
Integrating Open Data License
Information into Data Pipelines

MASTER THESIS

Philip Rebbe

Submitted on 5 April 2024

Friedrich-Alexander-Universität Erlangen-Nürnberg
Faculty of Engineering, Department Computer Science

Professorship for Open Source Software

Supervisor:
Philip Heltweg, M. Sc.

Prof. Dr. Dirk Riehle, M.B.A.

Declaration of Originality

I confirm that the submitted thesis is original work and was written by me without
further assistance. Appropriate credit has been given where reference has been
made to the work of others. The thesis was not examined before, nor has it been
published. The submitted electronic version of the thesis matches the printed
version.

Erlangen, 5 April 2024

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 5 April 2024

i

https://creativecommons.org/licenses/by/4.0/

ii

Abstract

Today a lot of open data is available on the internet. To utilize this information to
its full potential, it is often necessary to combine multiple datasets into new data-
sets. An important part of this is understanding and following the requirements
of the licenses attached to them. This thesis presents a solution that can be used
to integrate open data license information into a data pipeline. Following design-
science, we construct a framework, that can be used to model and compare open
data licenses. To achieve this, existing frameworks and solutions are compared
and analyzed to find a solution fitting to open data licenses. The framework
includes the functionality to check two licenses for compatibility, aggregate them
into a composite license and give recommendations in case the composite license
matches an existing license. The thesis also includes an implementation of the
framework in the form of an extensible library and a demonstration, based on
a website-prototype, on how the framework can be utilized to generate reports
about different data-licenses. The framework is evaluated by comparing the res-
ults against existing frameworks from literature and testing if other licenses could
be included in it as well.

iii

iv

Contents

1 Introduction 1
1.1 General Motivation . 1
1.2 Introduction into Data Pipelines 2

2 Problem Identification 5
2.1 Difficulties when Choosing the Source Material 5

2.1.1 Finding the License Information 5
2.1.2 Language Barriers . 6
2.1.3 Understanding the Legal Aspects of Licenses 6

2.2 Difficulties when Transforming and Persisting the Data 8
2.2.1 Deciding on a License for the Aggregate 9
2.2.2 Documenting the Current Contents of the Pipeline 9

2.3 State of the Art . 10
2.3.1 License Descriptions . 10
2.3.2 Automated License-Comparison and -Recommendation . . 10

2.4 Drawbacks of the Existing Solutions 13
2.4.1 License Descriptions . 13
2.4.2 Automated License-Comparison and -Recommendation . . 13

3 Objective Definition 17
3.1 Requirements for a Solution . 17
3.2 Creating a Framework to Describe and Combine Licenses 17
3.3 Building the Tools to Integrate the Framework 18

4 Solution Design 21
4.1 License Descriptions . 21

4.1.1 Creating the Basic License Descriptions 21
4.1.2 Defining the License Actions 23
4.1.3 Including Meta-Information 26
4.1.4 Model Share-Alike . 27

4.2 Architecture of the Framework . 28
4.3 License-Compatibility-Checking 29

v

4.4 License-Aggregation . 32
4.5 License Recommendation . 36

5 Implementation 41
5.1 The License Database . 41
5.2 The Core Library . 43

5.2.1 Data-Access . 44
5.2.2 Business-Logic . 46
5.2.3 Interface-Layer . 48

6 Demonstration 51
6.1 License-Overview . 52
6.2 Compatibility-Matrix . 52
6.3 License-Aggregation-Overview . 53
6.4 Pipeline-Simulation . 54

7 Evaluation 57
7.1 Evaluation of our Objectives . 57

7.1.1 Objectives for the Framework 57
7.1.2 Objectives for the Library 58

7.2 Limitations . 60

8 Conclusions 63

Appendices 65
A List of Identified Actions - Part 1 67
B List of Identified Actions - Part 2 68
C List of Normed Actions . 69
D Example - Less-Restrictiveness . 71
E Example - Composition-Check . 74
F Example - Recommendation . 77
G Visualization - AND-/OR-composition 82
H Complete Class-Diagram . 85
I Software Bill of Materials . 86

I.1 Core-Library . 86
I.2 Demonstrator . 87

J Comparison with DALICC-Framework 88

References 95

vi

List of Figures

1.1 Illustration of the GTFS-RS example 3

2.1 An early concept of the license-model implemented by the Joinup
Licensing Assistant (JLA) (taken from: (Schmitz & Cacciaguerra
Ranghieri, 2019)) . 12

4.1 The distribute-permission of the license CC-BY-4.0, modeled using
the ODRL information model . 22

4.2 Number of changes per run . 25
4.3 Overview over the framework components 28
4.4 Flow-Chart for the process of checking the compatibility between

two licenses . 33

5.1 An overview of the structure of each license 43
5.2 Overview over the architecture of the core library 45
5.3 Class-Diagram for the base entities 46

6.1 Screenshot for the license overview 52
6.2 Screenshot for the compatibility-matrix 53
6.3 Screenshot for the license-aggregation overview 54
6.4 Screenshot for the pipeline-simulation 55

vii

viii

List of Tables

2.1 Comparison of existing frameworks 15

4.1 List of analyzed licenses . 24

7.1 List of older licenses in comparison with newer versions 58
7.2 List of validations according to the literature 61

ix

x

List of Listings

1 Overview over the framework components 42
2 JSON-representations of an action 43
3 The function getLicense as an example for search-functions 48
4 The implementation of a join-function for the license-aggregation 49
5 Extract from the response of the DALICC-API 62

xi

xii

Acronyms

ASP Answer Set Programming

CC Creative Commons

CC-BY-4.0 Creative Commons Attribution 4.0 International

CC-BY-NC-4.0 Creative Commons Attribution Non-Commercial 4.0
International

CC-BY-ND-4.0 Creative Commons Attribution No-Derivatives 4.0
International

CC-BY-SA-4.0 Creative Commons Attribution Share-Alike 4.0 International

CSP Constraint-Satisfaction-Problem

ccREL Creative Commons Rights Expression Language

CSV Comma-Separated Values

DCAT-AP Data Catalogue Application Profile

GTFS General Transition Feed Specification

IODL 2.0 Italian Open Data License v2.0

JLA Joinup Licensing Assistant

JSON JavaScript Object Notation

JSON-LD JSON for Linked Data

OD Open Definition

ODbL Open Database License

ODC Open Data Commons

ODRL Open Digital Rights Language

REL Rights Expression Language

xiii

RDF Ressource Description Framework

SBOM Software Bill-of-Materials

SPDX Software Package Data Exchange

SQL Structured Query Language

UI user-interface

W3C World Wide Web Consortium

xiv

1 Introduction

1.1 General Motivation

Working with open data has become a standard practice in the IT-industry. Many
companies or governments openly publish the information available to them, in
an effort to become more transparent and to enable the industry to develop and
provide new services and products. In response to this, big corporations like
Google, small startups or even single individuals have gotten involved with and
built entire businesses based on publicly available information (Brickley et al.,
2019). In most cases, this entails building data pipelines to combine multiple
datasets into one single data-source, that can be used to reveal new information
or to provide more details to already existing information. To effectively do so not
only requires a lot of knowledge on how to handle the published data, but also on
the legal aspects attached to the data. This includes knowing the requirements
and implications of different open data licenses and how to compare them to each
other. This can be a challenge, since licenses are not standardized and can be
quite hard to understand for someone who has no prior experience with them.
It becomes even more difficult, when combining different datasets into a new
dataset. In this case the engineers and researchers have to make sure that the
combination of both datasets is allowed by the licenses and that the license of
the resulting dataset is compatible with the previous licenses.

In this thesis, we propose a solution on how to integrate the information of open
data licenses into a data pipeline. Using a design-science research approach,
as described in (K. Peffers et al., 2007), we designed a framework that can
automatically check licenses for compatibility and aggregate them into a synthetic
license, that shows all the requirements both licenses entail. This aggregate is
then used to find an existing license that can be recommended as a license for
the new dataset. The thesis also includes an implementation and demonstration
on how this framework can be used in a data pipeline.

1

1. Introduction

1.2 Introduction into Data Pipelines

To be able to integrate license information into a data pipeline, we first have to
understand how a data pipeline works. We will explain the basic concepts using
the Jayvee-project1 as an example. Since it has a good modular design, it is
well suited to illustrate the different steps. Using this structure, we then explain
how a pipeline works and how the license-information of the different datasets is
connected to them.

In the Jayvee-project, pipelines are modeled as a combination of different blocks.
Each block has a specific purpose and a predefined in- and output. Using these in-
terfaces, multiple blocks can be connected to each other to create a data pipeline.
There are three types of blocks:

• extractor-blocks

• transformator-blocks

• loader-blocks

Extractor-blocks are used to extract data from a data-source. Transformator-
blocks model operations on the data like transforming them into a different data-
format or removing information. Finally loader-blocks are used to transfer the
result of these transformations into a data-sink. A sink defines a data-store like
an Structured Query Language (SQL)-table, that is used to persist the results
and potentially aggregate the results of different pipelines (JValue-Team, 2024).

To illustrate this concept a bit further we are going to reuse an example pos-
ted on the official Jayvee-website (see https://jvalue.github.io/jayvee/docs/user/
examples/gtfs-rt). The example pulls three General Transition Feed Specifica-
tion (GTFS)-files from the "French national access point to transport data" and
pushes them into the same data-sink to create an aggregated dataset. Figure 1.1
illustrates the architecture of the pipeline.

Each feed is first run through an HttpExtractor-block to get the latest version
of the data from the internet. Each dataset is then run through a GtfsRT- and
TableInterpreter-block to bring the extracted data into a standardized format and
finally exported using a SQLiteLoader to write the data into an SQLite-database.
The resulting database contains three tables, each containing one of the pulled
datasets.

In theory there is no limit to how many pipelines connect to a data-sink. This
means, every sink can contain an unlimited number of datasets from differ-
ent sources. It is also possible to support different source-formats like Excel-

1https://github.com/jvalue/jayvee

2

https://jvalue.github.io/jayvee/docs/user/examples/gtfs-rt
https://jvalue.github.io/jayvee/docs/user/examples/gtfs-rt
https://github.com/jvalue/jayvee

1. Introduction

GTFSRTTripUpdateFeed GTFSRTVehiclePositionFeed GTFSRTAlertFeed

HttpExtractor HttpExtractor HttpExtractor

GtfsRT-

Interpreter

GtfsRT-

Interpreter

GtfsRT-

Interpreter

Table-

Interpreter

Table-

Interpreter

Table-

Interpreter

SQLiteLoader SQLiteLoader SQLiteLoader

SQLite-Database

Figure 1.1: Illustration of the GTFS-RS example

spreadsheets or Comma-Separated Values (CSV) by using different transforma-
tions in each pipeline.

3

1. Introduction

4

2 Problem Identification

The data pipeline, we described in the last section, only handled the aggregation
of data. The process of handling the topic of licensing is left up to the user. This
affects multiple steps of the process, starting with choosing the source-material
and ending with the decisions of choosing a license for the created dataset. Each
of these steps has some pitfalls that can lead to a wrong decision.

2.1 Difficulties when Choosing the Source Mater-
ial

An important aspect of choosing the source-material is to understand the contents
and requirements of the attached license. This includes finding the necessary
license-information, understanding the terminology used in the licenses and how
different legislations handle certain legal concepts. This step can be very difficult
for someone with no prior experience of working with legal texts. On the other
hand, it is also very important, since these requirements limit the use-cases in
which you are allowed to use the source-material. As a study on open-source
licenses (Almeida et al., 2017) has shown, this problem can still hold true for
more experienced users, especially when working with multiple licenses at once.

2.1.1 Finding the License Information

When getting started with a new dataset, one of the first steps is to check the
license that is attached to it. In the best case scenario, this information is dir-
ectly linked to the dataset. This can be done by storing it as part of the meta-
information of the dataset or displaying it on the website of the datahub or
data-portal. But this is not always the case. There are some cases, where the
license is only mentioned as part of the dataset. In other cases the dataset is
licensed using the terms of usage of the data-hub or does not have a license at all.
There can also be cases, in which a dataset or specific parts of them are licensed
under multiple licenses (Ermilov & Pellegrini, 2015). This ambiguity can make
finding the license information very confusing. Because of this automating this

5

2. Problem Identification

process is very difficult.

2.1.2 Language Barriers

Another barrier to understanding a license can be the language it is written in.
If a license is written in a language someone is not familiar with, he or she has no
chance to know what is permitted or prohibited by a license. This problem can
be illustrated by the Italian Open Data License v2.0 (IODL 2.0)1. The license is
only available in Italian (without an official translation), meaning someone that
only speaks English or German cannot know what is required by the license.

To the best of our knowledge, there is currently no tooling to reliably trans-
late these texts. Normal automated translation tools (e.g. Google Translator)
are not suited for the translation of legal texts, because they cannot guaran-
tee that all legal concepts included in the license are translated correctly. Since
they translate the text without any additional context information, they cannot
make adjustments to their translations to cover missing information that would
be necessary to correctly model some legal concepts in other languages or legal
systems. There have been attempts like the "Law 10n"-project (Torres-Hostench
& Salinas, 2015) that tried to solve this, but to our knowledge they are not
ready yet. Currently the best solution (aside from consulting a lawyer), is for
the license-provider to create an official translation. A good examples for this
are the Creative Commons (CC)-licenses. There are currently 28 ports of the
current version 4 available on their website2, including translations to English,
Spanish and German. Some national licenses like the "Datenlizenz Deutschland"
are written in the corresponding native language, but provide at least an English
translation to ensure the license is better suited for international use. But this
practice has not become a standard yet, and in most cases there is only one ver-
sion of a license, meaning there is still not a perfect solution to make the texts of
a license available to everyone.

2.1.3 Understanding the Legal Aspects of Licenses

Another problem is the license-content itself, meaning understanding the legal
terms and definitions used in the license-texts. These definitions are necessary
to make a license applicable to different legislations, which is necessary to en-
able users to enforce it in multiple countries. They additionally leave some room
for interpretation, so a license can be used for many different use-cases without
having to explicitly declare every possible use-case. However they are not stand-
ardized, meaning different providers can use different definitions for the same
condition, causing uncertainty about the consequences of these actions. A good

1https://www.dati.gov.it/content/italian-open-data-license-v20
2https://creativecommons.org/licenses/

6

https://www.dati.gov.it/content/italian-open-data-license-v20
https://creativecommons.org/licenses/

2. Problem Identification

example for this is the "Share-Alike"-condition used by different licenses. In gen-
eral, the term "Share-Alike" describes a so-called "copyleft"-mechanism, which
means that it enforces some restrictions on the licenses that can be used to li-
cense a derivative of the licensed dataset (Yi-Hsuan Lin et al., 2006). The license
Creative Commons Attribution Share-Alike 4.0 International (CC-BY-SA-4.0)3

defines "Share-Alike" in the following way:

The Adapter’s License You apply must be a Creative Commons license
with the same License Elements, this version or later, or a BY-SA
Compatible License.

In this case the term "BY-SA Compatible License" is defined as:

BY-SA Compatible License means a license listed at creativecommons.org/
compatiblelicenses, approved by Creative Commons as essentially the
equivalent of this Public License.

To summary this, it means that you either have to reuse the current license or
use a license that is verified by CC as being compatible with their license. In
comparison to that the Open Database License (ODbL)4 provided by Open Data
Commons (ODC) defines "Share Alike" in the following way:

a. Any Derivative Database that You Publicly Use must be only
under the terms of:

i. This License;

ii. A later version of this License similar in spirit to this License; or

iii. A compatible license.

If You license the Derivative Database under one of the licenses men-
tioned in (iii), You must comply with the terms of that license.

It is similar to the CC-license, but it only mentions that the license has to be
compatible with the ODbL. While this theoretically enables licensees to use
licenses that could be compatible, it can also effectively limit them to the ODbL,
since this is the only license that is officially mentioned. This shows, that while
these difference are not very drastic, they still can lead to some uncertainty
regarding the contents of a license.

"Share-Alike" is not the only condition that can have this effect. Another example
of this is the "NonCommercial"-condition, that is part of some of the CC-licenses.
It is defined as:

3https://creativecommons.org/licenses/by-sa/4.0/legalcode.en
4https://opendatacommons.org/licenses/odbl/1-0/

7

https://creativecommons.org/licenses/by-sa/4.0/legalcode.en
https://opendatacommons.org/licenses/odbl/1-0/

2. Problem Identification

NonCommercial means not primarily intended for or directed to-
wards commercial advantage or monetary compensation. For pur-
poses of this Public License, the exchange of the Licensed Material
for other material subject to Copyright and Similar Rights by digital
file-sharing or similar means is NonCommercial provided there is no
payment of monetary compensation in connection with the exchange.

Here the problem is not the definition itself, but how a specific purpose applies
to it. Most people will have a rough understanding of what non-commercial use
requires. But if you have a more complicated use-case (e.g. the data is freely
available, but some other independent component of the app requires a payment)
it almost always requires legal advice, since the license-text alone does not provide
information on its own.

There are also actions that can prevent the combination of two datasets. A simple
example for this is the license "Creative Commons Attribution No-Derivatives 4.0
International (CC-BY-ND-4.0)". It allows users to share the licensed material,
but only in an unmodified version. Since combining two datasets into a new
dataset is classified as a modification of the dataset, this condition effectively
prohibits the combination with another dataset. This action is independent of
the conditions of other licenses, meaning it cannot be overruled by another license,
since this would violate the rights of the original licensor. In these cases the user
has to stop the aggregation and look if the dataset can be used in a different way.

2.2 Difficulties when Transforming and Persisting
the Data

In the pipeline the data is first transformed and then written into the data-sink.
At this point in time you have to take two things into consideration:

• What usage is allowed by the source-licenses?

• Under which license do you want to license the new dataset and are you
allowed to do so?

Understanding what usages are allowed is mainly affected by someones under-
standing of the licence and their ability to transfers this knowledge to the current
use-case. Since we already covered this in the previous sections, we are going to
focus on the second question. The license for the aggregate has to cover all the
requirements of the previous licenses, meaning the creator of the pipeline has to
ensure all requirements are fulfilled and that there are no conflicts between the
different licenses. This process is often even more difficult than simply under-
standing the licenses themself (Almeida et al., 2017).

