
Classification of Commit
Characteristics by Code Changes

MASTER THESIS

Philipp Kramer

Submitted on 2 May 2024

Friedrich-Alexander-Universität Erlangen-Nürnberg
Faculty of Engineering, Department Computer Science

Professorship for Open Source Software

Supervisor:
M. Sc. Thomas Wolter

Prof. Dr. Dirk Riehle, M.B.A.

Declaration of Originality

I confirm that the submitted thesis is an original work and was written by me
without further assistance. Appropriate credit has been given where reference
has been made to the work of others. The thesis was not examined before, nor
has it been published. The submitted electronic version of the thesis matches the
printed version.

Erlangen, 2 May 2024

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 2 May 2024

i

https://creativecommons.org/licenses/by/4.0/

ii

Abstract

In contemporary software development, Git commits serve as palpable milestones
for tracking the progress and evolution of a project. Understanding the types of
changes in these commits plays a crucial role in calculating development metrics
and improving organizational decision-making. However, even though the benefit
of classifying commits is widely recognized, there has been no consistent approach
to doing so, especially not in classifying historic commits. In this thesis – using
a design science approach – we present a novel approach for automatically clas-
sifying commit changes based on the conducted work. This is achieved through
the application of a novel machine learning model designed and implemented for
this purpose. Furthermore, we developed a widely applicable set of classifications
based on previous attempts to classify different types of commits. Both the clas-
sifications and the model are constructed using past scientific research and openly
available GitHub repositories. In addition, we demonstrate the functionality of
our approach by classifying a set of openly available GitHub commits.

iii

iv

Contents

1 Introduction 1

2 Problem Identification 3
2.1 Background . 3
2.2 Machine Learning . 3
2.3 Categorizing Commits . 4

3 Objective Definition 7

4 Solution Design 9
4.1 Classifications . 9

4.1.1 Classifications in Research 10
4.1.2 Classifications in Practice 11
4.1.3 Our Classifications . 14

4.2 Software Tool . 15
4.2.1 Extractor . 16
4.2.2 Classifier . 19

5 Implementation 31
5.1 Used Tools . 31

5.1.1 Docker . 32
5.1.2 Jupyter Notebook/JupyterLab 32
5.1.3 peewee . 33
5.1.4 Google Colab . 33
5.1.5 Pygments . 34
5.1.6 TensorFlow . 34

5.2 Used Datasets . 35
5.3 Code Snippets . 35

5.3.1 Extracting Classification from Commit Message 36
5.3.2 Split Patch String . 36
5.3.3 Integration of peewee . 37
5.3.4 Label Encoding and One-Hot Encoding 39

v

5.3.5 Tokenize with Lexer . 39
5.3.6 Train-Test-Split . 40
5.3.7 Subclassed Machine Learning (ML) Model 41
5.3.8 Train and Evaluate the Model 41

6 Demonstration 45
6.1 Data Sources . 45
6.2 Configuration . 45
6.3 Results . 46

6.3.1 Functionality . 46
6.3.2 Interpretation of Outputs 48

7 Evaluation 51

8 Conclusions 53
8.1 Problems and Fixes . 53
8.2 Outlook and Future Research . 54
8.3 Summary . 55

Appendices 57
A Tokens in preprocessor 2 . 59

References 61

vi

List of Figures

4.1 Overview of the Solution Design Architecture 9
4.2 Overview of the Software Tool . 15
4.3 Architecture and Steps of the Extractor Pipeline 16
4.4 Overview of the Classifier Architecture 20
4.5 Architecture and Example of Preprocessor 1 22
4.6 Architecture and Example of Preprocessor 2 23
4.7 Architecture and Example of Preprocessor 3 24
4.8 Architecture of the ML Model . 27
4.9 Architecture of Patch Module 1 27
4.10 Architecture of Patch Module 2 28

6.1 Distribution of Classification Labels in lvgl’s 4,902 Commits . . . 46

vii

viii

List of Tables

4.1 Code Change and its Corresponding Commit Message 13

5.1 Label Encoding vs. One-Hot Encoding 39

6.1 Predicted vs. Expected Classification 48

ix

x

Listings

4.1 Commit Message Format of the Angular Convention 13
4.2 Example of an Unformatted Patch 18
4.3 Example of a Human-Readable Patch 18
4.4 Example Output of an Extracted Commit 19
4.5 Schema of Each Commit Before the Preprocessor 20
4.6 Schema of Each Commit After the Preprocessor 24
4.7 Example Output of a Preprocessed Patch 24
4.8 Example of a Dataset With One Commit 25
5.1 Bat File Used to Automate Starting the JupyterLab Server . . . 32
5.2 Code Snippet Extracting the Classification from the Commit Mes-

sage . 36
5.3 Code Snippet Dividing the Patch into the Added and Deleted Patch 36
5.4 Tables and Attributes in the PostgreSQL Datbase 37
5.5 Code Snippet Joining the Tables Commit and File 38
5.6 Code Snippet Encoding the Classification Strings to Numeric Rep-

resentations . 39
5.7 Code Snippet Tokenizing Lines of Code Using Pygments’ CLexer . 40
5.8 Code Snippet Dividing the Dataset into the Train Set and the Test

Set . 40
5.9 Code Snippet Implementing the Basics of a Subclassed Model in

TensorFlow . 41
5.10 Code Snippet Illustrating TensorFlow’s compile() and fit() Func-

tions . 42
5.11 Code Snippet Illustration the predict() Method 42
5.12 Code Snippet Illustrating the evaluate() Method 43
6.1 Training History . 49
1 List of Tokens Utilized in Preprocessor 2 59

xi

xii

Acronyms

Adam Adaptive Moment Estimation

API Application Programming Interface

CNN Convolutional Neural Network

ConvLSTM Convolutional Long Short-Term Memory

CPU Central Processing Unit

GPU Graphics Processing Unit

LoC line of code

LSTM Long Short-Term Memory

ML Machine Learning

NLP Natural Language Processing

ORM Object Relational Mapping

VCS Version Control System

xiii

xiv

1 Introduction

Version Control Systems (VCSs) such as Git represent a foundational aspect of
contemporary software development. These systems offer developers a robust
platform that facilitates collaboration, codebase integrity, and change tracking.
At the core of Git are commits, quantifiable units of changes made to the code-
base. Understanding the types of maintenance tasks performed in these commits
is of great value to many different stakeholders, including managers as well as
software engineers. For both of them, understanding how and where development
time is spent, makes "it easier to understand [the] development progress, identify
areas that require improvement, and make informed decisions regarding software
version releases" (Tong et al., 2023, p. 1). Previous attempts to classify commits,
for instance, include the likes of Swanson’s Adaptive, Corrective, and Perfective
(1976), or de Wilde’s Addition, Removal, Modification, Bugfix, and Configuration
(2019).

A substantial amount of previous research has been dedicated to the extraction of
information from commit metadata, such as the commit message or the author.
In some cases, this data is also combined with high-level source code information,
such as the file type or the number of added and deleted lines in each modified
file (Hindle et al., 2009; Sarwar et al., 2020). While these approaches achieve
promising results within well-defined guidelines, they are susceptible to subop-
timal results when faced with certain challenges. For instance, if a commit does
not have a commit message, it may well result in an inaccurate classification. As
a consequence, our research will focus on source code changes, which are inherent
in virtually all commits. Additionally, our approach aspires to address some po-
tential shortcomings of previous work that focuses solely on code changes. These
include having a narrow use case of the developed artifact (De Wilde, 2019), or
the use of classifications that, in our view, only have limited practical relevance
(Levin and Yehudai, 2017).

This thesis aims to bridge existing approaches to classify commits, both from re-
search and from practice, with a novel machine learning (ML) model that aims to
automatically classify commits based on their source code changes. Furthermore,

1

1. Introduction

we demonstrate the functionality and applicability of the model on a mature,
real-world dataset consisting of commits from the open-source repository lvgl1.

In summary, this thesis presents the following contributions:

• A set of classifications that are closely associated with practice.

• A pipeline designed to retrieve commits from a GitHub repository, remove
any data not relevant for the classification, and extract the classification
label from the commit message.

• A ML model that predicts the classification based on the changes made to
the source code in a commit.

• A demonstration that illustrates potential future improvements to our ap-
proach.

For this thesis, we chose the design science methodology as our research ap-
proach. This choice was made, because, according to Hevner et al., design science
is defined with an inherent focus on solving practical and organizational prob-
lems with the aim of designing, developing, and evaluating an innovative, tangible
artifact (2004). Furthermore, its emphasis on iterative development allows for po-
tential future research to refine previous approaches, further improving artifacts.
All of these points are ideally suited to our work, as there is a high organizational
relevance in automatically classifying source code changes. In detail, this thesis
follows the framework proposed by Peffers et al. (2007). This is reflected in the
structure of the thesis as such:

• Firstly, chapter 2 provides an overview of related literature and defines the
problem our research intends to solve.

• In chapter 3 we clarify the objectives we set out to achieve with our work.

• Thirdly, in chapter 4 we present the design and theory used for the devel-
opment of our solution.

• In chapter 5 we provide an overview of the tools and datasets we utilized
and lay out the steps we took for the implementation of our solution.

• Chapter 6 serves to demonstrate the functionality and applicability of our
solution by analyzing its predictions.

• The objective of chapter 7 is to evaluate the results from chapter 6 against
the desired outcomes defined in chapter 3.

• Finally, in chapter 8, we present our concluding thoughts on our research
and its results.

1https://gitshub.com/lvgl/lvgl/commit/6b1516926a549f9e5a2e07c81a22bb6a33ddddb0

2

2 Problem Identification

As mentioned in the preceding chapter, classifying commits has a huge potential
benefit for decision-makers, such as managers, and developers alike. In this sec-
tion, we present an introduction to the theory and background of the problem
domain and give an overview of previous related work.

2.1 Background

In many contemporary software development projects, having multiple developers
collaborating on the same codebase is a common occurrence. This makes VCSs
such as Git a crucial tool for managing and tracking changes made to the project.
Each of these changes is typically recorded as a commit, which contains inform-
ation like the modified lines of code (LoCs), a message describing the purpose
of the changes, and the author(s). However, as projects evolve, the number of
commits steadily grows, making it increasingly difficult to keep track of what and
why parts of the codebase changed. As a consequence, there is an ever-increasing
need for automated techniques aiding both managers as well as developers in
understanding the evolution of the codebase.

2.2 Machine Learning

ML refers to a subfield of artificial intelligence and computer science. Its object-
ive is to design algorithms that enable computers to learn from data and make
decisions, without being specifically programmed for a task. This is done by the
algorithms recognizing patterns within datasets, which in turn enables them to
generalize and forecast previously unseen data. Typically, ML algorithms are
categorized either as supervised, unsupervised, or reinforcement learning. Super-
vised algorithms utilize labeled datasets, meaning the input data has a desired
output label assigned to it, which the algorithm is tasked to predict. In contrast,
unsupervised learning does not use predefined labels. Rather, the goal of these
algorithms is to learn the underlying patterns and group the input data into
classes with similar features. Finally, in reinforcement learning, the model learns

3

2. Problem Identification

given feedback on past outcomes. This process results in a constant feedback
loop perpetually improving the performance of the model.
In our thesis, we focus on supervised learning.

