
1

Friedrich-Alexander-Universität Erlangen-Nürnberg

Technische Fakultät, Department Informatik

Nadine Laube

MASTER THESIS

URL2SBOM

Identification of Client-Side JavaScript Libraries

Submitted on 15.04.2024

Supervisor: Prof. Dr. Dirk Riehle, M.B.A.,

M.Sc. Martin Wagner

Professur für Open-Source-Software

Department Informatik, Technische Fakultät

Friedrich-Alexander University Erlangen-Nürnberg

2

3

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der

angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form

noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer

Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß

übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 15.04.2024

License

This work is licensed under the Creative Commons Attribution 4.0 International license

(CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 15.03.2024

https://creativecommons.org/licenses/by/4.0/

4

Abstract

This thesis concerns itself with the identification of third-party JavaScript libraries used on

websites. To identify the libraries and their version from client-side scripts, which are likely to

be slightly modified, minified, obfuscated or bundled together, a corpus of popular client-side

JavaScript libraries is constructed. The entry point for each library is determined by the jsDe-

livr API and the corresponding file is downloaded in minified form and if available also in

non-minified form. These files are then used as input for Siamese (Ragkhitwetsagul & Krinke,

2019), constructing multiple representations and indexing them for later queries in Elas-

ticSearch. Siamese performs static analysis comparing multiple representations of source code

to identify potential code clone pairs. A small proto-benchmark consisting of four popular Ja-

vaScript libraries in multiple transformed variations is created to evaluate Siamese’s suitabil-

ity for the task of code clone search on JavaScript libraries to match them to the corpus for

their identification. The testing on said benchmark revealed that Siamese is not able to process

all the supplied input data correctly, often failing quietly. The tool is also inherently suscepti-

ble to obfuscated code.

5

Contents

1 Introduction .. 8

1.1 Fundamentals ... 9

1.1.1 Basic Information about JavaScript .. 9

1.1.2 Minification, Obfuscation, Transpilation and Bundling ..11

1.1.3 Code Similarity and Code Clones .. 16

1.2 Motivation .. 17

1.3 Objective .. 20

1.4 Thesis Structure .. 20

2 Literature Review .. 21

3 Requirements ... 25

3.1 Functional Requirements ... 25

3.2 Non-Functional Requirements ... 26

4 Architecture ... 27

4.1 Research Conclusions .. 27

4.2 Siamese .. 29

4.3 Corpus Builder ... 31

5 Design and Implementation ... 34

5.1 Design .. 34

5.1.1 Assumptions ... 34

5.1.2 Resulting Design Choices ... 35

5.2 Implementation of the Corpus Builder ... 35

5.2.1 Download ... 36

5.2.2 Transform ... 36

5.2.3 Execute ... 37

5.3 Leveraging Siamese for Code Clone Identification ... 38

5.3.1 Configuration .. 38

5.3.2 Other Problems ... 39

5.4 Benchmark ... 39

5.4.1 General Considerations for Creating a Benchmark .. 39

5.4.2 Creating a JavaScript Benchmark for Code Clone Identification 40

6 Evaluation .. 43

6.1 Results on the Benchmark .. 43

6.2 Evaluation of Functional Requirements ... 46

6.3 Evaluation of Non-Functional Requirements ... 48

7 Conclusions .. 49

7.1 Conclusions .. 49

7.2 Threats to Validity .. 50

7.3 Future Work .. 51

References ... Fehler! Textmarke nicht definiert.

6

Index of Figures

Figure 1: Overview of the SpiderMonkey browser engine. From Guerra Lourenço, 2023 10

Figure 2: A short JavaScript program containing multiple comments 12

Figure 3: Minified (by terser-c -m v5.16.5) version of Figure 2, with only a single remaining

comment – manually re-added whitespace for human readability ... 13

Figure 4: Obfuscated (by javascript-obfuscator v4.0.0, enabled settings: transform object

keys, numbers to expressions, control flow flattening, hexadecimal identifier name generator,

seed=0) version of Figure 2 .. 14

Figure 5: AST for original code, as shown in Figure 2, parsed by acorn 15

Figure 6: AST for minified code, as shown in Figure 3, parsed by acorn 16

Figure 7: Combining the corpus builder and Siamese for clone search 27

Figure 8: Using Moss to compare two obfuscated variations of the same code snippet 28

Figure 9: Siamese architecture. From Ragkhitwetsagul & Krinke, 2019 29

Figure 10: The four representations generated by Siamese ... 30

Figure 11: UML of the download package ... 31

Figure 12: UML of the transform package ... 31

Figure 13: UML of the execute package .. 32

Figure 14: Simplified Sequence Diagram of the Corpus Builder Application 33

Index of Tables

Table 1: JavaScript libraries and transformations performed for the benchmark 42

Table 2: Siamese’s top 8 query result matrix ... 44

Table 3: Output for the query of obfuscated jquery@1.5.1 depending on Siamese and

ElasticSearch settings ... 45

Table 4: Siamese’s top 8 query results for jquery .. 46

Table 5: Siamese’s top 8 query results for whatwg-fetch ... 46

7

Abbreviations

ANTLR ANother Tool for Language Recognition

AST Abstract Syntax Tree

BCE Byte-Code Emitter

CDN Content Delivery Network

CLI Command-Line Interface

CSS Cascading Style Sheet

CSV Comma-Separated Values

DOM Document Object Model

GCF General Clone Format

GenAI Generative Artificial Intelligence

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

JIT Just-In-Time

LCS Longest Common Subsequence

LSH Locality Sensitive Hashing

NPM Node Package Manager

PDG Programm Dependency Graph

RCF Rich Clone Format

URI Uniform Resource Identifier

URL Uniform Resource Locator

SBOM Software Bill of Materials

SVG Scalable Vector Graphics

TF-IDF Term Frequency - Inverse Document Frequency

8

1 Introduction

Copying all or parts of a program is as natural to a programmer as breathing, and as

productive. It ought to be as free. – Richard M. Stallmann

It is common practice for software developers to use free open-source components like librar-

ies, or even to copy and paste pieces of source code instead of writing the code themselves to

avoid “reinventing the wheel” and to boost productivity. But with the use of open-source soft-

ware also comes the commitment to honour the license agreements that often come with obli-

gations, e.g., proper attribution or having to disclose source code, attached to the distribution

of software.

Rosen (2004, p. 42) provides a straightforward definition of software distribution:

[Software distribution] means selling or giving copies of software away to others. It also

may include such arrangements as incorporating software into consumer or industrial

products and selling those products to others. For some software, it may also include mak-

ing the software available across a network for execution by others.

A website is therefore a form of distribution of software, as the JavaScript code hosted on a

server is made available via network and then executed on the client’s computer by their

browser.

The practice of copy-paste-edit results in so-called code clones. While this can be done out of

expediency to meet deadlines, it can introduce technical debt as removing code clones later

leads to invasive refactoring of the system posing a risk to its stability. Godfrey and Kapser

(2021) argue that while the risks of code cloning include code bloat, increased bugginess,

creeping system fragility as well as inconsistent maintenance, not all code clones are harmful

but sometimes even beneficial to the long-term health of a software system. Based on the de-

velopers’ intentions they define three meta-groups:

▪ Forking: developing similar solutions within a new context, including having varia-

tions for different hardware, having co-existing versions for platform variations, or

branching, to work on experimental functionalities without endangering the stability

of the core system

▪ Templating: mostly caused by the underlying programming language and its lack of

abstraction mechanisms; including parameterized code, boilerplating, and program-

ming idioms but also repeated API calls following a protocol

▪ Customization: opportunistic reuse of existing code that solves a similar problem,

including clone-and-own practices or bug workarounds, when bugs are difficult to fix

at the source due to ownership issues or unacceptable exposure risk

While code clones created with the intention of forking or customization will naturally show

some divergence over time, code clones with the intent of templating often require to be

closely maintained together. The mentioned inconsistent maintenance could look like the fol-

lowing: Patches that became available in the original open-source component need to be man-

ually applied in the local copy, changes to duplicate code need to be made to all occurrences

in the codebase, and previously working functionalities might have been deprecated. If not

well documented and maintained, this can cause serious problems as problematic code, mali-

cious or vulnerable, might also flow into downstream projects. (Kim, Woo, Lee, & Oh, 2017;

Monden, Nakae, Kamiya, Sato, & Matsumoto, 2002)

Code clones that are not well-documented and properly attributed could also cause copyright

disputes (Wu, Manabe, Kanda, German, & Inoue, 2015). A recent example of disputes caused

by non-compliance with open source licenses includes the lengthy French legal battle between

9

the company Entr’Ouvert and the telecommunications provider Orange over Orange not hon-

ouring the GNU GPL v2 license agreements when using their software LASSO. After almost

13 years of litigation, the Court of Appeal of Paris ordered Orange to pay 650.000€ for their

violations of the GNU GPL license in February 2024. (Noisette, 2024)

1.1 Fundamentals

In this chapter, the necessary knowledge to follow this thesis will be provided. First, a brief

overview of JavaScript and its peculiarities will be provided, also the difficulties of working

with client-side code will be highlighted and the basic concepts of code similarity and code

clones will be explained.

1.1.1 Basic Information about JavaScript

ECMAScript, the core language specification of JavaScript, is standardised by the ECMA

TC39 Committee. After the publication of the third edition, ES3 in 2002, ECMAScript started

to become massively adopted as the programming language of the web being supported by es-

sentially all web browsers (ECMA TC39 Committee).

But not all JavaScript code is created equal, it makes a difference for which runtime it is writ-

ten, as there exist multiple inconsistencies on features additional to the ECMAScript specifi-

cations: Code written for Node.js (OpenJS Foundation) or Deno (Dahl, justjavac, & et al,

2018) will look very different from code written for browsers. While runtimes like Node.js

natively support CommonJS modules (using the require keyword), browsers only support

ECMAScript modules natively (using the import keyword) (Haverbeke, 2019). By employing

build tools such as webpack (Koppers, Ewald, Larkin, & Kluskens, 2016) scripts containing

CommonJS modules can be transformed to browser compatibility.

One of the oldest and most popular package managers in the JavaScript ecosystem is Node

Package Manager (NPM) (npm, Inc., 2009), which manages dependencies in the pack-

age.json file. This file is used during the development and build process, but it is not deployed

with the website. Similar documents are often produced by build tools such as webpack.

In this thesis, the focus will be on client-side JavaScript code executed by browsers.

According to the specification of HTML (WHATWG, 2024), there are multiple common ways

to add JavaScript code to websites:

JavaScript code can be added to websites via the script element, either as an inline script, with

the code embedded as text in the script element, or as an external script, specifying the loca-

tion of the source code. External scripts can either be hosted on the same (sub)domain as the

website or a completely different domain, e.g. Content Delivery Networks (CDN) or other

providers of third-party components. The resolution of import statements can also be specified

via an import map, defined once per document as an inline script element with its type attrib-

ute set to “importmap”. Event handlers, e.g., onclick, onmousemove etc, can also contain Ja-

vaScript code that will be invoked when the corresponding event is observed. Interestingly,

SVG elements can also contain both script tags and event handlers, and can therefore be used

to invoke the execution of JavaScript code. Since JavaScript can evaluate code from strings

using functions such as eval(), regular variables or string literals can also contain code.

The nodes and elements of a web page form a tree, called the Document Object Model

(DOM), which can be accessed and manipulated by the scripts included in the page.

The code executed for a given website can be browser-specific with different features acti-

vated to circumvent cross-browser incompatibilities or performance issues (Richards, Gal,

Eich, & Vitek, 2011).

10

Lauinger et al. (2017) found that inline scripts – including script elements, event handlers and

code evaluated from strings – were the most common script type. They also investigated ex-

ternal scripts, discovering that 91.7% of inspected sites included at least one script originating

from domains that were neither the sites' own domain nor subdomain.

Mitropoulos, Louridas, Salis, and Spinellis (2019) studied the evolution of client-side Java-

Script applications over a period of nine months, observing a high development pace as web-

sites seem to change constantly. Only 10% of inspected sites remained without changes

through the whole study period; The mean time scripts remained unchanged was reported at 7

days for inline scripts and only 5 days for external JavaScript files.

JavaScript is a dynamic, mostly untyped and asynchronous language, making it very difficult

to construct call graphs. Static analysis of JavaScript source code struggles to capture dy-

namic calls from non-trivial use of calls such as eval(), bind(), or apply(), while dynamic anal-

ysis’ completeness is highly dependent on the quality of test cases, as only executed code can

be captured by this approach. While multiple tools exist for creating static call graphs of Ja-

vaScript, the levels of effectiveness and coverage of newer ECMAScript standards vary. (An-

tal, Hegedűs, Herczeg, Lóki, & Ferenc, 2023)

Browsers rely on Just-In-Time (JIT) compilers to execute JavaScript code. In Figure 1 the

process of executing JavaScript is outlined for the JavaScript engine SpiderMonkey of the

Mozilla Firefox browser. The core structure – shared by other JavaScript engines – usually in-

cludes a compiler infrastructure with one or more JIT compilers, a virtual machine operating

JS values and includes a bytecode interpreter, as well as a runtime that provides a set of native

objects and functions (Guerra Lourenço, 2023).

Figure 1: Overview of the SpiderMonkey browser engine. From Guerra Lourenço, 2023

11

According to the SpiderMonkey documentation (Mozilla Foundation), the first step, as de-

picted in Figure 1, is parsing the JavaScript code to an Abstract Syntax Tree (AST):

An AST is a hierarchical representation of the structure and relationships of tokens – literals,

variables, operators etc. – in the code and can be obtained by lexing and parsing a source

code, typically performed by a compiler or interpreter (Princeton University Department of

Computer Science, 2022). Based on SpiderMonkey (Mozilla Foundation), a community Ja-

vaScript AST representation standard called ESTree (ESLint, Acorn, Babel, & Mozilla Foun-

dation) evolved.

The parser is then running a Byte-Code Emitter (BCE). By default, the parser runs in lazy

mode, avoiding generating the full AST or byte code for the source code that is being parsed,

saving CPU time and memory. Next, the baseline interpreter – a hybrid interpreter/JIT – inter-

prets one opcode at a time, speeds up executing the same opcode next time by employing in-

line caching. Then the baseline compiler uses the same inline cache mechanism and translates

the byte code to machine code, adding local optimizations. Lastly, WarpMonkey – formerly

IonMonkey – offers the highest level of optimization for frequently run scripts, transforming

the byte code and inline cache to a mid-level intermediate representation, applying optimiza-

tion strategies, e.g. pruning unused branches, and then transforming it into a low-level inter-

mediate representation for register allocation and code generation. (Mozilla Foundation)

1.1.2 Minification, Obfuscation, Transpilation and Bundling

To improve the performance of websites, tricks like reducing file size to minimize latency

when fetching data over a network or combining multiple files into one for fewer requests

over the network are employed: To reduce the size of JavaScript code minifier tools are ap-

plied, removing comments and whitespace, renaming bindings and even replacing code with

shorter equivalents. The concatenation of multiple files can be done manually or automati-

cally by bundlers. (Haverbeke, 2019)

According to Zammetti (2022), webpack (Koppers et al., 2016) has emerged as the de facto

standard bundler. It takes a given entry and project directory, constructs a dependency graph,

finds out what needs to be included and what can be dropped, concatenates the relevant files

and resolves conflicts, e.g. naming collisions. The resulting file, called a bundle, can also con-

tain more than just source code: It can also include other resources like CSS or images en-

coded as data URLs. Webpack has plenty more features, including transpilers for *.jsx or *.tsx

files, optimizing bundles by tree shaking, minification and compression, and abundantly more

can be added via plugins. The technique of tree shaking, i.e. the removal of unused code, was

further optimized by Vázquez, Bergel, Vidal, Díaz Pace, and Marcos (2019), removing unused

functions from JavaScript libraries and therefore reducing the bundle size.

Code obfuscation is a technique to hide the underlying logic of the application, making re-

verse engineering or attacking an application more difficult. It does not change the functional-

ity of the code but changes the representation to make it less readable or recognizable. Obfus-

cation techniques can transform the layout of the source code, the data, structures, i.e. meth-

ods or classes, or even the control flow. (Collberg, Thomborson, & Low, 1997; Huang et al.,

2023)

Skolka, Staicu, and Pradel (2019) conducted an empirical study on minified and obfuscated

code on the web and found that code transformations are very common, affecting 38% of all

scripts. The majority of affected scripts are minified and only 1% of all scripts are trans-

formed by advanced obfuscation techniques.

12

Nicolini, Hora, and Figueiredo (2024) investigated newly proposed JavaScript features and

their usage in software projects. They found that 73 of 1000 projects used at least one pro-

posed feature that was not yet part of the ECMAScript specification. They also found that

new features have an average of 86% compatibility across the most commonly used browsers,

creating a lack of compatibility for 14% of browsers that require additional tools to bridge the

gap: A tool that takes source code and generates syntactically equivalent source code in an-

other target language is called a transpiler. With the ECMAScript specification evolving faster

than some runtimes, JavaScript developers can use transpilers to utilize novel features while

remaining compatible with outdated runtimes, e.g. older browser versions, by converting their

code to an old JavaScript syntax. The most popular transpiler for JavaScript is Babel (McKen-

zie & et al, 2018), which transforms code to a version compatible with older browsers, typi-

cally resulting in code equivalent to ES5, and adds features missing in the target environment

via polyfills.

Multiple variations of JavaScript with additional features such as strict data typing or syntac-

tic sugar exist, e.g. TypeScript or CoffeeScript, that can easily be transpiled to regular Java-

Script code to make the development of web applications easier.

To illustrate what these modifications would look like on JavaScript code, Figure 2 contains

some regular JavaScript source code with an implementation of a function calculating Fibo-

nacci numbers, some unused code and four comments, three of them marked “@preserve”.

