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Abstract

Inner source software development describes the usage of open-source develop-
ment practices within organizations. To make this process more transparent,
classification of the software development artifacts is needed. These classifica-
tions can then be used for further analysis. To create a classification system, the
design science methodology was used as a structure for the thesis. The key re-
search questions were what objectives the classification system had to fulfill, how
such a system can be designed and implemented, and what kind of analytics are
possible with such a system. The objectives stated that the classification system
has to be able to process different kinds of text-based software artifacts, take
these artifacts from various data sources, create usable classifications for analyt-
ics, and do all of this without using machine learning techniques because these do
not provide reproducibility when using different training datasets. For the design,
a data pipeline is defined that extracts, preprocesses, classifies, post-processes,
and writes the software artifact data. A non-complete set of classifications for
different artifact categories is defined and designed. For the implementation, a
Python program gets conceptualized, allowing for the demonstration of the ori-
ginal design. With the classifications at hand, example analytics are proposed
to show the applicability of the results. The final evaluation shows that the set
objectives were fulfilled by the design of the software artifact classification system.
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1 Introduction

1.1 Motivation

The term "inner source" describes the usage of open-source development practices
within companies. These organizations may still develop proprietary software but
internalize an open source-like culture within their inner processes by opening up
the internal development of software. Some key characteristics for inner source
development are open communication, open development artifacts, communities
around software, and re-use characteristics. (Capraro and Riehle, 2016)

Although the application of inner source within organizations can be beneficial,
the open nature of inner source may cause some management, accounting, and
taxation problems. For example, because code is no longer developed within
strict organizational boundaries, accounting issues can become a concern.

To counteract these problems, precise measurement and assessment of the soft-
ware development process is needed within organizations that work with inner
source principles. Currently, is it possible to monitor the overall development arti-
facts like source code, commit messages, e-mails, and instant messages. However,
to comprehensively understand the development processes within an organization,
more information about these artifacts is needed. To gain more information, the
mentioned artifacts have to be classified. Possible classifications or tags could be
the differentiation of productive code and comments within source code or the
breakdown of e-mail traffic into classes like "original e-mail" or "forward e-mail".

This thesis looks closely into the stated problem by creating a classification al-
gorithm for software development artifacts to enable better analysis in the con-
text of inner source software development. To achieve this goal, the issue, to-
gether with related tools and literature, gets analyzed to create a software design
that can classify different software artifacts. An exemplary implementation and
demonstration will show the applicability of the solution. Based on the created
classifications, different analysis suggestions will be shown to demonstrate the
value such a classification system yields.
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1. Introduction

1.2 Research Questions and Structure

From the motivation, different research questions can be formulated that the
thesis answers. They also provide a guideline for the whole work, creating logical
steps in creating the classification system. The thesis itself is structured after the
design science methodology described by Pfeffers et al. (Peffers et al., 2007)

1. What are the objectives for a software development artifact clas-
sification system?

The first research question aims at analyzing the classification problem at hand
by defining the objectives for the software. Only with clear objectives a coherent
software design later is possible. Moreover, when demonstrating and evaluating
the exemplary implementation, the objectives are needed to see if the implement-
ation is sufficient. For answering the first research question, the problem identific-
ation (Chapter 2) and objective definition (Chapter 3) parts of the design science
method are used. Furthermore, related work within the problem identification
will show why the stated problem has not yet been solved satisfactorily.

2. How can such a classification system be conceptually designed
and implemented?

After the objectives are clear, a solution design and implementation is needed.
The solution designed here will be designed in a way that is generalized to support
potentially many kinds of software artifacts. The implementation will look at an
example system with a finite set of artifacts and data sources. These sections of
the thesis cover the solution design (Chapter 4) and demonstration (Chapter 5)
parts of the design science methodology. As stated before, an evaluation (Chapter
7) based on the objectives will also be conducted.

3. What kinds of analysis are possible with the developed classifica-
tion system?

With an exemplary classification system implemented, the last question remain-
ing is how such a system benefits organizations which apply the inner source
methodology. For that, different analysis based on the classifications are needed
to gain value. This thesis will provide several examples for such analytics.
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2 Problem Identification

As described in the previous section, the goal of this thesis is to create a soft-
ware artifact classification system. Therefore, this section will provide a detailed
problem identification and take related work into account.

2.1 Related Work and Tools

In the first part of the problem identification related work and tools will be taken
into account. The related work will help to show the need for a general soft-
ware artifact classification system by demarcating it from existing classification
ideas. The related tools show approaches for further investigation when designing
concrete classifiers.

2.1.1 Text-based Classification for Software Artifacts

Text-based classification for software artifacts is mentioned in various papers
trying to fulfill different goals. Alqahtani and Rilling, for example, describe in
their paper how they used artifacts like code, emails, and bug reports to tag them
for security purposes. For their endeavor, they propose an algorithm that parses,
tokenizes, and cleans the text-based data. The resulting "bag of words" is used
to map terms to certain security topics. (Alqahtani and Rilling, 2017)

Very similar to this thesis’ approach, Ma et al., in their paper "Automatic Clas-
sification of Software Artifacts in Open-Source Applications" look into tagging
open-source software artifacts. To accomplish that, different solutions are men-
tioned. Heuristic applications look at simple characteristics like filenames and
file extensions to tag an artifact. Machine-learning algorithms are also suggested.
Interestingly, as part of their paper, the authors also define the different kinds
of software artifacts they classify. For non-documentation files, a file-extension
heuristic is used. For documentation files, the tags are "contributor’s guide",
"design document", "license", "list of contributor", "release note", "requirement
document" and "setup file". (Ma et al., 2018)
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2. Problem Identification

Another viewpoint on the topic is taken by Rani et al. In their paper, they
only look at source code comments in different languages and classify them by
comment type. For that, machine learning and natural language processing tech-
niques are used. In the end, the authors present a classification algorithm for
comments, sorting the artifacts into categories like "summary", "rationale" and
"example", explaining what a source code comment is about. (Rani et al., 2021)

Similarly, Hindle et al. use commit logs and messages for the categorization or
classification of large changes to the software repository. The acknowledges that
many commits can be easily classified by the commit message and metadata.
But for their work, they extend that process by introducing machine learning
algorithms to categorize the changes into the categories "Corrective", "Adaptive",
"Perfective", "Feature Addition" and "Non Functional". (Hindle et al., 2009)

A very comprehensive overview over the topic of software data analysis in general
is given in the book "The Art and Science of Analyzing Software Data" by Bird
et al. Especially chapter 3, "Analyzing Text in Software Projects" goes into
detail on how to classify or "code" text artifacts in software projects. They also
mention that analyzing textual artifact data is a field with unused potential. For
the textual analysis, the book also defines different software artifacts based on
the V-Model that are relevant. Besides that, tools for analysis are also part of
the content. (Bird et al., 2015)

Another paper from Nazar et al. covers the related topic of software artifact
summarization. In their literature review, they cover what kinds of software
artifacts exist and what kinds of approaches exist for summarization, meaning
receiving a reduced set of information about an artifact. (Nazar et al., 2016)

Other interesting approaches for classifying software artifacts come from Bac-
chelli et al. that categorize development e-mails into classes like "junk", "code"
and "patch" with the help of machine learning. (Bacchelli et al., 2012) Also us-
ing machine learning, Yusof and Rana classify source code by using structural
information like code metrics to improve the reuse and maintenance of these code
artifacts. (Yusof and Rana, 2010)

2.1.2 Inner Source

Because this thesis has the goal of improving inner source development, relevant
works should be mentioned. The term "inner source" was first coined by Tim
O’Reilly. The definition of the term used in this thesis is taken from Riehle and
Capraro who defined inner source by conducting a systematic literature review to
find the elements that constitute inner source. They also point out the advantages
and disadvantages of inner source. (Capraro and Riehle, 2016) Similar works
were also done by Edison et al. who also did a literature review of inner source

4



2. Problem Identification

publications. Their goal was to find the state-of-the-art in inner source research.
(Edison et al., 2018)

Besides researching the inner source on a fundamental level, there are also works
discussing the topic in a more practical way. The article "Inner Source - Adopting
Open Source Development Practices in Organizations: A Tutorial" from Fitzger-
ald and Stol shows factors and ways on how to effectively implement the inner
source philosophy within an organization. (Stol and Fitzgerald, 2015) Similarly,
Stol et al. look into the real challenges that come with inner source development.
They also mention certain legal problems that can occur with the method. (Stol
et al., 2011)

Similar to this thesis’ goal of making the inner source development process more
transparent, Buchner and Riehle write in their conference paper "Calculating
the Costs of Inner Source Collaboration by Computing the Time Worked" about
time measurement in inner source development. This measurement is necessary
for fiscal and administrative reasons, and therefore prompts a related problem to
that of this thesis. (Buchner and Riehle, 2022)

2.1.3 Differentiation to Machine Learning

As already mentioned in section 2.1 many classification attempts for software
development artifacts are based on machine learning techniques. Although such
approaches are interesting for research and potentially real-world systems, they
are not suitable in the context of this thesis. The motivation (section 1.1) stated
that a more in-depth understanding of the development process is needed because
Inner Source poses different legal difficulties. As a consequence, the insight into
the development artifacts has to be precise and, more importantly, reproducible.
Machine learning algorithms do not fit these criteria because the outcome depends
on the training dataset. Therefore, this thesis will solve the classification problem
without using machine learning algorithms.

2.1.4 Related Tools

Besides topic-related written content, there are also related software tools ad-
dressing software development artifact classification. Chaturvedi et al. did a
comprehensive literature review of papers published in the proceedings of the
conferences on mining software repositories. The paper categorizes the differ-
ent tools based on their data processing. One of these categories is explicitly
"Classification". The category contains tools for bug severity tagging, code fault
detection, code clone detection, etc. Many of the tools again rely on machine
learning, which is unfit for this thesis’ approach to classification. (Chaturvedi
et al., 2013)
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2. Problem Identification

Other than the tools mentioned in the paper, different tools exist that can be
used directly or indirectly for artifact classification. If it is wanted to classify
source code into comments and actual code, a tool like "cloc" (https://github.
com/AlDanial/cloc) can help to achieve it. "cloc" counts the number of actual
lines of code and comments in a file for various programming languages. In
contrast to such straightforward tools, things like certain parsers or lexers could
also help with certain classifications. For example, if a text file contains certain
Markdown key symbols, they can be detected via a Markdown parser or lexer
like "Marked" (https://github.com/markedjs/marked). The same would also be
possible for source code. For example, by using a parser or syntax highlighter.
Yet another tool that is usable for classification are log parsers like the "Jenkins"
"Log Parser" plugin (https://plugins.jenkins.io/log-parser/). With a tool like
this, it is possible to take a software build artifact and classify if it contains any
errors, warnings, or other information.

All the examples given of related or usable tools for artifact classification are not
sufficient for the desired classification system. Either they use machine learning
techniques that are not wanted as part of the solution, or they only provide a
partial solution to a subset of wanted classifications (see, e.g., "cloc"). These
tools can be part of the final solution, but they do not provide all the processes
necessary for a comprehensive classification system.

2.2 Classification System

With the related work and tools and a clear differentiation from machine learning
in mind, the issue of the wanted classification itself can be looked into. For that,
it has to be identified what kind of software artifacts need analyzing, what kind
of data sources will be used for the classification system, and what the resulting
classes will be for the various artifacts.

