
Implementing PAKET
A Production-Ready AI enhanced

Keyword Extractor
MASTER THESIS

Marlon Weghorn

Submitted on 23 September 2022

Friedrich-Alexander-Universität Erlangen-Nürnberg
Technische Fakultät, Department Informatik

Professur für Open-Source-Software

Supervisor:
Prof. Dr. Dirk Riehle, M.B.A.

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teileiner Prüfungsleistung angenommen wurde.Alle Ausführungen,
die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 23 September 2022

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 23 September 2022

i

Abstract

Keywords are fragments of the core content of a text and can be used to cluster
documents,visualize information or enrich metadata.The extraction process
is a well-researched topic in the information retrievalcommunity and existing
solutions work well,although they are usually not designed for production,but
for scientific experimentation.Being suitable for production means developing
for the realworld,i.e. anticipating how potentialstakeholders can be satisfied
best.
This thesis presents a solution for keyword extraction that is intended to be
production-ready.Quality building criteria are applied throughout the software
development cycle, e.g.by drafting requirements demanding the software archi-
tecture to be sustainable and following general principles like design by contract.
Separately, a graphical UI is provided, which demonstrates the main functionality
and serves as a proof-of-concept.
The result is a deployable application,which not only extracts keywords from
text,but also text from files.Over fifteen different MIME types are suppor-
ted.The keyword extractor ranks keywords by replicating the YAKE! algorithm
for 1-grams and filters them in a postprocessing step.Filtering is performed by
using language-specific,pre-trained NLP pipelines provided through the spaCy
library, and fuzzy matching.Currently, the two languages implemented are Eng-
lish and German, but the design allows the number of languages to be extended
upon request.The application enables the integration via web service offering a
RESTful-API.

ii

Contents

1 Introduction 1

2 Literature Review 4

3 Requirements 8
3.1 Fundamentals. 8
3.2 Vision Statement. 10
3.3 Functional Requirements. 10
3.4 Quality Attribute Requirements. 13
3.5 Transition Requirements. 15

4 Architectural Design 16
4.1 Fundamentals. 16
4.2 PAKET . 18

4.2.1 Project Tree .. 18
4.2.2 Continuous Integration 19
4.2.3 Deployment. 20

4.3 Text Extractor . 21
4.4 Keyword Extractor. 22

5 Detailed Design 25
5.1 Fundamentals. 25
5.2 Keyword Extraction. 28

5.2.1 Language Integration .. 28
5.2.2 Processing Pipeline .. 29

6 User Experience Design 34
6.1 Fundamentals. 34
6.2 Command Line Interface .. 35
6.3 Logging . 35
6.4 Proof of Concept. 36

iii

7 Evaluation 37
7.1 Fundamentals. 37
7.2 Test Environment .. 39
7.3 Evaluating Functional Requirements. 40
7.4 Evaluating Quality Attribute Requirements 42
7.5 Evaluating Transition Requirements 44

8 Conclusions 45

Appendices 47
A Service Description .. 48
B Command Line Interface .. 49
C Proof of Concept. 51

References 55

iv

List of Figures

3.1 Requirements template of FunktionsMASTER.. 9
4.1 Project tree.. 19
4.2 A UML diagram showing the different pipeline stages.The abbre-

viation stm stands for Statechart Diagram.. 19
4.3 A UML diagram of PAKET showing the constituent packages,

their relationships and example artifacts.The abbreviation dep
stands for Deployment Diagram. 20

4.4 A UML diagram of the Text Extractor package showing con-
stituent modules and their dependencies.The abbreviation cmp
stands for Component Diagram.. 21

4.5 A UML diagram of the Keyword Extractor package showing con-
stituent modules and their dependencies.The abbreviation cmp
stands for Component Diagram.. 23

5.1 A UML diagram of the language module showing the inheritance
relationship ofExtractor classes.The abbreviation class stands
for Class Diagram.. 28

5.2 Model of a keyword extraction pipeline. 29
7.1 Performance measurements.. 43
1 Description of an HTTP POST request extracting a minimum of

upper_limit keywords from files, referenced by paths.. 48
2 Main dialog of the CLI. .. 49
3 Extract dialog of the CLI.. 49
4 Service dialog of the CLI.. 50
5 The PoC is displaying the extracted keywords in sorted order.The

input is a text.. 51
6 The PoC is displaying the extracted keywords in sorted order.The

input is a file.. 52
7 The PoC is displaying a warning message if the text language is

not supported. .. 53

v

8 The PoC is displaying a warning message if the file language is not
supported.. 53

9 The PoC is displaying a warning message if the MIME type is not
supported.. 54

vi

List of Tables

3.1 Functional requirements with identifiers.. 12
3.2 MIME types that must be handled by PAKET.. 12
3.3 Tabular Form of the Utility Tree with identifiers.The utility node

is implicitly assumed.. 14
3.4 Transition requirements with identifiers.. 15
7.1 Used datasets for experiments.. 39
7.2 Used spaCy models for postprocessing.. 39
7.3 Evaluation of functional requirements.. 41
7.4 Evaluation of quality attribute requirements.. 43
7.5 Results of the architectural metrics.. 43
7.6 Evaluation of transition requirements. 44

vii

Acronyms

AI Artificial Intelligence
API Application Programming Interface
CI Continuous Integration
CLI Command Line Interface
CPU Central Processing Unit
DbC Design by Contract
DRY Don’t Repeat Yourself
IoT Internet of Things
KISS Keep It Small and Simple
MIME Multipurpose Internet Mail Extension
NLP Natural Language Processing
OAI Open Archives Initiative
PoS Part of Speech
PoC Proof of Concept
UI User Interface
UML Unified Modeling Language

viii

1 Introduction

The advancing digitization of globaleconomies is shifting the landscape of con-
ventionalbusiness models further into virtualspace (World Economic Forum,
2022).For example, more and more people are paying cashless in supermarkets
and the first prototypes are already reality (‘Bargeldloses Zahlen nimmt zu’, 2022;
‘Bezahlen ohne Kasse bei Aldi:Sieht so der Supermarkt der Zukunft aus?’, 2022).
Automobiles are increasingly equipped with Internet of Things (IoT) devices, fea-
ture persistent internet connections and gather large amounts of data, especially
for autonomous driving purposes (‘Connected car’, 2022; Tesla Germany, 2022).
Companies of different sectors (and sizes) are increasingly entering and making
use of a symbiotic relationship with the virtual world, and will continue to do so
if they are to remain competitive (Gruhn & von Hayn, 2020).Precisely because
of this connection,more data is created than ever before (Reinselet al.,2018).
Analyzing these large datasets can offer unique insights and enable a business to
get a competitive advantage.
The following fictional use case gives an illustration and shows the driving direc-
tion of the thesis:Imagine a digitalstrategist wants to find out which business
related topics,especially technicalones,have been subject ofdiscussion over a
period oftime. By associating emails and chat histories with a few keywords
that capture the core content,she might better estimate upcoming expenses.
This raises the question ...how can she get those summarizing keywords in the
first place? The Production-Ready AI enhanced Keyword Extractor, PAKET
for short, is supposed to provide an answer.
Apart from functionality,it is of high priority that the probability of problems
occurring in production use,unplanned maintenance or arising change costs is
small. In this regard,high software quality throughout the entire software de-
velopment life cycle is to be aimed at.It begins with the requirements that are
imposed on the product.One study shows that up to 85% of rework costs are
incurred, because the formulated requirements contained errors (Wiegers, 2022).
If the requirements form a well-defined basis,the individualaspects of software
design automatically benefit.Nevertheless, a quality standard should be defined

1

1. Introduction

for the individual aspects.Indeed, another study from the U.S. (2018) shows that
poor software quality has direct economic implications.$2.26 trillion in costs
incurred without technical debt and $2.84 trillion with technical debt (Wiegers,
2022).
However,at the end ofthe day,perfect software can never be written,so it is
crucial that the product is good enough to deliver value to the stakeholders.
In the course of development, it has also become apparent that tools from the AI
world can be very useful.Always looking at software development today with a
glimpse on AI can open up non-negligible opportunities to solve problems.
In summary, the thesis attempts to answer the following questions:

• How to extract keywords from documents?How can tools from the AI
world help us?

• How to realize a product so that assessments by users and important stake-
holders are perceived as positive as possible?

• How to keep future development and maintenance costs within a tolerable
scope?

• How to credibly evaluate design and implementation of the requirements?
Accordingly, the thesis consists of the following chapters:

Chapter 1 explains why keyword extraction is an issue, but software devel-
opment must also be understood from an economic point of view.
Chapter 2 contextualizes the thesis by highlighting related work from re-
search.
Chapter 3 provides a detailed overview of the requirements that are imposed
on PAKET.
Chapter 4 describes the responsibilities ofarchitecturalelements and the
relationships between them.
Chapter 5 deals with the logical structure of individual components.
Chapter 6 looks at the design from a user experience perspective.
Chapter 7 evaluates the design and implementation of PAKET. To achieve
this, metrics and analysis techniques will be used.
Chapter 8 summarizes the work ofthe thesis and makes suggestions on
further opportunities for improvement.

2

1. Introduction

General conventions:
• Italic font indicates new or emphasized terms.
• Typewriter font references program elements or artifcats.
• The word ‘we’ encompasses the reader and the author.
• Footnotes contain sites for additional information or marginalia that would

otherwise impair the reading flow.