Figure 2: A short JavaScript program containing multiple comments

// possible license comment 1

function fib(number) {

 // @preserve possible license comment 2

 function mult(a, b) {

 return a * b;

 }

 function sum(a, b) {

 return a + b;

 }

 if (!Number.isInteger(number) || !(number >= 0)) {

 throw `fib: number is ${number}. ` +

 "positive integer expected.";

 }

 switch (number) {

 case 0:

 // @preserve possible license comment 3

 return number;

 break;

 case 1:

 // @preserve possible license comment 4

 return number;

 break;

 }

 return sum(fib(number-1), fib(number-2));

}

13

In Figure 3 the previously introduced source code has been minified using the tool terser

(Santos & Vicente, 2018) version 5.16.5 with the options compress and mangle activated. The

code is much shorter and would contain no linebreaks in its original form, they were manually

re-added for improved readability and easier comparison. The function mult, being unused

code, has been removed completely, case 0 is now implemented by fallthrough. The function

sum is now inlined, as it is only used in the return statement. The name of the variable number

was shortened to ‘e’ and even the concatenation of a string template and a string has been

evaluated to only one concatenated string. Also, the logical expression of the if-statement was

reformulated by applying De Morgan’s law to shorten the expression by 1 character.

Figure 3: Minified (by terser-c -m v5.16.5) version of Figure 2, with only a single remaining

comment – manually re-added whitespace for human readability

Terser’s documentation (Santos & Vicente, 2023) states that comments marked “@preserve”

or “@license” are usually not removed, unlike regular comments. But in this case, only one

comment remains, as the other comments, e.g. “possible license comment 2”, were attached to

unused code or code that was optimized away and therefore dropped.

To demonstrate the effects of obfuscation, the source code has been obfuscated using javas-

cript-obfuscator v4.0.0 (Kachalov, 2016) with the options for transforming object keys, and

numbers to expressions and control flow flattening enabled. The names of functions have pur-

posefully not been changed to make the comparison between the obfuscated source code in

Figure 4 and the original source code in Figure 2 easier. Unlike the minification performed in

Figure 3, the code obtained by obfuscation is longer than the original, it contains seven addi-

tional lines of code. While the definition of the function sum remains identical, everything

else has changed: A new variable wvX01n has been introduced. With the structure of a diction-

ary, five functions are defined as values to random-looking key strings. One of the functions is

a simple multiplication of both arguments, now called by the mult function instead of directly

implementing it. Similarly, new functions have been added to wrap the function calls in the

return statement. Numbers, such as the numbers in the return statement or the case clauses of

the switch/case, have been obfuscated by transforming them into a calculation of hexadecimal

numbers. Additionally, the whitespace in strings has also been changed to a hexadecimal en-

coding, replacing the space character with ‘\x20’. The – albeit light – obfuscation has resulted

in hardly legible source code.

function fib(e){

 if(!(Number.isInteger(e)&&e>=0))

 throw`fib: number is ${e}. positive integer expected.`;

 switch(e){

 case 0:

 case 1:

 // @preserve possible license comment 4

 return e

 }

 return i=fib(e-1),r=fib(e-2),i+r;var i,r

}

14

Figure 4: Obfuscated (by javascript-obfuscator v4.0.0, enabled settings: transform object

keys, numbers to expressions, control flow flattening, hexadecimal identifier name generator,

seed=0) version of Figure 2

The transformation of minifying code also affects the AST representation of the code, Figure

5 shows the AST generated for the regular code in Figure 2 while Figure 6 shows the AST af-

ter the minification.

function fib(number) {

 var wvXOln = {

 'WbfrN': function (x, y) {

 return x * y;

 },

 'GojsA': function (x, y) {

 return x >= y;

 },

 'WmSaF': function (callee, param1, param2) {

 return callee(param1, param2);

 },

 'Gbwui': function (callee, param1) {

 return callee(param1);

 },

 'pQQKm': function (x, y) {

 return x - y;

 }

 };

 function mult(a, b) {

 return wvXOln['WbfrN'](a, b);

 }

 function sum(a, b) {

 return a + b;

 }

 if (!Number['isInteger'](number) || !wvXOln['GojsA'](number, -0xe7a +

0x8cc + -0x2 * -0x2d7)) {

 throw 'fib:\x20number\x20is\x20' + number + '.\x20' +

'positive\x20integer\x20expected.';

 }

 switch (number) {

 case -0x123 * -0xa + -0x9e * 0x28 + 0xd52:

 return number;

 break;

 case -0x3b * -0xf + 0x2159 * -0x1 + -0x3 * -0x9f7:

 return number;

 break;

 }

 return wvXOln['WmSaF'](sum, wvXOln['Gbwui'](fib, wvXOln['pQQKm'](number, -

0x843 + -0x29 * 0xab + 0x23a7)), wvXOln['Gbwui'](fib, number - (0x26b0 + -0x1

* 0x180b + -0xea3 * 0x1)));

}

15

Figure 5: AST for original code, as shown in Figure 2, parsed by acorn

While the AST in Figure 5 seems rather large for such a short program, the AST for the

minified version in Figure 6 looks far less wide. At tree depth level three, the AST in Figure 5

has five nodes, two of which are the function declarations of sum and mult in the original

code. The AST in Figure 6 only has four nodes at depth level 3, omitting the two function

declaration nodes but adding a variable declaration node. The branch of the switch statement

remains in both variants but contains four nodes less in the minified version. For the subtree

of the return statement, the next node is no longer a call expression but a sequence expression,

spanning an additional six nodes. It is clear from comparing Figure 5 and Figure 6 that the

minification has fundamentally changed how the code is represented by AST.

16

Figure 6: AST for minified code, as shown in Figure 3, parsed by acorn

During obfuscation the technique of control flow flattening has been applied, resulting in

changes in the AST. The resulting AST is depicted in Appendix D, closer inspection is not re-

quired to see drastic changes: The amount of nodes is almost triple the number of nodes

shown in the AST of the original non-obfuscated source code, as displayed in Figure 5. For

more radical obfuscation techniques, i.e. dead code injection, the explosion of AST size is

even more drastic. Enabling dead code injection additionally to the previously performed ob-

fuscation techniques has resulted in an AST containing over 23 times the number of nodes of

the AST corresponding to the unmodified source code.

For further analysis purposes, a large AST can pose a problem because the relevance of its in-

dividual parts is unclear, e.g. dead code or framework boilerplate are of less interest than use-

case dependent custom features. One way to heuristically narrow down the code or AST is ex-

plained in Section 1.1.3 i.e. TF-IDF.

1.1.3 Code Similarity and Code Clones

Code similarity measurement employs many techniques that are known from text similarity

measurement techniques for natural languages, for a survey on text similarity measurement

and more in-depth information see J. Wang and Dong (2020).

Term Frequency - Inverse Document Frequency (TF-IDF) is a rather simple, but widely used

statistical method to evaluate how important or common a term is for a document relative to a

corpus. In the field of linguistics, a corpus is a written collection of naturally occurring

language text, characterizing the state or variety of a language (Sinclair, 1991), for the context

of this thesis the definition is extended to include published source code written in a

programming language, specifically JavaScript.

The product of the term frequency (TF)

𝑇𝐹 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑡𝑒𝑟𝑚 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

17

and the Inverse Document Frequency (IDF)

𝐼𝐷𝐹 = log (
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑐𝑜𝑟𝑝𝑢𝑠

 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑒𝑟𝑚 𝑖𝑛 𝑐𝑜𝑟𝑝𝑢𝑠
)

is the Term Frequency - Inverse Document Frequency

TF − IDF = 𝑇𝐹 ∗ 𝐼𝐷𝐹. (Karabiber)

Plainly, if the term occurs often in a document, but rarely in the corpus, it is considered

important to the document. If a term occurs often in a document but also very often in the

corpus, the term is unlikely to convey important information in the document, it could just be

a common word in the language of the corpus. TF-IDF is often used for automatic keyword

extraction. Amur et al. (2023) identify KeyBERT, YAKE and RAKE as current techniques for

keyword extraction, with both KeyBERT and YAKE utilizing TF-IDF.

Code clones can simply be defined as a fragment of source code that is identical or similar to

another piece of code by some similarity measure.

Code clones can be represented by four categories (Ain, Butt, Anwar, Azam, & Maqbool,

2019; Alfageh, Alhakami, Baz, Alanazi, & Alsubait, 2020; Runwal & Waghmare, 2017):

▪ Type-1: The code is identical except for small changes like whitespace, layout and

comments.

▪ Type-2: The structure of the code is almost identical, identifiers’ names, types, white

spaces, and comments may be modified.

▪ Type-3: For the so-called near-miss clones, the modifications of Type-2 apply, addi-

tionally parts of the code can be deleted, or new parts added.

▪ Type-4: For semantic clones or logical clones, the functionality is identical, but the

source code differs syntactically.

Relating the four categories of code clones to the typical code transformations performed on

client-side JavaScript source code, as presented in Section 1.1.2, some observations can be

made:

Type-1 and Type-2 clone types could occur by direct reuse of code, making small manual

changes to fit the context of the application better or by formatting performed by linters. If the

modifications are a bit heavier and include techniques such as tree shaking, they could also

result in Type-3 clones. Depending on the aggressiveness of a minifier, the resulting code

could be considered a Type-2 or Type-3 clone. Obfuscation, however, changes the syntax of

the source codes drastically, resulting in a Type-4 code clone.

1.2 Motivation

Software Bill of Materials (SBOM) became of strong interest when the US declared the Exec-

utive Order on Improving the Nation’s Cybersecurity (2021), stating that software vendors to

federal agencies are required to provide an SBOM.

An SBOM is a document providing comprehensive information on the components and de-

pendencies of a software project, this includes all components, their respective versions, the

license information of each component and the interdependencies of the components. Multi-

18

ple specifications of SBOMs coexist and vary in the additional information they contain. Cy-

cloneDX (OWASP Foundation) and SPDX (The Linux Foundation) are some of the most pop-

ular standards.

The main benefits of SBOM consumption identified by a worldwide survey of technology

professionals in 2021 (Hendrick, 2022) include the following:

▪ Security: Awareness of risky components and timely recognition of vulnerabilities

▪ Maintenance: Proactive recognition of components that reach the end of life

▪ Legal: Providing information about components relevant to reporting and compliance

requirements

▪ Risk management: providing information addressing compliance, financial and reputa-

tional risks for leveraging third-party software

The survey also found that 98% of surveyed organizations use open-source software.

There is already a variety of software available to generate SBOMs during a build process us-

ing artifacts etc, for popular tools see Sham (2023). The core task of creating an SBOM for a

software project is identifying the used components and their versions. Modern build pro-

cesses for web applications utilize package management tools, such as yarn (“yarn,” 2016) or

NPM (npm, Inc., 2009), that are configured via a file, i.e. package.json, containing all the in-

formation on dependencies and their versions. This file is not deployed with the website, so

this information is only privy to those with access to the development system, but not to the

visitors of a website.

An SBOM can be a useful tool to securly maintain an application, but studies conducted in the

last decade make harsh observations on the lack of website security and the negligent mainte-

nance of remote inclusions:

Nikiforakis et al. (2012) conducted a large-scale web crawl to investigate the evolution of

JavaScript inclusions over time. Developers have two options to include external libraries; by

downloading a copy of the library and uploading it to their own webserver or by instructing

the users’ browser to fetch it directly from the third-party server. Nikiforakis et al. regard the

former as a safer choice, as it gives the developer control over the website’s integrity and the

code that will be served to users. This comes with the drawback of higher maintenance costs,

the potentially degraded website performance, as users may be forced to download a script

that might have already been cached by their browser, and the potential ineffectiveness of it if

the library loads additional remotely hosted code at runtime. Their study revealed that 88.45%

of the crawled pages included at least one remote JavaScript library. They also tracked up-

dates to the top 1k included scripts and found that roughly ten percent of scripts were modi-

fied at least once in a one-week period, resulting in their recommendation of conducting a

weekly manual inspection of changes to the included scripts to increase the security of the

script-including website.

Lauinger et al. (2017) conducted a study on client-side JavaScript usage and the resulting se-

curity implications. They inspected the Alexa Top 75k as well as a random sample of 75k

websites and discovered that 37% of the inspected websites include at least one library with a

known vulnerability and nearly 10% include two or more different vulnerable versions. They

emphasize the need for more thorough approaches to dependency management, code mainte-

nance and third-party code inclusions on the web, as the inclusion of vulnerable libraries

poses a threat to the security of the website itself. While it is important to update vulnerable

libraries in a timely manner, they discovered that many sites rely on libraries that are no

longer maintained and that 61.4% of the inspected websites were at least one patch version

behind on at least one of their included libraries. Even more surprisingly they discovered that

it is not a rare phenomenon to include the same library – the same version or even multiple

19

different versions – in the same document, which can cause potentially non-deterministic be-

haviour with regard to vulnerabilities.

The top ten list of client-side security risks compiled by the OWASP Foundation (2021) in-

cluded the use of vulnerable and outdated JavaScript components, as well as JavaScript drift,

i.e. the undetected – possibly malicious – changes of script behaviour that could be introduced

by third-party libraries.

These findings raise the question of whether those negligently maintained websites are relying

on modern build and deployment processes, making use of the functionality provided by

package management tools, or if they run on legacy code – possibly too difficult or cumber-

some to reverse engineer and replicate for better maintenance. Software component analysis

could help, but analyzing client-side code is a complicated task: The ever-changing ECMAS-

cript specifications lead to tools requiring constant adaption or facing becoming obsolete

quickly. The browser environment is a difficult terrain, HTML, and therefore scripts, are split

into different iframes, and techniques like HOTDOL (Han, Ryu, Cha, & Choi, 2014) are ap-

plied to make it harder to gather the required information.

The dynamic nature of JavaScript, often dynamically loading more code at runtime, makes

static analysis, and even just the task of downloading the client-side code, complicated.

Nikiforakis et al. (2012) noted that for their survey they had no success gathering the scripts

by simply performing HTTP requests, they applied a more sophisticated approach of using a

headless browser pretending to be Mozilla Firefox 3.6. This allowed them to execute the in-

line JavaScript code and resolve remote script inclusions, at least the ones intended for

Mozilla Firefox’s browser.

After collecting the scripts of a website, the analysis of the source code is still quite a difficult

task: Client-side code is often modified to increase the performance of a website, resulting in

hardly human-readable code. Common transformations include minification, sometimes

called uglification, obfuscation or bundling of multiple source code files. Also, developers of-

ten make adjustments to their local copies of third-party components to better fit their needs

(Godfrey & Kapser, 2021). In addition to JavaScript, there is also WebAssembly (Rossberg,

2019), an increasingly popular compilation target for many languages that can run alongside

JavaScript in the browser.

Paired with fast-evolving libraries in a fragmented JavaScript ecosystem and the lack of tool

support for JavaScript, this makes the identification of third-party libraries on websites a very

difficult task.

But why would this be interesting, after the website has already been deployed?

Mistakes happen easily, especially when complex build processes, pipelines and tools, e.g.

webpack (Koppers et al., 2016), with a myriad of optimization settings, are involved. Unused

code could be optimized away, but also source code comments containing license infor-

mation, i.e. license identifiers or even full license texts, could – unknowingly – be removed

for optimization purposes, as demonstrated in Section 1.1.2 . Additional code could also be

introduced, which is especially dangerous when GenAI tools like AI website builders or AI

content creators are used, as this can cause accidental copyright implications (Eckhardt &

LL.M. Lüttel; Endres & Mühleis).

Creating an additional SBOM after the deployment of the websites could therefore help shed

light on misconfigured build/deployment processes as well as help remedy potential security

risks and license compliance infringements faster.

20

The creation of an SBOM for already deployed websites could also be immensely useful for

maintainers of legacy websites or web applications that do not have the dependency infor-

mation readily available.

1.3 Objective

This thesis aims to explore the feasibility of constructing an SBOM for the client-side scripts

of any given website. The difficulty in this lies in the nature of client-side scripts, which are

often modified, minified, obfuscated and collated by bundlers – so the focus of this thesis will

be on the identification of client-side JavaScript libraries and their versions.

To identify a suitable tool, research on clone detection tools and mechanisms for JavaScript

has been conducted and the tool Siamese (Ragkhitwetsagul & Krinke, 2019) has been selected

for closer examination. A corpus containing popular JavaScript libraries is created, which is

then transformed by leveraging the tool Siamese to create multiple representations to query

libraries to be identified against. A proto-benchmark is constructed of JavaScript libraries in

their original form and in modified forms, transformed by various modifications that are typi-

cally applied to client-side scripts. The suitability of Siamese to identify JavaScript libraries

using its code clone detection mechanism and its discriminative power is evaluated using the

proto-benchmark.

1.4 Thesis Structure

In the first section, 1.1 the necessary fundamental knowledge of JavaScript, client-side code

transformations, i.e. minification, obfuscation, transpilation and bundling, code similarity

measures and code clones are laid out. The motivation to identify the libraries and their ver-

sion, and ultimately build an SBOM, for client-side code has been stated in Section 1.2 The

objective is formulated in Section 1.3

In the next chapter, a thorough literature review on code similarity and identification of code

clones, specifically for JavaScript, will be conducted. In Chapter 3 the functional and non-

functional requirements for the aspired tool are defined.

In Chapter 4 the architecture for the chosen approach is outlined, followed by the explanation

of the design and implementation in Chapter 5 . First, the underlying assumptions are explic-

itly stated, and then the resulting design choices are discussed. Section 5.3 is focused on uti-

lizing the tool Siamese and the resulting difficulties, while Section 5.4 is focused on the crea-

tion of a benchmark for the evaluation of the tool.

In Chapter 6 the results achieved on the benchmark are presented and discussed, and then the

system is evaluated against the requirements previously formulated in Chapter 3 .

Lastly, in Chapter 7 the conclusion is presented, as well as possible threats to validity and an

outline of future work.

21

2 Literature Review

Measuring the similarity of source code comes in many application forms, such as plagiarism

detection, malware analysis, clone or reuse identification as well as code recommendations,

e.g. such as detection of code smells. For the purpose of this thesis, the domains of plagiarism

detection as well as code clone detection have been reviewed.

Interesting techniques for plagiarism detection in source code include Winnowing (Schleimer,

Wilkerson, & Aiken, 2003), which is used by the tool Moss (Aiken), and Extended-

Winnowing (Shrestha, Shakya, & Gautam, 2023). Both algorithms employ hashing and

fingerprinting to identify similar code segments. Winnowing is insensitive towards

whitespace, suppresses noise and is position independent, but what sets it apart is the

guarantee to detect at least one k-gram in any shared substring of 𝑙𝑒𝑛𝑔𝑡ℎ ≥ 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 +
𝑘 − 1 due to the selection of fingerprints.