2.2.1 Software Development Artifacts

Before it can be defined what the classification system is supposed to do, it is
necessary to point out what kind of software development artifacts are relevant.
Although the term "software" is widely used, it is not necessarily clear what
constitutes software. But knowing exactly what software is, is important because,
for the classification system, it has to be known what should be analyzed. Pfeiffer
(2020) in his article "What Constitutes Software? An Empirical, Descriptive
Study of Artifacts" tries to answer this exact question. An essential point from
his article is the fact that software is more than just source code. Two other high-
level categories of software artifacts are mentioned: data and documentation.
Data hereby means files like images, configurations, videos, etc. (Pfeiffer, 2020)
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2. Problem Identification

In the already mentioned literature review by Nazar et al. a list of relevant soft-
ware development artifacts is given. (Nazar et al., 2016) The not comprehensive
list contains:

• Bug Reports

• Source Code

• Mailing Lists

Another paper concerning software repository mining also lists different kinds of
software development artifacts. Baysal et al. identify in their paper source code,
version control metadata, defect tracking data, and electronic communication as
software development artifacts. (Baysal et al., 2012)

In addition to that, Helmut Balzert in his book "Lehrbuch der Softwaretechnik -
Basiskonzepte und Requiements Engineering" describes the requirements engin-
eering process and explicitly mentions "requirements specifications" as a software
artifact. These requirements specify the product from the customer’s perspect-
ive. These specifications are often used in an agile development process in the
form of user stories, which are the basis for individual tickets or issues within the
software project. (Balzert, 2009)

To summarize these findings for the problem of software artifact classification,
there is a clear set of artifacts that need to be analyzed. First and foremost, source
code is one of the central and most important artifacts in every software devel-
opment endeavor. It is critical to mention that source code does not only consist
of productive statements, but also comments and test code. Furthermore, docu-
mentation in general is also a significant artifact. Documentation itself can take
on many forms, as Ma et al. showed (Ma et al., 2018). If we assume a more broad
definition of the term "documentation" things like productive developer discus-
sions can also be part of this artifact class. Besides documentation, developer
communication is an indispensable artifact that potentially provides important
insight into the development process. This communication can take place via
e-mail. But other channels, like instant messaging, are also important to invest-
igate. Another important artifact mentioned in the cited work is version control
data. Artifacts like Git-commits and logs contain important data on what and
when changes were made to the software. In addition to that, already-mentioned
artifacts like bug reports also constitute a category of software artifacts. Together
with issues (or tickets), they can be summarized as issue data. Lastly, another
category of software artifacts is build data. Build data means the log output
and other artifacts created by build systems (servers) like "Jenkins" or "GitHub
Actions". Exemplary artifacts can be defined as build steps or build logs.

All the listed artifacts can be part of the final classification system for insight
into the inner source development process. They are summarized in Table 2.1.

7



2. Problem Identification

Artifact Category Exemplary Artifacts
Source Code Code files, Test code files
Documentation Design Documentation, Developer Discus-

sions
Developer Communication E-Mails, Instant messages
Version Control Data Commits, Commit-Logs
Issue Data Issues/Tickets, Bug Reports
Build Data Build Steps, Build Logs

Table 2.1: Software Development Artifacts

2.2.2 Artifact Sources

With the artifacts identified, the problem of where the artifacts come from re-
mains. In general, in software development, the listed artifacts come from a
potentially large number of different sources. A major problem for the classifica-
tion system therefore will be accumulating data from many distinct data sources.

For this type of data collection, different tools and libraries have been built. One
of these tools is GrimoireLab (Dueñas et al., 2021). Tools like this can take a
wide array of data sources and provide a pipeline for retrieval, analytics, and
final reporting. In the cited GrimoireLab paper, different examples are given
of the kinds of data sources that are possible to analyze. Table 2.2 shows the
mentioned artifact categories and possible real-world sources for these artifacts.
This shows how potentially broad the field of data sources can be when designing
a comprehensive software development artifact classification system.

Artifact Class Exemplary Data Sources
Source Code GitHub, GitLab
Documentation Confluence, GitHub README
Developer Communication Slack, E-Mail-Client
Version Control Data Git
Issue Data GitHub, GitLab
Build Data Jenkins, GitHub Actions

Table 2.2: Artifact Sources

2.2.3 Artifact Classes

Another central problem for the final design and implementation of the clas-
sification system will be the final classes of the software artifacts. As already
mentioned, in the related work section (see section 2.1.1), various attempts at
classifying software artifacts already exist. Often, these classifications are for a
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2. Problem Identification

narrow use case. Alqahtani and Rilling, for example, use tagging for security pur-
poses and classify artifacts into classes like "Authentication Abuse" and "SQL
Injection" (Alqahtani and Rilling, 2017). Another more focused approach was
taken by Rane et al. who classified only source code comments and gave them
classes like "summary" and "rationale" (Rani et al., 2021).

This thesis’ take on software artifact classification is more general, considering
different artifacts for the more generalized use case of software development ana-
lytics. Therefore, the classes for the artifacts also do not cater to a specialized
use case. As a result, a core problem of the system will be properly classifying
the artifacts into meaningful classes that are sufficient for the later inner source
analysis.

For the inner source analysis, classifications are needed that make the devel-
opment process more transparent. With this information, examplary questions
about the development process can be formulated:

• What kind of artifacts are added to the software project?

• When are artifacts added to the software project?

• Are the added artifacts new or are they improvements to existing ones?

• Who added an artifact?

From these questions, different types of classifications are possible. What con-
stitutes the added source code? Is it a comment or productive code? What do
the developers messages and e-mails contain? Is it design documentation, source
code, or, for example, a markdown artifact? Furthermore, by analyzing the ver-
sion control logs, we can ask who committed an artifact, when did he or she
do it, or was it an automated commit by a bot. All these questions represent
possible classification possibilities that can be pursued. The goal will be to find
a representative set of suitable classes for the stated artifacts to allow for deeper
analytics of the underlying software development project.

When talking about the classification of software artifacts, it is important to
differentiate between two important types of classification. All the mentioned
artifacts consist of some kind of text. This text is either written in a formal
language like a programming language or in an informal language like natural
speech. Therefore, classification based on the artifact’s text is possible. Fur-
thermore, it would also be possible to find classes for the artifact not based on
the textual content but from the metadata and context provided by the artifact.
If we look at communication data, it is, for example, possible to differentiate
between asynchronous and synchronous messages. Another example would be
the incorporation of data like time to classify the artifact. Other processes on all
kinds of metadata is possible for the creation of classifiers.

9



2. Problem Identification

To keep this thesis focused, the design of the classification system will be limited
to a text-based approach. Artifacts will still be categorized into the mentioned
artifact categories (see table 2.1) but further classification will only be done via
the textual content of the artifact. To illustrate the choice of classification, figure
2.1 shows the different kinds of classifications.
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3 Objective definition

To put everything up until now together, the objectives of the classification sys-
tem will be formulated. The different objectives will describe the different aspects
of the system and will be used in a later evaluation. This evaluation will check
whether the actual developed design meets the needs formulated in the problem
identification.

At first, the classification system has to be able to classify various kinds of soft-
ware development artifacts, as defined in section 2.2.1 of this thesis. This forms
the basis of the whole software. Different artifacts, classified in a diverse manner,
create the foundation that is needed for later analysis.

Furthermore, these artifacts have to be sourced from somewhere. As described
in section 2.2.2, software artifacts come from a wide array of different sources.
For that reason, a major objective of the classification system is the support for
multiple data sources and the easy adaptability of new ones in order to be flexible.

Besides only being able to source different kinds of artifacts from different kinds
of sources, the results of the classification system also have to meet a certain
criterion. Section 2.2.3 showed the problem of meaningful resulting classes that
are needed for the subsequent analysis. These useful resulting classes are another
indispensable objective of the final software.

Lastly, as section 2.1.3 showed, it is important to make a clear distinction from
machine learning when designing a viable solution for the classification system.
In the interest of repeatability, these techniques cannot be used because the inner
source analysis has to be precise for legal and accounting reasons.

To summarize the mentioned objectives, they are again listed in a shortened form:

1. The classification system is able to classify different kinds of software de-
velopment artifacts.

2. The classification system is able to read data from various data sources and
is not bound to a fixed set of sources.

12



3. Objective definition

3. The resulting classification results are usable within a wide range of assess-
ment methods and analytics to support the inner source methodology.

4. The classification system does not use machine learning techniques for ar-
tifact classification in order to assure repeatability.

13



4 Solution Design and Implement-
ation

After defining the problem and the objectives of the classification system, the
design science methodology stipulates the design of the solution. Moreover, im-
plementation details will be provided to show the feasibility of the solution design.
To create a viable solution, the design process will be outlined first.

4.1 Design Process

For the creation of the classification system, the first step will be to specify the
granularity of classifications that are possible. Certain classifications, for ex-
ample, may not be entirely source-independent. It is therefore important to deal
with this subject and decide what types of classifications are necessary for the
final solution. Based on that knowledge, it will be possible to define the prerequis-
ites and desired classification for the final system. This includes a comprehensive
listing of artifacts and their respective possible classifications that are required
by the classification system.

After defining this initial situation, it will be necessary to design an abstract data
pipeline model that can solve the classification problem. It will define how the
initial data will be processed and what steps will be taken to accomplish the set
objectives.

The overview pipeline model will then be worked out with tangible processes and
concrete tools that perform the actual classification of the software artifacts.

Finally, all the conceptual design models and processes will be implemented. In
this part, implementation details about data retrieval, data processing, and data
saving will be discussed.

Figure 4.1 shows the process.
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Figure 4.1: Design Process
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4.2 Preliminary Considerations

The preliminary considerations will explain the issue of classification granularity
and outline what prerequisites and goals are present for the classification system.

4.2.1 Classification Granularity

An important point to consider when defining the starting point of the classifica-
tion system is the granularity of the classification. Granularity in the context of
this thesis means how specific or specialized a classification is for a given artifact.

As part of the objective definition, it was mentioned that the overarching goal of
the classification is to be able to handle many kinds of data sources. Section 2.2.2
showed the many possible data sources that can occur as part of the classification
system. Because different data source systems may handle their textual data
differently, the finest granularity for classification would be the "source-specific
classification". To make this point clear, an example is given.

Developers in a team will use an instant messaging service. This service may be
"Microsoft Teams", "Slack" or some other specific message service. The textual
data created by these services can include source-specific codes or other keywords
that may be needed for some classifications. An example would be the integration
of username links within the text to tag a colleague. This tagging may be needed
to classify communication artifacts into "is tagging person" and "is not tagging
person". Through this example, it is also possible to see that a certain source-
specific classification is only applicable to an artifact of a single artifact category.
An instant messenger, for example, will only produce communication data.

The "source-specific classification" is the most granular type of classification.
The "artifact-specific" or "source-independent classification" is one level above it.
Just as the "source-specific classification" the "artifact-specific classification" will
classify each artifact based on its artifact category that was defined in section 2.2.1
and figure 2.1 of this thesis. But instead of being tailored to a specific source, these
classifications can be applied source-independently. A good example of this kind
of classification would be the classification of source code into productive code,
test code, and comments. Neither the programming language nor the repository
holding the code matter when applying this classification if the right tools are
used.

Apart from classifications having some kind of artifact category as their basis,
the "artifact-overraching" or "general" classification form the least granular type
of classification in the final system. Some classifications will be possible without
knowing the category of the artifact or its source. This is, for example, the case
for classifications like the inclusion of media or the usage of a formal or informal
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language.

Figure 4.2 shows the different levels of granularity present in the classification
system that will be designed. In addition, the graphic will include all the stated
artifact categories.
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Figure 4.2: Classification Granularity

18



4. Solution Design and Implementation

4.2.2 Prerequisites and Goals

Before designing the classification system, the actual prerequisites and goals of the
system have to be specified. While many prerequisites and the overarching goal
are already defined in chapters 2 and 3, a more detailed and binding specification
for the system is needed to create a sufficient design and implementation.

Relevant Artifacts and their Sources

For the text-based classifications, a wide array of artifacts is used and classified.
In chapter 2, different artifact categories and exemplary artifacts for each of them
were given. This list already contains all the artifacts that will be interesting for
the classification system. When implementing and designing the real solution
for the classification, it will be relevant where the artifacts are from. In section
4.2.1 classification granularity is explained. Especially for the source-specific
classification, concrete sources are important. Like the artifacts, the sources are
also already defined in Section 2.2.2. Objective two in the objective definition
says that the final classification system has to be able to process different kinds
of data sources equally. That means that possibly not formerly known sources
are also assimilable into the software system. Section 4.3 will build on this and
explain how the data pipeline of the classification system deals with this issue.

Wanted Classifications

By knowing the artifacts and their sources, the input into the classification sys-
tem is defined. The important next step is to understand the desired output of
the classification system. Other than the sources and artifacts, chapter 2 only
outlined possible classifications. Therefore, it is important to know the wanted
classifications at each of the three granularity levels. The enumeration of these
classifications will not be comprehensive. This thesis aims at presenting and
designing an overview of different possible classifications to benefit inner source
development. Creating a complete and comprehensive classification system that
handles most possible classifications will not be part of this thesis. Therefore, the
proposed classifications only represent a reduced subset of all possible classifica-
tions. The selection of the classifications is based on the related work and tools
(section 2.1), and self-creation. The goal is to offer classifications for all artifact
categories.

