
Jetpack Compose for Android
Automotive

BACHELOR THESIS

Tobias Schmid

Submitted on 30 October 2023

Friedrich-Alexander-Universität Erlangen-Nürnberg
Faculty of Engineering, Department Computer Science

Professorship for Open Source Software

Supervisor:
Christian Schrödel

Prof. Dr. Dirk Riehle, M.B.A.

Declaration of Originality

I confirm that the submitted thesis is original work and was written by me without
further assistance. Appropriate credit has been given where reference has been
made to the work of others. The thesis was not examined before, nor has it been
published. The submitted electronic version of the thesis matches the printed
version.

Erlangen, 30 October 2023

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 30 October 2023

i

https://creativecommons.org/licenses/by/4.0/

ii

Acknowledgements

I express my sincere gratitude to Christian for his invaluable guidance, unwavering
support, and expert advice throughout this journey.

Additionally, I acknowledge the use of DeepL in improving the language quality
of this thesis.

Finally, I would like to thank all the proofreaders for their valuable time and
their impact on improving this thesis.

iii

iv

Abstract

The automotive industry has changed in recent years, evolving from conventional
vehicles to intelligent, software-driven machines. As a result, Android has released
its own automotive operating system. In 2018, Google released the first version
of Jetpack Compose. A new UI framework that aims to revolutionize the way
Android UI is declared. Jetpack Compose promises a lot of new features and
a better development experience. However, migrating a large application or set
of applications from one framework to another can be a major undertaking and
should be done in a planned, structured, and thoughtful way. This paper discusses
the pros and cons of migrating to Jetpack Compose in the context of a large
automotive application. As a result, a migration strategy guide will be provided.
Additionally, best practices for migrating some specific use cases for automotive
software will be covered as well as some common use cases.

v

vi

Contents

1 Introduction 1

2 Literature review 3
2.1 Jetpack Compose . 3
2.2 Migration motivation . 4

2.2.1 Challenges with XML and Views 4
2.2.2 Advantages of Jetpack Compose 5
2.2.3 Preview and LiveEdit . 5

2.3 Architecture Decision Records . 6
2.4 Arc42 . 7

3 Requirements 9
3.1 Requirements overview . 10
3.2 Quality goals . 10
3.3 Stakeholder . 11

4 Architecture 13
4.1 State hoisting . 13
4.2 Widget library and application 13
4.3 The MVVM pattern . 14
4.4 Build flavors . 15

5 Design and implementation 17
5.1 Value resources . 17
5.2 Interoperability . 18
5.3 Multiple screen sizes . 20
5.4 Multiple OEMs . 23
5.5 Slot API . 23
5.6 Lists . 25
5.7 ConstraintLayout . 27
5.8 BlockingState . 28
5.9 Selector styles . 29

vii

5.10 Testing . 31

6 Evaluation 33
6.1 Requirement satisfaction . 33

6.1.1 Requirements . 33
6.1.2 Quality goals . 34
6.1.3 Stakeholders . 35

6.2 Disadvantages of migrating to Compose 36
6.3 Migration strategies . 37

6.3.1 Ad hoc migration . 37
6.3.2 Incremental migration . 37

7 Conclusions 39

Appendices 41
A Recommended resources to learn Jetpack Compose 43

References 45

viii

List of Figures

2.1 Three preview configurations for the same Composable 6

4.1 Relation between application and widget library (drawn with draw.io) 14
4.2 The MVVM pattern (drawn with draw.io) 15

5.1 Preview of slotted layout . 25
5.2 UML-diagram for DynamicStyle (drawn with draw.io) 30

ix

https://www.drawio.com/
https://www.drawio.com/
https://www.drawio.com/

x

Listings

2.1 A sample Composable . 3
5.1 Using XML resources . 17
5.2 A Sample of using AndroidView 18
5.3 A sample of using ComposeView 19
5.4 XML needed for inflating the Fragment 19
5.5 Inflating a Fragment using AndroidViewBinding 20
5.6 Implementation of a Display CompositionLocal 21
5.7 Implementation of a remember function for the Display 22
5.8 A sample of using Slot API . 24
5.9 Implementation of a CarUxRestrictions CompositionLocal 28
5.10 Implementation of a BlockableBox 29
5.11 A sample of using DynamicStyle 30

xi

xii

List of Tables

3.1 Requirements . 10
3.2 Quality goals . 10
3.3 Stakeholder expectations . 11

xiii

xiv

Acronyms

ADR Architecture Decision Records

API Application Programming Interface

APK Android Package

DSL Domain-Specific Language

ID Identification

LOC Lines of Code

MVVM Model-View-ViewModel

OEM Original Equipment Manufacturer

UI User Interface

UX User Experience

XML Extensible Markup Language

xv

xvi

1 Introduction

The User Interface (UI) is vital to almost every application, providing a seamless
and high-performing User Experience (UX). Traditionally, Android developers
have utilized Extensible Markup Language (XML) layouts and the View system
to construct UIs. However, as applications increase in complexity and larger
systems such as automotive systems running on Android emerge, the challenges
associated with UI development also increase.

Therefore, Google has released a new UI toolkit called Jetpack Compose to ad-
dress these challenges. The goal is to replace XML layouts with a declarative ap-
proach. With Compose, UI can be crafted entirely with Kotlin, the most popular
(‘Android’s Kotlin-first approach’, 2023) and by Google recommended program-
ming language for Android development (Kotlinlang, 2023). The comprehensive
Kotlin feature set allows for facile construction of significant scale application UIs
by utilizing for example polymorphism and design patterns.

The automotive industry has transformed in recent years, progressing from con-
ventional vehicles to intelligent, connected and software-driven machines. Soft-
ware now plays a pivotal role in improving vehicle functionality and safety, while
also enhancing the UX by creating feature-rich, user-friendly automotive software
that is resilient and meets the unique requirements of the automotive ecosystem
(‘Software-Defined Vehicles – A Forthcoming Industrial Evolution’, 2021). This
transformation does include in-car systems such as driving assistance and self
driving but also the infotainment systems. Their importance has grown and is
set to further increase in the future (‘How new infotainment will shape the fu-
ture customer experience’, 2021). The transition to Jetpack Compose signifies
a noteworthy progression in the pursuit of creating highly dynamic, responsive,
and sustainable UI. Nonetheless, the process of migration is a complicated un-
dertaking that entails overcoming numerous challenges while effectively utilizing
the capabilities of Jetpack Compose.

This thesis investigates the migration process of large scale automotive software
systems regarding interoperability, the exertion associated with the transition,
and design recommendations for standard use cases.

1

1. Introduction

2

2 Literature review

2.1 Jetpack Compose

Before delving further into Jetpack Compose, it is important to grasp the idea of
declarative UI programming. In a declarative UI framework, developers specify
the structure, behavior, and state of the UI using a high-level programming lan-
guage or Domain-Specific Language (DSL). The framework then converts this
declarative code into real UI elements and manages their runtime state. This
method provides several benefits over an imperative approach, such as enhanced
readability, maintainability, and testability of the code (Varon, 2022). By follow-
ing an imperative approach the creation and update of the UI elements would be
described step by step (Afridi, 2023).

Jetpack Compose employs a concise and expressive syntax to define UI-components.
Developers utilize composable functions annotated with @Composable to create
UI-elements. Typically, these functions only outline the structure of the UI-
element without any return value. For instance, the code of a basic button in
Jetpack Compose may look like this:

1 @Composable
2 fun SimpleButton (t ex t : String , onCl ick : () −> Unit) {
3 Button (onCl ick = onCl ick) {
4 Text (t ext = text)
5 }
6 }

Listing 2.1: A sample Composable

Compose simplifies the creation of reusable UI components. Composables are
conventionally declared as top-level functions, making them reusable throughout
the application. This approach facilitates maintenance and promotes UI design
consistency (‘Thinking in Compose’, 2023).

Another intriguing element of Jetpack Compose pertains to state management.
In the previously used XML based approach, the empty View has to be manually

3

2. Literature review

populated with its data after the XML layout was inflated. Moreover, every data
update requires the explicit update of the View’s data by keeping a reference
to the View and altering its values. This problem has already been addressed
by introducing databinding, which enables direct connection of XML layouts to
LiveData objects, resulting in automatic updates to the UI when new values are
emitted. Jetpack Compose further simplifies state management by fully hand-
ling the state internally. A state object can be observed by Jetpack Compose
in order to update the UI, whenever the value of the state object changes. This
process is called recomposition. To ensure state preservation during recomposi-
tion, the state must be saved in a non-composable object or remembered using
the remember()’-function. If a value is enclosed in a remember -function, it will
not be executed again during recomposition. Additionally, the rememberSavable-
function allows the value to persist through configuration changes (‘State and
Jetpack Compose’, 2023).