2.3 Categorizing Commits

Much of prior research in the area of automated commit classification has focused
on the extraction of information from the commit message, often in combination
with high-level data about the commits such as the the commit’s author(s) or
the sheer number of changed lines of code.

A notable approach focusing exclusively on the commit message was proposed by
Sarwar et al. (2020). In their work, they employ a pre-trained Natural Language
Processing (NLP) model called DistilBERT1, which they fine-tuned for their use
case. For their classifications, they employ the set developed by Swanson (1976):
Adaptive, Corrective, and Perfective. A more detailed description of these clas-
sifications will be provided in section 4.1. However, unlike previous research in
this field, this study allows multi-labeling commits, which means commits may
be categorized into several classifications.

Another approach that includes the commit message is by Hindle et al. (2009).
Other than Sarwar et al., they subsidize the information obtained from the com-
mit message with high-level features about code changes. These features include
the "count of files changed per directory [and the count of] files by their kind
of usage: source code, testing, build/configuration management, documentation
and other" (Hindle et al., 2009, p. 32). Another difference to Sarwar et al. is
the way they analyze the commit message. Instead of using a pre-trained model,
they attempt to use a Bayesian-type learner on the frequencies of words in com-
mit messages. For their set of classifications, they use the "Extended Swanson
Categories of Changes" (Hindle et al., 2009, p. 31). As the name suggests, they
integrated the three classifications developed by Swanson with two additional
classifications: Feature Addition and Non-functional.

Even more sources of data are considered by Casalnuovo et al. (2017). While
still utilizing the commit message, the focus of their methodology shifts more
to the analysis of source code changes. For the commit message they "convert
each commit message to a bag-of-words [(including e.g. fix, bug, error)] and then
stem them using standard NLP techniques" (Casalnuovo et al., 2017, p. 398).
Doing this allows them to identify whether a commit is bug-related or not. What
was particularly interesting to us was their approach to analyzing source code

1https://huggingface.co/docs/transformers/model_doc/distilbert

4

2. Problem Identification

changes. It is based on the application of regular expressions, which they for
instance utilize to find the beginning and end of functions or code blocks. The
proposed extensibility of this approach to other languages led us to consider the
idea of classifying multiple languages. However, following preliminary research,
it became evident that this approach did not provide sufficient semantic and syn-
tactic information about the modified code. Consequently, the idea of classifying
multiple languages was abandoned in favor of focusing on a single one. For more
information, see paragraph 4.2.2.

PatchNet is a tool developed by Hoang et al. (2021) that can be used to predict
whether or not a commit (to the Linux kernel2) is stable or not. To solve this
issue, their tool employs a deep learning approach, with a focus on the applic-
ation of convolutional layers. The convolutional layers are applied to both the
analysis of the commit message and at multiple points during the analysis of the
source code changes. While the model’s classifications were not of interest to
our work, the architecture of the model they used for the classification of code
changes sparked our interest and influenced our design choices regarding the ML
model’s architecture.

Another approach that is worth mentioning is that of Levin and Yehudai (2017).
In their paper, they present three models: a keyword model for the commit mes-
sages, a changes model for source code changes, and a combined model, which
merges the other two. All of these models share the same output classifications
developed by Swanson. For the analysis of the commit messages, they use word
frequency analysis. This methodology enabled the authors to define the ten most
common words for each of the three classifications. For the source code analysis,
they tested three different machine learning models, including a Random Forest,
a Gradient Boosting Machine, and a J48. While their combined model achieved
the highest accuracy in their demonstration, the reliance on a commit message
could present a challenge in real-world projects. This is supported by a finding
made by Hattori and Lanza. According to them, the "frequency [of empty com-
mit messages] is relatively high, even in the case of larger commits" (Hattori and
Lanza, 2008, p. 66). This is also the reason why we decided to focus exclusively
on the source code changes for our classifier.

To our knowledge, there are only two papers that focus solely on the classifica-
tion of commits based on source code changes. The first of these is by de Wilde
(2019). In his research, he presents the following five classifications: Addition,
Removal, Modification, Fix, and Config. In order to group the code modifications
into these classifications, he uses the following approach: If a change only has
added/removed LoCs, it is an Addition/Removal. If a change has both added

2https://github.com/torvalds/linux

5

2. Problem Identification

and removed lines, the Jaro distance between all lines in the changed chunks is
calculated. Should two lines have a distance greater than 0.75, they are assumed
to be a Modification. Should the distance between two lines exceed 0.9, they are
considered a Fix. Finally, all lines that alter the configuration (e.g. <script>
tags or .css files) are Config. It should be noted that, in particular, the classific-
ation Config is highly specific to HTML-based projects. This narrows the scope
of this approach, limiting its adaptability to other languages and projects.

The other paper we found is by Meng et al. (2021). In their research, they
present CClassifier, a tool used to predict whether a commit is a Bug fix,
a Functionality Addition or if it belongs to Other (e.g. refactoring). As they
note in their paper, these three classifications are heavily influenced by Swan-
son’s set of classifications. CClassifier itself is split into three parts. Firstly,
the tool extracts the code changes and gathers information about the relations
between changes. Secondly, they model all the extracted data as a Change De-
pendency Graph (CDG), which illustrates the structural connections between the
edited code snippets. Lastly, they pass the graph to a Convolutional Neural Net-
work (CNN) tailored for graph classification.

To summarize, a substantial body of research has been done in the area of auto-
mated commit classification. However, only a limited number of studies have been
focused on the classification based solely on source code changes. Furthermore,
an even smaller body uses classifications that are relevant to general practice.
This thesis aims to address this gap in the literature.

6

3 Objective Definition

As outlined in the previous chapter, there have been several attempts at classi-
fying commits. However, apart from Meng et al. (2021) and de Wilde (2019),
none of the related works we found focused solely on semantic and syntactic code
changes. The majority of existing work infers the type of commit by analyz-
ing commit messages, log files, and/or high-level information derived from code
changes. Furthermore, we discovered a significant discrepancy between the clas-
sifications used in research and those used in practice.

Consequently, the objective of this thesis is to bridge the gap between field-proven,
practical classifications and the extraction of information from code modifica-
tions. We divided this task into six discrete steps, where objective one focuses
on the ground rules for the classifications, while points two through six define
the fundamental ideas and constraints for the software tool we will develop. This
software tool will include a classifier that can be utilized to predict the classific-
ation of a commit and a pipeline that gathers information the classifier uses for
training, validation, and testing.

Firstly, we identified a number of different approaches used in research to classify
commits into maintenance tasks. However, none of these approaches demon-
strated great adaptability to practice. Therefore, our first objective is to create a
set of classifications that is easily distinguishable, can be used easily for research
purposes, and is fully present in most openly available Git repositories, thus en-
suring practicability.

Secondly, the software tool’s extraction pipeline (hereafter also referred to as
the extractor), should be capable of obtaining a list of commits given a GitHub1

repository. Each of these commits should be filtered for only the information
relevant to the classification of said commit. Furthermore, the extractor should
also be able to read out the classification from the commit’s message.

Thirdly, given a commit, the classifier should be able to output the probabil-
1https://github.com/

7

3. Objective Definition

ities associated with the predefined classifications. Each of our classifications
should be assigned a value between 0 and 1 (0-100%), with the sum of all values
adding up to 1. This approach allows us to easily identify which classification
has the highest probability according to the classifier.

Fourthly, the classifier should be applicable to all repositories, also including
those exclusively containing documentation.

Fifthly, we decided that the software tool’s classifier should be trained exclus-
ively with data openly available on GitHub.

Lastly, the objective of the classifier is to be able to predict the correct clas-
sification (i.e., the one with the highest percentage as defined in objective 5) in
at least 80% of all cases.

To summarize, the commit classifier by code changes presented in this thesis
must fulfill the following criteria:

1. The set of classifications a commit can belong to should be easy to distin-
guish and should be fully present in most openly available git repositories.

2. The software tool’s extractor should, given a repository, extract all inform-
ation relevant to a commit and extract a tag from the commit message.

3. The software tool’s classifier should, given a commit, be able to output the
probabilities for the given classifications.

4. The software tool’s classifier should be usable on all repositories.

5. The software tool’s classifier should be trained exclusively with data openly
available in GitHub repositories.

6. The software tool’s classifier should be able to predict the correct class at
least 80% of the time.

8

4 Solution Design

As the classifier of our software tool depends on us previously defining the set
of classifications the classifier should use, we decided to split our solution pro-
cess into two major tasks. Firstly, we will analyze a selection of papers and find
previous attempts to group commit types into classifications. Additionally, we
will examine GitHub in search of any existing schemas in place for differentiating
commits.
The second step in our work will focus on the development of the software
tool. This tool will incorporate both the extractor and the classifier. Figure
4.1 provides an overview of the process.

Figure 4.1: Overview of the Solution Design Architecture

4.1 Classifications

In order to create a suitable set of classifications, we will consider methods used
in both research and practice. For the research-based classifications, we will
analyze a selection of papers. Likewise, in order to identify any classification
schemas utilized in practice, we will examine a number of repositories on GitHub.
Following the analysis, we will establish a set of classifications that fulfills the
objectives we set out for them.

9

4. Solution Design

4.1.1 Classifications in Research

To find suitable papers describing the approaches to classification, we utilized
Google Scholar. After locating a number of potentially relevant literature and
classifications using the key search term "classify commits", we proceeded to ex-
amine these papers’ related work and sources. This process led us to identify
three noteworthy methods of classification.

The first method was developed in 1976 by Swanson (1976). In this, the authors
identified three distinct types of maintenance tasks: Adaptive, Corrective, and
Perfective. Adaptive maintenance occurs in response to changes in the data and
the runtime environment, for example when new features are created. Corrective
maintenance refers to tasks performed in response to failures, more commonly
called bug fixes. Lastly, work labeled as Perfective is performed to combat pro-
cessing inefficiencies, enhance performance, or increase maintainability. Adapted
to our context this includes anything from documentation, tests, and code im-
provements.

Building on Swanson’s method, we identified the "Extended Swanson Categor-
ies of Changes" (Hindle et al., 2009). In addition to the three classifications
defined by Swanson, Hindle et al. extended it by two more: Feature Addition
and Non-functional. The authors describe Feature Additions as dealing with new
requirements, which they later clarify as issues related to versioning, merging,
or revising. Non-functional tasks, in contrast, are described as addressing legal
concerns, code clean-up, and source control system management.

The final set of classifications we want to mention was first proposed in Mitch de
Wilde’s dissertation on "Automatic git commit generation and classification for
HTML based projects" (De Wilde, 2019). For his work, he defined the following
five classifications: Addition, Removal, Modification, Bugfix, and Configuration.
A commit was labeled as an Addition if it exclusively included added lines of
code. For Removal, the inverse is true. A Modification refers to commits that
have both added and deleted LoCs. Additionally, this category included file re-
naming. The label Bugfix "was defined as a very small modification such as a
typo fix or an added attribute to a HTML tag" (De Wilde, 2019, p. 48). Finally,
the classification Configuration includes modifications "such as adding external
code through <script> tags or adding .css files" (De Wilde, 2019, p. 26).