For the artifact-overreaching classification, only classifications can be applied that
are applicable to every type of text. This includes what kind of text is used and
if the text has some kind of inclusion that is generally detectable. For that, three
different classifiers are proposed:

1. Usage of Markdown or other general markup language: Yes/No
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2. Inclusion of media (pictures, videos, charts): Yes/No

3. Kind of Language: Formal/Informal

4. Inclusion of Special Characters: Yes/No

When looking at the artifact-specific classifications, the classifications will be
grouped by their artifact category (see Figure 2.1). For each of the categor-
ies, multiple classifications are proposed. Like section 2.2.3 proposed, all clas-
sifications have to be text-based. Table 4.1 shows all proposed artifact-specific
classifications.

The last granularity concerns source-specific classifications. These are also cat-
egorized into artifact categories, like the source-independent classifications. Be-
cause they are source-specific, most of these classifications use source-specific
coding. Examples for this would be user tagging or other special syntax used
to indicate other users or URLs. Within the team collaboration tool "Slack"
(https://slack.com/), for example, liked users in a message are saved like this:
"<@U0214SVB5C1>" where "U0214SVB5C1" is the user handle of a different
person. Normal URL links are represented similarly (Example: "<https://medium
.com/@smotaal/when-i-ramble-180aba2256ee|medium>"). Besides communica-
tion data via Slack, many kinds of text-specific coding can occur in different
kinds of artifacts. What kind of artifacts are interesting and how to extract them
for classification depends on the software project and the concrete tools used
within a software development project.

MECE principle

An important principle for each classification in the classification system is the
MECE principle. It stands for "mutually exclusive, collectively exhaustive" and
is usually used in the context of consulting. In general, it is a principle that
ensures that a set of items has to fulfill these two properties. The principle tries
to achieve maximum clarity and completeness. (Rasiel, 1999)

Clarity and completeness are also important for the classification system, which
implies these two consequences for each classifier that gets designed:

• Every classifier must not assign multiple classes to one artifact (mutually
exclusive).

• Every classifier has to assign some class to every artifact (collectively ex-
haustive).
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Artifact Category Classifications
Code data

• Type of Code: Productive/-
Comment

• Programming Language
used

Communication data
• Type of Message: Gen-

eral Conversation/Citation (An-
swer)

Documentation data
• Type of Documentation

Format: General Text/Code/-
Diagram/Table/Media

Issue data
• Type of Issue: Feature Re-

quest/Bug Report/Incident
• Inclusion of Stacktraces:

Yes/No

Version-Control data
• Type of Issuer: Bot-

Commit/User-Commit
• Type of Commit: Correct-

ive/Adaptive/Perfective

Build data
• Used Build Steps/Tools: e.g.

maven build
• Inclusion of Warnings/Er-

rors/Information

Table 4.1: Artifact-specific Classifications

4.3 Abstract Data Pipeline

To create the needed classification system, an abstract data pipeline is needed.
This design is the foundation for further concrete implementation of the classi-
fication processes. For the design, a modified Extract-Transform-Load-Pipeline
(ETL-Pipeline) is used. The individual steps consist of the following processes.
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The extract step’s responsibility is to receive all the relevant data that was
defined. Different real artifact sources were already discussed in section 2.2.2
of this thesis. The challenge now is to find a viable process or tool for data ex-
traction. Section 2.2.2 mentioned the application GrimoireLab, which contains
different tools for development data retrieval. The tools that are used are called
"Graal", "Perceval" and "Arthur" (Dueñas et al., 2021). In the later implementa-
tion of the classification system, an already-aggregated dataset from GrimoireLab
will be used. This does not mean that the data retrieval cannot be done via a
different process or tool. The final goal of this step is to aggregate the diverse
data into a single usable output for further processing and final classification.
The exact format of the data is not important as long as the following steps of
the pipeline can process it.

The second step of the pipeline transforms the extracted data and performs the
actual classification. For that, multiple sub-steps are necessary. At the beginning
of the transformation step, data pre-processing may be necessary. This includes
tokenization, parsing, or data cleaning of the textual development artifacts. Sub-
sequently, the actual classification takes place. This classification will be done
in a three-step process. Section 4.2.1 showed different classification granularities
between different types of classifications. The three levels "artifact-overarching
classification", "artifact-specific, source-independent classification" and "source-
specific classification" represent the different classification steps in the pipeline.
At first, the artifact-overarching classification takes place. The process for this
will be the same for every artifact. Thereafter, artifact- but not source-specific
classification can take place. At the very end, source-specific classification will be
executed if necessary. After the classification is done, post-processing steps may
be necessary.

The last step of the pipeline will be the loading of the final data product into
some data sink via a data writer. What kind of data sink is used or how the final
data product looks like is subject to the concrete implementation.

To give a better overview of the defined data pipeline, figure 4.3 shows the pipeline
and its steps.
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Figure 4.3: Abstract Data Pipeline
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4.4 Processes and Tools for Artifact Classification

The abstract data pipeline outlined the processes needed for the classification
system. Together with the knowledge about the artifacts, their sources, and the
wanted classifications, real implementable processes need to be created.

4.4.1 Artifact Extraction and Pre-processing

For the first step, the data present in the source systems has to be extracted. As
mentioned in section 4.3 this can be done by different means. Overall, it is import-
ant to aggregate the needed data into a usable format. Tools like "GrimoireLab"
(Dueñas et al., 2021) can help with this task and provide a unified interface for
the retrieval of different development artifact sources. The final format of the ag-
gregated data will not be relevant for the rest of the classification, as long as the
following steps of the pipeline can process it. This can, for example, be achieved
via a unified and stable data API. Because of the potential polymorphism of this
problem and its non-involvement with the actual relevant classification, further
details will not be discussed. As already mentioned, the aggregated data for the
implementation part of the thesis will come in the form of a relational database.

After aggregation, the data may have to be pre-processed. This pre-processing
can include many steps like data cleaning, data removal, data expansion, further
aggregation, or other processing steps. In the case of the classification system,
the pre-processing includes two important steps. At first, much of the aggregated
data gets discarded. In the aggregation process, a lot of different metadata gets
collected. This data is not needed for further classification. Rather, for each table,
a set of important metadata and the text to be analyzed have to be defined. As a
result, a data table is created only containing a dataset that is meaningful for fur-
ther processing. As a second pre-processing step, each data entry for a software
artifact gets extended. Each entry gets three additional new fields or columns.
The columns represent the collection of different classification labels based on
the classification granularity mentioned in section 4.2.1. Therefore, three new
columns will be added: "general classification", "source independent classifica-
tion" and "source dependent classification". Figure 4.4 shows the pre-processing
transformation of the original data into a relational model. It is important to
understand that a relational model is only a possible example of the format of the
data. Document stores with the JSON-format or other data representations are
possible as long as the following classification steps in the pipeline can process
the format.
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Figure 4.4: Data Pre-processing

4.4.2 Artifact Classification

The abstract pipeline defines three classification steps. Each of them holds dif-
ferent classifiers that can be part of the final pipeline for a certain artifact. Each
of the classifiers will be described and grouped if a grouping is applicable. It
is important to note that the concepts depicted here for each classifier are only
one possible solution. For each classifier, different designs and concepts may be
possible.

General Classification

General classification classifiers can be used with every textual software artifact
and are therefore universally applicable. Four different general classifiers were
proposed.

1. Usage of Markdown:
For the classification of the usage of the Markdown language, a Markdown
parser will be used. In section 2.1.4 the "Marked" parser gets mentioned,
although other similar parsers like "Markdown-it" (https://github.com/
markdown-it/markdown-it) are also usable. For classification, only the
first step of the parser is needed. With the lexer, the single tokens of the
text string can be extracted. Based on the used lexer, the tokens have to be
analyzed. Because every simple text (text without any Markdown-specific
keywords or key symbols) is automatically a valid Markdown document, an
assumption has to be made for the classifier. If no other tokens than stand-
ard paragraphs are part of the text string, the text will not be classified as
"Markdown". In all other cases, it will get this label. To accomplish that,
an iteration over the tokens is necessary. If the name of a token does not
match the standard paragraph, the text will get the "Markdown" label. It
is important to mention that the names of the tokens and the utilization of
the lexer are highly dependent on the parser used.

2. Inclusion of Media:
To classify if a text artifact includes media inclusions, it is necessary to
know when this classification is possible at all. Source code and other
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formal language artifacts, in general, do not include media like photos or
videos. This reduces the search to artifacts with natural language like
documentation, issues, and communication. Different ways exist to include
media in artifacts like these. As a simplification, the presented classifier
again uses a Markdown parser and therefore assumes that documents of
these artifact classes may be written in this format. Otherwise, another
detector has to be used. Similar to the "Usage of Markdown" the lexer
of the Markdown parser will be sufficient. For the inclusion of video and
photos, special tokens exist that can be detected. The classification logic
works similarly to the "Usage of Markdown classifier". But in this case, the
relevant tokens are the media inclusion tokens.

3. Inclusion of Special Characters :
To find special characters inside a text string, regular expressions can
be used. At first, a correct regular expression for the classification is
needed. The expression has to be able to match the defined special charac-
ters. The regular expression "[\U0001F300-\U0001F6FF]|[\U0001F1E0-
\U0001F1FF]", for example, matches all possible emojis in a text. A pack-
age like the Python "re" package can be used to compile and match against
the pattern. Unicode identifiers are used to identify the special characters.
Based on that, many types of special character classifiers can be built. With
the regular expression defined, it is possible to match a given text against
it. If the matcher returns positive feedback, the text will get the corres-
ponding special character label. Otherwise, it will get the label stating the
opposite.

4. Usage of a Formal Language Classifying whether the present text artifact
is a formal language poses the problem that formal languages are not only
programming languages but also other kinds of languages like a markup
language. Under the assumption that only a fixed set of formal languages
is used within the software development artifacts, the parsers of the cor-
responding languages can be used. Each text artifact gets checked by each
of the parsers. If a parser recognizes the text as part of its language, the
corresponding label will be set. If none of the parsers match, it is assumed
that the text is in natural language. For this process working parsers within
the programming environment have to be available. The process of check-
ing whether a text artifact matches one of the languages is then dependent
on the output of each parser.

Artifact-specific Classification

Artifact-specific classifiers are only usable within their respective artifact cat-
egory. With them various additional classifications are possible. The proposed
classifiers will be described and grouped by their artifact category.
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Code Data

• Used Programming Language:
Detecting the used programming language without using machine learning
is similar to the general "Usage of Formal Language" classifier. Instead of
allowing any kind of formal language parser, only programming language
compilers are allowed. The rest of the process works similarly. This classifier
is therefore a specialization of the "Formal Language" classifier. The only
difference within it is that it knows more than two classes and only uses
parsers for real programming languages. Parsers for markup languages or
similar formal languages are not allowed. If one of the parsers detects the
text string as part of its language, the corresponding label of the language
will be set. If none of the parsers succeed, the code artifacts get classified
with the "not known programming language" label.

• Type of Code:
For detecting the type of code (Code/Comment) the already mentioned tool
"cloc" can be used. With this command-line tool, it is possible to count the
lines of comment and real code in a source code file. Given a text artifact
and the corresponding programming language, it can be determined if the
text includes code, comments, or both. Knowing the programming language
of the text artifact is important because otherwise "cloc" will not be able
to process the source code. Getting that information can be done using
the same process as the "Used Programming Language" classifier. This
means that a fixed set of parsers first determines what kind of language
is present. If no programming language can be detected, either a fallback
language is defined or the classification defaults to "code". Because of the
artifact category it is known that the text has to be some kind of code at
least. For the classification itself, the text artifact will be converted into a
temporary file that is then analyzed. "cloc" offers multiple output options
that are machine-readable. For example, JSON can be used. The JSON
properties "comment" and "code" then show how many lines each original
artifact contains. For the final labeling, different strategies can be used.
To fulfill the MECE criteria the artifact gets the "code" label when the
majority of lines are code. The label "comment" is set if the majority of
lines are comments. If both counts are the same, the label "code" is set.
Other strategies for labeling are also possible and depend on the preferences
of the underlying project. For example, labeling the artifact a "comment"
could only be done if more than two-thirds of the lines are comments.