Devore-McDonald and Berger (2020) explored evading plagiarism detectors by performing

semantics-preserving code modifications, proving that popular plagiarism tools like Moss

(Aiken), Sherlock (Pike & Loki), JPlag (Mahlpohl) and FETT (Nichols, Dewey, Emre, Chen,

& Hardekopf, 2019) are not robust against their modifications or code obfuscation.

The suitability of the technique Winnowing for clone search is further explored in Section 4.1

by analysing code clones using Moss.

Jensen, Madsen, and Møller (2011) propose a tool for static analysis of JavaScript (ES3) and

highlight the difficulties resulting from the dynamic nature of JavaScript as well as the

interactions with the HTML DOM and browser API. While some of their work on collecting

the scripts from websites might still be relevant, their tool for static analysis is far too

outdated for modern JavaScript source code.

Walker, Cerny, and Song (2020) conducted a survey on code clone detection tools in the

timeframe of 2009 until 2019. They found that the ratio of not publicly available/closed-

source tools vs open-source tools was nearly 4:1. They also found that while a wide range of

languages is covered by modern clone-detection tools, the by far most popular language for

clone-detection tools is Java, followed by C and C++. They speculate that this could be

caused by the lack of standardized benchmarks for other languages, as the most popular

benchmarks, Bellon’s (Bellon, Koschke, Antoniol, Krinke, & Merlo, 2007) and

BigCloneBench (Svajlenko, Islam, Keivanloo, Roy, & Mia, 2014), only cover C and Java.

Alfageh et al. (2020) conducted a literature review on code clone detection techniques for

JavaScript as well as language-independent research. As tools for JavaScript, they identify

JSCD (Cheung, Ryu, & Kim, 2016), DECKARD (Jiang, Misherghi, Su, & Glondu, 2007),

JSInspect (St. Jules, 2014) and JSCPD (Kucherenko, 2019).

DECKARD calculates a vector representation of the AST of source code and applies a

variation of Locality Sensitive Hashing (LSH) to cluster similar vectors, i.e. potential code

clones. JSCD is based on DECKARD with the main difference of using SAFE (Lee, Won, Jin,

Cho, & Ryu) to generate the AST for JavaScript code.

JSInspect is a node CLI tool supporting ES6, JSX and Flow. It generates an AST and

compares node types based on the AST, the threshold for similarity is to be set by the user.

JSCPD is a CLI tool using hashing and the Karp and Rabin algorithm (Karp & Rabin, 1987)

to identify copy-pasted code.

22

Zakeri-Nasrabadi, Parsa, Ramezani, Roy, and Ekhtiarzadeh (2023) conducted a

comprehensive literature review on source code similarity measurement techniques. They

categorize approaches as graph-based, tree-based, text-based, token-based, learning-based,

metric-based or hybrid techniques.

While they identify 80 software tools for code clone identification, the majority of tools do

not support JavaScript. The tools they identified with support for JavaScript include LICCA

(Vislavski, Rakic, Cardozo, & Budimac, 2018) and SourcererCC (Sajnani, Saini, Svajlenko,

Roy, & Lopes, 2015).

LICCA is a token-based and tree-based tool for cross-language clone detection. It creates a

tree-based intermediate representation of code and applies a variant of the Longest Common

Subsequence (LCS) algorithm for clone detection. LICCA is not robust against functionally

similar fragments with syntactically different representations, e.g. loops and recursion. Sadly

the repository is no longer accessible on GitHub, so it was not possible to confirm if this

limitation still applies or perform any experiments using the tool.

SourcererCC is a token-based near-miss clone detection tool, as a similarity measure it

calculates the overlap of source tokens among code blocks. By employing filtering heuristics

to reduce the number of necessary candidate comparisons it improves its execution time and

scalability. SourcererCC is not able to detect Type-4 clones.

Lončarević, Skendrović, Kovačević, and Groš (2023) offer a static detection approach for

JavaScript libraries based on comparing cryptographic hashes and identifiers. This approach

can only tolerate minimal modifications to the source code.

Pagon, Skendrovć, Kovačević, and Groš (2023) performed static code analysis to identify the

version of an unknown JavaScript library by first identifying the library and then comparing

the cryptographic hashes of different versions. De-minification was performed using

JSBeautifier (Einar & Newman) to adapt to minified libraries and reduce the problem to a

canonical form.

Ragkhitwetsagul and Krinke (2019) created the code clone search tool Siamese which creates

multiple code representations by extracting lexical information using an ANother Tool for

Language Recognition (ANTLR)-generated parser and lexer (Parr & et al) and an ANTLR

Grammar (Kiers & Kochurkin), extracting methods and tokens, then performing

normalization and n-gram generation.

Misu and Satter (2022) conducted an exploratory study using Siamese to analyse JavaScript

code snippets on StackOverflow and GitHub repositories for code clones.

Siamese is further examined in Chapter 4 and ultimately used as the tool for clone search in

this thesis.

Cao, Peng, Jiang, Falleri, and Blanc (2017) offer an approach to automatically browse web

applications and retrieve the client-side JavaScript libraries used by the website. Their goal

was to identify the libraries used on popular websites as a guide for developers faced with the

choice of which libraries and versions to use. They use a combination of three strategies to

identify libraries and their versions; they check if the code comments contain any library

name, they compare the source code against reference files and they execute a sensor

JavaScript plugin to dynamically identify the usage of libraries.

The tool Retire.js (Oftedal, 2018) is available as a node CLI scanner, grunt plugin, gulp task,

browser extension and burp extension. It is able to identify several JavaScript libraries with

known vulnerabilities and can generate an SBOM of the detected libraries. The libraries that

are enabled for detection need to be specified in a JSON file, containing information for each

library with regards to their known vulnerabilities as well as extractors, e.g. the regular

expressions to identify the filename and the name of the library in the file content, and an

23

optional mapping between hashes of file content and versions. Further investigation in Section

4.1 revealed that the construction and extension of this JSON file seem to be a manual and

rather tedious task and therefore the approach is deemed not suitable to be extended as a

general-purpose library identification tool.

Lauinger et al. (2017) performed a study on JavaScript library inclusions on the web, using

both a dynamic approach similar to Retire.js and a static approach by comparing file hashes.

They also experimented with a simple “name-in-URL” heuristic, which led to a large number

of false positives. Searching for the library name “jquery” resulted in plenty of files not

containing the code of the library but plugins for jquery. Other files contained additional code

or libraries and a large number of files could not be identified by this heuristic because the

files were renamed by developers.

X. Liu and Ziarek (2023) implemented PTDECTOR, a browser extension for Chrome to

identify front-end libraries on websites, even when they are bundled by packers like webpack

(Koppers et al., 2016). The tool uses JavaScript library files and their dependencies as input

and constructs a data structure called pTree, modelling the libraries' properties, which are then

compared by a weight-based tree-matching algorithm. The tool is not able to detect the

versions of libraries and is not able to work with ES6 modules that allow partial library

loading. The required dependency information is collected manually, making the database for

the tool in its current form hard to extend. Browser extensions with similar functionality

include Library Detector (Bredow & Michel, 2010), Library Sniffer (justjavac, 2020) and

Wappalyzer (Wappalyzer Pty Ltd, 2023a). The Wappalyzer browser extension is examined

more thoroughly in Section 4.1 but cannot be considered a candidate for the clone search tool

of this thesis because of its proprietary character.

Hammad, Babur, Basit, and van den Brand (2022) present Clone-Seeker, a code clone detec-

tor that allows search queries based on source code or natural language. For this approach, a

natural language document of metadata is generated for each code clone. The objective of al-

lowing natural language queries is the improvement of code search on websites like GitHub

or StackOverflow. Although the work of these authors cannot be directly used in this thesis, it

shows beautifully how vast the research field and its applications are, demonstrating that code

clones can exist across the programming language and natural language divide.

Huang et al. (2023) studied the effect of obfuscation on clone detection techniques on Java

code, specifically on code clones undergoing modification before obfuscation. They discuss

how traditional clone detection techniques and deep learning-based techniques are differently

affected by various types of obfuscation: On traditional techniques control flow obfuscation

seems to have the most severe impact, while this also impacts deep learning-based detectors it

does so less severely. Notably, deep learning-based detectors are quite affected by the simple

obfuscation technique of identifier replacement. While it is unclear how well their results

translate to clone detection on JavaScript source code, their work accentuates the need to

include obfuscated source code in a benchmark when testing a clone detection tool.

For languages with more tool support, i.e. Java, a variety of other approaches exist:

Analysing the bytecode for code clone identification (Akram, Mumtaz, & Luo, 2020; Wan,

Dong, Zhou, & Qian, 2023; D. Yu, Yang, Chen, & Chen, 2019), deep learning-based

approaches leveraging pre-trained models such as CodeBERT (Arshad, Abid, & Shamail,

2022; Feng et al., 2020) or approaches based on program dependency graphs (PDGs) (Zou,

Ban, Xue, & Xu, 2020).

Recently, more extensive benchmarks (Alam et al., 2023; Al-Omari, Roy, & Chen, 2020) for

clone detection have been created, sadly not including JavaScript code snippets.

24

T. Wang, Harman, Jia, and Krinke (2013) introduced EvaClone, a tool offering a search-based

solution to identifying the optimal configuration parameters, i.e.the confounding configura-

tion choice problem, of clone search tools, also enabling a more meaningful comparison of

tools. A byproduct of this work is the General Clone Format (GCF) and the GFC converter,

making it possible to convert the outputs of multiple clone search tools into the same format

for better evaluation. One of the formats convertible to GFC is the Rich Clone Format (RCF),

proposed by Harder and Göde (2011).

From the literature review performed in this chapter, it has become quite obvious that there is

a need to create a benchmark for clone detection on JavaScript source code. Unfortunately, it

has also become clear that tools built for JavaScript do not age well, as the continuing evolu-

tion of ECMAScript specifications quickly renders previously working tools useless rather

fast. Many tools seem to be no longer maintained, possibly because it would have been too

much work to adapt them to the newly added language features.

25

3 Requirements

At first, the scope of the thesis started out much wider, hence the name URL2SBOM, so the

requirements set out for this thesis evolved a lot during the process of writing the thesis.

In the following sections, the functional and non-functional requirements and their evolution

will be defined and explained. The requirements defined in this chapter will be used for evalu-

ation in Chapter 6

3.1 Functional Requirements

At first, the scope of the thesis included the functional requirements of identifying unknown

JavaScript libraries and their version from any given website and to create an SBOM.

This scope turned out to be too wide given the current state of research on clone search for Ja-

vaScript, the focus of the thesis changed towards investigating the feasibility of identifying an

unknown JavaScript library after transformations typical for websites have been performed.

The following functional requirements reflect this new narrowed-down scope:

Corpus:

F-01 The corpus should only contain JavaScript source code for client-side execution.

F-02 The corpus should contain a representative selection of JavaScript libraries.

F-03 The corpus should contain source code covering multiple ECMAScript versions.

F-04 The corpus should contain all relevant versions of a library.

Corpus Builder:

F-05 The corpus builder should allow for easy extension of the corpus.

Tool for Clone Search:

F-06 The selected tool needs to be able to process and index a representative corpus of

JavaScript client-side libraries.

F-07 The selected tool needs to produce human-readable output.

F-08 The selected tool needs to take a config file as input to enable flexible settings.

F-09 The selected tool needs to be able to detect code clones robustly on minified

source code.

F-10 The selected tool needs to be able to detect code clones robustly on obfuscated

source code.

F-11 The selected tool needs to be able to detect code clones robustly on bundled

source code.

26

F-12 The selected tool needs to be able to detect code clones robustly on transpiled

source code.

F-13 The selected tool needs to be able to detect code clones robustly on modified

source code.

JavaScript Benchmark:

F-14 The benchmark should contain JavaScript client-side source code in various

ECMAScript versions.

F-15 The benchmark should contain JavaScript client-side source code transpiled to

ES5.

F-16 The benchmark should contain modified JavaScript client-side source code.

F-17 The benchmark should contain minified JavaScript client-side source code.

F-18 The benchmark should contain obfuscated JavaScript client-side source code.

F-19 The benchmark should contain bundled JavaScript client-side source code.

3.2 Non-Functional Requirements

The aforementioned wider scope at the beginning of this thesis included the non-functional

requirements of writing the URL2SBOM tool in Java using the Spring Boot framework and

providing the application wrapped in a Docker container.

The following non-functional requirements reflect the current scope:

Corpus Builder:

NF-01 The corpus builder application should be written in Java.

NF-02 The corpus builder application should be efficient, using parallelization and avoid-

ing unnecessary network traffic.

Tool for Clone Search:

NF-03 The selected tool should be licensed under an open-source license.

27

4 Architecture

In this chapter, the research conclusions will be presented and based on said research conclu-

sions and further experimentations a suitable tool for clone search on JavaScript client-side

code will be identified. To anticipate the next section, the selected tool is Siamese. The choice

of the tool Siamese will be motivated and its architecture will be explained in Section 4.2 .

Figure 7: Combining the corpus builder and Siamese for clone search

As shown in Figure 7, the corpus builder – described in Section 4.3 – is created with the pur-

pose of downloading JavaScript client-side code that can be used as input for indexing by Sia-

mese. Executing Siamese for indexing creates a searchable ElasticSearch index which then

can be used to execute queries with Siamese to identify unknown libraries. ElasticSearch is a

distributed RESTful search and analytics engine, suitable for analysis of large datasets and

full-text search (Bannon & et al, 2010).

4.1 Research Conclusions

The literature review, see Chapter 2 , indicates the need for a benchmark for clone detection

on JavaScript source code. Unfortunately, tools built for JavaScript do not age well, as the

continual evolution of ECMAScript specifications quickly renders previously working tools

useless. In many cases, tools are no longer maintained, possibly due to the amount of work

needed to adapt them to new language features. For the purpose of this thesis, three different

approaches found in the literature were investigated.

The first approach was utilizing winnowing (Schleimer et al., 2003), as is done by the soft-

ware similarity detection tool Moss (Aiken). To investigate this approach, the required ac-

count was obtained and Moss itself was used to compare a small sample set of files. The out-

put of Moss comparing two obfuscated variations of the code disclosed in Figure 2 is shown

in Figure 8. Even though the functionality of the obfuscated code has not changed, the syntac-

tical representation looks quite different, making it a Type-4 code clone. Moss was only able

to identify 2% of the heavily obfuscated code and 19% of the lightly obfuscated code as po-

tential code clones. Comparing the source code of jquery@3.7.1 with its minified version led

to only 12% of the non-minified and 20% of the minified code being recognized as a potential

code clone. Moss offers some insight into its matching by providing the lines of code that it

identified as similar, sadly this does not translate well for code without line breaks, i.e. code

that was minified or heavily obfuscated. For other seemingly different libraries, such as leth-

argy@1.0.2 and locomotive-scroll@3.0.0, Moss found that 80% of lines in lethargy@1.0.2 are

candidates for code clones. This shows that transformation techniques like minification and

obfuscation lead to lower Moss scores than randomly paired libraries, making setting a sensi-

ble threshold, that accounts for both transformed and regular source code, impossible.

28

The idea of following this approach and implementing winnowing was therefore discarded, as

it turned out not to be robust enough against source code minification or obfuscation.

Figure 8: Using Moss to compare two obfuscated variations of the same code snippet

The second approach was utilizing a browser extension performing dynamic analysis of web-

sites and possibly extend their corpus as well as their detection technique. The tool Retire.js

(Oftedal, 2018) was investigated more thoroughly, revealing its corpus only contains infor-

mation on libraries and their versions with known vulnerabilities, less than 500 libraries in to-

tal. Extending the corpus to be able to recognize a wider variety of libraries seems to involve

a lot of manual work, as unique extractors have to be defined for each library. While investing

time and effort to extend this corpus is possible, the corpus would not stay relevant for long

and the associated cost of maintaining it is simply unreasonable.

This is not to say that it cannot be done, as the proprietary Wappalyzer browser extension

(Wappalyzer Pty Ltd, 2023a) offers similar functionality as Retire.js but comprises a

knowledge base spanning over 4k libraries and other web technologies. Their detection mech-

anisms are also more sophisticated, leveraging more information such as an implies-relation-

ship, where the detection of one library automatically implies the detection of another library

that is required for the detected library to function, e.g. jPlayer implies jQuery to be present.

They also use typical DOM elements to identify libraries, e.g., links, style elements, images,

iframes etc. containing a characteristic link to the library or technology. For some technolo-

gies, the headers of HTTP requests or cookies contain characteristic data used for identifica-

tion. For JavaScript libraries a command is dynamically injected and evaluated, prompting the

library and its version as output. Using multiple detection mechanisms and a large knowledge

base, the browser extension is able to analyze thousands of websites and gather data on the

technologies used. This seems to be Wappalyzer’s core business model, analyzing websites

and selling data in different representations, therefore the effort and cost of curating and main-

taining such a knowledge base might be profitable for them.

29

The third approach was using the tool Siamese. It was already used to conduct research suc-

cessfully on JavaScript (see Misu & Satter, 2022) and seemed rather adaptable, considering

ANTLR grammars are easily updated for newer versions and can be manually modified as

well. The maintenance of a code corpus seems very straightforward, as code can be added in-

crementally without effect on previously added code. This makes Siamese an interesting can-

didate for further investigation. The rather sophisticated architecture of Siamese will be dis-

cussed in Section 4.2 .

4.2 Siamese

In this section the mechanisms of the tool Siamese, as presented by Ragkhitwetsagul and

Krinke (2019), will be outlined.

Siamese takes a configuration file, as shown in Appendix A, as input, specifying the location

of source code, whether to index or search, the size of n-grams etc. The output of the search

command can be specified to be a CSV or a GCF file. As shown in Figure 10, the tool oper-

ates in two phases: Indexing and retrieval, with the indexing phase being rather long and com-

putationally expensive due to the amount of data being processed.

In the indexing phase, a corpus of source code will be consumed to generate a searchable code

index. In Figure 9, and throughout Ragkhitwetsagul and Krinke (2019), the corpus is referred

to as a Java corpus, but for the sake of this thesis, a JavaScript corpus is used instead. The first

step is to generate an AST, an intermediate representation of the source code, to extract meth-

ods and tokenize the code. Siamese leverages ANTLR to parse the code.