In summary, previous scientific work has employed various classification systems,
including:

10

4. Solution Design

1. Adaptive, Corrective & Perfective by Swanson (Swanson, 1976)

2. Adaptive, Corrective, Perfective, Feature Addition & Non functional by
Hindle et al. (Hindle et al., 2009)

3. Addition, Removal, Modification, Bugfix & Configuration by de Wilde (De
Wilde, 2019)

4.1.2 Classifications in Practice

Since we aimed to define a set of classifications that can be easily applied in
a practical context, we also conducted an examination of existing classification
schemas on GitHub. All of the classifications presented in the following are a part
of the commit message, which is defined by the developer of the corresponding
commit.

In our search for suitable GitHub repositories, we initially examined the pa-
pers mentioned in subsection 4.1.1 to identify any referenced repositories with
classification schemas they had used. The most promising reference we found
was in de Wilde’s dissertation (2019), where he referred to the irwin repository,
maintained by Alex Pilewski1. The classifications he uses in the repository (up
to April 30th, 2024) are:

• Add

• Clean

• Create

• Delete

• Edit

• Fix

• Initial

• Lint

• Production

• Refactor

• Styles

• Tests

• Update

• WIP (work in pro-
gress)

Pilewski does not provide any documentation on the specifics of each classifica-
tion. This becomes a significant issue when attempting to differentiate between,
for instance, the classifications Styles and Lint or Add and Create. However, we
identified a guide that Pilewski’s classifications seem to be related to. This guide
can be found in the article "Write categorized Git Commit Messages", published
by Ryan Westlake on Medium.com2 (2017). In this article, Westlake describes a
similar approach to Pilewski, but with fewer and slightly different classifications.
Their descriptions are as follows:

1https://github.com/Pilewski/irwin
2https://medium.com/

11

4. Solution Design

"

• Add — broad category for code that’s added

• Build — during the build process

• Fix — fixes (e.g. typos, linter rules, broken links/imports, etc.)

• Initial — for the initial commit and set up

• Production — production related

• Refactor — refactored code

• Remove — when removing files or old, unnecessary code

• Styles — style related commits

• Tests — if you write them :)

• Update — for small updates

• WIP — work in progress

" (Westlake, 2017, Categories section). One disadvantage the classifications by
Pilewski and Westlake share is that their categories are not mutually exclusive.
As Westlake writes, "you can even combine them" (Westlake, 2017, Categories
section). While their approaches might be interesting for future research, they
are unsuitable for us given the objectives defined prior.

The second approach to finding suitable classifications involved searching for the
most popular GitHub repositories and examining whether they utilized a clas-
sification schema. For this, we used the key search term "github most popular
repositories" on Google3 and, for instance, identified the following two articles:

• "GitHub’s Top 100 Most Valuable Repositories Out of 96 Million" (Gaviar,
2019)

• "15 Most Popular GitHub Repositories Every Developer Should Know" (T.,
2023)

Upon examination of the repositories mentioned in these articles, a recurring
schema emerged. This schema can be traced back to the Conventional Commits
(ConventionalCommits.org, n.d.), or, more specifically, to the Angular 4 conven-
tion (Angular Team, n.d.). The developers of the Angular repository introduced
a novel ruleset for the formatting of their commit messages. The objective of this
standardization was to improve the readability of the messages and changelog

3https://www.google.com/
4https://github.com/angular/angular

12

4. Solution Design

(Angular Team, n.d.). The format of a commit message is as depicted in Listing
4.1:

Listing 4.1: Commit Message Format of the Angular Convention
<type >(<scope >): <subject >
<BLANK LINE >
<body >
<BLANK LINE >
<footer >

Table 4.1 illustrates the relation between the initial code changes and the resulting
commit message.

Table 4.1: Code Change and its Corresponding Commit Message5

→ docs(jpg): fix example path

Of the message format, the header "<type>(<scope>): <subject>" or more
precisely the <type> (in the example docs), piqued our interest. Angular’s types
are defined as follows:

• build

• ci

• docs

• feat

• fix

• perf

• refactor

• revert

• style

• test

Building on these types and more generally on the Angular convention, Conven-
tional Commits (ConventionalCommits.org, n.d.) were introduced. Along with
some additional semantic modifications, e.g. for breaking changes, Conventional
Commits added the new type chore. In summary, the classifications of Conven-
tional Commits are described as such:

5https://github.com/lvgl/lvgl/commit/6b1516926a549f9e5a2e07c81a22bb6a33ddddb0

13

4. Solution Design

• build — Changes that affect the build system or external dependencies

• chore — Updating grunt tasks etc; no production code changes

• ci — Changes to our CI configuration files and scripts

• docs — Documentation only changes

• feat — A new feature

• fix — A bug fix

• perf — A code change that improves performance

• refactor — A code change that neither fixes a bug nor adds a feature

• revert — If the commit reverts a previous [list of] commit

• style — Changes that do not affect the meaning of the code (white-space,
formatting, missing semi-colons, etc)

• test — Adding missing tests or correcting existing tests

The descriptions of the classifications are derived from (Ziegelmayer, n.d.) for
"chore" and from (Angular Team, n.d.) for the other classifications. Unlike
Pilewski’s or Westlake’s classifications, Conventional Commits’ are designed to
be mutually exclusive. This fact allows developers writing commit messages using
this schema to unambiguously assign a classification to their changes. Once we
knew that Conventional Commits existed, we utilized the built-in search function
of GitHub to identify repositories using this schema. For this, we utilized this
search term:

https://github.com/search?q="conventional+commits"++path%3A**
%2FCONTRIBUTING.md&type=code&ref=advsearch

. This search term looks for repositories that contain a file with the name
CONTRIBUTING.md, in which the string "conventional commits" is mentioned.
This way we found the repositories mentioned in section 5.2.

4.1.3 Our Classifications

As outlined above, there are various different ways of categorizing commits into
maintenance tasks. Some methods, such as Pilewski’s or Westlake’s, are not
suitable for our approach, because their classifications are not designed to be
mutually exclusive. Others, like de Wilde’s (2019), proposed classifications for
a specific context (in his case HTML), which defeats the purpose of having a
widely usable set of classifications. Ultimately, we opted for a slight variation to
the Conventional Commits:

14

4. Solution Design

• build

• chore

• ci

• docs

• feat

• fix

• perf

• refactor

• style

• test

The rationale behind the selection of this set of classifications can be explained
by three main reasons:

• Firstly, Conventional Commits are widely adopted in practice, fulfilling all
the objectives we set for the classifications.

• Secondly, since they are already widely used, we can use the adhering repos-
itories as pre-labeled datasets for the training of the classifier, eliminating
the need for the manual creation of such data.

• Lastly, we decided to remove the classification revert because a substantial
amount of repositories label their revert commits as chore, which would
present a great challenge if we wanted to separate these commits again.

4.2 Software Tool

Having established the set of classifications, we will in the following proceed to
describe the components of the software tool. As illustrated in Figure 4.2, the soft-
ware tool is not one single entity but consists of multiple different modules. First,
we will describe the extractor, explaining each part of the extraction pipeline in a
step-by-step manner, illustrating how the tool transforms a list of commits into a
dataset that can be used by the classifier for training and evaluation. Afterward,
we will provide a detailed description of our classifier, describing its components
and the rationale behind the design of the preprocessor and the novel ML model.

Figure 4.2: Overview of the Software Tool

15

4. Solution Design

4.2.1 Extractor

Starting with the extractor. The extractor is composed of six subcomponents, as
Figure 4.2 implies and Figure 4.3 illustrates. In the following, we will provide a
detailed explanation of these six steps.

Figure 4.3: Architecture and Steps of the Extractor Pipeline

In (1) we make the initial call to the GitHub Application Programming Inter-
face (API), requesting a list of commits in chronologically descending order. To
ensure consistency in the number of commits across all repositories in our data-
set, we added an attribute limiting the number of commits to a specified value.
Furthermore, we also write this list of commits to a JSON file. This approach
allows us to reuse the commit data in the JSON file for the subsequent steps,
thus avoiding the need to make API calls repeatedly. Consequently, this prevents
the unnecessary exhaustion of our GitHub API quota.

In step (2), we then proceed to iterate through each commit in the output file from
(1) and filter out any unimportant attributes. At the conclusion of this process,
we are left with two attributes: the commit’s url and its commit message. The
url is used to uniquely identify each commit, while the commit message contains
the classification that we will extract in step (3). Initially, we considered utiliz-
ing the commit’s sha as the primary key. However, since our first approach for
the classifier involved classifying code changes from multiple languages and thus
repositories, the sha might not be distinct across all these repositories, which
would render it an inadequate identifier.

As mentioned above, in step (3), the program extracts the classification label

16

4. Solution Design

from the commit message. This is achieved by utilizing a regular expression in
order to split the message into several groups. Of these, the first group is the
most interesting for us, as it contains the <type> assigned to the commit. This
value is then matched against the list of classifications we previously established
(see subsection 4.1.3). If a match is found, the commit’s classification is defined
as the <type>. In case no match is identified initially, the tool performs an
additional check for some special cases we encountered in our selected reposit-
ories. For instance, one repository used the label doc instead of docs for their
documentation-related modifications. Consequently, it can be concluded that
when the <type> doc is encountered, the tool can set the commit’s classification
to docs. Should, even after considering these special cases, no match be found,
the commit’s classification is temporarily set to None, indicating it will need to
be manually fixed in step (4).

In step (4), we then consider all commits that have received a None-label. This
is the part of the pipeline that requires manual work and is, therefore, the most
time-consuming. A small portion of these commits can be fixed easily since their
commit message entailed one of the defined classifications, but the label was mis-
spelled. However, the majority of the None-classified commits require additional
work. For each commit, we examined the commit message and determined which
classification was indicated by it. If there were still ambiguities about which clas-
sification to choose, we reviewed the diff file in order to assess the actual code
changes.

Utilizing the url as the identifier for the commits provides the additional be-
nefit that we can reuse it for the second call of the GitHub API in step (5). To
illustrate why this is possible, consider the following example url obtained in
step (1):

https://api.github.com/repos/lvgl/lvgl/commits/
fa9142ef361f548c534f5e1d2144f94c88b3873e

Upon comparing the url with the structure required by the GitHub API for the
"Get a commit" call

/repos/{owner}/{repo}/commits/{ref}

, it becomes evident that the url can be reused to obtain the rest of the remain-
ing information required for the classifier. This additional information includes
details about the files that were modified in each commit. More specifically, it
includes the number of LoCs added and deleted, the filenames, as well as the
patch that specifies the exact modifications made in each file. Using this addi-
tional data we extend the previous dictionary by the new values and pass it on
to step (6).

17

4. Solution Design

In the (6)th and final step, the lines of code in each patch are divided into three
categories:

• If a line starts with "+", it is considered an added line.

• If a line starts with "-", it is a deleted line.

• If a line starts with neither "+" nor "-", the line is ignored by our extractor.