Communication Data

• Type of Message:
To classify the type of message (Normal Message/Answer/Forward) it is
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first necessary to specify the kind of message being analyzed. The com-
munication data is defined in section 2.2.1 as either e-mail or direct in-
stant messages. Because instant messages heavily rely on source-dependent
tokens and text structures for forwarding and replying, only e-mails will
be classified. For that, the e-mail subject is used to allow for a text-based
classifier. Most e-mail clients automatically add prefixes to forward and
answer e-mails. Examples of these prefixes are "Fwd:" for forwarding and
"Re:" for answering. For the classifier, multiple variants for these tokens
can be defined. With these tokens defined, it is possible to check whether
the subject text starts with one of those tokens or not. If it does, the corres-
ponding label can be set. Otherwise, the e-mail is classified as a "normal"
e-mail or message to always provide a suitable class.

Documentation Data

• Type of Documentation Form:
Documentation data can take many forms and come from many various
sources. It can be stored in proprietary wiki software like "Confluence"
(https://www.atlassian.com/de/software/confluence) or in single loose doc-
uments like Markdown or text documents. While classifying the content
of proprietary wiki software constitutes source-specific classification, Mark-
down documents offer easy insight into what kind of text and media are used
within a documentation document. General classification already showed
how to detect media like photos and videos. Additionally, code, diagrams,
and tables can also be detected because they are usable in Markdown as
tokens. With the same parser and lexer process as before, the classification
of single artifacts is possible.

Issue Data

• Type of Issue:
The "Type of Issue" includes the three different classes "Feature Request",
"Bug Report" and "Incident". The workflow of the classification is similar
to the "Type of Message" classification. Several keywords are defined for
each class of issue. How these keywords are defined depends on the software
project that gets analyzed and its convention regarding issue texts. To
generalize this, for this thesis, examples for each class will be given. Books
like Helmut Balzert’s "Lehrbuch der Softwaretechnik" show how natural
language requirements can be formulated. (Balzert, 2009) Some keywords
used in this book were translated and used in this design.

– Feature Request: "the system has to", "as a <role>", "criteria", "fea-
ture"
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– Bug Report: "expected behavior", "observed behavior", "bug"

– Incident: "failure", "shutdown", "incident"

Many more keywords are possible, and the examples do not represent a
comprehensive list. With the keywords defined, a keyword search can be
conducted on the issue text and title if they are available. The keyword
search itself only checks whether the given text includes one of the given
keywords. If a class matches, the text artifact gets the corresponding class
or label. If none of the keywords match, the issue gets labeled "unspecific".
With this, a clear classification is assured.

• Inclusion of Stack Traces
Stack traces and their appearance heavily depend on the underlying pro-
gramming language. Because of this, a general classification of stack traces
for all possible stack traces is not possible. Similarly to the classification
of programming languages, each language has to be dealt with separately.
By creating a regular expression representing a stack trace for each needed
programming language, each issue text can be matched against these. This
procedure is the same as with the special characters. If a stack trace regular
expression matches the given issue text, the issue can be classified as having
a stack trace within it. Because the stack traces are unique to each lan-
guage, the language can also be identified and added to the classification. If
none of the regular expressions apply to the given issue, it is assumed that
no stack traces are included in the text. This is only a wrong assumption if
the stack trace present is not part of the set of regular expressions that are
part of the classifier. Therefore, a configuration for each software project is
needed to ensure that the classifier can detect all relevant stack traces.

Version-Control Data

• Type of Issuer:
Commits in version-control systems can have different types of issuers.
They are either directly created by a human or automatically made by a bot.
An example for bot-made commits is the automation of certain tasks with
a build and automation server software like "Jenkins" (www.jenkins.io).
Because these commits are automated, they follow a given format. As an
example, it will be assumed that a bot commit provides a certain prefix in
the commit message. This prefix can take any possible form. An example
would be "[Bot]:". Again, the final configuration of a classifier depends
on the project and the chosen conventions. With the prefix at hand, it is
possible to classify the commit via its message. This works the same way as
the "Type of Message" classifier in the communication data category. To
ensure classification, every commit that is not identified as a bot commit is
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automatically a human commit as a fall back. The label "Bot commit" as
a fallback would also be possible.

• Type of Commit:
The type of commit describes what kind of changes have been made to the
underlying source code. To classify this, the commit message of the commit
artifact is used. Similar to the "Type of Issue" classification, keywords will
be used to identify the classes. Depending on the software project and
the development team, these keywords may vary. The final classes for
the type of commit are "Adaptive", "Perfective" and "Corrective". These
classes were defined by Sarwar et al. and describe actions like creating new
features (Adaptive), refactoring the application (Perfective) or fixing a bug
(Corrective) (Sarwar et al., 2020). The classes are a subset of the presented
commit classes in the related work section by Hindle et al. (Hindle et al.,
2009) For each of the classes, the following example keywords are given:

– Adaptive: "implement", "merge"

– Corrective: "fix", "improve"

– Perfective: "refactor", "clean"

All example keywords are verbs conforming to a standardized way of writing
Git commits. For example, Git itself writes its merge commit messages in
the imperative mood with the verb "merge" at the beginning of the message.
Other conventions for commit messages or similar artifacts may need other
keywords. Sarwar et al. also present rules on when to add a commit to a
certain class. (Sarwar et al., 2020)

In the case of multiple matching classes for one commit message a hierarchy
of the classes has to be established showing what class is preferable. Altern-
atively other preference systems can be implemented taking the keywords
itself or the keyword count into account.

Build Data

• Build Steps/Tools Used:
Section 2.2.1 mentioned build logs as a key textual artifact for software
builds. They are created by a build server like "Jenkins". From these logs,
it is possible to extract the build steps and tools used for them. With this
information, it is possible to classify building artifacts based on which steps
were part of their execution. Together with the steps, the tools used are
also easily extractable.

The log of the build server usually shows the executed commands and their
output as a sequential text. By extracting the used commands, the single
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steps of the build or deployment process can be detected. For example, the
usage of "Maven" (https://maven.apache.org/) with the command "mvn"
indicates the application build step of a Java (or JVM) application. Other
commands like "docker" show the usage of containerization. With this
information, a set of build and deployment tools and their CLI commands
can be assembled. By scanning the log for these keywords, the build steps
and their tools can be found, and the artifact can be labeled. To fulfill the
MECE criteria the created classes have to be disjoint. This can be done,
for example, by creating a classifier for every step and having the classes
"included step x" or "does not included step x".

• Inclusion of Warnings, Errors, and Information:
Another important part of the build log is not only the executed commands
but the actual output of these executions. They contain information about
build and deployment errors, warnings, and important info that is usable
in later analysis. For analyzing the log about this a log parser can be
used. Section 2.1.4 mentioned the Jenkins "Log Parser". It is a plugin
that extracts errors, warnings, and info logs. When modifying the code to
run it outside the Jenkins environment, the tool can be used for the desired
classification. Depending on the output of the tool, a build artifact gets one
of the mentioned labels. Which class is assigned when the artifact contains
different kinds of logs, depends on the preferences of the software project
and classification system. If the tool does not recognize any of the log types
in the artifact, the label "No Information" will be applied.

Source-specific Classification

Source-specific classification is very individual and requires knowledge about the
exact data source and how it performs certain text codings. In general, every kind
of artifact category except code data can inhabit a source-specific classification.
Code data cannot be source-specific because source code can only be dependable
on the specification of the programming language. The examples of Slack user
handles and Slack links as real source-dependency were already mentioned. In
theory, every kind of classification is possible as long as the source system allows
for the feature in its text artifacts. Confluence was already referred to as a
documentation wiki system. As part of a possible classification, single wiki pages
could be analyzed as artifacts and checked for so-called "Macros". "Macros" are
components that form part of a wiki page text that can be used for inserting music
and video or editable diagrams with a "draw.io" editor. Detecting certain relevant
macros could be a possible classification for an artifact. (https://confluence.
atlassian.com/doc/macros-139387.html)

These examples show the possibility of a diverse set of classifiers if the source
systems are known. This is especially interesting because fewer assumptions

31

https://maven.apache.org/
https://confluence.atlassian.com/doc/macros-139387.html
https://confluence.atlassian.com/doc/macros-139387.html


4. Solution Design and Implementation

have to be made regarding the artifact. When detecting media inclusion, it was
assumed that the given document conforms to Markdown syntax. Knowing the
source, such assumptions do not have to be made. If, for example, documentation
data artifacts get classified, the format of the text will be clear if the data source
(e.g. Confluence) specifies the format.

In the later implementation, one source-specific classification will be implemen-
ted. The classification of whether another user is linked to a Slack instant message
can be easily implemented. Similar to other already-designed classifiers, regular
expressions will be used. For the user handle of slack, the regular expression can
be represented with this string: "<@U[A-Z0-9]+>". The task of the classifier
now is to test if the given text artifact includes a substring that matches the reg-
ular expression. If a substring is found, the class "Includes Slack User Handle"
can be applied. Otherwise, the class "Does not include Slack User Handle" has
to be set. Simple examples like these show how a source-specific classifier can
look like.

4.4.3 Grouping of Classifiers

With the classifiers defined, further conclusions can be drawn. All the classifiers
can be grouped into different classifier categories. A group describes a group
of classifiers working similarly or using the same strategy to classify software
artifacts. A group does not imply the classification of similar content or the clas-
sification into similar classes. Because these categories look at the inner workings
of the single classifier components, they can be useful for the implementation
hinting at programming concepts like inheritance.

Four different groups can be identified:

1. Parser-based classification: Classifier using a parser or the parser-internal
lexer to analyze a given text. The text can be source code or other formally
defined text, like a markup language.

2. Regular expression-based classification: The classifier uses a regular expres-
sion to match against the text artifact to find certain inclusions inside the
text or test the whole text.

3. Tool-based classification: This classifier uses an external tool to analyze the
given text artifact. With the analysis, a classification is possible.

4. Keyword-based classification: Given or configured keywords are used in
this classifier to search for them inside the given text artifact. Specialized
versions of this classifier can define that the keyword is only a prefix or a
postfix. Depending on the result of the search, a classification is possible.

With the four groups given, it is possible to group the defined classifiers and
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Figure 4.5: Grouping of defined classifiers

depict them in a diagram. Figure 4.4 shows the grouped classifiers in a tree
diagram, signaling their common processes. Because this thesis does not offer a
complete set of classifiers, other groups may exist that are not mentioned here.
The classifier skirted with a dotted line is an example of a source-specific classifier.

4.4.4 Post-processing and Data Writing

The last part of the data pipeline consists of post-processing and writing the final
data into a data sink. Both steps are specific to the software project the pipeline
is used for.

Like the pre-processing step, post-processing can include many steps in editing
the final classified data. The most important step is making sure that the final
data can be written by the data writer into the sink. For that, depending on
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the data sink and its type of persistence, data-changing operations have to be
undertaken. For example, when using a relational schema, the data has to fit the
sink table or even multiple tables. This problem will also be part of the example
implementation. When the data sink has a different way of persisting data, other
post-processing steps are necessary.

With the data in the right final format, the data writer finally persists the clas-
sified data. How this is done, again, depends on the concrete sink. The following
implementation will give an example for this process, too.

4.4.5 Modular Pipelines for Different Artifacts

With the post-processing and data writing steps, the pipeline is complete. Now
it is possible to create pipelines for different artifacts. This is necessary because
artifacts from different artifact categories can only be used with certain classifiers.
This implies that all classifiers have to be single, non-dependent components that
can be used interchangeably.

For general classifications, this is not relevant, as they are intentionally usable
on all incoming artifacts. As a consequence, they start the classification pipeline,
as Figure 4.3 already showed. Artifact- and source-specific classification, on the
other hand, poses the challenge of having to be modular for different artifacts.
Thus, the final classification system has multiple pipelines serving different arti-
facts. In the end, every artifact category needs its own pipeline consisting of the
general classification, its respective artifact-specific classifiers, and the applicable
source-specific classifiers. As an option, post-processing and data writing can be
handled differently for each of the pipelines.

To show how the artifact categories affect the pipeline, figure 4.6 shows two
different pipelines. The upper pipeline shows the process for code data artifacts,
and the lower pipeline depicts the process for communication data.
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Figure 4.6: Exemplary Modular Pipelines for Code and Communication Data
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4.5 Implementation Details

The designed system with its pipeline architecture and classifiers needs to be
implemented for a demonstration to evaluate the design based on the objectives
that were set. The presented implementation will include a representative subset
of classifiers that were previously described. Each of the classifier groups will be
part of the final implementation.

The implementation description will include the pipeline framework itself, the
implementation concept for all classifier groups, pre- and post-processing steps,
and data reading and writing. Initially, all used technologies will be presented.
Implementation with other technologies in general is possible.