8

2. Problem Identification

2.2.1 Deciding on a License for the Aggregate

In some cases this problem can be solved by comparing the permissions and
conditions of different licenses and how they compare to each other. For per-
missions like "Sharing the data" this can be a very simple decision. But in
other cases, the conflicts between licenses are not limited to obvious differences
and can come down to small details in the required attribution (Ministerium
für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-
Westfalen & Beauftragte der Landesregierung für Informationstechnik (CIO) /
Geschäftsstelle Open.NRW, 2019)5. Since these details can be easily overlooked,
working with multiple licenses can be very challenging for inexperienced users
and discourage them from working with certain datasets.

Additionally licenses can impose additional restrictions like the "Share-Alike"-
condition, which we previously explained. In these cases just checking if the
permissions and conditions of two license are compatible is not enough. This
means, you also have to check if you can effectively relicense the data under one
specific license, increasing the complexity of the process even more.

2.2.2 Documenting the Current Contents of the Pipeline

Finally there is the need to document the licenses connected to a project. To be
able to quickly and effectively react to changes in licensing or the legalisation, it is
important to always know which datasets and licenses are used in a project. This
information can also be used to prove that all license-requirements are fulfilled
and that the licensee is allowed to use the datasets for the intended purposes.

There are some things that can make this task more difficult. As mentioned
before, in some cases the license-information for a datasets are harder to find.
Another potential problem is that the amount of information can become un-
maintainable over time. As research regarding open-source-licenses like (German
et al., 2010) and (Wolter et al., 2023) has shown, the lists of licenses can grow
exponentially over time, which can result in unmanageable license-constructs.
Because there are no comparable studies regarding open data licenses, at least
as far as we know, we cannot prove that this also applies to open data licenses.
But since most datasets are continuously reused and combined, similarly to open-
source software-packages, it is not unlikely that this will become a problem in the
future. Both cases can make maintaining up-to-date information very difficult
and easily can lead to missing some important license-change that breaks the
license of your project.

5only available in German

9

2. Problem Identification

2.3 State of the Art

2.3.1 License Descriptions

The idea to create alternate descriptions of licenses is not new. There are
already a number of informal models, like the model used by GitHub for their
ChooseALicense-platform6. The website provides short descriptions for open-
source-licenses based on a limited set of properties. The idea behind this is to
create simple to read descriptions that can help licensors and licensees to un-
derstand and compare licenses. But it lacks any tools to validate the license
descriptions or compare two licenses which makes them unsuited for our frame-
work.

A different approach to this are formal languages called Rights Expression Lan-
guage (REL). These languages are defined as "a means of expressing use and
access rights to assets"(Guth, 2003). This means they provide a vocabulary to
describe the terms and conditions of a license and the syntax and semantics on
how to use these descriptions. This can be used to create detailed license descrip-
tions, but also enables users to validate these descriptions against the syntax and
semantics of the language to ensure the descriptions are sound. Today there
are mainly two RELs that are used in the context of license-information: the
Open Digital Rights Language (ODRL) proposed by the World Wide Web Con-
sortium (W3C) (W3C, 2018) and Creative Commons Rights Expression Lan-
guage (ccREL) created by the CC-organization (Abelson et al., 2008). There
also some more specialized versions like MPEG-21 for multimedia-information
(‘MPEG-21 Rights Expression Language’, 2005), but they are rarely used. The
biggest advantage of these languages is that descriptions created with them can
guarantee validity. However they can be difficult to read and they lack any tools
to automatically compare two or more licenses.

2.3.2 Automated License-Comparison and -Recommendation

There are already some solutions to automatically compare and handle license-
recommendations. Some researchers have provided logic-based extensions to the
mentioned RELs by transferring them into deontic or first-order logic. Examples
of this are the logic described in Governatori, Lam, Rotolo, Villata and Gandon
(2013), Governatori, Rotolo et al. (2013), Krötzsch and Speiser (2011) and Villata
and Gandon (2012). They extend the vocabulary and semantics proposed by
different RELs with rules that model the relationships between licenses (e.g. are
permissions of one license prohibited by another license?). The goal for this
approach is that this logic can be transferred to automated reasoners to check
the compatibility between the licenses.

6https://choosealicense.com/

10

https://choosealicense.com/

2. Problem Identification

Ermilov and Pellegrini (2015) built on the research by Villata and Gandon (2012)
and created a prototype for a License Compositor that can recommend licenses
based on the incoming licenses (Ermilov & Pellegrini, 2015).

Gangadharan et al. (2007) propose a way to compose and compare service-licenses
for web-services. It introduces an extension to the ODRL and a set of rules on
how to compare and composite web-service-licenses. While its focus lies more
on the side of web-service licenses, some of the concepts for the composition
and comparison of licenses are kept very abstract, which means they could be
transferred into other contexts (Gangadharan et al., 2007).

There are already some complete frameworks that build on this research. Car-
dellino et al. (2014) created the "LICENTIA"-tool 7. It allows users to find a
suiting license for a project or check if a license allows a specific use case. There
is also the "LIVE License Checker" (LIVE: License Verficiation) developed by
Governatori et al. (2014), that can analyze license compatibility between datasets
and vocabulary8. They are both based on a combination of the ODRL and ccREL
and use the logic proposed by Governatori, Rotolo et al. (2013) and Villata and
Gandon (2012) to check the compatibility between the licenses.

Moreau et al. (2019) propose the CaLi-framework (CaLi: Classification of Licenses).
It also uses the ODRL to model licenses. Its goal is to create an ordering of li-
censes by defining rules that model the restrictiveness (meaning how much you
are allowed to do) of a licenses. By traversing over this ordering of different li-
censes, with the least restrictive license at the bottom and the most restrictive
licenses at the top, it is then possible to check the compatibility between licenses.
They then implemented it as a search-engine to search for datasets compatible
with a specified license (Moreau et al., 2019).

Pellegrini et al. (2018) have created the DALICC-Framework (DALICC: Data
License Clearance Center) as a means to help people with composing and un-
derstanding licenses9. It also uses a combination of the ODRL and ccREL, but
then extends it to create more detailed and comparable license descriptions (Pel-
legrini et al., 2018). It allows users to either compare a set of predefined license-
descriptions or create their own license descriptions. The reasoning is done by ap-
plying a set of rules, defined in the semantic of Answer Set Programming (ASP)10,
to the license-descriptions. These rules (e.g. if one licenses prohibits an action it
is not allowed to be part of the permission of another license) are then used to
check if two licenses are compatible (Pellegrini et al., 2018).

Finally the European Commission provides a licensing assistant via its JOINUP
7http://licentia.inria.fr/
8https://www.eurecom.fr/~atemezin/licenseChecker/
9https://www.dalicc.net/

10https://github.com/dalicc/dalicc/blob/main/reasoner/app/programs/query.lp

11

http://licentia.inria.fr/
https://www.eurecom.fr/~atemezin/licenseChecker/
https://www.dalicc.net/
https://github.com/dalicc/dalicc/blob/main/reasoner/app/programs/query.lp

2. Problem Identification

platform called the "JLA" (Schmitz & Cacciaguerra Ranghieri, 2019)11. It is
meant to help users find and compare licenses, by providing simplified license-
information and allowing checks between them. In contrast to the previous ex-
amples it does not use a REL to model and compare its licenses. Instead it uses
the following six categories to model a license:

• Permissions (what a license allows)

• Obligations (what a license requires)

• Prohibitions (what a license disallows)

• Compatibility (with what and how compatible is the license)

• Legal (how and by which legislation is the license backed)

• Support (are there communities or governments that back this license)

Each category consists of a list of predefined properties that can be set for a license
(e.g. permits reproduction or prohibits holding someone liable). In addition to
that each license-description is extended with meta-information like the license-
name and the Software Package Data Exchange (SPDX)-identifier. Figure 2.1
shows an early concept of the resulting license-descriptions. Here the comparison
of two licenses is not done by a automated reasoner, but instead done via a
compatibility matrix that is curated by legal and data experts. Because of this
the comparison does not return a binary result, but instead returns a short text
that explains the result and hints at some of the important aspects (Schmitz &
Cacciaguerra Ranghieri, 2019).

Figure 2.1: An early concept of the license-model implemented by the JLA
(taken from: (Schmitz & Cacciaguerra Ranghieri, 2019))

11https://joinup.ec.europa.eu/collection/eupl/solution/joinup-licensing-assistant

12

https://joinup.ec.europa.eu/collection/eupl/solution/joinup-licensing-assistant

2. Problem Identification

2.4 Drawbacks of the Existing Solutions

2.4.1 License Descriptions

As stated before there are currently two types of license-descriptions, we could
use to model our licenses:

• An informal license-model like GitHub,

• A formal REL

Since the licenses-models are normally intended as a simple license-description
they are specialized to match their specific context (e.g. the context of the
GitHub-Model are open source-licenses). This means their vocabulary is lim-
ited to properties that fit this specific context. This makes reusing them very
difficult, if they do not already match our context.

The RELs on the other hand are specifically built to be used to describe multiple
different license-types. Because of this, their vocabulary usually includes a lot of
attributes that have no connection to the topic of open data licenses, similar to
the informal models. Additionally they do not include an option to effectively
model the "Share-Alike"-condition. For example the ccREL defines the condition
of "Share-Alike" as follows (Abelson et al., 2008):

cc:ShareAlike - when redistributing derivative works of this work, us-
ing the same license.

This contradicts the definition that is used in the CC-licenses (see 2.1.3), since
it does not model the case of similar licenses or different license-versions. All of
this shows that, if we would like to reuse an existing model or REL, we would
always have to adapt it to our context or extend it with additional definitions
to be able to create good license-descriptions. In the case of reusing an existing
REL, we would also have to condense the existing vocabulary to make sure the
license-descriptions can only include information that is actually relevant when
describing open data licenses.

So instead of reusing an existing model, it would be a better idea to create a
new model that is built on top of these existing models and adds the missing
capacities necessary to model open data licenses.

2.4.2 Automated License-Comparison and -Recommendation

There is also no perfect solution for the automated comparison of licenses. Gangadharan
et al. (2007), Governatori, Lam, Rotolo, Villata and Gandon (2013), Governatori,
Rotolo et al. (2013), Krötzsch and Speiser (2011) and Villata and Gandon (2012)
cover different parts of the formal logic we need to reason over licenses, but lack

13

2. Problem Identification

an implementation. This means, we always have to create an implementation
if we want to integrate this into a pipeline. The existing frameworks, described
in Cardellino et al. (2014), Governatori et al. (2014), Moreau et al. (2019) and
Pellegrini et al. (2018), do provide an implementation for their logic. However
none of them provide all the functionality we need at the moment. They either
lack certain features (e.g. creating recommendations) or provide an implementa-
tion we cannot integrate into a data pipeline, which would require a port of the
original implementation that fits the requirements of a tool like Jayvee.

Additionally all of these solutions use models that are intended to be able to
handle multiple different license-types or are limited to only a short list of licenses.
Because of this, we always have to extend their models to include all properties
necessary to effectively model open data license or add missing licenses to their
database. Aside from Krötzsch and Speiser (2011), they also do not have the
capability to model the "Share-Alike" condition like we mentioned in the previous
section, requiring additional modifications.

The two best solutions we identified are the DALICC- and CaLi-frameworks. The
DALICC-framework misses a component to recommend a new license as a result
of the framework. However it proposes a good architecture, extensive license-
model and provides a REST-API12 as a prototype, which could be connected to
the pipeline via the internet. This would allow for easy license-compatibility-
checks, but would need an additional extension to provide the recommendations
we want.

The CaLi-framework does provide the logic to create a license-ordering, which
can be used to check compatibility and create recommendations. But it only
provides a limited license-model and a search-engine for datasets based on the
defined logic. This is not suitable for our use-case.

Because of all these factors we decided to create a new framework specialized
on open data licenses that combines the logic from the existing literature and
frameworks. This framework also needs to include an implementation that can
be included into an data pipeline.

12https://api.dalicc.net/docs

14

https://api.dalicc.net/docs

2. Problem Identification

Table 2.1: Comparison of existing frameworks

Name Prototype Compatibility-
Check

Recommendations? ShareAlike?

Licentia Website Yes No No
LIVE Javascript-

Application
Yes No No

DALIIC Website +
API

Yes No No

CaLi Search en-
gine

Yes Yes No

15

2. Problem Identification

16

3 Objective Definition

3.1 Requirements for a Solution

Based on these problems we identified two components, we need to be able to
model and include open data licenses into data pipelines. First we need a model
that can be used to represent multiple licenses in a standardized format, so they
can be compared to each other. This model should also provide the option to
include additional information and be capable to model special conditions like
"Share-Alike".

The other component we need is an automated way to compare licenses. This
component should be able to check for inconsistencies, create a license aggregate
or create recommendations. As a final result it should also provide a human- and
machine-readable report that can be attached to the result of a data pipeline.

3.2 Creating a Framework to Describe and Com-
bine Licenses

As described in the previous chapter, many of the problems with open data li-
censes have to do with understanding the contents and combinations of different
licenses. To help with these problems we created a framework that can automat-
ically handle the comparison of open data licenses.

It gives providers and users of open data a common language to model licenses.
To achieve this the framework includes definitions for the most common and im-
portant conditions and rights described in a license (e.g. on attribution or sharing
data). These definitions are based on existing standards and legal terms, but also
define new terms when necessary (e.g. there a multiple synonymous phrases). In
both cases the framework contains an accurate description of each definition to
help users understand them and/or resolve potential misunderstandings.

It is designed to allow an extension of these definitions to ensure missing terms
or new legal concepts can be added when necessary. Providers and/or users will

17

3. Objective Definition

then be able to map licenses to this framework, which will result in standardized
license-descriptions that can be understood by everyone.

In addition to this model, the framework defines rules that can be used to perform
compatibility checks between different licenses, aggregate them into a combined
synthetic license and generate recommendations that show which existing licenses
match this composite license. The compatibility checks are meant to detect po-
tential risks when working with multiple licenses (e.g. which licenses are fun-
damentally incompatible?) and to help users understand them, while the other
two functions should help users find a license they can use for their own work
or communicate to data providers, why they cannot use datasets using certain
licenses.

The definitions and rules will be provided as a set of definitions with detailed
descriptions, explaining the expected inputs and the reasons for certain decisions
we made. In addition to that, we also provide a formal notation of the functions
as a Constraint-Satisfaction-Problem (CSP). This is done to give the framework
a provable foundation, as well as provide another way for readers to understand
its fundamentals.

This framework does not include a solution to extract the license-information
from a dataset or attach them to it. This process is usually dependent on the
implementation of a data pipeline. To ensure that our solution can be applied to
multiple different architectures, we excluded this feature from our framework.

Finally it has to be explicitly said that the goal for this framework is not to provide
binding legal advice. This is not possible without the knowledge, experience
and additional context information available to a lawyer. The only goal for this
framework is to provide a logic-based solution to compare and combine licenses.

3.3 Building the Tools to Integrate the Frame-
work

To demonstrate our framework, we created a library that implements that provides
the classes and functions necessary to use the framework in an application.

This tool enables users to create human-readable reports about the contents of
their pipelines using the created description language or run the compatibility
checks to find potential risks. To enable automation, the results of these tools are
available in a machine-readable format like JavaScript Object Notation (JSON),
CSV or Ressource Description Framework (RDF), that are common in the context
of open data.

The tool is a standalone solution and does not require any external services to

18

3. Objective Definition

run. This offline capability is necessary to ensure that the tool can be integrated
into private and/or local data pipelines, that cannot have access to the internet.

The solution is open-sourced to invite others to contribute new ideas or make
suggestions for improvements.

19

3. Objective Definition

20

4 Solution Design

4.1 License Descriptions

As a base for our license-model, we use a derivative of the ODRL and ccREL.
Both languages already provide a lot of the functionalities that we need and are
broadly used in the existing literature. They both however also contain some
functionalities that we do not need. Because of this, we extended them similar
to the model used by the DALICC-framework (Pellegrini et al., 2018). This idea
to combine both languages was first described by Cabrio et al. (2014), with the
goal to create formal license descriptions, that can be used for further processing.

4.1.1 Creating the Basic License Descriptions

The ODRL is a REL, created as a policy expression language by the W3C to
model "statements about usage of contents and services" (W3C, 2018). In the
ODRL licenses are modeled as policies that consist of certain actions. The actions
are categorized into three groups:

• Permission: A user is allowed to perform an action.

• Prohibition: A user is disallowed to perform an action.

• Duty: A user has to perform an action to conform to the policy.

Each permissions, prohibitions and duties can contain some constraints to model
dependencies between actions, e.g. if you have to perform certain duties to enable
permissions. This allows to create relationships between actions, that can later
be used to compare and check these licenses. To better illustrate this concept
figure 4.1 shows how the permission to distribute a dataset licensed under Creative
Commons Attribution 4.0 International (CC-BY-4.0) would be modeled using the
ODRL Information Model 2.2 provided by the W3C Permissions and Obligations
Expression Working Group (2018). The dotted lines signal the blocks defined
by the information model, while the solid lines indicate an action defined by the
ODRL.

21

4. Solution Design

Policy

Asset

Rule Permission Distribution

Constraint

Attribution Notice

Dataset

Figure 4.1: The distribute-permission of the license CC-BY-4.0, modeled using
the ODRL information model

ccREL is another REL that was created by the CC-organisation to model their
licenses. It also models a license as a collection of actions that are classified as
permits, prohibits, requires. This is similar to the ODRL, but the actions
are more specific to the CC-licenses. It also adds some terms to adds some meta-
information, e.g. to model the deprecation of a license (Abelson et al., 2008).

The license-descriptions for our framework uses the three categories defined in
the ODRL to model licenses, meaning each license consists of three distinct sets
of permitted, prohibited and required actions. This categorization was chosen,
because it is very flexible and can be extended very well with new actions. This
was shown in Pellegrini et al. (2018). Additionally there is a lot of research
available regarding the topics of license compatibility checking and composition
that uses the vocabulary of the ODRL and ccREL. Since it will be easier to
integrate and adapt this research into our framework, when we use the same
base, we decided to use this language as the base for our framework.

