
Unification of Organizational Data
Processing for Inner Source

MASTER THESIS

Philipp Uriel Winklmann

Submitted on 1 March 2024

Friedrich-Alexander-Universität Erlangen-Nürnberg
Faculty of Engineering, Department Computer Science

Professorship for Open Source Software

Supervisor:
Stefan Buchner, M.Sc.

Prof. Dr. Dirk Riehle, M.B.A.

Declaration of Originality

I confirm that the submitted thesis is original work and was written by me without
further assistance. Appropriate credit has been given where reference has been
made to the work of others. The thesis was not examined before, nor has it been
published. The submitted electronic version of the thesis matches the printed
version.

Erlangen, 1 March 2024

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 1 March 2024

i

https://creativecommons.org/licenses/by/4.0/

ii

Abstract

This thesis addresses the challenge of managing organisational structure data
in inner-source software development environments and proposes a novel uni-
fied structure for standardised data storage and processing. The development of
this unified structure and an implementation approach aims to solve identified
problems, with demonstrations and evaluations showing potential solutions and
highlighting limitations.

Our work contributes to academic and practical areas by solving the critical
problem of organising enterprise data and increasing the efficiency of data man-
agement practices. Despite the progress, the complexity of organisational data
management shows that further research is needed, especially regarding system
integration and adaptability.

Future directions include exploring different use cases that may require altern-
ative design decisions and extending the unified structure into a comprehensive
employee knowledge base. This could open up new applications, such as detailed
employee evaluations and process analyses, previously hindered by scattered data
in different systems.

This work lays the foundation for a standardised concept of organisational data
management and thus represents a significant development for the future.

iii

iv

Contents

1 Introduction 1
1.1 Thesis Motivation . 1
1.2 Structure of this Thesis . 2

2 Problem Identification 5

3 Objective Definition 7

4 Solution Design 9
4.1 Phase 1: Designing a Uniform Structure for Organisational Struc-

ture Data . 9
4.1.1 Derivation of the Required Organisational Structure Data 9
4.1.2 Identifying Possible Sources Containing the Required Data 10
4.1.3 Analysing the Storage Structure of the Data 14
4.1.4 Designing a Uniform Structure 15

4.2 Phase 2: Bringing the Concept to Life - Proposing a Concept to
Deploy the Uniform Structure . 24

5 Implementation 27
5.1 Overview of the Implementation in Detail 27
5.2 Documentation . 30
5.3 Overview of the Implementation Elements

Provided with this Thesis . 30
5.4 How to Connect to Active Directory and SAP 31

6 Demonstration 35
6.1 Extraktion of the Data from Active Directory 35
6.2 Unification of the Extracted Data 37

7 Evaluation 39
7.1 Evaluation Methodology . 39
7.2 Evaluation Results . 39

v

7.2.1 Fulfilment of the Set Objectives 40
7.2.2 Compliance to Established Criteria 41
7.2.3 Compatibility Test with Real Data 42
7.2.4 Integration Test with Existing Tools 42
7.2.5 Evaluation of the Impact on Identified Problems 42
7.2.6 Summary of the results . 43

7.3 Practical Implications of the Research 43
7.4 Limitations of the Proposed Solution 43

8 Conclusion 45

Appendices 47
A Guide to Accessing the MS Graph API with Python 49

A.1 Creating an Access Point 49
A.2 Settings in the Access Point 49
A.3 Access via Python . 50
A.4 Appendix: Python Script 50
A.5 Appendix: Error Handling 51

B Results for Data Extract from Active Directory Demonstration
System . 53
B.1 Results for Users of the Organisation 53
B.2 Results for All Users of the Organisation 56

References 61

vi

List of Figures

1.1 Application of design science steps by Peffers et al. (2007) to this
thesis . 2

4.1 Examplary complex organisation structure 19
4.2 Overview of the final data structure 24

vii

viii

List of Tables

4.1 Example of an adjacency set to be included in entity’s master data
dictionary . 18

4.2 Example of an adjacency matrix representing all connections in
one table . 21

4.3 Summary of all considered implementations for average case . . . 23
4.4 Summary of runtime and storage space complexity for predefined

use cases . 23

5.1 Overview of the module types and their specific methods 29
5.2 Overview of all elements provided with this thesis 31

ix

x

Acronyms

IS Inner Source

OS Open Source

AD Active Directory

ERP Enterprise Resource Planning

HCM SAP Human Capital Management

HR SAP Human Resources

CRM Customer Relationship Management

O(x) Complexity of runtime or storage according to the Big O notation

O(n) Linear complexity according to the Big O notation with dependence on
number of entities in an organisation, i.e. employees and departments

O(m) Linear complexity according to the Big O notation with dependence on
number of employees in an organisation

O(d) Linear complexity according to the Big O notation with dependence on
number of departments in an organisation

O(E) Linear complexity according to the Big O notation with dependence on
number of connections between departments and departments and
between departments and employees in an organisation

xi

xii

1 Introduction

1.1 Thesis Motivation

Inner Source (IS) is a software development approach that adapts open-source de-
velopment methodologies to organisations, allowing all developers of one company
to contribute to projects across different departments or teams while maintain-
ing a corporate setting (Capraro & Riehle, 2016). This collaborative approach
has been shown to increase code reuse, promote knowledge sharing, and improve
software quality (Carroll et al., 2018), (Cooper & Stol, 2018).

However, with any software development, there are many departments, such as
finance, HR and management, who have to know how long programming tasks
have taken in the past and how long they might take in the future. In addition,
Stol et al. (2014) underline the greater importance of coordination and leadership
in IS projects. These tasks also require a solid information base including an
overview of current contributions for their day-to-day business.

As Buchner (2022) lays out, calculating the contribution of individual developers
is even more complex once IS is introduced in a company. The reason is that
developers in IS often work on many different projects, such that today’s standard
solutions of time tracking or checking in and out of projects are no longer feasible.
Therefore, a solution is needed to automatically track a developer’s contribution
to a specific code base or project. In addition, this contribution of individual
developers then needs to be added up per department and IS project for tax
reasons.

As a solution to this, Buchner (2022) also presents a method to determine the time
a developer spends on an individual code contribution. Other than that, there is
a contribution by Gurbani et al. (2010) that discusses managing corporate Open
Source (OS) software assets by tracking developer contributions and licenses used.

One problem that both articles face is the question of how to effectively determine
which developer is assigned to which department, control unit or similar unit of
interest.

1

1. Introduction

In this thesis, we therefore present a novel method to determine a developer’s
place in an organisation’s hierarchical structure using organisational structure
data. This identified gap serves as the driving impetus behind this research.
Our work aims to overcome this challenge by developing a unified standard for
organisational data storage that can accommodate data from different systems
yet be flexible enough to integrate with existing tools.

Given these insights, the following research question arises: "What can a unified
standard for organisational data storage in IS environments look like?"

1.2 Structure of this Thesis

The thesis follows the design science approach by Peffers et al. (2007) and is
structured into eight chapters, each addressing a specific aspect of the proposed
solution. An overview of the chapters can be seen in figure 1.1.

Figure 1.1: Application of design science steps by Peffers et al. (2007) to this
thesis

Chapter 1 provides an introduction to the thesis and its objectives.

Chapter 2 identifies the problem this thesis aims to solve, namely identifying the
organisational structure of an organisation to determine which developer works
in which department. This is necessary for tax and management purposes in
organisations using IS and derives the need for a uniform structure to unify
organisational structure data from different systems.

Chapter 3 defines the objectives to the identified problems, which is to propose
a uniform structure and an implementation to map developers to departments.

Chapter 4 outlines the design of the proposed solution, which involves the de-
velopment of a uniform structure for organisational structure data and the im-
plementation of this structure to unify structure data and map developers to
departments.

Chapter 5 describes the implementation of the proposed solution, which involves

2

1. Introduction

applying the algorithms to extract and unify the required data and map de-
velopers to departments.

Chapter 6 demonstrates the effectiveness of the proposed solution by presenting
an exemplary implementation for an Active Directory demonstration system.

Chapter 7 evaluates the proposed solution and checks whether the set goals have
been met.

Chapter 8 concludes the thesis by summarising the key findings, discussing the
strengths and weaknesses of the proposed solution and suggesting areas for future
improvement.

3

1. Introduction

4

2 Problem Identification

As outlined in the thesis motivation, businesses face the need to track individual
developers’ contributions to software projects and aggregate these contributions
at various organisational levels - departmental as well as project levels. Research
proposes two methods for keeping track of developers’ contributions to projects
(Buchner, 2022), (Gurbani et al., 2010). Both fall short regarding aggregating
this information at various organisational levels as needed for tax and budgeting
reasons. Examples of these organisational levels are departments, divisions, and
sections.

The reasons for this gap are the inability to link developers to their departments
and the lack of knowledge about the organisations’ internal structure to aggregate
the data further. Both are necessary to gain the ability to analyse and predict
the contributions of different organisational levels.

The data on the organisational structure must be used to gain the necessary
knowledge about the internal structure of the organisations. This data refers to
the information that outlines the affiliation of employees and the hierarchy within
a company or institution. Organisational structure data needs to be present in
every company for different reasons. The simplest is that every company is re-
quired by law to appoint at least one CEO. Aside from that, organisational
structure data is often used to assign permissions to IT accounts, providing an
overview of the organisation or the previously mentioned budgeting and tax reas-
ons.

The only problem is that this information is presented in a wide variety of forms
and qualities. In order to be able to use the information contained, the structure
and quality of the data available in individual cases must be evaluated first.
Only then could the function of mapping a developer’s contribution to a specific
organisational level be included in existing tools.

The underlying problem is that there is no unified structure for organisational
structure data available that could be implemented into existing tools to solve
the other identified problems.

5

2. Problem Identification

6

3 Objective Definition

The main objective of this master thesis is to pursue a set of interrelated goals that
are central to improving the understanding and management of organisational
structure data. These objectives are methodically developed from the identified
problems as well as the research question and lead to the implementation of a
practical solution.

As a first objective we need to derive the required organisational structure data
from the identified problem: This objective focuses on systematically extracting
the required data elements related to organisational structure. It begins with a
thorough analysis of the underlying problem to ensure that the derived data is
both relevant and critical to solving the identified problems.

Second we need to identify source systems for organisational structure data: A
key element of this thesis is the identification of different sources from which
organisational structure data can be obtained. This involves a comprehensive
investigation of potential data repositories and platforms and assessing their suit-
ability and relevance to our research requirements.

To learn from the years of experience other companies might posses from devel-
oping the identified source systems containing organisational structure data, the
third objective is to analyse the storage structure of these source systems.

The fourth objective is to design a uniform structure to standardise organisa-
tional structure data. This structure should provide a consistent framework for
representing organisational structure data that allows for easier storage and con-
sistent use for analytical purposes. Given the problems mentioned above, the
unified structure should be designed in a way to support these three use cases:

1. Returning the immediate department and all higher-level departments given
a specific contributor

2. Summarising all contributions of developers in the department and all sub-
ordinate departments for a given department

3. Summarising all contributions of developers in the department and all sub-

7

3. Objective Definition

ordinate departments for every department given an organisation

After the uniform structure is created an approach shall be designed how this
structure can be put into action in a way, that every system containing organisa-
tional structure data or a need for it can be connected to the framework. Given
this flexibility, the elements should be standardised so as many code as possible
can be reused for different source or downstream systems.