4.5.1 Used Technologies

For the implementation, some additional technologies are needed, and the pro-
gramming environment has to be defined. Additional tools that are used for the
classification are either already mentioned or will be presented in context with
the pipeline component.

PostgreSQL

For data extraction and data writing, a relational database will be used within the
implementation. This chapter already referred to the needed data for the demon-
stration. The used database will be a PostgreSQL (https://www.postgresql.org/)
database running inside a Docker container (https://www.docker.com/). Post-
greSQL is an open-source relational database management system that will host
the example data and, finally, the classified artifacts. Because PostgreSQL is a
widely used database system, integration into many programming languages is
supported.

Python and Pandas

Besides the database, a general purpose programming language is needed for the
creation of the classification pipeline. For that, the language Python is used
with the interpreter version 3.9. Besides Python itself, an important part of the
implementation is the usage of the Pandas library (https://pandas.pydata.org/).
Pandas is an open-source data analysis and manipulation library that provides
easy handling of the relational data that gets extracted from the PostgreSQL
database. With Pandas Data Frames, manipulation and writing of the classifica-
tion data can be handled. In addition to that, the PostgreSQL driver "psycopg2"
and "sqlalchemy" for data writing are used to access the database.
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Figure 4.7: Class Diagram: Pipeline Structure

4.5.2 General Classification Pipeline

Before describing the implementation of the classifiers, the general functionality
of the classification pipeline has to be stated. To assure the modularity of the
pipeline and easy interchangeability of the single components, a generic pipeline
is defined that holds pipeline steps. Each of the steps itself is a generic object
that holds a concrete pipeline step and information on which method to execute
on that concrete object when the pipeline triggers the pipeline step. Additionally,
the pipeline step gets an array of optional arguments that will be transferred to
the actual execution object.

The concrete pipeline step (pipeline step implementation) forms together with
other classes in the solution a so-called Bridge pattern. The Bridge pattern is
part of the "Gang of Four" design patterns (Gamma et al., 1994). It is used to
separate the abstraction hierarchy from the implementation hierarchy. Within
the pipeline, this helps to separate the pipeline steps from their concrete execution
objects and their naming of methods, which eases the configuration and modu-
larity of the pipeline that is needed for the different kinds of artifacts. To show
how the class construct of the pipeline works, figure 4.7 shows a class diagram
depicting the structure.

Here it can be seen that a pipeline is composited out of n pipeline steps. These
pipeline steps hold a pipeline execution object that itself holds the concrete im-
plementation of the pipeline step. The execution object and the implementation
have their own hierarchies. When a pipeline step gets executed, it calls the spe-
cified method of the pipeline execution object (here: operate()). The execution
object then triggers the actual implementation within its step implementation ob-
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ject. The operate-methods themselves receive the pipeline step object of which
they are part and the mentioned array of optional arguments. At the end of a
pipeline step’s execution, the next step gets triggered immediately. Otherwise,
the pipeline comes to an end.

For the ConcreteStepImplementation itself this implies the following pseudocode
for its execution:

1 class ConcreteStepImplementation(AbstractStepImplementation):
2 def operate_impl(step , args):
3 # Execute pipeline step with args
4 step.next(modified_args)

Listing 4.1: Step Implementation Pseudocode

The following sections will go through each of the implemented pipeline steps
and show how each concrete implementation works. It is important to note that
each pipeline step within the implementation falls into one of three categories:

1. Data Requestor

2. Data Transformer

3. Data Writer

These categories represent specializations of the abstract pipeline execution class.
The requestor produces data without other input besides its configuration, the
transformer takes data and modifies it for further processing and the writer gets
data for persisting it without passing it on to further steps.

4.5.3 Data Extraction and Pre-processing

Data extraction and pre-processing is the first step of every classification pipeline
for every kind of artifact. They represent two fundamental step implementations.

The data extraction step falls into the data requestor category. Its purpose is to
query the PostgreSQL database and provide the data as a Pandas data frame.
Because different artifact data is stored in different database tables, the pipeline
step is configurable via the list of arguments. For the configuration, a dictionary
(map) has to be provided specifying the tables and wanted columns from the
original table. Because column selection reduces the amount of processed data,
the data requestor is also part of the pre-processing process. To achieve this task,
a database connection via "psycopg2" gets established. The data is read with
the Pandas "pd.read_sql()"-method. In the end, the data gets stored in a data
frame and can be processed in the next step.

This next step is a data transformer, whose task it is to extend the data model.
Missing from the data frame are the columns documenting the set labels for each
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granularity of classification. Therefore, the three columns "general_classification",
"source_independent_classification" and "source_specific_classification" are ad-
ded to the frame and get populated with None in every data entry. This is done
by a data transformer taking the data of the requestor. This transformer imple-
ments the abstract step implementation "TransformerImplementation".

4.5.4 Classifier Implementation

Each classifier that can be used in the classification pipeline is a transformer.
Because of this, they are all specializations of the same abstract step implement-
ation as the data model appender pre-processing step. Therefore, the method
signature of every classifier follows the same pattern:

1 def transform_data(
2 self , pipeline_step , data_to_transform , details
3 )

Listing 4.2: Classifier Method Signature

The data_to_transform parameter holds the received data from the previous step
as a Pandas data frame. Every entry in this data frame holds a single software
artifact that gets to be classified. As a consequence, every classifier iterates over
the data frame, handling every entry separately. In the following implementation
descriptions, only the classification of a single entry will be shown.

Parser-based Classification

From the group of parser-based classifiers, every classifier got implemented. With-
in the group, it is possible to distinguish between two kinds of parser-based
classifiers. The "Inclusion of Media" and "Usage of Markdown" classifiers use
the (Markdown) parser to detect special tokens within the text. Both are also
general classifiers. The "Usage of a Formal Language" and "Used Programming
Language" classifiers, on the other hand, use the parsers to validate their output
to decide on the classification of the underlying artifact.

For the first kind, the process in the implementation works with the Markdown
parser Markdown-It (https://github.com/executablebooks/markdown-it-py) that
can be imported into Python. The parse()-method of the Markdown-It parser is
then used to analyze the given text. This creates a list of tokens which have a
"type" property. Depending on the classifier these tokens are matched to a given
set of token types that indicate media inclusion or no non-standard text. If such
tokens are found, the respective classification label gets set.

The two remaining classifiers are implemented by using different parsers and
checking whether the parsing completes successfully. For the formal language
classifier, this means using different parsers as Python packages and executing
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the parsing. If a parsing error is raised, the text does not match the language.
Therefore, if a parser does not raise an error, the text has to conform to the
grammar of a specified formal language. The same principle also applies to the
programming language classifier, while only programming language parsers are
allowed. If a parser like the Markdown parser is used, the same logic cannot
be used because every text counts as a Markdown text. As a consequence, the
logic of the "Usage of Markdown" classifier is used to differentiate if Markdown
is present or not.

Regular expression-based Classification

Regular expression-based classifiers work in a simple way. All the classifiers men-
tioned in section 4.4 were implemented. The general functionality is achieved
by providing regular expressions as global variables. The handling of these
expressions is done by the "re" Python package. To find out if a text part
matches one of the given regular expressions, the methods pattern.find_all(text)
or re.search(reg_ex, text) can be used. Depending on the method, a conditional
statement can be formed, checking whether the regular expression is matched.
Based on this, a classification can be made.

Tool-based Classification

As a proof of concept, only the "Type of Code" classifier was implemented from
the tool-based classification group. For that, the "cloc" command-line tool was
utilized. To make use of it within the program, the subprocess Python package
was imported, which allows the execution of command-line tools within a Python
program. As described, the classifier or the tool needs the underlying program-
ming language to work properly. Either the programming language is known and
can be received via the optional arguments or the language has to be detected.
This is possible with the same process as the "Used Programming Language"
classifier.

The usage of cloc then works as follows. The command to execute is formulated as
a string. This command includes options about the used programming language
(eg. –force-lang=Python) and the output format (–json). For execution, the text
artifacts get wrapped in a temporary file to be used with the command-line tool.
Subsequently, the JSON output gets parsed and can be queried like a Python
dictionary. This is possible via the json Python package. With the dictionary,
information for lines of code and lines of comment is available.

The classifier for the inclusion of warnings, errors, and information in build log
files would have to be implemented in another way because the presented Jenkins
log parser has to be modified to run within the Python pipeline.
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Keyword-based Classification

In the last group of classifiers, the "Type of Message", "Type of Issuer" and "Type
of Issue" classifiers were implemented. Because all of these data transformers
behave in the same way, the presentation of all different classifiers is not necessary
for the implementation design description.

The implementation of the keyword-based classifier is simple. For every class, an
array of keywords gets defined in a global variable. While iterating over the single
artifacts, every array gets checked to see if the text includes one of the keywords.
This can be done in Python with the in operator. If a class of keywords matches,
the class label gets set. Possible variations of the implementations may put the
checking of the classes in a certain order. This is important because if a class is
set, no other class can be set because of the MECE principle. Further alternative
implementations may include a voting system where the class with the most
matched keywords gets set.

The implementation with ordered class checks looks like this and can be applied
to all mentioned keyword-based classifiers:

1 def transform_data(
2 self , pipeline_step , data_to_transform , details
3 ):
4 for index , row in data_to_transform.iterrows ():
5 text = row[details ].lower ()
6 if text is None:
7 continue
8

9 class_found = False
10

11 for key in keyword_group1:
12 if key in text:
13 add_class("1")
14 class_found = True
15 break
16

17 for key in keyword_group2:
18 if key in text and not class_found:
19 add_class("2")
20 class_found = True
21 break
22

23 # Possible further classes
24

25 if class_found is False:
26 add_class("Fallback")
27

28 pipeline_step.next([ data_to_transform ])

Listing 4.3: Keyword Classifier
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4.5.5 Post-processing and Data Writing

The post-processing within the implementation consists only of one transforma-
tion step. This step is needed for the modification of the final classified data frame
because it needs to fit the sink table in the database. For that, two operations
are configurable via the optional arguments.

1. Deletion of table columns

2. Renaming of table columns

The deletion of columns can be useful if the final persisted and classified schema
has to be reduced because certain queried metadata is no longer useful. The
deletion itself is done via the drop-method provided by the Pandas data frame.

Because the column names coming from the source tables may have names that
are not wanted in the sink table, renaming columns is possible. By providing a
dictionary in the optional arguments that has columns to rename as keys and
their new names as values, the rename-method of the Pandas data frame can be
used.

Data writing is the last step in the classification pipeline and the only step in the
data writer category. Because the pre-processing step already made sure the data
frame could be written to the database, this step has no further responsibilities.
"sqlalchemy" and the "psycopg2" driver are used to configure a connection to
the database. Thereafter, the data frame gets written to the database with the
to_sql -method.

4.5.6 Modular Pipeline Creation and Execution

With the creation of all parts of the pipeline, it is possible to assemble it. Because
of the bridge pattern, this step can be done easily. At first, a pipeline object has to
be created and then populated with pipeline steps. What pipeline steps are used
depend on the artifact category and the exact source if source-specific classifiers
are used.

For the easy addition of pipeline steps, a special utility method was created that
takes a concrete step implementation, the pipeline object, the method name of the
pipeline execution object, and the optional arguments for the step that configures
it. With these resources at hand, the following method can be created:
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1 def add_pipeline_step(
2 input_pipeline , step_implementation , method , args
3 ):
4 implementation = None
5

6 if isinstance(
7 step_implementation , TransformerImplementation
8 ):
9 implementation = GeneralClassificationTransformer(

10 step_implementation
11 )
12 elif isinstance(
13 step_implementation , RequestImplementation
14 ):
15 implementation = SyncRequest(step_implementation)
16 elif isinstance(
17 step_implementation , WriterImplementation
18 ):
19 implementation = Writer(step_implementation)
20

21 if implementation is None:
22 print("step could not be added")
23 return
24

25 step = PipelineStep(implementation , method , args)
26

27 input_pipeline.add(step)

Listing 4.4: Pipeline Step Addtion Method
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With the implementation, it is possible to demonstrate the functionality of the
design and its effectiveness. For that, a sample dataset will be used that gets
classified by the presented implementation. Besides the dataset, the configuration
of the different pipelines will be shown. At last, the results of the classification
will be displayed.