We decided to ignore all lines neither considered added nor deleted because in-
cluding them would have significantly inflated the size of the dataset without
providing a substantial increase in information. To illustrate the dividing pro-
cess, consider the following example illustrated in Listing 4.2:

Listing 4.2: Example of an Unformatted Patch
"@@ -56,6 +56,7 @@ void _lv_indev_scroll_handler(

lv_indev_t * indev)\n \n
init_scroll_limits(indev);\n \n+
lv_obj_remove_state(indev ->pointer.act_obj ,
LV_STATE_PRESSED);\n lv_obj_send_event(
scroll_obj , LV_EVENT_SCROLL_BEGIN , NULL);\n

if(indev ->reset_query) return ;\n }"

A reformatted version of this patch to make it more human-readable is presented
in Listing 4.3.

Listing 4.3: Example of a Human-Readable Patch
@@ -56,6 +56,7 @@ void _lv_indev_scroll_handler(

lv_indev_t * indev)

init_scroll_limits(indev);

+ lv_obj_remove_state(indev ->pointer.act_obj ,
LV_STATE_PRESSED);

lv_obj_send_event(scroll_obj ,
LV_EVENT_SCROLL_BEGIN , NULL);

if(indev ->reset_query) return;
}

In the presented patch, the line

lv_obj_remove_state(indev->pointer.act_obj, LV_STATE_PRESSED);

was added and no line of code was deleted. In addition to splitting the LoCs into
the three aforementioned sets, we also intended to retain as much information as
possible about the context and structure of these lines without overly inflating
the dataset. For that, we introduced an additional dimension, which we refer to
as chunks. If two lines of the same category (added/deleted) are adjacent to each
other, they are added to the same chunk. For instance, if a new file is added to

18

4. Solution Design

the repository, the entire file would belong to the class "added", with all lines of
code being included in the same chunk.

Upon completion of the extractor’s pipeline, a commit in the output file would,
for instance, look like Listing 4.4.

Listing 4.4: Example Output of an Extracted Commit
{

"url":" https :\/\/ api.github.com\/repos \/lvgl\/
lvgl\/ commits \/
fa9142ef361f548c534f5e1d2144f94c88b3873e",

"tag":" feat",
"filename ":[

"src\/indev \/ lv_indev_scroll.c"
],
"file_extension ":[

"c"
],
"added_patch ":[

[
[

" lv_obj_remove_state(indev
->pointer.act_obj ,
LV_STATE_PRESSED);"

]
]

],
"deleted_patch ":[

[

]
],
"status ":[

"modified"
],
"additions ":[

1
],
"deletions ":[

0
]

}

4.2.2 Classifier

Once all relevant information for the classification of the commits has been ex-
tracted, the output file is passed on to the classifier. Due to the thesis’s time
constraints, it was decided to focus on developing a model that exclusively util-

19

4. Solution Design

izes the attributes added_patch and deleted_patch as inputs and classify the
commit based on them. These two attributes were selected, because they provide
the core information about the commits’ source code changes, which is to say
that they have the highest information density of all attributes. Furthermore,
by focusing on these two, we can create a model that processes solely textual
data, eliminating the need for additional submodels to handle other data types.
Consequently, the schema for each commit is as follows:

Listing 4.5: Schema of Each Commit Before the Preprocessor
{

"tag": "string",
"added_patch ": "list(list(string))",
"deleted_patch ": "list(list(string))"

}

As can be seen in Listing 4.5, in addition to the attributes related to the patch,
we have retained the tag (also referred to as classification). This is because it is
the expected classification used during supervised training.

As depicted in Figure 4.4, the classifier is divided into two primary compon-
ents. The first component is the preprocessor, a pipeline that receives the ad-
ded and deleted patches from the extractor and processes them through a series
of transformations in order to produce a numeric representation of the inputs.
This numeric representation is essential, because the second component, the ML
model, is only able to process numbers. In the following section, we will provide
a more detailed account of the approaches we chose for both.

Figure 4.4: Overview of the Classifier Architecture

Preprocessors

As previously stated, a preprocessor is a crucial component of the data pipeline.
It performs one or more transformations on the raw input data, converting the
initial data type, whether it is textual, categorical, or otherwise, into a numeric
representation. In the context of textual data, one of these steps must be text

20

4. Solution Design

vectorization, i.e. converting words (and, on occasion, punctuation marks) into
numeric values.
During the course of our research, we trialed three different preprocessor config-
urations. A detailed explanation of each approach is provided in the following
paragraphs.

Preprocessor 1 The first preprocessor is a relatively basic preprocessor for
textual data. Figure 4.5 depicts that it accepts a line of code as input, passes
this line through to a TextVectorization layer, and outputs the numerical rep-
resentation of the words in the line of code. In order to use a TextVectorization
layer, it is initially necessary to provide it with the words present in the dataset.
Using these words, the layer is able to learn the vocabulary specific to the task. To
prevent rare words from negatively affecting the model’s performance, we tested
several different vocabulary sizes, with values of 1,000, 5,000, and 10,000. Any
words that are too uncommon to be included in the vocabulary are then grouped
in the token ’[UNK]’. Furthermore, given that we initially considered classifying
multiple programming languages, the idea of this preprocessor was to normal-
ize all of these languages by eliminating any punctuation. To achieve this, we
used the standardization technique lower_and_strip_punctuation provided by
TensorFlow’s TextVectorization6. In addition to stripping the punctuation,
this method also lower-cases all words, i.e. "standardizeText" would be trans-
formed to "standardizetext".

After setting up the TextVectorization and adapting it to a vocabulary, TensorFlow
(Martín Abadi et al., 2015) describes the vectorization steps as follows: "

1. Standardize each example (usually lowercasing + punctuation stripping)

2. Split each example into substrings (usually words)

3. Recombine substrings into tokens (usually ngrams)

4. Index tokens (associate a unique int value with each token)

5. Transform each example using this index, either into a vector of ints or a
dense float vector.

" (Google Brain Team, n.d.-b, Used in the notebooks section).

To illustrate a potential outcome of applying this preprocessor, consider the ex-
ample depicted in Figure 4.5. Given an input of int main () {, int might be
vectorized to 24, main to 2 and all punctuation is ignored.

6https://www.tensorflow.org/api_docs/python/tf/keras/layers/TextVectorization

21

4. Solution Design

Figure 4.5: Architecture and Example of Preprocessor 1

Preprocessor 2 Preprocessor 2 reintroduces the punctuation marks that were
excluded in preprocessor 1. Upon recognizing that the classifier’s ML model did
not learn patterns without the context provided by punctuation, the next logical
step was to retain it. To achieve this, we tested three different methods:

1. Using TextVectorization’s built-in standardization lower

2. Using TextVectorization’s built-in standardization None

3. Manually changing the punctuations to word-tokens (e.g. "(" → "Rd_Open")

Methods 1. and 2. do not alter the structure of the preprocessor in comparison to
preprocessor 1, they merely change the standardization method. In 1., we main-
tain lowercasing of the input text (in accordance with preprocessor 1), while re-
taining the punctuation marks. In method 2., however, no standardization is ap-
plied. This approach essentially works like a pass-through to the subsequent steps
in the vectorization process. As a third option, we elected to manually translate
all punctuation marks to text tokens and then pass them to a TextVectorization
layer that standardizes using lower_and_strip_punctuation. The tokens we
used can be found in appendix A. This is also the method illustrated in Figure
4.6. Ultimately, the manual method yields the same output as method 1., but it
offers a more precise grip on which punctuation marks to include and exclude.

As illustrated by the example in Figure 4.6, the retention of punctuation al-
lows the model to work with more information about the input text. Taking a
look at the same example as above, int main () { this time not only converts
int → 24, main → 2, but also the brackets (here "(" → 200, ")" → 201 and
"{" → 223).

Preprocessor 3 After recognizing that the more general, mainly language-
independent approaches proposed in preprocessors 1 and 2 yielded no suitable
abstraction of the input data, we made two decisions:

22

4. Solution Design

Figure 4.6: Architecture and Example of Preprocessor 2

• Given that we have thus far attempted to preprocess and classify a multi-
tude of programming languages, we elected to focus on a single language.

• In order to vectorize a single language, one of the most effective methods
is to utilize a lexer.

The programming language we elected to use is C. This choice was made because
C’s instruction set, and thus lexer, is relatively small in comparison to other,
more high-level programming languages. Additionally, we had already utilized a
repository with a codebase written in C, which had a significant number of com-
mits, thus providing a suitably large dataset. This allowed us to use a relatively
compact lexer as a step in our preprocessor 3. To gain a better understand-
ing of the role of a lexer, consider the following example: In our previous two
preprocessors, a line such as "int main () {" would be "translated" to "[int,
main]" and "[int, main, Rd_Open, Rd_Close, Cr_Open]" respectively. How-
ever, by using a lexer, keywords such as int, float or void would for instance
be grouped under the token Identifier, while all function names would be sum-
marized under the token Function, and so on. The use of these tokens facilitates
the recognition of the code’s structure, as shown in Figure 4.7. The program then
attempts to deduce a sort of grammar/syntax for the source code, similar to that
of natural languages such as English: "Subject - Predicate - Object". Thus, by
using a lexer, the objective is to provide a syntax-focused representation of the
modified code, with the intention that the classifier will perform more effectively

23

4. Solution Design

using this method.

Figure 4.7: Architecture and Example of Preprocessor 3

Ultimately, regardless of which demonstrated preprocessors is used, the output
schema is the same (see Listing 4.6):

Listing 4.6: Schema of Each Commit After the Preprocessor
{

"tag": "string",
"added_patch ": "list(list(list(int)))",
"deleted_patch ": "list(list(list(int)))"

}

However, the primary distinction is that each LoC is now represented by a list of
integers instead of a string. To illustrate, one such line could now be (see Listing
4.7):

Listing 4.7: Example Output of a Preprocessed Patch
[490, 200, 982, 269, 98, 140, 632, 872, 201, 55]
% output of "lv_obj_remove_state(indev ->pointer.

act_obj , LV_STATE_PRESSED);"

Prior to illustrating an example following the application of the preprocessor’s
steps, it is necessary to mention one additional step we added to the preprocessing
pipeline after some preliminary research: padding/truncating. As can be expec-
ted, the length of the lines of code varies considerably across the data. In order

24

4. Solution Design

to address this issue, we initially attempted to use so-called ragged tensors.
These types of tensors permit the saving and working with data of inconsistent
dimensionalities. However, after some research, it became evident that the use
of ragged tensors and their undefined dimensionalities would not allow the usage
of the ML model layers we planned to use. Consequently, we added the afore-
mentioned padding. To explain the functionality of the padding step, consider
the following scenario: Imagine we used a padding token of -1 and fixed the
dimension at 5. In this case, all lines of code would undergo one of the following
transformations:

• < 5: e.g. [534, 200, 201] → [534, 200, 201,−1,−1]

• == 5: e.g. [45, 200, 431, 10, 201] → [45, 200, 431, 10, 201]

• > 5: e.g. [234, 564, 239, 214, 981, 234, 345] → [234, 564, 239, 214, 981]

Ultimately, the output of the preprocessor given an input dataset with one commit
might look like Listing 4.8:

Listing 4.8: Example of a Dataset With One Commit
[

{
"tag":" feat",
"added_patch ":[

[
[

[490, 200, 982, 269, 98]
],
[

[326, 21, 2, 424, 564]
]

],
[

[
[-1, -1, -1, -1, -1]

],
[

[-1, -1, -1, -1, -1]
]

]
],
"deleted_patch ":[

[
[

[245, 842, 437, 200, 201]
],
[

[-1, -1, -1, -1, -1]
]

],

25

4. Solution Design

[
[

[316, 324, -1, -1, -1]
],
[

[-1, -1, -1, -1, -1]
]

]
]

}
]

In the case presented above, the commit’s classification/tag is feat. Further-
more, the commit’s dimensionalities have been defined as [1, 2, 2, 1, 5] for
both added_patch and deleted_patch. As can be seen, the provided dimen-
sionality list has five numbers. These dimensions are:

• c commits (1)

• f files (2)

• ch chunks (2)

• l lines (1)

• w words (5)

While fixing the initial problem of compatibility, the use of fixed dimensions
introduces two potential limitations. Firstly, if the dimensionality is set too low,
the model may lack the crucial information required to learn patterns in the
input. On the contrary, if the dimensionality is set too high, a significant number
of padding tokens may be introduced. This, in turn, may result in the model
attempting to learn patterns from the padding, even though the paddings are
merely a means of norming the input.