Compose provides a robust theming and styling system, facilitating the devel-
opment of consistent user interfaces. Themes can be defined at the application,
screen, or component level, offering great flexibility in design. Styles are declared
by implementing straightforward style classes and can be instantiated and ap-
plied to composable elements. Those styles can be bundled to form a theme
(J. R. Castillo, 2022). To uniformly style an entire screen or application, it is
recommended to utilize CompositionLocal an Application Programming Inter-
face (API) provided by Compose to declare a value once within the UI-tree. This
value can then be accessed from any location in the UI-tree under the node in
which it was declared, eliminating the need to pass values using explicit para-
meters (‘Locally scoped data with CompositionLocal’, 2023).

The Jetpack Compose developers recognized that a sudden transition from the
traditional XML and View framework to Compose was not feasible. As a solu-
tion, they provide a broad range of interoperability APIs that enable partial or
incremental migration.

2.2 Migration motivation

2.2.1 Challenges with XML and Views

XML-based layouts frequently lead to lengthy code, as UI elements and their
attributes are defined in separate XML files. This can pose challenges in com-
prehending and managing the codebase, especially for intricate UIs. Moreover,
developers frequently engage in writing redundant boilerplate code to manually
access and manipulate Views. Such code not only clutters the source code but
also raises the risk of errors. XML layouts are inherently less reusable, which
can hinder the effective encapsulation and reuse of UI components. This limita-

4

2. Literature review

tion may impede productivity and consistency across applications. Additionally,
XML layouts lack type safety, resulting in potential runtime errors when incorrect
resource references or attribute types are utilized. Such errors can be difficult to
catch during the development process.

2.2.2 Advantages of Jetpack Compose

Jetpack Compose employs a declarative syntax, facilitating descriptions of the
UI’s structure and behavior with concise Kotlin code. Such an approach improves
the legibility and maintainability of code. Composables in Jetpack Compose are
exceedingly modular and reusable. Developers can encapsulate UI elements into
functions, encouraging consistency and decreasing code duplications. Jetpack
Compose also furnishes APIs for efficient and anticipatable state management.
Composables update automatically when the underlying state changes, simplify-
ing complex UI updates. With Jetpack Compose, UI elements are strongly typed,
which reduces the likelihood of runtime errors. Compile-time checks detect many
issues before they become runtime problems. Additionally, Jetpack Compose’s
theming and styling system simplifies the development of visually consistent UIs.
Themes can be defined at different levels, facilitating customization of the app’s
look and feel. The reduction of redundant code, improvement in legibility, and
utilization of contemporary development practices augment the efficiency of soft-
ware engineers, yielding expedited app creation and simplified upkeep.

2.2.3 Preview and LiveEdit

Jetpack Compose introduces powerful developer tools, such as Preview and LiveEdit,
that enhance the UI development process significantly. These features provide
several essential advantages. Using Preview and LiveEdit, developers can visu-
alize changes they make to the UI instantly and in real-time. This capability
speeds up the prototyping phase, enabling quick experimentation and iteration.
LiveEdit offers real-time feedback on code modifications, eliminating the require-
ment for a time-consuming build and deploy cycle. This allows developers to
instantly see how their alterations impact the UI, thus reducing development
time and increasing productivity (‘Iterative code development’, 2023). Compose
enables the instantiation of multiple Previews with varied configurations sim-
ultaneously, allowing for the examination of distinct visual appearances of UIs
(‘Preview your UI with Composable previews’, 2023). The Preview and LiveEdit
features also enhance the efficiency of debugging UI issues. The following figure
present multiple Previews that preview the same UI code but different preview
configurations.

5

2. Literature review

Figure 2.1: Three preview configurations for the same Composable

Developers have the capability to identify problematic components, make ne-
cessary adjustments, and instantly observe the results, thereby simplifying the
debugging process. The ability to rapidly iterate and visualize changes accelerates
the development cycle. Developers can quickly refine the user interface, resulting
in a polished and user-friendly interface. The Preview and LiveEdit functional-
ities transform UI development by providing real-time visualization, immediate
feedback, and efficient collaboration. These tools enhance developer productivity
and streamline the UI development process.

2.3 Architecture Decision Records

In the field of software architecture and development, it is crucial to maintain
clear and documented records of decisions made throughout a project’s lifecycle.
This is vital for comprehending, managing, and advancing the system. A practice
for this is formalized as Architecture Decision Records (ADR)s, which are util-
ized to capture and communicate significant architectural decisions made during
the development of a software system. These records serve as a historical record,
offering insight into the reasoning behind crucial design decisions, the circum-
stances surrounding their creation, and their possible impacts.

ADRs facilitate transparency by providing the entire development team access
to architectural decisions. Such transparency ensures that everyone comprehends
the reasoning behind decisions, promoting effective contribution to future change-
related discussions. Furthermore, ADRs serve as a tool for knowledge preserva-
tion, allowing new team members to promptly understand architectural decisions
that have shaped the system. They provide a precious resource for onboarding
and retaining institutional knowledge. By documenting architectural decisions,
ADRs establish accountability. Team members are responsible for their decisions,

6

2. Literature review

and ADRs provide clarity on the decision-maker, timing, and rationale. As a pro-
ject progresses, ADRs facilitate architecture management, providing context for
past decisions and aiding in the assessment of proposed changes. After (IcePanel,
2023) a typical ADR includes the following components:

• Title: A concise title that describes the decision being documented.

• Context: The background or context that led to the need for the decision.
What problems or challenges were encountered? What factors influenced
the decision?

• Decision: The actual decision and details about the proposed solution.

• Consequences: An assessment of the potential consequences of the decision,
including both positive and negative impacts. This section helps in under-
standing the trade-offs involved.

• Status: The current status of the decision, indicating whether it’s proposed,
accepted, rejected, or superseded by another decision.

Such ADRs will be utilized in the chapter on design and implementation to
support and explain the design choices that were made and their corresponding
contexts of applicability.

2.4 Arc42

Arc42 (https://arc42.org) is a framework that offers a structured method for doc-
umenting software architecture. This framework has been created to resolve the
demand for intelligible and consistent documentation of software systems, en-
abling development teams to understand, communicate, and develop their archi-
tecture proficiently. Arc42 is structured with a series of templates and guidelines
that support architects and developers in documenting various aspects of their
software architecture. It offers a framework for documenting both the technical
and conceptual aspects of an architecture, guaranteeing that all relevant parties
have access to critical information.

Utilizing arc42 to document software architecture yields several benefits:

• Clarity: arc42 provides a structured and standardized way to document
software architecture, making it easier for team members to understand
and collaborate on architectural decisions.

• Consistency: The framework ensures that essential aspects of the architec-
ture, such as quality requirements and constraints, are consistently docu-
mented.

7

https://arc42.org

2. Literature review

• Communication: arc42 facilitates effective communication among stake-
holders, including architects, developers, testers, and project managers.

• Change management: The documentation serves as a reference for future
changes and helps assess the impact of proposed modifications on the ar-
chitecture.

This framework will be used to document parts of this thesis, but it will not
include a complete arc42 documentation because this project only pertains to a
migration project and not a full software architecture’s documentation.

8

3 Requirements

The migration of a large-scale application should be meticulously organized,
planned, and documented to avoid an untraceable process that could leave er-
rors undetected. An unplanned migration could also result in a lack of a clean
architecture. To successfully plan and assess a migration’s success, requirements
must be established and followed. Some requirements for migrating a large-scale
application were collected by conversing with Android UI developers about their
aversions to the current UI framework and their expectations for the migration
process and resulting software. To clarify and further detail these requirements,
dedicated interviews were arranged and carried out. To document the require-
ments, the first chapter of the arc42 framework "Introduction and Goals" will
be used (https://docs.arc42.org/section-1/). This template includes schemes for
summarizing and visualizing requirements in a structured and comprehensible
manner. This chapter focuses on the requirements for migrating a project to
Jetpack Compose.

9

https://docs.arc42.org/section-1/

3. Requirements

3.1 Requirements overview

In table 3.1, the requirements for the applications migration process are outlined.
This table focuses on the point of view of a software developer.

Requirement Explanation

Continuous migration
The migration should occur incrementally without
interrupting the development of features and the
resolution of bugs..

Reduction of boiler-
plate code

Writing UI in XML leads to repetitive code, res-
ulting in an increase in lines of code and a decrease
in code readability.

Clean architecture
New architecture decisions should be carefully con-
sidered to produce a clean and reusable architec-
ture.

Keep separation of
concerns

Separating concerns is essential to ensure the code
remains both understandable and maintainable.