5.1 Data Sources and Demonstration Dataset

Chapter 4 mentioned the usage of a relational database as the basis for the
classification pipeline and system in general. This was done to abstract the data
retrieval for this thesis. The relational database in question holds data from the
GrimoireLab project. This data is publicly available and consists of different data
tables representing software artifacts from the project. The used datasets are:

• Git data: Version-control data via the Git system. Each data entry repres-
ents a Git commit, stating its message, author, time, and other metadata.

• Issue data: Data from project issues and their comments. Every entry has
the issue title, and every comment entry holds the text of the comment.
Additional metadata, like usernames and creation dates, is also available.

• Mail data: Table holding data about individual e-mails sent within the
project. The subject and a short extract of the mail body, together with
metadata, are provided.

• Slack data: Data of individual Slack messages. Together with the message,
metadata, like the chat channel and author, is also retrievable.

The GrimoireLab dataset does not include code data. Therefore, the sample code
data will be provided by other sources. Similar to the other datasets, the code
data will be stored in an extra database table. Because this demonstration does
not require additional metadata for classification, none will be provided. For the
code data, three different programming languages are used: Java, C, and Python.
For each of the languages, different example sources were used. The "Java Design
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Patterns" website (https://java-design-patterns.com/) offers examples for many
design patterns and other snippets written in Java. Some of these patterns and
snippets were used as text artifacts for the classification system. The same was
also done for the C examples. For them, the website "w3resources" was used
(https://www.w3resource.com). For the Python samples, snippets of the code
written for the classification system were used.

5.2 Configuration of Classification Pipelines

For each of the datasets, twenty entries at random will be retrieved to demonstrate
the functionality. This will be achieved by limiting the Postgres requestor to
twenty entries. It is, of course, possible to classify all entries in the database in
each dataset. This would produce several thousand classifications that are not
practical to present as part of this thesis. The only dataset not consisting of
several thousand entries is the code data table. For demonstration, only twenty
entries in this table are available.

Like section 4.5.6 showed, each dataset that represents an artifact category gets
its own classification pipeline consisting of general classification, artifact (group)-
specific classification and source-specific classification. Because of that, five
pipelines get defined in an orchestrator script that executes the pipelines se-
quentially. For every pipeline, it is important to know which column gets used
for classification in which classifier. For all but the e-mail communication data
pipeline, every classifier uses the same text artifact for every classifier in its
pipeline:

• Code data: The actual code (column: code)

• Communication data (E-Mail): "subject" column for mail type classifier,
"mail body" column for everything else.

• Communication data (Slack Messages): The individual message (column:
message)

• Issue data: The issue title (column: issue_title)

• Version-Control data: The commit message (column: message)

Besides the composition of every created data pipeline, each step has to be con-
figured to work with the given dataset. All steps need information on which
column of the received data frame will be used for the text classification. An-
other configuration is the post-processing schema modifier. Because some column
names in the source tables are not exact in their meaning, they get altered so
that the final classified entries are easy to query.

When looking at the keyword-based classifiers, the keywords for each classifier
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have to be configured. Because there is no further information about the issue
or mail data available, the proposed keywords from the design description will
be used. This does not affect the demonstration because the functionality of
each classifier is still given. But it may impact further analysis based on the
classification because the class labels may not be as precise as possible. This
emphasizes the need for proper knowledge about the underlying software project
to configure the classification system as accurately as possible.

For demonstrating the special character classifier, the chosen special characters
are the Unicode emoji characters that were described in section 4.4.2.

5.3 Results of Classification

After executing the created pipelines, it can be shown that the classification
system works as the design and the implementation details suggest. The data
sink tables are created, and the columns for classification are filled. Appendix A
shows the whole sample dataset and the assigned classifications as a final persisted
data product in the database. If necessary, the text artifact was shortened. This
was especially the case for the code data.

Within the code data, the general classification shows that all artifacts correctly
have no searched special characters (emojis), include no Markdown media, and
are a formal language. The only shortcoming can be seen with the "Inclusion of
Markdown" classifier. Because, for example, Python comments have the same
syntax as Markdown headlines, the classifier assumes that the text may be a
Markdown document. It nonetheless works as designed. The source-dependent
classifications all worked without fail. All artifacts were correctly classified as
"code" and the languages were detected, too. Only one entry was classified as
a "comment" because it predominantly consisted of comment lines. Listing 5.1
shows the code artifact that is used within the classification system itself.

1 # Util method for appending a string to the classification text
to be persisted

2 # Dataframe: frame with the classification column
3 # index: Index showing the row of the dataframe for

classification
4 # classification: string indicating the classification

granularity
5 # new_classification: New classification string to append
6 # This method looks if a classification is already present
7 # Then it appends the new classification either
8 # as a new string
9 # with a comma onto the other string

10 # Works as a void method
11
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12 def append_classification_string(dataframe , index , classification
, new_classification):

13 old_classification = dataframe.at[index , classification]
14 separation_symbol = ", "
15

16 if old_classification is None:
17 old_classification = ""
18 separation_symbol = ""
19

20 dataframe.at[index , classification] = old_classification +
separation_symbol + new_classification

Listing 5.1: Comment Code Artifact

The e-mail communication data was classified based on two different artifact text
properties. For the general classification, the e-mail body was used. In general,
no markdown media or special characters were detected. Similar to the code data,
Markdown elements were found inside the text. Because of this, these artifacts
were also declared formal languages. For the source independent classification,
no e-mails apart from "normal" were found. None of the mail subject lines
indicated that the mails are an answer or a forward of another mail. Therefore,
the classification was correct.

The classification of Slack communication data also showed the workings of the
proposed classification system. Each of the messages did not include any Mark-
down syntax for general classification and were all written in natural language.
As a consequence, all artifacts were not classified as formal language. The Slack
dataset was the only one for which a source-specific classification was applicable.
The classifier correctly found all artifacts with Slack user handles and set the
correct label. An example would be this message:

OK <@UUZKERH1S> Happy to hear that. Take care! Have a
good day!

For the issue data, the general classification was the same as for slack commu-
nication data. More interesting is the source-independent classification. For
the "Inclusion of stacktraces" classifier, no artifact could be found that had any
stack traces. The test data only provided the titles of issues but not their bodies.
Their detection is, therefore, difficult. The principle based on regular expressions,
though, has been shown to be effective by, for example, the Slack user handle
classifier. Other than the stack traces, it was possible to detect special kinds of
issues. In the sample data, bug issues were detected because they included the
keyword "Fix". The whole issue title was: "DEI Badging Application Bug Fix".
All other issues were classified as "unspecific issue".

The last dataset of Git version-control data holds no new information regarding
general classification. All artifacts were correctly classified as being not formal
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and having no special characters. For the source-independent classification, all
artifacts were marked as human commits. Because there is no more information
about the dataset, this classification can be considered correct. Regarding the
type of commit, most of the artifacts were classified as "adaptive" as it is the
default case for the classifier and many artifacts comply with the set keywords for
that type (e.g. "Merge. . . "). Some artifacts were classified as corrective because
they include the keyword "improve" hinting at a corrective change. When looking
at the corrective message it can be seen that it starts with the adaptive keyword
"merge":

Merge pull request #1433 from chaoss/libyear-worker-gsoc Fixed
poetry parser and added poetry.lock parse

Because the classifier was built in such a way that it prefers the label "corrective"
over "adaptive" the "corrective" class was set. This is because the design stated
that the classes have to be in a hierarchy that is achieved via the order of the
keyword class checks (see Implementation section). The class "Corrective" is
preferred in the implementation.
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As an addition and answer to the third research question from the introduction,
examples for the analysis of software artifacts based on the classification should
be presented. These examples are all based on the classifications showcased in
the design section of this thesis. Other examples with the designed or other
classifications are possible.

The introduction of the thesis mentioned problems that come up with the imple-
mentation of inner source within organizations. These issues mainly concerned
traceability and a lack of knowledge about the development process within an
organization. Firstly, each of the classifications itself offers some sort of new
knowledge that allows for a more in-depth analysis of the organization. One ex-
ample for each of the artifact categories and the general classification should be
given:

• General Classification: How often are media inclusions part of software
artifacts? This analysis would be based on the "Inclusion of Media" classi-
fier and would simply put the two classification labels into relation. Instead
of taking all possible artifacts into account, features like the artifact cat-
egory can be considered to increase the significance of the analysis. The
analysis itself could be used to monitor the composition of documentation
within an organization.

• Build Data: How are software builds evolving over time? With the clas-
sification of the build log, it would be possible to analyze it. Within the
entire organization, the state and trend of software builds could be mon-
itored, offering more transparency for controlling.

• Code Data: What kind of code is how often submitted? The "Code Type"
classifier labeled code artifacts as "code" and "comment". This informa-
tion describes what kind of code is submitted within an organization. That
information could allow the assessment of productivity within the organiz-
ation.

• Communication Data: How much of e-mail traffic consists of original
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messages? The "Type of e-mail" classifier allows classifying e-mails into
"original" or "normal e-mail", "forward", and "answer". With this inform-
ation, the communication flow within an organization can be monitored. It
can, for example, be seen if a lot of back-and-forth communication within
the organization is handled via e-mail rather than other more efficient modes
of communication.

• Documentation Data: What kind of documentation is used? One of the
proposed classifiers for documentation data was the "Type of Documenta-
tion Form" classifier. With its capabilities, it would be possible to monitor
the kind of documentation used and its frequency. This provides insight
into the productivity of documentation creation and the usage of certain
kinds of documentation, like diagrams or other inclusions of media, in the
documentation text.

• Issue Data: What is the share of bug tickets in comparison to other ones?
Classifying the "Type of Issue" allows for analysis of the share of, for ex-
ample, bug tickets. This can be useful to track what kind of issues projects
within the organization are handling.

• Version-Control Data: What kind of the primary changes are done to
the code base of a project? By classifying the types of commits within
the version-control data of a project, the kinds of primary changes can be
detected. With this, an analysis of the state of a project is possible. Either
it is in a state where a lot of adaptive and productive changes and additions
are made, corrective fixes are applied, or perfective refactorings take place.

Other than analytics based on only one classification, multiple classification fea-
tures can be combined to provide further insight into the software development
process. Examples of that may be the following:

• What type of commit do humans and bots usually commit? This question
combines the two presented version-control data classifiers and delivers in-
formation about the type of commit for a certain issuer. It can, for example,
show what kinds of commits are automated via bots within the organiza-
tion.

• What kind of issues do usually include stacktraces? This analysis also
combines two classifiers of the same artifact category and creates an un-
derstanding of when stacktraces (or potentially other expressions) usually
appear.

Other than just looking at the classifications, multi-feature analysis is also pos-
sible by taking meta-data into account. The described data pipeline was explicitly
designed to support the usage and transport of the metadata available for each
artifact. With these additional features, more analysis is possible. It is, for ex-
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6. Analysis of Classifications

ample, possible to take time into account and draw certain conclusions from it.
For example, it would be possible to see what type of code is submitted at what
time.

All of these examples only show the surface of possible analysis with the help
of the classification system. Together with more classifications and metadata,
additional analysis is possible.
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7 Evaluation

As part of the design science method, this chapter evaluates the results of this
thesis. This evaluation consists of two parts. At first, the solution will be assessed
regarding its capability to fulfill the objectives that are defined in chapter 3.
Secondly, the limitations of the classification system and the solution in general
will be pointed out. This helps to identify the potential for further research.

7.1 Evaluation of Defined Objectives

Within this thesis, four main objectives were defined based on the problem defin-
ition. It has to be examined whether the objectives were met. Each objective
will be checked separately.

1. The classification system is able to classify different kinds of software de-
velopment artifacts.

It can be said that this objective has been fulfilled. The objective can be split into
two parts. At first, the classification system has to be able to classify software
development artifacts. This was shown with the demonstration. With general,
artifact-specific, and source-specific classifications, the system was able to label
software artifacts with various classifications. The second part of the objective
focuses on the ability to classify different kinds of artifacts. This, too, is part of
the classification system. The system is designed in a way to allow for different
data pipelines to cater to the various needs of diverse software artifacts. With
these pipelines, it is possible to guarantee individual processing for different soft-
ware artifacts with standalone pipeline steps, while making configuration easy
through the modularity of each pipeline.