ML Models

After extracting the training dataset and preprocessing it to ensure compatibility
with the ML model, we will in the following describe the model itself. During the
course of our work, we developed two different machine learning models for the
classification. As illustrated in Figure 4.8, both models share the same general
architecture, with the difference between them being the manner in which they
handle the commits’ patches. Furthermore, both models are tasked with the
same learning task: Construct a function

f(inputs) 7→ prediction

, where

prediction ∈ [build, chore, ci, docs, feat, fix, perf, refactor, style, test]

26

4. Solution Design

Figure 4.8: Architecture of the ML Model

As input for the ML model, we pass the deleted_patch and added_patch. These
inputs are then passed to the patch modules, the part of the model that differs
in the two versions. The inputs are then processed in the (added/deleted) patch
modules. These modules are the components of the ML models that differ in
our two versions. Following the patch modules, the resulting one-dimensional
embedding vectors ed and ea are concatenated file-wise, such that the resulting
embedding ec has alternating added and deleted blocks. This is done in order
to keep the structural information of each commit’s patch. After the concatena-
tion, a set of Dense layers is applied, with the final Dense layer (output layer)
having an output dimension of 10 (the number of classifications). Each of the
ten output values in the prediction represents one of the classifications. Further-
more, each value is between 0 and 1, with the sum of all values being 1. This
indicates that the resulting values each represent the probability for each of the
ten classifications.

Figure 4.9: Architecture of Patch Module 1

27

4. Solution Design

Patch Module 1 Figure 4.9 shows the structure of the first patch module. It
should be noted that the architecture depicted here is identical for both the added
and deleted patch modules. We elected to mention them separately in Figure 4.8
to provide clarity that they do neither share weights nor information, they are
merely designed similarly. As previously mentioned, the patch module gets the
five-dimensional patch information. In the first step, the dimensionality of the
patch is expanded from five to six through the use of an embedding layer. This is
done to improve the contextualization of the code changes, thereby enabling the
model to better understand the meaning of the words in the LoCs. Secondly, for
each of the lines in the modified code, a set of Long Short-Term Memory (LSTM)
layers is applied. Each line at this point consists of three dimensions: the lines-
dimension, the words-dimension, and the embeddings-dimension. The rationale
behind using LSTM layers is to capture sequential dependencies in the lines,
thereby further improving contextualization. The results for each processed LoCs
are then stacked in order to regain the six-dimensional structure of the patch.
Subsequently, a set of three-dimensional convolutional layers is utilized, with the
output of which being passed to a list of 3D-Max Pooling layers. These two sets
of layers are designed to gather additional information about the structure of
each patch. Lastly, the output of the pooling layers is then flattened to a single
dimension and concatenated such that we receive the embedding vector ea/ed.

Figure 4.10: Architecture of Patch Module 2

Patch Module 2 The architecture of Patch module 2 is depicted in Figure
4.10. As can be observed, both the embedding layer at the start and the layers at
the end are identical to those of patch module 1. However, the way in which they
process the lines of code is different. In module 1, each line of code is passed to
a list of LSTM layers, each of which internally computes matrix multiplications.
Afterward, the result of these layers is stacked to restore the patch’s structure.
In contrast, in module 2, the matrix multiplications inside the LSTM cell are

28

4. Solution Design

replaced with convolutional operations. In addition to the method change poten-
tially improving the predictions, this approach has an additional benefit. Since
the Convolutional Long Short-Term Memory (ConvLSTM) developed by Shi et
al. (2015) allows for six-dimensional inputs, there is neither the need for stacking
the LSTM results nor for the custom implementation to access the LoCs.

29

4. Solution Design

30

5 Implementation

This section outlines the implementation of the solution described in chapter 4.
In the first step, we will discuss the tools and their contributions to our research.
Secondly, we will outline the data sources we worked with. Lastly, we will describe
some of the key code snippets used in the software tool.

5.1 Used Tools

To implement our solution, we utilized several different software tools. Firstly,
we used Docker1, a platform for containerizing applications, to create the de-
velopment environments. Additionally, we utilized Jupyter Notebook2 and its
next-generational version JupyterLab3 for the entirety of the software tool’s de-
velopment. Both tools are interactive computing environments widely used for
data analysis, machine learning, and other purposes. To simplify the handling
of the commit-file relations during the extraction process, we used peewee4, an
Object Relational Mapping (ORM), in combination with a PostgreSQL5 data-
base. Finally, for the purpose of developing the classifier, we utilized three addi-
tional tools: Google Colab6, a Jupyter Notebook service by Google, Pygments7,
a generic syntax highlighter, for the Lexer in preprocessor 3, and TensorFlow8,
an open-source machine learning platform, for both the preprocessor and the ML
model.

1https://www.docker.com/
2https://jupyter.org/
3https://jupyter.org/
4https://docs.peewee-orm.com/en/latest/
5https://www.postgresql.org/
6https://colab.google/
7https://pygments.org/
8https://www.tensorflow.org/

31

5. Implementation

5.1.1 Docker

In order to ensure a seamless development experience, we opted to stay away from
local development and instead implemented everything in two Docker develop-
ment containers. Docker itself is "an open platform for developing, shipping,
and running applications [and it] enables you to separate your applications from
your infrastructure" (Docker Inc., n.d., para. 1). We decided to split our work
into two containers because this allowed us to use two separate Docker images.
The first image was configured using Microsoft’s Dev Containers extension9 for
Visual Studio Code10. It is designed to run code written in Python and provides
a connection to a PostgreSQL database. The second image is gpu-jupyter11.
It is developed and maintained by iot-salzburg and it is "optimized to run [. . .]
TensorFlow [. . .] in collaborative notebooks on the [Nvidia] GPU" (iot-salzburg,
n.d., About section). Using this image enabled us to execute the classifier’s code
on our local Nvidia Graphics Processing Unit (GPU) using a JupyterLab web
environment. To facilitate the process of starting and accessing the server, we
developed a short bat file to automate the execution of the required Docker
commands. The file’s contents are depicted in Listing 5.1:

Listing 5.1: Bat File Used to Automate Starting the JupyterLab Server
cd \Projects
docker start 3c68bc67bcaf
docker exec -it 3c68bc67bcaf jupyter server list
pause >nul

In the first line, the working directory in changed to Projects, a local folder. Af-
terward, the Docker container with the id 3c68bc67bcaf containing the gpu-jupyter
image is started. In line three, the command "jupyter server list" is ex-
ecuted on the now-running container. This command returns the list of currently
running Jupyter servers. These servers are accessible via the web browser at
localhost:8848. The fourth and final line is a workaround to ensure that the
terminal window in which the bat file is executed does not close immediately.

5.1.2 Jupyter Notebook/JupyterLab

Jupyter Notebook (and its further development JupyterLab), formerly called
IPython Notebook, is an open-source "notebook authoring application and is part
of Project Jupyter12"(Jupyter Team, n.d., para. 1). Both interfaces permit the

9https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-
containers

10https://code.visualstudio.com/
11https://github.com/iot-salzburg/gpu-jupyter
12https://docs.jupyter.org/en/latest/

32

5. Implementation

execution of several programming languages, including R13, Go14 and Python15.
The main advantage of using these notebook interfaces is the ability to edit and
execute code cells without the need to recompile the entire file. This is possible
because each notebook file maintains a record track of variables throughout the
entirety of the file. This became especially useful in the classifier because it
allowed us to retrain the ML model without having to rerun the preprocessing
steps. This saves both time and resources during the development process. To
use the notebooks, we utilized two methods:

• In method one, the Docker image gpu-jupyter was employed. This image
enabled us to work on a self-hosted JupyterLab web server.

• In method two, we utilized the Jupyter extension16, available via the Visual
Studio Code Marketplace. This extension enabled us to use a full-fledged
Jupyter Notebook environment inside Visual Studio Code.

5.1.3 peewee

Given the one-to-many relation between commits and files, we determined that
a database was the best medium for modeling this relationship Consequently,
we sought an effective and user-friendly solution for reading and writing this
database. Our search led us to peewee, a "simple and small ORM" (Leifer, n.d.,
para. 1), brought to life by Charles Leifer in October 2010. Object-relational
mapping (ORM) is a technique that enables querying and manipulating data
from a database in object-oriented programming languages such as Python. It
is a design pattern that aims to streamline the communication between the two
parts of the program. The manner in which we employed peewee can be observed
in subsection 5.3.3.

5.1.4 Google Colab

As previously mentioned, Google Colab is a hosted Jupyter Notebook service
that provides a free computing environment with access to GPUs. Since it
provides access to these GPUs, it is particularly well suited for machine learning
tasks. However, one partial drawback of Google Colab became evident after a
brief period of working with it: it has a GPU quota. Given this issue, we had to
decide whether to continue training the ML model on Google Colab, where we
would have to intermittently train it using a Central Processing Unit (CPU), or
to switch to a local environment using our local CPU. After conducting speed

13https://www.r-project.org/about.html
14https://go.dev/
15https://www.python.org/
16https://marketplace.visualstudio.com/items?itemName=ms-toolsai.jupyter

33

5. Implementation

tests, we ultimately opted to switch to using the local GPU. For this, we used
the previously described gpu-jupyter image, provided by iot-salzburg.

5.1.5 Pygments

Pygments is a syntax highlighting library written in Python. For the syntactic
highlighting we utilized in preprocessor 3, it offers 74 distinct token types. The
output of highlighting text is provided by Pygments in multiple different output
formats, including formats such as HTML, LaTeX, and most importantly for our
use case, as a list. Detailed information regarding the use of Pygments can be
found in subsection 5.3.5.