3

2 Literature Review

As already mentioned in chapter one, it is the goal to increase the chance that soft-
ware in the production use, but also at development time, causes as few problems
as possible and simultaneously can fulfill current and upcoming requirements.Re-
search shows that a vast number of approaches and possible solutions exist that
can have positive impact on individualphases ofthe software development life
cycle. It is up to this chapter to select,narrow down,and prepare appropri-
ate literature.Specialattention is devoted to the comparison ofunsupervised,
document-only keyword extraction methods.
The first work we look at is from MichaelT. Nygard which delivered the idea
for the thesis to always link software development with the end-state notion
of delivering a system to the realworld (Nygard,2018).It conveys an almost
paranoid but justifiable view ofsoftware design,since it focuses not on what
the system should do,but on what it should notdo. Even though this work is
primarily about distributed systems,it offers tools that can also be usefulfor
simple applications,e.g. stability patternslike timeouts,steady state or letit
crash.Furthermore,if an application is running on a single machine today,it
does not mean that it might not be split into microservices,orchestrated via
Kubernetes1, tomorrow.
Related work by Neal Ford et al.aims to achieve the survival of software systems
and gives guidance on how to prevent architecturalerosion over time (Ford et
al., 2017).To a set of selected quality attributes for an architecture,the meta
quality attribute evolvability is added,which protects allother attributes and
further architectural characteristics.It adds the property of guided, incremental
change accross multiple dimensions.Incrementalchange describes how teams
develop software incrementally and how to deploy it.Guided change describes the
mentioned protection behavior,which is achieved by so-called fitness functions
that assess the integrity ofthe objectives.Examples offitness functions are
process or architecture metrics, but also unit or integration tests.

1https://kubernetes.io

4

2. Literature Review

Now that the claim of the thesis is framed in terms of architecture and design, we
move to the actual functionality.Three extraction methods and respective papers,
which would be,RAKE 2 (graph-based),EmbedRank3 (embeddings-based) and
YAKE! 4 (statistics-based) should provide a rough overview (Rose et al.,2010;
Bennani-Smires et al., 2018; Campos et al., 2020).
We begin with the simple RAKE method, which behaves as follows:Text is split
into words using word delimiters.This list of words is then used to generate
n-gram word phrases using stopwords and phrase delimiters.Afterwards a graph
is built using the cross product over the word phrases,resulting in word-word
pairs with the number of word co-occurences as edges.For example, the sentence
‘I like cats,like i like dogs.’would be splitted in the 2-gram words ‘like cats’,
‘like dogs’ and ‘like’, which results in following graph:

‘like’

‘cats’

‘dogs’

1

1

03

1

1

Afterwards, a so-called degree metric can be calculated, which favors words that
occur frequently and appear in long word phrases.It is calculated for each word
by summing up the edge values to all other words.If a phrase consists of multiple
words,all degrees are summed up to a score.The higher the score,the higher
the word relevance.Sticking with the example, the summed degree of ‘like cats’
is seven and ‘like’ is five.
Nevertheless, needing O(V2) space (worst case), where V are the vertices of the
graph, is not very efficient, especially not if the text vocabulary is very large.
Mapping words as vectors in continuous vector space (with low dimensions) might
remedy the situation.However, the actual reason of these embeddings is the se-
mantic relatedness between words, sentences and documents.EmbedRank draws

2https://github.com/csurfer/rake-nltk
3https://github.com/swisscom/ai-research-keyphrase-extraction
4https://github.com/LIAAD/yake

5

2. Literature Review

on this and calculates the cosine similarity between word phrase embeddings and
the document embedding, and ranks them.
However, these word phrase or sentence embeddings are without any context, i.e.
they have no relationship to the sentences,paragraphs or documents in which
they exist.For this reason, the so-called Transformer models are created, which
are currently state-of-the-art (Tunstall et al., 2022).
Although vector space models provide good results and are steadily optimized,
they stillhave a relatively high inference time (especially for long texts) and as
soon as text becomes domain-specific,it is difficult for them to understand the
semantics without training.Moreover, in the wild, one encounters text that has
no realsemantics,let alone complete sentences.Examples are spreadsheet or
powerpoint files.For these reasons, a hybrid solution is implemented in PAKET
with light-weight YAKE!algorithm as substructure and word vector models as
superstructure.Further details can be found in chapter five.
YAKE! is based on statistical information collected about words, more precisely
terms, which are aggregated in a total term score.Generally speaking, a term is
a word which is used unambiguously (Adler & Van Doren,2014).An example
will illustrate this in context of YAKE!:If the words ‘Keyword’,‘keyword’and
‘KEYWORD’ were to occur in a text, they would all be declared as exactly one
term, therefore the term frequency would be three.The German words ‘Ei’ and
‘Eis’ look almost the same syntactically,but have completely different meaning
and would be declared as two separate terms.
Thus,after breaking down the text into sentences,sentences into n-gram words
and n-gram words into 1-gram terms via syntactic rules,five statistical features
are collected for each term based on empirically derived assumptions:

1. Casing (Tcase): Capitalized terms are usually more relevant than lowercase
terms.

2. Term position (Tpos): Important keywords tend to be found in sentences
at the beginning ofa document,e.g. in an outline,introduction,or ab-
stract.To avoid that words, appearing at the end of a document, vanish in
irrelevancy, a logarithmic smoothing is applied over the sentence indices.

3. Term frequency normalization (Tnorm): As mentioned above, the term fre-
quency is incremented on each occurence.It is usefulassigning a higher
relevance to often occurring terms.To prevent long texts from causing a
bias, the term frequency is divided by the sum of the mean of term frequen-
cies and one time its standard deviation.

4. Term relatedness to context (Trel): The higher the number of different terms
surrounding a term, the less important they are.The rationale is that terms
which are used repeatedly in the same context are of higher relevance.

6

2. Literature Review

5. Term different sentence (Tsen): Terms that appear in many sentences tend
to be of higher relevance.The exception is stopwords,which obviously
occur in many sentences.

Still, only the interaction of allstatisticalfeatures provides a conclusive assess-
ment.These flow into a total term score which is calculated as below:

S(t) = Trel · Tpos

Tcase+ Tnorm
Trel

+ Tsen
Trel

As can be seen, Trel is mitigating the effect of Tpos, Tnorm and Tsen if the term is
used in multiple contexts.A capitalized term contributes fully to the equation.

7

3 Requirements

The success of a project is rooted in the ability to transfer the needs of key stake-
holders into a product that satisfies all of those stakeholders (Wiegers, 2022).In
other words, the likelihood that a product is suitable for use is greatly increased
if the very first step in the transfer process is to translate those needs into require-
ments.If these requirements are good enough,the next phase ofdevelopment
(architecturaldesign) is able to continue and the amount offuture rework is
reduced.Whether requirements are good enough is determined by its appropri-
ateness of detail, that allows the product to be developed and implemented.
Section 3.1 establishes a common basis for requirements and presents a repres-
entation technique called utility tree.Section 3.2 tries to achieve shared under-
standing of the product.In sections 3.3, 3.4 and 3.5 requirements are formulated,
which eventually result in the design and implementation of PAKET.

3.1 Fundamentals
Requirements:A broad and comprehensive definition of a requirement is given
by Wiegers (2022, p. 8).It is ‘a statement of a customer need or objective, or of
a condition or capability that a product must possess to satisfy such a need or
objective.A property that a product must have to provide value to a stakeholder’.
It is also assumed that requirements are only available in textualform but in
general they can also be proof-of-concepts (PoCs), mockups etc.(Wiegers, 2022).
The provided definition lays a common ground for understanding, as requirements
are not clearly defined in the literature.It also leads to several requirement types
such as Functionalrequirements,Quality attribute requirements and Transition
requirements, types that help to further differentiate requirements.
A functional requirement describes the product’s behavior and conditions under
which this behavior occurs and tells the developers whatto build (Bass et al.,
2013).An example would be to have the application sort keywords in descending
order by their relevance.However,if only pure functionality is considered,one
misses the big picture.

8

3. Requirements

Functionality is irrevocably interwoven with quality,because the way function-
ality is mapped in software structures determines the support for quality by the
architecture.Otherwise put,the shape ofan architecture constrained by the
quality attributes which are chosen and considered most relevant, is an essential
part of building an effective system (See section 4.1).Quality attributes are spe-
cified as a measurable or testable property of a system that indicates how well
the system satisfies the needs of its stakeholders, and the description accordingly
as a quality attribute requirement.An example would be, having a low memory
footprint or CPU usage so that the application doesn’t interfere with other user
processes.
A transition requirement describes conditions the product must meet, or activities
the project must complete to enable a successful migration from a current state to
a future state (Wiegers, 2022).An example would be to present new functionality
to an influential stakeholder (e.g.the CEO or customers) via PoC and guarantee
the continuity of the project through acquired budget.
As a uniform template, the FunktionsMASTER technique, viewable in figure 3.1,
is applied for all the requirements (Rupp, 2021).

must

will

shall

-

able to

offer actor the
opportunity to objectverbobject of

consideration

Figure 3.1:Requirements template of FunktionsMASTER.

Utility Tree:The goal of a utility tree is to document quality attribute require-
ments and structure them (Bass et al., 2013).The starting point is a utility root
node, which is an expression of the overall quality compliance of the system.At-
tached to the root node are the still very abstract quality attributes the product
is considered to have.Examples are usability, performance or security.
Becoming more concrete, the specific meaning of the quality attributes are refined,
considering relevant aspects only.For instance,it can be specified that special
attention is drawn to learnability and accessibility when it comes to usability.
Lastly, the quality attribute requirements are collected and prioritized, whereby
prioritization can take different forms.In the thesis, the three-level classification
over two categories is used,meaning that each ofthese categories is estimated
as either high, medium or low.The first category describes the extent to which

9

3. Requirements

the quality requirements imply substantialchanges to the architecture and the
second category describes the extent to which the quality requirements generate
high business value for the key stakeholders.For example,the requirement to
improve a hard-to-use User Interface (UI) can have a large impact on both UI
design and customer value and could be noted as ‘(H, H)’.
MIME types:A MIME type is the expression of a standardized format, which
specifies data as it exists in its original (natural) form (Network Working Group,
2022).It consists of a generaltop-leveltype,a specific subtype separated by a
slash ‘/’ and individual information.For example, for a text document with ascii
characters, text/plain; charset=us-ascii is sufficient for the specification.