The final goal is to demonstrate the practical application of the research results
through an exemplary implementation, especially in the context of Active Dir-
ectory (AD). This will serve as a tangible proof-of-concept that illustrates how
the standardised language and data abstraction methods can be used effectively
in a real organisational structure.

In summary, this thesis attempts to bridge the gap between theoretical under-
standing and practical application in the area of organisational structure data
management. By achieving these goals, it aims to contribute to the field by
providing robust methods and tools for organisations to optimise their structural
data analysis and management strategies.

8

4 Solution Design

This chapter presents the solution design, which is divided into two phases. In
phase one, the first identified problem in form of the need for a uniform struc-
ture for organisational structure data will be addressed. The needed information
on an organisation’s structure is derived from the identified problem to solve it.
Therefore a uniform structure will be designed and possible technical implement-
ation option will be discussed. In phase two, a concept for an implementation
of the proposed uniform structure is proposed. This concept uses the uniform
structure from phase one as a critical component.

4.1 Phase 1: Designing a Uniform Structure for
Organisational Structure Data

The goal of phase one is to design a solution addressing objective one, the need
for a uniform structure to store and process organisational structure data. To
achieve the highest quality solution possible, processing is carried out in four
steps:

4.1.1 Derivation of the Required Organisational Structure
Data

In this first step, we will identify which data is needed to gain the ability to
map an individual contributor to every level of a company. For this task, we
will assume the full name and the email address of the contributor are provided,
as shown in the prior researchBuchner (2023). Based on these assumptions, the
problem identified can be broken down into three parts:

1. The affiliation of a developer with his immediate department emphasises
the closest organisational level to which they directly contribute.

2. The connections between departments on different levels, namely the affil-
iation of one department to another.

9

4. Solution Design

Let us consider point one first. For this connection, we need a data field in the
user’s data record containing his immediate department or a list of the associated
employees for every department in the data set. Assuming most organisations
follow some form of a tree-shaped organisational structure, we call a connection
via an entry in the developer’s data record the bottom-up approach, while the
connection via the departments’ employee list will be named the top-down ap-
proach. Which of these approaches works best for the uniform structure is subject
to discussion in step three.

To gain the ability to map the connections between departments, we can similarly
follow a top-down or bottom-up approach: Either the data record for the depart-
ment contains some information about a head department or the information of
subordinate departments to the one currently under examination is needed.

As a base of this mapping, some fundamental data on the employees and the
departments as such is required. Only then can a known contributor - identified
by his full name and email address described above - be mapped to the related
employee in the database. To sum up the contributions on various organisational
levels, we also need some information about the departments to connect here.
We, therefore, need the following additional data:

• Master data of the employees.

• Master data of the departments.

For data protection reasons, this data can be filtered down to the employees and
departments of interest before the data is extracted.

With these two sets of information, a complete connection of a developer to
every level of the organisation is possible as long as one exists. Connections to
other departments the contributor is not directly or indirectly working for are, of
course, neither possible with the described information nor part of the objective
and, therefore, ignored.

4.1.2 Identifying Possible Sources Containing the Required
Data

The next step in designing a uniform data structure is to examine different sys-
tems typically possessed by a company for the required data. To simplify the
scope of this thesis, we limited our search to evaluating three representatives of
three different system types:

• SAP as the most commonly used ERP-System in German companies (19,3%
market share)

• AD as the predominant entity in the domain of directory services respect-

10

4. Solution Design

ively the identity & access management process (>95% market share Ger-
many)

• Salesforce as the most widely used Customer Relationship Management
(CRM)-System in Germany (23% market share) (Statista Research De-
partment, 2024b)

Of course, most companies possess many more IT systems storing parts of the
relevant information or even have organisational structure data in the form of dia-
grams. However, since this would go beyond the scope of this thesis, these possib-
ilities are not further evaluated. Our goal is to design a unified structure capable
of representing a company’s organisational structure through unified data. There-
fore, we can assume that if one system of a kind, e.g. an ERP-System, contains
the needed data, many other systems with similar functions or specifications can
be used as well.

SAP

To start with SAP, some limitations need to be discussed since multiple SAP
versions are used in the market. Every version comes with different modules and
functionalities, so the research results may not be applicable to other versions.
The currently most commonly used SAP version is SAP ECC, which stands for
ERP Central Component; according to the DSAG-Innovation report of 2022,
around 75% of all companies using SAP as their ERP-Systems are using SAP
ECC. Around 4% of these are migrating to the newer SAP S/4HANA every
year since SAP ECC will only be supported by the SAP company until 2027.
Therefore, we will focus on SAP ECC for this research and give a short overview
of SAP S/4HANA.

The relevant SAP module for this research is human resources and organisational
management. For SAP ECC, this module is either SAP Human Capital Man-
agement (HCM) or SAP Human Resources (HR). The latter is the older version,
which only contains the core features. Since all needed data is present in both in
the same way, these differences are no concern to our research.

Our investigations for HCM show that the system is designed to contain all
required data. The mapping of an employee to his immediate department is part
of the sub-module Personal Administration (PA). There, the table PA0002 is used
to store the personal information of every employee, including full name and email
address. Table PA0001 then contains an employee’s connection to his job key
and organisational unit. The latter is the form of SAP storing information about
departments. The connection is structured as a n:m (many-to-many) relationship
table, the standard approach for managing many-to-many relationships between
two tables in a relational database. This approach will be further investigated in
step 3.

11

4. Solution Design

SAP uses the sub-module organisational management (OM) to store information
about organisational units and connect one to another. Table HRP1000 contains
all information about organisational units and objects of the type position, job,
and cost centre. Table HRP1001 contains the connections between two objects
of any type, including the connection between organisational units and organ-
isational units and cost centres. Analogously to Table PA0001, the connection
is structured as an n:m (many-to-many) relationship table between the objects
stored in Table HRP1000.

As a result of this investigation, we need to extract the relevant parts of the four
tables.

• Table PA0002 for personal information about the employees.

• Table PA0001 for the affiliation of an employee to his immediate depart-
ment.

• Table HRP1000 for the master data of the departments.

• Table HRP1001 for the connection between different departments.

How this extraction can be achieved is part of Chapter 5 implementation.

SAP also uses employee groups, employee circles, and cost centres. These might
be crucial for related problems, but our investigations show that these are not
used for employee-department connections. Therefore, this data will not be used
in this thesis.

Active Directory

The second is AD. Similar to SAP, AD is designed to contain all the needed
information. In AD, employees are referred to as entities, while multiple options
exist to map departments in the data. For entities, there are two major AD types:
users and devices. Since our objective concerns the developer’s contributions, we
will only focus on users.

Since the specifics of AD’s internal storage structure are hardly known to the
public, we will refer to the data structure presented by the GRAPH API in this
research. The GRAPH API is one of the primary ways to access and modify
data in AD and is provided directly by Microsoft as a part of the AD system.
Therefore, the data structure presented by this API is the best viewing angle
for our further research in this thesis. Here, the user entity has a number of
attributes assigned to them. These attributes contain the personal information
of the employees they are presenting, including full names and one to many-
email addresses. In addition, the field memberOf can contain the group IDs the
respective employee is assigned to.

12

4. Solution Design

The object’s organisational unit and group can be used for mapping departments
and different hierarchy levels. While organisational units are the primary way
to implement departments of all levels, the groups assign entities in a second-
ary structure. These can, for example, be the assignment of authorisations and
access rights or the mapping of specific skills, e.g. in a matrix organisation as
many consultancies are structured. While these groups might contain informa-
tion about a company’s hierarchy, we will primarily focus on organisational units
due to this separation of functions. Like users, these organisational units contain
several data fields like ID, a given name and most interestingly, a member and a
members field. These are the two fields used to store the connections between two
departments and a member’s connections to a department. Users and other or-
ganisational units can be stored in the members list. We hence have the relevant
data in only two places:

• The user table for the personal information connects a contributor to its
employee data and connecting the employee to his immediate department.

• The table of organisational units responsible for storing the master data
about departments, their sub-departments and assigned employees as well
as the super-ordinate department.

Salesforce

Our last research is on Salesforce, a well-known CRM. Even though this kind of
system is most likely only used by the sales-related departments of an organisa-
tion, Salesforce implemented steps to cover more and more of an organisation.
The latest addition to this is work.com, a platform built to help companies over-
come challenges related to the return to work during the COVID-19 pandemic.
It might, therefore, be worth a look in case the other systems are not present in
a company or the needed tables are not used.

Like SAP, Salesforce structures its data storage as a relational database. Due
to the focus on customer and prospect data, the internal structures are quite
different. Regarding employees, a table user is representing the employees of a
company. It contains personal details as well as a field for a department. On the
other hand, there is no separate table for departments. The functionality of the
existing division table is designed to manage individual sales organisations with
their accounts and leads. The only possibility to map departments to the system
would be to use either a custom object or the accounts table intended for customer
companies. Accordingly, it can be stated that a developer could be found in the
system, mainly if work.com is used, and it might be possible to connect him
to his immediate department. However, connecting to different hierarchy levels
with the available data seems complicated. The conclusion, therefore, is that a
CRM system is not the best place to search for organisational structure data. The

13

4. Solution Design

reasons are that the system is usually only used by the sales-related departments,
and even though Salesforce has already extended this barrier, the needed data is
still lacking. Hence, Salesforce as the market leader is insufficient, and it can be
assumed that other CRM systems also fall short in this regard.

Summary

Finally, it must be said that introducing an SAP or Salesforce system is usually a
major project. Large sums are often spent on specific adaptations of the systems
to the company’s respective processes. For this reason, it is not possible to say
whether the table structure just described exists and is used in all companies that
use these systems. Regarding AD, these adjustments are usually significantly less,
but here, too, the data should be validated in advance for each case.

Therefore, Enterprise Resource Planning (ERP) and directory service systems
should be the first choice when searching for organisational structure data in a
company. Therefore, we will dive deeper into these two systems and perform a
demonstration on AD in Chapter 6.

4.1.3 Analysing the Storage Structure of the Data

To start with this investigation, the first difference that seeks attention is the
difference in the storage models. While SAP and Salesforce use a relational data-
base, AD uses an object-oriented model. The consequence is that AD follows
a hierarchical structure with a domain at the top and all organisational units,
groups, and containers organised below. In contrast, SAP utilises tables that
variably serve as the core of a snowflake-shaped data model. However, it has no
singular central point to which all other objects are subordinate. Instead, the
connection tables PA0001 and HRP1001 explicitly serve as n:m (many-to-many)
relationship tables. This means SAP is designed to reject a tree-shaped structure
of the organisation regarding employee-department connections and department-
department ones. AD follows this example on the level of memberships by struc-
turing the data fields "memberOf" and "members" as lists with potentially more
than one entry. Thereby a many-to-many relationship can be mapped as well. It
is, therefore, fair to say that both systems followed the need to represent more
complex organisational structures, deviating from a purely tree-like structure at
one point. Because of that, our uniform structure also needs to support these
many-to-many relationships.