5.1.6 TensorFlow

TensorFlow is an end-to-end open source machine learning platform (Google
Brain Team, n.d.-a) developed by the Google Brain Team17. It provides a com-
prehensive ecosystem of libraries and resources that facilitate the development of
neural networks of any size and complexity, while ensuring flexibility and scalab-
ility. For instance, it provides ready-to-use layers, such as the aforementioned
TextVectorization layer, as well as more complex ones like ConvLSTM18 (Shi et
al., 2015). Additionally, it provides an intuitive syntax for implementing, train-
ing, and evaluating ML models, which we will discuss in greater detail in section
5.3. In addition to being an invaluable tool for the development of machine-
learning tasks, Tensorflow furthermore provides a highly compatible interface
with other useful tools used in the ML context. Three of these tools were em-
ployed in our research. Firstly, we used the library pandas19 in order to facilitate
data handling throughout parts of the project, mainly when reading and writ-
ing JSON files. Secondly, the library scikit-learn20 was utilized. Similarly to
TensorFlow, it is an open-source machine learning library. However, in contrast
to TensorFlow, it provides additional functionality TensorFlow itself does not
offer. One of these functionalities is its LabelEncoder, which is used to convert
string classifications (in our dataset called tag) into the numeric representations
that machine learning models require. The other is the train-test-split, which we
describe in more detail in subsection 5.3.6 Lastly, we utilized numpy21 as data
format passed to the ML model and in order to streamline the application of the
train-test-split.

17https://research.google.com/teams/brain/?ref=harveynick.com
18https://www.tensorflow.org/api_docs/python/tf/keras/layers/ConvLSTM3D
19https://pandas.pydata.org/
20https://scikit-learn.org/
21https://numpy.org/

34

5. Implementation

5.2 Used Datasets

As mentioned previously, the intial objective of our research was to classify source
code changes across various programming languages. Consequently, we searched
for repositories on GitHub whose commit messages met the specified requirements
set in subsection 4.1.3. The following list presents what we found for each of the
planned languages:

• C → lvgl22

• Rust → polars23

• TypeScript → node-mongodb-native24

• JavaScript → agoric-sdk25

• C# → uno.extension26

• Go → goreleaser27

• Python → commitizen28

For each of the datasets, 1,400 commits were extracted to reach a suitable size
for the dataset.

Following the recognition that the classifier was not able to correctly predict
code changes of multiple languages, we then decided to focus solely on lvgl. As
of May 1st, 2024, lvgl has 10,072 commits on its main branch. Of these, we
selected the most recent 5,000 for analysis. We increased the number of commits
taken from lvgl to compensate for the overall loss of commits due to the scraping
of other repositories. These 5,000 commits were subsequently reduced to 4,902
due to the absence of a patch in 98 of the commits. Furthermore, since lvgl has
about 5.5% of its code written in a language other than C, we opted to filter out
all files that did not have the file extension .c.

5.3 Code Snippets

The following section will present some of the most crucial code snippets that we
identified throughout our implementation of the software tool.

22https://github.com/lvgl/lvgl
23https://github.com/pola-rs/polars
24https://github.com/mongodb/node-mongodb-native
25https://github.com/Agoric/agoric-sdk
26https://github.com/unoplatform/uno.extensions
27https://github.com/goreleaser/goreleaser
28https://github.com/commitizen-tools/commitizen

35

5. Implementation

5.3.1 Extracting Classification from Commit Message

Listing 5.2: Code Snippet Extracting the Classification from the Commit Mes-
sage

def extract_tag(message):
pattern = re.compile(rf’^\b(?:{"|". join(TAGS)})

\b’)

first_word_match = re.match(r’\b\w+\b’, message
)

if first_word_match:
first_word = first_word_match.group()

if pattern.match(first_word):
return first_word

else:
Special cases that can be fixed

automatically
...

return None

This code snippet (see Listing 5.2) illustrates the basic implementation of the
method extract_tag. This method was used in the extractor to read out the
classification from the commit message. The pattern utilized here was inspired
by a ruleset designed to enforce Conventional Commits, which we discovered in
the GitHub docs (github, n.d.). Furthermore, the variable TAGS was defined as
follows:

TAGS = (’build’, ’chore’, ’feat’, ’perf’, ’ci’, ’fix’, ’docs’,
’refactor’, ’style’, ’test)

The theory behind this implementation was previously outlined in subsection
4.2.1.

5.3.2 Split Patch String

Another relevant code snippet is the division of the files’ patch strings into the
added_patch and the deleted_patch. The logic behind this division is depicted
in Listing 5.3.

Listing 5.3: Code Snippet Dividing the Patch into the Added and Deleted Patch
def split_patch(patch):

lines = patch.split(’\n’)

added_patches = []
deleted_patches = []

prev_added_line = -2

36

5. Implementation

prev_deleted_line = -2

for i, line in enumerate(lines):
if line.startswith(’+’):

if prev_added_line == i-1:
added_patches [-1]. extend ([line

[1:]])
else:

added_patches.append ([line [1:]])
prev_added_line = i

elif line.startswith(’-’):
if prev_deleted_line == i-1:

deleted_patches [-1]. extend ([line
[1:]])

else:
deleted_patches.append ([line [1:]])

prev_deleted_line = i

return pd.Series ({’deleted_patch ’:
deleted_patches , ’added_patch ’:
added_patches })

As depicted in Listing 5.3, the function initially splits the patch string into its
lines of code at the newline operator ("
n"). Afterward, it iterates over each line and determines whether the line starts
with either a "+" or a "-". Added lines begin with a +, deleted lines with a -. In
the event that two lines of the same category are adjacent, i.e. prev_added_line
== i-1 (current line minus one), the corresponding chunk is extended by the new
line of code. Lastly, by utilizing "pandas.Series", the split patch is returned.

5.3.3 Integration of peewee

As previously mentioned in the subsection on the used tools (see subsection 5.1.3),
we employed the use peewee, in combination with a locally running PostgreSQL
Docker container. To use a database, we first had to define the tables and their
attributes.

Listing 5.4: Tables and Attributes in the PostgreSQL Datbase
class Commit(Model):

url = TextField(primary_key=True)
tag = TextField ()

class File(Model):
commit_owner = ForeignKeyField(Commit , backref=

"files")
id = AutoField ()
patch = TextField(null=True)

37

5. Implementation

As illustrated in Listing 5.4, we use the url as the primary key for the commits.
In addition to serving as the commit’s primary key, the url also functions as a
foreign key with the name commit_owner to the File entries. Since one commit
can have multiple modified files, the key id was additionally introduced to ensure
the distinguishability of the files. Joining the tables can be accomplished as
depicted in Listing 5.5 like this:

Listing 5.5: Code Snippet Joining the Tables Commit and File
query = File.select(Commit , File).join(Commit).

where(File.patch.is_null(False))
dataframe = pd.DataFrame(query.dicts ())

Firstly, peewee is able to recognize the foreign key relation between File and
Commit, and thus internally uses the join operator file.commit_owner == commit.url.
After joining, the resulting table has len(files) entries, where each entry con-
tains the combined information of the file and its related commit. In our case,
each entry has the following attributes:

• commit.url

• commit.tag

• file.commit_owner

• file.id

• file.patch

• file.filename

• file.status

• file.additions

• file.deletions

The organization of the entries in this manner allows for a highly flexible approach
that facilitates the straightforward application of changes. For instance, in our
case, we split the patch (see subsection 5.3.2), extract the file extension and
reorganize the entries to be commit-centric once more. In addition to joining
the tables, we also filter out all files with no patch. As our classifier is currently
configured to work with code changes and is thus reliant on a patch, we chose
to remove all files that have none. This is because, for example, renaming a file
does not warrant a patch. After applying the join operation, peewee returns a
query, which we can then use to create the data frame visible in line two of the
excerpt.

38

5. Implementation

Table 5.1: Label Encoding vs. One-Hot Encoding

category label encoded one-hot encoded
build → 0 → [1, 0, . . . , 0]
chore → 1 → [0, 1, . . . , 0]

...
...

...
test → 9 → [0, 0„ . . . , 1]

5.3.4 Label Encoding and One-Hot Encoding

As the machine learning model is unable to operate using strings, it is necessary
to not only convert the patch strings into a numeric representation, but also the
classifications:

Listing 5.6: Code Snippet Encoding the Classification Strings to Numeric Rep-
resentations

label_encoder = LabelEncoder ()
tags = label_encoder.fit_transform(df[’tag’])
tags = tf.one_hot(tags , len(set(tags)))
tags = tags.numpy()

In lines one and two of the depicted code snippet (see Listing ??), all classifica-
tions (here called ’tag’) of the dataset are passed to scikit-learn’s LabelEncoder.
This enables the LabelEncoder to learn all possible classifications present in the
dataset and return a list of n values representing the n classifications. Given that
the dataset has n = 10 distinct classifications, the tags are represented by the in-
teger values 1 to 9. Subsequently, TensorFlow’s one_hot() method is utilized to
one-hot encode the tags. One-hot encoding is a method for converting categorical
variables into a binary vector, where each value in the vector represents one of the
categories. To illustrate, consider the ten classifications, then their label encoding
and one-hot encoding would be: As illustrated above, the length of the binary
vector is the length of categories (here: n = len([′build′,′ chore′, . . . ,′ test′]) = 10).
We elected not to utilize scikit-learn’s OneHotEncoder directly, as we initially
sought to experiment with both label and one-hot encoding. This approach al-
lowed for the straightforward addition or removal of the one-hot encoding. In
the final step, we convert the list of encoded classifications into a numpy array,
facilitating more efficient data handling for subsequent code.

5.3.5 Tokenize with Lexer

In Preprocessor 3 (see paragraph 4.2.2), we integrated Pygments, a tool used for
highlighting and tokenizing code. To efficiently convert the code in our patches
from strings to tokens, we wrote the following function (see ??):

39

5. Implementation

Listing 5.7: Code Snippet Tokenizing Lines of Code Using Pygments’ CLexer
def tokenize_lexer(line_of_code):

lexer = CLexer ()
tokens = lexer.get_tokens(line_of_code)

token_list = []
for token_type , token_value in tokens:

token_type_name = string_to_tokentype(
token_type)

token_list.append ((token_type_name ,
token_value))

return token_list

The function tokenize_lexer is called for each line of code in our dataset. By ap-
plying Pygments’ CLexer().get_tokens(), it returns an iterable of (token_type,
token_value) pairs representing the initial line of code. Prior to returning the it-
erable, the method converts the token_type strings into actual token types. For
instance, "String.Double" is converted to "Token.Literal.String.Double".
Although the token types are only utilized in the ML model, we opted to return
both the token types and the token values for potential future research that may
expand upon our work.

5.3.6 Train-Test-Split

A fundamental concept in machine learning is the train-test-split. This entails
splitting the initial dataset into two parts: the training set and the test set.
The training set, which typically consists of 70-90% of the entire dataset, is used
to train the model. After training, the test data can then be used to evaluate
the performance of the model’s predictions on previously unseen data. This is
a crucial assessment for the generalization of the model, as even if the model
achieves a high accuracy during training, it is not guaranteed that it will perform
well on data it has not encountered previously. The implementation of the train-
test-split can be seen in Listing 5.8:

Listing 5.8: Code Snippet Dividing the Dataset into the Train Set and the Test
Set

inputs_reshaped = inputs.reshape(inputs.shape [0],
-1)

X_train , X_test , y_train , y_test = train_test_split
(inputs_reshaped , tags , test_size =0.15)

In the first line of the code snippet, we reshape the dataset from five to two
dimensions while retaining the first dimension. In our case, this means reshaping
the dataset from (4902, 3, 3, 5, 48) to (4902, 2160). This process involves flat-
tening the data of each commit into a single list containing all 2160 entries. This

40

5. Implementation

step is necessary, because scikit-learn’s train_test_split() function, which
we use for the split, expects two-dimensional inputs for its execution. As inputs,
we provided the list of reshaped commits, the classifications (here called tags)
associated with the commits, and the size of the test set in percent ([0,1]).