3.2 Vision Statement
For researchers or digital strategists who need an automated summarization tech-
nique for their pile of documents,PAKET is a keyword extractor for european
languages that frames the core content of a document by a specifiable number of
keywords, supporting over fifteen different MIME types.Unlike keyword extract-
ors which are hastily built for experimenting, mainly for the scientific community,
PAKET provides a solid, interoperable, production-ready solution.

3.3 Functional Requirements
Table 3.1 lists the functionalrequirements that must,should or willconstitute
PAKET.

Functional Requirement ID

The system must be able to extract keywords from documents.F-REQ-1
The system must be able to extract keywords using a
unsupervised, statistics-based method. F-REQ-2

The system must be able to extract keywords independent of
domain or document corpus. F-REQ-3

The system must be able to extract plain text content from
MIME types listed in table 3.2. F-REQ-4

The system will be able to extract plain text content from
MIME types xml/html, text/calendar,
application/epub+zip, and application/vnd.ms-outlook.

F-REQ-5

The system must be able to extract keywords from English and
German documents. F-REQ-6

10

3. Requirements

The system must be able to extract keywords from documents
whose languages originate from european countries. F-REQ-7

The system will be able to extract keywords from documents
whose languages originate from non-european countries.F-REQ-8

The system must be able to extract keywords from plain text
content. F-REQ-9

The system must be able to extract keywords from files
referenced by one or multiple file paths. F-REQ-10

The system shall be able to extract keywords from files
referenced by one or multiple directory paths. F-REQ-11

The system must be able to return results as a dictionary,
where file paths are keys and lists of extracted keywords are
values.

F-REQ-12

The system must not be able to (recusively) extract keywords
from directories referenced by directory paths. F-REQ-13

The system must ignore files whose MIME type is not
supported. F-REQ-14

The system must ignore documents whose language is not
supported or couldn’t be identified. F-REQ-15

The system must ignore documents with more than 107

characters. F-REQ-16

The system must ignore documents if any other errors arise
during the extraction process. F-REQ-17

The system must offer users the opportunity to use a
Command Line Interface (CLI). F-REQ-18

The CLI must be able to print the results to stdout as a json
string. F-REQ-19

The CLI must enforce the number of extractable keywords to
between one and one hundred. F-REQ-20

The CLI will offer users the opportunity to adjust the
maximum number of characters a document is allowed to have.F-REQ-21

A keyword must be taken from the document itself. F-REQ-22
A keyword must be a condensed form of relevant content of
part of a document. F-REQ-23

A keyword must be a 1-gram word. F-REQ-24
A keyword will be a 2-gram or 3-gram word (keyphrase).F-REQ-25

11

3. Requirements

The relevance of keywords must have been proven by a
well-researched extraction algorithm. F-REQ-26

The relevance of keywords must be measured by how well they
are accepted by key stakeholders. F-REQ-27

Table 3.1:Functional requirements with identifiers.

Extension MIME type

csv text/csv, application/csv
html, htm text/html
rtf text/rtf
txt text/plain, text/x-tex
tex text/x-tex
doc application/msword

docx application/vnd.openxmlformats-
officedocument.wordprocessingml.document

pdf application/pdf
odp application/vnd.oasis.opendocument.presentation
ods application/vnd.oasis.opendocument.spreadsheet
odt application/vnd.oasis.opendocument.text
xls application/vnd.ms-excel
xlsm application/vnd.ms-excel.sheet.macroEnabled.12

xlsx application/vnd.openxmlformats-
officedocument.spreadsheetml.sheet

Table 3.2:MIME types that must be handled by PAKET.

12

3. Requirements

3.4 Quality Attribute Requirements
The quality attribute requirements,as listed in Table 3.2,are intended to set
the scope concerning architecture and design for PAKET.There are obviously
tradeoffs in their importance,for example it is crucial,regarding architecture
and business value,that PAKET is interoperable by being reachable via HTTP
requests as well as offering a standard CLI. However, to have building blocks with
clear responsibilities may be of little interest to a customer or product manager,
but shapes the architecture substantially.

Quality
Attribute

Attribute
Refinement Attribute Requirement ID

Interoperability
Exchanging
Information
via Interfaces

The CLI must offer users the op-
portunity to extract keywords via
terminal.(H, H)

A-REQ-1

The CLI must offer users the op-
portunity to extract keywords via
web server.(H, H)

A-REQ-2

Modifiability Modularity

The system shallbe understand-
able bottom-up, because the soft-
ware structureis broken down
into meaningfully related units.
(H, L)

A-REQ-3

Hierachization
The system shallbe understand-
able top-down, because the archi-
tecture is free from cycles.(H, L)

A-REQ-4

Pattern con-
sistency

The system shallbe understand-
able top-down,because complex
structures are deduced by design
patterns.(H, L)

A-REQ-5

Extensibility Adding new
languages

The system must be expandable
by new languageson request,
within one working day.(H, H)

A-REQ-6

Performance Throughput
At normalload,the system shall
be able to return 1, 10, 100
keywordsfor 1MB files in less
than 15, 25, 50 seconds.(M, M)

A-REQ-7

13

3. Requirements

Ressource
Utilization

The system shall work under
user disk constraints of minimum
32GB. (L, M)

A-REQ-8

The system shallhave no more
than 3GB peak RAM usage.
(L, M)

A-REQ-9

Portability Platform De-
pendencies

The system mustbe deployable
on currentLinux and Windows
distributions via Docker contain-
ers.(M, H)

A-REQ-10

Transparency Logging
The system mustbe able to
log human-readable log messages.
(H, H)

A-REQ-11

The system must differentiate
between logging levels info, warn-
ing, debug and error.(M, H)

A-REQ-12

The CLI must offer users the op-
portunity to select between log-
ging levels,which are supported
by the system.(L, H)

A-REQ-13

Usability CLI
The CLI shall offer usersthe
opportunity to print the output
json string in a human-readable
format.(L, L)

A-REQ-14

Table 3.3:Tabular Form of the Utility Tree with identifiers.The utility node
is implicitly assumed.

14

3. Requirements

3.5 Transition Requirements
Between the state of development to the finalproduction,there may be an ob-
ligation to demonstrate intermediate results of functionality to key stakeholders.
To meet this insistence, it may be useful to demonstrate some of the functionality
by creating a PoC.Table 3.4 lists the transition requirements of the PoC.

Transition Requirement ID

The PoC shall have a logo. T-REQ-1
The PoC must offer users the opportunity to insert plain text
of their choice into a text box, from which the keywords are to
be extracted.

T-REQ-2

The PoC must offer users the opportunity to drag-and-drop a
file to a file box, from which the keywords are to be extracted.T-REQ-3

The PoC must offer users the opportunity to select an upper
limit of one to one hundred keywords. T-REQ-4

The PoC must display, which file extensions are supported by
the system. T-REQ-5

The PoC must display the keywords and weights in a result
table, sorted, with the first keyword being the most relevant.T-REQ-6

The PoC shall offer users the option to delete text in the text
box and remove the results table. T-REQ-7

If a file with unsupported MIME type is inserted, the PoC
must display a warning message and continues working.T-REQ-8

If a text with unsupported language is inserted, the PoC must
display a warning message and continues working. T-REQ-9

If a file with unsupported language is inserted, the PoC must
display a warning message and continues working. T-REQ-10

Table 3.4:Transition requirements with identifiers.

15

4 Architectural Design

With the list of requirements from chapter three,we are prepared for the next
step, namely, sketching out the architecture.Good architectural decisions are to
be embeded early by considering principles that increase the chance of getting a
production-ready system.For this reason the system is built upon modularity,
hierarchization, and pattern consistency, architectural principles which are part of
a sustainable software architecture as described by Lilienthal (2020).Additionally,
the maxim KISS will be followed (Starke, 2020).
It should be noted that architecturaldesign differs from other design aspects
insofar that while architecture tries to find a compromise between all quality at-
tributes, the application of design is an architectural decision in itself, improving
maintainability (Toth, 2019).The use of design might even reduce architectural
work by keeping the structure of the software solution flexible.Either way, good
design reduces the time it takes to read and understand the system internals,
thus reducing development time and maintenance costs (Lilienthal, 2020).
Section 4.1 provides an outline of technical debt, sustainable software architecture
and KISS. Section 4.2 presents a generaloverview of the project structure and
addresses the integration and deployment of PAKET. Section 4.3 and section 4.4
decompose the packages of PAKET into modules and describe them in context
of the aforementioned principles.