The second point is that both storage structures allow for easy traversal of the or-
ganisational structure in both directions: Starting from a specific user upwards to
all departments to which he is a direct or indirect member, as well as downwards
from a given department to all sub-departments and subordinate employees. This
feature is also essential when considering the three use cases the uniform struc-

14

4. Solution Design

ture is supposed to support according to Chapter 3: If we have an organisation or
a department given and want to sum up all contributions, a traversal downwards
is necessary. On the other hand, if a user is given and his memberships are to be
discovered, an upward traversal through the organisation is required.

So in conclusion the following two findings can be summarised:

• Both data structures are able to map many-to-many relationships regarding
department-to-department as well as employee-to-department connections.

• Both data structures allow for easy traversal in both directions, upwards
and downwards.

4.1.4 Designing a Uniform Structure

In the final step of phase one, the knowledge gained is used to design a uniform
structure. We will first summarise the most critical cornerstones of requirements
for the uniform structure discovered in the last chapters and sections to make
the most advantageous decisions possible when designing the uniform structure.
From these, we can then derive essential criteria for the uniform structure. We
will look at different implementation possibilities with the criteria and choose the
most optimal combination. As a result, we will get the ideal uniform structure
for organisational structure data.

Cornerstones of Requirements

As the object definition describes, the goal is to design a uniform structure as a
standard. All organisational structure data from different sources must be trans-
lated into a uniform structure. The uniformed data can then be used in any
other system. At the same time, this downstream system needs no further ad-
aptation or knowledge about the system from which the organisational structure
data originates.

Second, the identified problems left us with three use cases the uniform structure
needs to support. As discussed at the end of Chapter 3, these can be summarised
as getting the sum of contributions for various organisational levels and receiving
all immediate or super-ordinate departments for a developer.

We also learned from the analysis of the storage structure in the source systems
that these systems are designed for various complex organisation structures, and,
therefore, these should be accounted for.

As a fourth point, the structure needs to be viable with large data sets of a
couple hundred or even a thousand employees since many companies will have
this size. Regarding software development companies, most of these employees
may be relevant to the identified problems.

15

4. Solution Design

Important Criteria for Design Choices

As a result, the following criteria can be derived:

1. All data identified as necessary in section 4.1.1 must be included.

2. The uniform structure must allow for (efficient) upward and downward
traversal.

3. Many-to-many relationships between all entities must be able to be mapped
in a uniform structure.

4. Memory utilisation and access times must remain low even with complex
structures, ideally independent of the complexity.

The first three criteria must be met for the uniform structure to fulfil the ob-
jectives. The fourth criterion is more continuous since it will not be possible to
map all three use cases in constant time. Therefore, memory requirement and
runtime will be evaluated with the Big O Notation, a mathematical concept used
to classify the complexity of algorithms by giving an upper estimate depending
on the input complexity. The three use cases are the relevant measuring points
for evaluating memory requirement and runtime.

• The query of all departments a given user is a member of, with d being the
number of such departments.

• The sum of all contributions for a department made by developers of this
department.

• The sum for all departments in an organisation, with d being the number
of departments.

Evaluation of Design Possibilities

As identified in 4.1.1, the two main components of the uniform structure will,
on the one hand, be the master data for employees and departments. On the
other hand, the connections between these entities needs to be mapped. For
both categories, different implementations might be best.

To begin with the master data, it becomes obvious that organising this data as
a dictionary with key-value pairs is the best choice. While the identifier for the
master data record (e.g. the employee’s email address) is used as the key, all other
entries can be stored as a sorted list and inserted as the value. These values can
then be organised as a dictionary once again to allow direct access to the data
stored for every entity. There would be a separate dictionary for each type of
entity to consider the differences between users and departments.

16

4. Solution Design

The reason for the superiority of this choice is that dictionaries can be imple-
mented using hash tables. These allow for an average case search, insert and
delete time of O(1) with O(n) storage space needed, given n as the number of
master data entries, e.g. employees or departments. The next best option would
be a balanced binary search tree like an AVL-Tree, an average case search, insert
and delete time of O(logn). The advantages of such trees are the deterministic
performance and storing data in sorted order. Deterministic performance refers
to the fact that these trees keep the time complexity at O(logn) in the best and
worst case, while the worst case time for hash tables is O(n) due to possible
hash collisions. However, since the risk of this worst case can be mitigated using
suitable hash functions and dynamic rescaling of the hash table, and the data
will not be needed in sorted order, a dictionary seems the best choice.

One issue with both concepts is our stipulation that employees should be iden-
tifiable by their full name and email address. Since a hash table only uses one
key and the search in all values needs O(n) time, this poses a problem for the
efficiency of the implementation. There are two reasonable solutions to this issue:
The first is to use the email address as a key and store how an email address is
created for an employee. Since most companies use the full name of the em-
ployee to create the mail address, e.g. philipp.winklmann@companyname.com or
pwinklmann@companyname.com, this should cover most cases while the rest of
the cases can be searched with O(n) in the values. The second option would be
to create two hash tables, one with the email address and one with the full name.
Both lookups will then point to the same stored value data for this employee.
That way, we can use both identifiers as keys and only need to store the keys
twice, not the values.

For mapping the connections between these entities, two different options emerge.
The connections could either be included in the value parts of the master data
dictionary on both sides of the connection, or additional many-to-many connec-
tion tables could be added to map the connections externally. While AD follows
the first approach, SAP sticks with the second option since generations of SAP
systems due to the usage of relational databases. To evaluate these two options
for our use case, we will compare the runtime and storage space needed for both
options and our three use cases. Option one is to be named embedded mapping;
option two is called mapping by a separate association table.

For option one, we would have to add one entry to the user’s value dictionary,
a list of departments to which the user belongs. Three more entries would be
necessary on the department side: one list of employees belonging to this de-
partment and two lists for the super-ordinate and the subordinate departments.
Doing so will implicitly turn all the single entities into graph elements that know
their neighbours.

As well researched in graph theory, the lists can be turned into sets to improve

17

4. Solution Design

performance further. Sets are represented internally as hash maps or balanced
trees and therefore make it possible to query in O(1) in the best and average
case or O(logE) in the case whether a given entity, e.g. department or employee,
is connected to another entity. E is, thereby, the number of connections. The
implementation as a set has no disadvantages for our use case since the time to
visit all connections is still O(E). 1An example for option one can be seen in
table 4.1 representing the organisational structure seen in figure 4.1.

Entity Entries in entity’s master dictionary
Employee 1 Departments = Set(3)
Employee 2 Departments = Set(1)
Employee 3 Departments = Set(1, 2)

Department 1
• Employees = Set(2, 3)
• Subordinate departments = Set(2, 3)
• Super-ordinate departments = Set()

Department 2
• Employees = Set(3)
• Subordinate departments = Set()
• Super-ordinate departments = Set(1, 3)

Department 3
• Employees = Set(1)
• Subordinate departments = Set(2)
• Super-ordinate departments = Set(1)

Table 4.1: Example of an adjacency set to be included in entity’s master data
dictionary

These four sets or lists can then contain only the direct connections or all indirect
connections. The latter would mean we store the immediate department for a
user and all super-ordinate departments to his immediate department. By doing
so, the runtime for the different use cases can be reduced by the cost of requiring
additional storage for storing each department and its connections multiple times.
The same logic can be applied to the connections between departments. This
procedure would imply redundant data storing- a highly unpopular practice due
to the risk of data inconsistency. In addition, the time complexity for adding or
editing data and the required storage would increase. The benefit would be a
reduction of time complexity for lookup operations from O(E) to O(1), i.e. from
linear to constant time.

Looking at the three identified use cases, this choice would mean a reduction in
time complexity for

1Please note that there is a significant distinction between visiting all connections and re-
turning all connections. While visiting all connections has the complexity O(E), returning the
set that contains all connections can be done in O(1) as described in the use case complexities.

18

4. Solution Design

Figure 4.1: Examplary complex organisation structure

• use case one from O(d) to O(1) with d being the number of departments in
the organisation,

• use case two from O(m+d) to O(m) with m being the number of employees
in the organisation, assuming the contributions are already summed up per
employee. Since O(m + d) = O(m), assuming most companies have way
more employees than departments, there is no improvement.

• use case three, there is no reduction in time complexity. The time complex-
ity in both cases is O(m+ d).

Let us briefly examine how these runtime complexities come about. For the use
case, one option, ’only immediate connections stored’, the immediate department
is in the dictionary of the employee master data, and the complexity is, therefore,
O(1). We can get the following super-ordinate department from the immediate
department in O(1) and must traverse up a maximum of d times if d is the number
of departments in the company. Therefore, the complexity is at most O(d). For
option two, ’all connections stored redundancy,’ we need to look up the list of
departments in the employee master data dictionary, which is possible in O(1).
For the use case, two options, ’only immediate connections stored,’ the fastest
way to sum up all contributions is to make use of the fact that every employee
is only to be counted once, even if he is associated with multiple departments.

19

4. Solution Design

We can hence traverse down from the department a maximum of d times and
get the associated employees for every department. Adding them to a unique set
has an average complexity of O(1) since sets can be implemented as hash tables,
similar to dictionaries. Once the unique set of employees is formed, the look-
up of every employee’s contributions will take at most m times O(1) time, with
m being the number of employees at the company. The complexity is, therefore,
O(m+d). Suppose all direct and indirect associated employees are stored in every
department’s value dictionary. In that case, the time is O(m) since only the look-
ups for at most n employees are necessary. The time complexity for use case three
is, in both cases, O(m+d). That is the case because the fastest way is to add the
contributions of the immediate employees for every department in O(m) and then
summarise each department’s sum from the bottom up to calculate the sum of the
following higher department. This implies another d many summations, which
leads to O(m + d). This way is even faster than calculating each department’s
sum in O(m) for option two since this would lead to a total of O(m∗d). To enable
this bottom-up approach, we need to keep track of all departments with no super-
ordinate department above them to start the algorithm from there, perform a full
traverse down and sum up all contributions on the way back up.

In conclusion, we can say that by storing the connections redundantly, there is
only a significant improvement in use case one. In addition, the number of de-
partments in an organisation can be expected to be significantly lower than the
number of employees. The improvement shown is therefore not considered ne-
cessary or relevant enough to justify the data redundancy, the additional storage
needed, or the additional complexity for adding or editing data. Accordingly, we
will use the lists with direct connections only for further comparison.

Next, we will consider option two, ’mapping by separate association table’. For
this, different implementations are also conceivable. Since our problem of map-
ping the connections between entities is very similar to mapping all edges between
nodes in a graph, we will examine which of the well-researched solutions in graph
theory fits our problem.

The first exciting solution in graph theory is an adjacency list or set. An adja-
cency list consists of a collection of lists, where each list contains the adjacent
vertices for one node. This structure is efficient for sparse graphs, as it stores
edges directly connected to each node, allowing for quick access to a node’s neigh-
bours. In an adjacency set, these lists are replaced by sets, allowing for faster
checks on whether a particular node is among the adjacent vertices of another
node. It becomes pronounced that this structure is equal to the option discussed
before, adding the connections directly to an entity’s master data. Adding an
adjacency list would not deliver any benefits and only require additional storage
and slow down the access of an entity’s connections.