Figure 9: Siamese architecture. From Ragkhitwetsagul & Krinke, 2019

Next, the multi-representation module creates four code siblings, as depicted by Figure 10:

For text search the original source file is saved as a stream of tokens or 1-grams, for the iden-

tification of Type-1 clones a stream of n-grams is generated, for Type-2 clones a stream of

30

partially normalized n-grams is generated, where identifier, literal and type tokens are re-

placed by normalized tokens, and for Type-3 clones a stream of fully normalized tokens is

generated, where all tokens except Java punctuators are replaced. The four code siblings are

then combined into one document, saving the generated representations in different fields.

Then the document will be added to the inverted document index, realized by ElasticSearch,

via the incremental update module. These incremental updates allow users to add, delete or

edit code fragments in the index without having to reindex the corpus again.

Siamese distinguishes between files and methods as code fragments, it also claims to be resili-

ent to incomplete or uncompilable code fragments, just storing the source code at the file

level.

In the retrieval phase, a piece of source code to be queried will go through a similar process as

the indexing phase. After the extraction of methods and tokenization, the multi-representation

module performs the same transformation, creating a combined query containing the four rep-

resentations as subqueries.

To avoid the “long query problem” (Kumaran & Carvalho, 2009), a query reduction technique

is applied: The query is rewritten to only contain the rare tokens, by analyzing the tokens’

document frequency and comparing it to a threshold and discarding frequently occurring to-

kens. This narrows down the number of retrieved code snippets to highly relevant ones,

speeds up the search and avoids false positive results.

Since Siamese is built upon ElasticSearch’s infrastructure, the scoring and ranking function of

Apache Lucene, which is the backbone of ElasticSearch, is used. It represents code fragments

as k-dimensional weight vectors, where k equals the number of terms in the dictionary, apply-

ing a variation of TF-IDF with some additional term boosting weights as a weighting scheme.

A relevance score between the query vector and a document vector is calculated, and relevant

documents are ranked according to their scores. To account for the four different code sib-

lings, Siamese adds a custom scoring function, adding the scores of the siblings and returning

the top n results to the user.

Figure 10: The four representations generated by Siamese

31

4.3 Corpus Builder

The goal of the tool described here is to construct a corpus of JavaScript source code by

downloading information about available libraries, available versions and then the actual

source code from a code registry or CDN, ideally downloading in parallel and avoiding down-

loading files multiple times to avoid unnecessary network traffic.

The source code is split into three packages, the download package as shown in Figure 11, the

transform package shown in Figure 12 and the execute package shown in Figure 13. A simpli-

fied sequence diagram of the corpus builder application is displayed in Figure 14, the block

Download-Source-Code is only depicted once instead of three times for simplicity.

The download package contains the classes Reader, DownloadTrio and Downloader.

The class Reader contains functionality to read files from disk into either a String or a Set of

Strings. The class DownloadTrio defines a datatype for downloading files, containing the file-

name, the URI and a Future object of the file to be downloaded. The class Downloader imple-

ments Callable and is used to create instances of download tasks that are then passed to an Ex-

ecutorService for parallel execution.

Figure 11: UML of the download package

The package Transform contains the classes LibJSON and SaveToDisk. tthe latter provides the

functionality to save JSON files, the list of download jobs or source code to disk.

The class LibJSON provides the functionality to extract relevant information from down-

loaded JSON files, i.e. the available libraries’ names, the versions available for a library, and

the entry point for a library’s version. It also contains a version filter, removing versions not

suitable for production. The – experimental – functionality to extract non-minified source

code from a source map file is also contained in this class.

Figure 12: UML of the transform package

32

The package Execute contains the classes config and App, with config containing the user-

defined variables for execution, including the maximum number of threads, URLs specific to

the CDN, the destination where downloaded files should be saved, prefix for filenames etc.

The class App is the entry point of the actual execution, providing the main-method. The

process of downloading the source code from the CDN contains multiple steps:

First, downloading a list of available libraries from CDN by submitting a Downloader task to

an ExecutorService. Then utilize LibJSON to extract the library names from the downloaded

JSON file. For each library, the information of available versions needs to be downloaded by

submitting a Downloader task to the ExecutorService. For each downloaded file LibJSON is

used to extract the available versions and filter them.

A dictionary containing the libraries names and the available versions is then saved as a JSON

file, utilizing SaveToDisk. For each version of every library a file containing the URI to the

entry point of said version needs to be downloaded, yet again by submitting Downloader tasks

to the ExecutorService. The entry points are then extracted using the functionality provided

by LibJSON and the resulting jobs, downloading the content located at every extracted URI,

are then saved to disk using SaveToDisk. The downloading of source code is then started by

submitting the jobs as Downloader tasks to the ExecutorService.

Figure 13: UML of the execute package

The saving of the dictionary containing the version information and the list of download jobs

is not necessary for the actual process of downloading source code, it is done for practical

reasons: Debugging and resuming the rather lengthy process at a different time.

com cut

33

Figure 14: Simplified Sequence Diagram of the Corpus Builder Application

 tri v ibrar am s

 tri v ibrar rsions

 tri v rsions ntr points

 o n oa Sourc o

34

5 Design and Implementation

In this chapter, first, the design for the clone search architecture - including assumptions and

their implications for the design – will be outlined in Section 5.1 The implementation of the

corpus builder application will be discussed in Section 5.2 providing additional details to its

architecture outline in Section 4.3 In Section 5.3 the adoption of Siamese for clone search

will be detailed. The architecture of Siamese is sketched out in Section 4.2 for more details on

its implementations please refer to Ragkhitwetsagul and Krinke (2019). Lastly, Section 5.4 in-

vestigates the construction of a benchmark for JavaScript clone search, defines a small proto-

benchmark and provides the result achieved for it.

5.1 Design

While the architecture, as discussed in Chapter 4 is rather straightforward, the concrete design

is influenced by many assumptions based on personal observations due to the lack of reliable

sources and relevant literature on the ever-changing nature of the World Wide Web. The as-

sumptions have been as explicitly laid out as possible in Section 5.1.1 and the implications for

the design and implementation are discussed in Section 5.1.2

5.1.1 Assumptions

Assumption 1 The most popular sources for JavaScript code are GitHub and NPM, but

both contain also code not relevant to client-side scripting, as well as unmaintained, un-

popular and abandoned code.

Assumption 2 CDNs are a popular way to access packages available on NPM or GitHub,

so they provide a reasonable metric on how relevant and popular code is for client-side ex-

ecution.

Assumption 3 New versions of packages are published under the same name with a differ-

ent version number, following the semantic versioning convention of Major.Minor.Patch

(Preston-Werner).

Assumption 4 Versions of a package are similar and have some code in common.

Assumption 5 Versions of a package can be published under different licenses or may con-

tain security issues only in certain versions, i.e. identifying the version of a package is rel-

evant.

Assumption 6 Only versions that are suitable for production are used in production, i.e.

versions containing the identifiers like release candidate, alpha, beta, experimental, test,

prerelease etc. are not considered suitable for production – they are only considered if no

suitable version of this library exists.

Assumption 7 Websites do not always use the latest version of a library, even if patches are

available, i.e. outdated versions of libraries are still in use.

Assumption 8 Client-side code can be delivered in its original state, but also obfuscated,

minified, modified, as a bundle or only in parts.

Assumption 9 In JavaScript applications, the entry point file is the first file to be executed.

In this file, the application is typically set up, and configured, and may import other com-

ponents or modules. This makes the entry point file the most relevant file for analysis.

Assumption 10 The names of packages do not contain characters not suitable for URIs, e.g.

‘~’, ‘\’, ‘|’, etc. While this is enforced by NPM (npm, Inc., 2024), it shall be assumed to

35

also be enforced by other platforms and that CDNs do not change the names of hosted li-

braries.

5.1.2 Resulting Design Choices

Based on Assumption 1 and Assumption 2 it is a sensible choice to use a CDN as a source for

packages instead of obtaining them directly from either NPM or GitHub. For this thesis the

popular CDN jsDelivr will be used, providing the benefits of a convenient API, i.e. a ranking

of the most requested packages, providing an entry point for NPM packages and only serving

code relevant to client-side execution. This eliminates the burden of creating a classification

system to determine if source code is relevant for the browser environment, if it is popular or

used at all as well if it is functionally intact or possibly broken and abandoned.

Based on Assumption 3, Assumption 5 and Assumption 6 all relevant versions for a package

should be added to the corpus, i.e. excluding versions that do no not follow semantic version-

ing conventions and are deemed suitable for production. According to Assumption 7, this is

necessary as old versions tend to be still in use, even when newer versions are available, and

due to Assumption 5, their representation remains important in the corpus to not misidentify

the associated license or security concerns. By excluding versions based on Assumption 3 and

Assumption 6 the amount of data to be downloaded and stored is drastically minimized, as

many packages come with daily or nightly builds published as new versions.

Based on Assumption 9 it is only necessary to download the file provided by the CDN’s entry

point API, drastically reducing the amount of data to download, store and analyse as packages

often contain large amounts of directories and files, e.g. version 3.3.1 of the library date-fns

contains 4325 files.

Based on Assumption 8 both the minified and non-minified variants of a library should be

added to the corpus if available to make the corpus as representative as possible. The CDN

jsDelivr provides a minified file by default, if the file identified at the entry point is not al-

ready minified it will be minified on the fly using either Terser (Santos & Vicente, 2018) or

UglifyJS (Bazon, 2012). Having both minified and non-minified variants included in the cor-

pus also allows for analysis of source code components that are so characteristic they exist in

both variants, e.g. some Strings.

Based on both Assumption 8 and Assumption 4, using a tool for clone search robust to modifi-

cations, such as stated in Assumption 8, for identifying an unknown library and then applying

another technique to distinguish between the versions of said library seems sensible.

5.2 Implementation of the Corpus Builder

To construct a corpus, that unknown libraries on a given website can be compared against, the

corpus builder application downloads JavaScript code for client-side execution. It downloads

all versions that are hosted on NPM and considered suitable for production for the 1500 top-

ranked downloads of the CDN jsDelivr for the period of the year 2023, this results in a corpus

spanning 1378 libraries with multiple versions each.

36

5.2.1 Download

As briefly described in Section 4.3 the package download consists of the classes Downloader,

DownloadTrio and Reader.

Instances of the class Downloader are created as download tasks for parallel execution. Its

call method checks if the parent directory of the file path exists and if not, it creates all neces-

sary directories in the path. Then it checks if the file already exists and if found returns it di-

rectly to avoid downloading the same file twice. This also helps avoid inconsistencies be-

tween the corpus and the index created by Siamese in case Assumption 3 does not hold and

different variations of a source code file are published under the same package name and ver-

sion number. If the file does not exist yet, the file content is downloaded via Readable-

ByteChannel from the URL and then transferred into the file via FileOutputStream. The file

containing the downloaded content is then returned.

The class Reader consists of two similar static methods, offering the functionality to read

from the file specified by the argument file path. The method readFileToString reads the con-

tent of the file into a String by utilizing the java.nio.file.Files.readAllBytes function and then

casting the bytes to String. If an error occurs an error message and the stack trace will be

printed. The read content is returned. The method readFileToSet is identical except for using

java.nio.file.Files.readAllLines instead and adding the resulting List to a Set which is then re-

turned.

The class DownloadTrio defines a data structure for download tasks. The constructor sets the

class attributes filename specifying where the downloaded file should be stored, the URI of

the resource to be downloaded and the Future<File> download, used to track the completion

of the download task. The method blocking hasTerminated waits until the computation of the

Future object representing a file download has finished and returns true if the download was

successful, false otherwise.

5.2.2 Transform

The package transform consists of the classes LibJSON and SaveToDisk, as mentioned in Sec-

tion 4.3

The class LibJSON relies on the javax.json package to process and manipulate JSON objects,

offering five public static methods and the private helper function readFromDir which is used

by the other methods to retrieve the paths to all the *.json files in a given directory.

The method extractNames takes no arguments but relies on the target directory and file nam-

ing for the top x pages specified in the config, iterating through the specified amount of pages

and analyzing them for library names leveraging javax.json.JsonPointer. All detected library

names are appended to a List of Strings and returned.

The method extractVersions works similarly to extractNames, also leveraging ja-

vax.json.JsonPointer to detect available versions, adding them to a List of Strings. It does re-

quire some further processing of the inspected *.json files as their structure is more compli-

cated and it is necessary to iterate through JSON Arrays. Before the List of Strings containing

the detected versions is returned, they are passed to the method filterRelevantVersions, which

compiles and applies a Regular Expression pattern to filter out versions not suitable for pro-

duction, e.g. containing tags such as canary, release candidate etc. If a library has no versions

that are deemed suitable by the filter, the fallback option is to ignore the filter in this case.

37

The method extractEntrypoints checks the entry point files downloaded for each version of

every library if they contain an entry point for JavaScript or Typescript and returns the re-

trieved entry points as a List of String Arrays. Some files contain only entry points for CSS,

they will be ignored as they are not relevant to the corpus.

The method extractNonMinifiedFromMap takes a source map file and a target filename as ar-

guments. The source map file is in JSON format, and the non-minified source code – which is

saved as the value to the key “sourcesContent” – is extracted and saved to the target file using

SaveToDisk.saveCodeToFile.

The class SaveToDisk has three static methods for saving data to a specified file: The method

saveJsonToFile takes the target filename and a JSON object as input. First, it checks whether

the target file already exists, if not, all necessary non-existing directories in its path are cre-

ated. Then, using the java.nio.file.Files package, the data is written into the target file. If suc-

cessful, the boolean true is returned, otherwise false and the stack trace is printed.

The methods saveJobsToFile and saveCodeToFile are very similar to the previously described

method, except their second argument comes as a different data type and requires transfor-

mation before being written into the file: The method saveJobsToFile receives a list of string

arrays as data instead of a JSON object, which is transformed utilizing a map function on a

stream to first join the string arrays with “ -> “ as a delimiter and then joining all the resulting

strings with ‘\n’ as a delimiter. For the method saveCodeToFile the data comes in a List of

Strings which are joined on a ‘\n’ delimiter before being written to the file.

5.2.3 Execute

The class config is a config file realized as a *.java file instead of a properties, XML, or

YAML file. While this would not be a good choice for a production system, where rebuilding

the application to change the configuration would be unfavourable towards maintainability, it

was a sensible choice for the prototypical implementation made for this thesis. The benefits

include enabling programmatic generation or setting of values in the configurations as well as

using compile-time checking to ensure correct typing.

The class App is the core of the application, leveraging the classes and their functions of the

packages download and transform to build the corpus. Other than the main method, the class

consists of further nine methods

The method download_library_list downloads a specified number of files in parallel, each

containing the top 100 names of the libraries to be downloaded for the corpus. First, an in-

stance of java.util.concurrent.Executors.newFixedThreadPool for the number of threads as

defined in config is created. Followed by iterating over the number of pages to be down-

loaded, as defined in config, each time calling the helper-method download_top_lib_page to

submit a download task to the thread pool and obtaining a Future<File> object for each itera-

tion. After submitting the tasks, the thread pool is shut down and termination is awaited.

The method download_version_info operates in a very similar manner, creating a thread pool

and calling its helper method download_lib_versions to submit download tasks to it, shutting

down the thread pool and awaiting its termination. The difference is introduced by the input

argument: The method receives the library names as a List of Strings, then iterates over the

list to submit a task for each library name and manipulates the name to replace path separator

characters.

Similarly, the method retrieve_entrypoints takes a JSON object, containing the library names

as keys and their respective versions as values, as argument and creates a thread pool, submit-

ting download tasks for each version of every library contained in the JSON object. To deter-

38

mine the URI of the file to download, the method iterates in two nested loops through all en-

tries and constructs them by adding the library name and version to the String template de-

fined in config for every iteration.

The method download_all_code is a simple wrapper for calling download_minified_code,

download_nonminified_code and download_mapfile_code, storing their respective outputs in

variables and printing some output, letting the user know about the progress of the downloads.

The methods are relatively similar in structure, they each take a list of string arrays as input,

containing the downloads to be performed. They all create a thread pool, a list containing ob-

jects of type DownloadTrio, and two Lists of String Arrays; one for the failed and one for the

succeeded download jobs. They iterate through the list provided as input, submitting a down-

load task in each iteration, constructing an instance of the DownloadTrio type with the down-

load task and the obtained Future<File> object, and then adding it to the list of downloads to

check afterwards. After the thread pool is shut down and has terminated, the state of each

download task is checked by iterating through the List<DownloadTrio> calling the hasTermi-

nated method on every item, saving it to the list of succeeded tasks if true is returned or to the

list of failed tasks otherwise. Both lists are then saved, to a location specified in config, by

calling SaveToDisk.saveJobsToFile for debugging and auditing purposes.

The method download_minified_code follows exactly the previously described procedure, fi-

nally returning the list of succeeded jobs. As per the CDN jsDelivr API, the entry point always

indicates a minified library, so no guarantees on the existence of a non-minified version are

given. Therefore the method download_nonminified_code is called with the list of succeeded

download tasks that was returned by the method download_minified_code. Since some of the

minified source code files are generated by the CDN, the heuristic of removing the string

“.min” from the URI to retrieve the non-minified file has been somewhat successful. This

string manipulation is performed before passing the download task to the thread pool. Other

than download_minified_code, this method returns the list of failed tasks.

The failed download tasks of non-minified source code are then used as input for the method

download_mapfile_code, to try an alternative approach of retrieving the non-minified code: If

the minified version of the file was not generated by the CDN but by the developer, often

build tools were used, generating a source map file with the file ending “.map”. So if the non-

minified file was not present at the speculated URI, the method tries to retrieve the source

map from yet another speculative URI. If successful, the non-minified source code can then

be extracted from the file using LibJSON.extractNonMinifiedFromMap. Due to the non-uni-

form structure of code repositories, guessing the URI by some promising heuristic is not to be

avoided without downloading the complete repository. The latter still offers no assurance of

retrieving the non-minified source code, as some developers simply choose not to publish it.

5.3 Leveraging Siamese for Code Clone Identification

To identify possible code clones the tool Siamese is employed: Siamese receives source code

as well as a config file as input for indexing and queries. It then returns the results of a query

in the specified format, either CSV or GCF. The difficulties and the workarounds to configure

and use Siamese are discussed in the following sections.

5.3.1 Configuration

While the general setup for the use of Siamese is well documented, the config file needed to

be adjusted to be used with JavaScript. The config file is attached in Appendix A.