Improvement of test-
ability of UI code Testing UI code should be simplified.

Feature usage
Compose should provide developer support fea-
tures that are equal to or better than those offered
by the XML-View framework.

Table 3.1: Requirements

3.2 Quality goals

The following table lists the qualities expected from the application during and
after the migration process is executed.

Quality Description

Performance At best, the application’s performance will improve by
avoiding an increase in Android Package (APK) size.

Interoperability Newly added UI code should be compatible with the rest
of the code base.

Transferability Implemented widgets and support structures should be
usable across the entire range of applications.

Visual identity The application post-migration should maintain the
same look and feel as before the migration.

Table 3.2: Quality goals

10

3. Requirements

3.3 Stakeholder

Not only software developers are interested in a switch in the applications UI
framework. Therefore table 3.3 lists the most important stakeholders of such a
migration project and their corresponding expectations.

Role Expectations

Customer

Minimal to no decrease in developer productivity
occurring in feature development and bug-fixing
processes. Development speed should increase as
technical debt is reduced.

Software developers
Achieving a streamlined and efficient migration
process with a correspondingly enhanced develop-
ment experience post-migration.

Team lead

The team’s productivity must remain stable. In-
corporating the latest technologies makes job op-
portunities more appealing to prospective employ-
ers.

Test engineers Compose should provide improved testability for
UI code.

Quality assurance

Improving test coverage can enhance the qual-
ity and robustness of the code base. One way
to achieve this is by reducing code complexity
through the elimination of boilerplate code.

User
The user should not detect any change in the UI
framework and any possible improvements should
only be reflected in the application’s performance.

Table 3.3: Stakeholder expectations

11

3. Requirements

12

4 Architecture

4.1 State hoisting

State hoisting is a fundamental principle of Jetpack Compose. This principle
implies that state is preferably hoisted to the lowest common ancestor. Thus,
typically, small Composables do not store their own states. Composables that do
not store any state are referred to as stateless, while stateful Composables store
state. Additionally, it is advisable to segregate the data from the actual UI widget.
Usually, a stateless Composable is wrapped by a stateful Composable, which
then provides the stateless Composable with its data through the parameters (J.
Castillo, 2022). This approach offers a high level of reusability for the stateless
Composables.

4.2 Widget library and application

The UI code for an automobile application typically consists of two primary
components. The first project encompasses a widget library, which comprises
widgets, styling, and tools that are shared across various applications. The second
project involves utilizing the widgets from the shared library to implement the
specific application.

13

4. Architecture

Figure 4.1: Relation between application and widget library (drawn with
draw.io)

The separation in projects benefits from state hoisting making it clear which
Composables to put inside the library and which to put inside the application. It
is recommended that most stateless Composables be integrated into the shared
widget library, making them available for use across all applications. Another
significant aspect that must be incorporated into the widget library is integrating
data structures for applying styling, such as color, dimensions, and commonly
used drawables across all Original Equipment Manufacturer (OEM) applications
to yield a uniform appearance.

4.3 The MVVM pattern

The application’s architecture should adhere to the widely used Model-View-
ViewModel (MVVM) design pattern to ensure scalability, maintainability, and
testability. MVVM is an architectural design pattern that divides an application
into three core components: Model, View, and ViewModel. The Model embodies
the data and business logic of the application, which includes manipulation and
validation of data and interacting with the data source. The View comprises all
UI components of the application and observes the ViewModel. It updates the UI
whenever there are changes in the underlying data and propagates user interaction
events to the ViewModel. The ViewModel plays the role of an intermediary
between the Model and the View. To ensure a clean separation of concerns, the
ViewModel conventionally does not have a direct reference to the View (Chugh,
2022).

Using the MVVM pattern comes with many benefits. Using it leads to a clean
separation of concerns by separation the data, the UI logic and the UI compon-
ents, making the codebase more modular and easier to maintain. This modularity
also makes it easier to test, since the ViewModels and Models can be tested in-
dependently from the UI, ensuring robust and more reliable tests. It also makes

14

https://www.drawio.com/

4. Architecture

the test execution faster, since there is no need to run the tests on an actual
or emulated device since they usually do not have any dependency to the UI
or the Android system. MVVM also promotes the use of reactive programming
principles, making it easier to handle complex UI interactions and asynchron-
ous operations which gets perfected by the usage of state in Jetpack Compose
(Chugh, 2022).

Figure 4.2: The MVVM pattern (drawn with draw.io)

If the MVVM pattern is implemented correctly, the migration to Jetpack Com-
pose can be limited to the Views. The ViewModels and Models can remain
untouched since they lack references to the Views. However, ViewModels fre-
quently provide references to LiveData objects for the Views to observe. In con-
trast, Jetpack Compose works solely with State and not with LiveData. In the
long term, it is beneficial to migrate ViewModels from LiveData to State. Mean-
while, Compose provides an interoperability API to convert not only LiveData
but also Flows and RxJava Observables to State. Converting a LiveData object
to State is as easy as calling the observeAsState() method (‘State and Jetpack
Compose’, 2023).

4.4 Build flavors

Automotive applications are frequently designed for multiple OEMs. However,
these applications typically only vary in their UI rather than their underlying
business logic. To enable the provision of distinct user interfaces for each OEM,
the (Android) Gradle plugin features build flavors. These flavors permit the
creation of various application versions from the same codebase. Each flavor
can possess distinctive code, yet still access code that is shared among all build
flavors (Naeem, 2023). This provides an opportunity to share code among OEMs,
reducing the number of required tests since the shared code does not need to be
tested for each OEM. Additionally, the software becomes more scalable by simply
adding a new build flavor for a new OEM. Another significant advantage of this
approach is that only the necessary code for each OEM is built into the APK.
If various versions were developed using a conditional statement that selects the
implementation according to a variable, then there would be a requirement to
include code for all OEMs in the APK. This would contribute to an increase in
APK size and an elevated risk for bugs.

15

https://www.drawio.com/

4. Architecture

16

5 Design and implementation

This section will explore common use cases and challenges in automotive and
large-scale software development, following the guidance of chapter 9 in the arc42
framework, specifically the architecture decisions section. To provide context for
these use cases and offer suggestions for their successful implementation, this
paper will utilize ADRs. It is important to note that while these suggestions
are valuable, they are by no means prescriptive or the only viable approach. It
is advisable to modify or select an implementation that not only aligns with
the particular use case, but also conforms to the subjective programming style
preferences.

5.1 Value resources

Context

Google developer’s designed Jetpack Compose to be compatible with the old
XML resource files. However, with Compose the possibility to store resources
have broadened given more flexibility to the developer. An example on how to
use XML resources in Compose is given in the following code listing.

1 @Composable
2 fun XMLResourceExample () {
3 val s t r i n g = st r ingResource (R. s t r i n g . info_home)
4 val width = dimenResource (R. dimen . default_square_item)
5 val c o l o r = co lo rResource (R. c o l o r . primary_blue
6 val pa in t e r = pa interResource (R. drawable . f lower_big)
7 }

Listing 5.1: Using XML resources

Decision

The recommended approach is to migrate value resources to Kotlin. This will
allow you to take advantage of all the features that Kotlin has to offer. Nes-

17

5. Design and implementation

ted data structures can be created to improve the structure of resources. In
addition, resource sets can be extended through inheritance, creating more ver-
satile resource structures. In order to remain interoperable with the traditional
Android development while migrating, the Kotlin resources should reference the
values from the XML files. The references can be omitted and therefore the value
be placed directly into the Kotlin files once the referenced resource is no longer
used within XML resources. Those resources should than be provided through a
CompositionLocal.

Consequences

Creating nested structures for resources is a departure from the typical one-
dimensional resource lists found in XML files, leading to an easier to under-
stand and more organized resource management. By offering the resources as a
CompositionLocal they are easily accessible throughout the composition, without
requiring additional code, resulting in clean code. Furthermore, utilizing Com-
positionLocal permits access to the context and configuration within resource
classes and enables resources to rely on factors such as the current orientation,
UI-mode or language. This replaces the previously utilized resource qualifiers for
XML resources.

5.2 Interoperability

Context

As previously mentioned, Google provides numerous interoperability APIs, and
this section will focus on the most important ones. The first API is the AndroidView-
Composable, which serves as a mediator between the Composable and the View
world, allowing developers to reuse Views within a composition. Listing 5.2 will
give an example on how to use this API.