However in contrast to the ODRL, our model does not include a way to define
a specific constraint from one action to another action. This is instead solved
by ensuring that the requirements for every actions are directly included into
the set of required actions(= duties). This was done for two reasons: First it
makes comparing and aggregating licenses easier. With this structure it is pos-
sible to compare the sets of different licenses, without having to also check the
constraints of each action. This would not be a problem when comparing two
licenses, but could become computationally difficult when combining more li-
censes. Secondly this ensures that we always consider every possible restriction
when comparing two licenses. Since we do not have any context-information on
how the contents of a dataset are used, we cannot know which permissions, pro-
hibitions and duties apply to the current use-case. This means we must assume

22

4. Solution Design

the most-restrictive case to prevent classifying two incompatible licenses as com-
patible (=false-positive). Because of this, the added restrictiveness is actually
helpful. Of course this can lead to some cases where two licenses are licensed
as incompatible, even if they are technically compatible in the current use case
(=false-negative). However this can be mitigated by adjusting the definitions of
the available actions or including hints in the final report.

4.1.2 Defining the License Actions

To curate a list of allowed actions, we analyzed existing open data licenses. We
used diversity sampling for this task, as it was described by Jansen (2010). The
reason for this was that this method will result in a good representation for many
licences, while keeping the number of actions relatively small. This is ideal,
since a bigger model is more difficult to understand and makes comparing and
aggregating two items more complex.

In total we looked at 19 different open data licenses. This list was curated from
the most well-known open data licensing frameworks (CC and ODC) and other
organisations like the Linux Foundation, since these license are used very often
and are usually written to be globally applicable. We then extended this list
with open data licenses backed by different European countries (e.g. UK, France,
Germany). This was done to ensure that our model can describe and compare
how different countries handle some of the legal aspects of open data licenses.
Because of language barriers we could not include all licenses that we wanted,
like the Italian Open Data License1, that was only available in Italian. A final
list of analyzed licenses can be seen in table 4.1.

During the analysis we split the licenses into multiple groups. These groups were
then analyzed one after another with the goal of reaching theoretical saturation,
meaning no new insights could be found by adding more licenses (Bowen, 2008).
We started the process with just the CC-licenses. This was done since they are
the most-common licenses, are easy to compare and the CC-organisation provides
a lot of information about the meaning of each condition2. From this we added
more licenses in groups of three until we reached saturation. In total we did five
runs. Figure 4.2 shows how many changes were necessary per run.

1https://www.dati.gov.it/content/italian-open-data-license-v20
2https://wiki.creativecommons.org/wiki/License_Versions

23

https://www.dati.gov.it/content/italian-open-data-license-v20
https://wiki.creativecommons.org/wiki/License_Versions

4. Solution Design

Table 4.1: List of analyzed licenses

Name Is Public
Domain?

Is OD-
Compliant?

CC-BY-4.0 No Yes
CC-BY-SA-4.0 No Yes
CC-BY-ND-4.0 No No
CC-BY-NC-4.0 No No
CC-BY-NC-SA-4.0 No No
CC-BY-NC-ND-4.0 No No
CC0 Yes Yes
Open Data Commons-By-1.0 No Yes
Open Data Commons-PDDL-1.0 Yes No
Open Data Commons-ODbL-1.0 No Yes
DL-DE-BY-2.0 No No
DL-DE-Zero-2.0 No No
Open Government License No Yes
Singapore Open Data License No No
Licence Ouverte No No
Norwegian Licence for Open Govern-
ment Data (NLOD) 2.0

No No

Open Use of Data Agreement No Yes
Community Data License Agreement -
Permissive - Version 2.0

No No

Community Data License Agreement -
Sharing - Version 1.0

No No

As you can see the number of gradually decreased during each run, until in the
end there were no more changes necessary. During this run, we identified 26
different actions that could be used to describe the different licenses. They are
categorized into two main groups:

• Permissions and Prohibitions

• Duties

The first group includes the actions to model what a licensee is allowed or not
allowed to do. The second group includes actions that can be set as a requirement
by a license. We made this decision, because it makes comparing two license
simpler. If all actions could be defined in any of the three sets, we would always
have to compare all three groups before making a decision. By limiting them
two one of two groups, we can decrease the number of necessary checks. We also
ensured that the two groups are distinct, meaning it is impossible to create a
license, that either permits/prohibits and requires a certain at the same time.

24

4. Solution Design

1 2 3 4 5
Run

0

2

4

6

8

10

12

14

16

18

20
Nu

m
be

r o
f p

ro
pe

rti
es

New
Modified
Removed

Figure 4.2: Number of changes per run

The final list of identified actions (along with a more detailed explanation of each
property) is shown in the appendix (for Permissions/Prohibitions see Appendix
A, for duties see Appendix B).

After identifying the necessary actions, we then adjusted them to closer resemble
the vocabulary of the ODRL. The ODRL provides some definitions for com-
mon actions like e.g. sharing, modifying and distribution. It also contains some
definitions from the ccREL in order to make the two languages more compatible.
In cases where an action matched a definition from the ODRL-vocabulary3, we
renamed our actions to match the name from the vocabulary. If our definition
matched two or more actions defined in the ODRL, we split the action into the dif-
ferent standard definitions to ensure compliance with the ODRL. The goal with
this is that this compliance should help license-creators understand our model
and potentially reuse their existing license-descriptions in our framework. If one
our definitions matched multiple definitions in the ODRL, we tried to split the
action into smaller definitions, so we could reuse the existing definitions. We then
created new definitions for the actions, that we could not match to the ODRL. In
case an identified action does not match any definitions in the ODRL or ccREL,
we created our own action definition.

This process is similar to the one used by the DALICC-framework to streamline
license-descriptions (Pellegrini et al., 2018). The reason, why we did not reuse the

3https://www.w3.org/TR/odrl-vocab/

25

https://www.w3.org/TR/odrl-vocab/

4. Solution Design

DALICC-vocabulary4, was that it and our list of actions were too different. Our
list was not completely covered by the DALICC-vocabulary. Their vocabulary
also includes many actions that we do not need. Because of this, if we wanted
to reuse their vocabulary, we still would have to create our own definitions for
these actions to extend their model, while keeping all the unused definitions
to ensure backwards-compatibility. Since this would unnecessarily increase the
size our framework, we decided to only create our own definitions, based on the
ODRL and ccREL. This ensured that our definitions exactly fitted our intended
purposes and also allowed us to fit the actions to our logic when necessary.

Overall this process resulted in a list of 28 possible actions that could be part
of a license. Only 6 of these actions were taken from the combined ODRL- and
ccREL-vocabulary. The reason for this was that some of their definitions sum-
marized some actions, we previously defined as separate steps. Since we did not
want to lose this flexibility, we then decide not to use the existing definitions.
This resulted in 22 new definitions. Each action is independent from all other ac-
tions, meaning that a license-description always has to include all the permitted,
prohibited and required actions. The full list of actions, including the definitions
and the origins of the definitions, can be found in Appendix C.

4.1.3 Including Meta-Information

In addition to the permissions, prohibitions and duties, we also need to store
some meta-information about each license in our model. This includes details
like identifiers for a license, a link to the original source or if it complies with the
Open Definition (OD)5.

First we need some way to model the different identifiers for each license. This
information is necessary to reliably identify the licenses. They are either provided
by the license-creators (e.g. the full name of the license), but in many cases there
are also standardized identifiers from a third-party that are used to reference
them. Because of this we decided to not only include the full name of a license,
but also include two third-party identifiers to show how they can be integrated
into our model. The two third-party identifiers, we chose, are:

• The SPDX-identifiers6 as an example for a global standard.

• The identifiers used in the German adaptation of the Data Catalogue Ap-
plication Profile (DCAT-AP)-specification7 as an example for a standard
with limited range.

4https://docs.dalicc.net/
5https://opendefinition.org/od/2.1/en/
6https://spdx.org/licenses/
7https://www.dcat-ap.de/def/licenses/

26

https://docs.dalicc.net/
https://opendefinition.org/od/2.1/en/
https://spdx.org/licenses/
https://www.dcat-ap.de/def/licenses/

4. Solution Design

We treat each identifier as one property of the meta-information. If a license does
not have one of these licenses, this property is left empty. This way we can find
a license-description by checking if the identifier provided by the original dataset
matches any of the values from one of the properties. If no variable matches the
identifier, we can assume that we do not know the license. It can also be used
in the final report to provide additional information to the user. An alternative
to this solution would be to model the identifiers as a list, containing all the
known identifiers. This solution would reduce the number of properties we would
need to model for the meta-information, but it would also result in the loss of any
context information (e.g. which third-party-provider maintains a specific value?).
Since we want to be able to provide this kind of information when searching for
a license or when generating our final reports, this solution is not suitable for our
model.

Aside from the identifiers, there is also a need to model other meta-information.
Examples for this are classifiers, like if a license is considered as a public-domain-
license or if it is compliant with the OD or a link to the original version of the
license. In the same way as before, these informations are modeled as independent
properties, each with a predefined set of possible values, either taken from a
specification or derived from available information.

At the moment, this information is not needed for the reasoning we are going to
explain later. We nonetheless included this information into our model to show
how additional meta-information can be added to the model, which in turn could
be used to create an extension to our logic.

4.1.4 Model Share-Alike

To complete our model we need a way to describe the "Share-Alike"-condition. As
we previously described "Share-Alike" is a condition that restricts which licenses
can be used to relicense a dataset (Yi-Hsuan Lin et al., 2006) and is defined as:

• only the current license can be used to license a derivative dataset, or

• you can use one of a multiple different licenses that are compatible with
the current one.

These different definitions can also observed in the available research that deals
with the topic of modeling "Share-Alike". Krötzsch and Speiser (2011) mention
the restrictive definitions in the CC-licenses, but try to model it more freely by
using a definition that classifies a license as similar if it uses the same content
(meaning permissions, prohibitions and duties) (Krötzsch & Speiser, 2011). On
the other hand Cabrio et. al define "Share-Alike" as a duty that limits the
derivative to the same license, as it is defined in the ODbL(Cabrio et al., 2014).

In our case, we model the "Share Alike"-condition as an action that can be set as a

27

4. Solution Design

duty, similar to the way it was proposed by Cabrio et al. (2014), in combination
with a list containing the compatible licenses. This was necessary to give us
the ability to model multiple compatible licenses for a single license, without
having to use a content-based approach like Krötzsch and Speiser (2011). We
initially thought about integrating their content-based approach into our model,
but could not use it, because this could lead to license-recommendations that are
not officially supported. Since this would violate the terms of the CC-licenses, we
deemed this approach not suited for our use-case. Instead we used the list-based
approach that Krötzsch and Speiser (2011) proposed as an alternative solution
to their content-based approach. They discarded the idea, since, in their opinion,
it would not fit the idea of "Share-Alike" that was initially proposed for the CC-
licenses. For our use-case however, it fit perfectly, since this meant we could limit
the recommended licenses to either one license or a list of multiple licenses.

4.2 Architecture of the Framework

Figure 4.3: Overview over the framework components

As mentioned during the objectives, the framework consists of a model to describe
licenses and the logic to automatically compare and aggregate them. When
designing the pipeline for our framework, we made the following assumptions:

• Each license represents a separate dataset.

• A license is represented by an identifier, its permissions, prohibitions and
duties and a list of compatible licenses.

We made these assumptions based on the previously described use-case. Each
pipeline provides the license for its corresponding dataset, which in turn is rep-
resented by our internal representation. The framework then operates on this
internal representation and returns a result for all licenses.

28

4. Solution Design

The logic itself is separated into three separate components for the compatibility-
checks, license-aggregation and license-recommendation. This modular design is
inspired by the architecture of the DALICC-framework (Pellegrini et al., 2018).
The advantage of this is that the components could be used stand-alone or con-
nected to each other to create a pipeline that handles the complete process.
This pipeline is describe in figure 4.3. The output of this pipeline would then in-
clude the result of the compatibility-check, the aggregated license and the license-
recommendations.

4.3 License-Compatibility-Checking

Before composing two licenses, it is mandatory to check if the licenses in question
are compatible with each other. In our case, two licenses are "compatible with
each other" if they can be composed into a synthetic license without violating a
prohibition or duty of one of the original licenses.

We identified two methods to ensure that we can create a composite license:

• One license is less or equally restrictive as the other license, or

• Both licenses have some common permissions and allow switching the com-
bined derivative to another license.

The first case can be checked by comparing the permissions, prohibitions and
duties of the two licenses. The three sets are distinct for each license (R0). A
license A can be classified as less restrictive than a license B, if it fulfills the
following rules:

• The permissions of license A are a superset of or equal to the permissions
of license B and are not prohibited by license B (R1).

• The prohibitions of license A are a subset of or equal to the prohibitions of
a license B and not permitted by license B (R2).

• The duties of license A are a subset of or equal to the duties of a license B
(R3).

• License A allows to change the license and License B conforms to "Share-
Alike" (R4).

This rule-set is derived from Moreau et al. (2019). If it holds, we have a guarantee
that the two licenses can be composed, since the composite of both licenses will
be equal to the more restrictive license. We added the last rule, to ensure that we
are allowed to change the licensing from the less-restrictive license A to the more
restrictive license B. Without this, even if one license is more restrictive license
than the other, a licensee is not allowed to change the license.

29

4. Solution Design

To formalize this check, we can model it as a CSP. This means we can describe
the problem as a set of variables and constraints. Each variable contains a value
from a predefined domain. The problem can be solved if all variables can be set
to a value, while fulfilling the defined constraints (Russell & Norvig, 2022).

In our case a license is represented by six variables modeling an identifier for the
license, its permissions, prohibitions and duties, the list of compatible licenses
(="Share-Alikes") and a variable containing a five-tuple representing the valid
licenses.

V = {Ia, Ib (Identifiers)
Pea, P eb (Permissions),
P ra, P rb (Prohibitions),
Ra, Rb (Duties),
Sa, Sb (Share-Alikes),
La, Lb (Licenses)}

(4.1)

The domains for the variables are defined as a set of integers for the identifi-
ers, three sets containing the sets of possible combinations of actions (permis-
sions, prohibitions and duties), a set representing the sets of compatible licenses
("Share-Alike") and a set defining the valid combinations of these sets.

DIa , DIb ={0, 1, 2, ... , 18}
DPea , DPeb ={{”Sharing”, ”DerivativeWorks”, ... }, ... },
DPra , DPrb ={{”ClaimWarranty”, ”ClaimLiability”, ... }, ... },
DRa , DRb

={{”Attribution”, ”Inform”, ... }, ... }
DSa , DSb

={{}, {1}, {4}, ... }
DLa , DLb

={⟨0, {”Sharing”, ”DerivativeWorks”, ... },
{”ClaimWarranty”, ”ClaimLiability”, ... },
{”Attribution”, ”Inform”, ... },
{}⟩, ... }

(4.2)

The rules we introduced earlier can then be modeled as constraints restricting
the space of possible solution. If we find a solution that fulfills these constraints,
we can assume that license A is less compatible than license B.

30

4. Solution Design

R0a: (Pea ∩ Pra = {}) ∧ (Pea ∩Ra = {}) ∧ (Pra ∩Ra = {})
R0b: (Peb ∩ Prb = {}) ∧ (Peb ∩Rb = {}) ∧ (Prb ∩Rb = {})
R1: Pea ⊇ Peb

R2: Pra ⊆ Prb

R3: Ra ⊆ Rb

R4a: ”ChangeLicense” ∈ Pea

R4b: ”ShareAlike” /∈ Ra∨
(”ShareAlike” ∈ Ra ∧ Ib ∈ Sa),

License A: La = ⟨l0, l1, l2, l3, l4⟩ with
l0 = Ia, l1 = Pea, l2 = Pra, l3 = Ra and l4 = Sa

License B: Lb = ⟨l0, l1, l2, l3, l4⟩ with
l0 = Ib, l1 = Peb, l2 = Prb, l3 = Rb and l4 = Sb

(4.3)

The other check is necessary to check compatibility between licenses that are
not classified as less-restrictive. This can be the case if both licenses have some
permissions, prohibitions or duties in common without each other, without one
being clearly less restrictive than the other. If this is the case, the resulting
composite does not match any of the previous two licenses. But there could
potentially be a third license that does match the necessary requirements. In
this case we still want to make sure that the composite can be a valid license,
but we have to use a different rule-set from before:

• Both licenses have at least one common permission that is not prohibited
by the other license (R5).

• Both licenses allow to change the license (R6).

The purpose of these rules is to ensure that we do not combine licenses that lead
to "empty" licenses without permissions. This license would not be usable. Since
this also will not result in one of the two original license, both licenses need to
at least allow a change to another license for the derivative.

Again we can model this as a CSP. We are going to reuse the variables and
domains from the previous CSP and only define a new set of constraints:

31

4. Solution Design

R0a: (Pea ∩ Pra = {}) ∧ (Pea ∩Ra = {}) ∧ (Pra ∩Ra = {})
R0b: (Peb ∩ Prb = {}) ∧ (Peb ∩Rb = {}) ∧ (Prb ∩Rb = {})
R5: Pea ∩ Peb ̸= {}

R6a: ”ChangeLicense” ∈ Pea

R6b: ”ChangeLicense” ∈ Peb

License A: La = ⟨l0, l1, l2, l3, l4⟩ with
l0 = Ia, l1 = Pea, l2 = Pra, l3 = Ra and l4 = Sa

License B: Lb = ⟨l0, l1, l2, l3, l4⟩ with
l0 = Ib, l1 = Peb, l2 = Prb, l3 = Rb and l4 = Sb

(4.4)

In both cases the licenses have to allow creating a derivative of the original
dataset. This is necessary, because a license in our framework represents a single
dataset. Since combining two datasets counts as creating a derivative, we have
to classify the licenses as incompatible (R7). To model this requirements, we add
the following constraints to the previous problems:

R7a: ”DerivativeWorks” ∈ Pea

R7b: ”DerivativeWorks” ∈ Peb
(4.5)

To help illustrate the two CSPs, the appendix includes two examples showing a
solution using the CC-BY-4.0 and CC-BY-SA-4.0 (see Appendix D and E). Figure
4.4 illustrates the whole process of checking the compatibility between licenses.
In total a license has to be either more- or less-restrictive than the other license
or show that it there is a chance to create a valid composite license (following
the previous rule set). If both of these checks fail, the licenses are not compatible
with each other and cannot be composed into a single valid license. If it holds
true, we can continue with the license-composition and -recommendations.