The second well-known solution is the adjacency matrix. An adjacency matrix

20

4. Solution Design

is a square matrix used to represent a finite graph. The matrix’s element (i, j)
indicates whether node i and node j are adjacent or not in the graph. The
adjacency matrix is an V xV matrix for a graph with V nodes. Our specific
case with connections between super-ordinate and subordinate departments or
employees that belong to a department is similar to a directed graph. Here,
graph theory shows that the best option is to implement the adjacency matrix
as a binary matrix where (i, j) = 0 if nodes i and j are not connected and
(i, j) = 1 only if j is the super-ordinate department of department i respectively
j the immediate department of employee i. Suppose the edge is directed in the
opposite direction, only (j, i) = 1 while (i, j) = 0. An example of such a table can
be seen in table 4.2. This example would represent the structure seen in figure
4.1.

Department 1 Department 2 Department 3
Employee 1 0 0 1
Employee 2 1 0 0
Employee 3 1 1 0
Department 1 - 0 0
Department 2 1 - 1
Department 3 1 0 -

Table 4.2: Example of an adjacency matrix representing all connections in one
table

One core principle of an adjacency matrix is the lookup of one or all connections
for a given node in O(1), which is usually possible by knowing the order in which
nodes are represented in the matrix. We need to find a workaround to achieve
this for our use case since our data is not naturally contiguous. We can add an
index to the master data for each entity or create one dynamically using a hash
function.

For the particularity of our case, where we have two different entities, an employee
and a department, we can make some changes to the basic concept of an adjacency
matrix. It is unreasonable to create two separate adjacency matrices for the two
connection types because departments play a crucial role in both. The storage
would, therefore, only inflate while the access times would still be O(1). The
better option is to remove the employees from the columns and only add rows for
them since we are neither interested in employee-to-employee relationships nor
can an employee be super-ordinate to a department. The storage space for the
adjacency matrix will therefore be reduced from O((m+n)2) to O((m+d)∗d) =
O(m ∗ d + d2) with d being the number of departments while m is the number
of employees of the organisation. This reduction is quite significant since the
number of employees is usually much larger than the number of departments

21

4. Solution Design

in an organisation. Given this implication, the complexity can be reduced to
O(m ∗ d) by the rules of the Big O Notation.

Two other useful tools to represent a graph known in graph theory are an in-
cidence matrix and an edge list. An incidence matrix is a V xE matrix with V
being all vertices and E being all graph edges. This matrix contains the inform-
ation for all edges whose vertices are adjacent to this edge, thereby creating an
edge-focused graph representation. This is useful for displaying hyper-graphs or
analysing edge-node relationships. This representation is not reasonable for our
use case since the access time for all connections of one entity is complex due
to the nature of the representation. The storage space having a complexity of
O(V xE) is also similar to the complexity of an adjacency matrix, assuming every
employee and most departments have at least one super-ordinate department. An
edge list is a collection of all the edges in a graph, where each edge is represented
as a tuple (or a triplet for the direction in our case) of adjacent nodes. This could
be implemented as a list of triplets for our case at hand, leaving us with a time of
O(E) to check whether a given entity is super- or subordinate to another given
entity. We would organise the list of triplets as a balanced tree or a hash map to
improve this access time. This would improve the average access time to O(1).
The only downside is the access for all connections to a given entity: Due to the
storing of a connection as separate triplets for every connection, we first need to
find the right place in the tree or hash map (O(E)) to then access all connections
(O(n)).

To summarise all this research, we can state that various technical approaches
have different strengths. An overall comparison of all considered implementation
options can be seen in table 4.3. Since it is reasonable to assume that an entity
in an organisation has no more than two super-ordinate departments on average,
our number of edges is more minor than (n ∗ logn), a threshold for a dense graph
in the literature. Therefore, the adjacency matrix cannot fully play its strengths
and is rejected due to the high storage and slower access time for all connections
of an entity. On the other hand, the integrated adjacency list benefits from this
relative sparsity of the graph and impresses with low access times and storage
usage. The edge hash map has a clear lead for the external options with a separate
connection table due to its low complexity in access times and storage.

Conclusion: The Ideal Uniform Structure

As discussed in the last section, implementation has many different possibilities.
Each possibility has its strength in different scenarios. We now want to evaluate
the earlier set criteria and choose the best approach for our uniform structure.

Regarding our criteria the results show that

1. All data identified as necessary in chapter 4.1.1 can be included is all options

22

4. Solution Design

Implementation Test specific
direct con-
nection

Visit all
connections

Storage
space

Set with immediate con-
nections in master data

O(1) O(E) O(E)

Set with all connections
in master data

O(1) O(E) O(E2)

Adjacency matrix O(1) O(E2) O(n2)
Incidence matrix O(E ∗ n) O(E ∗ n) O(E ∗ n)
Edge hash map O(1) O(E + n) O(E)

Table 4.3: Summary of all considered implementations for average case

presented.

2. All options presented allow for (efficient) upward as well as downward tra-
versal.

3. Many-to-many relationships between all entities can be mapped in all op-
tions presented.

4. The best options regarding memory utilisation and access times can be seen
in 4.3.

Therefore the decision comes down to criteria four. Given the above made con-
siderations and assumptions, the most suitable structure emerges distinctly. For
storing the master data for employees and departments, we use dictionaries and
include additional sets to store the connections inside these dictionaries. There-
fore, the final structure for employees and departments can be seen in figure 4.2.
The complexity for this data structure is as shown in table 4.4.

Use case Complexity of pro-
posed structure

Get all departments for a given
user

O(1)

Summarise all contributions
for one given department

O(m+ d)

Summarise all contributions
for every department

O(m+ d)

Storage space complexity O(E)

Table 4.4: Summary of runtime and storage space complexity for predefined
use cases

23

4. Solution Design

Figure 4.2: Overview of the final data structure

4.2 Phase 2: Bringing the Concept to Life - Pro-
posing a Concept to Deploy the Uniform Struc-
ture

A concept is proposed to bring the theoretical concept into action regarding how
a program should be structured to fulfil the defined objects. The implementa-
tion supplied with this thesis will be implemented in the programming language
Python due to multiple advantages. These include among others

• Easy data connection: Python offers strong support for various data
sources and formats, including SQL and NoSQL databases, CSV and Excel
files, and APIs.

• Flexibility and scalability: Python is suitable for small data sets and
large, complex application systems.

• Rich libraries: Python has a large ecosystem of libraries and frameworks
ideal for data manipulation, such as Pandas, SQLAlchemy or NumPy, to
name the basics.

The implementation can also be implemented in any other programming language
using the following description.

24

4. Solution Design

The Structure of the Implementation

The programm will be structured into four main modules:

• Requestor responsible for extracting the data from the data source, i.e.
the source system of the organisational structure data.

• Unifier to transform the data from the data structure of the source system
to the unified structure proposed in this thesis.

• Transformer transforming the uniform data to the required data struc-
ture for the write operation, e.g. a relational data structure to write the
organisational structure data to a SQL database.

• Writer responsible for writing the data to the intended storage location.

This modular system allows users to create new modules for different applica-
tions independently. This can be source systems as well as downstream systems.
Therefore, including new organisational structure data from a new data source
only requires a new Requestor and, most likely, a new Unifier. At the same time,
the existing Transformer and Writer modules can be reused. In addition, not all
modules need to be used. If the data is supposed to be stored in a unified form,
no transformer will be needed. This allows users to extend the implementation
with modules suited for their application.

From these modules, any number can be assembled into pipelines. These pipelines
also define how the data is forwarded from one module to the next inside the
pipeline and allow for fast access to two regularly used modules. Controlling the
program sequence is the orchestrator. It contains the primary method, and here,
all modules and pipelines can be chained together to achieve the desired result.

The implementation supplied with this thesis will contain a Requestor and Unifier
for AD as described in Chapter 6, as well as essential Transformers and Writers
to store the data to a JSON file in the unified structure or the original data
structure of the source system.

The specifics of how the implementation is done will be explained in Chapter 5.

25

4. Solution Design

26

5 Implementation

The goal of this chapter is to focus on the practical implementation of the solution
developed in Chapter 4 "Solution Design". For this specific case, this means
creating a detailed implementation for the abstract solution designed in section
4.2. This is intended to enable the practical use of the uniform structure proposed
in section 4.2. As described abstractly in section 4.2 the main elements of the
implementation are

• modules: The four types of modules Requestor, Unifier, Transformer and
Writer

• pipelines: To connect multiple modules that are frequently used together
into sequential bundles

• orchestrators: The central control units where the modules and pipelines
are chained together to achieve the desired outcome.

5.1 Overview of the Implementation in Detail

Before we give an overview of the implementation, it must be stated that the
structure described in this section was not created for this thesis from scratch.
The MecoIS team provided the basic structure, a project currently in develop-
ment at the Professorship for Open-Source Software at the Friedrich-Alexander
University Erlangen-Nürnberg.

To go into further detail on the implementation, we will start with the overall
folder and package structure. On the highest level are the folders data to store
data, e.g. in flat files and pipelines containing the infrastructure. Inside the
pipeline folder, the following structure emerges:

• controller: A support structure explained further down this chapter.

• doc: For the documentation of the implementation.

• modules: Containing all types of modules.

27

5. Implementation

– requestor

– unifier

– transformer

– writer

• orchestrators: Containing all orchestrators.

• pipelines: For all pipelines.

• schema_files: As explained later, mapping different data structures.

Let us now have a closer look at all the elements starting going from top to
bottom in the folder structure: In the controller folder are the implementations
of the Pipeline class and the PipelineStep class. These two classes provide a
framework for all pipeline implementations in the pipelines folder. The Pipeline
class, named PipelineSteps, is designed to manage and execute workflow steps in
sequential order. It provides mechanisms to coordinate the execution flow and
pass arguments between steps. Key functions include

• Initialisation with options for execution intervals, pipeline name, and loop
mode.

• Dynamic addition of pipeline steps.

• Execution control that supports immediate and interval-based looping ex-
ecution modes.

The PipelineStep class represents single steps within a pipeline, e.g., any named
modules. A step is defined by an object and method to execute. Initial argu-
ments can be passed along and combined with forwarded arguments from the last
pipeline step during execution.

The doc folder only contains the documentation for further insights into the
implementation. The documentation is further discussed in section 5.2.

In the orchestraters folder, any number of orchestraters can be stored. Orches-
traters are the central control units where all the threads come together. These
files work as a pipeline by creating an object of the Pipeline class and filling it
with different steps - pipeline implementations from the pipelines folder or any
module type. Therefore, an orchestrator imports the classes Pipeline and Pipelin-
eStep and all the chosen modules and pipelines. After preparing the pipeline, it
is executed to perform all types of tasks.

Next up are modules. These are the most minor components in the framework,
each performing a single task. They divide the process from extracting the or-
ganisational structure data to storing it in a new structure into four parts, as de-
scribed. Each type has an abstract implementation to ensure the interconnectiv-

28

5. Implementation

ity of different modules and standardise the interfaces and methods required. The
abstract implementation of every module type contains its type-specific method,
e.g. write for Writer, unify for Unifier, etc. Each of these methods gets three
arguments passed along from the pipeline. The first is the PipelineStep that is
currently executed. This enables the implementation to call pipeline_step.next()
on the given argument pipeline_step to execute the next step in a pipeline.
Second, the result of the last module is passed down by the pipeline. This data
was extracted or modified in the last module and is now to be further processed.
The third argument is the initial transfer when the pipeline is created, e.g. in
the orchestrator. Table 5.1 gives an overview of the four module types. A speci-
ality is the Requestor type since it usually starts a pipeline and has no upstream
modules executed before. Therefore, no forward argument is passed along. In
addition, a requestor has four specific methods a developer can choose from when
creating a requestor. These are tailored to the specifics of different request types
and can be used equivalently.