1 @Composable
2 fun ImageView () {
3 AndroidView (f a c t o r y = {
4 context −>
5 ImageView (context) . apply {
6 setImageResource (R. drawable . image1)
7 }
8 })
9 }

Listing 5.2: A Sample of using AndroidView

Integrating Views into Composables is a useful tool during migration, but some-
times Composables may need to be placed within an XML layout. In such cases,

18

5. Design and implementation

the provided ComposeView class can be employed. To use it, insert a Compo-
seView into the XML layout with an Identification (ID) that can later be ref-
erenced after inflation. Then, the setContent() method may be used to fill the
ComposeView with any desired Composable, as showed in code shown below.

1 //inside XML layout
2 <androidx . compose . u i . p lat form . ComposeView
3 android : id="@+id/compose_view"
4 android : layout_width="wrap_content"
5 android : layout_height="wrap_content"/>
6
7 //inside Activity or Fragment
8 val composeView = findViewById<ComposeView>(R. id . compose_view)
9 composeView . setContent {

10 MyComposable ()
11 }

Listing 5.3: A sample of using ComposeView

Another key aspect of the Android View system is the utilization of Fragments.
Fragments not only organize UI-elements into cohesive UI parts with their own
ViewModel but also control their lifecycle and simplify navigation between screens
using Jetpack Navigation. To populate a Fragment with a Composable UI tree,
XML files can be entirely omitted. By creating a ComposeView object within
the Fragment’s onCreateView()-function, the content of this View can be set to
the desired Composable. However, putting a Fragment inside of a Composable
requires a more complex approach. To simplify this process, Jetpack Compose
offers an interoperability API named AndroidViewBinding that provides an in-
terface for inflating any given XML layout within a Composable function. To
achieve this, create an XML layout with a single FragmentContainerView enclos-
ing the desired Fragment. Then, inside of your Composable, inflate the layout
to insert the Fragment. To correctly handle the lifecycle of the Fragment, one
must detach the FragmentContainer from the NavController when the parent
Fragment or Activity is destroyed. An example of inflating such a Fragment in
Compose is given in the following listings.

1 <?xml ve r s i on="1.0" encoding="utf-8"?>
2 <androidx . fragment . app . FragmentContainerView
3 xmlns : android="http://schemas.android.com/apk/res/android"
4 android : id="@+id/fragment_container_my_fragment"
5 android : layout_width="wrap_content"
6 android : layout_height="wrap_content"
7 android : name="com.myApplication.MyFragment" />

Listing 5.4: XML needed for inflating the Fragment

19

5. Design and implementation

1 @Composable
2 fun MyComposedFragment () {
3 AndroidViewBinding (
4 f a c t o r y = FragmentContainerMyFragmentBinding : : i n f l a t e)
5 }

Listing 5.5: Inflating a Fragment using AndroidViewBinding

A more detailed guide about interoperability can be found inside Google’s An-
droid developer guide under https://developer.android.com/jetpack/compose/
migrate/interoperability-apis.

Decision

Interoperability APIs are ultimately crucial for a trouble-free migration. There-
fore, interoperability APIs should be used if needed. However, the goal is to
remove those framework bridges eventually in order to get a fully migrated ap-
plication. Especially Fragments should only be put inside of Composables if
absolutely necessary, since it can lead to lifecycle problems and it comes with a
certain overhead. If the migration follows a bottom-up approach the Fragment-
Container should be migrated when the underlying Fragment is already fully
migrated making the use of this interoperability API superfluous.

Consequences

Leveraging interoperability enables a smooth migration process. The ability to
reuse Views within Composables is beneficial during the migration process as
complex custom Views can be reused without requiring migration first. The
ability to place Composables inside of XML layouts is especially necessary when
migrating larger layouts, where the entire layout cannot be migrated at once, due
to time constraints or the need to break the migration into more smaller steps.
It is also critical for a bottom-up approach in order to place the newly migrated
Composables inside of their parent layout. All of the ways to use interoperability
have an overhead. However, the ability to mix the two different frameworks is
crucial for a large-scale migration, in order to avoid having to migrate the entire
application at once.

5.3 Multiple screen sizes

Context

The idea of accommodating multiple screen sizes in the automotive industry is
not a new concept when it comes to developing Android software. It is also

20

https://developer.android.com/jetpack/compose/migrate/interoperability-apis
https://developer.android.com/jetpack/compose/migrate/interoperability-apis

5. Design and implementation

applicable to common mobile applications, such as providing distinct layouts for
smartphones, tablets, and wearables. One way to handle varying screen sizes is
by utilizing XML resource files and assigning resource qualifiers to different XML
files, allowing Android to take over from there. However, if the resources are
saved within Kotlin files, a different approach must be used. A recommendation
is given in the following.

Decision

The configuration, available as a CompositionLocal, provides access to the current
screen dimensions. Unlike mobile applications, software for automotive systems
anticipates different screen types and can optimize for them. To achieve this, a
sealed class can be created to represent each unique screen. The Display can then
be passed to the composition tree via the CompositionLocalProvider as shown
below.

1
2 sealed class Display (val width : Dp, val he ight : Dp) {
3 object : MainDisplaySmall : Display (1440 . dp , 720 . dp)
4 object : MainDisplayBig : Display (1920 . dp , 1080 . dp)
5 object : CoDriverDisplaySmall : Display (1080 . dp , 720 . dp)
6 }
7 @Composable
8 fun DisplayComposit ionLocal (content : @Composable () −> Unit) {
9 val c on f i gu r a t i on = Loca lCon f i gurat ion . cur r ent

10 val d i sp l ay = remember (c on f i gu r a t i on) {
11 when (c on f i g u r a t i on . screenWidthDp) {
12 1440 −> Display . MainDisplaySmall
13 1920 −> Display . MainDisplayBig
14 1080 −> Display . CoDriverDisplaySmall
15 else −> er r o r ("Display␣size␣unrecognized")
16 }
17 }
18
19 Composit ionLocalProvider (Loca lDisp lay prov ides d i sp l ay) {
20 content ()
21 }
22 }
23
24 val Loca lDisp lay = stat i cCompos i t ionLoca lOf {
25 Display . MainDisplaySmall
26 }

Listing 5.6: Implementation of a Display CompositionLocal

It is advisable to minimize the differences between these versions, preferably by

21

5. Design and implementation

keeping such distinctions confined within the resource files. In situations where
this is not feasible, it is recommended to utilize minimal conditional statements,
such as ones that choose between a Row or Column. However, if the situation
becomes unmanageable, or if the difference in layout is significant, it is best to
build a factory that selects the appropriate implementation based on the Display.
It is highly recommended to create all implementations as subclasses of a shared
abstract class or interface to prevent duplication of code.

Consequences

If these steps are followed, the resulting code will be free of duplication and is
easy to maintain. By eliminating code duplications and implementing as much
as possible without differentiating between the screens, testing expenses will be
decreased and the code will be more maintainable. Additionally, this implement-
ation can handle changes to the screen configuration during runtime. A common
example would be if the screen orientation changes or if an app is moved from
the main display to the co-driver display.

Alternative Solution

Alternatively, the Display can be implemented through a publicly accessible com-
posable function that returns a value. This approach presents some minor draw-
backs compared to the other solution. First it requires a method call to access the
Display, instead of a property access, which is a matter of personal preference.
However, by implementing the Display as a remember function, a new instance
of the Display will be instantiated each time the function is called, which can
result in a small decrease in performance and increase in memory needed. The
implementation of the Display as a remember function is shown in listing 5.7.

1 @Composable
2 fun rememberDisplay () {
3 val c on f i gu r a t i on = Loca lCon f i gurat ion . cur r ent
4 return remember (c on f i g u r a t i on) {
5 when (c on f i g u r a t i on . screenWidthDp) {
6 1440 −> Display . MainDisplaySmall
7 1920 −> Display . MainDisplayBig
8 1080 −> Display . CoDriverDisplaySmall
9 else −> er r o r ("Display␣size␣unrecognized")

10 }
11 }
12 }

Listing 5.7: Implementation of a remember function for the Display

22

5. Design and implementation

5.4 Multiple OEMs

Context

As previously noted in the architecture section of this thesis, supporting multiple
OEMs can be achieved through the use of Gradle build flavors. However, it is
still for debate what should be made flavor-dependent and what should be placed
inside the non-flavored directory.

Decision

Similar to managing multiple screens, it is best practice to minimize differences
between different build flavors, ideally restricted to resource files. Often, design
requirements for different OEMs differ only in terms of styling, such as color
choices, dimensions, strings, and drawables. To accommodate this, style classes
can be extracted from Composables and passed as a parameter to the implement-
ation that differs between the various flavors. If the designs differ significantly, it
may be necessary to create two entirely separate implementations. When using
different implementations for different flavors, a shared interface should be de-
clared inside of the unflavored project directory, which then can be implemented
by the flavor dependent classes.