39

Specifically, the option recreateIndexIfExists caused some confusion: If set to false, no index

will be created for the indexing task. If set to true, an existing index will be overwritten; so

for large datasets requiring multiple indexing tasks, the option needs to be set to true for the

first task and then changed to false for the following tasks. Alternatively, an index could be

created manually, and the option should be set to false.

The option minCloneSize specifies the minimal clone size in lines. For a similar task as per-

formed by Misu and Satter (2022) a value of 10 was chosen, but for this value all minified

files consisting of only one line of code would be ignored. To account for minified files, often

only containing a single line of code, this value has to be set to one for queries.

5.3.2 Other Problems

Siamese, like many other Java applications, is very greedy when it comes to heap utilization.

With a steadily rising memory allocation and the crash of the application with the

java.lang.OutOfMemoryError exception being thrown, this could indicate a memory leak. To

circumvent this issue, the dataset for indexing has been split into smaller subsets and corre-

sponding indexing tasks.

Siamese relies on an ANTLR Grammar – generating a corresponding lexer and parser – to

perform lexical analysis, code that is not compatible with the grammar will cause Syntax Er-

rors to be thrown and the incompatible code will not be added to the index with multiple rep-

resentations.

The source code of Siamese contains a hard-coded relative path to the data folder of Elas-

ticSearch. If the data and logs of ElasticSearch are configured to be stored in another location

than the application itself, as I configured it on my setup, this path in src/main/java/crest/sia-

mese/Siamese.java line 1063 needs to be modified.

5.4 Benchmark

As already identified in Chapter 2 , there is a lack of benchmarks for code clone identification

in JavaScript source code. The considerations for the creation of a small benchmark will be

laid out in the following sections.

5.4.1 General Considerations for Creating a Benchmark

Benchmarks can increase transparency as they promote a collaborative, open, and public con-

duct of research. The creation of benchmarks can help advance the maturity of a scientific

community. (Sim, Easterbrook, & Holt, 2003)

Sim et al. (2003) identify seven properties of successful benchmarks:

▪ Accessibility: The benchmark needs to be easy to obtain and use.

▪ Affordability: The benefits of the benchmark must outweigh the cost of using the bench-

mark; hardware, human resources or other.

▪ Clarity: The specification of the benchmark must be clear, self-contained and as short as

possible.

▪ Relevance: The task defined by the benchmark must be representative of a reasonably ex-

pected problem.

40

▪ Solvability: The task should be achievable but non-trivial to gather enough data for com-

parison.

▪ Portability: The benchmark needs to be portable to different tools or techniques and

should not bias one technology in favour of another.

▪ Scalability: The tasks should scale to work with tools or techniques with different levels

of maturity.

Existing benchmarks for JavaScript, e.g. the no longer maintained) SunSpider benchmark

(WebKit) or the more comprehensive JetStream benchmark (Apple), tend to focus on measur-

ing the capabilities or performance of various JavaScript engines.

Richards et al. (2011) created the tool JSBench to automatically create such benchmarks for

comparing and tuning the performance of JavaScript interpreters and just-in-time compilers.

This tool manages to capture a program, including its dynamically generated components, and

replay it deterministically, allowing the creation of a benchmark from real-world applications.

Richards et al. argue that a framework for the automatic creation of a benchmark is especially

valuable for a rapidly evolving technology such as JavaScript web applications.

Derks, Strüber, and Berger (2023) created the framework vpbench to generate benchmarks for

so-called variant-rich software “by automatically adding, removing, and cloning features, mu-

tating implementation assets (e.g., code), and cloning variants” (Derks et al., 2023, p. 2).

This framework is created for Java but claims to be language independent and extendable for

another language by applying changes to the parser, providing a tool to check for successful

compilation, the feature transplantation process as well as the process of cloning features.

While this sounds like a promising approach, it would take a lot of time and effort to make

vpbench work for clone detection in JavaScript, making it not reasonably fit into the scope of

this thesis.

5.4.2 Creating a JavaScript Benchmark for Code Clone Identification

The most controversial decision in creating any benchmark is choosing which data and tasks

to include. The goal of this benchmark is to accurately represent client-side JavaScript code,

therefore the following criteria, as already superficially discussed in Chapter 3 should be

considered:

▪ Multiple ECMAScript versions should be represented with language constructs specific to

their version. This ensures that the clone search tool can deal with realistic input data.

▪ The benchmark should contain source code transpiled to ES5, as is typically done to en-

sure browser compatibility.

▪ Modifications should be applied to source code before transformations are applied, to em-

ulate copy, clone and edit behaviour of developers.

▪ The transformations on the source code should be performed by popular tools that would

be realistically used for websites:

o For minification, a popular choice of tool would be terser (Santos & Vicente,

2018),

o For obfuscation the tool javascript-obfuscator (Kachalov, 2016) could be used,

o For bundling the tool webpack (Koppers et al., 2016) is extremely popular,

o For transpilation the tool of choice is Babel (Nicolini et al., 2024).

41

Due to the time constraints of this thesis, it was not possible to develop a full-fledged bench-

mark. The developed proto-benchmark contains the data as listed in Table 1. Notably, no bun-

dles have been included due to the effort required to create a set of bundles representative of

the settings and optimization mechanisms offered by webpack as well as covering multiple

combinations of source files being collated by the tool, while auditing how much of the librar-

ies is really included in the resulting bundle, due to mechanisms such as tree shaking remov-

ing code that is not required.

The reasoning behind choosing these libraries is as follows:

The library jquery is included as it is one of the most popular libraries. Two versions, the ear-

liest and the latest version included in the corpus, are included in the set to see if the tool is

capable of discriminating between the two versions. Vuetify is included as it contains a variety

of ECMAScript language features, as shown in Appendix C. Typescript is a highly popular li-

brary which was included for its extraordinary length: Version 5.0.2 consists of 169788 lines

of code - including comments and whitespace – which makes it interesting to observe how it

will be affected by the transformations in contrast to the very small library whatwg-fetch,

which only spans 230 lines of code in version 0.5.0.

The results of the queries performed on this benchmark are presented and discussed in Section

6.1

42

Table 1: JavaScript libraries and transformations performed for the benchmark

Library Version Variant Tool Settings

jquery 1.5.1 original N/A N/A

original minified unknown unknown

minified terser v5.16.5 --keep-fnames --compress

--mangle

obfuscated javascript-ob-

fuscator v4.0.0

 preset = LOW

modified manually introducing syntax error

3.7.1 original N/A N/A

original minified unknown unknown

minified terser v5.16.5 -- compress --mangle --re-

name

obfuscated javascript-ob-

fuscator v4.0.0

preset = MEDIUM

vuetify 3.0.0 original N/A N/A

original minified unknown unknown

minified terser v5.16.5 --comments --compress

--mangle

obfuscated javascript-ob-

fuscator v4.0.0

preset = MEDIUM

transpiled to ~ES5 babel v7.20.7

(@babel/core

v7.20.12)

@babel/preset-env: targets:

browsers: ie<8

whatwg-

fetch

0.5.0 original N/A N/A

original minified UglifyJS

v3.1.10

unknown

minified terser v5.16.5 --compress --mangle

modified + minified terser v5.16.5 --compress --mangle

obfuscated javascript-ob-

fuscator v4.0.0

preset = HIGH

modified manually renaming variables,

whitespace changes

typescript 5.0.2 original N/A N/A

original minified Terser v5.15.1 unknown

minified terser v5.16.5 --keep-fnames --comments

--compress --mangle

43

6 Evaluation

In this chapter, the results obtained on the benchmark, as defined in Section 5.4.2 will be pre-

sented and discussed. Then, the corpus builder, and suitability of the clone search tool Sia-

mese and corpus will be evaluated against the requirements, functional and non-functional, as

defined in Chapter 3 Every requirement will be evaluated as either fulfilled, partially fulfilled

or not fulfilled.

6.1 su ts on th B nchmark

To process all the source code files in the benchmark, as described in Section 5.4.2 or Table 1,

they are first indexed by Siamese and then each queried. Using the exact same set of source

code files for indexing and querying provides a sanity check, even if a file can not be matched

with other variants of the same library, it should always be matched to its exact copy in the in-

dex, provided Siamese was able to process the source code file correctly. The indexing phase

was performed twice, once in method mode and once in file mode, storing data in two differ-

ent clusters. The indexing in method mode resulted in 7968 documents or 71.6 MB of data

stored in the ElasticSearch index, the file mode resulted in 23 documents or 28.1 MB of data

stored in the index. For each library in the benchmark, an individual query was performed,

generating a CSV file containing multiple lines, each line containing up to eight clone candi-

dates for a fragment of the queried code. The choice of configuring the threshold of top results

for queries to return is a result of the small size of the benchmark. A number too large relative

to the benchmark size of 23 files could result in all files being returned as a query result, di-

minishing the information gained by the query. A number much smaller than eight would re-

move the possibility of investigating how well Siamese can discriminate between different

versions of jquery or between different variants of whatwg-fetch while still intentionally al-

lowing some confusion with other libraries to be detected. This threshold should be set con-

sidering the size of the index the queries are performed on.

The ElasticSearch parameter indices.query.bool.max_clause_count has been set to 32000 in-

stead of the default value of 4096.

The query on the index created in file mode did not return any results, all generated output

CSV files were empty. Error output was only generated for some of the obfuscated files, i.e.

the obfuscated variants of jquery@1.5.1, jquery@3.7.1 and whatwg-fetch@0.5.0, indicating

that the serialization of the query failed due to too many clauses or the parameter indi-

ces.query.bool.max_clause_count being set too low.

The result of the query on the index created in method mode is represented as a matrix in Ta-

ble 2, showing every permutation of library variants if Siamese identified them as potential

code clones. All of the queries were also performed on the index created in file mode, but

none of the queries returned results.

The results in Table 2 are to be interpreted as follows:

▪ Yellow horizontal: The query for this library did not return any results and an error output

was printed.

▪ Dark grey horizontally striped: The query for this library did not return any results but no

error output was printed.

▪ Dark green fields: The query for this library returned the correct library and the identical

variant.

▪ Light green fields: The query for this library returned another variant of the correct library.

44

▪ Red fields, diagonally striped: The query identified other libraries as potential code

clones.

▪ Numbers: The number equals the number of occurrences of a library variant in the CSV

file containing the results. The numbers are not normalized, so they should only be com-

pared intra-row-wise.

Table 2: Siamese’s top 8 query result matrix

From Table 2 it can be observed that no queries for any variants of the libraries vuetify or

typescript returned any results, nor were they returned in any result of the other queries per-

formed. As no error output was generated for these files, neither in the indexing nor in the

query phase, without in-depth debugging of Siamese it can only be speculated where and why

the quiet failure occurred.

This behaviour can also be observed for some variants of other libraries, including the original

and the modified variants of jquery@1.5.1 as well as the obfuscated variant of jquery@3.7.1,

except the latter was once included in the result of the query for the original variant of

jquery@3.7.1.

45

 Siamese Setting

 query reduction no query reduction

ElasticSearch

Setting

max_clause_count = 32k Error Error

max_clause_count = 128k No Error / No Results No Error / No Results

Table 3: Output for the query of obfuscated jquery@1.5.1 depending on Siamese and

ElasticSearch settings

For the obfuscated variants of jquery@1.5.1 and whatwg-fetch@0.5.0 error output was gener-

ated by ElasticSearch, indicating a SearchParseException, i.e. that the serialization of the

query failed due to too many clauses or the parameter indices.query.bool.max_clause_count

being set too low, as observed for the index generated in file mode. A plausible origin for the

failure with error output happening during the query phase but not the indexing phase, as

marked by the yellow horizontal lines in Table 2, could be the query reduction, since the pro-

cessing of input data is identical during the indexing phase and query phase other than the

query reduction step. Looking into the generated SearchParseException revealed that the

cause is often a malformed query, raising the suspicion that Siamese’s query reduction module

is not able to handle obfuscated source code. To investigate this, queries on the obfuscated

variant of jquery@1.5.1 have been performed with the parameter indi-

ces.query.bool.max_clause_count first set to 32k and then 128k and both options with and

without query reduction enabled, see Table 3. While the use of the query reduction module

seems to have no impact on the outcome, the increase of the parameter indi-

ces.query.bool.max_clause_count to 128k resolved the error, but still, no results were returned

for the query. This has been performed on both the index generated in file mode and the index

generated in method mode, leading to the same results. Why the query did not at least match

itself as a clone pair, as one would anticipate, remains unclear.

The queries for the libraries jquery and whatwg-fetch produced some more conclusive results,

between jquery@3.7.1 and whatwg-fetch@0.5.0 some similarities were detected by Siamese.

To investigate these potential similarities, the original variants of both libraries were investi-

gated utilizing Moss (Aiken): Comparing them without specifying a language, a 3% similarity

was detected due to a code fragment where values were set for differently named attributes in

both source code files. The comparison with the language set to JavaScript did not detect any

significant similarities. To discuss the intra-library query results for both libraries Table 4 and

Table 5 only show the relevant subset of Table 2.

In Table 4 Siamese’s ability to discriminate between different variants of the library jquery is

displayed. The modified variant of version 1.5.1 contains syntax errors, no results for its

query were returned nor was it included as a possible clone pair in any other queries – possi-

bly because it could not be processed correctly by Siamese due to the syntax errors.

The behaviour for the original variant of version 1.5.1 is identical, but no rationale comes to

mind that would explain why the query did not pass the sanity check of at least identifying the

variant itself as a match when other variants of this library were able to be processed correctly

by Siamese and produced conclusive results. The original variant of version 3.7.1 is matched

with all variants except the original and modified variants of version 1.5.1, but most strongly

with itself. While this clearly identified the library, the minified variants of both versions are

equally represented, indicating Siamese might not be able to discriminate between two ver-

sions of the same library.

46

The queries for all minified variants of both versions each return all minified variants of both

versions and the original variant of version 3.7.1 as clone pairs. The query on minified vari-

ants of version 1.5.1 scored themselves the highest, and the variants of version 3.7.1 each con-

fuse themselves with the other minified variant – possibly due to similar minification settings.

As already mentioned, the obfuscated variants of both versions did not return any query re-

sults, but both were included in the query results of the original variant of version 3.7.1.

Analogue to Table 4, in Table 5 Siamese’s ability to discriminate between different variants of

the library whatwg-fetch is exhibited. The query on the original variant clearly identified the

original variant as a clone pair, as anticipated, and also matched with the other variants except

the heavily obfuscated variant. All three queries for minified variants, original minified, mini-

fied, and modified and then minified, each identified themselves as a possible clone pair but

were confused with the other minified variants. They also recognized some similarities with

the original and the modified variant. The query for the modified variant identified itself as a

clone pair and detected some similarity with the original variant, but no minified variants

were identified as potential clone pairs, creating an asymmetrical result matrix. No results but

error output was returned for the query on the obfuscated library, as previously discussed.

6.2 Evaluation of Functional Requirements

The functional requirements to be evaluated have been defined in Section 3.1

Corpus:

F-01 The requirement is partially fulfilled, the corpus does contain source code such as Com-

monJS modules that cannot be natively executed by browsers but is still relevant for client-

side execution.

F-02 The requirement is fulfilled, and the corpus is somewhat representative. The goal of

building a representative corpus is already built into the creation process, as the 2023 top

1500 packages requested from the CDN jsDelivr are inspected and downloaded. To assert that

this is indeed a representative sample, a comparison against the Wappalyzer top 100 JavaS-

cript libraries ranking for 2023 (Wappalyzer Pty Ltd, 2023b) is conducted, see Appendix B.

Table 4: Siamese’s top 8 query results for jquery
Table 5: Siamese’s top 8 query results for

whatwg-fetch

47

According to this comparison, 60 of the 100 libraries listed by Wappalyzer are also included

in the corpus, covering 84% of the market share of the top libraries identified by Wappalyzer.

Some of the libraries that were missing in the corpus are not hosted on NPM, e.g. Microsoft

Authenticator. The rankings of CDN jsDelivr and Wappalyzer also differ because of different

methodologies used when constructing the rankings: Wappalyzer ranks by the number of web-

sites the library was detected on using their browser extension, while jsDelivr ranks by the

number of requests they receive for a library. According to this comparison, the constructed

corpus seems to be representative of the 2023 webscape.

F-03 The requirement is fulfilled, the corpus contains source code covering multiple

ECMAScript versions. To assert that various ECMAScript versions are represented by the

corpus, a sample of newly introduced language features for recent ECMAScript versions has

been selected to indicate the presence of the corresponding version. The corpus has been ana-

lyzed for said features, some examples detected in the corpus are listed in Appendix C.

F-04 The requirement is partially fulfilled, the corpus contains all versions of a library availa-

ble on NPM, nevertheless, versions are removed from NPM from time to time.

Corpus Builder:

F-05 The requirement is fulfilled, the corpus builder does allow for easy extension of the cor-

pus by making small adjustments to config and downloading only library versions that are not

yet locally stored.

Tool for Clone Search:

F-06 The requirement is not fulfilled, Siamese is seemingly able to process and index a repre-

sentative corpus of JavaScript client-side libraries, not creating any output indicating other-

wise. The tool claimed to have successfully indexed the corpus as well as the benchmark sam-

ple, creating all four representations only for a subset of compatible files. The query phase

was not as tolerant towards non-compatible files, resulting in no code clones identified or er-

ror messages, revealing that the file representation was useless for any queries performed on

the benchmark.

F-07 The requirement is partially fulfilled, Siamese can produce somewhat human-readable

output: It offers GCF or CSV as output formats, unfortunately, GCF does not work for JavaS-

cript and the CSV is not as comprehensible without further postprocessing.

F-08 The requirement is partially fulfilled, Siamese takes a config file as input, but unfortu-

nately the flexibility in configuring ElasticSearch is very limited without editing hard-coded

paths in the Siamese source code.

F-09 The requirement is partially fulfilled, as Siamese is able to detect code clones on mini-

fied source code, provided it was able to successfully process the source code.

F-10 The requirement is not fulfilled, Siamese is not able to detect code clones robustly on

obfuscated source code. Queries on obfuscated source code resulted either in error output or

no query results being returned. Queries on non-obfuscated source code rarely identified the

corresponding obfuscated source code.

F-11 The requirement cannot be evaluated, due to F-19 not being fulfilled.