Module type Specific methods Forwarded
argument

Initial argu-
ments

Requestor

• sync_request()
• delta_request()
• async_request()
• schema_request()

- custom_args

Unifier unify() source_data source_schema
Transformer transform() uniform_data target_data
Writer write() content details

Table 5.1: Overview of the module types and their specific methods

In the pipelines folder, all pipelines that developers can create from multiple mod-
ules are managed. A pipeline implementation in this folder serves as an additional
level of abstraction between modules and orchestrators and is very similar to
an orchestrator implementation. There is an abstract_implementation class for
pipelines to ensure that all vital functions are present to enable the interchange
between different modules and pipelines, there is an abstract_implementation
class for pipelines. The abstract setup_pipeline method is defined, which every
pipeline must implement. Additionally, the execute_pipeline method is imple-
mented and ensures the proper execution of the pipeline once an orchestrator
pipeline commands it to do so. A pipeline in an orchestrator can simply be ex-
ecuted using this abstraction level. It will make sure to execute either the specific
function in a module or a subordinate pipeline for every element in the pipeline,
no matter the type. Therefore, every module only needs to call the following
method on the given argument pipeline_step, and it will be executed whether
the next element is a module or a pipeline.

29

5. Implementation

Last, schema files can map data types and names to their respective counterparts
in different data structures. These schema files can be used by either a Unifier
to transform the data structure from the structure of the source system to the
uniform structure or by a Transformer to map data in the uniform structure
to the desired output structure. The files are organised as YAML files divided
into two parts, "NameTypeMapping" and "NameMapping". One file for each
mapping and direction is created and stored in the schema_files folder.

5.2 Documentation

The documentation of the described implementation consists of three parts:
Every file contains documentation comments. These are special comments that
can be used to generate documentation automatically. They describe the file’s
purpose and use of every class and method.

Second, architecture documentation is provided in the doc folder. This provides
a more detailed overview of the described architecture, including the technologies
used, system structure, components, and their interactions.

Third, a basic user guide is provided in the form of a README in the doc folder
to explain the implementation’s further usage and expansion possibilities.

In addition, inline comments are used wherever further explanation of specific
steps is necessary.

5.3 Overview of the Implementation Elements
Provided with this Thesis

For the demonstration of the concepts proposed in this thesis and to give future
users an implementation with all needed basic functionalities, an implementation
is provided with this thesis. Here, we will give an overview of which functionalities
are already implemented and ready to use.

First, the controller for Pipeline and PipelineStep are implemented so pipelines
can be created. Furthermore, the abstract implementations for pipelines and all
four types of modules are provided and can be imported for further creation.
Regarding operative implementations, there are three Requestors to import data
from an AD instance, as well as read data from a JSON file in the source systems
data format (i.e. stored after any source system requestor before processed by
the corresponding Unifier) or in the uniform structure. For Unifiers, there is only
the Unifier from the AD data structure to the uniform structure as needed for
the demonstration in Chapter 6. No Transformers have yet been implemented.
There is one writer to write the given data to a JSON file. For this writer, it

30

5. Implementation

is of no point whether the data is in a uniform structure or the source system
structure.

These modules are chained into two pipelines. The first pipeline, "AD_extract_pipeline",
imports data from AD and stores the raw data in a JSON file. The pipeline
"AD_unify_pipeline" then reads this data from the JSON file, unifies it to the
uniform structure and stores the data to another JSON file.

All these steps are put together in an orchestrator "organisation_orchestrator"
where the pipelines are assembled into the main pipeline, and the necessary con-
nection details for AD and the storage locations for the JSON files are provided
as initial arguments.

Many of the provided elements are described in more detail in Chapter 6. Table
5.2 shows an overview of the provided elements.

Element type Elements provided

Controller • Pipeline
• PipelineStep

Module: Requestor

• abstract_implementation
• AD_Requestor
• raw_JSON_reader
• enriched_JSON_reader

Module: Unifier • abstract_implementation
• AD_Unifier

Module: Transformer abstract_implementation

Module: Writer • abstract_implementation
• JSON_writer

Pipelines
• abstract_implementation
• AD_extract_pipeline
• AD_unify_pipeline

Orchestrators organisation_orchestrator

Table 5.2: Overview of all elements provided with this thesis

5.4 How to Connect to Active Directory and SAP

In order to enable reads to connect to the two systems discussed in detail in
this thesis and in preparation for the demonstration in Chapter 6, we given an
overview of how to connect to AD or SAP and extract the organisational structure
data needed for the identified problems.

31

5. Implementation

Connection to Active Directory

First, we discuss how an AD system can be accessed using the GRAPH API to
retrieve the relevant organisational structure data. This process requires several
steps to extract the data successfully. For short, these steps are:

1. Identify your AD Instance: Begin by determining your organization’s
Azure AD instance, using the unique tenant ID.

2. Register your Application: Register an application within Azure AD to
obtain a client ID and client secret, which are necessary for authentication.

3. Authenticate and Authorize: Utilize OAuth 2.0 to authenticate your
application with Azure AD, acquiring an access token by presenting your
client ID, tenant ID, and client secret.

4. Request Data: Use this access token for every request to the Graph API
as an authentication. Now, you can access specific endpoints, usually start-
ing with ’https://graph.microsoft.com/v1.0/’ followed by the specific data
you want to request. This could be /users for user data and /groups for
departmental information. These are the two main datasets required for
the identified problems above.

5. Extract and Utilize Data: Pass the returned JSON data to the corres-
ponding Unifier to transform the data into a uniform structure.

The appendix has a complete guide on implementing these steps using Python.

Connection to SAP

Regarding SAP systems, data extraction is slightly more complicated. To achieve
a similar live connection to the system, several complicated steps are required that
need to be set up by the administrators of the system:

1. An SAP User needs reading rights to the necessary tables. This user will
later provide access to the data.

2. A RFC module must be created and installed on the SAP system to prompt
the user to extract and store the data on a network drive. This extraction
will be polled by the SAP OPC and performed in chunks. The RFC module
then pseudonyms the data if required and provides it to a client in the
system.

3. In the company’s local system, an on-premise client needs to be set up, e.g.
on a virtual machine to check for extracted data and provide these to an
external system, i.e. the developer’s setup. This client is usually also used
to translate the developer’s requests to RFC.

32

5. Implementation

Since these three elements are complicated to develop, data is usually extracted
as flat files for easier projects, e.g., CSV or Parquet. This can be achieved in two
ways. The first one uses a custom-made ABAP report where all needed tables,
columns, filters and pseudonymisations can be configured. ABAP is the pro-
gramming language for SAP and is needed to create such a report. Alternatively,
there are creators on the internet that can be used by uploading an Excel file
with the specifications. This method is preferred for large amounts of data. The
even easier way is to ask a user with access to the SAP system to export the files
manually using SAP SE16N transaction. Here, all parameters can be configured
as well, and the results can be downloaded as Excel or CSV files. Since this
method only allows one extraction at a time, it is a more time-consuming way
for larger data sets.

33

5. Implementation

34

6 Demonstration

This chapter aims to demonstrate the proposed solutions using organisational
structure data from an Active Directory demonstration system as an example.
At this moment, we will demonstrate both the uniform structure designed in
section 4.1 as well as the implementation concept designed in section 4.2 and
discussed in detail in Chapter 5.

The proposed architecture from section 4.2 will be used to build a Requestor
and a Unifier for AD. The Requestor will use the GRAPH API provided by
Microsoft to access the data from the AD demonstration system and pull the in
section 4.1.1 identified data into the system. The Unifier will transform the data
into the uniform structure proposed in section 4.1.4. In addition, a Writer will
be implemented to store the uniform data to a JSON file.

6.1 Extraktion of the Data from Active Directory

The complete guide on how to extract data from an Active Directory System using
Python can be found in Appendix 1, but here are the basic steps for overview:

1. Identify your AD Instance: Begin by determining your organization’s
Azure AD instance, using the unique tenant ID.

2. Register your Application: Register an application within Azure AD to
obtain a client ID and client secret, which are necessary for authentication.

3. Authenticate and Authorize: Utilize OAuth 2.0 to authenticate your
application with Azure AD, acquiring an access token by presenting your
client ID, tenant ID, and client secret.

4. Request Data: Use this access token for every request to the Graph API
as an authentication. Now, you can access specific endpoints, usually start-
ing with ’https://graph.microsoft.com/v1.0/’ followed by the specific data
you want to request. This could be /users for user data and /groups for
departmental information. These are the two main datasets required for
the identified problems above.

35

6. Demonstration

5. Extract and Utilize Data: Pass the returned JSON data to the corres-
ponding Unifier to transform the data into a uniform structure.

Once these steps are complete and the requests for users and groups was success-
ful, the following data were output from the AD demonstration system:

Example for one user:

{
"businessPhones": [],
"displayName": "Conf Room Adams",
"givenName": null,
"jobTitle": null,
"mail": "Adams@M365x214355.onmicrosoft.com",
"mobilePhone": null,
"officeLocation": null,
"preferredLanguage": null,
"surname": null,
"userPrincipalName": "Adams@M365x214355.onmicrosoft.com",
"id": "6e7b768e-07e2-4810-8459-485f84f8f204"

}

Example for one organisational unit:

{
"id": "06f62f70-9827-4e6e-93ef-8e0f2d9b7b23",
"deletedDateTime": null,
"classification": null,
"createdDateTime": "2017-07-31T17:38:15Z",
"creationOptions": [],
"description": "Video Production",
"displayName": "Video Production",
"expirationDateTime": null,
"groupTypes": [

"Unified"
],
"isAssignableToRole": null,
"mail": "VideoProduction@M365x214355.onmicrosoft.com",
"mailEnabled": true,
"mailNickname": "VideoProduction",
"membershipRule": null,
"membershipRuleProcessingState": null,
"onPremisesDomainName": null,
"onPremisesLastSyncDateTime": null,

36

6. Demonstration

"onPremisesNetBiosName": null,
"onPremisesSamAccountName": null,
"onPremisesSecurityIdentifier": null,
"onPremisesSyncEnabled": null,
"preferredDataLocation": null,
"preferredLanguage": null,
"proxyAddresses": [

"SMTP:VideoProduction@M365x214355.onmicrosoft.com",
"SPO:SPO_16219fd2-fafd-4fea-8084-8b5eaa8c5ad2@SPO_dcd219dd-bc68-4b9b-bf0b-4a33a796be35"

],
"renewedDateTime": "2017-07-31T17:38:15Z",
"resourceBehaviorOptions": [],
"resourceProvisioningOptions": [],
"securityEnabled": true,
"securityIdentifier": "S-1-12-1-116797296-1315870759-261025683-595303213",
"theme": null,
"visibility": "Public",
"onPremisesProvisioningErrors": [],
"serviceProvisioningErrors": []

}

Further examples can be found in Appendix 2.