Consequences

When implementations only differ in value resources, tests often can be writ-
ten flavor independent, which ultimately reduces the amount of testing resources
required. Declaring shared interfaces for flavor dependant implementations re-
duces the risk of compilation errors due to unresolved references, which can speed
up the development process. Furthermore, it helps to reduce and find bugs by
providing a clean structured architecture. Nevertheless, the implementation of
the interface takes time, which is ultimately compensated by the time needed to
maintain the software in the long run.

5.5 Slot API

Context

The Slot API pattern is a prevalent design pattern in the Jetpack Compose code-
base. Its aim is to simplify UI elements despite the UI components’ growing
complexity. Even minimal data input can result in significant implicit usage of
the data to define its display. Composables that use the Slot API present one or
more parameters of type @Composable () -> Unit that are laid out within the
Composable. The Scaffold is a popular example of the Slot API inside of the

23

5. Design and implementation

Compose codebase. This Composable provides slots for frequently used widgets
that are then arranged on the screen comprising the Drawer, TopBar, BottomBar,
and FloatingActionButton (‘Slot-based layouts’, 2023). An example of a Com-
posable layout using Slot API can be seen in listing 5.8 and how the slots will be
layed out in figure 5.1.

1 @Composable
2 fun SlottedLayout (
3 Headl ine : @Composable () −> Unit ,
4 Body : @Composable () −> Unit ,
5 SideBar : @Composable () −> Unit ,
6) {
7 Column(
8 mod i f i e r = Modi f i e r . f i l lMaxWidth () . he ight (300 . dp)
9) {

10 Box(mod i f i e r = Modi f i e r . he ight (50 . dp)) {
11 Headl ine ()
12 }
13 Row(mod i f i e r = Modi f i e r . f i l lMaxS i z e ()) {
14 Box(mod i f i e r = Modi f i e r . f i l lMaxWidth (0 .8 f)) {
15 Body()
16 }
17 Box(mod i f i e r = Modi f i e r . f i l lMaxS i z e ()) {
18 SideBar ()
19 }
20 }
21 }
22 }

Listing 5.8: A sample of using Slot API

Decision

The Slot API pattern shall be used throughout the entire application, especially
in the top section of the composition. When design requirements are inflexible
and do not change, the Slot API pattern can be omitted. This also applies to
Composables which are located at or near the leaves of the composition tree.

Consequences

This mechanism reveals to the Composable’s caller that it’s divided into multiple
sections, potentially requiring the caller to split the data passed into the sections
themselves. This is advantageous in the top sections of your composition tree as it
reduces complexity and separates the data passed to the subsections, eliminating
the need to pass a large data object or the entire ViewModel. Another advantage

24

5. Design and implementation

Figure 5.1: Preview of slotted layout

of utilizing this framework is the cohesiveness and lack of coupling in the im-
plemented Composables. It also offers enhanced flexibility and reusability in UI
code writing. By reusing a screens layout that has been implemented using Slot
API, a consistent look can be created throughout a single or multiple applications
without the need for code duplications. However when requirements are fixed,
passing data directly at the bottom of the composable tree is likely more efficient,
particularly for displaying a single type of information. Using the Slot API in
this case may not be entirely unfavorable, although it could result in unnecessary
complexity and boilerplate code. Ultimately, it is up to the development team
to decide whether to employ this design pattern. However, prioritizing flexibility
often results in fewer complications in the future (Banes, 2021).

5.6 Lists

Context

An essential widget found in almost all applications is the list. Especially in-
teresting is dealing with dynamic lists of an unknown size. For dynamic lists,
the RecyclerView is the preferred choice within the View system. Although the
RecyclerView efficiently creates high-performing dynamic lists, it generates an
excessive amount of repetitive boilerplate code. To display items within a Re-
cyclerView, a RecyclerViewAdapter, which supports all types of list items poten-
tially added to the list, must be created. In large scale automotive applications, a
list may contain various list items which could be added to a single RecyclerView.
This results in complex and bulky adapter classes necessary to accommodate all
dataset types and combinations. If a new type of list item is needed not only the
layout of the list item must be implemented but also the adapter must support
the new list item. Both are typically established within the shared widget library,
which leads to a long development cycle if a new list item must be added. First
the item must be implemented inside of the widget library which then has to be
tested and deployed, in order for the application to be able to use it.

25

5. Design and implementation

Decision

Jetpack Compose introduces a powerful API for creating dynamic lists called
LazyLayout. This API includes different Composables, namely LazyColumn,
LazyRow, and LazyGrid, which provide the intuitive functionality associated
with their respective names (‘Lists and grids’, 2023). The key distinction from
RecyclerView is that no adapter is necessary, and any type of Composable can
be declared within the LazyLayouts, with Compose handling the lazy aspect
seamlessly. The use of LazyLists eliminates the need for a central adapter. Con-
sequently, widget libraries can provide better tooling for these types of lists, em-
powering library developers to grant application developers greater control over
list items. Developers can now construct list items more efficiently using power-
ful list item build tools. This can be achieved using the Slot API pattern. The
widget library can now furnish fully-formed list items as well as items containing
placeholders that can be populated by any Composable.

Consequences

Providing a comprehensive list item package as well as a toolkit simplifies the sup-
port for custom list items in applications, while also allowing the use of shared list
items between multiple applications. This reduces the amount of boilerplate code,
enhances code reusability, and can lead to a significant reduction in implementa-
tion time for new features or change requests. If an unimplemented list items is
requested, developers of the application can add it to their own app. This saves
time from implementing it within the library, which requires a full deployment
cycle for a new version to be released that the application can build against. Ad-
ditionally, a building kit for various UI-elements can decrease development time
due to their high level of reusability. In contrast to the XML-system, only the
widget’s implementation needs to be written without the need for an adapter, as
there is no requirement for one. Furthermore, the concept of separation of con-
cerns is granted, since no application specific list items are implemented inside
of the widget library. If the newly requested widget will be used in multiple ap-
plications, its implementation can still be refactored to be included in the widget
library despite any time constraints. However, LazyLayouts are not directly com-
patible with old Views, which potentially want to be reused during the migration
process. Nevertheless, Compose’s developers created an API which handles the
reusing aspect of Views inside of LazyLayouts by declaring two recall functions
one for when the View will be reused and one for when it leaves the composi-
tion. The need for this interoperability API is way less overhead than needed
when implementing a RecyclerView, therefore LazyLayouts should be preferred
over the RecyclerView, considering the other benefits it entails (‘Using Views in
Compose’, 2023).

26

5. Design and implementation

5.7 ConstraintLayout

Context

When migrating UI layouts, one might find a lot of ConstraintLayouts, that have
gained popularity in traditional Android development. This is because the View
system has performance issues with nested hierarchies (‘Performance and view
hierarchies’, 2023). Therefore a flat view hierarchy is preferred. Using Constraint-
Layout promotes such flat hierarchies by positioning Views based on their relative
position to other Views to which they are constrained. However, with Jetpack
Compose, Google has addressed the performance issues associated with nested
hierarchies, stating in their developerguide (2023) that "Since Compose avoids
multiple measurements, you can nest as deeply as you want without affecting
performance."

Decision

When migrating it may be tempting to keep the structure of the Constraint-
Layout. If desired this is possible since Google offers a ConstraintLayout that
behaves quite similarly to the XML version, giving every component that is to
be constraint an ID, which can be referenced in a set of constraints, thereby con-
straining the components to each other. However it is desirable to make use of
the standard nesting layouts provided by Compose, meaning Row, Column and
Box.

Consequences

Creating ConstraintLayouts in XML is a comparatively simple task because the
Drag’n’Drop style editor makes it easy to constrain different Views to each other
with the click of a button. But, not using ConstraintLayout can result in smaller
Composables because ConstraintLayouts often lay out many components. As
with using Row, Column and Box, you can strategically partition the current
area, to create more structured UI code. In traditional Android development,
LinearLayouts often lead to nested hierarchies. In Compose, this is also the
case, but Compose does not have any issues with those. Also, they feel more
like Compose, as ConstraintLayout reminds one of XML, where IDs have to be
assigned. It is also harder to imagine what a layout might look like given on a
potentially large number of constraints. Nested linear and box layouts are easier
to visualize in the mind.

27

5. Design and implementation

5.8 BlockingState

Context

A common use case for automotive software is to limit user interaction in a car
based on the current state of the vehicle. This can be achieved through the use of
BlockingState, also known as CarUxRestrictions. For instance, if the car is mov-
ing at a particular speed, playing videos may be restricted (‘CarUxRestrictions’,
2023). To obtain the current BlockingState, an Observer must be supplied to the
Android’s native CarUxRestrictionManager.