5.3.7 Subclassed ML Model

In TensorFlow, there are three distinct approaches to implementing models: us-
ing the Sequential API, the Functional API, or the Subclassing API. After care-
ful consideration, we opted for the subclassed implementation, as it offers the
greatest degree of customizability. The base structure of a subclassed model is
illustrated in Listing 5.9.

Listing 5.9: Code Snippet Implementing the Basics of a Subclassed Model in
TensorFlow

class PatchModel(tf.keras.Model):
def __init__(self):

super(PatchModel , self).__init__ ()
Definition of used layers , e.g.
self.outputs = tf.keras.layers.Dense (10)

def call(self , inputs):
Application of the layers on the inputs ,

e.g.
out = self.outputs(inputs)
return out

In this example, the PatchModel is defined as a subclass of TensorFlow.keras.Model.
This allows the model to overwrite the parent class’s __init__() and call()
functions. The method __init__(), which is called at the time of creation of
the model, defines all variables and layers that are to be used during the training
process. The call() function, in turn, defines how the input data is transformed
by the model into the model’s predictions.

5.3.8 Train and Evaluate the Model

Training and evaluating a model in TensorFlow is relatively straightforward. The
primary syntax revolves around the functions compile(), fit(), predict(), and
evaluate().

41

5. Implementation

Listing 5.10: Code Snippet Illustrating TensorFlow’s compile() and fit()
Functions

model = PatchModel ()

optimizer = tf.keras.optimizers.Adam(learning_rate
=0.01)

loss = tf.keras.losses.CategoricalCrossentropy ()

model.compile(optimizer=optimizer , loss=loss ,
metrics =["accuracy"])

model.fit([X_add_train , X_del_train], y_train ,
epochs =10, batch_size=batch_size ,
validation_split =0.2)

The code provided in Listing 5.10 is the entire code that is required for training.
First, the model is defined, in this case, the subclassed PatchModel we created
in subsection 5.3.7. Secondly, the training configuration is laid out using the
compile() function, which includes the optimizer, loss, and metrics. For the
optimizer, we utilized the Adaptive Moment Estimation (Adam) with a learn-
ing rate of 0.01. Since we have ten different one-hot encoded classifications, the
CategoricalCrossentropy was chosen as the loss function. In order to assess
the efficiency of the model during training, we selected the metric accuracy as
the metric.

Once the model is configured for training, it can then be trained using the
fit() method. We passed fit() the combined set of added and deleted patches
("X_add_train" and "X_del_train") in addition to the associated classifications
("y_train"). We also specified the number of epochs to be trained, the batch
size of each sample per weight update, and the size of the validation dataset.
This validation set serves a similar purpose as the test set, evaluating how well
the model generalizes. However, unlike the test set, the validation set is used
during training, essentially acting as a sanity check on the model during training.

Once the training of the model has finished, there are two methods for evaluating
its performance. The first is to utilize the predict() function. As illustrated
in 5.11, this method only requires the data to be predicted ("[X_add_test,
X_del_test]"), and returns the corresponding prediction. An example of the
output is presented in Table 6.1.

Listing 5.11: Code Snippet Illustration the predict() Method
model.predict ([X_add_test , X_del_test])

The second, and arguably superior approach, involves the use of the function
evaluate(). The code excerpt displayed in Listing 5.12 illustrates that, in ad-

42

5. Implementation

dition to the dataset, the function also expects the corresponding classifications.
This enables the method to calculate metrics such as the loss or the accuracy in
contrast to only providing predictions.

Listing 5.12: Code Snippet Illustrating the evaluate() Method
model.evaluate ([X_add_test , X_del_test], y_test)

43

5. Implementation

44

6 Demonstration

Following the design and implementation of the classifications and our software
tool, this section will provide a functional demonstration of our work. For this,
we will outline the data sources we used for the demonstration, as well as the
configuration setup for the hardware and the software. Lastly, we will present
and discuss the outcomes of our demonstration in section 6.3.

6.1 Data Sources

In this demonstration, we reuse the same dataset, comprising 5,000 commits
from lvgl, which we previously discussed in section 5.2. The dataset was ob-
tained using the software tool’s extractor on Feb 16th, 2024, meaning that the
5000 commits were created between Feb 26th, 2021 and Feb 16th, 2024. Given
that our classifier works with patch information, we removed the commits that
lacked a patch, resulting in a final set of 4,902 commits. The distribution of the
classifications of the commits during this time frame is illustrated in Figure 6.1.

6.2 Configuration

In this section, we will describe the hardware and software configurations we
chose for the demonstration.
In terms of hardware, we utilized an Nvidia 3050 graphics card, which we were
able to control via the usage of the same Docker container running gpu-jupyter
that was previously detailed in subsection 5.1.1.
As part of the software configuration, it was necessary to configure multiple parts.
Firstly, we chose a train-test-split of 85%-15% to split the initial 4,902 commit
dataset into training and testing data. Furthermore, the 85% training data was
divided once again into 80% actual training data and 20% validation data. As a
result, we get a train-validate-test-split of [0.68, 0.17, 0.15]. Secondly, we defined
the following dimensions for our dataset:

45

6. Demonstration

Figure 6.1: Distribution of Classification Labels in lvgl’s 4,902 Commits
(build: 6, chore: 1,002, ci: 123, docs: 495, feat: 1061, fix: 1,880, perf: 49,
refactor: 182, style: 14, test: 90)

• commits/batch_size c = 48

• files f = 3

• chunks ch = 3

• lines l = 5

• words = 48

The value assigned to c refers to the number of data samples processed in each
training iteration and is thus only partly related to the total number of commits.
In addition to defining the dimensions, we also specified the size of the vocabulary,
which we set to 10,000. This value is passed to the TextVectorization layer of
the preprocessors.
Lastly, for this demonstration, we chose a combination of preprocessor 1 (see
paragraph 4.2.2) and the ML model’s configuration 2 (see paragraph 4.2.2).

6.3 Results

6.3.1 Functionality

Firstly, we want to demonstrate the functionality of the software tool. As illus-
trated in Figure 4.1, the first part of the software tool is the extractor. When
examining the extractor’s six steps, we can see the following:

46

6. Demonstration

1. Given the repository url https://github.com/lvgl/lvgl, the first note-
book correctly writes the list of the 5,000 most recent commits to a JSON
file.

2. Following the iteration of each commit in the resulting file and the extrac-
tion of each commit’s url and commit message, the resulting JSON has a
list of commits consisting of url-commit message tuples.

3. In notebook three, the extraction of the tag from the commit message is
executed. All messages that follow the Conventional Commits schema and
contain one of the ten classifications have their classification extracted. All
remaining commits are assigned the temporary classification None.

4. After we manually fixed the remaining None-commits, the dataset includes
5,000 correctly classified commits.

5. In the fifth step, the GitHub API’s response for obtaining the extended
commit information is incorporated into the JSON file. In this notebook,
the extractor furthermore filters out the remaining irrelevant information
such that each commit has an url, a tag, and the file info remaining.

6. Finally, notebook six divides all patch strings into the added and deleted
patches. Additionally, all files that do not contain a patch are removed such
that our final JSON file includes the aforementioned 4,902 entries.

Following the extraction pipeline, the resulting JSON file is then used as input to
the classifier. In the classifier, the list of all the LoCs in our dataset is passed to the
adapt() function of the TextVectorization layer. To validate the correctness
of the vectorized LoCs, we can check the layer’s vocabulary:

[’’, ’[UNK]’, ’0xff ,’, ’0x00 ,’, ’=’, ’*’, ...]

As can be observed, the vocabulary includes the expected words used in the
patches. It is noteworthy that the entry ’[UNK]’ is a token used for all words that
did not fit in the vocabulary. Afterward, the train-test-split function is applied
to divide the 4,902 commits in the dataset into an 85% train and 15% test set.
This can be validated by outputting the shape of the encoded classifications:

• train.shape: (4166, 10)

• test.shape: (736, 10)

Or the shape of the input dataset:

• train.shape: (4166, 3, 3, 5, 48)

• test.shape: (736, 3, 3, 5, 48)

47

6. Demonstration

Furthermore, since none of the shapes provided have the value None, it is safe
to assume that the padding process done in the preprocessing worked. Upon
passing the training dataset to the model’s fit() function, the training process
for the specified (ten) epochs starts and runs as expected. This is illustrated in
6.1. Additionally, it can be observed in the figure that the train-validation-split
also functioned as intended.

6.3.2 Interpretation of Outputs

For the second step in the result analysis, we will examine the predictions made
by the classifier given five different commits. For context, we will provide the
desired one-hot encoded classification:

Table 6.1: Predicted vs. Expected Classification

ID Expected Predicted
1 [0. 0. 0. 0. 0. 1. 0. 0. 0. 0.] [0.00398454 0.2505949 . . . 0.02385394]
2 [0. 0. 0. 0. 1. 0. 0. 0. 0. 0.] [0.00398454 0.2505949 . . . 0.02385394]
3 [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [0.00398454 0.2505949 . . . 0.02385394]
4 [0. 0. 0. 0. 1. 0. 0. 0. 0. 0.] [0.00398454 0.2505949 . . . 0.02385394]
5 [0. 0. 0. 0. 0. 1. 0. 0. 0. 0.] [0.00398454 0.2505949 . . . 0.02385394]

As illustrated in Table 6.1, regardless of the input and its associated classification,
the resulting prediction remains the same:

[0.00398454 0.2505949 0.02729493 0.08908853 0.21754928
0.3074328 0.01806661 0.05411862 0.00801593 0.02385394]

When comparing the probabilities present in the predictions with the distribution
of the dataset’s classifications (see Figure 6.1), it becomes evident what happens.
For instance, calculating the percentage share of commits classified as feat in
the dataset, we receive 1061/4092 = 0.259. This percentage, particularly when
considering that commits are removed at random from the train set during the
train-test-split, is strikingly similar to the second probability of the output. Upon
considering these factors, it becomes evident that the model’s prediction is not
influenced by the input it receives. Instead, it merely returns the distribution
of the classification, converted into their percentage share in the training set.
This implies that the model did not actually learn patterns during training, but
instead attempted to replicate the distribution. This lack of learning can also
already be observed during the training itself, as can be seen in Listing 6.1:

48

6. Demonstration

Listing 6.1: Training History
Epoch 1/10
70/70 [==============================] - 70s 757ms/

step - loss: 9.7805 - accuracy: 0.3830 -
val_loss: 9.7984 - val_accuracy: 0.3921

Epoch 2/10
70/70 [==============================] - 50s 721ms/

step - loss: 9.8972 - accuracy: 0.3860 -
val_loss: 9.7984 - val_accuracy: 0.3921

Epoch 3/10
70/70 [==============================] - 52s 745ms/

step - loss: 9.8972 - accuracy: 0.3860 -
val_loss: 9.7984 - val_accuracy: 0.3921

[...]

Epoch 10/10
70/70 [==============================] - 51s 734ms/

step - loss: 9.8972 - accuracy: 0.3860 -
val_loss: 9.7984 - val_accuracy: 0.3921

After only two epochs, both the loss (distance between expected and predicted
classification) and the accuracy remained unchanged. It appears that the model
identified its optimal configuration at this point and does not surpass this result
in any subsequent configuration.