4.1 Fundamentals
Technical Debt:Technical debt arises when incorrect or suboptimal technical
decisions are made consciously or unconsciously,causing additionalexpense at
later date (Lilienthal,2020).The following types oftechnicaldebt are to be
considered:Implementation (code smells),design and architecture,test as well
as documentation debt.
Sustainable Software Architecture:Sustainability can be understood as us-
ing resources in a way that ensures long-term satisfaction by maintaining the
regenerative capacity ofsystems involved (Brundtland,1987).An analogy to

16

4. Architectural Design

software development can be provided as follows:The resources development
and maintenance time should be used as efficiently as possible over the software
lifetime (Lilienthal,2020).More precisely,the effort to pay off technicaldebt
should be bearable or, in other words, software should be capable of regenerating
to the extent that developers can work on it properly.All systems involved (e.g.
stakeholders) are supposed to benefit.
To counteract erosion at architecture level,modularity,hierarchization and pat-
tern consistency are to be resorted to.These principles are the logicalcontinu-
ation ofhuman cognition when it comes to better reading and understanding
program code.
Modularity exploits chunking,the fact that people combine smaller knowledge
units (chunks) with little information per knowledge unit into larger, more con-
densed knowledge units with more information.If the line is drawn to program-
ming,this means that developers combine the lines of program code they read
(bottom-up) into higher and higher order knowledge units until an understanding
is reached.If the knowledge units are related in a meaningful way, this works out
more easily.Based on this insight, the following criteria should be strived for in
order to achieve a modular architecture:

1. Building blocks (e.g.packages,modules,...) are highly cohesive and have
exactly one responsibility.

2. Building blocks are encapsulated via interfaces, which are explicit, minimal
and delegating.

3. Building blocks are loosely coupled.
Content that is also hierarchically structured and ordered (trees, acyclic graphs)
is easier for people to learn,process,but also,once in memory,to recall(top-
down).The construction of hierarchies is supported by the fact, that in software
systems methods are contained in classes, classes in modules, modules in packages
and so on.However, as a condition, the architecture must be designed cycle free.
This implies that it must not be possible to backtrack to each individual building
block via the relationships it has to other building blocks.
In the first instance, our brain is primarily a pattern recognition apparatus that
derives so-called schemes from situations in our environment.Complex coher-
ences are bundled as schemes in chunks in order to achieve a speed boost in
recalling memory contents (top-down).Such a chunk consists of an abstract and
a concrete level.The former attributes the relationships it schematically rep-
resents and the latter represents the prototypicalinstances of the scheme.The
following example shallsymbolize this:The scheme car generates abstract no-
tions in us, attributing e.g.that it has a chassis, an engine, a steering wheel, four
tires,and so on.Concretely,however,each of us willhave different vehicles in

17

4. Architectural Design

mind, which we have stored as prototypes of the car schema.
Schemes can be transferred congruently to patterns ofsoftware development.
Here it is crucial to use generally known patterns from practice and to implement
them consistently.
Keep It Smalland Simple (KISS):Albert Einstein is alleged to have said:
‘Everything should be made as simple as possible.But not simpler’.This is
absolutely true for the development of software systems (Starke, 2020).Systems
that are kept simple are easier to maintain, because they are easier to understand,
and they do not hide potential problems through unnecessary complexity.Nev-
ertheless, problems have their own inherent complexity that cannot be simplified
arbitrarily.

4.2 PAKET
4.2.1 Project Tree
Figure 4.1 shows elements ofthe directory structure and provides a bird’s eye
view of the project.The project itself is a GitLab1 project, therefore making use
of version control.The folder gitlab additionally suggests that a CI pipeline is
used which is described in section 4.2.2.
The two folders text_extractor and keyword_extractor encapsulate package-
relevant details, such as the package itself as well as dependencies and tests.The
Python2 programming language is used for the overall project.This architectural
decision arose from the fact that Python is considered standard in the data science
and AI field offering many open-source keyword extraction implementations.
The decision to keep the tests nextto the package instead ofthe respect-
ive modules is due to the fact that they would otherwise have to be removed
with additionaleffort upon delivery (Krekel,2022). You will also notice the
pyproject.toml file,which has been introduced as a new configuration file to
specify build dependencies and to reduce cognitive complexity (Cannon et al.,
2022).
Since the final product will be delivered as a Docker3 container, it will be tested
in a similar environment beforehand.docker_integration is used to build ex-
ecutable binaries and test them.docker_deploy is intended to preserve the bare
application with its dependencies and should therefore be seen as separate.

1https://about.gitlab.com/
2https://www.python.org/
3https://www.docker.com/

18

4. Architectural Design

/
docker

docker_integration
docker_deploy

gitlab
keyword_extractor

keyword_extractor
tests
pyproject.toml

text_extractor
text_extractor
tests
pyproject.toml

Makefile
...

Figure 4.1:Project tree.

In addition, a Makefile is used to simplify local testing and other administrative
tasks.

4.2.2 Continuous Integration
In order to get immediate feedback of the software state after each code commit
a CI pipeline is used.Figure 4.2 shows the four states that are passed by.

CI Pipelinestm

build binaries build application

tests

static tests unit tests

Figure 4.2:A UML diagram showing the different pipeline stages.The abbre-
viation stm stands for Statechart Diagram.

The following static tests are automated:
• Conventions about coding style and docstring structure.
• Error linting in source files.
• Metrics like cyclomatic complexity and code coverage.

19

4. Architectural Design

• Since Python is a strong, dynamically typed language, a type checker that
combines duck typing and static typing.

4.2.3 Deployment
As figure 4.1 already revealed, PAKET is divided into two packages.One handles
the extraction oftext from document files and the other handles the extrac-
tion ofkeywords from those texts.It is the very first step towards a modular
architecture,because the packages have clear responsibilities.Figure 4.3 ex-
emplifies this relationship and we see that the Keyword Extractor depends on
the Text Extractor as wellas their resulting artifacts.4 The two artifacts and
other dependencies are then bundled into a light-weight Docker container with
docker_deploy, ready for delivery.

PAKETdep

«package»
Keyword Extractor

«package»
Text Extractor

text_extractor.whlkeyword_extractor.whl

Figure 4.3:A UML diagram of PAKET showing the constituent packages, their
relationships and example artifacts.The abbreviation dep stands for Deployment
Diagram.

4A Python wheelis an example instance ofan artifact. However,the design is kept as
general as possible, so basically any programming language is suitable for implementation.The
Python notation is used throughout the thesis.

20

4. Architectural Design

4.3 Text Extractor
Let’s take a closer look at the Text Extractor.Since documents could be ana-
lyzed not only in terms of keyword extraction, the package is designed as a library.
In figure 4.4 we can see how it is composed of four modules reader,strategy,
logger and dependency and how they depend on each other.
The reader module provides the simple method interface:

def text_from_file (path : str) - > str :
...

The method receives a file path as parameter which points to a file whose raw
text content is returned if it is one of the MIME types listed in table 3.2.
It depends on the strategy module, whose name is directly derived from the well-
known5 Strategy pattern.This means that different read strategies are selectable
at runtime, depending on the document type.

Text Extractorcmp

«module»
logger

«module»
reader

«module»
strategy

«module»
dependency

Figure 4.4:A UML diagram of the Text Extractor package showing constitu-
ent modules and their dependencies.The abbreviation cmp stands for Compon-
ent Diagram.

5Design patterns that are unknown do not help understanding the program.

21

4. Architectural Design

However, the multiplicity of document types which have to be handled, automat-
ically leads to a multiplicity ofrequired (third party) libraries.Consequently,
it may be necessary to resort to native libraries,because those libraries are not
available, not mature enough or slow.Native libraries cannot be loaded directly
via the package or dependency management toolof the programming language.
This is why the dependency module exists.It checks at compile time6 whether
these externaldependencies are installed on the host system and aborts if that
is not the case (fail-fast).
The logger module can of course be used for inspection purposes.For building
a library, it might be a good idea to design the logger to be configurable for the
application developer,because the developer should be free to decide what role
logging should play in his application (Sajip, 2022).

4.4 Keyword Extractor
Now that we have text in our possession,we continue and extract keywords.
Figure 4.5 shows eight modules constituting the Keyword Extractor.
The module cli offers integration points via the CLI, once in form of a classical
terminal,once in form ofa web server (service) via HTTP requests.If the
decision is made in favor ofthe web server,a POST requestcan be sent that
returns one to one hundred keywords for each file listed.Appendix A contains
more detailed information on its usage.
Both approaches make use of the keywords module, which offers following method
interfaces:
def keywords_from_files (paths : List [str] , upper_limit : int) \

- > Dict [str , List [Keyword]] :
...

def keywords_from_text (text : str , upper_limit : int) \
- > List [Keyword] :

...

The first method receives a list of file paths, as well as a number, which indicates
the upper limit of keyword objects to be returned.
The first parameter paths refers to one or more files and/or to one or more folders.
These paths are resolved non-recursively and made unique via the module of the
same name,paths. Among other things,it is to be achieved that ifthe input
contains e.g.two directory paths, both pointing to the same folder, corresponding
file paths of the same hierarchy level are taken from the directory path only once.

6Import time in python.

22

4. Architectural Design

Keyword Extractorcmp

«module»
cli

«module»
extraction

«module»
config

«module»
keywords

«module»
language

«module»
logger

«module»
service

«module»
paths

Figure 4.5:A UML diagram of the Keyword Extractor package showing con-
stituent modules and their dependencies.The abbreviation cmp stands for Com-
ponent Diagram.

The second parameter is called upper_limit,because it is practically possible
that the text contains fewer words than the required keywords.Accordingly,
fewer of them would be returned.The return value is a dictionary that maps the
file paths to list of keyword objects.The choice for a keyword object was made
because, firstly, it is descriptive and secondly, it allows the client to use only the
attributes it needs, e.g.the word, weight or other encapsulated attributes.
The second method does almost the same, but receives a text as first parameter
and returns a list ofkeywords.Because allthese peculiarities are not directly
recognizable in the method signature itself, they must be included in the interface
documentation (not shown).
The language and extraction modules are strongly coupled, because both use
the spaCy7 library,whose concepts are explained in chapter five.Nonetheless,
these are seperate modules,because the former governs the composition of the
NLP pipeline and the selection of the language.The latter cares about the actual
extraction and ranking of keywords.

7https://spacy.io/

23

4. Architectural Design

Finally, the modules config and logger.You can see in the diagram that they
unite many arrows, which either indicates that the modules are not very cohesive
or that they are cross-cutting concerns and thus cannot be easily modularized.
The latter is the case.

24

5 Detailed Design

In this chapter we focus on the logical structure of individual program compon-
ents.To keep the quality levelhigh,the same guidelines as stated in chapter 4
are followed, but also additional ones.On the one hand, design principles such as
DRY and DbC are used.On the other hand development practices like extensive
testing, coding standards and documentation, which are to be checked by the CI
pipeline, are applied (Thomas & Hunt, 2020).
Section 5.1 touches on design principles and provides a detour into the spaCy lib-
rary, thereby explaining important NLP concepts.How to proceed to determine
the similarity of strings is another topic.Section 5.2 covers aspects of the actual
keyword extraction process.