48

F-12 The requirement cannot be evaluated, Siamese was not able to detect code clones of the

transpiled source code file, as it was not able to process the source code file correctly.

F-13 The requirement is partially fulfilled, Siamese is able to detect code clones on modified

source code, provided the source code file can be processed successfully by Siamese, i.e. the

source code is not syntactically broken.

JavaScript Benchmark:

F-14 The requirement is fulfilled, the benchmark contains JavaScript client-side source code

in various ECMAScript versions.

F-15 The requirement is fulfilled, the benchmark contains the library vuetify@3.0.0 transpiled

to an equivalent of ES5, see Table 1.

F-16 The requirement is fulfilled, the benchmark contains manually modified JavaScript cli-

ent-side source code; one modified variation intentionally introducing syntax errors and one

syntactically sound modified variation, see Table 1.

F-17 The requirement is fulfilled, the benchmark contains minified JavaScript client-side

source code. The benchmark contains both the minified source code distributed by the CDN

as well as source code minified by terser (version 5.16.5) (Santos & Vicente, 2018) with dif-

ferent minification settings, see Table 1.

F-18 The requirement is fulfilled, the benchmark contains obfuscated JavaScript client-side

source code. The libraries jquery (versions 1.5.1 and 3.7.1), vuetify (version 3.0.0) and

whatwg-fetch (version 0.5.0) were obfuscated by the tool javascript-obfuscator (version 4.0.0)

(Kachalov, 2016) for the benchmark.

F-19 The requirement is not fulfilled, the benchmark does not contain any bundled JavaScript

client-side source code.

6.3 Evaluation of Non-Functional Requirements

The non-functional requirements to be evaluated have been defined in Section 3.1

Corpus Builder:

NF-01 The requirement is fulfilled; the corpus builder application is written in Java.

NF-02 The requirement is fulfilled, the corpus builder application efficiently downloads

packages in parallel and avoids unnecessary network traffic by avoiding duplicate downloads,

downloading only what is not yet stored on disk.

Tool for Clone Search:

NF-03 The requirement is fulfilled, Siamese is licensed under the GNU General Public

License (GPL-3.0) and the Apache 2.0 license.

49

7 Conclusions

In this chapter, the conclusions drawn from the literature review, as presented in Section 4.1

will be recapped and the insights gained from experimentation with Siamese will be exam-

ined. Possible threats to the validity of the experiments performed and conclusions drawn will

be discussed in Section 7.2 and finally, potential research directions and future work on this

topic will be outlined in Section 7.3 .

7.1 Conclusions

To recapitulate the findings of the literature research performed in Chapter 2 the identification

of JavaScript libraries and their version remains an active field of research. The domain of the

browser as well as the dynamic nature of JavaScript, paired with the continuously evolving

ECMAScript specification make it a difficult task and cause developed tools to become obso-

lete quickly. No popular benchmarks or frameworks for benchmark generation for code clone

detection in JavaScript source code have yet emerged.

Several techniques have been further investigated in section 4.1 and Siamese (Ragkhit-

wetsagul & Krinke, 2019) has been selected as the tool of choice for this thesis. A corpus

builder was implemented and used to construct a corpus containing all versions suitable for

production and hosted on NPM for the most popular JavaScript libraries via the CDN jsDe-

livr. Siamese was then used to index the corpus, creating a searchable ElasticSearch index

containing multiple representations of each library for clone detection. To evaluate Siamese’s

suitability for the identification of client-side JavaScript libraries, a small proto-benchmark

has been constructed in Section 5.4.2 and the results have been analysed in Section 6.1 .

While Siamese was the best choice of tools presented in Chapter 2 and has already been suc-

cessfully used to conduct a study on JavaScript code clones, the evaluation of the achieved re-

sults and the requirements, as defined in Chapter 3 and evaluated in Chapter 6 revealed that

Siamese is not an ideal choice for the identification of client-side JavaScript libraries.

Siamese did prove not to be very user-friendly, especially for indexing a large corpus; It re-

quired modifications to the source code to change hard-coded paths, and the application was

too memory intensive, requiring the indexing to be split into multiple smaller tasks to avoid

crashes caused by memory leaks. During the indexing phase some output was generated, indi-

cating that Siamese was struggling to process the syntax of modern libraries correctly, there-

fore defaulting to not creating any alternative representation for those libraries and just adding

them as a file to the index.

When trying to parse the code in the corpus the ANTLR grammar used by Siamese was not

sufficient, updating the grammar as well as ANTLR itself to a later version did not resolve the

issue, leading to the observation that JavaScript might not be representable by a context-free

grammar anymore. The current ECMAScript specification confirms the lexical grammar now

contains some context-sensitivity (ECMA TC39 Committee, 2024).

Experiments with the proto-benchmark in Section 6.1 revealed that none of the libraries in-

dexed in file mode could be successfully used to identify any potential code clones, making

part of the index generated on the corpus unusable. While Siamese generates some output, the

resulting behaviour is still far from explainable and the tool could be more verbose. The query

results are available in the formats CSV and GCF, although GCF is not supported for JavaS-

cript and the two variations of CSV formats could be improved in regards to interpretability

and legibility for humans.

50

The more successful queries, executed in Section 6.1 were able to pair minified and non-mini-

fed source code together but were not able to discriminate between different versions of one

library. Siamese was not able to reasonably process any obfuscated source code or syntacti-

cally broken source code included in the benchmark, emphasizing the need for more verbose

output and better explainability of results.

Considering the fast evolution of JavaScript, writing a new parser and lexer from scratch and

then maintaining them for new ECMAScript versions is not a sensible solution. It would be

more practical to rely on a browser engine to generate the AST, e.g., V8 or SpiderMonkey, as

they will continue being maintained to work for the latest ECMAScript specification. Accord-

ing to the ECMAScript compatibility table (Zaytsev, Pushkarev, & et al, 2023) both Mozilla

Firefox, using SpiderMonkey, and Google Chrome, using V8, cover 98% of ECMAScript fea-

tures at the time of writing.

Unfortunately, even with a modern, more flexible AST-based approach, Siamese would still

be inherently susceptible to misclassification due to obfuscation techniques that change the

structure of the AST, such as control flow flattening and dead code injection. Even if just a

small code fragment is obfuscated, it could contain inclusions that evade detection from static

analysis, rendering the analysis or SBOM of the whole website non-declarative. While static

analysis approaches can be outmaneuvered by obfuscation, researchers concerned with inter-

net security and privacy have come up with dynamic analysis techniques to monitor the be-

haviour of the obfuscated code, i.e. Ngan, Konkimalla, and Shafiq (2022) and Le, Fallace, and

Barlet-Ros (2017) investigated techniques to identify webtracking or fingerprinting hidden by

obfuscation.

To summarize, Siamese can identify client-side JavaScript libraries, but only to a very limited

extent and quiet failures of the tool undermine its explainability as well as credibility. It is

necessary to investigate alternative approaches that are able to accommodate modern

ECMAScript language features as well as code transformed by minification and obfuscation

tools.

7.2 Threats to Validity

To ensure factual accuracy, the assumptions based on personal observations made due to the

lack of reliable sources have been explicitly stated in Section 5.1.1 Any other assumptions

that were only implied and could threaten the integrity of the thesis are outlined below:

This thesis builds on the assumption of the correctness of information sources, specifically

that the CDN jsDelivr contains the version of a library that it claims.

This tool constructed for this thesis only adds library versions to the corpus that are still avail-

able on NPM due to the use of the jsDelivr API only listing those versions. From the gap be-

tween version numbers and the previous experimentations with different APIs (e.g. the

CDNJS API (Kirkman, Davis, Cowley, Sauleau, & Caslin, 2011)) it has become clear that de-

letion of specific library versions is not uncommon. Since deleting a version on NPM does not

mean this version will not be used by websites already in production, this might create a blind

spot in the corpus with regard to certain versions.

The statistics provided by the CDN jsDelivr measuring the popularity of JavaScript remote

inclusions might not be representative of their actual popularity, as they can only provide in-

formation on the usage of inclusions via the CDN jsDelivr, not other CDNs or inclusions

through local copies.

The statistics provided by Wappalyzer Pty Ltd (2023b) on the market share of JavaScript li-

braries on websites should be taken with a grain of salt: The methodology on how Wappalyzer

gathered the data is not publicly available and can only be obtained by closer inspection of

51

their browser extension. The analysis of the browser extension showed they perform both

static and dynamic analysis, as described in Section 4.1

The ranking of the top 15 pages of 2023 on jsDelivr as well as the corresponding libraries

were downloaded on 08.01.2024, this means library versions that were not available yet in

2023 could be included in the corpus. Some of the packages listed in the aforementioned top

15 pages did not contain any endpoints for JavaScript, e.g. only a CSS endpoint, and were

therefore dismissed.

When analyzing a small random sample of downloaded source code files, it became clear that

some entry point files consisted only of one or more dynamic inclusions. To use these files for

clone detection further steps are required to dynamically resolve the inclusions and obtain the

code like it would be executed by the browser. This could be achieved by extending the cor-

pus builder application.

Some libraries are nearly impossible to differentiate, as sometimes two different libraries

share a common ancestor, e.g. maplibre-gl-js is a community-driven fork of mapbox-gl-js,

which was previously licensed under a BSD-3-Clause license for versions 1.13 and earlier and

is now no longer under an open-source license (Mapbox, Inc., 2023; “maplibre-gl-js LI-

CENSE.txt,” 2023). While both libraries look very similar due to shared ancestry, their li-

censes are not, so a theoretical false identification of the library with high confidence – possi-

bly caused by only one of the libraries being represented in the corpus – could lead to a com-

pletely wrong attribution with possible legal consequences.

The configuration of Siamese was not necessarily optimal as no experiments have been con-

ducted to compare and optimize configuration settings for this thesis.

All statements made on JavaScript were correct to the best of my knowledge, based on recent

literature. The data collected and statements made on JavaScript could already be outdated by

the time of your reading, as JavaScript and JavaScript libraries evolve remarkably fast.

7.3 Future Work

Due to the time constraints of a master thesis and the vastness of the research field a lot of po-

tential research questions remain.

The identification of the corresponding version for a detected library has not yet been imple-

mented due to time constraints. Pagon et al. (2023) have introduced a static analysis technique

of identifying the exact version of a library based on hashing with 50% success or the proba-

ble version range with a ~75% success rate. Pagon et al. claim their technique to be robust

against minification, but not against obfuscation. Further research to improve the detection of

the correct version number needs to be conducted as a correct classification in only 50% of

cases still leaves plenty of room for improvement.

As mentioned in Chapter 2 as well as in Section 4.1 browser extensions can identify the ver-

sion of a detected library even when minified using a knowledge base of extractors. Comple-

menting the static approach presented in this thesis with a dynamic approach could be benefi-

cial but requires further research into how the knowledge base containing the required extrac-

tors can be generated automatically.

Another crucial, yet still missing, step for the construction of an SBOM would be the extrac-

tion of the license information for the licenses that could be identified. Siamese already offers

two options for the extraction of licenses: Ninka (German, Manabe, & Inoue, 2010) or using

52

regular expressions for extraction. Neither options nor the integration into Siamese has been

tested in this thesis.

Finally, the generation of an SBOM or the interface to interact with existing tools offering the

functionality to create an SBOM is yet to be realized, provided the necessary version infor-

mation can be obtained.

Since the scope of this thesis was just covering the edge case of client-side code where neither

the name of the file nor comments offered a reliable source for identification of a library and

its version, the more straightforward case of simply comparing strings should be imple-

mented. Also, the case of libraries not undergoing any transformations was disregarded, so

adding a comparison of file hashes to identify unmodified files should be considered as well.

Alternatively, the compression-based similarity could be investigated as a similarity measure

to quickly identify Type-1 or Type-2 clones.

Lauinger et al. (2017) noticed that libraries sometimes differ between official websites and

different CDNs: Additional whitespace, removal of comments and minification using different

tools or settings can occur between the same version and variant of the same library. As previ-

ously stated, this thesis also builds on the assumption of the correctness of information

sources, specifically that the CDN jsDelivr contains the version of a library that it claims. It

would therefore be of interest to collect more data from other sources such as the library’s

website. To address the possible blind spot in the corpus with regard to certain versions, it

would be of interest to supplement the corpus with more sources of data. If a version was

available while the corpus was constructed, this is not an issue, but if it was already deleted

off NPM additional data sources such as npm-follower (Pinckney, Cassano, Guha, & Bell,

2023) might be a valuable addition.

Also, compared to the ranking by Wappalyzer Pty Ltd (2023b) it became obvious that some

popular libraries are not hosted on NPM at all, e.g. Microsoft Authenticator. While NPM

seems to be a good source for third-party components under OSS licenses, proprietary soft-

ware is usually not hosted there and would require screening for more relevant sources.

Due to the time constraints of the thesis, it was only possible to investigate code clones pre-

sent in JavaScript code, disregarding the possibility of WebAssembly (Rossberg, 2019) as a

compilation target for a multitude of programming languages. Compiler toolchains like Em-

scripten also make this possible by first creating an intermediate representation leveraging the

Low-Level Virtual Machine compiler infrastructure and then translating it into WebAssembly

code as well as JavaScript glue code (Zakai, Dawborn, Shawabkeh, & et al, 2015).

To identify code clones originating from another programming language, a cross-language

clone detection approach is required. Further investigation on how the compilation to a differ-

ent language affects the respective license agreements should be conducted.

To improve Siamese’s interpretability of modern JavaScript, specifically ES2015+, some

modifications are necessary. The parsing and tokenization currently rely on ANTLR or rather

on an ANTLR Grammar, which is not able to fully represent the language features introduced

in later ECMAScript versions as they can no longer be represented by context-free grammar.

More modern tools like a JavaScript engine used by browsers, e.g. SpiderMonkey (Mozilla

Foundation), could be used to parse JavaScript code, generate an AST representation etc. This

is not an uncommon approach, Bazon (2012) also seems to rely on SpiderMonkey to generate

an AST for the popular minification tool UglifyJS.

Alternatively, a normalization by transpilation should be explored: It remains to be tested to

use a transpiler such as Babel (McKenzie & et al, 2018) before passing the code to Siamese.

The effects on the similarity relationship should be studied as the transpilation might skew the

53

similarity distance by introducing similar boilerplate code replacing previously different lan-

guage constructs. Further normalizations to be considered include un-minifying and beautify-

ing minified files before indexing them, similar to Pagon et al. (2023).

A much different approach that should be investigated is a bytecode-level approach, which

has been successfully implemented for other programming languages, e.g. Java (Wan et al.,

2023; D. Yu et al., 2019), but is yet to be applied to JavaScript. Since JavaScript is, unlike

Java, not a language compiled ahead of time, but JIT compiled, obtaining the bytecode re-

quires more effort and finesse. Bytecode has already been used to identify the insertion of ma-

licious code (Rozi, Kim, & Ozawa, 2020) in JavaScript code, so analyzing the JavaScript

bytecode to detect code clones seems feasible in principle, provided it is possible to overcome

the burden to obtain the bytecode for a large number of libraries.

A different route for future research could be compiling JavaScript source code to WebAssem-

bly, obtaining a textual representation as well as the Wasm binary format for clone detection.

Experiments on modifications and normalizations on the source code before compiling to

WebAssembly and how it affects the detectability of various clone types on the generated

code should be performed. Using WebAssembly as a compilation target would offer the bene-

fit of extendibility towards other programming languages as Type-4 clones could occur across

languages.

Lastly, a benchmark suite to evaluate tools and techniques for clone search on JavaScript is

urgently required. As discussed in Section 5.4.1 it would be very valuable to have a frame-

work for the automatic generation of a JavaScript benchmark. Further investigation into

vpbench (Derks et al., 2023) and the changes required to adapt to JavaScript and integrate

tools for minification and obfuscation should be considered.

Although this thesis has addressed several aspects of identifying client-side JavaScript librar-

ies, numerous avenues for further exploration and refinement remain. In addition to enhancing

version detection techniques and extending cross-language clone detection approaches, this

field also offers opportunities for bytecode-level analysis and leveraging WebAssembly as a

compilation target. It would also be beneficial to develop a comprehensive benchmark suite to

evaluate JavaScript clone detection tools and techniques. Considering the complexity and

breadth of this research area, it is crucial to continue investigating and innovating to address

the challenges and opportunities it presents.

54

Appendix A Siamese Config File

GENERAL CONFIGURATIONS

elasticsearchLoc=/var/tmp/ga79cace/elasticsearch # location of elasticsearch

server=localhost # elasticsearch's server name (or IP)

cluster=MA_AS-IS # elasticsearch's cluster name. See cluster.name in your

$elasticsearchLoc/config/elasticsearch.yml

index=idx # index name

type=siamese # type name

inputFolder=/var/tmp/ga79cace/280124_downloaded_code # location of the input

folder. This is the location of the files to be indexed, or the location of the queries

outputFolder=search_results/as-is-file-mode # output folder to store the search results

dfs=false # use DFS mode [default=no]

writeToFile=true

extension=js # source code file extension

minCloneSize=1 # minimum clone size (lines)

command=index # command to execute [index,search]

isPrint=true # print out logging data

outputFormat=csvfline # output format [csv = filename, csvfline = filename#start#end),

gcf = general clone format]

indexingMode=bulk # indexing mode [sequential, bulk]

bulkSize=100 # size of bulk insert

parseMode=file # clone granularity [method, file]

printEvery=250 # print the progress of indexing/querying in every x files

recreateIndexIfExists=false # recreate the index if it exists [true, false]

PARSER + TOKENIZER + NORMALIZER SETTINGS

methodParser=crest.siamese.language.javascript.JSMethodParser

tokenizer=crest.siamese.language.javascript.JSTokenizer

normalizer=crest.siamese.language.javascript.JSNormalizer

MULTI-REPRESENTATION SETTINGS

multirep=true

enableRep=true,true,true,true

NORMALIZATION MODE:

Code normalisation for T2 and T3 representation.