Decision

The BlockingState is often accessed from various points within the Composable
tree. To address this, the proposed solution is implementing a Composition-
Local that can be accessed from anywhere to provide the BlockingState. The
implementation of this CompositionLocal is stated in the following listing.

1 @Composable
2 fun CarUxRestr ic t ions (content : @Composable () −> Unit) {
3 val context = LocalContext . cur r ent
4 var carUxRestr ict ionsManager = remember (context) {
5 Car . createCar (context)
6 . getCarManager (Car .CAR_UX_RESTRICTION_SERVICE)
7 as CarUxRestrict ionsManager
8 }
9 var r e s t r i c t i o n s

10 by remember { mutableStateOf (UX_RESTRICTIONS_BASELINE) }
11
12 LaunchedEffect (carUxRestr ict ionsManager) {
13 carUxRestr ict ionsManager . r e g i s t e r L i s t e n e r {
14 r e s t r i c t i o n s = i t . a c t i v eR e s t r i c t i o n s
15 }
16 }
17
18 Composit ionLocalProvider (
19 Lo c a lRe s t r i c t i o n s prov ide s r e s t r i c t i o n s
20) {
21 content ()
22 }
23 }
24
25 val Loca lRe s t r i c t i o n s
26 = stat i cCompos i t ionLoca lOf { UX_RESTRICTIONS_BASELINE }

Listing 5.9: Implementation of a CarUxRestrictions CompositionLocal

28

5. Design and implementation

If an action becomes disabled due to the BlockingState, it is common to display a
disclaimer text. To make this functionality reusable, a custom Box that displays
the content based on the current BlockingState, as seen in the listing below, is
an effective option.

1 @Composable
2 fun BlockableBox (
3 b lockedSta te s : Int ,
4 mod i f i e r : Mod i f i e r = Modi f ier ,
5 content : @Composable () −> Unit
6) {
7 Box(mod i f i e r = mod i f i e r . f i l lMaxS i z e ())
8 i f (b lockedState s and Loca lCarUxRestr i c t ions . cur r ent != 0) {
9 Block ingDisc la imer ()

10 } else {
11 content ()
12 }
13 }

Listing 5.10: Implementation of a BlockableBox

Consequences

Using a CompositionLocal provides a concise mean of declaring a value that is
accessible throughout the composition. This technique is employed for the Block-
ingState, which is utilized extensively throughout the application. Furthermore,
only one observer needs subscribe to the UxCarRestrictionManager. This entails
an increase in performance in contrast to adding a new subscription each time
the BlockingState is required. The providers implementation conforms to the
principle of a single source of truth. This ensures that the value is accessed only
once, guaranteeing consistency throughout the entire application. Consequently,
the software becomes more robust and easier to maintain. Implementing a com-
mon BlockableBox that shows a fixed declaimer leads to an easy use of Blocking-
State and ensures a consistent look throughout the entire range of applications.
It should be noted that this type of provider can provide any value depending on
the system context or configuration, such as current speed, fuel type, UI-mode,
or selected gear by changing the manager subscribed on.

5.9 Selector styles

Context

Another use case is the necessity of incorporating dynamic styles, which rely
on the current state of the Composable. In traditional Android development

29

5. Design and implementation

this functionality is achieved through the use of a selector, which determines
the appropriate color or drawable based on the View’s states, including enabled,
disabled, pressed, focused, or checked.

Decision

To create a streamlined implementation for this use case, an enum class that
defines the various states a Composable can assume should be implemented.
Additionally, an interface called DynamicStyle is created, that includes the func-
tionality required to provide the appropriate style based on the current state.
Individual style classes can then implement this interface. This architecture of
classes is visualized in the following class diagram .

Figure 5.2: UML-diagram for DynamicStyle (drawn with draw.io)

1 @Composable
2 val MyButton(w: WidgetState) {
3 val s t y l e = remember {
4 ButtonStyle (width = 100 . dp , he ight = 100 . dp ,
5 textCo lo r = Color .WHITE, background = Color .GREEN)}
6 Button (s t y l e = s t y l e .dynamic(w))
7 }

Listing 5.11: A sample of using DynamicStyle

30

https://www.drawio.com/

5. Design and implementation

Consequences

To ensure consistency throughout the entire code base, it is recommended to have
an interface for dynamic styles with a uniform implementation. Additionally,
creating top classes for different style categories such as ButtonStyle, TextStyle,
or ImageStyle can provide default implementations for dynamic styles. This
allows for easy reuse of the default behavior, while also serving as an example for
usage.

5.10 Testing

In the world of Android automotive software development, thorough testing plays
a vital role in guaranteeing the functionality and security of the application. Com-
pared to typical mobile applications, automotive software necessitates a greater
degree of accuracy because of safety regulations governing in-car systems. Effect-
ive testing not only helps identify bugs, but also enhances the user experience by
preventing crashes, improving performance, and ensuring seamless interactions
with vehicle functionalities.

Traditionally, Android tests were created by inflating XML layouts into Views
that could be tested, but this method made testing these Views cumbersome.
However, thanks to Jetpack Compose, the testing process has been significantly
improved. The first enhancement is not actually in the testing process itself,
but in the way the Compose code is written. By using a declarative approach,
the UI’s appearance is now based on its state. Consequently, tests can be easily
written to validate the UI based on specific states and scenarios in order to
improve the comprehensibility of tests. Additionally, Jetpack Compose includes
the incremental build of Composables, allowing every Composable within the
hierarchy to be tested. This type of detailed testing not only produces smaller,
more understandable tests, but also increases test coverage, resulting in greater
confidence in the application’s behavior.

The tests are akin to the usual Android tests and are fully interoperable, allow-
ing for the testing of Views within Composables and vice versa. Nonetheless, one
contrast is that UI-components cannot be referenced by ID, as is frequent in con-
ventional Android tests. This is due to the fact that Composables do not possess
an ID. Composable nodes should be identified using their content description,
text, or hierarchical position within the composable tree. Another option is to
assign a test tag to the Composables. However, this approach adds additional
code to the production code for testing, which is generally not desirable.

31

5. Design and implementation

32

6 Evaluation

6.1 Requirement satisfaction

6.1.1 Requirements

Continuous migration

The gathered requirements in this thesis can all be met with the availability of
numerous interoperability APIs. The combination of traditional UI development
and Jetpack Compose allows for seamless integration at any level, thus enabling
continuous migration.

Reduction of boilerplate code

One major inconvenience within the View system is the use of dynamic lists,
which now can be implemented with greater flexibility and reduced boilerplate
code. It is difficult to quantify exactly how many Lines of Code (LOC)s can be
saved without completing the migration, due to overhead in interoperability code
and reusable code that may be implemented but not used to its full potential.
For the most part, there is a noticeable decline of at least 25%. This decrease is
significant and becomes even more apparent when implementing features for mul-
tiple OEMs or multiple screen sizes. The increased ability to extract design and
style classes also aids in eliminating code duplication. Usually only a few dozen
flavor-specific LOCs need to be added, whereas with traditional XML layouts
the entire layout had to be duplicated and slightly modified. Additionally, when
implementing UI features in Compose, typically only one single file needs to be
created, as opposed to the View system where usually an XML file and a new or
extended Fragment are typically needed. Overall, the trend in Compose code is
leading to a substantial decrease in redundant code through concise declarations.

Clean architecture and separation of concerns

The ability to create highly reusable and well-organized UI code not only enhances
separation of concerns but also promotes clean architecture. In the proposed im-

33

6. Evaluation

plementations in chapter 5 a consistent focus on these goals was placed, creating
scalable and clean solutions.

Improvement of testability of UI code

The ability and encouragement to implement hierarchical, smaller and reusable UI
components leads to an improved testability. A clean architecture and separation
of concerns will also enhance code testability.

Feature usage

The debate over whether Jetpack Compose is more feature-rich than the tradi-
tional framework is ongoing. Although Jetpack Compose offers useful features
such as Previews, LiveEdit, and code completion, as well as type safety, it lacks
some useful features like a Drag’n’Drop editor. With that being said, Jetpack
Compose does offer interoperability support for the old framework, allowing for
the utilization of the best of both worlds if desired.

6.1.2 Quality goals

Performance

It is difficult to determine the superior framework based on performance alone.
While Jetpack Compose can boast with improved startup time and navigation,
XML tends to have better rendering performance for screen scrolling. Neverthe-
less, Jetpack Compose’s performance is continually increasing and may ultimately
surpass that of XML in the future (Zaed & Caesar, 2023). When beginning the
migration process, expect a minor increase in the size of the APK due to ad-
ditional libraries needing inclusion. These include both Compose libraries and
possibly multiple versions of the widget library for compatibility. Nevertheless,
the build APK’s size is predicted to significantly decrease once the migration is
completed. The effect of Compose on the application’s build time behaves quite
similar by increasing slightly when Jetpack Compose is first introduced into the
project but is expected to noticeably decrease (‘Compare Compose and View
performance’, 2023).