6.2 Unification of the Extracted Data

In the second part of the demonstration the above extracted data is to be unified.
For this purpose two master data dictionaries with structures according to the
uniform structure that was designed in section 4.1.4 are created. Now for employ-
ees and departments two different methods are started each in sequential order.
The first method maps all data fields for the extracted users and departments to
their new names and data types using the "AD_to_unified_schema_mapping.yml"
schema file. If the lookup in this file doesn’t result in a match the data field is
either copied as is or not copied at all - dependent on the modules configuration.

Afterwards the connections are transformed into the proposed target structure.
Since AD already uses a quite similar solution, this is a fairly simple task.

After applying these two steps the data now exists in uniform structure and can
be stored or transformed to a target structure while the original export can be
deleted.

37

6. Demonstration

38

7 Evaluation

In the concluding phase of the design science research methodology, the crucial
task is to assess if the created artefacts, in this thesis, the uniform structure and
the implementation approach, effectively address the initially identified problem,
as outlined by Peffers et al. (2007). Therefore, this chapter first describes the
evaluation methods used in section 7.1. Section 7.2 presents this evaluation’s
results, while the following sections will discuss the practical implications of this
research, its applicability and expandability, and its limitations.

7.1 Evaluation Methodology

We employ a qualitative approach to evaluate the effectiveness of the concepts
proposed in this thesis, namely the uniform structure and its implementation
approach. Our primary goal was to create a uniform structure for organisational
structure data to close the gap between known contributions on individual levels
and the need to aggregate these on various levels of the organisation. We therefore
evaluate the following aspects:

• Fulfilment of the objectives set in Chapter 2 "Object definition" and espe-
cially of the derived use cases.

• Compliance with the criteria established in the course of the research.

• Compatibility test with the data from suitable systems.

• Integration test with existing tools.

• Evaluation of whether the identified problems can be solved with the pro-
posed solution

7.2 Evaluation Results

This section presents and discusses the evaluation results, subdivided into the
different aspects described in the methodology section above. The evaluation

39

7. Evaluation

includes results for both proposed parts, the uniform structure, and the imple-
mentation approach. The evaluation yielded the following results:

7.2.1 Fulfilment of the Set Objectives

The first objective defined in Chapter 2 two is deriving the required organisational
structure data from the identified problem. This objective was achieved in section
4.1.1 with the results being that four sets of data are needed to achieve further
objectives. These four sets are the department-to-department connections, the
employee-to-department connections, and the master data records for employees
and departments.

Second, reliable sources for organisational structure data were to be identified.
This objective was addressed in section 4.1.2. Even though two suitable sources
were identified in the form of AD and SAP, only three possible sources were eval-
uated. This, for sure, is a point where further development would be appropriate.
On the other hand, our results show that some types of frequently used systems
in an organisation contain the necessary data, and derived from the identified
problems, it is most likely that a company knows where to find organisational
data once the problem occurs.

As a third objective, a unified structure was to be designed so that it would sup-
port the three derived use cases. These use cases were "Returning the immediate
department and all higher-level departments given a contributor", "Summarising
all contributions of developers in the department and all subordinate departments
for a given department", and "Summarising all contributions of developers in the
department and all subordinate departments for every department given an or-
ganisation". For this objective, a uniform structure was designed in Chapter 4
that supports all three use cases. For the first use case, the immediate depart-
ments can be obtained in the employee’s master data record, and all higher-level
departments can be identified by traversing the tree-like structure upwards. This
can be done using the list of super-ordinate departments in every department’s
master data record. Use cases two and three can be achieved by a similar strategy
in reverse order. Therefore, the start is either the specified department (use case
two) or all departments with no super-ordinate department stored in a list. From
there, all immediate employees will be extracted using the employee set in the
department’s master data record, while the subordinate department’s list is used
to traverse the structure downwards and repeat the process with all subordinate
departments. Once a list of employees in the substructure under consideration is
complete, all contributions can be summed up. This procedure, of course, bears
the risk that additional use cases must be supported to resolve the identified
problems for specific organisations. Further research with different objectives
and specific problems should be conducted to minimise this risk.

40

7. Evaluation

The last objective was to implement the proposed approach for Active Directory
as a demonstration. This was achieved in Chapter 6 "Demonstration" and will
be discussed further down in this chapter.

7.2.2 Compliance to Established Criteria

Based on the prior research and findings, we created four cornerstones of require-
ments in section 4.1.4 and derived four essential criteria for design choices to give
us a guideline on what to consider when deciding which implementation option
is best for our use case based on its set of advantages and disadvantages. We will
now check whether these criteria can all be met in the proposed solution.

Criteria one demands that all data identified as necessary in section 4.1.1 must
be included in the uniform structure. These four types are the department-to-
department connections, the employee-to-department connections, and the mas-
ter data records for employees and departments. All four of these data sets are
included in the proposed final structure. While the master data records were
adopted, the connection data was included in the master data dictionaries for
employees and departments. The criteria are, therefore, fully met.

Based on the bidirectional use cases, the second criterion was that the uniform
structure must allow for (efficient) upward and downward traversal. This is
achieved by permanently storing a connection in both adjacent nodes. While
employees store their immediate departments, departments store their imme-
diate employees and their subordinate and super-ordinate departments. This
allows for traversal in both directions in O(n) from top to bottom or reverse.
This represents the best possible time for visiting every node. The only faster
way would be to store all indirect connections and jump directly to the intended
target. However, we will consider the criteria successful since this was discussed
in section 4.1.4 and rejected.

The third criterion was to enable the mapping of many-to-many relationships
between all entities. Because every entity stores all of its connections and these
storage fields are all organised assets, it must be possible for every entity to store
more than one connection per connection type. Accordingly, the criteria are met.

Criteria four demands low memory utilisation and access times. This topic was
intensively discussed in section 4.1.4 since all of the other three criteria could
easily be achieved by all reviewed solutions. Based on the assumptions made in
this section, the best option was selected. We therefore believe that the criteria
were met as best as possible. Considering that only three companies were em-
ploying more than 1.000.000 people in the financial year 2022/23, it is reasonable
to assume that a runtime complexity of O(m + d) will result in sufficient access
times for the identified problems (Statista Research Department, 2024a).

41

7. Evaluation

7.2.3 Compatibility Test with Real Data

In Chapter 6 tested the unified structure’s compatibility with data extracted
from Active Directory, representing one of the identified sources of organisational
structure data. This involved mapping data fields from these systems to our
uniform structure. No data loss or distortion has occurred.

While our mapping using schema_files is a safe method in theory, it still raises a
larger question: Should there be any safety measures to detect incorrect or missing
data before a data source can add it to a pool of unified organisation structure
data? This question is an essential topic regarding practical implementations and
usability and should be addressed in further research!

7.2.4 Integration Test with Existing Tools

A seamless integration with existing tools is essential for a tool to obtain practical
impact. Two interfaces must be considered for our proposed solutions:

The source systems for organisational structure data and the downstream systems
using the results for further applications. Regarding the access of the examined
source data systems, we discussed how to import data from SAP or AD in section
5.4. We have seen that SAP is not the most straightforward system to obtain
data from, while AD poses more considerable challenges.

Therefore, this side of the integration seems twofold and should be evaluated in
individual cases once they occur. Regarding the downstream systems, research
has yet to be conducted. However, for both connection types, the modality of the
proposed solution and the large number of libraries available for Python offer a
massive flexibility with which almost every data source and downstream system
should be able to be connected.

7.2.5 Evaluation of the Impact on Identified Problems

The identified problems in Chapter 1 stated that developers cannot be connec-
ted to their departments. This problem is resolved by storing the immediate
departments a developer belongs to.

Next the problem is presented, that an organisational must be able to sum up the
contributions of developers to various levels of the organisation. This problem is
presented by the second of the three use cases discussed in detail and therefore
resolved.

The next two problems belong together. It is stated, that the above mentioned
problems are not easily solvable because organisational structure data exists in
various different forms and there is no unified structure for organisational struc-

42

7. Evaluation

ture data, These two problems are resolved by definition by designing a uniform
structure and proposing an approach to implement this structure.

7.2.6 Summary of the results

In summary, it can be stated that the chapter outlines the successful design
and implementation of a uniform structure for organisational structure data,
demonstrating its practicality, compliance with established criteria, and ability
to solve identified problems. Still there is a lot of room for further research at it
is suggested above.

7.3 Practical Implications of the Research

Regarding the practical use of this research, the results are twofold. On the one
hand, only a few ready-to-use implementation elements exist. Only the data
source Active Directory can be connected now, and the results can only be stored
in a JSON file. Therefore, the practical usability could be improved in its current
state of implementation.

On the other hand, the current implementation served primarily as a proof of
concept and was never expected to be ready to be shipped to companies for
daily use. Conversely, the theoretical concept is fully developed and can be
applied to any data source. This, together with the modular structure of the
implementation, makes it easy for future users to use the current results as a
sound basis and develop their own data connections for their specific use cases.

7.4 Limitations of the Proposed Solution

Of course, limitations are always essential to evaluating a proposed solution since
it is important to know under which circumstances the results may differ from
those achieved in this thesis. When it comes to the limitations of this research,
there are quite a few topics that have to be discussed:

First, the technical realisation of the proposed ideal uniform structure relies on
assumptions. Companies with many more departments than employees in the
data system or companies where every user is assigned to more than two depart-
ments on average. The latter could be a consultancy, often organised as matrix
structures. Therefore, section 4.1.4 should be re-read before the uniform struc-
ture is deployed on any new set of entities. The results depend on divergent
variables, so other options can be chosen if the assumptions are incorrect for a
specific use case.

43

7. Evaluation

A second limitation is that only digitised data with an inherent structure can
be used for this uniform structure. Many companies may use an organisational
structure drawn on paper or one Excel file for all relationships. In these cases,
unifying can get very hard if, for example, the Excel file does not follow an
inherent structure but is drawn arbitrarily.

Next, we only inspected the data structure of two systems containing organisa-
tional structure data. Many more should be inspected to uncover exceptional
cases, differentiations, or limitations yet to be considered. Systems designed for
specific industries might contain additional structures or specialities important
to their sector. Therefore, in future research, many more systems should be
examined, and further findings should be included in the uniform data structure.

A speciality to the last limitation is that no systems were inspected, focusing
only on a company’s Human Resources section. These systems will undoubtedly
contain organisational structure data and might be the systems most specified
for representing a company’s structure.

Lastly, a very important limitation is that no combination of data from different
systems was discussed. Employee-specific data is still a significant problem in the
industry; it is scattered across multiple systems and needs to be consolidated. For
this task, the uniform structure is the perfect solution. However, once data from
different data sources is combined, new problems emerge, like how the data sets
can be connected. Usually, every system has its own way of creating a unique
ID for every entity. Matching these IDs can be tricky at times. Apart from that,
the data formats might not match, e.g. the date format or the accuracy with
which timestamps are specified, the contained information can be contradictory
or inconsistent and much more. These familiar issues should be addressed in
future research to enable combining data from different source systems.