5.1 Fundamentals
Don’t Repeat Yourself (DRY):This principle is defined as follows:‘Know-
ledge must have a single, unique, and authoritative representation within a sys-
tem’ (Thomas & Hunt,2020,p. 31). If adhered to,this has a positive effect on
maintainability (Thomas & Hunt, 2020).By having only one single point of truth
in the system, the programmer has fewer chunks to retrieve and hold in memory
when she makes a change.It should be emphasized that the same code may have
different knowledge representations.
Design by Contract (DbC):Contracts between people bind them to expli-
citly written clauses that provide rights as wellas obligations and entailcon-
sequences.Contracts between software modules and their routines work the
same way (Thomas & Hunt, 2020).Contractually defined preconditions apply to
a routine before it is allowed to be called.The routine then guarantees all post-
conditions and invariants as soon as it returns.If caller and callee fulfillthese
bindings then they work correctly according to specification.As soon as one of
the routines violates the contract, the consequences follow immediately and e.g.
an exception is thrown or the program terminates.

25

5. Detailed Design

spaCy Library:The quality requirements imposed on a product are at least
reflected in the libraries used.The NLP library spaCy was chosen, because it was
explicitly developed for production use (ExplosionAI,2022).It is characterized
by the fact that the API is kept simple,makes comprehensible architectural
specifications, but does not cut back on performance.In addition, spaCy makes
pre-trained NLP pipelines for English,German and many other languages not
only available,but also easy to integrate.The following paragraphs delve into
the core concepts that significantly shape PAKET.
The design of spaCy is based on the Pipe-and-Filter architectural pattern, which
is characterized by the fact that data streams are successively transformed and
forwarded (Bass et al., 2013).In spaCy, these text-processing pipelines are called
Languages,which may consist ofseveralinterconnected,reusable,components
(filters).Only the so-called Tokenizer component is fixed,which segments text
into Tokens (i.e.words,punctuations,symbols,whitespaces,etc.) and creates
a Doc object. This Doc object is then,potentially,passed on and processed
by components responsible for other linguistic features.Each language accesses
different data types and implements components in distinct ways.
Language data can be e.g.stopwords or punctuation rules.Stopwords are words
like ‘a’, ‘an’, ‘and’, ‘the’ and so forth, words which carry little useful information
in most contexts and are better to be removed.Punctuations are characters like
‘=’, ‘ !’or ‘ ?’, which are used to split tokens or sentences via regular expressions
or rules.
Linguistic features that are relevant for us is the already mentioned tokenization,
but also other features like sentence segmentation, Part of Speech (PoS) tagging,
morphology and word vectors.Custom components can also be developed and
appended.This is exactly the procedure used for the Keyword Extractor, as can
be seen in section 5.2.
Sentence segmentation at sentence boundaries is done by the Sentencizer.It
seperates sentences on punctuation like ‘.’, ‘ !’or ‘ ?’.
PoS tagging refers to the process of assigning tags to tokens.Such tags can be for
example:A lemma (root word), coarse or fine-grained PoS tags or a conditional,
e.g. whether the token is part of a stop list.In PAKET, in particular,coarse-
grained PoS tags are needed, which are generated by the Morphologizer.Coarse-
grained PoS tags have,for example,the identifiers NOUN for noun or ADJ for
adjective1. The Morphologizer either generates them using statistical models or
derives them by token text and fine-grained PoS tags.The fine-grained PoS tags
further differentiate words,language-specifically.For example,an English noun
can be further broken down as NN (singular or mass) or NNS (plural)2. Fine-

1https://universaldependencies.org/u/pos/index.html
2https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

26

5. Detailed Design

grained PoS tags are created by the Tagger,which also works with statistical
models.
To round everything up, we revisit the concept of word vectors touched in chapter
two. Word vectors or word embeddings embody the learned representation of a
word, expressed in an n-dimensional vector space.The closer these word vectors
lie in space,the closer their relationship.SpaCy offers pre-trained word vector
tables for different languages, which are used by components and their statistical
models to increase the accuracy of their predictions.The tables contain mainly
common words, whose vector representations can be several hundred megabytes
in size (Table 7.2).For example, the words ‘keyword’ and ‘language’ are included
and thus mapped as a vector.A non-existent word is mapped as a vector of zeros
and has no effect on the decision making of the statisticalmodels.Such words
are called out-of-vocabulary (OOV) words.
Fuzzy Matching:In contrast to exact matching,where two strings must be
identical,fuzzy matching is intended to find the similarity,i.e. an approximate
matching (‘Approximate string matching’,2022).Since language is often am-
biguous, it is not always desirable to check two strings for exact equality as can
be seen in postprocessing, section 5.2.2.
Usually,approximate matching algorithms calculate the ‘edit distance between
strings A and B ...as the minimum number ofedit operations needed in con-
verting A into B or vice versa.Typically the allowed edit operations are one or
more of the following:an insertion, a deletion or a substitution of a character, or
a transposition between two adjacent characters.’(Hyyrö, 2004, p. 79).
A well-known representative is the Levenshtein distance, which performs the first
three operations (Hyyrö,2004).In PAKET, the Indeldistance is used,which
performs only the first two operations.More precisely,the normalized Indel
similarity3 is used,which sets the distance in relation to the length ofboth
strings and outputs a comparable value between zero and one, where one means
that the strings are perfect matches.

3https://maxbachmann.github.io/RapidFuzz/Usage/distance/Indel.html

27

5. Detailed Design

5.2 Keyword Extraction
5.2.1 Language Integration
Since users can have documents with different languages, it is necessary to react
quickly and flexibly to future requirements,offering new languages on request.
At the same time, it helps to be able to scale the number of languages, because
of the mentioned size of the word vector models.
As with the read strategies of the Text Extractor, we make use of the Strategy
pattern.During runtime, it should be possible to get the respective strategy, i.e.
the concrete extractor, which was generated at compile time (or import time) by
means of the according text language.
Figure 5.1 shows the corresponding inheritance hierarchy.It can be seen that the
concrete classes EnglishExtractor,GermanExtractor or XYZExtractor (rep-
resentative for any language) inherit from the abstract class Extractor.The
concrete classes must implement the get_language hook method provided by
the abstract class and return the respective spaCy Language without compon-
ents attached,besides the Tokenizer.When the extractors are instantiated,the
template method build_pipeline is called (e.g.via the constructor),which
assembles and returns the pipeline.

Language Moduleclass

«abstract»
Extractor

+/pipeline: Language = None
-build_pipeline(): Language
-get_language(): Language

EnglishExtractor

-get_language(): Language

GermanExtractor

-get_language(): Language

XYZExtractor

-get_language(): Language

Figure 5.1:A UML diagram of the language module showing the inheritance
relationship ofExtractor classes.The abbreviation class stands for Class Dia-
gram.

28

5. Detailed Design

The following code excerpt is intended to illustrate the pipeline assembly:
@classmethod
def _build_pipeline (cls) - > Language :

pipeline = cls . _get_language ()
...
pipeline . max_length = 10 ** 7
pipeline . add_pipe (" sentencizer ")
pipeline . add_pipe (" keyword_extractor ")
pipeline . initialize ()

return pipeline

As can be seen,the sentence segmentation and keyword extraction components
are added to the pipeline.It should be pointed out that those components do
not use any statisticalmodels and work by rules or regex.For this reason,the
maximum text length that spaCy sets by default can be increased.The limit is
changed from 106 to 107 characters to handle large books,for example.Texts
with more characters would be ignored.The limit is usually intended to prevent
memory overflows by the models.These allocate temporary memory ofabout
1GB per 100,000 characters4.

5.2.2 Processing Pipeline
Figure 5.2 shows the pipeline on a higher level.We will now look at the in-
dividual steps of extracting keywords, i.e.Preprocessing, Keyword Weighting
and Postprocessing, and assume that tokens and sentences are already attached
to the Doc.Roughly speaking,the first two steps handle the implementation of
the YAKE! algorithm for 1-gram keywords.The third step builds on this and
ranks, filters and collects the keywords.

Text

Tokenizer Sentencizer Keyword Extraction Keywords

Preprocessing Keyword Weighting PostprocessingTokens & Sentences

Figure 5.2:Model of a keyword extraction pipeline.

But before that,an explanation ofwhy the decision was made to reimplement
YAKE! instead ofrelying on existing software:The decision in favor ofthird-
party (open source) software can be justified in terms of reusability and division
of labor,as the functionality can be very complex and the software is usually

4https://github.com/explosion/spaCy/blob/master/spacy/language.py

29

5. Detailed Design

actively maintained (Winters et al.,2020).Nevertheless,it can sometimes be
advantageous to write the functionality in-house, especially if the previous criteria
are not or hardly fulfilled.
First of all, from a purely scientific point of view, it makes sense to replicate the
results of scientific papers, even more so considering the replication crisis5.
From a business perspective, in-house implementation can mean knowledge gain
and control.The acquired knowledge ofthe person(s) might not only increase
the competence, but also radiates into the organizational structure (if knowledge
sharing is cultivated).Controlover code also means controlover quality and
flexibility in functionality.For example,if the decision is made to prioritize
keyword ranking on other statistical features than those provided by YAKE! this
would hardly be possible if externalized.These thought processes are particularly
part of a future-oriented and sustainable strategy.Nevertheless, existing software
should usually be the first choice, especially if delivery is time-critical.