4.4 License-Aggregation

To create synthetic licenses we need a way to combine two or more licenses into
a single dataset. For this we use a solution that is proposed in Gangadharan et
al. (2007), Governatori, Lam, Rotolo, Villata and Gandon (2013), Governatori,
Rotolo et al. (2013) and Villata and Gandon (2012). Gangadharan et al. (2007)
checks and composes licenses by utilizing AND- and OR-composition (Gangadharan
et al., 2007). Similar to this Villata and Gandon (2012) presented the following
three solutions that could be used to combine licenses:

32

4. Solution Design

Figure 4.4: Flow-Chart for the process of checking the compatibility between
two licenses

• OR-composition: If one license contains an obligation, it becomes part of
the aggregated license.

• AND-composition: An obligation only becomes part of an aggregate if it is
included in all licenses.

• Constraining-value: The most restraining obligation of two clauses is trans-
ferred to the composition.

Governatori, Lam, Rotolo, Villata and Gandon (2013) and Governatori, Rotolo
et al. (2013) proposes an extension for this logic, which only focuses on the
first two heuristics. To combine the permissions of two or more licenses, the
AND-composition is used. This automatically ensures only permissions that are
included in all licenses are contained in the synthetic license. The prohibitions
and duties are composed using the OR-composition. The reason for this is, that
in case an action is not allowed by one licenses, this prohibition has to transfer
to the composite. The same holds true for the duties. If something is required
by one license, it has to be required by the composite. Otherwise it would result
in a conflict with the original license. This ensures that the composite license is
at least as restrictive as the original licenses (Governatori, Rotolo et al., 2013).

33

4. Solution Design

We are not composing the list of compatible licenses, since these are only repres-
entative for the current license.

Our framework is not the first to use this approach. Similar to our framework,
both the Licentia- and the LIVE-framework use the first two compositions for
their compatibility-checks. They propose to use the AND-composition for the
composition of license-permissions and to check the validity of the combination
of license-permission and -prohibitions. The OR-composition is then used to com-
pose the license-duties. This results in a final set of obligations that is considered
the composition of two licenses. (Cardellino et al., 2014; Governatori et al., 2014).

To illustrate this process, we are going to give an example using the two li-
censes CC-BY-4.0 and Creative Commons Attribution Non-Commercial 4.0 In-
ternational (CC-BY-NC-4.0). The permissions, prohibitions and duties are each
represented as a variable containing the set of corresponding actions. They are
then composed following the explained rules to create three new sets represent-
ing the composed permissions, prohibitions and duties. A visualization of this
process can be found in the appendix (see Appendix G)

34

4. Solution Design

1. Pec = Pecc−by ∩ Pecc−by−nc

= {”Sharing”, ”DerivativeWorks”, ”CommercialUse”,

”Reproduction”, ”Distribution”, ”FreeAccess”,

”UninhibitedAccess”, ”ChangeLicense”}∩
{”Sharing”, ”DerivativeWorks”, Reproduction”,

”Distribution”, ”FreeAccess”, ”UninhibitedAccess”, ”ChangeLicense”}
= {”Sharing”, ”DerivativeWorks”, ”Reproduction”, ”Distribution”,

”FreeAccess”, ”UninhibitedAccess”, ”ChangeLicense”}

2. Pec = Prcc−by ∪ Prcc−by−nc

= {”ClaimWarranty”, ”ClaimLiability”, ”Endorse”,

”ClaimMoralRights”, ”ClaimTrademark”, ”ClaimPersonalityRights”,

”ClaimPatentRights”, ”ClaimCopyrightRights”, ”Relicense”}∪
{”CommercialUse”, ”ClaimWarranty”, ”ClaimLiability”,

”Endorse”, ”ClaimMoralRights”, ”ClaimTrademark”,

”ClaimPersonalityRights”, ”ClaimPatentRights”,

”ClaimCopyrightRights”, ”Relicense”}
= {”CommercialUse”, ”ClaimWarranty”, ”ClaimLiability”,

”Endorse”, ”ClaimMoralRights”, ”ClaimTrademark”,

”ClaimPersonalityRights”, ”ClaimPatentRights”,

”ClaimCopyrightRights”, ”Relicense”}

3. Rc = Rcc−by ∪Rcc−by−nc

= {”Attribution”, ”Inform”, ”Notice”, ”LinkLicense”, ”LinkDataSet”}
∪ {”Attribution”, ”Inform”, ”Notice”, ”LinkLicense”, ”LinkDataSet”}
= {”Attribution”, ”Inform”, ”Notice”, ”LinkLicense”, ”LinkDataSet”}

(4.6)

The advantage of using this composition in combination with our proposed license-
model is that it automatically returns a valid composite license. Because of the
usage of AND- and OR- composition, the composite cannot include any duplic-
ates for permissions and prohibitions, since the permissions, prohibitions and
duties of a license are distinct. This means the permissions are only included, if
they are permitted by all licenses. If another license either does not mention a
permission or does prohibit it, the conflicting permissions are automatically re-
moved from the composite. On the other hand, a prohibition is always included,

35

4. Solution Design

even if it is only mentioned once, meaning no information is lost. The duties are
automatically distinct and do not require sanitation, since they cannot include
any actions from the other two sets.

Other papers or frameworks solve this by introducing additional constraints on
their composite to ensure their validity. Villata and Gandon (2012) for example
solves this conflict, by introducing relationships between the three categories
and between the actions themselves. These relationships are then enforced and
used during license-composition to create valid license-descriptions, automatically
removing invalid actions from the finished license.

4.5 License Recommendation

The final part of our framework is to provide a reliable solution to create re-
commendations, which licenses could be used to license the created derivative.
We do this by comparing the created license-aggregates to the list of existing
licenses. Here we use a set of rules, that is similar to the compatibility-checks.
A license is recommended if it is equally or more restrictive than the generated
license-aggregate.

To check this, we again use a rule-set based on the principles described in Moreau
et al. (2019).

• The permissions of the composite-license are a superset or equal to the
permissions of a license (R8).

• The prohibitions of the composite-license are a subset or equal to the pro-
hibitions of a license and not permitted by the license (R9).

• The duties of the composite-license are a subset or equal to the duties of a
license (R10).

• The original licenses contained in the composite allow the change to the
recommended license (R11).

The first three rules are the same rules we used to check the license-compatibility.
The reason for the decision to limit the recommendations to equal or more re-
strictive licenses is to ensure that we only recommend licenses, that definitely
fulfill all the necessary prohibitions and duties.

We also considered including less-restrictive licenses into our recommendations
and show what parts of the composite-license are missing from the license. This
could be useful for researchers to find out what prevents them from reusing a
certain license or if they could license the datasets by limiting its use-case to
specific purposes. But since we currently do not include context-information into
our process, we have no way to weigh the importance of different actions. This

36

4. Solution Design

means, we cannot measure how much less-restrictive a license is, if it e.g. only
misses one prohibition or duty. Since this could potentially lead to invalid recom-
mendations, we decided not include these recommendations, but it is certainly
something that could be part of future works.

To check the final rule, we have to validate if one or more of the original licenses,
specify a restriction for the derivative-licenses. This can be done by checking
the duties of the original licenses and if necessary compare if the target-license is
included in the list of allowed licenses.

Again, we can model this as a CSP. For this we need the same variables we
used for the compatibility-checks, but also have to add five additional variables.
One variable represents the licenses included in the composite and three variables
model the permissions, prohibitions and duties of the composite. Finally we need
a variable that can represent the composite license.

V = {I0, ..., In, Ir (Identifiers),
Pe0, ..., P en, P er (Permissions),
Pr0, ..., P rn, P rr (Prohibitions),
R0, ..., Dn, Dr (Duties),
S0, ..., Sn, Sr (Share-Alikes),
L0, ..., Ln, Lr (Licenses),
Inc (Included license),
CPe (Composite-Permissions),
CPr (Composite-Prohibitions),
CR (Composite-Duties),
C (Composite-License)}
with n ∈ [0, ..., 18]

(4.7)

The reason, why we need to add three new variables to model the license-actions,
is that they have a different domain from the existing domains for the permissions,
prohibitions and duties. Their domain models the sets of actions that can be
created by the composition, which are a combination of the sets defined in DPe,
DPr and DR.

37

4. Solution Design

DIn , DIr ={0, 1, 2, ..., 18} with n ∈ [0, ... , 18]

DPen ;DPer ={{”Sharing”, ”DerivativeWorks”, ... }, ... },
with n ∈ [0, ..., 18]

DPrn , DPrr ={{”ClaimWarranty”, ”ClaimLiability”, ... }, ... },
with n ∈ [0, ... , 18]

DRn , DRr ={{”Attribution”, ”Inform”, ... }, ... }
with n ∈ [0, ..., 18]

DSn , DSr ={{}, {1}, {4}, ... }
with n ∈ [0, ... , 18]

DLn , DLr ={⟨0, {”Sharing”, ”DerivativeWorks”, ... },
{”ClaimWarranty”, ”ClaimLiability”, ... },
{”Attribution”, ”Inform”, ... }, {}⟩, ... }
with n ∈ [0, ... , 18]

DInc ={(0, 0), (0, 1), ... },
DCPe ={{”Sharing”, ”DerivativeWorks”, ... }, ... },
DCPr ={{}, {”ClaimWarranty”, ”ClaimLiability”, ... }, ... },
DCR ={{}, {”Attribution”, ”Inform”, ... }, ... }
DC ={⟨(0, 0), {”Sharing”, ”DerivativeWorks”, ... },

{”ClaimWarranty”, ”ClaimLiability”, ... },
{”Attribution”, ”Inform”, ... }, {}⟩, ...
}

(4.8)

The rules we described earlier can then be modeled using the following con-
straints:

38

4. Solution Design

R0a: (CPe ∩ CPr = {}) ∧ (CPe ∩ CR = {}) ∧ (CPr ∩ CR = {})
R0b: (Per ∩ Prr = {}) ∧ (Per ∩Rr = {}) ∧ (Prr ∩Rr = {})
R8: CPe ⊇ Per

R9: CPr ⊆ Prr

R10: CR ⊆ Rr

R11: ∀x ∈ Inc, Lx = ⟨l0, l1, l2, l3, l4⟩
with l0 = x ∧ ”ChangeLicense” ∈ l1∧
(”ShareAlike” /∈ l3 ∨ (”ShareAlike” ∈ l3 ∩ Ir ∈ l4)

Recommendation: Lr = ⟨l0, l1, l2, l3, l4⟩ with
l0 = Ir, l1 = Per, l2 = Prr, l3 = Rr and l4 = Sr

Composite: C = ⟨c0, c1, c2, c3⟩ with
c0 = Inc, c1 = CPe, c2 = CPr and c3 = CR

(4.9)

If we find a solution to this problem, we can recommend the license that is
modeled in Lr. If we do not find a solution, there is no license we can recommend
and we have to end the pipeline with no license-recommendation. Again to
help understand this CSP, we provide an example using the CC-BY-4.0 and
CC-BY-SA-4.0 in the appendix (see Appendix F). In this example, the composite
license consists of a combination of both licenses and it is checked if either of the
two licenses are suitable as a recommendation.

39

4. Solution Design

40

5 Implementation

To make the framework applicable to be used in a data pipeline, we also created
a software-implementation for it. This includes a license-database that stores the
licenses and a core-library, that implements the previously described framework.
The code of the library is released as an open-source-project licensed under the li-
cense "Apache-2.0" (Philip Rebbe, 2024). It includes an automatically generated
Software Bill-of-Materials (SBOM), referencing the used open-source-libraries fol-
lowing the "SPDX specification 2.3"1. This was done using the GitHub-API2. A
short summary of the used npm-packages is also included in Appendix I.

5.1 The License Database

The first part is the license-database. In it we need to store the license-descriptions
for our analyzed licenses in addition to detailed information about the possible
actions.

We chose to store the license-descriptions and actions using multiple JSON-files.
Each license and action is describe in a single JSON-file. We chose JSON as a file
format, since it is both human- and machine-readable, is very resource-efficient
and can be integrated into many different programming languages very well.
It also fits our data-model very well, as it allows us to model the permissions,
prohibitions and duties very well.

During development we also considered using an SQLite-database3 to store the
information, but ultimately decided against it. Using SQLite would make dis-
tributing the library and database, e.g. as a npm-package, more difficult. We
would either have to include the entire database into the package, which will
dramatically increase the size of the package or regularly provide update scripts,
that then have to be separately run on the users local database. A relational

1https://spdx.github.io/spdx-spec/v2.3/
2https://docs.github.com/en/code-security/supply-chain-security/

understanding-your-software-supply-chain/exporting-a-software-bill-of-materials-for-your-repository
3https://www.sqlite.org/

41

https://spdx.github.io/spdx-spec/v2.3/
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/exporting-a-software-bill-of-materials-for-your-repository
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/exporting-a-software-bill-of-materials-for-your-repository
https://www.sqlite.org/

5. Implementation

{
"metaInformation": {

"id": 0,
"name": "Creative Commons Attribution License

4.0",↪→

"spdxName": "CC-BY-4.0",
"dcatName": "cc-by/4.0",
"sourceLink": "https://creativecommons.org/

licenses/by/4.0/legalcode.de",↪→

"description": null
},
"permissions": [0, 1, 2, 3, 4, 15, 16, 27],
"prohibitions": [12, 13, 14, 17, 19, 21, 22, 23, 28

],↪→

"duties": [6, 7, 8, 9, 10],
"shareAlikes": []

}

Listing 1: Overview over the framework components

database also does not match our data-model very well, since each license can
have different amounts of permissions, prohibitions and duties.

We also considered to use other formats like JSON for Linked Data (JSON-LD)4

or RDF5. However we found them to be too complex for our use-case, as we do
not need to model any constraints in our descriptions. It also makes adding new
licenses more difficult, since both formats have much stricter syntax-rules than a
simple JSON-file.

In total there are 19 separate files containing the license-descriptions and 28
files containing the action-description. Each license-file includes all the meta-
information, permissions, prohibitions, duties and "Share-Alike"-information, as
described in the framework. The action-descriptions contains the name, a more
detailed version of the name and the definition for each action.

In the framework, the licenses and actions are linked together by using an iden-
tifier. Since using a string as an identifier always carries the risk of missing a
reference because of a typing error, we again added a unique numeric identifier to
each file to make references between them easier. This was done by adding a new
property to the meta-information of the licenses, since it semantically fits there,
and by extending the action-description with another parameter. The identifiers
for licenses and actions are independent from each other and always start at 0.

4https://json-ld.org/
5https://www.w3.org/RDF/

42

https://json-ld.org/
https://www.w3.org/RDF/

5. Implementation

It is then incremented by 1 for each new license/action.

Listings 4 and 2 show an example for contents of the license- and action-files.

{
"id": 0,
"name": "Sharing",
"displayName": "Share the original data",
"description": "Sharing the original data without

modification"↪→

}

Listing 2: JSON-representations of an action

The files are stored in one directory called "data" and then split into the two
subdirectories "actions" and "licenses". Each files is named after the assigned id
and the license or action it represents. This way a user can either search for the
name of a license or the identifier. Putting the identifier first also results in an
ordering for the files, making manual searches for a specific file a lot easier.

data
actions

0_sharing.json
1_derivativeWorks.json
...

licenses
00_CC-BY-4-0.json
01_CC-BY-SA-4-0.json
...

Figure 5.1: An overview of the structure of each license

5.2 The Core Library

The other half of the reference implementation is the core library. It is written
using Typescript6 and implements the logic of our proposed framework. We chose
Typescript, since it is a simple and popular programming language that can be
easily extended when necessary.

We considered using logic programming languages like Prolog (specifically SWI-
Prolog7) or Logica8, but decided against it. They have the advantage that they

6https://www.typescriptlang.org/
7https://www.swi-prolog.org/
8https://logica.dev/

43

https://www.typescriptlang.org/
https://www.swi-prolog.org/
https://logica.dev/

5. Implementation

are optimized to be used to implement logic functions like the ones we explained
in the previous chapter. Their syntax is also similar to the notation we previously
used to represent our rules, making the transfer of bigger statements very easy.

However they are not as well-known as a all-purpose programming language like
Typescript, making our reference implementation less approachable for someone
who has never worked with them. Additionally our logic functions are not very
complex and have a limited scope, meaning we do not need an optimized pro-
gramming language to recreate them. Since this library is also supposed to be
a reference-implementation, others can use to learn about our framework, we
decided to use the more approachable programming language. In addition to
that, the Jayvee-project is also implemented using Typescript, making a later
integration of the framework a lot easier.

The core library is implemented using a layered architecture and consists of the
following components:

• A data-access layer that connects the library to the license-database.

• A business-layer that implements the framework.

• An interface-layer that makes the business-logic available to a consumer.

The business-layer is split into the different core-components of the license-framework
to keep a separation of concern and keep the code-base manageable. Figure 5.2
shows the overall architecture, including the dependencies between the different
components. The appendix also includes a complete class-diagram showing all
implemented classes (see Appendix H).

5.2.1 Data-Access

The data-access-layer provides the connection from the core-library to the pre-
viously described license-database. It only provides the function getLicenses,
that returns the stored licenses to the caller. To do so, the different JSON-files,
describing the actions and licenses, are read using the default Typescript file-
system-library9. It then deserializes all of them into a list of objects, that can
then be used to run the compatibility-checks and aggregation logic on them. The
types and classes for this are provided by the library.

Each license is represented as an object of type License with properties describing
the different parts of our license model. An overview of the base entities is shown
in figure 6.4.

At this moment the files are read once during initialization and only a copy of the
stored values is returned to the caller. This is done since we do not expect the files

9https://nodejs.org/api/fs.html

44

https://nodejs.org/api/fs.html

5. Implementation

License-Aggregator

Index.tsInterface-
Layer

Business-
Layer

Data-
Layer

Compatibility-Checker License-Recommender

Pipeline

License-Finder

Data-Access

Figure 5.2: Overview over the architecture of the core library

to change during runtime. It would also make the reference-implementation a lot
more complex, since we would need to implement a mechanism, that monitors
the files for changes. This simplicity is also the reason, why all operations are
implemented in serial, meaning the files are read one after another. Parallelizing
this process is not necessary for the current size of our database and would only
complicate the process.