2. The classification system is able to read data from various data sources and
is not bound to a fixed set of sources.

This objective is also fulfilled. The system was designed in such a way that it is
not dependent on a fixed set of inputs. This can be seen in the design and the
implementation. In the abstract data pipeline definition and the final design, it
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7. Evaluation

can clearly be seen that the subject of data retrieval for different software artifacts
is completely abstracted from the actual classification. Because of this, various
data sources can be integrated into the system as long as they conform to the
currently implemented data pipeline. How they conform is determined by the
implementation and the form in which the data is presented. This thesis showed,
as part of the demonstration, that collected software artifact data can come from
special tools like GrimoireLab that help gather the diverse datasets. The final
data format in the demonstration was a relational database, which allowed access
within the implementation.

3. The resulting classification results are usable within a wide range of assess-
ment methods and analytics to support the inner source methodology.

Chapter 6 showed how the presented classifications are usable in analytics and
provide an assessment of the software artifacts. The chapter also demonstrated
how these analytics can be used for monitoring and surveillance of classified
software projects within an organization, which is an important goal in order
to create benefits for the inner source methodology. But because this thesis
does not deliver a thorough analysis based on the classification, it can only be
concluded that the objective is partly fulfilled. Examples show the potential of
the classification, but no final assessment can be made without further research.

4. The classification system does not use machine learning techniques for ar-
tifact classification in order to assure repeatability.

The last objective can also be verified. All classifiers were designed without
any machine learning methods. This was done to assure reproducibility. All
the methods and implementations for the classification of software artifacts were
designed and programmed in a way that ensured the equivalent classification of
the same text artifact every time. The classification is not dependent on any kind
of training data set or something similar.

7.2 Limitations

Besides fulfilling the set objectives, certain limitations of this thesis can be for-
mulated.

As mentioned in the problem identification section, the thesis focused on text-
based classification. It was shown that classification can also be based on different
metadata about the artifact, allowing for classifications that go beyond the ana-
lysis of text. As a consequence, the proposed classification could be expanded,
delivering additional or refined classifications. This expansion could result in
changes or additions to the presented demonstration, and therefore also change
the perspective on possible analytics based on the classification system.
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Another limitation lies within the demonstration dataset. While it was able to
show the functionality of the classifier in a way that showed its functionality, the
set still was limited and mostly from one single source project (GrimoireLab). To
further verify the results of this thesis, bigger and more diverse datasets can be
used to enhance the presented solution.

Similarly, the demonstration showed shortcomings of the implemented classifiers
(Python code comments were detected as Markdown headings.) because of their
generalized configuration. While the concept of the classification pipeline proofed
effective, not every classifier is precise enough to generalize its effectiveness on
other and more diverse datasets.

Furthermore, the analytics based on the proposed classifications only fulfill an
exemplary role. This was already mentioned in the evaluation of the objectives.
Because of this, the corresponding objective could only be partly verified. More
research is necessary into the analytics of classified software artifacts to come to
more substantial results in this domain.
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8 Conclusions

The final chapter summarizes the results of this thesis and presents how future
research can build upon them.

8.1 Summary

In the introduction, three central research questions were formulated. These
questions specified the main issues that had to be worked on within the thesis.
For the summarization, each question will be examined, and it will be shown how
the thesis answered it.

1. What are the objectives for a software development artifact classification
system?

The first part of the thesis and the design science methodology looked at the
problem at hand and the final objectives that are implied by the problem iden-
tification. The problem identification consisted of two parts. At first, related
work and tools were presented to show similar work and sources for inner source.
The presented related work, on the one hand, showed a lot of domain-specific
approaches, on the other hand, they proposed the not-wanted usage of machine
learning techniques for classification. The related tools showed possible usable
tools for the classification system. In the second part, the problem definition
presented the different dimensions of the posted problem. These are the kinds
of artifacts that have to be classified, the sources from which the artifacts come,
and the final classes that are wanted in a classification system for those artifacts.
An important finding was the focus on text-based classification.

With the identification of the problem, four objectives were formulated. These
objectives all referenced an issue that was determined by the problem identi-
fication. All the objectives were properties the designed classification had to
fulfill. This answered the first research question. The objectives themselves spe-
cified that the classification system has to be able to classify different kinds of
artifacts, read from various data sources, create usable classifications, and work
without using machine learning.
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2. How can such a classification system be conceptually designed and imple-
mented?

In the next part of the design science methodology, the thesis was concerned with
the design and implementation of a classification system that fulfills the object-
ives that were set. For the design, a process was defined that at first described the
starting situation. This included creating a hierarchy for the classification gran-
ularity into general, artifact-specific, and source-specific classifications. Several
wanted classifications were presented.

In a first step, the classification system was designed as an abstract data pipeline
consisting of data retrieval, preprocessing, classification, post-processing, and
data writing. These abstract steps were then populated with concrete designs
and implementation ideas. For later implementation, the classifiers were grouped
into similar working processes. It was also shown that the modular design of
pipeline steps allows for different pipelines for each artifact category. The section
about the implementation showed how the design idea was worked out within the
Python programming language environment.

At last, the demonstration showed the working of the design and the implement-
ation by applying the created program. A sample dataset was used to test the
classification system. The demonstration emphasized that the system worked as
designed. Together with the evaluation of the objectives, the thesis proved that
the system works sufficiently for the presented dataset, which shows that the
proposed design answers the research question.

3. What kind of analyses are possible with the developed classification system?

The last research question was answered within the chapter about the analysis of
classifications. Multiple examples were given for analytics that are now possible
with the newly created classification system. They showed how classifications
on their own or the combination of classifications with other classifications or
metadata can create new knowledge. This can be done with single classifications
or the combination of these with themselves or with metadata.

8.2 Future Work

Building upon this thesis, different types of future research can be done. As it
was seen in section 7.2, limitations remain. These limitations can be used to
expand on the present work. One important task would be the expansion of the
classification system to include other factors than just the text of an artifact.
This was described in chapter 2 and called "artifact-based" classification.

Another promising field for future work is analysis based on the classification of
software artifacts. This thesis only provided examples for analytics to show the
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applicability of the classification in the inner source context. Further work could
analyze this topic more thoroughly.

Another part that profits from additional research is the extraction of data from
the original data sources. Within the designed classification system, this step was
heavily abstracted. More research can show how to use different data sources that
could be integrated into the classification system pipeline.

Finally, the limitations mentioned the shortcomings of the demonstration dataset
and the configuration of the classifiers. It is necessary to further refine the clas-
sification pipeline and its classifiers depending on other datasets. Future work
should look into the refinement and application of the designed classification sys-
tem with more advanced and complicated underlying software projects and data
foundations.
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Appendix A: Classified Software Text Artifacts (Demonstration)

A Classified Software Text Artifacts (Demonstra-
tion)

On the following pages the tables with the demonstrated classifications are de-
picted. Each artifact category gets its own table. The left columns show the
text artifact as a whole and if necessary in a shortened form. The right columns
named "general classification", "source independent classification" and "source
specific classification" state the set classes of the artifact.
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Text

A
rtifacts

(D
em

onstration)
A.1 Code Data

code general classification source independent classi-
fication

"public interface Weapon { void wield(); void swing();
..."

"no_emoji, no_markdown,
no_markdown_media,
formal_language"

"code, language_java"

"import javax.sound.sampled.UnsupportedAudio
FileException; ..."

"no_emoji, markdown,
no_markdown_media,
formal_language"

"code, language_java"

"public class ElfKingdomFactory implements King-
domFactory { ..."

"no_emoji, no_markdown,
no_markdown_media,
formal_language"

"code, language_java"

"@Slf4j public class Wizard { ..." "no_emoji, no_markdown,
no_markdown_media,
formal_language"

"code, language_java"

"public class ClubbedTroll implements Troll { ..." "no_emoji, no_markdown,
no_markdown_media,
formal_language"

"code,language_java"

"int main () { int x = 123; printf ("2 digits padding:
%02d \n\n", x);..."

"no_emoji, no_markdown,
no_markdown_media,
formal_language"

"code, language_c"

"public class DragonSlayer { ..." "no_emoji, no_markdown,
no_markdown_media,
formal_language"

"code, language_java"

"from pipeline.utils.classification_string_appender
import append_classification_string ..."

"no_emoji, markdown,
no_markdown_media,
formal_language"

"code, language_python"
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"typedef enum {..." "no_emoji, markdown,
no_markdown_media,
formal_language"

"code, language_c"

"int main() { int arr[] = { 10, 20, 30, 40, 50, 60 }; int
size_arra = (arr, sizeof arr / sizeof *arr); ..."

"no_emoji, no_markdown,
no_markdown_media,
formal_language"

"code, language_c"

"# Util method for appending a string to the classi-
fication text to be persisted ..."

"no_emoji, markdown,
no_markdown_media,
formal_language"

"comment, language_python"

Table A1: Code Data classified

A.2 Communication data (E-Mail)

subject mail body general classification source in-
dependent
classifica-
tion

"[CHAOSS] CHAOSSweekly (June 8
- 12, 2020)"

"CHAOSSweekly (Jun 8 - 12,
2020) Welcome Elizabeth Bar-
ron!"

"no_emoji, no_markdown,
no_markdown_media,
not_formal_language"

normal_email

"[CHAOSS] Proposing GitBook as
a platform for hosting Community-
Handbook"

"Hi everyone, It sounds like there
are no strong opinions"

"no_emoji, no_markdown,
no_markdown_media,
not_formal_language"

normal_email

"[CHAOSS] Proposing GitBook as
a platform for hosting Community
Handbook"

"Thanks Sean, It?s a great idea
to trial GitBook with a non-
programmer."

"no_emoji, markdown,
no_markdown_media,
formal_language"

normal_email
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A.3 Communication data (Slack Messages)

message general classification source specific clas-
sification

<http://meet.google.com/amn-gqio-
mze|meet.google.com/amn-gqio-mze>

"no_emoji, no_markdown,
no_markdown_media,
not_formal_language"

no_slack_user_handle

<http://meet.google.com/haq-mvim-
ejr|meet.google.com/haq-mvim-ejr>

"no_emoji, no_markdown,
no_markdown_media,
not_formal_language"

no_slack_user_handle

<http://meet.google.com/chm-hops-
ckx|meet.google.com/chm-hops-ckx>

"no_emoji, no_markdown,
no_markdown_media,
not_formal_language"

no_slack_user_handle

"I am excited to be here, how do I get star-
ted? I just read the docs for the review
testing guide."

"no_emoji, no_markdown,
no_markdown_media,
not_formal_language"

no_slack_user_handle

Hi "no_emoji, no_markdown,
no_markdown_media,
not_formal_language"

no_slack_user_handle

....except for the start of the pilot testing!!! "no_emoji, no_markdown,
no_markdown_media,
not_formal_language"

no_slack_user_handle

"Hello everyone :slightly_smiling_face: I
got here after receiving an email invitation
to participate in D&amp;I Badging Pilot
Testing. I am really excited about joining
you all."

"no_emoji, no_markdown,
no_markdown_media,
not_formal_language"

no_slack_user_handle
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Do we have Badging Hour today? "no_emoji, no_markdown,
no_markdown_media,
not_formal_language"

no_slack_user_handle

OK <@UUZKERH1S> Happy to hear
that. Take care! Have a good day!

"no_emoji, no_markdown,
no_markdown_media,
not_formal_language"

slack_user_handle

Can anyone send me the link? "no_emoji, no_markdown,
no_markdown_media,
not_formal_language"

no_slack_user_handle

I am out at a farm right now! So I will be
on later

"no_emoji, no_markdown,
no_markdown_media,
not_formal_language"

no_slack_user_handle

for hosting the documents I made a small
demo with Gitbook and here is the link.

"no_emoji, no_markdown,
no_markdown_media,
not_formal_language"

no_slack_user_handle

"Gitbook is pretty good compared to Git-
hub Wiki. As from my personal experience
I will prefer Gitbook for hosting the docu-
mentation as it will be beneficial even for
writers, admins and users. The navigation
is also so easy in Gitbook and the user don”t
need prior experience and the UI is simple
so that user can”t get bored."

"no_emoji, no_markdown,
no_markdown_media,
not_formal_language"

no_slack_user_handle

"Hello everyone, I just made a small demo
with Gitbook"

"no_emoji, no_markdown,
no_markdown_media,
not_formal_language"

no_slack_user_handle
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Thank you Matt! "no_emoji, no_markdown,
no_markdown_media,
not_formal_language"

no_slack_user_handle

The D&amp;I Meeting tomorrow is can-
celed I. Just learned today; it is on the
document. <@U011Z9MGK24> and
I will be working together this Friday
instead of meeting around that time.
<@U011Z9ME9UY> <@UV1U5CVFZ>
Feel free to set another time to meet or
you could just hang out at the scheduled
time. Thanks!