Preprocessing
During Preprocessing, the first step is to decide whether the tokens of the text
are valid or not, and if not, they are skipped.This creates an initial preselection
of words that will bias the weighting.A token is considered valid if it is marked
as a parsable content,uppercase or acronym.A parsable content is anything
that is not an unparsable content and is neither a digit nor a number.An
unparsable content is a token that consists of at least two punctuation characters
(e.g.an URL or email), that is a combination of one or more digits or alphabetic
characters, or that has neither digits nor alphabetic characters.
After that preselection, the valid tokens are mapped to terms.In the best case,
this mapping is an unambigous,many-to-one relationship,i.e. many tokens are
mapped to one term.Unfortunately,in reality one does not always encounter
unique words.These have differences due to spelling errors,changing spelling
reforms or grammar (singular,plural),for example.To obviate this,the tokens
are lowercased, punctuations are removed and the lemma is taken.This approach
is the most an approximation and a compromise is made between accuracy and
performance.Not to leave unmentioned are weaknesses that become apparent
from the mapping itself, and thus impacting the statistical approach:Words that
are homonyms or homographs are treated free of any context.
At last, information is collected that influences the statisticalanalysis.If the
term is a stopword,it will be marked as such and weighed less during Keyword
Weighting.In addition, the frequency of the term is counted and the indices of
the sentences as well as the co-occurrences relative to the term are collected.

5https://en.wikipedia.org/wiki/Replication_crisis

30

5. Detailed Design

The following code gives a rough impression:

def _preprocessing (doc : Doc) - > List [Term]:
...
for i , sentence in enumerate (sentences) :

for token in sentence :
if _token_is_invalid (token) :

continue
term = ... # Map tokens to terms

Information that influences weighting
term . is_stop = ...
term . term_frequency += 1
term . mark = _get_mark (token)
_append_sentence_index (term , i)
_append_co_occurrences (term , token)

terms . append (term)

return terms

Keyword Weighting
In Keyword Weighting or actually Term Weighting, a total weight is calculated
for all terms, which is composed of the individual statistical features as described
in chapter 2.

Postprocessing
In Postprocessing, the keywords are finally identified.For this purpose,the
terms are sorted in ascending order according to their weights (low values mean
higher relevance) and each one is checked for certain properties.If it is a stopword,
it is skipped right away.Otherwise,a pre-trained NLP pipeline is applied and
the term is checked if it is part of the word vector vocabulary.If not, it is a more
exceptional term, which is kept.If yes, an additional check is performed whether
the (coarse-grained) PoC tag is in a list of allowed PoC tags.If this is not the
case the term is skipped.
Finally,redundant keywords are to be avoided.For example, the words ‘Game-
of-Thrones’and ‘gameofthrones’are prevented from appearing as two different
words.To achieve that, a heuristic based on fuzzy matching is used.
Firstly,the candidate term is compared to allthe keywords,which are already
included in the list.The term and the keywords are lowercased,and the nor-
malized Indelsimilarity between them is calculated.Two words are considered
similar ifthe result is a value greater than 0.9,i.e. there is little leeway when

31

5. Detailed Design

inserting deleting or replacing characters.This value is empirically developed by
specifiying a (steadily increasing) list ofword pairs,which are considered sim-
ilar or different.For each integrated language the list ofword pairs should be
extended and the heuristic might have to be adjusted.
The ‘game-of-thrones’-example would have a value of around 0.928 and thus be re-
jected, because already contained.The syntactical almost identical, semantically
different, German words ‘freiheit’ and ‘freizeit’ with a normalized Indel similarity
of 0.875 would both be included.
At first glance, this approach seems to be quite sufficient.Nevertheless there are
words (tendentially shorter ones) which are semantically very close,but would
both be included.Examples are ‘ice’and ‘iced’with a value of0.857 and the
German words ‘fürst’ and ‘fürsten’ with a value of 0.833.Additionally there are
semantically different,German words like ‘butter’and ‘mutter’with a value of
0.833, which would not be included.As can be seen, there are syntactically similar
words, having almost the same normalized Indel similarity, but are semantically
very different.Therefore another differentiating factor is needed.
The implemented solution checks in an additionalstep whether the term is a
substring of the keyword or vice versa,and considers them equalif they have a
normalized Indel similarity of more than 0.8.The lower bound of 0.8 is chosen,
because of the German words ‘ei’ and ‘eis’, which have a similarity of exactly 0.8.
The following code serves as an overview:

def _postprocessing (doc : Doc) - > List [Keyword] :
...
for term in sorted_terms :

if len (keywords) == upper_limit :
break

if term . is_stop :
continue

...
candidate = ... # Result of NLP pipeline
if not candidate . is_oov and candidate . pos_ not in

INCLUDED_POS_TAGS :
continue

if _term_exists (term . text , keywords) :
continue

keyword = Keyword (term . text , term . weight)
keywords . append (keyword)

return keywords

32

5. Detailed Design

As well as the fuzzy matching approach:

def _term_exists (term : str , keywords : List [Keywords]) : - > bool :
...
for keyword in keywords :

...
similarity = ... # Normalized Indel similarity
if similarity > 0 . 9 :

return True

is_substring = ...
if is_substring and similarity > 0. 8 :

return True
return False

33

6 User Experience Design

A system liked by the users is at least as important as its technical functionality
and implementation.If the usability of the system is difficult to understand or
cumbersome, this raises the question of its suitability for production use.To avoid
such mistakes, individual Usability Principles by Dix et al. (2004) are selected.
Section 6.1 presents those principles.Section 6.2 and section 6.3 show how the
CLI and the structure ofa logging message can be designed to positively af-
fect usability.Since user experience also includes the opportunity to gain initial
experience with the product, the PoC is presented in section 6.4.

6.1 Fundamentals
Usability Principles:Three categories ofusability supporting principles are
differentiated:Learnability, Flexibility and Robustness (Dix et al., 2004).Only a
subset of principles is considered,namely those that also had an impact on the
product or PoC.
The first category, learnability, comprises principles that aim to make the (first)
system interaction for new users as performant as possible.Here,the principles
operation visibility and familiarity are of relevance.Operation visibility means
that only those operations willbe displayed,which the user is actually able to
execute,therefore reducing the cognitive load.Familiarity is defined as ‘the
correlation between the user’s existing knowledge and the knowledge required for
effective interaction’(Dix et al.,2004,p. 264).The higher the correlation,the
easier the system can be used.
Flexiblity refers to the different ways user and system exchange information.In
the thesis, a restriction is made by letting user and system communicate via dia-
logs only.Either the user (user pre-emptive) or the system (system pre-emptive)
can initiate these dialogs.A good system guarantees that the user has as much
freedom as possible and that the system only intervenes when it is really neces-
sary.

34

6. User Experience Design

Interaction with the system implies that the user wants to achieve certain (task-
specific) goals with it.Robustness includes principles providing support,such
as browserability and defaults.The former presents users a limited view of the
internal system state via the interface, tailored to the task at hand.It basically
follows the KISS principle.The latter insists on the availability of default values,
which are set within the system or queried and initialized at system startup.
They provide guidance to the user and reduce the number of physical actions.

6.2 Command Line Interface
The use of a (user pre-emptive) CLI has the immediate advantage of achieving
familiarity, since developers are usually accustomed to its use.It is divided into
three task dialogs with the goal of achieving operation visibility and browserab-
ility. The first task dialog (Appendix B, fig. 2) provides a general overview of its
use,a functionaldescription and a description of the possible options and com-
mands.For example,the four logging levels error,warning,info and debug
are provided for logging, with a warning set as default.If the extract command
(Appendix B, fig. 3) is chosen, the task dialog looks similar, because the dialogs
are kept consistent.The --prettify option is provided, which indents the json
string,making it more legible for humans.The run command (Appendix B,
fig.4) offers the option to change the port with --port.In addition,the port
range is limited to registered and dynamic ports.

6.3 Logging
In order to make the system more transparent and to debug it more efficiently in
case of an error, various demands are made on the structure of the log message:
Each message should be uniquely identifiable,human-readable,categorizable,
traceable and easily parsable.To achieve this, each log message has the following
structure:

[Time][Level][File][Function][Message]

Time is the totally ordered and unique identifier.Level is one of the log levels ref-
erenced in section 6.2, File specifies the location in the file system and Function
the location in the code, Message contains the concrete concern.

35

6. User Experience Design

6.4 Proof of Concept
The PoC is implemented as a streamlit1 web application and as already men-
tioned, acts as a persuasion medium for relevant stakeholders.Two task dialogs
are implemented (Appendix C, fig. 5 and fig. 6).To establish an identity to the
product (or alternatively to the company),a prototypicallogo is created.The
overall design is kept minimalistic and modern, it is recommended to use colors
matching the product or company and keep it consistent.It is also recommended
to limit the maximum text length or file size to avoid overflows.By default, the
input option is set to a text and the upper limit of the slider is set to five.In
case of an error,feedback should be displayed to the user (system pre-emptive)
in the form of a warning (Appendix C, fig.7, 8 and 9).

1https://streamlit.io/

36

7 Evaluation

Finally,we assess how comprehensively and appropriately the requirements of
chapter 3 have been realized.
Overall, an agile approach was conducted, meaning there were many refinement
iterations on the requirements, design and evaluation.
Section 7.1 provides an overview of metrics to help to classify the architecture.
Section 7.2 provides the specification ofthe computer,datasets and language
models for replicability.In section 7.3, 7.4 and 7.5 PAKET is evaluated, i.e.all
requirements are tested if satisfied, partly satisfied or not satisfied.

7.1 Fundamentals
Architecturalmetrics:Hereafter,metrics are presented which express the
structural quality of the architecture in numbers, as described in Dowalil (2020).
These can serve as maintainability indicators of a system.It should be emphas-
ized that a measure must remain a measure and might not become the target
itself (Goodhart’s law).
The first metric, called RelationalCohesion, states that if a module has a much
higher number of connections relative to components, it is an indication of poor
cohesion.Recommended values range between 1.5 and 4 (Dowalil,2020,p. 98).
It is calculated as follows:

Relational Cohesion =Number of connections + 1
Number of components

More metrics that are used are those ofJohn Lakos. These are based on the
so-called Depends Upon Values,which accumulate,per component,the number
of components that directly or indirectly depend on it, including the component
itself.