45

5. Implementation

references

0...m

License

licenseMetainformation: LicenseMetainformation

permissions: Action[]

prohibitions: Action[]

duties: Action[]

shareAlikes: number[]

LicenseMetainformation

id: number

name: string

spdxName: string

dcatName: string

sourceLink: string

description: string

0..1 1has

Action

id: number

name: string

shortName: string

description: string

0...n

Figure 5.3: Class-Diagram for the base entities

5.2.2 Business-Logic

As mentioned before we split the business logic into five classes to keep them
separated by concern and keep the code observable:

• License-Search: LicenseFinder

• License-Compatibility-Checks: Checker

• License-Aggregation: Aggregator

• License-Recommendations: Recommender

• Pipeline-Simulation: Pipeline

The class LicenseFinder is the only connection from the business- to the data-
access-layer. It contains three methods that can be used to either return all
licenses or search for a specific-license by name or by id. If the algorithm does
not find a license, it returns an object of type undefined signaling to the caller
that no matching license was found.

The class Checker implements the logic needed to compare the compatibility

46

5. Implementation

between two licenses. It implements the logic described in section 4.3 and provides
the two functions areCompatible() and runCompatibilityChecks(). The first
function contains the logic to compare two licenses, while the latter executes this
function over all possible license-combinations. The results of the compatibility-
check are returned as an object of type CompatibilityCheckResult containing
the names of the compared licenses, the results of the single sub-checks and the
final result.

The class Aggregator implements the aggregation-logic described in section 4.4.
It has the three functions createCompositeLicense(), extendCompositeLicense()
and runFullAggregation(). The function createCompositeLicense() cre-
ates an aggregate of two licenses. This aggregate can then be extended by
adding another license by calling extendCompositeLicense(). The third func-
tion runFullAggregation() is similar to runCompatibilityChecks() and runs
the first function over all possible combinations of two licenses to generate a
composite licenses for each combination.

Finally the class Recommender implements the recommendation-component of
the framework (see 4.5). Using the function findSimilarLicenses() a caller
can automatically search for a license that matches a provided composite-license.
It returns a list of licenses that are similar or more restrictive than the provided
composite-license. The results also includes a hint, how the composite license
differs from the original license.

The class Pipeline combines the previously described classes and recreates the
pipeline we described when designing our framework. After initializing an object
of this class, a caller can add multiple license-names to an internal array. This
array is then used to automatically create an composite license, using the logic
implemented in Aggregator. It also provides two functions to to run a full
compatibility-check for the stored licenses (checkLicenses()) and generate a list
of recommendations for the created aggregate(getRecommendations()). Finally
it provides a function to create a human- and machine-readable representation of
the results of the pipeline as a JSON-string, so users can download it and attach
the result to their dataset.

The search is implemented using a brute-force search, meaning the function iter-
ates over the array of existing licenses until a license with a matching parameter
is found. A more complex search-algorithm is not needed, since we at most have
to check 19 items. Because of this small sample-size, the search stays computa-
tionally unproblematic, even if we use a brute force approach.

The comparisons, aggregation and recommendation are done by directly compar-
ing the actions of a license against the actions of the other license. To ensure
we do not miss an action, this usually means looping over the actions of both li-
censes and checking if the specified conditions are met. Of course this also means,

47

5. Implementation

getLicense(name: string) : License | undefined {
return this.db.licenses.find((license) =>

license.metaInformation.name == name);↪→

}

Listing 3: The function getLicense as an example for search-functions

that, in the worst-case, we have to loop over all actions of every licenses multiple
times. One possible improvement for this would have been to reduce the number
of loops by combining some of the checks into a single loop. However this in-
troduces dependencies between the different functions, which can be problematic
during debugging or when making future improvements. It would also make the
code less readable, since the additional functions would add additional conditions
to the loops. Since we only have a very limited scope of actions and licenses at
the moment, we went with the simpler solution for our reference implementation.
If the number of licenses and potential actions grows in the future, this part of
the implementation is likely in need of some improvements.

5.2.3 Interface-Layer

The final part of our library is the interface-layer. This layer is used to make
the previously describe logic available to a caller of the library. This is done by
exporting the previously described types and classes through the index-file of the
solution. The index-file functions as proxy for the library. This means a caller of
the library can import all classes via one reference, instead of having to reference
every class on its own.

48

5. Implementation

function join(actions1: Action[], actions2: Action[]):
Action[] {↪→

let results: Action[] = [];

if ((actions1.length - actions2.length) >= 0) {
for (let i = 0; i < actions2.length; i++) {

let action2 = actions2[i];

let index = actions1.findIndex((action1) =>
areEqual(action1, action2));↪→

if (index >= 0) {
results.push(action2);

}
}

} else {
for (let j = 0; j < actions1.length; j++) {

let action1 = actions1[j];

let index = actions2.findIndex((action2) =>
areEqual(action2, action1));↪→

if (index >= 0) {
results.push(action1);

}
}

}

return results;
}

Listing 4: The implementation of a join-function for the license-aggregation

49

5. Implementation

50

6 Demonstration

To demonstrate our previously described artifact, we integrated the core library
into a website-prototype, that can be used to view the license-descriptions, check
the compliance of licenses and create reports by simulating the inputs we expect
from a data pipeline.

There were multiple reasons, why we went with a website as our demonstrator.
This solution enabled us to test the framework in multiple different scenarios,
by building different user-interfaces to mock them. This was much faster than
creating multiple different data pipelines. The interfaces also have the added
benefits, that they can be used to either evaluate new ideas or demonstrate
specific parts of the framework to other researchers. Since it is set up as a
stand-alone application, it does not require much preparation to run and has no
external dependencies, meaning the setup-process is relatively easy. It also has
the potential to be extended into an online-tutorial or -documentation at a later
point in time, in case we want to promote our framework in the future.

As an alternative to the website-prototype, we considered to demonstrate the
framework by integrating the reference-implementation into the Jayvee-project.
This would have given us a real-world test-environment for our framework. How-
ever to do so, a lot of additional changes to the project would have been necessary.
Since the amount of changes would have exceeded the timeline of this thesis, we
decided to go with the website-prototype.

The demonstrator is again implemented using Typescript and uses the Remix-
framework1 as a web-framework. We chose this setup to ensure that our reference-
implementation seamlessly integrates with the demonstrator. All used npm-
packages are referenced in Appendix I.

1https://remix.run/

51

https://remix.run/

6. Demonstration

The demonstrator is split into four parts:

• A license-overview displaying the stored license-information.

• A compatibility-matrix showing the compatibility between different licenses.

• A view showing the results for the aggregates between different licenses.

• An interactive simulation for a data pipeline.

Each part is either used to visualize a specific part of the framework or to demon-
strate how the framework could be used in a specific scenario. We will not go
into much detail on the implementation of each page, but instead focus on the
goals and motivations for each of them. The code is again published in the same
open-source-repository as the library (Philip Rebbe, 2024).

6.1 License-Overview

Figure 6.1: Screenshot for the license overview

The license-overview shows the different license-descriptions. This view is an
introduction to our license-model and is meant to help users learn and understand
it. When a user first clicks on the corresponding tab, the page shows a list of
all available licenses. The user can then click on a link, which redirects him to
another view showing the details of this specific license. This includes the stored
meta-informations and a list of all permission, prohibitions and duties for this
license.

6.2 Compatibility-Matrix

The main focus of the compatibility-matrix is the logic to check the compatibil-
ity of licenses. When the page is loaded, a full-scale compatibility-check is run
via the logic implemented in the the core library. The result is then displayed

52

6. Demonstration

Figure 6.2: Screenshot for the compatibility-matrix

in a matrix showing the compatibility between all possible license combinations.
The main goal for this view is to give an overview, which licenses are currently
classified as compatible by our library, meaning that we can create a valid ag-
gregate for this license. This was useful to find flaws in the current version of the
framework, get ideas for new improvements or to validate our framework against
other frameworks from literature.

6.3 License-Aggregation-Overview

This view displays a table containing the aggregation-results for all potential
license-pairs. Like the previous page, the results are generated by core-library on
page-load and then displayed in a table. It was created to be able to check if the
logic of the framework was working and find remaining inconsistencies.

53

6. Demonstration

Figure 6.3: Screenshot for the license-aggregation overview

6.4 Pipeline-Simulation

This view recreates the use-case we described in the introduction (see figure 1.1).
To recap, in the Jayvee-project one or more data pipelines can flow into the same
sink, resulting in a new dataset containing data from all the previous datasets.
This means that the new dataset and its license must be compatible with all the
previous licenses.

The page provides users with the option to choose one or more licenses from
a dropdown-list. This dropdown simulates the inputs from the different data
pipelines into our framework. A user can add one license at the time to the
pipeline representing the addition of a new dataset to the sink. The licenses are
then automatically run through the pipeline of our framework, implemented using
the Pipeline-class from the library. The pipeline then automatically checks the
licenses for compatibility, aggregates them into a composite license and a license-
recommendation is generated. The results of each step are then displayed below
the dropdown-list to enable a manual evaluation of the results. Finally the JSON-
representation of the pipeline-result is displayed at the end of the page to show
the output from our pipeline.

54

6. Demonstration

Figure 6.4: Screenshot for the pipeline-simulation

55

6. Demonstration

56

7 Evaluation

As the final step of the design-science research methodology, we evaluated our
artifact. The goal for this step is to see if the created "artifact supports a solution
to the artifact" (K. Peffers et al., 2007). This included testing the validity of
our framework and testing how our framework functioned in comparison to other
frameworks.

7.1 Evaluation of our Objectives

7.1.1 Objectives for the Framework

Creating a Model to Describe Licenses

To verify if the defined actions could be used to implement licenses that were not
part of the original dataset, we tried to model older or other versions of the same
licenses to see if they would be marked as compatible or if we needed to include
additional actions. This included the earlier versions of the "Open Government
License", "Licence Ouverte", the CC-licenses and the CC-public domain mark.
All of these licenses could be modeled with the defined actions (see table 7.1).
The new license-descriptions either were copies of the original licenses or were
less restrictive versions than the newer iterations.

Comparing and Recommending Licenses

To ensure the validity of our framework, we compared the results from our frame-
work with the results in existing literature. This included existing compatibility-
matrices like the one provided by CC1 or existing reports like the one describe
by the Ministerium für Wirtschaft, Innovation, Digitalisierung und Energie des
Landes Nordrhein-Westfalen and Beauftragte der Landesregierung für Inform-
ationstechnik (CIO) / Geschäftsstelle Open.NRW (2019) that detail how some
licenses should be classified. In case a license explicitly stated that it should be

1https://wiki.creativecommons.org/wiki/Wiki/cc_license_compatibility

57

https://wiki.creativecommons.org/wiki/Wiki/cc_license_compatibility

7. Evaluation

Table 7.1: List of older licenses in comparison with newer versions

Added License Comparable License Compatible?
CC-BY-3.0 CC-BY-4.0 Yes
CC-BY-SA-3.0 CC-BY-SA-4.0 Yes
CC-BY-ND-3.0 CC-BY-ND-4.0 No (No derivatives)
CC-BY-NC-3.0 CC-BY-NC-4.0 Yes
CC-BY-NC-SA-3.0 CC-BY-NC-SA-4.0 Yes
CC-BY-NC-ND-3.0 CC-BY-NC-ND-4.0 No (No derivatives)
Public Domain Mark CC0 Yes
Open Government Li-
cense v2

Open Government Li-
cense v3

Yes

Licence Ouverte v1 Licence Ouverte v2 Yes

compatible with a specific license, we also validated if these licenses were classi-
fied as compatible. Examples for this are the "Open Government License" or the
"Norwegian Licence for Open Government Data (NLOD) 2.0" which explicitly
state their compatibility with the CC-licenses. We tested this by entering the
specific licenses into the demonstrator and comparing if the compatibility-checks
and recommendations matched the expected output.

As is shown in 7.2, there are some licenses that were classified as not compatible
by the new framework, even though they should be compatible according to
the literature. The reason for this is that we included the disclaimers for other
rights like personal-rights into our model. This was done to ensure that these
prohibitions would be included in the composite license, but also resulted in
a pessimistic interpretation of the license-compatibility. A possible solution to
change this would be to combine them into a single action or exclude them when
comparing two licenses. Since both solutions seem promising, this should be
evaluated in future works.

7.1.2 Objectives for the Library

Comparison with DALICC-Framework

To further test if our framework implemented the adopted logic correctly, we also
conducted a test against one of the other frameworks. For the comparison, we
used results from the DALICC-Api2 and from the demonstrator. The DALICC-
Api provides an endpoint called "compatibilitycheck" that takes a POST-request
containing the licenses it should compare and returns a list of all found con-
flicts between the licenses (see listing 5). It compares two licenses and checks
if the second license contains a condition that makes it incompatible with the

2https://api.dalicc.net/docs

58

https://api.dalicc.net/docs

7. Evaluation

first license. To replicate this, we entered the licenses into our demonstrator
and checked if the first license would be marked as a valid recommendation for
the resulting composite. Because both frameworks implement different sets of
licenses, we limited the test to the licenses that both frameworks implemented.

We had two goals for this test: The first goal was to see how our framework
classified the licenses in comparison to the DALICC-framework. The second
goal was to see if all conflicts, registered by the DALICC-framework, were re-
cognized by our framework. Out of the 121 license-combinations we looked at,
45 were marked as conflicting by the DALICC-framework. In comparison to
this, our framework registered 95 conflicts, including the 45 conflicts found by
the DALICC-framework. This verified that our framework found all conflicts re-
gistered by the DALICC-framework. But it also showed that our framework is a
lot more pessimistic when comparing licenses. This is caused by the disclaimer
actions, as we already mentioned, but also because we added the additional rules
regarding "Share-Alike" and not allowing a derivative license, in case one license
did not allow it. This resulted in us automatically eliminating license that were
classified as compatible by the DALICC-framework. Out of the 50 additional con-
flicts that were registered, 18 cases were prohibited by the "NoDerivative"-clause,
23 cases were rejected because of the added actions and 9 cases were removed
because of the new Share-Alike check.

Collecting Feedback from Jayvee-Team

Finally the artifact and demonstrator were presented to the JValue-Team during
one of their developer-meetings in February of 2024 to collect feedback from
a group of experts in the context of data pipelines. This was done to gather
feedback regarding the current state of the library and on how the demonstrator
could be improved to better represent the expected use-case.

The feedback for the demonstrator was overall positive, with some suggestions
on how to improve the user-interface (UI). This included suggestions like adding
some visual hints or explanations for certain actions that were displayed during
each step. However in regards to the library the developers expressed the idea
to include license-recommendations based on the created license-aggregates. The
reason for this was that while they saw the composite license as a good indicator
on how to proceed, when relicensing the new dataset, they would prefer if the
system was able to give a recommendation which licenses could be used to fulfill
the requirements of this composite license. Since we already had a similar idea on
how to integrate this feature into our framework, we then took another iteration
of the design-science process to include this feature into our artifact, resulting in
the version presented in this thesis.

59

7. Evaluation

7.2 Limitations

There are still some limitations regarding the framework and library. One lim-
itation, the pessimistic interpretation of certain licenses, was already mentioned
during the evaluation of the objectives.

Another limitation of this framework is the missing functionality to extract the
license-information from the meta-information of a dataset. As mentioned during
the objective-definition, we decided to remove this part from this iteration of the
framework and therefore the core-library to allow us to focus on the logic for
the license-operations. Because of this users of the library currently either have
to implement the extraction of meta-information themself and then pass this
information to the library or manually enter the information to get a result from
the library. To complete the framework and core-library into a solution that
can handle all operations regarding license information this function has to be
added in the future. It should also add additional export-formats to support the
requirements of different data-platforms.

The framework is also limited by the assumption that each dataset is represented
by a single license. Datasets can be licensed under multiple licenses at the same
time. Currently this can be problematic in cases were one of the licenses does
not allow derivatives, since the framework would interpret two licenses as the
combination of two datasets and therefore reject them. This could be solved in
the future by extending the framework to allow passing a combinations of both
license to the framework or aggregating them before passing them through the
pipeline.

Finally the framework and library were not validated by a legal expert and are
therefore not able to give legally binding advice. Since our goal was to find a logic-
based approach to the problem of license-comparison, this does not invalidate the
proposed solution, but should be mentioned again at this point to prevent any
misunderstandings. Both the framework and library were created based on the
knowledge found in the cited literature and the experiences of the author and
provide a suggestion to the user. It is not a replacement for the advice of a
lawyer and must not be used as such, in case someone needs any legal advice.

60

7. Evaluation

Table 7.2: List of validations according to the literature

License Compatible with accord-
ing to the literature

Matched Result

CC-BY-4.0 CC-BY-4.0 Yes
CC-BY-4.0 CC-BY-SA-4.0 Yes
CC-BY-4.0 CC-BY-NC-4.0 Yes
CC-BY-4.0 CC-BY-NC-SA 4.0 Yes
CC-BY-SA-4.0 CC-BY-4.0 Yes
CC-BY-SA-4.0 CC-BY-SA-4.0 Yes
CC-BY-NC-4.0 CC-BY-4.0 Yes
CC-BY-NC-4.0 CC-BY-NC-4.0 Yes
CC-BY-NC-4.0 CC-BY-NC-SA-4.0 Yes
CC-BY-NC-SA-4.0 CC-BY-NC-SA-4.0 Yes
Data licence Germany-
Zero-Version 2.0

CC-BY-4.0 Yes

Data licence Germany-
Zero-Version 2.0

ODC-By No

Open Government Li-
cense v3

CC-BY-4.0 No

Open Government Li-
cense v3

ODC-By No

Licence Ouverte CC-BY-4.0 Yes
Licence Ouverte ODC-By No
Licence Ouverte Open Government Li-

cence
No

NLOD 2.0 CC-BY-4.0 No
NLOD 2.0 Open Government Li-

cense v2
No

NLOD 2.0 Open Government Li-
cense v3

No

61

7. Evaluation

{
"conflicting_statements": {

"direct": {
"0": {

"statement_1": [
"https://dalicc.net/licenselibrary/

CC-BY-NC-4.0",↪→

"http://www.w3.org/ns/odrl/2/permission",
"http://www.w3.org/ns/odrl/2/derive"

],
"statement_2": [

"https://dalicc.net/licenselibrary/
CC-BY-ND-4.0",↪→

"http://www.w3.org/ns/odrl/2/prohibition",
"http://www.w3.org/ns/odrl/2/derive"

],
"reason": "Direct permission-prohibition

conflict."↪→

},
"1": {

"statement_1": [
"https://dalicc.net/licenselibrary/

OdcPublicDomainDedicationAndLicence",↪→

"http://www.w3.org/ns/odrl/2/permission",
"https://dalicc.net/ns#ChangeLicense"

],
"statement_2": [

"https://dalicc.net/licenselibrary/
CC-BY-ND-4.0",↪→

"http://www.w3.org/ns/odrl/2/prohibition",
"https://dalicc.net/ns#ChangeLicense"

],
"reason": "Direct permission-prohibition

conflict."↪→

},
...