"no_emoji, no_markdown,
no_markdown_media,
not_formal_language"

slack_user_handle

<https://meet.google.com/eot-jikt-for> "no_emoji, no_markdown,
no_markdown_media,
not_formal_language"

no_slack_user_handle

That link above is correct "no_emoji, no_markdown,
no_markdown_media,
not_formal_language"

no_slack_user_handle

+1 "no_emoji, no_markdown,
no_markdown_media,
not_formal_language"

no_slack_user_handle

Table A3: Slack Communication Data classification
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A.4 Issue Data

issue title general classification source independent classifica-
tion

Update diversity-inclusion-workgroup-
weekly-call.md

"no_emoji, no_markdown,
no_markdown_media,
not_formal_language"

"unspecific_issue,
no_traceback_stacktrace"

Home Page Update Suggestions "no_emoji, no_markdown,
no_markdown_media,
not_formal_language"

"unspecific_issue,
no_traceback_stacktrace"

Home Page Update Suggestions "no_emoji, no_markdown,
no_markdown_media,
not_formal_language"

"unspecific_issue,
no_traceback_stacktrace"

Blog Post: The CHAOSS App Ecosystem WG
releases Metrics for OSS Event Organizers

"no_emoji, no_markdown,
no_markdown_media,
not_formal_language"

"unspecific_issue,
no_traceback_stacktrace"

DEI Badging Application Bug Fix "no_emoji, no_markdown,
no_markdown_media,
not_formal_language"

"bug_issue,
no_traceback_stacktrace"

DEI Badging Application Bug Fix "no_emoji, no_markdown,
no_markdown_media,
not_formal_language"

"bug_issue,
no_traceback_stacktrace"

Photo Album "no_emoji, no_markdown,
no_markdown_media,
not_formal_language"

"unspecific_issue,
no_traceback_stacktrace"

Photo Album "no_emoji, no_markdown,
no_markdown_media,
not_formal_language"

"unspecific_issue,
no_traceback_stacktrace"
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Appendix A: Classified Software Text Artifacts (Demonstration)
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Appendix A: Classified Software Text Artifacts (Demonstration)

F
ix

ed
pu

ll
re

qu
es

t
la

be
ll

og
ic

.
"n

o_
em

oj
i,

no
_

m
ar

kd
ow

n,
no

_
m

ar
kd

ow
n_

m
ed

ia
,

no
t_

fo
rm

al
_

la
ng

ua
ge

"

"c
or

re
ct

iv
e,

hu
m

an
_

co
m

m
it

"

lo
gg

in
g

up
da

te
.

"n
o_

em
oj

i,
no

_
m

ar
kd

ow
n,

no
_

m
ar

kd
ow

n_
m

ed
ia

,
no

t_
fo

rm
al

_
la

ng
ua

ge
"

"a
da

pt
iv

e,
hu

m
an

_
co

m
m

it
"

in
de

nt
!

"n
o_

em
oj

i,
no

_
m

ar
kd

ow
n,

no
_

m
ar

kd
ow

n_
m

ed
ia

,
no

t_
fo

rm
al

_
la

ng
ua

ge
"

"a
da

pt
iv

e,
hu

m
an

_
co

m
m

it
"

lo
gg

in
g

"n
o_

em
oj

i,
no

_
m

ar
kd

ow
n,

no
_

m
ar

kd
ow

n_
m

ed
ia

,
no

t_
fo

rm
al

_
la

ng
ua

ge
"

"a
da

pt
iv

e,
hu

m
an

_
co

m
m

it
"

"S
am

pl
e

D
oc

um
en

ta
ti

on
of

A
ug

ur
Im

pl
em

en
t-

at
io

n
Fo

r
@

G
eo

rg
to

re
vi

ew
an

d
co

m
m

en
t.

"
"n

o_
em

oj
i,

no
_

m
ar

kd
ow

n,
no

_
m

ar
kd

ow
n_

m
ed

ia
,

no
t_

fo
rm

al
_

la
ng

ua
ge

"

"a
da

pt
iv

e,
hu

m
an

_
co

m
m

it
"

T
ab

le
A

5:
V
er

si
on

-C
on

tr
ol

D
at

a
cl

as
si

fic
at

io
n

73



References

Alqahtani, S. S., & Rilling, J. (2017). An ontology-based approach to automate
tagging of software artifacts. 2017 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM), 169–174.
https://doi.org/10.1109/ESEM.2017.25

Bacchelli, A., Dal Sasso, T., D’Ambros, M., & Lanza, M. (2012). Content clas-
sification of development emails. 2012 34th International Conference on
Software Engineering (ICSE), 375–385. https://doi.org/10.1109/ICSE.
2012.6227177

Balzert, H. (2009). Lehrbuch der softwaretechnik. 1: Basiskonzepte und requirements-
engineering / helmut balzert. unter mitw. von heide balzert (H. Balzert,
Ed.; 3. Aufl). Spektrum Akad. Verl.

Baysal, O., Holmes, R., & Godfrey, M. W. (2012). Mining usage data and devel-
opment artifacts. 2012 9th IEEE Working Conference on Mining Software
Repositories (MSR), 98–107. https://doi.org/10.1109/MSR.2012.6224305

Bird, J., Menzies, T., & Zimmermann, T. (Eds.). (2015). The art and science of
analyzing software data [OCLC: ocn909330141]. Morgan Kaufmann.

Buchner & Riehle. (2022). Calculating the costs of inner source collaboration by
computing the time worked [Meeting Name: Hawaii International Confer-
ence on System Sciences]. In Proceedings of the 55th hawaii international
conference on system sciences (HICSS): January 4-7, 2022, hyatt regency
maui, hawaii, USA. University of Hawai’i at Manoa, Hamilton Library.

Capraro, M., & Riehle, D. (2016). Inner source definition, benefits, and challenges
[Place: New York, NY, USA Publisher: Association for Computing Ma-
chinery]. ACM Comput. Surv., 49 (4). https://doi.org/10.1145/2856821

Chaturvedi, K., Sing, V., & Singh, P. (2013). Tools in mining software reposit-
ories. 2013 13th International Conference on Computational Science and
Its Applications, 89–98. https://doi.org/10.1109/ICCSA.2013.22

Dueñas, S., Cosentino, V., Gonzalez-Barahona, J. M., del Castillo San Felix, A.,
Izquierdo-Cortazar, D., Cañas-Díaz, L., & Pérez García-Plaza, A. (2021).
GrimoireLab: A toolset for software development analytics. PeerJ Com-
puter Science, 7, e601. https://doi.org/10.7717/peerj-cs.601

74

https://doi.org/10.1109/ESEM.2017.25
https://doi.org/10.1109/ICSE.2012.6227177
https://doi.org/10.1109/ICSE.2012.6227177
https://doi.org/10.1109/MSR.2012.6224305
https://doi.org/10.1145/2856821
https://doi.org/10.1109/ICCSA.2013.22
https://doi.org/10.7717/peerj-cs.601


References

Edison, H., Carroll, N., Conboy, K., & Morgan, L. (2018). An investigation into
inner source software development: Preliminary findings from a systematic
literature review [event-place: Paris, France]. Proceedings of the 14th In-
ternational Symposium on Open Collaboration. https://doi.org/10.1145/
3233391.3233529

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. M. (1994). Design patterns:
Elements of reusable object-oriented software (1st ed.). Addison-Wesley
Professional.

Hindle, A., German, D. M., Godfrey, M. W., & Holt, R. C. (2009). Automatic
classication of large changes into maintenance categories. 2009 IEEE 17th
International Conference on Program Comprehension, 30–39. https://doi.
org/10.1109/ICPC.2009.5090025

Ma, Y., Fakhoury, S., Christensen, M., Arnaoudova, V., Zogaan, W., & Mirak-
horli, M. (2018). Automatic classification of software artifacts in open-
source applications [event-place: Gothenburg, Sweden]. Proceedings of the
15th International Conference on Mining Software Repositories, 414–425.
https://doi.org/10.1145/3196398.3196446

Nazar, N., Hu, Y., & Jiang, H. (2016). Summarizing software artifacts: A literat-
ure review. Journal of Computer Science and Technology, 31 (5), 883–909.
https://doi.org/10.1007/s11390-016-1671-1

Peffers, K., Tuunanen, T., Rothenberger, M., & Chatterjee, S. (2007). A design
science research methodology for information systems research. Journal of
Management Information Systems, 24, 45–77.

Pfeiffer, R.-H. (2020). What constitutes software? an empirical, descriptive study
of artifacts [event-place: Seoul, Republic of Korea]. Proceedings of the 17th
International Conference on Mining Software Repositories, 481–491. https:
//doi.org/10.1145/3379597.3387442

Rani, P., Panichella, S., Leuenberger, M., Di Sorbo, A., & Nierstrasz, O. (2021).
How to identify class comment types? a multi-language approach for class
comment classification [Publisher: arXiv Version Number: 2]. https://doi.
org/10.48550/ARXIV.2107.04521

Rasiel, E. M. (1999). The McKinsey way: Using the techniques of the world’s top
strategic consultants to help you and your business. McGraw-Hill.

Sarwar, M. U., Zafar, S., Mkaouer, M. W., Walia, G. S., & Malik, M. Z. (2020).
Multi-label classification of commit messages using transfer learning. 2020
IEEE International Symposium on Software Reliability Engineering Work-
shops (ISSREW), 37–42. https://doi.org/10.1109/ISSREW51248.2020.
00034

Stol, K.-J., Babar, M. A., Avgeriou, P., & Fitzgerald, B. (2011). A comparative
study of challenges in integrating open source software and inner source
software. Information and Software Technology, 53 (12), 1319–1336. https:
//doi.org/10.1016/j.infsof.2011.06.007

75

https://doi.org/10.1145/3233391.3233529
https://doi.org/10.1145/3233391.3233529
https://doi.org/10.1109/ICPC.2009.5090025
https://doi.org/10.1109/ICPC.2009.5090025
https://doi.org/10.1145/3196398.3196446
https://doi.org/10.1007/s11390-016-1671-1
https://doi.org/10.1145/3379597.3387442
https://doi.org/10.1145/3379597.3387442
https://doi.org/10.48550/ARXIV.2107.04521
https://doi.org/10.48550/ARXIV.2107.04521
https://doi.org/10.1109/ISSREW51248.2020.00034
https://doi.org/10.1109/ISSREW51248.2020.00034
https://doi.org/10.1016/j.infsof.2011.06.007
https://doi.org/10.1016/j.infsof.2011.06.007


References

Stol, K.-J., & Fitzgerald, B. (2015). Inner source–adopting open source develop-
ment practices in organizations: A tutorial. IEEE Software, 32 (4), 60–67.
https://doi.org/10.1109/MS.2014.77

Yusof, Y., & Rana, O. F. (2010). Classification of software artifacts based on
structural information. In R. Setchi, I. Jordanov, R. J. Howlett & L. C.
Jain (Eds.), Knowledge-based and intelligent information and engineering
systems (pp. 546–555). Springer Berlin Heidelberg.

76

https://doi.org/10.1109/MS.2014.77

	Introduction
	Motivation
	Research Questions and Structure

	Problem Identification
	Related Work and Tools
	Text-based Classification for Software Artifacts
	Inner Source
	Differentiation to Machine Learning
	Related Tools

	Classification System
	Software Development Artifacts
	Artifact Sources
	Artifact Classes


	Objective definition
	Solution Design and Implementation
	Design Process
	Preliminary Considerations
	Classification Granularity
	Prerequisites and Goals

	Abstract Data Pipeline
	Processes and Tools for Artifact Classification
	Artifact Extraction and Pre-processing
	Artifact Classification
	Grouping of Classifiers
	Post-processing and Data Writing
	Modular Pipelines for Different Artifacts

	Implementation Details
	Used Technologies
	General Classification Pipeline
	Data Extraction and Pre-processing
	Classifier Implementation
	Post-processing and Data Writing
	Modular Pipeline Creation and Execution


	Demonstration
	Data Sources and Demonstration Dataset
	Configuration of Classification Pipelines
	Results of Classification

	Analysis of Classifications
	Evaluation
	Evaluation of Defined Objectives
	Limitations

	Conclusions
	Summary
	Future Work

	Appendices
	Classified Software Text Artifacts (Demonstration)
	Code Data
	Communication data (E-Mail)
	Communication data (Slack Messages)
	Issue Data
	Version-Control Data (Git)


	References