37

7. Evaluation

With these the Cumulative Component Dependency (CCD) can be calculated:

CCD =
X

Depends Upon Values

This directly results in the Average ComponentDependency (ACD) with the
following calculation rule:

ACD = CCD
Number components

And results in the Relative Average Component Dependency (RACD):

RACD = (ACD
Number components) · 100

Lower values mean fewer side effects, which is preferable.To differentiate between
architectures,the RACD may be taken,which sets the ACD in relation to the
number of components.According to literature, it is recommended to aim for a
RACD of less than 25% (Dowalil, 2020, p. 103).The smaller the percentage, the
lower the coupling between components.RACD is usually smaller for systems
with a high number of components.
The last metric is Relative Cyclicity,which indicates the percentage ofcom-
ponents involved in a cycle.A value ofzero is to be aimed at.The following
calculation formula is used:

Relative Cyclicity = (Number of cyclic components
Number components) · 100

38

7. Evaluation

7.2 Test Environment
Experiments were performed on a computer with following specifications:

• OS: Ubuntu 20.04 focal.
• Kernel:x86-64 Linux 5.15.0-46-generic.
• CPU: AMD Ryzen 7 1700X, 3.4GHz with eight cores.
• RAM: 16GB.
• Disk: Samsung SSD 960 EVO, 500GB.
• Python version:3.9.

Experiments were performed with datasets and pre-trained spaCy models, to be
taken from table 7.1 and table 7.2.Schutz2008 and SemEval2017 are officially
available and extracted from the ACM DigitalLibrary and PubMed Central
respective.They include not only documents, but also gold keywords annotated
by skilled researchers.Because finding a German dataset with gold keywords
proved to be a challenge, documents and keywords were scraped from peDOCS1,
a repository for educational science literature, using their OAI interface.

Dataset Language Size # Files MIME types

Schutz2008 en 31MB 1232 text/plain, text/x-tex
SemEval2017en 2MB 494 text/plain
peDOCS2022 de 405MB 174 application/pdf

Table 7.1:Used datasets for experiments.

Name ReleaseLanguage Size Vectors Licence

en_core_web_lg 3.4.0 en 560MB
514k keys,
514k unique
vectors

MIT

de_core_news_lg 3.4.0 de 541MB
500k keys,
500k unique
vectors

MIT

Table 7.2:Used spaCy models for postprocessing.

1https://www.pedocs.de/

39

7. Evaluation

7.3 Evaluating Functional Requirements
Table 7.3 lists the functionalrequirements,their degree offulfillment and the
reason(s) for that.

ID Satisfied Reason

F-REQ-1 yes Section 5.2 proves that keywords are extracted.

F-REQ-2 yes Section 5.2 proves that only statisticalfeatures and
pre-trained models are used.

F-REQ-3 yes Section 5.2 proves that no domain specific features
and no document corpus are used.

F-REQ-4 yes
Section 4.3 proves that plain text content is extrac-
ted.Additionally, tests are written for each document
MIME type listed in table 3.2.

F-REQ-5 no It is not yet foreseeable that these MIME types will
have to be supported.

F-REQ-6 yes Section 5.2 provesthat English and German lan-
guages are integrated.

F-REQ-7 partly
Section 5.2 proves that the integration ofnew lan-
guages is possible.It must be mentioned that the
word vector models offered by spaCy do not have
commercially usable licenses for every language.

F-REQ-8 no It is not yet foreseeable that these lanugages will have
to be supported.

F-REQ-9 yes Section 4.4 proves that keywords can be extracted
from text.

F-REQ-10 yes Section 4.4 proves that keywords can be extracted
from file paths referencing one or multiple files.

F-REQ-11 yes Section 4.4 proves that keywords can be extracted
from file paths referencing one or multiple directories.

F-REQ-12 yes
Section 4.4 proves that results are returned as a dic-
tionary, where file paths are keys and lists of extrac-
ted keywords are values.

F-REQ-13 yes Tests are written to guarantee that directories refer-
enced by directory paths are not resolved.

F-REQ-14 yes
If there is no read strategy for corresponding MIME
type,the file willbe ignored.Tests are written to
guarantee that.

40

7. Evaluation

F-REQ-15 yes
If the language could not be identified or there is no
extraction strategy the file will be ignored.Tests are
written to guarantee that.

F-REQ-16 yes Section 5.2 proves that a max length of 107 characters
is set for the extraction pipeline.

F-REQ-17 yes If there is an unspecific exception for a file,the file
will be ignored.

F-REQ-18 yes Section 4.4 proves that a CLI is implemented.

F-REQ-19 yes Section 6.2 proves that the extract command prints
the results to stdout as a json string.

F-REQ-20 yes
Section 6.4 proves that the upper limit ofkeywords
can only be between one and one hundred on CLI
side.

F-REQ-21 no
The maximum text length of107 might suffice for
now. On request,the requirement is able to be im-
plemented within one working day.

F-REQ-22 yes Section 5.2 provesthat terms which result in
keywords are directly taken from the document.

F-REQ-23 yes Section 5.2 proves that relevant content is captured
by statistical features.

F-REQ-24 yes Section 5.2 proves that keywords are 1-gram words.

F-REQ-25 no It is not yet foreseeable that keyphrases will have to
be supported.

F-REQ-26 yes
Implementing the YAKE! algorithm as a substructure
results in the benefit ofusing one ofthe most cited
keyword extractors,which is,according to the peer-
reviewed paper, extensively tested.

F-REQ-27 yes An ad hoc review was conducted via PoC and accep-
ted by the key stakeholders.

Table 7.3:Evaluation of functional requirements.

41

7. Evaluation

7.4 Evaluating Quality Attribute Requirements
Table 7.4 lists the quality attribute requirements, their degree of fulfillment and
the reason(s) for that.

ID Satisfied Reason

A-REQ-1 yes Section 4.4 proves that the CLI offers users the op-
portunity to extract keywords via terminal.

A-REQ-2 yes Section 4.4 proves that the CLI offers users the op-
portunity to extract keywords via web server.

A-REQ-3 yes

Table 7.5 shows that RelationalCohesion is on av-
eragewithin reasonablerangefor both packages.
RACD is way beyond the recommended 25%, which is
due to the small number of components.Section 4.3
and section 4.4 prove that modules are cohesive in
general.The modules config and logger are cross-
cutting concerns and can’t be easily modularized.

A-REQ-4 yes Table 7.5 proves that the architecture is free from
cycles by having a Relative Cyclicity of zero.

A-REQ-5 yes Section 4.3 and section 5.2 prove that design patterns
are used where possible.

A-REQ-6 yes Section 5.2 proves that languages can be integrated
with almost no effort.One working day should suffice.

A-REQ-7 yes Figure 7.1 proves that 1,10,100 keywords for 1MB
files are returned in less than 15, 25, 50 seconds.

A-REQ-8 yes

If it is assumed that a word vector table for each
language needs a maximum of 600MB of memory and
that all23 languages of spaCy (version 3.4.1) would
be used,a total of 13.8GB ofdisk space would be
needed.For the other packages used,no more than
500MB is assumed and is negligible in relation.

A-REQ-9 partly

Figure 7.1 shows that the peek RAM usage is around
2,2GB.As there is variance between different data-
sets but not between different upper limits,the as-
sumption is that the extracted text as wellas the
word vector tables contribute to these memory val-
ues.Anyway,the variance is no more than 300MiB.
Further examination is needed here.

42

7. Evaluation

A-REQ-10 yes
Section 4.2.3 proves that the system will be deployed
via Dockercontainer,thus working on Linux and
Windows systems.

A-REQ-11 yes
Section 4.4 and 4.4 prove that a logging mechanism
is implemented.Section 6.3 proves that the logging
message is human-readable.

A-REQ-12 yes Section 6.2 provesthat there are the fourlogging
levels error, warning, info and debug.

A-REQ-13 yes Section 6.2 proves that the default logging levelcan
be changed.

A-REQ-14 yes Section 6.2 proves that there is an option to prettify
the json string.

Table 7.4:Evaluation of quality attribute requirements.

Metric Text Extractor Keyword Extractor

Relational Cohesion 1.25 1.875
CCD 9 31
ACD 2.25 3.875
RACD 56% 48%
Relative Cyclicity 0 0

Table 7.5:Results of the architectural metrics.

Figure 7.1:Performance measurements.

43

7. Evaluation

7.5 Evaluating Transition Requirements
Table 7.6 lists the quality attribute requirements, their degree of fulfillment and
the reason(s) for that.

ID Satisfied Reason

T-REQ-1 yes Section 6.4 proves that the PoC has a logo.

T-REQ-2 yes Section 6.4 proves that users can extract keywords by
inserting plain text via text box.

T-REQ-3 yes Section 6.4 proves that users can extract keywords by
drag-and-drop a file to a file box.

T-REQ-4 yes Section 6.4 proves that users can select the upper
limit via a slider.

T-REQ-5 yes Section 6.4 proves that the file box shows all the sup-
ported file extensions.

T-REQ-6 yes
Section 6.4 proves that keywords and weights are dis-
played in a result table, in sorted order with the first
keyword being the most relevant.

T-REQ-7 yes Section 6.4 proves that there is a clear button to de-
lete text in the text box and remove the results table.

T-REQ-8 yes
Section 6.4 proves that there is a warning message dis-
played when inserting a file with unsupported MIME
type.

T-REQ-9 yes
Section 6.4 proves that there is a warning message
displayed when inserting text with unsupported lan-
guage.

T-REQ-10 yes
Section 6.4 proves that there is a warning message
displayed when inserting a file with unsupported lan-
guage.

Table 7.6:Evaluation of transition requirements.