},
"derived": {}

}
}

Listing 5: Extract from the response of the DALICC-API

62

8 Conclusions

The goal of this thesis was to create a solution for integrating open data licenses
into data pipelines. For this we looked at how open data licenses affect data
pipelines and what kind of problems occur when working with them.

To solve these problems, we created a framework that can model and compare
open data licenses. To do so, we looked and compared existing frameworks and
other literature that are concerned with the topic of license-compatibility to find
a solution that would fit the context of data pipelines. The created framework
includes the functionality to check two licenses for compatibility, aggregate them
into a composite license and give recommendations in case the composite license
matches an existing license.

We then created a Typescript-based reference-implementation for this framework
and integrated it into a web-based demonstrator to test how the framework could
be used in a real data pipeline to create reports or handle license-comparisons.

The evaluation was done by comparing the results against existing literature
and other frameworks from literature. We also tested if other licenses could be
included in it as well and collected feedback from the JValue-team on how to
improve the framework even further.

For future works, we would recommend to integrate this framework into the
Jayvee-project to gather more real-world examples and extend the core-library
to support some of the missing functionalities, like the ability to automatically
extract license-information from a datasource. It should also be analyzed by a
group of legal experts to find out, what kind of improvements would be necessary
to gain an official certification for the framework and library. Another interest-
ing option could be to use the insights gathered during this thesis to create a
ML-based tool that is trained by crawling and analyzing datasets contained in
different datahubs.

63

8. Conclusions

64

Appendices

65

Appendix A: List of Identified Actions - Part 1

A List of Identified Actions - Part 1

Id Name Definition
0 Share Use and sharing the original data
1 Modify Create, use and share a derivative
2 Commercial Use Use the derivative commercially
3 New License Define a new license for the dataset
4 Warranty You can disclaim the Warranty
5 Liability You can disclaim the Liability
6 MoralRights You can disclaim the moral rights that are

attached to the content of the dataset
7 Trademarks You can disclaim any trademarks used in the

data
8 DataProtection You can disclaim the data protection rights

attached ot the content of the dataset
9 PersonalityRights You can disclaim the personality rights that

are attached to the content of the dataset
10 PatentRights You can disclaim the personality rights that

are attached to the content of the dataset
11 CopyrightRights You can disclaim a copyright that are at-

tached to the content of the dataset
12 DesignRights You can disclaim the design rights that are

attached to the content of the dataset
13 PersonalData You can prevent usage of personal data that

is part of the content of the dataset
14 ThirdPartyRights You can disclaim third party rights that are

attached to the content of the dataset
15 Endorsement You can use the dataset for endorsement
16 Free Access You can freely access the dataset
17 UninhibitedAccess You can access without inhibitions

67

Appendix B: List of Identified Actions - Part 2

B List of Identified Actions - Part 2

Id Name Definition
0 Share-Alike Requires Share-Alike
1 Attribution by Name Name the original creator
2 Describe Changes Describe Changes made to the data
3 Copyright-Notice Maintain all copyright-notices
4 Link to Source Include a link to the original source
5 Link to License Include a link to the license
6 Limit License Version Limit the allowed version license to a specific

version

68

Appendix C: List of Normed Actions

C List of Normed Actions

Id Name Origin Definition
0 Share - Sharing the original data
1 Reproduction cc Making multiple copies
2 DerivativeWorks - Create derivative works
3 Distribution cc Distribution, public display, and pub-

licly performance
4 CommercialUse cc Exercising rights for commercial pur-

poses
5 ShareAlike - If you want to relicense the data you

have to use the same or a similar license
6 Attribution cc Credit be given to copyright holder

and/or author
7 Inform odrl To inform that an action has been per-

formed on or in relation to the Asset.
8 Notice cc copyright and license notices be kept

intact
9 LinkLicense - You have to include the text or a link

to the original license
10 LinkDataset - You have to provide a link to the ori-

ginal dataset
11 LimitLicenseVersion - You have to use a specific version of

this license or one compatible with it,
to relicense the dataset

12 ClaimWarranty - You can claim a warranty for the
provided information

13 ClaimLiability - The provider can be made liable for
damages

14 Endorse - You can use the use of the data to en-
dorse your project

15 FreeAccess - Accessing the data is free of charge
16 UninhibitedAccess - Accessing the data is not prevented by

unneccessary means
17 ClaimMoralRights - You can claim the moral rights that are

attached to the content of the dataset
18 ClaimTrademarks - You can claim any trademarks used in

the data
19 ClaimDataProtection - You can claim the data protection

rights attached ot the content of the
dataset

69

Appendix C: List of Normed Actions

Id Name Origin Definition
20 ClaimPersonalityRights - You can claim the personality rights

that are attached to the content of the
dataset

21 ClaimPatentRights - You can claim the personality rights
that are attached to the content of the
dataset

22 ClaimCopyrightRights - You can claim a copyright that are at-
tached to the content of the dataset

23 ClaimDesignRights - You can claim the design rights that are
attached to the content of the dataset

24 ClaimPersonalData - You can use personal data that is part
of the content of the dataset

25 ClaimThirdPartyRights - You can claim third party rights that
are attached to the content of the data-
set

27 Relicense - The license of the unchanged dataset
can be changed to another license

70

Appendix D: Example - Less-Restrictiveness

D Example - Less-Restrictiveness

Ia =0

Pea ={”Sharing”, ”DerivativeWorks”, ”Reproduction”,

”Distribution”, ”FreeAccess”, ”UninhibitedAccess”,

”ChangeLicense”}
Pra ={”ClaimWarranty”, ”ClaimLiability”, ”Endorse”,

”ClaimMoralRights”, ”ClaimTrademark”, ”ClaimPersonalityRights”,

”ClaimPatentRights”, ”ClaimCopyrightRights”,

”Relicense”}
Ra ={”Attribution”, ”Inform”, ”Notice”, ”LinkLicense”, ”LinkDataSet”}
Sa ={}

La =⟨0,
{”Sharing”, ”DerivativeWorks”, ”Reproduction”, ”Distribution”,

”FreeAccess”, ”UninhibitedAccess”, ”ChangeLicense”},
{”ClaimWarranty”, ”ClaimLiability”, ”Endorse”, ”ClaimMoralRights”,

”ClaimTrademark”, ”ClaimPersonalityRights”, ”ClaimPatentRights”,

”ClaimCopyrightRights”, ”Relicense”},
{”Attribution”, ”Inform”, ”Notice”, ”LinkLicense”, ”LinkDataSet”},
{}⟩

71

Appendix D: Example - Less-Restrictiveness

Ib =1

Peb ={”Sharing”, ”DerivativeWorks”, ”Reproduction”,

”Distribution”, ”FreeAccess”, ”UninhibitedAccess”,

”ChangeLicense”}
Prb ={”ClaimWarranty”, ”ClaimLiability”, ”Endorse”,

”ClaimMoralRights”, ”ClaimTrademark”, ”ClaimPersonalityRights”,

”ClaimPatentRights”, ”ClaimCopyrightRights”, ”Relicense”}
Rb ={”ShareAlike”, ”Attribution”, ”Inform”, ”Notice”, LinkLicense”,

”LinkDataSet”}
Sb ={1}

Lb =⟨1,
{”Sharing”, ”DerivativeWorks”, ”Reproduction”, ”Distribution”,

”FreeAccess”, ”UninhibitedAccess”, ”ChangeLicense”},
{”ClaimWarranty”, ”ClaimLiability”, ”Endorse”, ”ClaimMoralRights”,

”ClaimTrademark”, ”ClaimPersonalityRights”, ”ClaimPatentRights”,

”ClaimCopyrightRights”, ”Relicense”},
{”ShareAlike”, ”Attribution”, ”Inform”, ”Notice”, ”LinkLicense”,

”LinkDataSet”},
{1}⟩

72

Appendix D: Example - Less-Restrictiveness

R0a: (Pea ∩ Pra = {}) ∧ (Pea ∩Ra = {}) ∧ (Pra ∩Ra = {})(true)
R0b: (Peb ∩ Prb = {}) ∧ (Peb ∩Rb = {}) ∧ (Prb ∩Rb = {})(true)

-> R0 fulfilled
R1: Pea ⊇ Peb(true)

-> R1 fulfilled
R2: Pra ⊆ Prb(true)

-> R2 fulfilled
R3: Ra ⊆ Rb(true)

-> R3 fulfilled
R4a: ”ChangeLicense” ∈ Pea(true)

R4b: ”ShareAlike” /∈ Ra ∨ (”ShareAlike” ∈ Ra ∧ Ib ∈ Sa)(true)

-> R4 fulfilled
License A: La = ⟨l0, l1, l2, l3, l4⟩ with l0 = Ia, l1 = Pea, l2 = Pra, l3 = Ra and l4 = Sa(true)

-> License A fulfilled
License B: Lb = ⟨l0, l1, l2, l3, l4⟩ with l0 = Ib, l1 = Peb, l2 = Prb, l3 = Rb and l4 = Sb(true)

-> License B fulfilled
R7a: ”DerivativeWorks” ∈ Pea(true)

R7b. ”DerivativeWorks” ∈ Peb(true)

-> R7 fulfilled

-> license A is less restrictive than license B

73

Appendix E: Example - Composition-Check

E Example - Composition-Check

Ia =0

Pea ={”Sharing”, ”DerivativeWorks”, ”CommercialUse”, ”Reproduction”,

”Distribution”, ”FreeAccess”, ”UninhibitedAccess”, ”ChangeLicense”}
Pra ={”ClaimWarranty”, ”ClaimLiability”, ”Endorse”, ”ClaimMoralRights”,

”ClaimTrademark”, ”ClaimPersonalityRights”, ”ClaimPatentRights”,

”ClaimCopyrightRights”, ”Relicense”}
Ra ={”Attribution”, ”Inform”, ”Notice”, ”LinkLicense”, ”LinkDataSet”}
Sa ={}

La =⟨0,
{”Sharing”, ”DerivativeWorks”, ”CommercialUse”, ”Reproduction”,

”Distribution”, ”FreeAccess”, ”UninhibitedAccess”, ”ChangeLicense”},
{”ClaimWarranty”, ”ClaimLiability”, ”Endorse”, ”ClaimMoralRights”,

”ClaimTrademark”, ”ClaimPersonalityRights”, ”ClaimPatentRights”,

”ClaimCopyrightRights”, ”Relicense”},
{”Attribution”, ”Inform”, ”Notice”, ”LinkLicense”, ”LinkDataSet”},
{}⟩

74

Appendix E: Example - Composition-Check

Ib = 1

Peb ={”Sharing”, ”DerivativeWorks”, ”CommercialUse”, ”Reproduction”,

”Distribution”, ”FreeAccess”, ”UninhibitedAccess”, ”ChangeLicense”}
Prb ={”ClaimWarranty”, ”ClaimLiability”, ”Endorse”, ”ClaimMoralRights”,

”ClaimTrademark”, ”ClaimPersonalityRights”, ”ClaimPatentRights”,

”ClaimCopyrightRights”, ”Relicense”}
Rb ={”ShareAlike”, ”Attribution”, ”Inform”, ”Notice”, ”LinkLicense”,

”LinkDataSet”}
Sb ={1}

Lb =⟨1,
{”Sharing”, ”DerivativeWorks”, ”CommercialUse”, ”Reproduction”,

”Distribution”, ”FreeAccess”, ”UninhibitedAccess”, ”ChangeLicense”},
{”ClaimWarranty”, ”ClaimLiability”, ”Endorse”, ”ClaimMoralRights”,

”ClaimTrademark”, ”ClaimPersonalityRights”, ”ClaimPatentRights”,

”ClaimCopyrightRights”, ”Relicense”},
{”ShareAlike”, ”Attribution”, ”Inform”, ”Notice”, ”LinkLicense”,

”LinkDataSet”},
{1}⟩

75

Appendix E: Example - Composition-Check

R0a: (Pea ∩ Pra = {}) ∧ (Pea ∩Ra = {}) ∧ (Pra ∩Ra = {})(true)
R0b: (Peb ∩ Prb = {}) ∧ (Peb ∩Rb = {}) ∧ (Prb ∩Rb = {})(true)

-> R0 fulfilled
R5: Pea ∩ Peb ̸= {}(true)

-> R5 fulfilled
R6a: ”ChangeLicense” ∈ Pea(true)

R6b: ”ChangeLicense” ∈ Peb(true)

-> R6 fulfilled
License A: La = ⟨l0, l1, l2, l3, l4⟩ with l0 = Ia, l1 = Pea, l2 = Pra, l3 = Ra and l4 = Sa(true)

-> License A fulfilled
License B: Lb = ⟨l0, l1, l2, l3, l4⟩ with l0 = Ib, l1 = Peb, l2 = Prb, l3 = Rb and l4 = Sb(true)

-> License B fulfilled
R7a: ”DerivativeWorks” ∈ Pea(true)

R7b: ”DerivativeWorks” ∈ Peb(true)

-> R7 fulfilled

-> license A and license B can be composed!

76

Appendix F: Example - Recommendation

F Example - Recommendation

Variable-Definitions - Composite License:

Inc =(0, 1)

CPe ={”Sharing”, ”DerivativeWorks”, ”CommercialUse”, ”Reproduction”,

”Distribution”, ”FreeAccess”, ”UninhibitedAccess”, ”ChangeLicense”}
CPr ={”ClaimWarranty”, ”ClaimLiability”, ”Endorse”, ”ClaimMoralRights”,

”ClaimTrademark”, ”ClaimPersonalityRights”, ”ClaimPatentRights”,

”ClaimCopyrightRights”, ”Relicense”}
CR ={”ShareAlike”, ”Attribution”, ”Inform”, ”Notice”, ”LinkLicense”,

”LinkDataSet”}

C =⟨(0, 1),
{”Sharing”, ”DerivativeWorks”, ”CommercialUse”, ”Reproduction”,

”Distribution”, ”FreeAccess”, ”UninhibitedAccess”, ”ChangeLicense”},
{”ClaimWarranty”, ”ClaimLiability”, ”Endorse”, ”ClaimMoralRights”,

”ClaimTrademark”, ”ClaimPersonalityRights”, ”ClaimPatentRights”,

”ClaimCopyrightRights”, ”Relicense”},
{”ShareAlike”, ”Attribution”, ”Inform”, ”Notice”, ”LinkLicense”,

”LinkDataSet”},
{1}⟩

77

Appendix F: Example - Recommendation

Variable-Definitions - CC-BY-4.0:

I0 =0

Pe0 ={”Sharing”, ”DerivativeWorks”, ”CommercialUse”, ”Reproduction”,

”Distribution”, ”FreeAccess”, ”UninhibitedAccess”, ”ChangeLicense”}
Pr0 ={”ClaimWarranty”, ”ClaimLiability”, ”Endorse”, ”ClaimMoralRights”,

”ClaimTrademark”, ”ClaimPersonalityRights”, ”ClaimPatentRights”,

”ClaimCopyrightRights”, ”Relicense”}
R0 ={”Attribution”, ”Inform”, ”Notice”, ”LinkLicense”, ”LinkDataSet”}
S0 ={}

L0 =⟨0,
{”Sharing”, ”DerivativeWorks”, ”CommercialUse”, ”Reproduction”,

”Distribution”, ”FreeAccess”, ”UninhibitedAccess”, ”ChangeLicense”},
{”ClaimWarranty”, ”ClaimLiability”, ”Endorse”, ”ClaimMoralRights”,

”ClaimTrademark”, ”ClaimPersonalityRights”, ”ClaimPatentRights”,

”ClaimCopyrightRights”, ”Relicense”},
{”Attribution”, ”Inform”, ”Notice”, ”LinkLicense”, ”LinkDataSet”},
{}⟩

78

Appendix F: Example - Recommendation

Variable-Definitions - CC-BY-SA-4.0:

I1 = 1

Pe1 ={”Sharing”, ”DerivativeWorks”, ”CommercialUse”, ”Reproduction”,

”Distribution”, ”FreeAccess”, ”UninhibitedAccess”, ”ChangeLicense”}
Pr1 ={”ClaimWarranty”, ”ClaimLiability”, ”Endorse”, ”ClaimMoralRights”,

”ClaimTrademark”, ”ClaimPersonalityRights”, ”ClaimPatentRights”,

”ClaimCopyrightRights”, ”Relicense”}
R1 ={”ShareAlike”, ”Attribution”, ”Inform”, ”Notice”, ”LinkLicense”,

”LinkDataSet”}
S1 ={1}

L1 =⟨1,
{”Sharing”, ”DerivativeWorks”, ”CommercialUse”, ”Reproduction”,

”Distribution”, ”FreeAccess”, ”UninhibitedAccess”, ”ChangeLicense”},
{”ClaimWarranty”, ”ClaimLiability”, ”Endorse”, ”ClaimMoralRights”,

”ClaimTrademark”, ”ClaimPersonalityRights”, ”ClaimPatentRights”,

”ClaimCopyrightRights”, ”Relicense”},
{”ShareAlike”, ”Attribution”, ”Inform”, ”Notice”, ”LinkLicense”,

”LinkDataSet”},
{1}⟩

79

Appendix F: Example - Recommendation

Constraint-Check - CC-BY-4.0 (Ir = 0):

R0a: (CPe ∩ CPr = {}) ∧ (CPe ∩ CR = {})
∧ (CPr ∩ CR = {})(true)

R0b: (Per ∩ Prr = {}) ∧ (Per ∩Rr = {}) ∧ (Prr ∩Rr = {})(true)
-> R0 fulfilled

R8: CPe ⊇ Per(true)

-> R8 fulfilled
R9: CPr ⊆ Prr(true)

-> R9 fulfilled
R10: CR ⊆ Rr(false)

-> R10 not fulfilled
R11: ∀x ∈ Inc, Lx = ⟨l0, l1, l2, l3, l4⟩

with l0 = x ∧ ”ChangeLicense” ∈ l1∧
(”ShareAlike” /∈ l3 ∨ (”ShareAlike” ∈ l3 ∧ Ir ∈ l4)(false)

-> R11 fulfilled
Recommendation: Lr = ⟨l0, l1, l2, l3, l4⟩ with

l0 = Ir, l1 = Per, l2 = Prr, l3 = Rr and l4 = Sr(true)

-> Recommendation fulfilled
Composite: C = ⟨c0, c1, c2, c3⟩ with

c0 = Inc, c1 = CPe, c2 = CPr and c3 = CR(true)

-> Composite fulfilled

-> license 0 cannot be recommended!