Interoperability

As previously discussed, Compose provides a high level of interoperability, with
different APIs to integrate Compose into the traditional Android View system
and vice versa.

34

6. Evaluation

Transferability

The proposed implementation were created for generic use cases uncoupled from
a specific application making them transferable and a context is given to know
when the given solution is applicable.

Visual identity

Compose enables developers to create a visually identical twin to an XML-based
layout. In cases where a specific View may not exist in Compose, an interoper-
ability API allows integration of the old Android View into the Composable for
a matching appearance.

6.1.3 Stakeholders

Customer

The expectation for no decrease in developer productivity is not feasible and
unrealistic. A migration process may take time and ultimately result in decreased
development speed. However, an increase in development speed can be expected
after migration, which will compensate for the temporary decrease.

Software developers

Providing clear documentation for specific architectural decisions and planning
the migration ahead of time will lead to a streamlined and efficient migration pro-
cess, resulting in a well-designed codebase. The increased possibilities developers
have when writing Compose code will enhance their experience reinforced by
reducing the need for XML code, which is often disliked by developers.

Team lead

As mentioned earlier, the overall productivity of the team may decrease during
the migration because the migration takes time. However, Jetpack Compose
introduces a new technology that could increase developer motivation. In ad-
dition, Jetpack Compose is a much-discussed topic in the Android development
community, and adopting it could potentially attract more candidates to your
company.

Test engineers and quality Assurance

Using Compose reduces redundant code and generates more reusable elements,
thereby enhancing overall testability. This leads to increased test coverage, im-
proving the quality and robustness of the codebase.

35

6. Evaluation

User

The ability to create visual twins of the traditional Views and no significant drop
in performance makes the migration invisible to the user.

6.2 Disadvantages of migrating to Compose

Employee training

Jetpack Compose represents a paradigm shift in UI development with its declar-
ative approach, in contrast to the imperative nature of XML layouts. Developers
trained in XML and Views need to invest time and effort in learning Compose’s
syntax, concepts, and best practices. This process may slow down development
speed initially, but it is necessary for a successful migration.

Programming knowledge

Another issue with Jetpack Compose is that it requires UI developers to pos-
sess certain programming skills and knowledge to write UI code. This stands in
contrast to the relatively easier task of creating layout files using XML, which
can be done even by a non-experienced programmer due to its lower complex-
ity. The effect is accentuated by the design tab when editing XML layouts.
The Drag’n’Drop style editor facilitates easy layout creation without requiring
code, accommodating a non-programmer audience. Nevertheless, modern UI-
developers should possess sufficient programming knowledge to overcome this
concern. Notably, Google’s introduction of databinding already eliminated the
division between XML and programming domains.

New technology

One disadvantage of Jetpack Compose is its relative youth compared to the more
established View framework, which has been dominant since its release in 2008.
Compose was released less than a decade ago, meaning community support is
currently smaller in comparison. Additionally, given Compose’s ongoing devel-
opment, new features and APIs are regularly being published. This could result
in instability problems and errors that may still exist within the compose code
base, potentially causing crashes or undesirable UX.

36

6. Evaluation

6.3 Migration strategies

6.3.1 Ad hoc migration

In all cases, pre-planning the migration process is essential to prevent redundant
work and the creation of a low-quality architecture and implementation. There-
fore, it is crucial to define precisely when and what to migrate. An ad hoc migra-
tion that replaces the current application’s View layer in its entirety may reduce
work to maintain interoperability with older parts of the code base. Moreover,
it might result in a cleaner implementation since the entire user interface can be
rebuilt. This approach may also decrease the risk of attempting to replace each
old UI element with an equivalent Composable compared to a migration done in
numerous small stages. However, in many cases, migrating an extensive applic-
ation all at once is not a practicable task. This is because it would necessitate
a large number of individuals to perform refactoring on a significant portion of
the codebase simultaneously, resulting in several potential merge conflicts. Ad-
ditionally, depending on the application’s size, this process could put a hold on
feature development and bug fixing for weeks or possibly even months.

6.3.2 Incremental migration

Where to start?

A more feasible strategy would be to utilize available interoperability APIs and
undertake the migration incrementally. Before beginning, establish some con-
ventions, such as creating common interfaces for styling or determining whether
resources should remain in XML files or be migrated to Kotlin files. Implementa-
tion of resources, styling or common interfaces lie within the widget library, hence
this subproject is a good point to start the migration process. Once this is done,
the application’s migration can commence.

Bottom-up migration

A bottom-up approach is often the most efficient method of migration. When
done correctly, it minimizes the need for interoperability, which can be a labor-
ious process. This approach involves starting from smaller widgets or features
positioned at the bottom of the UI tree, which are typically easier to migrate
due to their smaller size. That way, developers can broaden their knowledge on
composing without the need to transfer the design of entire screens, which can
pose a significant challenge to migrate.

37

6. Evaluation

Fragments

For the initial phase of migration, it is advisable to halt at the Fragment level
due to some functionality that may be linked to the Fragments. Fragments have
their own lifecycle, which includes callback functions that are triggered on life-
cycle events, such as onStart(), onStop(), onResume(), or onDestroy(). These
functions are occasionally utilized to initiate events to the ViewModel. Nonethe-
less, Composables lack such a lifecycle. They are either part of the composition
or not. Therefore, it is necessary to handle these events differently by creating
state variables that hold the value indicating whether the composition is cur-
rently displayed or not, which can then trigger events upon change. Additionally,
Jetpack Navigation often utilizes Fragments, making it more challenging to mix
Fragments and Composables at that level. If all Fragments have been migrated,
meaning that they only consist of a top-level Composable, then the Fragments
can be easily omitted. The Jetpack Navigation can be transformed into Compose
Navigation, which behaves similarly.

What to migrate next?

Deciding which components to migrate next can be approached in two ways.
The first involves a more in-the-moment planning approach, where developers
can select a part of the UI to migrate if there are no higher priorities to attend
to at the moment. Alternatively, the confrontation approach entails migrating
those features that are to be affected by a current change request or bug fix. If
new UI widgets are added during the migration process, it is advisable to use
Compose for optimal efficiency and to avoid duplicate feature implementation.
In such cases, interoperability APIs might need to be used more extensively than
in strictly incremental migration, but it eliminates the need for complete feature
implementation repetition.

38

7 Conclusions

This thesis addressed various aspects to consider when migrating an Android
automotive application to Jetpack Compose. It has become apparent that pre-
paring a strategy for a large-scale migration is crucial and the process should not
be done impulsively. Nonetheless, Jetpack Compose presents an opportunity to
enhance not only the application’s quality but also its performance and develop-
ment time. Many automotive use cases that have been addressed using conven-
tional UI development can also be realized through Jetpack Compose. However,
migrating to this new framework requires significant time and resources for em-
ployee training and code refactoring. However, discussing possible solutions or
initiating the migration process represents a positive step forward. As the say-
ing goes, "Rome wasn’t built in a day" and this migration cannot be completed
quickly or hastily. A large-scale migration provides an ideal chance to reconsider
the architecture and structure of apps for enhancement purposes. In conclusion,
although migration is time-consuming, its benefits make it worthwhile. Therefore
I can highly recommend migrating any application that is still in development to
Jetpack Compose.

Further research on the direct effects of fully migrating a significant automotive
application would be intriguing. It would be interesting to observe the app’s
performance, as well as the actual APK size and total LOCs. Another area
that requires further investigation is the resources required to maintain the code
base. Jetpack Compose guarantees exceptional reusability and maintainability
as a result of its tidy code structure.

Since Jetpack Compose is still under development, we can all look forward to the
new features and innovations that Google may introduce in the future.