44

8 Conclusion

In this thesis, we set out to address the complexity of managing organisational
structure data in inner-source software development. Through careful research
and development, we have developed a novel, uniform structure to standard-
ise and unify the storage and processing of organisational data. As a result,
we proposed a uniform structure and an implementation approach to address
the identified problems. These artefacts were later demonstrated and evaluated.
Even though several limitations were revealed, the evaluation showed that the
proposed solution could solve many, if not all, of the problems identified.

Our contribution to science and business is twofold. First, we have presented
a comprehensive analysis and solution to the difficulties of organising and using
corporate data - a topic that, while not groundbreaking in its novelty, is a signific-
ant area of concern for many companies. Even simple tasks such as maintaining
consistent data records for every employee or consolidating existing data from dif-
ferent systems cause problems for companies in our modern and digitised world.
Our approach provides a structured methodology to mitigate this challenge and
improve efficiency and clarity in handling such data.

Thinking critically about this thesis, it becomes clear that while progress was
made in solving some fundamental problems, the topic of organisational data
management is large and complex. While our solution is theoretically finished, it
is only a step towards a more integrated and universally applicable system. The
limitations identified in this work, particularly in terms of integration with exist-
ing systems and extension to different use cases, underline the need for further
research and development.

The possible applications and extensions of this work are huge. Different use
cases may require different design decisions, providing opportunities for future
research to develop the unified structure proposed in this thesis further. Further-
more, when thinking about the applications of the uniform structure, the idea
comes to mind that this system could be extended to a knowledge database about
employees. With this, different tasks could be performed, from employee eval-
uation to analysing the hire-to-retire process. These applications are currently

45

8. Conclusion

impossible because it is hard to consolidate all data points for employees, who
are often scattered across many systems.

This work lays the foundation for a more unified approach to managing organ-
isational structure data. It provides insights and solutions to a problem that
challenges organisations worldwide. Looking to the future, it is clear that the
path to seamless integration and use of organisational data still needs to be com-
pleted.

46

Appendices

47

Appendix A: Guide to Accessing the MS Graph API with Python

A Guide to Accessing the MS Graph API with
Python

A.1 Creating an Access Point

1. Go to https://portal.azure.com and log in if necessary.

2. Search for "App registrations" and create a new registration at the top left.

3. Choose a name and select option 3 "Accounts in any organizational direct-
ory + personal accounts" under "Supported account types" – this is the
most flexible option keeping all options open for the future.

4. The Redirect URI is only required if you want to use OAuth2; otherwise,
leave it blank and confirm the registration.

A.2 Settings in the Access Point

1. You will be taken to the page of your access point. You can find this page
again later by searching for "App registrations". Your access point will now
be listed.

2. Several settings need to be configured. Let’s start with Authentication:
Select "Authentication" on the left menu, scroll down, and set both to
YES under "Advanced settings". Without YES at "Allow public client
flows", Python access did not work.

3. Certificates and secrets: Here, you must create a new client secret key and
copy the "Value".
WARNING: You only need the "Value", but you can see it only once at
the start and cannot display it again!

4. API Permissions: In this menu, you can set what you can access with this
access point. Select "Add permissions" and find out all the necessary per-
missions.
WARNING: To enable access with the Python code presented here, "Ap-
plication permissions" are required. We access in the background since
this does not require a separate Microsoft account linked with the tenant.
Therefore, "Delegated permissions" are not sufficient unlike described in
99% of the guides!
The important permissions can be found under "Graph API" (Maximum
30 per access point!). To preview things, I recommend the Graph Explorer:
https://developer.microsoft.com/en-us/graph/graph-explorer

49

https://portal.azure.com
https://developer.microsoft.com/en-us/graph/graph-explorer

Appendix A: Guide to Accessing the MS Graph API with Python

5. After adding permissions, they must be granted by clicking "Grant ad-
min consent for ’MSFT’". WARNING: If you do not have the necessary
permissions, you must grant them in the Admin Portal (partly possible
yourself!). Go to https://admin.microsoft.com and check under Users.

A.3 Access via Python

1. Required IDs: We stay in Azure and go to the "Overview" menu item.
There we need the following IDs:

(a) Application ID (Client): This is the ID of your access point and tells
Microsoft which access point you want to use.

(b) Directory ID (Tenant): Otherwise described in most Microsoft admin
portals as "Tenant ID". It indicates which tenant you want to access.

(c) Client Secret ID: The ID we created in point 3 of the settings under
"Certificates and Secrets".

2. The Python script in the appendix is fully functional and gives you a rough
idea of how you can access the Graph API. Replace the three IDs in the
main method with 1a-c and run the script as a test.

A.4 Appendix: Python Script

import msal
import requests

def get_token(client_id, tenant_id, client_secret):
authority = f"https://login.microsoftonline.com/{tenant_id}"
app = msal.ConfidentialClientApplication(

client_id, authority=authority,
client_credential=client_secret)

result = app.acquire_token_silent(
["https://graph.microsoft.com/.default"], account=None)

if not result:
result = app.acquire_token_for_client(

scopes=["https://graph.microsoft.com/.default"])
if ’access_token’ in result:

print(result[’access_token’])
return result[’access_token’]

else:
print(f"Could not acquire token: {result}")
return None

50

https://admin.microsoft.com

Appendix A: Guide to Accessing the MS Graph API with Python

def call_graph_api(token):
graph_endpoint = ’https://graph.microsoft.com/v1.0/users’
headers = {

’Authorization’: f’Bearer {token}’,
’Accept’: ’application/json’,
’Content-Type’: ’application/json’,

}
response = requests.get(graph_endpoint, headers=headers)
if response.status_code == 200:

return response.json()
else:

print(f"Graph API call failed: {response}")
return None

def main():
client_id = ’YOUR CLIENT ID’
tenant_id = ’YOUR TENANT ID’
client_secret = ’YOUR SECRET CLIENT ID’
token = get_token(client_id, tenant_id, client_secret)
if token:

data = call_graph_api(token)
print(data)

if __name__ == "__main__":
main()

A.5 Appendix: Error Handling

This section briefly addresses the errors encountered:

1. HTTP Status Code 400 “Bad Request” indicates the server has interpreted
your request as invalid and cannot process it. This is likely an external
error. Check the following possible causes:

(a) Ensure you are calling the correct endpoint. The endpoint
‘https://graph.microsoft.com/v1.0/me‘ returns information about the
currently authenticated user. However, if you are using the client
credentials flow, there may not be a "current user". Try calling an
endpoint that does not require user interaction, such as
‘https://graph.microsoft.com/v1.0/users‘.

(b) Check if your app registration in Azure has the necessary permissions
to call the Graph API. Ensure you have granted the correct application
permissions in Azure and assigned these permissions.

51

Appendix A: Guide to Accessing the MS Graph API with Python

(c) Ensure the access token you are using is valid. You might want to
print the token and verify it with a JWT decoder.

2. HTTP Status Code 403 “Forbidden” means the server understands your
request but refuses it. With the Microsoft Graph API, this usually occurs
when you do not have the required permissions to access the requested
resource. Check the following three steps:

(a) App permissions: The access point does not have the necessary access
rights → Refer to “Settings Item 4”.

(b) Token has requested the wrong permissions → Refer to “Settings Item
4 CAUTION” → ‘/.default‘ always accesses everything that has been
released. If you use something different, you can use jwt.io or jwt.ms
to analyze your token.

(c) Other causes: Requested resource (in request.get() in
call_graph_api()), API version (the v1.0 in graph_endpoint in
call_graph_api()).

52

Appendix B: Results for Data Extract from Active Directory Demonstration
System

B Results for Data Extract from Active Directory
Demonstration System

To allow a more detailed examination of the Active Directly data structure, the
following appendix contains the results from our demonstration system.

B.1 Results for Users of the Organisation

This is only a selection of the results. The selection was made because further
results didn’t contain additional information about the data structure.

{
"@odata.context": "https://graph.microsoft.com/v1.0/$metadata#users",
"value": [

{
"businessPhones": [

"8006427676"
],
"displayName": "MOD Administrator",
"givenName": "MOD",
"jobTitle": null,
"mail": "admin@M365x214355.onmicrosoft.com",
"mobilePhone": "5555555555",
"officeLocation": null,
"preferredLanguage": "en-US",
"surname": "Administrator",
"userPrincipalName": "admin@M365x214355.onmicrosoft.com",
"id": "5bde3e51-d13b-4db1-9948-fe4b109d11a7"

},
{

"businessPhones": [
"+1 858 555 0110"

],
"displayName": "Alex Wilber",
"givenName": "Alex",
"jobTitle": "Marketing Assistant",
"mail": "AlexW@M365x214355.onmicrosoft.com",
"mobilePhone": null,
"officeLocation": "131/1104",
"preferredLanguage": "en-US",
"surname": "Wilber",

53

Appendix B: Results for Data Extract from Active Directory Demonstration
System

"userPrincipalName": "AlexW@M365x214355.onmicrosoft.com",
"id": "4782e723-f4f4-4af3-a76e-25e3bab0d896"

},
{

"businessPhones": [
"+1 262 555 0106"

],
"displayName": "Allan Deyoung",
"givenName": "Allan",
"jobTitle": "Corporate Security Officer",
"mail": "AllanD@M365x214355.onmicrosoft.com",
"mobilePhone": null,
"officeLocation": "24/1106",
"preferredLanguage": "en-US",
"surname": "Deyoung",
"userPrincipalName": "AllanD@M365x214355.onmicrosoft.com",
"id": "c03e6eaa-b6ab-46d7-905b-73ec7ea1f755"

},
{

"businessPhones": [],
"displayName": "Conf Room Baker",
"givenName": null,
"jobTitle": null,
"mail": "Baker@M365x214355.onmicrosoft.com",
"mobilePhone": null,
"officeLocation": null,
"preferredLanguage": null,
"surname": null,
"userPrincipalName": "Baker@M365x214355.onmicrosoft.com",
"id": "013b7b1b-5411-4e6e-bdc9-c4790dae1051"

},
{

"businessPhones": [
"+1 732 555 0102"

],
"displayName": "Ben Walters",
"givenName": "Ben",
"jobTitle": "VP Sales",
"mail": "BenW@M365x214355.onmicrosoft.com",
"mobilePhone": null,
"officeLocation": "19/3123",
"preferredLanguage": "en-US",
"surname": "Walters",

54

Appendix B: Results for Data Extract from Active Directory Demonstration
System

"userPrincipalName": "BenW@M365x214355.onmicrosoft.com",
"id": "f5289423-7233-4d60-831a-fe107a8551cc"

},
{

"businessPhones": [],
"displayName": "Brian Johnson (TAILSPIN)",
"givenName": "Brian",
"jobTitle": null,
"mail": "BrianJ@M365x214355.onmicrosoft.com",
"mobilePhone": null,
"officeLocation": null,
"preferredLanguage": null,
"surname": "Johnson",
"userPrincipalName": "BrianJ@M365x214355.onmicrosoft.com",
"id": "e46ba1a2-59e7-4019-b0fa-b940053e0e30"

},
{

"businessPhones": [
"+1 858 555 0111"