80

Appendix F: Example - Recommendation

Constraint-Check - CC-BY-SA-4.0 (Ir = 1):

R0a: (CPe ∩ CPr = {}) ∧ (CPe ∩ CR = {})
∧ (CPr ∩ CR = {})(true)

R0b: (Per ∩ Prr = {}) ∧ (Per ∩Rr = {}) ∧ (Prr ∩Rr = {})(true)
-> R0 fulfilled

R8: CPe ⊇ Per(true)

-> R8 fulfilled
R9: CPr ⊆ Prr ∧ (CPr ∩ Per = {})(true)

-> R9 fulfilled
R10: CR ⊆ Rr(true)

-> R10 fulfilled
R11: ∀x ∈ Inc, Lx = ⟨l0, l1, l2, l3, l4⟩

with l0 = x ∧ ”ChangeLicense” ∈ l1∧
(”ShareAlike” /∈ l3 ∨ (”ShareAlike” ∈ l3 ∧ Ir ∈ l4)(true)

-> R11 fulfilled
Recommendation: Lr = ⟨l0, l1, l2, l3, l4⟩ with

l0 = Ir, l1 = Per, l2 = Prr, l3 = Rr and l4 = Sr(true)

-> Recommendation fulfilled
Composite: C = ⟨c0, c1, c2, c3⟩ with

c0 = Inc, c1 = CPe, c2 = CPr and c3 = CR(true)

-> Composite fulfilled

-> license 1 can be recommended!

81

Appendix G: Visualization - AND-/OR-composition

G Visualization - AND-/OR-composition

Sharing
DerivativeWorks

Reproduction
CommercialUse ⋂

Permissions
CC-BY

Distribution
FreeAccess

UninhibitedAccess
ChangeLicense

Permissions
CC-BY-NC

Sharing
DerivativeWorks

Reproduction
CommercialUse

Distribution
FreeAccess

UninhibitedAccess
ChangeLicense

=

Sharing
DerivativeWorks

Reproduction
Distribution
FreeAccess

UninhibitedAccess
ChangeLicense

Commercial-
Use

Composite
Permissions

82

Appendix G: Visualization - AND-/OR-composition

ClaimWarranty
ClaimLiability
Endorse

⋃

Prohibitions
CC-BY

ClaimMoralRights
ClaimTrademark

ClaimPersonalityRights
ClaimPatentRights

Prohibitions
CC-BY-NC

=

Composite
Prohibitions

ClaimCopyrightRights
Relicense

ClaimWarranty
ClaimLiability
Endorse

CommercialUse
ClaimMoralRights
ClaimTrademark

ClaimPersonalityRights
ClaimPatentRights

ClaimCopyrightRights
Relicense

Commercial-
Use

ClaimWarranty
ClaimLiability
Endorse

ClaimMoralRights
ClaimTrademark

ClaimPersonalityRights
ClaimPatentRights

ClaimCopyrightRights
Relicense

83

Appendix G: Visualization - AND-/OR-composition

Attribution
Inform
Notice ⋃

Duties
CC-BY

LinkLicense
LinkDataset

Duties
CC-BY-NC

=

Composite
Duties

Attribution
Inform
Notice

LinkLicense
LinkDataset

Attribution
Inform
Notice

LinkLicense
LinkDataset

84

Appendix H: Complete Class-Diagram

H Complete Class-Diagram

Li
ce
ns
e

lic
en

se
M

et
ai

nf
or

m
at

io
n:

 L
ic

en
se

M
et

ai
nf

or
m

at
io

n

pe
rm

is
si

on
s:

 A
ct

io
n[

]

pr
oh

ib
iti

on
s:

 A
ct

io
n[

]

du
tie

s:
 A

ct
io

n[
]

du
tie

s:
 A

ct
io

n[
]

sh
ar

eA
lik

es
: n

um
be

r[]

Li
ce
ns
eM

et
ai
nf
or
m
at
io
n

id
: n

um
be

r

na
m

e:
 s

tri
ng

sp
dx

N
am

e:
 s

tri
ng

dc
at

N
am

e:
 s

tri
ng

so
ur

ce
Li

nk
: s

tri
ng

de
sc

rip
tio

n:
 s

tri
ng

A
ct
io
n

id
: n

um
be

r

na
m

e:
 s

tri
ng

sh
or

tN
am

e:
 s

tri
ng

de
sc

rip
tio

n:
 s

tri
ng

C
he
ck
R
es
ul
t

re
su

lt:
 b

oo
le

an

ch
ec

ks
: C

om
pa

tib
ilit

yC
he

ck
R

es
ul

t[]

C
om

pa
tib
ili
ty
C
he
ck
R
es
ul
t

na
m

e1
: s

tri
ng

na
m

e2
: s

tri
ng

le
ss

R
es

tri
ct

iv
e:

 b
oo

le
an

ca
nB

eC
om

po
se

d:
 b

oo
le

an

al
lo

w
C

om
bi

na
tio

n:
 b

oo
le

an

ar
eC

om
pa

tib
le

: b
oo

le
an

C
om

po
si
te
Li
ce
ns
e

lic
en

se
M

et
ai

nf
or

m
at

io
n:

 L
ic

en
se

M
et

ai
nf

or
m

at
io

n

pe
rm

is
si

on
s:

 A
ct

io
n[

]

pr
oh

ib
iti

on
s:

 A
ct

io
n[

]

du
tie

s:
 A

ct
io

n[
]

nu
m

be
rO

fL
ic

en
se

s:
 n

um
be

r

Li
ce
ns
eD

to

lic
en

se
M

et
ai

nf
or

m
at

io
n:

 L
ic

en
se

M
et

ai
nf

or
m

at
io

n

pe
rm

is
si

on
s:

 n
um

be
r[]

pr
oh

ib
iti

on
s:

 n
um

be
r[]

du
tie

s:
 n

um
be

r[]

sh
ar

eA
lik

es
: n

um
be

r[]

R
ec
om

m
en
da
tio
nR

es
ul
t

co
m

pa
ris

on
R

es
ul

t:
C

om
bi

ne
dC

om
pa

ris
on

R
es

ul
t

na
m

e:
 s

tri
ng

C
om

bi
ne
dC

om
pa
ris
on
R
es
ul
t

pe
rm

is
si

on
C

he
ck

: C
om

pa
ris

on
R

es
ul

t

pr
oh

ib
iti

on
C

he
ck

: C
om

pa
ris

on
R

es
ul

t

du
ty

C
he

ck
: C

om
pa

ris
on

R
es

ul
t

is
Eq

ua
l:

bo
ol

ea
n

is
M

or
eR

es
tri

ct
iv

e:
 b

oo
le

an

C
om

pa
ris
on
R
es
ul
t

lic
en

se
M

et
ai

nf
or

m
at

io
n:

 L
ic

en
se

M
et

ai
nf

or
m

at
io

n

pe
rm

is
si

on
s:

 n
um

be
r[]

pr
oh

ib
iti

on
s:

 n
um

be
r[]

du
tie

s:
 n

um
be

r[]

sh
ar

eA
lik

es
: n

um
be

r[]

A
gg
re
ga
to
r

lic
en

se
Fi

nd
er

: L
ic

en
se

Fi
nd

er

cr
ea

te
C

om
po

si
te

Li
ce

ns
e(

lic
en

se
1,

 li
ce

ns
e2

)

ex
te

nd
C

om
po

si
te

Li
ce

ns
e(

lic
en

se
1,

 li
ce

ns
e2

)

ru
nF

ul
lA

gg
re

ga
tio

n(
)

C
he
ck
er

lic
en

se
Fi

nd
er

: L
ic

en
se

Fi
nd

er

is
Le

ss
R

es
tri

ct
iv

e(
lic

en
se

1,
 li

ce
ns

e2
)

ar
eC

om
pa

tib
le

(li
ce

ns
e1

, l
ic

en
se

2)

ru
nC

om
pa

tib
ilit

yC
he

ck
s(

)

D
at
aA

cc
es
s

ac
tio

ns
: A

ct
io

n[
]

lic
en

se
s:

 L
ic

en
se

[]

Li
ce
ns
eF

in
de
r

db
: D

at
aA

ce
ss

ge
tL

ic
en

se
s(

)

ge
tL

ic
en

se
(n

am
e)

ge
tL

ic
en

se
By

Id
(id

)

P
ip
el
in
e

ag
gr

eg
at

or
: A

gg
re

ga
to

r

ch
ec

ke
r:

C
he

ck
er

lic
en

se
Fi

nd
er

: L
ic

en
se

Fi
nd

er

re
co

m
m

en
de

r:
R

ec
om

m
en

de
r

re
su

lt:
 C

om
po

si
te

Li
ce

ns
e

ge
tL

ic
en

se
()

st
ar

tA
gg

re
ga

tio
n(

na
m

e)

ad
dL

ic
en

se
(n

am
e)

ch
ec

kL
ic

en
se

s(
)

ge
tR

ec
om

m
en

da
tio

ns
()

re
se

tL
ic

en
se

()

to
Js

on
()

R
ec
om

m
en
de
r

lic
en

se
Fi

nd
er

: L
ic

en
se

Fi
nd

er

fin
dS

im
ila

rL
ic

en
se

s(
co

m
po

si
te

)

85

Appendix I: Software Bill of Materials

I Software Bill of Materials

This section covers the npm-packages that were used in the core-library and
the web-demonstrator. These were extracted from the package.json-files used in
Philip Rebbe (2024). The repository also includes a SBOM, showing the complete
list of referenced packages.

I.1 Core-Library

{
...
"devDependencies": {

"@jest/globals": "^29.7.0",
"@remix-run/dev": "^2.5.1",
"@types/jest": "^29.5.12",
"@types/node": "^20.11.0",
"jest": "^29.7.0",
"ts-jest": "^29.1.2",
"ts-node": "^10.9.2",
"typescript": "^5.3.3"

},
"dependencies": {

"@remix-run/node": "^2.5.1",
"@remix-run/react": "^2.5.1",
"@remix-run/serve": "^2.5.1",
"isbot": "^4.4.0",
"react": "^18.2.0",
"react-dom": "^18.2.0"

}
}

86

Appendix I: Software Bill of Materials

I.2 Demonstrator

{
...
"dependencies": {

"@remix-run/node": "^2.5.1",
"@remix-run/react": "^2.5.1",
"@remix-run/serve": "^2.5.1",
"isbot": "^4.1.0",
"match-sorter": "^6.3.1",
"react": "^18.2.0",
"react-dom": "^18.2.0",
"sort-by": "^0.0.2",
"tiny-invariant": "^1.3.1"

},
"devDependencies": {

"@remix-run/dev": "^2.3.1",
"@types/react": "^18.2.20",
"@types/react-dom": "^18.2.7",
"@typescript-eslint/eslint-plugin": "^6.13.0",
"@typescript-eslint/parser": "^6.13.0",
"eslint": "^8.47.0",
"eslint-import-resolver-typescript": "^3.6.1",
"eslint-plugin-import": "^2.29.1",
"eslint-plugin-jsx-a11y": "^6.8.0",
"eslint-plugin-react": "^7.33.2",
"eslint-plugin-react-hooks": "^4.6.0",
"typescript": "^5.1.6"

