looking at existing
solutions, it was possible to re�ne our understanding of how a recommenda-
tion feature for QDAcity can look like. Building on top, we outlined a set of
requirements. Because the extension to other entities and actions was always
part of the design, the functional requirements were further categorized into
general and code-related functionality. For the quality requirements, a sub-
set of the characteristics and sub-characteristics from the quality model were
chosen. A consequence of being an integrated feature is that most quality
requirements were de�ned in reference to QDAcity's general quality features.
In particular, the emphasis on maintainability impacted the architectural
design of the recommendation system. Additionally, the observation that
the existing backend did not have an overarching approach to request han-
dling, further shaped the design of the architecture. Hence, the goal was not
only to develop an architecture for the new feature but not to introduce yet
another approach. The solution was a re�ned layered architecture pattern,
which centers around procedural-based controllers to separate di�erent con-
cerns. Furthermore, a context pattern was introduced to accommodate for
the dependencies on the deprecated JDO interface. Following the controller
approach, while simultaneously making it extensible, the action controllers
were implemented using object-oriented polymorphism. Even though archi-
tecture is an important part of any system, the user should always be the
focus. Therefore, the modeling of the life cycle of an individual recommenda-
tion was an important step before diving into the implementation. Based on
the described architecture, the backend is primarily concerned with controller

71

8. Conclusion

and data classes. More concretely, a controller for general recommendation
functionality and controllers for the di�erent code actions were implemented.
To provide a better feeling for the recommendation work�ow the frontend sec-
tion focused more on the user perspective than on a detailed implementation
in the form of react components. Even though the recommendation system is
made up of many di�erent components, the central piece is the review com-
ponent. It is responsible for displaying and handling all the di�erent actions
that are available for a single recommendation. To enable synchronization,
the implementation was concluded with the integration of the recommen-
dation system into the RTCS. Being a user-centric feature, a usability test
was a crucial instrument in evaluating the new feature. So, we �rst went
into detail about the test design and outlined the results that came out of
it. We then compared the implementation to the requirements de�ned in
chapter 3. In summary, all 14 functional (sub-)requirements were satis�ed.
Of the 18 quality (sub-)requirements, 13 were satis�ed, three were partially
satis�ed, and two were not satis�ed. Due to time constraints, it was not
possible to implement the required acceptance tests. The project journey,
from the de�nition of the requirements to the implementation, and the �nal
evaluation was put into perspective in form of a comprehensive discussion.
This included dedicated sections for �ndings, limitations, and suggestions for
future work. Since QDAcity already has plans to continue the development of
the recommendation system, these sections are a valuable resource for future
reference.

In conclusion, QDAcity now provides a new collaborative feature which al-
lows users to incorporate recommendations into their work�ow. The support
of code recommendations already brings immediate value to its users. By
supporting more entities the value is expected to increase signi�cantly fur-
ther. The outcome of this thesis adds a valuable unique selling point to
QDAcity and increases long-term maintainability.

72

Appendices

73

Appendix A: Usability Test Notes

A Usability Test Notes

A.1 Expert 1

Notes:

� Initially I though signi�es real changes

� No inital unerstanding of what the recommenation mode does

� After I applied the change, I expect QDAcity to inform the recom-
mender

� CodeBook suggestion are important; Memo not such much

� Instead of the tooltip display the text directly

� The light bulb should be displayed on the parent (if collapsed)

� I expected to undo my vote but it is not possible

� Add text above the comment to motivate reasoning; otherwise it stays
empty

� Text on comment to motivate reasoning

� The permissions are unclear; why can't an editor accept recommenda-
tions

� I want to see the di� of the code

� Modal isn't correctly displayed on large screens

Before you were noti�ed via the red dot in case of recommendation
updates. Would you say this is su�cient or do you think additional
cues would be helpful.

� Open recommendation within the codesystem the red dot is su�cient

� Accepting/rejecting should also send a noti�cation

Currently a recommendation is bound to a single code/coding.
What do you think of the idea of batch recommendations?

� I would say it is not the priority.

� But I can see the value for more complex tasks

75

Appendix A: Usability Test Notes

� But it isn't a use case I immediately thought of

A.2 Expert 2

Notes:

� The light blub is too small; didn't see it

� I want to see the di� of the code

� I expect the recommendation mode to be similar to google docs.

� ReviewEditor with search, sorting, labels, priorities

� Code selected on recommendation click / review open

� I would expect to remove my vote

� Styling of resolve buttons: accept (green) / reject (red)

� Header of the actions should be larger and bold

� Action should display concrete ops: not only update but add, change,
remove

� Initial thought was that it is ML-based recommendation-feature

� Hide all recommendations to focus on one task

� Whats in the code system should be usable (drafts)

� Idea to only allow one recommendation per code but immediately saw
the use case for multiple

� Highlight/Color for the recommendation mode

� The toggle button is visual not enough to quickly see the mode your
are in

� What about recommendations without actions e.g. "Split this code"

Before you were noti�ed via the red dot in case of recommendation
updates. Would you say this is su�cient or do you think additional
cues would be helpful.