],
"displayName": "Christie Cline",
"givenName": "Christie",
"jobTitle": "Sr. VP Sales & Marketing",
"mail": "ChristieC@M365x214355.onmicrosoft.com",
"mobilePhone": null,
"officeLocation": "131/2105",
"preferredLanguage": "en-US",
"surname": "Cline",
"userPrincipalName": "ChristieC@M365x214355.onmicrosoft.com",
"id": "b66ecf79-a093-4d51-86e0-efcc4531f37a"

},
{

"businessPhones": [],
"displayName": "Conf Room Crystal",
"givenName": null,
"jobTitle": null,
"mail": "Crystal@M365x214355.onmicrosoft.com",
"mobilePhone": null,
"officeLocation": null,
"preferredLanguage": null,
"surname": null,
"userPrincipalName": "Crystal@M365x214355.onmicrosoft.com",
"id": "8528d6e9-dce3-45d1-85d4-d2db5f738a9f"

55

Appendix B: Results for Data Extract from Active Directory Demonstration
System

},
{

"businessPhones": [
"+1 425 555 0105"

],
"displayName": "Debra Berger",
"givenName": "Debra",
"jobTitle": "Administrative Assistant",
"mail": "DebraB@M365x214355.onmicrosoft.com",
"mobilePhone": null,
"officeLocation": "18/2107",
"preferredLanguage": "en-US",
"surname": "Berger",
"userPrincipalName": "DebraB@M365x214355.onmicrosoft.com",
"id": "d4957c9d-869e-4364-830c-d0c95be72738"

},
{

"businessPhones": [
"+1 205 555 0108"

],
"displayName": "Diego Siciliani",
"givenName": "Diego",
"jobTitle": "CVP Finance",
"mail": "DiegoS@M365x214355.onmicrosoft.com",
"mobilePhone": null,
"officeLocation": "14/1108",
"preferredLanguage": "en-US",
"surname": "Siciliani",
"userPrincipalName": "DiegoS@M365x214355.onmicrosoft.com",
"id": "24fcbca3-c3e2-48bf-9ffc-c7f81b81483d"

}
]

}

B.2 Results for All Users of the Organisation

This is only a selection of the results. The selection was made because further
results didn’t contain additional information about the data structure.

"value": [
{

"id": "02bd9fd6-8f93-4758-87c3-1fb73740a315",

56

Appendix B: Results for Data Extract from Active Directory Demonstration
System

"deletedDateTime": null,
"classification": null,
"createdDateTime": "2017-07-31T18:56:16Z",
"creationOptions": [

"ExchangeProvisioningFlags:481"
],
"description": "Welcome to the HR Taskforce team.",
"displayName": "HR Taskforce",
"expirationDateTime": null,
"groupTypes": [

"Unified"
],
"isAssignableToRole": null,
"mail": "HRTaskforce@M365x214355.onmicrosoft.com",
"mailEnabled": true,
"mailNickname": "HRTaskforce",
"membershipRule": null,
"membershipRuleProcessingState": null,
"onPremisesDomainName": null,
"onPremisesLastSyncDateTime": null,
"onPremisesNetBiosName": null,
"onPremisesSamAccountName": null,
"onPremisesSecurityIdentifier": null,
"onPremisesSyncEnabled": null,
"preferredDataLocation": null,
"preferredLanguage": null,
"proxyAddresses": [

"SMTP:HRTaskforce@M365x214355.onmicrosoft.com",
"SPO:SPO_896cf652-b200-4b74-8111-c013f64406cf@SPO_dcd219dd-bc68-4b9b-bf0b-4a33a796be35"

],
"renewedDateTime": "2020-01-24T19:01:14Z",
"resourceBehaviorOptions": [],
"resourceProvisioningOptions": [

"Team"
],
"securityEnabled": false,
"securityIdentifier": "S-1-12-1-45981654-1196986259-3072312199-363020343",
"theme": null,
"visibility": "Private",
"onPremisesProvisioningErrors": [],
"serviceProvisioningErrors": []

},
{

57

Appendix B: Results for Data Extract from Active Directory Demonstration
System

"id": "06f62f70-9827-4e6e-93ef-8e0f2d9b7b23",
"deletedDateTime": null,
"classification": null,
"createdDateTime": "2017-07-31T17:38:15Z",
"creationOptions": [],
"description": "Video Production",
"displayName": "Video Production",
"expirationDateTime": null,
"groupTypes": [

"Unified"
],
"isAssignableToRole": null,
"mail": "VideoProduction@M365x214355.onmicrosoft.com",
"mailEnabled": true,
"mailNickname": "VideoProduction",
"membershipRule": null,
"membershipRuleProcessingState": null,
"onPremisesDomainName": null,
"onPremisesLastSyncDateTime": null,
"onPremisesNetBiosName": null,
"onPremisesSamAccountName": null,
"onPremisesSecurityIdentifier": null,
"onPremisesSyncEnabled": null,
"preferredDataLocation": null,
"preferredLanguage": null,
"proxyAddresses": [

"SMTP:VideoProduction@M365x214355.onmicrosoft.com",
"SPO:SPO_16219fd2-fafd-4fea-8084-8b5eaa8c5ad2@SPO_dcd219dd-bc68-4b9b-bf0b-4a33a796be35"

],
"renewedDateTime": "2017-07-31T17:38:15Z",
"resourceBehaviorOptions": [],
"resourceProvisioningOptions": [],
"securityEnabled": true,
"securityIdentifier": "S-1-12-1-116797296-1315870759-261025683-595303213",
"theme": null,
"visibility": "Public",
"onPremisesProvisioningErrors": [],
"serviceProvisioningErrors": []

},
{

"id": "0a53828f-36c9-44c3-be3d-99a7fce977ac",
"deletedDateTime": null,
"classification": null,

58

"createdDateTime": "2017-09-02T02:54:25Z",
"creationOptions": [

"YammerProvisioning"
],
"description": "Marketing Campaigns",
"displayName": "Marketing Campaigns",
"expirationDateTime": null,
"groupTypes": [

"Unified"
],
"isAssignableToRole": null,
"mail": "marketingcampaigns@M365x214355.onmicrosoft.com",
"mailEnabled": true,
"mailNickname": "marketingcampaigns",
"membershipRule": null,
"membershipRuleProcessingState": null,
"onPremisesDomainName": null,
"onPremisesLastSyncDateTime": null,
"onPremisesNetBiosName": null,
"onPremisesSamAccountName": null,
"onPremisesSecurityIdentifier": null,
"onPremisesSyncEnabled": null,
"preferredDataLocation": null,
"preferredLanguage": null,
"proxyAddresses": [

"SMTP:marketingcampaigns@M365x214355.onmicrosoft.com",
"SPO:SPO_8cfbec68-642c-4d90-a15e-68d5d55e1c1f@SPO_dcd219dd-bc68-4b9b-bf0b-4a33a796be35"

],
"renewedDateTime": "2017-09-02T02:54:25Z",
"resourceBehaviorOptions": [

"YammerProvisioning"
],
"resourceProvisioningOptions": [],
"securityEnabled": false,
"securityIdentifier": "S-1-12-1-173245071-1153644233-2811837886-2893539836",
"theme": null,
"visibility": "Public",
"onPremisesProvisioningErrors": [],
"serviceProvisioningErrors": []

}
]

59

60

References

Buchner, R. D., S. (2022). Calculating the costs of inner source collaboration by
computing the time worked. SAIS 2004 Proceedings., 47. https://aisel.
aisnet.org/sais2004/47

Buchner, R. D., S. (2023). A research model for the economic assessment of
inner source software development. SAIS 2004 Proceedings., 47. https :
//aisel.aisnet.org/sais2004/47

Capraro, M., & Riehle, D. (2016). Inner source definition, benefits, and challenges.
ACM Computing Surveys, 49, 1–36. https://doi.org/10.1145/2856821

Carroll, N., Morgan, L., & Conboy, K. (2018). Examining the impact of adopting
inner source software practices, 1–7. https://doi.org/10.1145/3233391.
3233530

Cooper, D., & Stol, K.-J. (2018). Adopting innersource: Principles and case stud-
ies.

Gurbani, V. K., Garvert, A., & Herbsleb, J. D. (2010). Managing a corporate
open source software asset. Commun. ACM, 53 (2), 155–159. https://doi.
org/10.1145/1646353.1646392

Peffers, K., Tuunanen, T., Rothenberger, M., & Chatterjee, S. (2007). A design
science research methodology for information systems research. Journal of
Management Information Systems, 24, 45–77.

Statista Research Department. (2024a). Größte unternehmen weltweit nach an-
zahl der beschäftigten 2022/2023 [Zugriff am 01. März 2024].

Statista Research Department. (2024b). Marktanteile der anbieter am umsatz
mit crm-software weltweit 2022. Retrieved March 1, 2024, from https :
//de.statista.com/statistik/daten/studie/262328/umfrage/marktanteile-
der-anbieter-von-crm-software-weltweit/

Stol, K.-J., Avgeriou, P., Babar, M. A., Lucas, Y., & Fitzgerald, B. (2014). Key
factors for adopting inner source. ACM Trans. Softw. Eng. Methodol.,
23 (2). https://doi.org/10.1145/2533685

61

https://aisel.aisnet.org/sais2004/47
https://aisel.aisnet.org/sais2004/47
https://aisel.aisnet.org/sais2004/47
https://aisel.aisnet.org/sais2004/47
https://doi.org/10.1145/2856821
https://doi.org/10.1145/3233391.3233530
https://doi.org/10.1145/3233391.3233530
https://doi.org/10.1145/1646353.1646392
https://doi.org/10.1145/1646353.1646392
https://de.statista.com/statistik/daten/studie/262328/umfrage/marktanteile-der-anbieter-von-crm-software-weltweit/
https://de.statista.com/statistik/daten/studie/262328/umfrage/marktanteile-der-anbieter-von-crm-software-weltweit/
https://de.statista.com/statistik/daten/studie/262328/umfrage/marktanteile-der-anbieter-von-crm-software-weltweit/
https://doi.org/10.1145/2533685

	Introduction
	Thesis Motivation
	Structure of this Thesis

	Problem Identification
	Objective Definition
	Solution Design
	Phase 1: Designing a Uniform Structure for Organisational Structure Data
	Derivation of the Required Organisational Structure Data
	Identifying Possible Sources Containing the Required Data
	Analysing the Storage Structure of the Data
	Designing a Uniform Structure

	Phase 2: Bringing the Concept to Life - Proposing a Concept to Deploy the Uniform Structure

	Implementation
	Overview of the Implementation in Detail
	Documentation
	Overview of the Implementation Elements Provided with this Thesis
	How to Connect to Active Directory and SAP

	Demonstration
	Extraktion of the Data from Active Directory
	Unification of the Extracted Data

	Evaluation
	Evaluation Methodology
	Evaluation Results
	Fulfilment of the Set Objectives
	Compliance to Established Criteria
	Compatibility Test with Real Data
	Integration Test with Existing Tools
	Evaluation of the Impact on Identified Problems
	Summary of the results

	Practical Implications of the Research
	Limitations of the Proposed Solution

	Conclusion
	Appendices
	Guide to Accessing the MS Graph API with Python
	Creating an Access Point
	Settings in the Access Point
	Access via Python
	Appendix: Python Script
	Appendix: Error Handling

	Results for Data Extract from Active Directory Demonstration System
	Results for Users of the Organisation
	Results for All Users of the Organisation

	References