44

8 Conclusions

As we have seen, the development of pure functionality is only half of the battle.
Software engineering must always be considered from an economic point of view.
In the end,it is about developing a product that willbe used by other people
and should provide value for them.We have seen that PAKET can be such a
solution for keyword extraction.
At the same time software engineering should be thought of in a sustainable and
future-oriented way, because software must grow with people and adapt to their
needs.It makes sense strategically to be able to react efficiently and effectively
(agile) to new challenges.
It starts with the requirements, which are clearly defined and forced into a struc-
tural corset in order to create a common basis ofunderstanding for allstake-
holders.This predefined structure has the effect ofavoiding ambiguities in re-
quirements,making them prioritizable,traceable and verifiable.Whether all
requirements are actually found or described in sufficient detaildepends on the
feasibility of the development phases based on them.
Throughout the design phases, quality-building criteria are applied, mainly with
the aim of minimizing development time and maintenance costs.The architecture
is approved only if it is modular, hierarchical and pattern consistent.The same
applies to the implementation.The user experience was not left to chance by
complying with Dix’s principles.
We saw that there are different keyword extraction algorithms and decided to use
the statisticalapproach.These words can be extracted from files with over 15
different MIME types.After weighing,the words are passed through a filtering
process, thus making use of the power of word-vector models and fuzzy matching.

45

8. Conclusions

However, there is still room for improvement.The following list provides sugges-
tions and ideas:

• Supporting additional MIME types.
• Extracting 2-gram and 3-gram words.
• Selecting the maximum allowed length of a document.
• Guaranteeing integration capability for currently non-commercially usable

language models.
• Trying out other unsupervised, document-only keyword ranking algorithms,

especially state-of-the-art transformer models that weight words according
to their semantic relatedness to the document.

• Enriching the result list using words from the document title.
• Enriching the result list using named entities.
• Benchmarking against gold keywords, before and after postprocessing.
• Increasing throughput.
• To be elicited from the stakeholders.

The closing words:A world which is riddled with uncertainty should at least
strive for reliable technology.Let’s devote our energy ensuring that high quality
comes first ...that our software environment is sustainable ...that the symbiosis
of the real and virtual world continues to succeed.

46

Appendices

47

Appendix A: Service Description

A Service Description

post /extract_keywords
extract representative keywords from files

Parameter
no parameter

Body application/json

{
" paths " : [" path 1 " ," path 2 " , ...] ,
" upper_limit " : number

}

Response application/json
200 ok

{
" path 1 " : [

[" keyword 1 ", weight 1] ,
[" keyword 2 ", weight 2] ,
...

] ,
...

}

500 internal server error

Figure 1: Description ofan HTTP POST request extracting a minimum of
upper_limit keywords from files, referenced by paths.

48

Appendix B: Command Line Interface

B Command Line Interface

Usage: paket [OPTIONS] COMMAND [ARGS]...

Command Line Interface, PAKET.

A natural language processing tool that extracts keywords
from files.

Options:
--log_level [error|warning|info|debug]

[default: warning]
--version Show the version and exit.
--help Show this message and exit.

Commands:
extract: Run extractor via terminal.
run: Run extractor via web service.

Figure 2:Main dialog of the CLI.

Usage: paket extract [OPTIONS] [PATHS]... UPPER_LIMIT

Run extractor via terminal.

The results will be printed to stdout as a json string.

PATHS must be directory and/or file paths.
UPPER_LIMIT must be a number between 1 and 100.

Options:
--prettify Pretty print json output.
--help Show this message and exit.

Figure 3:Extract dialog of the CLI.

49

Appendix B: Command Line Interface

Usage: paket run [OPTIONS]

Run extractor via web service.

The results will be included in the response body
as a json string.

Options:
-p, --port INTEGER RANGE The port where the server will

listen for connections.
Defaults to 8096. [1024<=x<=65535]

--prettify Pretty print json output.
--help Show this message and exit.

Figure 4:Service dialog of the CLI.

50

Appendix C: Proof of Concept

C Proof of Concept

Figure 5:The PoC is displaying the extracted keywords in sorted order.The
input is a text.

51

Appendix C: Proof of Concept

Figure 6:The PoC is displaying the extracted keywords in sorted order.The
input is a file.

52

Appendix C: Proof of Concept

Figure 7:The PoC is displaying a warning message if the text language is not
supported.

Figure 8:The PoC is displaying a warning message if the file language is not
supported.

53

Figure 9:The PoC is displaying a warning message ifthe MIME type is not
supported.

54

References

Adler,M. J. & Van Doren,C. (2014).How to Read a Book: The Classic Guide
to Intelligent Reading (1st ed.). Touchstone.

Approximate string matching. (2022). Retrieved September 15, 2022, from https:
//en.wikipedia.org/wiki/Approximate_string_matching

Bargeldloses Zahlen nimmt zu. (2022). Retrieved August 12, 2022, from https://
www.tagesschau.de/wirtschaft/bargeld-bundesbank-studie-zahlungsverhalten-
101.html

Bass,L., Clements,P. & Kazman,R. (2013).Software Architecture in Practice
(3rd ed.). Addison-Wesley.

Bennani-Smires,K., Musat,C. C., Hossmann,A., Baeriswyl,M. & Jaggi, M.
(2018). Simple unsupervised keyphrase extraction using sentence embed-
dings. CoNLL. https://doi.org/10.48550/ARXIV.1801.04470

Bezahlen ohne Kasse bei Aldi: Sieht so der Supermarkt der Zukunft aus? (2022).
Retrieved August 12, 2022, from https://www.infranken.de/ueberregional/
wirtschaft/bezahlen- ohne- kasse- bei- aldi- sieht- so- der- supermarkt- der-
zukunft-aus-art-5503638

Brundtland, G. (1987). Our Common Future: Report of the World Commission on
Environment and Development. United Nations Brundtland Commission.

Campos,R., Mangaravite,V., Pasquali,A., Jorge,A., Nunes,C. & Jatowt, A.
(2020).Yake!keyword extraction from single documents using multiple
localfeatures.Information Sciences,509,257–289.https://doi.org/10.
1016/j.ins.2019.09.013

Cannon, B., Smith, N. & Stufft, D. (2022). Pep 518 – Specifying Minimum Build
System Requirements for Python Projects.Retrieved September 2,2022,
from https://peps.python.org/pep-0518/

Connected car.(2022).Retrieved August 12,2022,from https://en.wikipedia.
org/wiki/Connected_car#Single-vehicle_applications

Dix, A., Finlay,J., Abowd,G. D. & Beale,R. (2004).Human–Computer Inter-
action (3rd ed.).

Dowalil,H. (2020).Modulare Softwarearchitektur:Nachhaltiger Entwurfdurch
Microservices, Modulithen und SOA 2.0 (2nd ed.). Hanser.

55

References

ExplosionAI. (2022). Industrial-strength NaturalLanguage Processing. Retrieved
September 12, 2022, from https://spacy.io/

Ford,N., Parsons,R. & Kua, P. (2017).Building Evolutionary Architectures:
Support Constant Change (1st ed.). O’Reilly.

Gruhn, V. & von Hayn, A. (2020). Ki verändert die Spielregeln: Geschäftsmodelle,
Kundenbeziehungen und Produkte neu denken (1st ed.). Hanser.

Hyyrö, H. (2004). A Note on Bit-Parallel Alignment Computation, 79–87.
Krekel,H. (2022).Good integration practices.Retrieved August 30,2022,from

https://docs.pytest.org/en/7.1.x/explanation/goodpractices.html
Lilienthal,C. (2020).Langlebige Software-Architekturen:Technische Schulden

analysieren, begrenzen und abbauen (3rd ed.). dpunkt.verlag.
Network Working Group. (2022). Multipurpose Internet Mail Extensions (MIME)

Part One:Format ofInternet Message Bodies.Retrieved September 12,
2022, from https://datatracker.ietf.org/doc/html/rfc2045#section-5

Nygard,M. (2018).Release It!:Design and Deploy Production-Ready software
(2nd ed.). The Pragmatic Programmers.

Reinsel, D., Gantz, J. & Rydning, J. (2018). The Digitization of the World: From
Edge to Core. IDC White Paper.

Rose, S. J., Engel, D. W., Cramer, N. & Cowley, W. (2010). Automatic keyword
extraction from individual documents. https://doi.org/10.1002/9780470689646.
ch1

Rupp, C. (2021). Requirements-engineering und -management: Das Handbuch für
Anforderungen in jeder Situation (7th ed.). Hanser.

Sajip,V. (2022).Logging HOWTO.Retrieved August 17,2022,from https://
docs.python.org/3/howto/logging.html#library-config

Starke, G. (2020). Effektive Softwarearchitekturen: Ein praktischer Leitfaden (9th ed.).
Hanser.

Tesla Germany. (2022). Fahren in der Zukunft. Retrieved August 12, 2022, from
https://www.tesla.com/de_DE/autopilot

Thomas,D. & Hunt, A. (2020).The Pragmatic Programmer:Your journey to
mastery (1st ed.). Pearson Education, Inc.

Toth,S. (2019).Vorgehensmuster für Softwarearchitektur:Kombinierbare Prak-
tiken in Zeiten von Agile und Lean (3rd ed.). Hanser.

Tunstall,L., von Werra,L. & Wolf, T. (2022).NaturalLanguage Processing
with Transformers:Building Language Applications with Hugging Face
(1st ed.). O’Reilly.

Wiegers,K. (2022).Software Development PEARLS:Lessons from Fifty Years
of Software Experience (1st ed.). Addison-Wesley.

Winters, T., Manshreck, T. & Wright, H. (2020). Software Engineering at Google:
Lessons Learned from Programming Over Time (1st ed.). O’Reilly.

World Economic Forum.(2022).The DigitalTransformation ofBusiness:New
Digital Business Models. Retrieved August 12, 2022, from https://intelligence.
weforum.org/topics/a1G0X000006DIDZUA4

56

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66