39

7. Conclusions

40

Appendices

41

A Recommended resources to learn Jetpack Com-
pose

• Google’s Jetpack Compose Pathways: https://developer.android.com/courses/
jetpack-compose/course

• Phillip Lackner’s Crash Course: https://youtu.be/6_wK_Ud8--0?si=D5XtCLIrn8bS0uQf

• "Android UI Development with Jetpack Compose" by Thomas Künneth

43

https://developer.android.com/courses/jetpack-compose/course
https://developer.android.com/courses/jetpack-compose/course
https://youtu.be/6_wK_Ud8--0?si=D5XtCLIrn8bS0uQf

44

References

Afridi, K. (2023). Declarative vs. imperative ui frameworks: Understanding the
key differences. https://medium.com/@afridi.khondakar/declarative-vs-
imperative-ui-frameworks-understanding-the-key-differences-7ad2922855ff.
(accessed: 29.10.2023 20:42)

Android’s kotlin-first approach. (2023). https://developer.android.com/kotlin/
first (accessed: 22.10.2023 15:33)

Banes, C. (2021). Slotting in with compose ui. https ://chrisbanes .me/posts/
slotting-in-with-compose-ui/ (accessed: 22.10.2023 15:11)

Caruxrestrictions. (2023). https://developer.android.com/reference/android/
car/drivingstate/CarUxRestrictions (accessed: 29.10.2023 22:24)

Castillo, J. (2022). Stateful vs stateless composables. https://newsletter.jorgecastillo.
dev/p/stateful-vs-stateless-composables (accessed: 30.10.2023 13:01

Castillo, J. R. (2022). Building custom themes in jetpack compose. https : / /
betterprogramming.pub/jetpack-compose-custom-themes-b1836877981d.
(accessed: 22.10.2023 16:28)

Chugh, A. (2022). Android mvvm design pattern. https ://www.digitalocean.
com / community / tutorials / android - mvvm - design - pattern. (accessed:
22.10.2023 18:10)

Compare compose and view performance. (2023). https://developer.android.com/
jetpack/compose/migrate/ compare - performance (accessed: 22.10.2023
17:49)

developerguide. (2023). Compose layout basics. https://developer.android.com/
jetpack/compose/layouts/basics (accessed: 23.10.2023 10:46)

How new infotainment will shape the future customer experience. (2021). https://
cariad.technology/de/en/news/stories/infotainment-customer-experience.
html. (accessed: 22.10.2023 15:56)

IcePanel. (2023). Architecture decision records (adrs). https://icepanel.medium.
com/architecture-decision-records-adrs-5c66888d8723. (accessed: 22.10.2023
18:16)

Iterative code development. (2023). https : / /developer . android . com/ jetpack/
compose/tooling/iterative-development (accessed: 22.10.2023 18:00)

45

https://medium.com/@afridi.khondakar/declarative-vs-imperative-ui-frameworks-understanding-the-key-differences-7ad2922855ff
https://medium.com/@afridi.khondakar/declarative-vs-imperative-ui-frameworks-understanding-the-key-differences-7ad2922855ff
https://developer.android.com/kotlin/first
https://developer.android.com/kotlin/first
https://chrisbanes.me/posts/slotting-in-with-compose-ui/
https://chrisbanes.me/posts/slotting-in-with-compose-ui/
https://developer.android.com/reference/android/car/drivingstate/CarUxRestrictions
https://developer.android.com/reference/android/car/drivingstate/CarUxRestrictions
https://newsletter.jorgecastillo.dev/p/stateful-vs-stateless-composables
https://newsletter.jorgecastillo.dev/p/stateful-vs-stateless-composables
https://betterprogramming.pub/jetpack-compose-custom-themes-b1836877981d
https://betterprogramming.pub/jetpack-compose-custom-themes-b1836877981d
https://www.digitalocean.com/community/tutorials/android-mvvm-design-pattern
https://www.digitalocean.com/community/tutorials/android-mvvm-design-pattern
https://developer.android.com/jetpack/compose/migrate/compare-performance
https://developer.android.com/jetpack/compose/migrate/compare-performance
https://developer.android.com/jetpack/compose/layouts/basics
https://developer.android.com/jetpack/compose/layouts/basics
https://cariad.technology/de/en/news/stories/infotainment-customer-experience.html
https://cariad.technology/de/en/news/stories/infotainment-customer-experience.html
https://cariad.technology/de/en/news/stories/infotainment-customer-experience.html
https://icepanel.medium.com/architecture-decision-records-adrs-5c66888d8723
https://icepanel.medium.com/architecture-decision-records-adrs-5c66888d8723
https://developer.android.com/jetpack/compose/tooling/iterative-development
https://developer.android.com/jetpack/compose/tooling/iterative-development

References

Kotlinlang. (2023). Kotlin for android. https ://kotlinlang.org/docs/android-
overview.html (accessed: 22.10.2023 15:33)

Lists and grids. (2023). https://developer.android.com/jetpack/compose/lists
(accessed: 29.10.2023 21:50)

Locally scoped data with compositionlocal. (2023). https : //developer . android .
com/jetpack/compose/compositionlocal (accessed: 22.10.2023 16:30)

Naeem, M. (2023). Android gradle (build types, product flavors, build variants,
source sets). https://medium.com/@naeem0313/android-gradle-build-
types-product-flavors-build-variants-source-sets-4c9631e6fb30. (accessed:
22.10.2023 18:02)

Performance and view hierarchies. (2023). https://developer.android.com/topic/
performance/rendering/optimizing-view-hierarchies (accessed: 23.10.2023
10:39)

Preview your ui with composable previews. (2023). https://developer.android.
com/jetpack/compose/tooling/previews (accessed: 22.10.2023 17:59)

Slot-based layouts. (2023). https ://developer .android.com/jetpack/compose/
layouts/basics#slot-based-layouts (accessed: 29.10.2023 21:32)

Software-defined vehicles – a forthcoming industrial evolution. (2021). Deloitte.
https://www2.deloitte.com/cn/en/pages/consumer-business/articles/
software-defined-cars-industrial-revolution-on-the-arrow.html. (accessed:
22.10.2023 15:52)

State and jetpack compose. (2023). https : //developer . android . com/ jetpack/
compose/state (accessed: 22.10.2023 16:20)

Thinking in compose. (2023). https://developer.android.com/jetpack/compose/
mental-model (accessed: 22.10.2023 16:20)

Using views in compose. (2023). https : / / developer . android . com / jetpack /
compose / migrate / interoperability - apis / views - in - compose (accessed:
26.10.2023 18:18)

Varon, A. (2022). Declarative ui — what, how, and why? https://medium.com/
israeli - tech - radar / declarative - ui - what - how - and - why - 13e092a7516f.
(accessed: 22.10.2023 16:04)

Zaed, N., & Caesar, E. (2023). Ui performance comparison of jetpack compose
and xml in native android applications.

46

https://kotlinlang.org/docs/android-overview.html
https://kotlinlang.org/docs/android-overview.html
https://developer.android.com/jetpack/compose/lists
https://developer.android.com/jetpack/compose/compositionlocal
https://developer.android.com/jetpack/compose/compositionlocal
https://medium.com/@naeem0313/android-gradle-build-types-product-flavors-build-variants-source-sets-4c9631e6fb30
https://medium.com/@naeem0313/android-gradle-build-types-product-flavors-build-variants-source-sets-4c9631e6fb30
https://developer.android.com/topic/performance/rendering/optimizing-view-hierarchies
https://developer.android.com/topic/performance/rendering/optimizing-view-hierarchies
https://developer.android.com/jetpack/compose/tooling/previews
https://developer.android.com/jetpack/compose/tooling/previews
https://developer.android.com/jetpack/compose/layouts/basics#slot-based-layouts
https://developer.android.com/jetpack/compose/layouts/basics#slot-based-layouts
https://www2.deloitte.com/cn/en/pages/consumer-business/articles/software-defined-cars-industrial-revolution-on-the-arrow.html
https://www2.deloitte.com/cn/en/pages/consumer-business/articles/software-defined-cars-industrial-revolution-on-the-arrow.html
https://developer.android.com/jetpack/compose/state
https://developer.android.com/jetpack/compose/state
https://developer.android.com/jetpack/compose/mental-model
https://developer.android.com/jetpack/compose/mental-model
https://developer.android.com/jetpack/compose/migrate/interoperability-apis/views-in-compose
https://developer.android.com/jetpack/compose/migrate/interoperability-apis/views-in-compose
https://medium.com/israeli-tech-radar/declarative-ui-what-how-and-why-13e092a7516f
https://medium.com/israeli-tech-radar/declarative-ui-what-how-and-why-13e092a7516f

	Introduction
	Literature review
	Jetpack Compose
	Migration motivation
	Challenges with XML and Views
	Advantages of Jetpack Compose
	Preview and LiveEdit

	Architecture Decision Records
	Arc42

	Requirements
	Requirements overview
	Quality goals
	Stakeholder

	Architecture
	State hoisting
	Widget library and application
	The MVVM pattern
	Build flavors

	Design and implementation
	Value resources
	Interoperability
	Multiple screen sizes
	Multiple OEMs
	Slot API
	Lists
	ConstraintLayout
	BlockingState
	Selector styles
	Testing

	Evaluation
	Requirement satisfaction
	Requirements
	Quality goals
	Stakeholders

	Disadvantages of migrating to Compose
	Migration strategies
	Ad hoc migration
	Incremental migration

	Conclusions
	Appendices
	Recommended resources to learn Jetpack Compose

	References