� Can't think of anything missing

Currently a recommendation is bound to a single code/coding.
What do you think of the idea of batch recommendations?

� Not sure depends on the use case

76

Appendix A: Usability Test Notes

� E.g. when coding a whole doucment

� E.g. when coding doucments with single code

� E.g. merging multiple codes

� E.g. relocating mutiple codes

A.3 Expert 3

Notes:

� A deactivated mode probably means review mode

� The red dots look like TODOs

� A green code looks like it is a suggestion

� A cross-through is probably a recommendation to delete the code

� Since the red dot disappears it probably tracks seen/unseen updates

� Some form of Tutorial would be helpful to get a �rst introduction

� The light bulb should have a hover e�ect otherwise is does not stand
out

� I can imagine a comments column on the right; like Google Docs

� To get to the target code of the recommendation, three clicks are nec-
essary

� It should select the code together with the recommendation

� The comments are only single threaded but thread comments could be
overkill

� The tooltip appears to slow in case of missing permissions

� The permission structure seems a bit o�

� A simple vote count is enough; no need to see the individual users

� A history of changes/updates to the recommendation would be helpful

� The comment section could support user tagging and code tagging ("Hi
@user, check out #code")

� There is some bug when closing the modal ESC

77

Appendix B: Questionnaire Results

� The reommendation mode probably works like the Suggestion Mode
(google docs)

� I don't see why only the author of a recommendation can delete it but
not an owner

� It is useful that the tabs for resolved recommendation still allow com-
ments

� Apparently the documents toolbar works like before

� all UI elements that are not part of the recommendation mode should
be hidden

Before you were noti�ed via the red dot in case of recommendation
updates. Would you say this is su�cient or do you think additional
cues would be helpful.

� su�cient for the coding editor

� maybe small pop noti�cations at the top right of the editor

� global noti�cation could be useful across multiple projects; especially
your own recommendations

� but can be to overwhelming

Currently a recommendation is bound to a single code/coding.
What do you think of the idea of batch recommendations?

� I think it is a good idea

� E.g. one wants to delete and create only together

� E.g. one wants to update the same attribute for multiple codes

� E.g. one wants to add multiple codings for a single code

� E.g. one wants to delete multiple codes

B Questionnaire Results

The questionnaires (B.1 and B.2) use a likert-scale from 1 to 5 where 1 is
strongly disagree and 5 is strongly agree. The evaluation, however, uses a
scale from 0 to 4. Because the experts might hesitate to answer with 0 even
though they strongly disagree, the scale is shifted by 1.

78

Appendix B: Questionnaire Results

The calculation of the total score of the SUS (B.2), invovles a few more steps.
First, the values of negative framed questions are inverted. This means that
0 is mapped to 4, 1 to 3, and so on. Now, for every question, a higher score
is more desirable which makes the results easier to interpret. The scores of
each question are then summed up and multiplied by 2.5 to get a �nal score
between 0 and 100. It is important to note that the �nal score cannot be
interpreted as percentage.

The results are shown in the tables below.

B.1 Custom

Question E1 E2 E3

I think that this feature helps to reduce the commu-
nication overhead.

4 4 4

I think that this feature will replace our current tool
for communication.

3 1 1

I think that this features will make our work�ow more
e�cient.

4 3 3

Sum 11 8 8

79

Appendix B: Questionnaire Results

B.2 The System Usability Scale (SUS)

Question E1 E2 E3

I think that I would like to use this feature frequently 4 3 3
I found the feature unnecessarily complex. 4 3 4
I thought the feature was easy to use. 4 3 2
I think that I would need the support of an experi-
enced user to be able to use this feature.

4 4 4

I found the various functions in this feature were well
integrated into the regular work�ow.

3 2 2

I thought there was too much inconsistency in this
feature.

4 3 1

I would imagine that most people would learn to use
this feature very quickly.

3 3 1

I found the feature very cumbersome to use. 4 4 4
I felt very con�dent using the feature. 3 3 4
I needed to learn a lot of things before I could get
going with this feature.

3 3 3

Sum 36 31 28
×2.5 90 77.5 70

Total score (Average) 79.2

80

References

Bangor, A., Kortum, P. & Miller, J. (2009). Determining what individual SUS
scores mean: Adding an adjective rating scale. J. Usability Studies,
4 (3), 114�123.

Brooke, J. (1995). SUS: A quick and dirty usability scale. Usability Eval.