Combination of k (keywords), v (values), s (strings), o (operators), w (words)

normalizerMode=crest.siamese.language.javascript.JSNormalizerMode

t2NormMode=vsw

t3NormMode=kvsow

isNgram=true # turn on ngram

55

size of ngram.

ngramSize=4 # representation T3

t2NgramSize=4 # representation T2

t1NgramSize=4 # representation T1

QUERY-RELATED SETTINGS

resultOffset=0 # starting result offset (usually zero)

resultsSize=8 # the size of the results

rankingFunction=tfidf # tfidf, bm25, dfr, ib, lmd (LM Dirichlet), lmj (LM Jelinek-Mercer)

QUERY REDUCTION SETTINGS

queryReduction=true # turn on query reduction [true/false]

QRPercentileNorm=10 # reduction percentile for the T3 layer [0, 100]

QRPercentileT2=10 # reduction percentile for the T2 layer [0, 100]

QRPercentileT1=10 # reduction percentile for the T1 layer [0, 100]

QRPercentileOrig=10 # reduction percentile for the T1 layer [0, 100]

normBoost=4 # boosting for T3 layer

t2Boost=4 # boosting for T2 layer

t1Boost=4 # boosting for T1 layer

origBoost=1 # boosting for T0 layer

ignoreQueryClones=true # ignore the query clones

LICENSE EXTRACTION

license=false # extract license [true, false]

licenseExtractor=regexp # license extractor [ninka, regexp]

EXPERIMENT CONFIGURATIONS

ONLY USED FOR THE EXPERIMENTS OF SIAMESE

similarityMode=tfidf_text_both # elasticsearch similarity function + ngram + normalisation [or both]

cloneClusterFile=soco # prefix of the clone cluster file name [cloplag/soco]

errorMeasure=map # IR error measure [arp/map]

deleteIndexAfterUse=false # delete the index after every run?

SIMILARITY

computeSimilarity=tokenratio # compute similarity of the results

[fuzzywuzzy, tokenratio, none]

simThreshold=50%,60%,70%,80% # the similarity threshold for the four representations

[T1,T2,T3,T4] respectively

github=false # GitHub indexing? (automatically add URL)

56

Appendix B Wappalyzer Top 100 JavaScript Libraries 2023

compared to corpus (Wappalyzer Pty Ltd, 2023b)

Top 100 Libraries Websites

tracked

Market

Share

Covered by cor-

pus

Market Share

corpus

jQuery 5.013.000 14% yes 14%

core-js 5.012.000 14% yes 14%

jQuery Migrate 4.441.000 12% yes 12%

jQuery UI 3.095.000 8% yes 8%

Swiper 1.520.000 4% yes 4%

Modernizr 1.462.000 4% yes 4%

Lodash 1.354.000 4% yes 4%

OWL Carousel 1.007.000 3% yes 3%

LazySizes 983.000 3% yes 3%

Slick 927.000 3% yes 3%

Underscore.js 884.000 2% yes 2%

Moment.js 881.000 2% yes 2%

FancyBox 873.000 2% yes 2%

Isotope 856.000 2% maybe

Select2 843.000 2% yes 2%

web-vitals 841.000 2% yes 2%

Lightbox 704.000 2% maybe

Boomerang 597.000 2% yes 2%

Polyfill 509.000 1% yes 1%

PhotoSwipe 385.000 1% yes 1%

Clipboard.js 339.000 1% yes 1%

Hammer.js 327.000 0.9% yes 0.9%

prettyPhoto 325.000 0.9% no

Flickity 319.000 0.9% yes 0.9%

YUI 317.000 0.9% no

AOS 287.000 0.8% yes 0.8%

Preact 286.000 0.8% yes 0.8%

DataTables 216.000 0.6% yes 0.6%

SweetAlert2 160.000 0.4% yes 0.4%

MobX 140.000 0.4% yes 0.4%

Axios 134.000 0.4% yes 0.4%

lit-html 110.000 0.3% yes 0.3%

Lozad.js 109.000 0.3% yes 0.3%

Highlight.js 105.000 0.3% yes 0.3%

Tippy.js 104.000 0.3% yes 0.3%

Ethers 90.100 0.2% no

lit-element 89.600 0.2% yes 0.2%

Dropzone 87.100 0.2% yes 0.2%

FingerprintJS 68.800 0.2% maybe

SweetAlert 62.400 0.2% yes 0.2%

Selectize 60.900 0.2% yes 0.2%

ScrollMagic 60.000 0.2% yes 0.2%

57

crypto-js 59.600 0.2% yes 0.2%

scrollreveal 55.300 0.1% no

Dojo 53.700 0.1% no

Apollo 53.000 0.1% no

Splide 47.700 0.1% maybe

Closure Library 43.300 0.1% no

script.aculo.us 36.600 0.1% no

Loadable-Components 36.200 0.1% no

Twitter typeahead.js 34.900 0.1% no

Day.js 34.800 0.1% yes 0.1%

XRegExp 31.700 0.09% no

Choices 30.800 0.08% yes 0.08%

PubSubJS 29.500 0.08% no

Glide.js 27.100 0.07% yes 0.07%

Zepto 26.700 0.07% yes 0.07%

Tiny Slider 25.900 0.07% yes 0.07%

SoundManager 24.900 0.07% no

math.js 23.800 0.06% no

metisMenu 22.600 0.06% yes 0.06%

Snap.svg 22.300 0.06% no

jPlayer 22.100 0.06% no

libphonenumber 20.900 0.06% yes 0.06%

Howler.js 19.100 0.05% yes 0.05%

LazySizes unveilhooks

plugin

18.400 0.05% no

Browser-Update.org 17.300 0.05% no

jQuery Modal 16.100 0.04% yes 0.04%

Vuex 14.400 0.04% yes 0.04%

Marked 12.800 0.03% yes 0.03%

Fresco 12.700 0.03% no

HeadJS 10.900 0.03% yes 0.03%

Instant.Page 10.700 0.03% yes 0.03%

Intersection Observer 10.600 0.03% yes 0.03%

fullPage.js 8.700 0.02% yes 0.02%

Moment Timezone 8.100 0.02% yes 0.02%

Quicklink 7.700 0.02% no

Immutable.js 7.300 0.02% no

Ramda 7.000 0.02% no

Microsoft Authentication 6.400 0.02% no

InstantClick 6.200 0.02% no

Keen-Slider 6.000 0.02% yes 0.02%

List.js 5.700 0.02% no

lite-youtube-embed 5.700 0.02% no

Bootstrap Table 5.700 0.02% yes 0.02%

Laravel Echo 5.000 0.01% no

ClientJS 4.900 0.01% no

Ziggy 4.600 0.01% no

decimal.js 4.500 0.01% no

58

Slimbox 2 4.200 0.01% no

Granim.js 3.900 0.01% no

SpriteSpin 3.800 0.01% no

Lenis 3.700 0.01% no

Glider.js 3.700 0.01% yes 0.01%

JsObservable 3.700 0.01% no

JsRender 3.700 0.01% yes 0.01%

JsViews 3.700 0.01% no

Htmx 3.100 0.01% no

FilePond 2.700 0.01% yes 0.01%

qiankun 2.700 0.01% no

88% 60/100 covered 84%

59

Appendix C ECMAScript versions detected in corpus

The following table shows recent ECMAScript versions and characteristic language features

introduced by them. The list of newly introduced features is not exhaustive but only contains

a few samples to indicate the presence of language features and therefore the presence of

ECMAScript versions in the corpus. Some examples for each language features that was de-

tected in the corpus are included with the earliest version it was detected in.

ECMAScript version Newly Introduced Feature Corpus Examples available from version

ES6 spread operator (…) zone.js 0.13.3 only

vuetify 3.0.0

vue-tel-input 6.0.0

Promise three 1.133.1

uikit 3.1.2

const webc-miam 3.5.14

three 1.133.1

ES2016 exponential operator (**) tsparticles 1.35.0

three 0.133.1

includes() method vuetify 0.16.7

webtorrent 0.102.3

webrtc-adapter 7.0.0

ES2017 await tsparticles 1.3.1

tinymce 3.0.0

async tinymce 6.4.0 only

vuetify 3.0.0

ES2018 finally() method statsig-js 1.1.0

webrtc-adapter 7.3.0

rest parameter syntax in destructuring vuetify 3.0.0

vega-lite 4.16.

ES2019 bare catch clause typescript 5.1.3

vue-tel-input 8.0.1

Array flattening vega-lite 4.0.0

web3 4.0.1

vuetify 3.0.0

ES2020 nullish coalescing operator (??) vuetify 3.0.0

webtorrent 2.1.0

vega-lite 5.1.1

BigInt type video.js 7.11.6

matchAll() method web3 4.0.1

60

Appendix D AST resulting from applying obfuscation in-

cluding control flow flattening to the original source code

shown in Figure 2, parsed by acorn

61

 f r nc s

Aiken, A. Moss [Computer software]. Retrieved from

https://theory.stanford.edu/~aiken/moss/

Ain, Q. U., Butt, W. H., Anwar, M. W., Azam, F., & Maqbool, B. (2019). A systematic review

on code clone detection. IEEE Access, 7, 86121–86144.

Akram, J., Mumtaz, M., & Luo, P. (2020). IBFET: Index‐based features extraction technique

for scalable code clone detection at file level granularity. Software: Practice and

Experience, 50(1), 22–46. https://doi.org/10.1002/spe.2759

Alam, A. I., Roy, P. R., Al-Omari, F., Roy, C. K., Roy, B., & Schneider, K. A. (2023).

GPTCloneBench: A comprehensive benchmark of semantic clones and cross-language

clones using GPT-3 model and SemanticCloneBench. In 2023 IEEE International

Conference on Software Maintenance and Evolution (ICSME) (pp. 1–13). IEEE.

https://doi.org/10.1109/ICSME58846.2023.00013

Alfageh, D., Alhakami, H., Baz, A., Alanazi, E., & Alsubait, T. (2020). Clone Detection

Techniques for JavaScript and Language Independence: Review. International Journal of

Advanced Computer Science and Applications, 11(4).

https://doi.org/10.14569/IJACSA.2020.01104102

Al-Omari, F., Roy, C. K., & Chen, T. (2020). SemanticCloneBench: A Semantic Code Clone

Benchmark using Crowd-Source Knowledge. In 2020 IEEE 14th International Workshop

on Software Clones (IWSC) (pp. 57–63). IEEE.

https://doi.org/10.1109/IWSC50091.2020.9047643

Amur, Z. H., Hooi, Y. K., Soomro, G. M., Bhanbhro, H., Karyem, S., & Sohu, N. (2023).

Unlocking the Potential of Keyword Extraction: The Need for Access to High-Quality

Datasets. Applied Sciences, 13(12), 7228. https://doi.org/10.3390/app13127228

Antal, G., Hegedűs, P., Herczeg, Z., Lóki, G., & Ferenc, R. (2023). Is JavaScript Call Graph

Extraction Solved Yet? A Comparative Study of Static and Dynamic Tools. IEEE Access,

11, 25266–25284. https://doi.org/10.1109/ACCESS.2023.3255984

Apple. JetStream 2 Benchmark: JetStream 2.1 is a JavaScript and WebAssembly benchmark

suite focused on the most advanced web applications. It rewards browsers that start up

quickly, execute code quickly, and run smoothly. Retrieved from

https://browserbench.org/JetStream2.1/in-depth.html

Arshad, S. [Saad], Abid, S., & Shamail, S. (2022). CodeBERT for Code Clone Detection: A

Replication Study. In 2022 IEEE 16th International Workshop on Software Clones (IWSC).

Symposium conducted at the meeting of IEEE. Retrieved from

https://ieeexplore.ieee.org/abstract/document/9978260?casa_token=85fTOXRnw4YAAAA

A:-LQBNQ4-aM91OdhPN-CPJUV94m51qIiRlkph7eVKkhLK68dYJpJ0oG-

oOELVas65XvcePsNG

Bannon, S., & et al (2010). ElasticSearch [Computer software]. Elastic: Elastic. Retrieved

from https://www.elastic.co/

Bazon, M. (2012). UglifyJS [Computer software]. Retrieved from

https://github.com/mishoo/UglifyJS

Bellon, S., Koschke, R., Antoniol, G., Krinke, J., & Merlo, E. (2007). Comparison and

Evaluation of Clone Detection Tools. IEEE Transactions on Software Engineering, 33(9),

577–591. https://doi.org/10.1109/TSE.2007.70725

Bredow, A., & Michel, J. (2010). Library Detector for Chrome [Computer software].

Retrieved from https://github.com/johnmichel/Library-Detector-for-Chrome

Cao, H., Peng, Y., Jiang, J., Falleri, J.‑R., & Blanc, X. (2017). Automatic identification of

62

client-side JavaScript libraries in web applications. In S. Y. Shin, D. Shin, & M. Lencastre

(Eds.), Proceedings of the Symposium on Applied Computing (pp. 670–677). New York,

NY, USA: ACM. https://doi.org/10.1145/3019612.3019845

Cheung, W. T., Ryu, S., & Kim, S. [Sunghun] (2016). Development nature matters: An

empirical study of code clones in JavaScript applications. Empirical Software Engineering,

21(2), 517–564. https://doi.org/10.1007/s10664-015-9368-6

Collberg, C., Thomborson, C., & Low, D. (1997). A taxonomy of obfuscating transformations.

Dahl, R., justjavac, & et al (2018). Deno [Computer software]. Deno Land Inc: Deno Land

Inc. Retrieved from https://deno.com/

Derks, C., Strüber, D., & Berger, T. (2023). A benchmark generator framework for evolving

variant-rich software. Journal of Systems and Software, 203, 111736.

https://doi.org/10.1016/j.jss.2023.111736

Devore-McDonald, B., & Berger, E. D. (2020). Mossad: defeating software plagiarism

detection. Proceedings of the ACM on Programming Languages, 4(OOPSLA), 1–28.

https://doi.org/10.1145/3428206

Eckhardt, S., & LL.M. Lüttel, S. Intellectual property and AI: The challenges facing copyright

law. In GoingDigital. The online magazine for the changing legal market (September

2023, pp. 22–24). Retrieved from

https://www.deutscheranwaltspiegel.de/goingdigital/artificial-intelligence/intellectual-

property-and-ai-32327/

ECMA TC39 Committee. ECMAScript 2024 Language Specification. ECMA-262. Retrieved

from https://tc39.es/ecma262/

ECMA TC39 Committee (2024). ECMAScript® 2025 Language Specification. ECMAScript

Language: Lexical Grammar. Retrieved from https://tc39.es/ecma262/#sec-ecmascript-

language-lexical-grammar

Einar, L., & Newman, L. js-beautify [Computer software]. Retrieved from

https://github.com/beautifier/js-beautify

Endres, J., & Mühleis, N. Verbotener Code: Urheberrechtliche Probleme bei der

Programmierung von Software mit Hilfe von KI. In MMR (Heft 10, pp. 723–802).

Retrieved from https://beck-online.beck.de/Bcid/Y-300-Z-MMR-B-2023-S-725-N-1

ESLint, Acorn, Babel, & Mozilla Foundation. ESTree. Retrieved from

https://github.com/estree/estree

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., . . . Zhou, M. (2020, February 19).

CodeBERT: A Pre-Trained Model for Programming and Natural Languages. Retrieved

from http://arxiv.org/pdf/2002.08155v4

German, D. M., Manabe, Y., & Inoue, K. (2010). ninka [Computer software]. Retrieved from

http://turingmachine.org/~dmg/papers/dmg2010ninka.pdf

Godfrey, M. W., & Kapser, C. J. (2021). Sometimes, Cloning Is a Sound Design Decision! In

K. Inoue & C. K. Roy (Eds.), Code Clone Analysis (pp. 209–223). Singapore: Springer

Singapore. https://doi.org/10.1007/978-981-16-1927-4_15

Guerra Lourenço, P. (2023, April 4). Attacking JS engines: Fundamentals for understanding

memory corruption crashes. Retrieved from https://www.sidechannel.blog/en/attacking-js-

engines/

Hammad, M., Babur, O., Basit, H. A., & van den Brand, M. (2022). Clone-Seeker: Effective

Code Clone Search Using Annotations. IEEE Access, 10, 11696–11713.

https://doi.org/10.1109/ACCESS.2022.3145686

Han, S., Ryu, M., Cha, J., & Choi, B. U. (2014). HOTDOL: HTML Obfuscation with Text

Distribution to Overlapping Layers. In 2014 IEEE International Conference on Computer

63

and Information Technology (pp. 399–404). IEEE. https://doi.org/10.1109/CIT.2014.104

Harder, J., & Göde, N. (2011). Efficiently handling clone data. In J. R. Cordy, K. Inoue, S.

Jarzabek, & R. Koschke (Eds.), Proceedings of the 5th International Workshop on Software

Clones (pp. 81–82). New York, NY, USA: ACM. https://doi.org/10.1145/1985404.1985427

Haverbeke, M. (2019). Eloquent JavaScript: A modern introduction to programming (Third

edition). San Francisco: No Starch Press. Retrieved from https://eloquentjavascript.net/

Hendrick, S. (January 2022). Software Bill of Materials (SBOM) and Cybersecurity

Readiness. foreword by Jim Zemlin.

Huang, W., Meng, G., Lin, C., Yan, Q., Chen, K., & Ma, Z. (2023). Are our clone detectors

good enough? An empirical study of code effects by obfuscation. Cybersecurity, 6(1).

https://doi.org/10.1186/s42400-023-00148-x

Jensen, S. H., Madsen, M., & Møller, A. (2011). Modeling the HTML DOM and browser API

in static analysis of JavaScript web applications. In T. Gyimóthy & A. Zeller (Eds.),

Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on

Foundations of software engineering (pp. 59–69). New York, NY, USA: ACM.

https://doi.org/10.1145/2025113.2025125

Jiang, L., Misherghi, G., Su, Z., & Glondu, S. (2007). DECKARD: Scalable and Accurate

Tree-Based Detection of Code Clones. In 29th International Conference on Software

Engineering (ICSE'07) (pp. 96–105). IEEE. https://doi.org/10.1109/ICSE.2007.30

Justjavac (2020). Library Sniffer [Computer software]. Retrieved from

https://chromewebstore.google.com/detail/library-

sniffer/fhhdlnnepfjhlhilgmeepgkhjmhhhjkh?hl=de

Kachalov, T. (2016). javascript-obfuscator [Computer software]. Retrieved from

https://github.com/javascript-obfuscator/javascript-obfuscator

Karabiber, F. TF-IDF — Term Frequency-Inverse Document Frequency. Retrieved from

https://www.learndatasci.com/glossary/tf-idf-term-frequency-inverse-document-frequency

Karp, R. M., & Rabin, M. O. (1987). Efficient randomized pattern-matching algorithms. IBM

Journal of Research and Development, 31(2), 249–260.