},
"engines": {

"node": ">=18.0.0"
}

}

87

Appendix J: Comparison with DALICC-Framework

J Comparison with DALICC-Framework

License 1 License 2 DALICC Recommended Reason
CCO CCO No conflict No
CCO CC-BY-

4.0
Conflict Yes

CCO CC-BY-
SA-4.0

Conflict Yes

CCO CC-BY-
NC-4.0

Conflict Yes

CCO CC-BY-
ND-4.0

Conflict Yes

CCO CC-BC-
NC-SA-4.0

Conflict Yes

CCO CC-BY-
NC-ND-
4.0

Conflict Yes

CCO ODC-BY Conflict Yes
CCO ODC-

PDDL
No conflict No

CCO ODC-
ODbL

Conflict Yes

CCO Open Gov-
ernment
License v3

No conflict Yes Actions

CC-BY-
4.0

CCO No conflict No

CC-BY-
4.0

CC-BY-
4.0

No conflict No

CC-BY-
4.0

CC-BY-
SA-4.0

No conflict Yes Share-
Alike

CC-BY-
4.0

CC-BY-
NC-4.0

Conflict Yes

CC-BY-
4.0

CC-BY-
ND-4.0

Conflict Yes

CC-BY-
4.0

CC-BC-
NC-SA-4.0

Conflict Yes

CC-BY-
4.0

CC-BY-
NC-ND-
4.0

Conflict Yes

CC-BY-
4.0

ODC-BY No conflict Yes Share-
Alike

88

Appendix J: Comparison with DALICC-Framework

License 1 License 2 DALICC Recommended Reason
CC-BY-
4.0

ODC-
PDDL

No conflict No

CC-BY-
4.0

ODC-
ODbL

Conflict Yes

CC-BY-
4.0

Open Gov-
ernment
License v3

No conflict Yes Actions

CC-BY-
SA-4.0

CCO No conflict No

CC-BY-
SA-4.0

CC-BY-
4.0

No conflict No

CC-BY-
SA-4.0

CC-BY-
SA-4.0

No conflict No

CC-BY-
SA-4.0

CC-BY-
NC-4.0

Conflict Yes

CC-BY-
SA-4.0

CC-BY-
ND-4.0

Conflict Yes

CC-BY-
SA-4.0

CC-BC-
NC-SA-4.0

Conflict Yes

CC-BY-
SA-4.0

CC-BY-
NC-ND-
4.0

Conflict Yes

CC-BY-
SA-4.0

ODC-BY No conflict Yes Share-
Alike

CC-BY-
SA-4.0

ODC-
PDDL

No conflict No

CC-BY-
SA-4.0

ODC-
ODbL

No conflict Yes Share-
Alike

CC-BY-
SA-4.0

Open Gov-
ernment
License v3

No conflict Yes Actions

CC-BY-
NC-4.0

CCO No conflict No

CC-BY-
NC-4.0

CC-BY-
4.0

No conflict No

CC-BY-
NC-4.0

CC-BY-
SA-4.0

No conflict Yes Share-
Alike

CC-BY-
NC-4.0

CC-BY-
NC-4.0

No conflict No

CC-BY-
NC-4.0

CC-BY-
ND-4.0

Conflict Yes

89

Appendix J: Comparison with DALICC-Framework

License 1 License 2 DALICC Recommended Reason
CC-BY-
NC-4.0

CC-BC-
NC-SA-4.0

No conflict Yes Share-
Alike

CC-BY-
NC-4.0

CC-BY-
NC-ND-
4.0

Conflict Yes

CC-BY-
NC-4.0

ODC-BY No conflict Yes Share-
Alike

CC-BY-
NC-4.0

ODC-
PDDL

No conflict No

CC-BY-
NC-4.0

ODC-
ODbL

Conflict Yes

CC-BY-
NC-4.0

Open Gov-
ernment
License v3

No conflict Yes Actions

CC-BY-
ND-4.0

CCO No conflict Yes Derivative

CC-BY-
ND-4.0

CC-BY-
4.0

No conflict Yes Derivative

CC-BY-
ND-4.0

CC-BY-
SA-4.0

No conflict Yes Derivative

CC-BY-
ND-4.0

CC-BY-
NC-4.0

Conflict Yes

CC-BY-
ND-4.0

CC-BY-
ND-4.0

No conflict Yes Derivative

CC-BY-
ND-4.0

CC-BC-
NC-SA-4.0

No conflict Yes Derivative

CC-BY-
ND-4.0

CC-BY-
NC-ND-
4.0

Conflict Yes

CC-BY-
ND-4.0

ODC-BY No conflict Yes Derivative

CC-BY-
ND-4.0

ODC-
PDDL

No conflict Yes Derivative

CC-BY-
ND-4.0

ODC-
ODbL

Conflict Yes

CC-BY-
ND-4.0

Open Gov-
ernment
License v3

No conflict Yes Derivative

CC-BY-
NC-SA-4.0

CCO No conflict No

CC-BY-
NC-SA-4.0

CC-BY-
4.0

No conflict No

90

Appendix J: Comparison with DALICC-Framework

License 1 License 2 DALICC Recommended Reason
CC-BY-
NC-SA-4.0

CC-BY-
SA-4.0

No conflict Yes Share-
Alike

CC-BY-
NC-SA-4.0

CC-BY-
NC-4.0

No conflict No

CC-BY-
NC-SA-4.0

CC-BY-
ND-4.0

Conflict Yes

CC-BY-
NC-SA-4.0

CC-BC-
NC-SA-4.0

No conflict No

CC-BY-
NC-SA-4.0

CC-BY-
NC-ND-
4.0

Conflict Yes

CC-BY-
NC-SA-4.0

ODC-BY No conflict Yes Share-
Alike

CC-BY-
NC-SA-4.0

ODC-
PDDL

No conflict No

CC-BY-
NC-SA-4.0

ODC-
ODbL

No conflict Yes Actions

CC-BY-
NC-SA-4.0

Open Gov-
ernment
License v3

No conflict Yes Actions

CC-BY-
NC-ND-
4.0

CCO No conflict Yes Derivative

CC-BY-
NC-ND-
4.0

CC-BY-
4.0

No conflict Yes Derivative

CC-BY-
NC-ND-
4.0

CC-BY-
SA-4.0

No conflict Yes Derivative

CC-BY-
NC-ND-
4.0

CC-BY-
NC-4.0

No conflict Yes Derivative

CC-BY-
NC-ND-
4.0

CC-BY-
ND-4.0

No conflict Yes Derivative

CC-BY-
NC-ND-
4.0

CC-BC-
NC-SA-4.0

No conflict Yes Derivative

CC-BY-
NC-ND-
4.0

CC-BY-
NC-ND-
4.0

No conflict Yes Derivative

91

Appendix J: Comparison with DALICC-Framework

License 1 License 2 DALICC Recommended Reason
CC-BY-
NC-ND-
4.0

ODC-BY No conflict Yes Derivative

CC-BY-
NC-ND-
4.0

ODC-
PDDL

No conflict Yes Derivative

CC-BY-
NC-ND-
4.0

ODC-
ODbL

Conflict Yes

CC-BY-
NC-ND-
4.0

Open Gov-
ernment
License v3

No conflict Yes Derivative

ODC-BY CCO No conflict Yes Actions
ODC-BY CC-BY-

4.0
No conflict Yes Actions

ODC-BY CC-BY-
SA-4.0

No conflict Yes Actions

ODC-BY CC-BY-
NC-4.0

Conflict Yes

ODC-BY CC-BY-
ND-4.0

Conflict Yes

ODC-BY CC-BC-
NC-SA-4.0

Conflict Yes

ODC-BY CC-BY-
NC-ND-
4.0

Conflict Yes

ODC-BY ODC-BY No conflict No
ODC-BY ODC-

PDDL
No conflict No

ODC-BY ODC-
ODbL

No conflict Yes Actions

ODC-BY Open Gov-
ernment
License v3

No conflict Yes Actions

ODC-
PDDL

CCO No conflict Yes Actions

ODC-
PDDL

CC-BY-
4.0

Conflict Yes

ODC-
PDDL

CC-BY-
SA-4.0

Conflict Yes

ODC-
PDDL

CC-BY-
NC-4.0

Conflict Yes

92

Appendix J: Comparison with DALICC-Framework

License 1 License 2 DALICC Recommended Reason
ODC-
PDDL

CC-BY-
ND-4.0

Conflict Yes

ODC-
PDDL

CC-BC-
NC-SA-4.0

Conflict Yes

ODC-
PDDL

CC-BY-
NC-ND-
4.0

Conflict Yes

ODC-
PDDL

ODC-BY Conflict Yes

ODC-
PDDL

ODC-
PDDL

No conflict No

ODC-
PDDL

ODC-
ODbL

Conflict Yes

ODC-
PDDL

Open Gov-
ernment
License v3

No conflict Yes Actions

ODC-
ODbL

CCO No conflict Yes Actions

ODC-
ODbL

CC-BY-
4.0

No conflict Yes Actions

ODC-
ODbL

CC-BY-
SA-4.0

No conflict Yes Actions

ODC-
ODbL

CC-BY-
NC-4.0

No conflict Yes Actions

ODC-
ODbL

CC-BY-
ND-4.0

Conflict Yes

ODC-
ODbL

CC-BC-
NC-SA-4.0

No conflict Yes Actions

ODC-
ODbL

CC-BY-
NC-ND-
4.0

Conflict Yes

ODC-
ODbL

ODC-BY No conflict Yes Actions

ODC-
ODbL

ODC-
PDDL

No conflict No

ODC-
ODbL

ODC-
ODbL

No conflict No

ODC-
ODbL

Open Gov-
ernment
License v3

No conflict Yes Actions

93

License 1 License 2 DALICC Recommended Reason
Open Gov-
ernment
License v3

CCO No conflict No

Open Gov-
ernment
License v3

CC-BY-
4.0

No conflict Yes Actions

Open Gov-
ernment
License v3

CC-BY-
SA-4.0

No conflict Yes Actions

Open Gov-
ernment
License v3

CC-BY-
NC-4.0

Conflict Yes

Open Gov-
ernment
License v3

CC-BY-
ND-4.0

Conflict Yes

Open Gov-
ernment
License v3

CC-BC-
NC-SA-4.0

Conflict Yes

Open Gov-
ernment
License v3

CC-BY-
NC-ND-
4.0

Conflict Yes

Open Gov-
ernment
License v3

ODC-BY No conflict Yes Actions

Open Gov-
ernment
License v3

ODC-
PDDL

No conflict No

Open Gov-
ernment
License v3

ODC-
ODbL

Conflict Yes

Open Gov-
ernment
License v3

Open Gov-
ernment
License v3

No conflict No

94

References

Abelson, H., Adida, B., Linksvayer, M., & Yergler, N. (2008). Ccrel: The creative
commons rights expression language. https://wiki.creativecommons.org/
images/d/d6/Ccrel-1.0.pdf

Almeida, D. A., Murphy, G. C., Wilson, G., & Hoye, M. (2017). Do software
developers understand open source licenses? 2017 IEEE/ACM 25th In-
ternational Conference on Program Comprehension (ICPC), 1–11. https:
//doi.org/10.1109/ICPC.2017.7

Bowen, G. A. (2008). Naturalistic inquiry and the saturation concept: A research
note. Qualitative Research, 8 (1), 137–152. https : / / doi . org / 10 . 1177 /
1468794107085301

Brickley, D., Burgess, M., & Noy, N. (2019). Google dataset search: Building a
search engine for datasets in an open web ecosystem. The World Wide
Web Conference. https://doi.org/10.1145/3308558.3313685

Cabrio, E., Palmero Aprosio, A., & Villata, S. (2014). These are your rights. In V.
Presutti (Ed.), The semantic web: Trends and challenges (pp. 255–269).
Springer. https://doi.org/10.1007/978-3-319-07443-6_18

Cardellino, C., Villata, S., Gandon, F., Governatori, G., Lam, H.-P., & Rotolo,
A. (2014). Licentia: A tool for supporting users in data licensing on the
web of data masterthesis. https://citeseerx.ist.psu.edu/document?repid=
rep1&type=pdf&doi=6c9d9e353d7332c1024a9626f01514a3f736f70e

Ermilov, I., & Pellegrini, T. (2015). Data licensing on the cloud. Proceedings of
the 11th International Conference on Semantic Systems. https://doi.org/
10.1145/2814864.2814878

Gangadharan, G. R., Weiss, M., D’Andrea, V., & Iannella, R. (2007). Service li-
cense composition and compatibility analysis. In B. J. Krämer, K.-J. Lin &
P. Narasimhan (Eds.), Service-oriented computing - icsoc 2007 (pp. 257–
269). Springer. https://doi.org/10.1007/978-3-540-74974-5_21

German, D. M., Di Penta, M., & Davies, J. (2010). Understanding and auditing
the licensing of open source software distributions. Program Comprehen-
sion (ICPC), 2010 IEEE 18th International Conference on, 84–93. https:
//doi.org/10.1109/ICPC.2010.48

95

https://wiki.creativecommons.org/images/d/d6/Ccrel-1.0.pdf
https://wiki.creativecommons.org/images/d/d6/Ccrel-1.0.pdf
https://doi.org/10.1109/ICPC.2017.7
https://doi.org/10.1109/ICPC.2017.7
https://doi.org/10.1177/1468794107085301
https://doi.org/10.1177/1468794107085301
https://doi.org/10.1145/3308558.3313685
https://doi.org/10.1007/978-3-319-07443-6_18
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6c9d9e353d7332c1024a9626f01514a3f736f70e
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6c9d9e353d7332c1024a9626f01514a3f736f70e
https://doi.org/10.1145/2814864.2814878
https://doi.org/10.1145/2814864.2814878
https://doi.org/10.1007/978-3-540-74974-5_21
https://doi.org/10.1109/ICPC.2010.48
https://doi.org/10.1109/ICPC.2010.48

References

Governatori, G., Lam, H.-P., Rotolo, A., Villata, S., Atemezing, G., & Gandon,
F. (2014). Live: A tool for checking licenses compatibility between vocab-
ularies and data. http://ceur-ws.org/vol-1272/paper_62.pdf

Governatori, G., Lam, H.-P., Rotolo, A., Villata, S., & Gandon, F. (2013). Heur-
istics for licenses composition. https://citeseerx.ist.psu.edu/document?
repid=rep1&type=pdf&doi=ddeabb1908cc952c1b2f2dc59a72bf9d8f6364a2

Governatori, G., Rotolo, A., Villata, S., & Gandon, F. (2013). One license to
compose them all. In H. Alani, L. Kagal, A. Fokoue, P. Groth, C. Biemann,
J. X. Parreira, L. Aroyo, N. Noy, C. Welty & K. Janowicz (Eds.), The
semantic web - iswc 2013 (pp. 151–166). Springer. https://doi.org/10.
1007/978-3-642-41335-3_10

Guth, S. (2003). Rights expression languages. In E. Becker (Ed.), Digital rights
management (pp. 101–112, Vol. 2770). Springer. https://doi.org/10.1007/
10941270_8

Jansen, H. (2010). The logic of qualitative survey research and its position in the
field of social research methods: Forum qualitative sozialforschung / forum:
Qualitative social research, vol 11, no 2 (2010): Visualising migration and
social division: Insights from social sciences and the visual arts. https :
//doi.org/10.17169/fqs-11.2.1450

JValue-Team. (2024). Jayvee - core concepts. https://jvalue.github.io/jayvee/
docs/user/core-concepts

K. Peffers, T. Tuunanen, M.A. Rothenberger & S. Chatterjee. (2007). A design
science research methodology for information systems research. Journal of
Management Information Systems, 24 (3), 45–77. https://www.researchgate.
net/publication/284503626_A_design_science_research_methodology_
for_information_systems_research

Krötzsch, M., & Speiser, S. (2011). Sharealike your data: Self-referential usage
policies for the semantic web. In L. Aroyo (Ed.), The semantic web - iswc
2011 (pp. 354–369). Springer. https://doi.org/10.1007/978-3-642-25073-
6_23

Ministerium für Wirtschaft, Innovation, Digitalisierung und Energie des Landes
Nordrhein-Westfalen & Beauftragte der Landesregierung für Information-
stechnik (CIO) / Geschäftsstelle Open.NRW (Eds.). (2019). Datenlizenzen
für open government data - rechtliches kurzgutachten: Handreichung zu
den nutzungsrechteregelungen gebräuchlicher open data lizenzen und em-
pfehlungen für ihren einsatz. https : //open .nrw/system/files/media/
document/file/opennrw_rechtl_gutachten_datenlizenzen_lowres_web.
pdf

Moreau, B., Serrano-Alvarado, P., Perrin, M., & Desmontils, E. (2019). Modelling
the compatibility of licenses. In P. Hitzler, M. Fernández, K. Janowicz, A.
Zaveri, A. J. Gray, V. Lopez, A. Haller & K. Hammar (Eds.), The semantic
web (pp. 255–269). Springer. https://doi.org/10.1007/978-3-030-21348-
0_17

96

http://ceur-ws.org/vol-1272/paper_62.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ddeabb1908cc952c1b2f2dc59a72bf9d8f6364a2
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ddeabb1908cc952c1b2f2dc59a72bf9d8f6364a2
https://doi.org/10.1007/978-3-642-41335-3_10
https://doi.org/10.1007/978-3-642-41335-3_10
https://doi.org/10.1007/10941270_8
https://doi.org/10.1007/10941270_8
https://doi.org/10.17169/fqs-11.2.1450
https://doi.org/10.17169/fqs-11.2.1450
https://jvalue.github.io/jayvee/docs/user/core-concepts
https://jvalue.github.io/jayvee/docs/user/core-concepts
https://www.researchgate.net/publication/284503626_A_design_science_research_methodology_for_information_systems_research
https://www.researchgate.net/publication/284503626_A_design_science_research_methodology_for_information_systems_research
https://www.researchgate.net/publication/284503626_A_design_science_research_methodology_for_information_systems_research
https://doi.org/10.1007/978-3-642-25073-6_23
https://doi.org/10.1007/978-3-642-25073-6_23
https://open.nrw/system/files/media/document/file/opennrw_rechtl_gutachten_datenlizenzen_lowres_web.pdf
https://open.nrw/system/files/media/document/file/opennrw_rechtl_gutachten_datenlizenzen_lowres_web.pdf
https://open.nrw/system/files/media/document/file/opennrw_rechtl_gutachten_datenlizenzen_lowres_web.pdf
https://doi.org/10.1007/978-3-030-21348-0_17
https://doi.org/10.1007/978-3-030-21348-0_17

References

Mpeg-21 rights expression language. (2005). https : / /mpeg . chiariglione . org /
standards/mpeg-21/rights-expression-language

Pellegrini, T., Mireles, V., Steyskal, S., Panasiuk, O., Fensel, A., & Kirrane, S.
(2018). Automated rights clearance using semantic web technologies: The
dalicc framework. In T. Hoppe, B. Humm & A. Reibold (Eds.), Semantic
applications (pp. 203–218). Springer Vieweg. https://doi.org/10.1007/
978-3-662-55433-3_14

Philip Rebbe. (2024). Prebbe/license-comparer: V0.0.4-thesis. https://doi.org/
10.5281/ZENODO.10926133

Russell, S. J., & Norvig, P. (2022). Artificial intelligence: A modern approach
(Fourth edition, global edition). Pearson.

Schmitz, P.-E., & Cacciaguerra Ranghieri, G. (2019). Joinup licensing assistant
– white paper: Project of a legal operability tool implemented as a “solu-
tion” in the framework of joinup.eu. https://joinup.ec.europa.eu/sites/
default/files/document/2023-02/Joinup%20Licensing%20Assistant%20-
%20White%20Paper_v1.01_1.pdf

Torres-Hostench, O., & Salinas, C. B. (2015). Technology and e-resources for legal
translators: The law 10n project. In Conducting research in translation
technologies (pp. 285–306).

Villata, S., & Gandon, F. (2012). Licenses compatibility and composition in the
web of data. https://inria.hal.science/hal-01171125/document

W3C. (2018). Odrl vocabulary & expression 2.2. https://www.w3.org/TR/2018/
REC-odrl-vocab-20180215/

W3C Permissions and Obligations Expression Working Group. (2018). Odrl in-
formation model 2.2: W3c recommendation 15 february 2018 (W3C, Ed.).
https://www.w3.org/TR/odrl-model/

Wolter, T., Barcomb, A., Riehle, D., & Harutyunyan, N. (2023). Open source
license inconsistencies on github. ACM Transactions on Software Engin-
eering and Methodology, 32 (5), 1–23. https://doi.org/10.1145/3571852

Yi-Hsuan Lin, Tung-Mei Ko, Tyng-Ruey Chuang & Kwei-Jay Lin. (2006). Open
source licenses and the creative commons framework: License selection
and comparison. Journal of Information Science and Engineering, 22 (1),
1–17. https://www.researchgate.net/profile/kwei- jay- lin/publication/
220587883 _ open _ source _ licenses _ and _ the _ creative _ commons _
framework_license_selection_and_comparison

97

https://mpeg.chiariglione.org/standards/mpeg-21/rights-expression-language
https://mpeg.chiariglione.org/standards/mpeg-21/rights-expression-language
https://doi.org/10.1007/978-3-662-55433-3_14
https://doi.org/10.1007/978-3-662-55433-3_14
https://doi.org/10.5281/ZENODO.10926133
https://doi.org/10.5281/ZENODO.10926133
https://joinup.ec.europa.eu/sites/default/files/document/2023-02/Joinup%20Licensing%20Assistant%20-%20White%20Paper_v1.01_1.pdf
https://joinup.ec.europa.eu/sites/default/files/document/2023-02/Joinup%20Licensing%20Assistant%20-%20White%20Paper_v1.01_1.pdf
https://joinup.ec.europa.eu/sites/default/files/document/2023-02/Joinup%20Licensing%20Assistant%20-%20White%20Paper_v1.01_1.pdf
https://inria.hal.science/hal-01171125/document
https://www.w3.org/TR/2018/REC-odrl-vocab-20180215/
https://www.w3.org/TR/2018/REC-odrl-vocab-20180215/
https://www.w3.org/TR/odrl-model/
https://doi.org/10.1145/3571852
https://www.researchgate.net/profile/kwei-jay-lin/publication/220587883_open_source_licenses_and_the_creative_commons_framework_license_selection_and_comparison
https://www.researchgate.net/profile/kwei-jay-lin/publication/220587883_open_source_licenses_and_the_creative_commons_framework_license_selection_and_comparison
https://www.researchgate.net/profile/kwei-jay-lin/publication/220587883_open_source_licenses_and_the_creative_commons_framework_license_selection_and_comparison

	Introduction
	General Motivation
	Introduction into Data Pipelines

	Problem Identification
	Difficulties when Choosing the Source Material
	Finding the License Information
	Language Barriers
	Understanding the Legal Aspects of Licenses

	Difficulties when Transforming and Persisting the Data
	Deciding on a License for the Aggregate
	Documenting the Current Contents of the Pipeline

	State of the Art
	License Descriptions
	Automated License-Comparison and -Recommendation

	Drawbacks of the Existing Solutions
	License Descriptions
	Automated License-Comparison and -Recommendation

	Objective Definition
	Requirements for a Solution
	Creating a Framework to Describe and Combine Licenses
	Building the Tools to Integrate the Framework

	Solution Design
	License Descriptions
	Creating the Basic License Descriptions
	Defining the License Actions
	Including Meta-Information
	Model Share-Alike

	Architecture of the Framework
	License-Compatibility-Checking
	License-Aggregation
	License Recommendation

	Implementation
	The License Database
	The Core Library
	Data-Access
	Business-Logic
	Interface-Layer

	Demonstration
	License-Overview
	Compatibility-Matrix
	License-Aggregation-Overview
	Pipeline-Simulation

	Evaluation
	Evaluation of our Objectives
	Objectives for the Framework
	Objectives for the Library

	Limitations

	Conclusions
	Appendices
	List of Identified Actions - Part 1
	List of Identified Actions - Part 2
	List of Normed Actions
	Example - Less-Restrictiveness
	Example - Composition-Check
	Example - Recommendation
	Visualization - AND-/OR-composition
	Complete Class-Diagram
	Software Bill of Materials
	Core-Library
	Demonstrator

	Comparison with DALICC-Framework

	References