Ind., 189.
Corbin, J. M. & Strauss, A. (1990). Grounded theory research: Procedures,

canons, and evaluative criteria. Qualitative Sociology, 13 (1), 3�21.
https://doi.org/10.1007/BF00988593

Følstad, A. (2007). Work-domain experts as evaluators: Usability inspection
of domain-speci�c work-support systems. Int. J. Hum. Comput. In-
teraction, 22, 217�245. https://doi.org/10.1080/10447310709336963

Fowler, M. (2003). Anemicdomainmodel. Retrieved August 30, 2023, from
https://www.martinfowler.com/bliki/AnemicDomainModel.html

Fowler, M. (2020). Patterns for managing source code branches. Retrieved
August 30, 2023, from https://martinfowler.com/articles/branching-
patterns.html

Harley, A. (2018a). Individualized recommendations: Users' expectations &

assumptions. Retrieved August 30, 2023, from https://www.nngroup.
com/articles/recommendation-expectations

Harley, A. (2018b). UX guidelines for recommended content. Retrieved Au-
gust 30, 2023, from https://www.nngroup.com/articles/recommendation-
guidelines

Kaufmann, A. & Riehle, D. (2018). The qdacity-re method for structural do-
main modeling using qualitative data analysis. In Software engineering
und software management 2018 (pp. 169�170). Bonn, Gesellschaft für
Informatik.

Knijnenburg, B. P., Willemsen, M. C., Gantner, Z., Soncu, H. & Newell,
C. (2012). Explaining the user experience of recommender systems.
User Modeling and User-Adapted Interaction, 22 (4), 441�504. https:
//doi.org/10.1007/s11257-011-9118-4

81

https://doi.org/10.1007/BF00988593
https://doi.org/10.1080/10447310709336963
https://www.martinfowler.com/bliki/AnemicDomainModel.html
https://martinfowler.com/articles/branching-patterns.html
https://martinfowler.com/articles/branching-patterns.html
https://www.nngroup.com/articles/recommendation-expectations
https://www.nngroup.com/articles/recommendation-expectations
https://www.nngroup.com/articles/recommendation-guidelines
https://www.nngroup.com/articles/recommendation-guidelines
https://doi.org/10.1007/s11257-011-9118-4
https://doi.org/10.1007/s11257-011-9118-4

Appendix References

Ko, H., Lee, S., Park, Y. & Choi, A. (2022). A survey of recommendation
systems: Recommendation models, techniques, and application �elds.
Electronics, 11 (1). https://doi.org/10.3390/electronics11010141

Nielsen, J. (1994). 10 usability heuristics for user interface design. Retrieved
August 30, 2023, from https : / /www .nngroup . com/articles / ten -
usability-heuristics/

Nielsen, J. (1995). How to conduct a heuristic evaluation. Retrieved June 12,
2023, from https://www.nngroup.com/articles/how-to-conduct-a-
heuristic-evaluation

Richards, M. (2015). Software architecture patterns: Understanding common
architecture patterns and when to use them. O'Reilly Media. https:
//books.google.de/books?id=ZLYtuwEACAAJ

Roy, D. & Dutta, M. (2022). A systematic review and research perspective
on recommender systems. Journal of Big Data, 9 (1), 59. https://doi.
org/10.1186/s40537-022-00592-5

Rupp, C. & SOPHISTen. (2020). Requirements-engineering und -management:
Das Handbuch für Anforderungen in jeder Situation (7th ed.). Hanser.

82

https://doi.org/10.3390/electronics11010141
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/how-to-conduct-a-heuristic-evaluation
https://www.nngroup.com/articles/how-to-conduct-a-heuristic-evaluation
https://books.google.de/books?id=ZLYtuwEACAAJ
https://books.google.de/books?id=ZLYtuwEACAAJ
https://doi.org/10.1186/s40537-022-00592-5
https://doi.org/10.1186/s40537-022-00592-5

	Introduction
	Thesis Structure
	QDAcity
	Problem Statement
	Objective and Approach

	Related Work
	Literature Review
	Applications Supporting Recommendations
	Collaborative Editing
	Collaborative Reviewing
	Discussion

	Requirements
	Constraints
	Functional Requirements
	General Functionality
	Code-related Functionality

	Quality Requirements

	Architecture
	Background
	Refined Layered Architecture
	Recommendation Controller Design
	Recommendation Life Cycle

	Implementation
	Backend
	General Recommendation Classes
	Action Classes

	Frontend
	Creation Flow
	Review Flow
	Review Editor and Modals
	Conflict Handling
	Notifications

	RTCS

	Evaluation
	Usability Test
	Design
	Results

	Functional Requirements
	General Functionality
	Code-related Functionality

	Quality Requirements

	Discussion
	Findings and Limitations
	Future Work

	Conclusion
	Appendices
	Usability Test Notes
	Expert 1
	Expert 2
	Expert 3

	Questionnaire Results
	Custom
	The System Usability Scale (SUS)

	References