Kiers, B., & Kochurkin, I. ANTLR [Computer software]. Retrieved from

https://github.com/antlr/grammars-v4/blob/master/javascript/

Kim, S. [Seulbae], Woo, S., Lee, H. [Heejo], & Oh, H. (2017). VUDDY: A Scalable Approach

for Vulnerable Code Clone Discovery. In 2017 IEEE Symposium on Security and Privacy

(SP) (pp. 595–614). IEEE. https://doi.org/10.1109/SP.2017.62

Kirkman, R., Davis, T., Cowley, M., Sauleau, S., & Caslin, T. (2011). cdnjs [Computer

software]. Cloudflare: Cloudflare. Retrieved from https://cdnjs.com/api

Koppers, T., Ewald, J., Larkin, S. T., & Kluskens, K. (2016). webpack [Computer software].

Retrieved from https://webpack.js.org/

Kucherenko, A. (2019). JSCPD [Computer software]. Retrieved from

https://github.com/kucherenko/jscpd

Kumaran, G., & Carvalho, V. R. (2009). Reducing long queries using query quality predictors.

In J. Allan, J. Aslam, M. Sanderson, C. Zhai, & J. Zobel (Eds.), Proceedings of the 32nd

international ACM SIGIR conference on Research and development in information

retrieval (pp. 564–571). New York, NY, USA: ACM.

https://doi.org/10.1145/1571941.1572038

Lauinger, T., Chaabane, A., Arshad, S. [Sajjad], Robertson, W., Wilson, C., & Kirda, E.

(2017). Thou Shalt Not Depend on Me: Analysing the Use of Outdated JavaScript

Libraries on the Web. Advance online publication.

https://doi.org/10.14722/ndss.2017.23414

64

Le, H., Fallace, F., & Barlet-Ros, P. (2017). Towards accurate detection of obfuscated web

tracking. In 2017 IEEE International Workshop on Measurement and Networking (M&N).

Symposium conducted at the meeting of IEEE.

Lee, H. [Hongki], Won, S., Jin, J., Cho, J., & Ryu, S. SAFE: Formal specification and

implementation of a scalable analysis framework for ECMAScript. In FOOL 2012: 19th

International Workshop on Foundations of Object-Oriented Languages (p. 96). Citeseer.

The Linux Foundation. SPDX. (ISO/IEC 5962:2021).

Liu, X., & Ziarek, L. (2023). PTDETECTOR: An Automated JavaScript Front-end Library

Detector. In 2023 38th IEEE/ACM International Conference on Automated Software

Engineering (ASE) (pp. 649–660). IEEE. https://doi.org/10.1109/ASE56229.2023.00049

Lončarević, S., Skendrović, B., Kovačević, I., & Groš, S. (2023). Detecting JavaScript

libraries using identifiers and hashes. In 2023 46th MIPRO ICT and Electronics

Convention (MIPRO) (pp. 1246–1251). IEEE.

https://doi.org/10.23919/MIPRO57284.2023.10159971

Mahlpohl, G. JPlag [Computer software]. Karlsruhe Institute of Technology (KIT): Karlsruhe

Institute of Technology (KIT). Retrieved from https://github.com/jplag/JPlag

Mapbox, Inc. (2023). mapbox-gl-js LICENSE.txt. Retrieved from

https://github.com/mapbox/mapbox-gl-js/blob/main/LICENSE.txt

(2023). maplibre-gl-js LICENSE.txt. Retrieved from https://github.com/maplibre/maplibre-gl-

js/blob/main/LICENSE.txt

McKenzie, S., & et al (2018). Babel [Computer software]. Retrieved from

https://babeljs.io/docs/

Misu, M. R. H., & Satter, A. (2022). An exploratory study of analyzing JavaScript online code

clones. In A. Rastogi, R. Tufano, G. Bavota, V. Arnaoudova, & S. Haiduc (Eds.),

Proceedings of the 30th IEEE/ACM International Conference on Program Comprehension

(pp. 94–98). New York, NY, USA: ACM. https://doi.org/10.1145/3524610.3528390

Mitropoulos, D., Louridas, P., Salis, V., & Spinellis, D. (2019). Time Present and Time Past:

Analyzing the Evolution of JavaScript Code in the Wild. In 2019 IEEE/ACM 16th

International Conference on Mining Software Repositories (MSR) (pp. 126–137). IEEE.

https://doi.org/10.1109/MSR.2019.00029

Monden, A., Nakae, D., Kamiya, T., Sato, S., & Matsumoto, K. (2002). Software quality

analysis by code clones in industrial legacy software. In Proceedings Eighth IEEE

Symposium on Software Metrics (pp. 87–94). IEEE Comput. Soc.

https://doi.org/10.1109/METRIC.2002.1011328

Mozilla Foundation. SpiderMonkey [Computer software]. Retrieved from

https://searchfox.org/mozilla-central/source/js/src

Executive Order: Improving the Nation's Cybersecurity (2021).

Ngan, R., Konkimalla, S., & Shafiq, Z. (2022). Nowhere to Hide: Detecting Obfuscated

Fingerprinting Scripts. arXiv. https://doi.org/10.48550/arXiv.2206.13599

Nichols, L., Dewey, K., Emre, M., Chen, S., & Hardekopf, B. (2019). Syntax-based

Improvements to Plagiarism Detectors and their Evaluations. In B. Scharlau, R.

McDermott, A. Pears, & M. Sabin (Eds.), Proceedings of the 2019 ACM Conference on

Innovation and Technology in Computer Science Education (pp. 555–561). New York, NY,

USA: ACM. https://doi.org/10.1145/3304221.3319789

Nicolini, T., Hora, A., & Figueiredo, E. (2024). On the Usage of New JavaScript Features

Through Transpilers: The Babel Case. IEEE Software, 41(1), 105–112.

https://doi.org/10.1109/MS.2023.3243858

Nikiforakis, N., Invernizzi, L., Kapravelos, A., van Acker, S., Joosen, W., Kruegel, C., . . .

65

Vigna, G. (2012). You are what you include. In T. Yu, G. Danezis, & V. Gligor (Eds.),

Proceedings of the 2012 ACM conference on Computer and communications security

(pp. 736–747). New York, NY, USA: ACM. https://doi.org/10.1145/2382196.2382274

L'esprit libre (2024, February 16). Non-respect de la licence GPL: Orange condamné en

appel: Open Source : La cour d’appel de Paris a condamné Orange à payer 650.000 euros

à la société coopérative Entr’Ouvert pour ne pas avoir respecté la licence GNU GPL v2.

[Press release]. Retrieved from https://www.zdnet.fr/blogs/l-esprit-libre/non-respect-de-la-

licence-gpl-orange-condamne-en-appel-39964312.htm

Npm, Inc. (2009). NPM. Retrieved from https://www.npmjs.com/

Npm, Inc. (2024, January 22). NPM CLI/Configuring/package.json. Retrieved from

https://docs.npmjs.com/cli/v10/configuring-npm/package-json

Oftedal, E. (2018). Retire.js [Computer software]. Retrieved from

https://github.com/RetireJS/retire.js

OpenJS Foundation. Node.js [Computer software]. Retrieved from https://nodejs.org/en

OWASP Foundation. CycloneDX.

OWASP Foundation (2021). OWASP Top 10 Client-Side Security Risks. Retrieved from

https://owasp.org/www-project-top-10-client-side-security-risks/

Pagon, V., Skendrovć, B., Kovačević, I., & Groš, S. (2023). JavaScript Library Version

Detection. In 2023 46th MIPRO ICT and Electronics Convention (MIPRO) (pp. 1240–

1245). IEEE. https://doi.org/10.23919/MIPRO57284.2023.10159725

Parr, T., & et al. ANTLR (ANother Tool for Language Recognition) [Computer software].

Retrieved from https://github.com/antlr/antlr4

Pike, R., & Loki. Sherlock [Computer software]. Retrieved from

https://github.com/diogocabral/sherlock

Pinckney, D., Cassano, F., Guha, A., & Bell, J. (2023). npm-follower: A Complete Dataset

Tracking the NPM Ecosystem. In S. Chandra, K. Blincoe, & P. Tonella (Eds.), Proceedings

of the 31st ACM Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (pp. 2132–2136). New York, NY, USA: ACM.

https://doi.org/10.1145/3611643.3613094

Preston-Werner, T. SemVer: Semantic Versioning. Retrieved from https://semver.org/

Princeton University Department of Computer Science (2022). COS 320: Compiling

Techniques: Spring 2022. Retrieved from

https://www.cs.princeton.edu/courses/archive/spring22/cos320/lectures/parsing1.pdf

Ragkhitwetsagul, C., & Krinke, J. (2019). Siamese: scalable and incremental code clone

search via multiple code representations. Empirical Software Engineering, 24(4), 2236–

2284. https://doi.org/10.1007/s10664-019-09697-7

Richards, G., Gal, A., Eich, B., & Vitek, J. (2011). Automated construction of JavaScript

benchmarks. In C. V. Lopes & K. Fisher (Eds.), Proceedings of the 2011 ACM

international conference on Object oriented programming systems languages and

applications (pp. 677–694). New York, NY, USA: ACM.

https://doi.org/10.1145/2048066.2048119

Rosen, L. (2004). Open source licensing: Software freedom and intellectual property law.

Upper Saddle River, NJ: Prentice Hall PTR.

Rossberg, A. (2019). WebAssembly [Computer software]. W3C: W3C. Retrieved from

https://webassembly.org/

Rozi, M. F., Kim, S. [Sangwook], & Ozawa, S. (2020). Deep Neural Networks for Malicious

JavaScript Detection Using Bytecode Sequences. In 2020 International Joint Conference

on Neural Networks (IJCNN) (pp. 1–8). IEEE.

66

https://doi.org/10.1109/IJCNN48605.2020.9207134

Runwal, A. N., & Waghmare, A. D. (2017). Code clone detection based on logical similarity:

A review. International Journal of Advanced Research in Computer and Communication

Engineering, ISSN, 2278‐1021.

Sajnani, H., Saini, V., Svajlenko, J., Roy, C. K., & Lopes, C. V. [Cristina V.] (2015).

SourcererCC: Scaling Code Clone Detection to Big Code. Advance online publication.

https://doi.org/10.48550/arXiv.1512.06448

Santos, F., & Vicente, R. (2018). terser [Computer software]. Retrieved from https://terser.org/

Santos, F., & Vicente, R. (2023). Terser Docs. Retrieved from https://terser.org/docs/options/

Schleimer, S., Wilkerson, D. S., & Aiken, A. (2003). Winnowing. In Z. Ives, Y.

Papakonstantinou, & A. Halevy (Eds.), Proceedings of the 2003 ACM SIGMOD

international conference on Management of data (pp. 76–85). New York, NY, USA: ACM.

https://doi.org/10.1145/872757.872770

Sham, S. (2023). The Top 11 Open-Source SBOM tools. Retrieved from

https://www.wiz.io/academy/top-open-source-sbom-tools#open-source-sbom-tools-18

Shrestha, S., Shakya, S., & Gautam, S. (2023). Winnowing vs Extended-Winnowing: A

Comparative Analysis of Plagiarism Detection Algorithms. Journal of Trends in Computer

Science and Smart Technology, 5(3), 213–232. https://doi.org/10.36548/jtcsst.2023.3.001

Sim, S. E., Easterbrook, S., & Holt, R. C. (2003). Using benchmarking to advance research: a

challenge to software engineering. In 25th International Conference on Software

Engineering, 2003. Proceedings (pp. 74–83). IEEE.

https://doi.org/10.1109/ICSE.2003.1201189

Sinclair, J. (1991). Corpus, concordance, collocation. Oxford University Press Google Schola,

2, 1–10.

Skolka, P., Staicu, C.‑A., & Pradel, M. (2019). Anything to Hide? Studying Minified and

Obfuscated Code in the Web. In L. Liu & R. White (Eds.), The World Wide Web

Conference (pp. 1735–1746). New York, NY, USA: ACM.

https://doi.org/10.1145/3308558.3313752

St. Jules, D. (2014). JsInspect [Computer software]. Retrieved from

https://github.com/danielstjules/jsinspect

Stallmann, R. (1985). The GNU Manifesto. Retrieved from

https://www.gnu.org/gnu/manifesto.en.html

Svajlenko, J., Islam, J. F., Keivanloo, I., Roy, C. K., & Mia, M. M. (2014). Towards a Big

Data Curated Benchmark of Inter-project Code Clones. In 2014 IEEE International

Conference on Software Maintenance and Evolution (pp. 476–480). IEEE.

https://doi.org/10.1109/ICSME.2014.77

Vázquez, H. C., Bergel, A., Vidal, S., Díaz Pace, J. A., & Marcos, C. (2019). Slimming

javascript applications: An approach for removing unused functions from javascript

libraries. Information and Software Technology, 107, 18–29.

https://doi.org/10.1016/j.infsof.2018.10.009

Vislavski, T., Rakic, G., Cardozo, N., & Budimac, Z. (2018). LICCA: A tool for cross-

language clone detection. In 2018 IEEE 25th International Conference on Software

Analysis, Evolution and Reengineering (SANER) (pp. 512–516). IEEE.

https://doi.org/10.1109/SANER.2018.8330250

Walker, A., Cerny, T., & Song, E. (2020). Open-source tools and benchmarks for code-clone

detection. ACM SIGAPP Applied Computing Review, 19(4), 28–39.

https://doi.org/10.1145/3381307.3381310

Wan, B., Dong, S., Zhou, J., & Qian, Y. (2023). SJBCD: A Java Code Clone Detection

67

Method Based on Bytecode Using Siamese Neural Network. Applied Sciences, 13(17),

9580. https://doi.org/10.3390/app13179580

Wang, J., & Dong, Y. (2020). Measurement of Text Similarity: A Survey. Information, 11(9),

421. https://doi.org/10.3390/info11090421

Wang, T., Harman, M., Jia, Y., & Krinke, J. (2013). Searching for better configurations: a

rigorous approach to clone evaluation. In B. Meyer, L. Baresi, & M. Mezini (Eds.),

Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering

(pp. 455–465). New York, NY, USA: ACM. https://doi.org/10.1145/2491411.2491420

Wappalyzer Pty Ltd (2023a). Wappalyzer (Version 6.10.67) [Computer software]. Retrieved

from https://chromewebstore.google.com/detail/wappalyzer-technology-

pro/gppongmhjkpfnbhagpmjfkannfbllamg

Wappalyzer Pty Ltd (2023b, December 7). JavaScript libraries technologies market share:

These are the top JavaScript libraries technologies based on market share in 2023.

Retrieved from

https://web.archive.org/web/20231207115852/https://www.wappalyzer.com/technologies/j

avascript-libraries/

WebKit. SunSpider JavaScript Benchmark. Retrieved from

https://github.com/WebKit/WebKit/tree/main/PerformanceTests/SunSpider

WHATWG (2024, February 27). HTML specification. Retrieved from

https://html.spec.whatwg.org/commit-

snapshots/bcb3b9a6d989eac9b43cbe06fa0e4463e01034b8/

Wu, Y., Manabe, Y., Kanda, T., German, D. M., & Inoue, K. (2015). A Method to Detect

License Inconsistencies in Large-Scale Open Source Projects. In 2015 IEEE/ACM 12th

Working Conference on Mining Software Repositories (pp. 324–333). IEEE.

https://doi.org/10.1109/MSR.2015.37

Yarn [Computer software] (2016). Retrieved from https://yarnpkg.com/

Yu, D., Yang, J., Chen, X., & Chen, J. (2019). Detecting Java Code Clones Based on

Bytecode Sequence Alignment. IEEE Access, 7, 22421–22433.

https://doi.org/10.1109/ACCESS.2019.2898411

Zakai, A., Dawborn, T., Shawabkeh, M., & et al (2015). Emscripten [Computer software].

Retrieved from https://emscripten.org/docs/introducing_emscripten/about_emscripten.html

Zakeri-Nasrabadi, M., Parsa, S., Ramezani, M., Roy, C., & Ekhtiarzadeh, M. (2023). A

systematic literature review on source code similarity measurement and clone detection:

Techniques, applications, and challenges. Advance online publication.

https://doi.org/10.1016/j.jss.2023.111796

Zammetti, F. (Ed.) (2022). Modern Full-Stack Development. Berkeley, CA: Apress.

https://doi.org/10.1007/978-1-4842-8811-5

Zaytsev, J., Pushkarev, D., & et al (2023, November 22). ECMAScript Compatability Table.

Retrieved from https://compat-table.github.io/compat-table/es2016plus/

Zou, Y., Ban, B., Xue, Y., & Xu, Y. (2020). CCGraph. In J. Grundy, C. Le Goues, & D. Lo

(Eds.), Proceedings of the 35th IEEE/ACM International Conference on Automated

Software Engineering (pp. 931–942). New York, NY, USA: ACM.

https://doi.org/10.1145/3324884.3416541

	1 Introduction
	1.1 Fundamentals
	1.1.1 Basic Information about JavaScript
	1.1.2 Minification, Obfuscation, Transpilation and Bundling
	1.1.3 Code Similarity and Code Clones

	1.2 Motivation
	1.3 Objective
	1.4 Thesis Structure

	2 Literature Review
	3 Requirements
	3.1 Functional Requirements
	3.2 Non-Functional Requirements

	4 Architecture
	4.1 Research Conclusions
	4.2 Siamese
	4.3 Corpus Builder

	5 Design and Implementation
	5.1 Design
	5.1.1 Assumptions
	5.1.2 Resulting Design Choices

	5.2 Implementation of the Corpus Builder
	5.2.1 Download
	5.2.2 Transform
	5.2.3 Execute

	5.3 Leveraging Siamese for Code Clone Identification
	5.3.1 Configuration
	5.3.2 Other Problems

	5.4 Benchmark
	5.4.1 General Considerations for Creating a Benchmark
	5.4.2 Creating a JavaScript Benchmark for Code Clone Identification

	6 Evaluation
	6.1 Results on the Benchmark
	6.2 Evaluation of Functional Requirements
	6.3 Evaluation of Non-Functional Requirements

	7 Conclusions
	7.1 Conclusions
	7.2 Threats to Validity
	7.3 Future Work

	References