The results illustrated above remain consistent across the six Preprocessor-ML
model combinations we tested. Moreover, it was even irrelevant if we utilized
a dataset including one programming language or a dataset with multiple lan-
guages. Furthermore, in order to rule out any problems with hyperparameters
such as the learning rate or the batch size, we attempted manual hyperparameter
optimization. However, no amount of tweaking improved the results presented
above.

In conclusion, the extractor is both functional and usable. Conversely, although
the classifier is functional, it is not particularly usable, as it does not meet ex-
pectations.

49

6. Demonstration

50

7 Evaluation

At this point in this thesis, we will revisit the objectives defined in chapter 3 and
assess whether our solution, implementation, and demonstration align with the
defined criteria.

The first objective was to ensure that our set of classifications is easily distin-
guishable and fully present in the majority of openly available git repositories,
while also finding application in practice. In order to do this, we analyzed both
research- and practice-related classification schemas, focusing on those found on
GitHub. We discovered one reoccurring schema that we were able to trace back
to Conventional Commits. Although rarely mentioned in scientific literature, the
fact that it is a well-adapted pseudo-standard for commit messages ensures that
all three subcriteria are met.

=⇒ Criteria 1 is fulfilled.

Secondly, we proposed that the extraction pipeline of our software tool should,
given a repository, obtain a list of commits where each commit is filtered such
that it only contains the information relevant to its classification. Furthermore,
we aimed to include the extraction of the classification tag from the commit mes-
sage in the extractor. To fulfill these criteria, we created five Jupyter Notebooks
that each provide one step in the extraction pipeline. Although some classifica-
tion errors (e.g. misspellings) remain to be fixed manually, the notebooks can be
used seamlessly to achieve the objectives set out at the start.

=⇒ Criteria 2 is fulfilled.

Thirdly, we aimed to develop a classifier that could output probabilities asso-
ciated with the set of classifications. While the classifier ultimately provides the
same prediction regardless of the input, the goal of outputting predictions was
sufficiently achieved.

=⇒ Criteria 3 is fulfilled.

51

7. Evaluation

As our fourth objective, we defined that our classifier should be usable on all
types of repositories. This was demonstrated in chapter 6, where it was shown
that as long as the classifier is provided the required information, it is able to
predict the classifications.

=⇒ Criteria 4 is fulfilled.

The second-to-last criterion was to exclusively utilize data openly available on
GitHub for the training of the classifier. Both prior to and after the decision
to focus on a single programming language, we ensured that only repositories
licensed for full open-source usage were used –in our case those were the Apache-
2.0 and the MIT license.

=⇒ Criteria 5 is fulfilled.

The sixth and final objective we defined was to achieve an accuracy rate of
at least 80 percent. This objective was not achieved. The reason for this can
be attributed to the fact that the classifier did not learn any patterns from the
training data, resulting in a constant prediction.

=⇒ Criteria 6 is not fulfilled.

52

8 Conclusions

In the final chapter, we will present potential explanations for why the classifier’s
ML model did not learn. Furthermore, we will suggest potential solutions to
address the issues we identified. Lastly, we will provide an outlook for future
research and suggest avenues for further improvement of the work we have done.

8.1 Problems and Fixes

Impure Data

The most probable explanation for why the classifier did not learn any patterns
during training is that there were no patterns present in the data. While we
ensured that each commit was classified by one of our classifications, we did not
verify the correctness of this classification for every single commit. Consequently,
human error at the time the commit message was composed may have played
a significant role in the impurity of the dataset. For instance, consider a fix in
the documentation. Conventional Commits states that this change should be
classified as docs. However, a developer may be inclined to label the change
as a fix, thus misclassifying the commit. Another scenario is when a developer
combines multiple minor changes into a single commit. In such cases, no single
classification they can choose is appropriate for the combination of changes. As a
consequence, the developer should have divided those changes into two separate
commits, despite the inconvenience this might cause. In order to address the
problems presented by impure data, we propose one of two solutions: If the
impurity of the dataset is primarily due to incorrect classifications, it should be
sufficient to manually inspect all commits in order to identify and correct these
misclassifications. If, however, a considerable amount of the combined commits
exist, we recommend creating a new dataset that can subsequently be used for
training and validation purposes.

53

8. Conclusions

Preprocessor Level of Abstraction

The second most probable issue that we identified is the level of abstraction
introduced in the preprocessors. Despite trialing three different versions of pre-
processors, none of them appeared to produce an optimal mix between keeping
relevant data and removing unnecessary information. A decent balance between
syntactic and semantic information might probably be provided by a preprocessor
in between preprocessor 2 (see paragraph 4.2.2) and preprocessor 3 (see paragraph
4.2.2) An alternative approach would be to use both entries of the tuple returned
by Pygments’ get_tokens() method. This would enable the ML model to work
with both the token_type for syntactic information and the token_value for
semantic data. Yet another solution might be to use a pre-trained model, such
as CodeBERT (Feng et al., 2020), for the vectorization of the LoCs. Similar to
pre-trained models in NLP like BERT (Devlin et al., 2019) or GPT (Radford and
Narasimhan, 2018), CodeBERT has previously been trained on a large corpus
of relatable data. This allows these models to use transfer learning to better
understand the intricacies in the code, which in turn helps them provide better
encodings for the words.

Model Depth

As previously mentioned in chapter 5, we had to transition to a local develop-
ment environment, limiting both GPU performance and memory when compared
to Google Colab. As a result, we were compelled to reduce the dimensional-
ities of the input data per commit as well as the number of layers in the ML
model. Should future research based on our approach be conducted, we recom-
mend enhancing the computing environment to allow for more input data and
layers.

8.2 Outlook and Future Research

As previously demonstrated, only the added and deleted lines of code we extracted
from the patches were used to classify the commits. However, in addition to these
two features, the extractor also provides more attributes such as the filename
and the commit status. By using the status, for example, it would be possible
to additionally include files that lack a patch but still have the required status
— e.g. when the status is renamed. Furthermore, it would be feasible to use the
filename, or more precisely the file extension, to determine which lexer to
use. If a file, for instance, has the extension .js, the program would know to
use the JavaScript lexer instead of the currently used C Lexer. Similarly, when
encountering a file that ends with .md, it can be determined that the file is a
Markdown file and can therefore be processed using NLP techniques.

54

8. Conclusions

8.3 Summary

To conclude this thesis, it is appropriate to summarize what we achieved in this
thesis:

1. By analyzing various methods used in both academic and practical contexts
to classify commits, we have identified a subset of Conventional Commits
that can be widely utilized.

2. As part of our software tool, we developed an extraction pipeline using
Jupyter Notebooks that extracts all information relevant for the classifica-
tion of a commit and ultimately for the supervised learning of a machine
learning model.

3. A first version of a classifier, including three different preprocessors and two
distinct ML models, was developed using TensorFlow.

4. We identified potential issues that may have caused the ineffectiveness of our
model and presented possible solutions for these. Additionally, we provided
an outlook for future research and strategies to enhance and expand on our
work.

55

8. Conclusions

56

Appendices

57

Appendix A: Tokens in preprocessor 2

A Tokens in preprocessor 2

Listing 1: List of Tokens Utilized in Preprocessor 2
tokens = {

’::’: ’SCOPE ’,
’\\+\\+ ’: ’INCREMENT ’,
’--’: ’DECREMENT ’,
’\\+=’: ’PLUS_EQ ’,
’\\+’: ’PLUS’,
’-=’: ’MINUS_EQ ’,
’-’: ’MINUS’,
’\\(’: ’ROUND_OPEN ’,
’\\)’: ’ROUND_CLOSE ’,
’\\[’: ’SQUARE_OPEN ’,
’\\]’: ’SQUARE_CLOSE ’,
’\\{’: ’CURLY_OPEN ’,
’\\}’: ’CURLY_CLOSE ’,
’\\.’: ’DOT’,
’->’: ’POINTER_SELECTION ’,
’!=’: ’NOT_EQ ’,
’!’: ’LOGIC_NOT ’,
’~=’: ’BIT_NOT_EQ ’,
’~’: ’BIT_NOT ’,
’*=’: ’STAR_EQ ’,
’*’: ’STAR’,
’/=’: ’DIV_EQ ’,
’/’: ’DIV’,
’%=’: ’MOD_EQ ’,
’%’: ’MOD’,
’<<=’: ’LEFT_SHIFT_EQ ’,
’<<’: ’LEFT_SHIFT ’,
’>>=’: ’RIGHT_SHIFT_EQ ’,
’>>’: ’RIGHT_SHIFT ’,
’<=’: ’LESS_EQ ’,
’<’: ’LESS’,
’>=’: ’GREATER_EQ ’,
’>’: ’GREATER ’,
’==’: ’EQUAL ’,
’\\^=’: ’XOR_EQ ’,
’\\^’: ’XOR’,
’&&’: ’AND’,
’&=’: ’BIT_AND_EQ ’,
’&’: ’BIT_AND ’,
’\\|\\| ’: ’OR’,
’\\|=’: ’BIT_OR_EQ ’,
’\\|’: ’BIT_OR ’,
’=’: ’ASSIGN ’,

59

Appendix A: Tokens in preprocessor 2

’,’: ’COMMA’,
’;’: ’SEMICOLON ’

}

60

References

Angular Team. (n.d.). Angular convention [Accessed: 2024-04-04]. https://github.
com/angular/angular/blob/22b96b9/CONTRIBUTING.md#-commit-
message-guidelines

Casalnuovo, C., Suchak, Y., Ray, B., & Rubio-González, C. (2017). Gitcproc:
A tool for processing and classifying github commits. Proceedings of the
26th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 396–399. https://doi.org/10.1145/3092703.3098230

ConventionalCommits.org. (n.d.). Conventional commits [Accessed: 2024-04-03].
https://www.conventionalcommits.org/en/v1.0.0/

De Wilde, M. (2019). Automatic git commit generation and classification for html
based projects.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training
of deep bidirectional transformers for language understanding.

Docker Inc. (n.d.). Docker overview [Accessed: 2024-04-14]. https://docs.docker.
com/get-started/overview/

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B.,
Liu, T., Jiang, D., & Zhou, M. (2020, November). CodeBERT: A pre-
trained model for programming and natural languages. In T. Cohn, Y. He
& Y. Liu (Eds.), Findings of the association for computational linguistics:
Emnlp 2020 (pp. 1536–1547). Association for Computational Linguistics.
https://doi.org/10.18653/v1/2020.findings-emnlp.139

Gaviar, A. (2019). Github’s top 100 most valuable repositories out of 96 million
[Accessed: 2024-04-03]. https://hackernoon.com/githubs-top-100-most-
valuable-repositories-out-of-96-million-bb48caa9eb0b

github. (n.d.). Rulesets-commit-regex [Accessed: 2024-04-15]. https : / / github .
com/github/docs/blob/d8df1ab88f1f61cbb90d55715be2ad43b5892cbd/
data/reusables/repositories/rulesets-commit-regex.md

Google Brain Team. (n.d.-a). Introduction to tensorflow [Accessed: 2024-04-30].
https://www.tensorflow.org/learn

Google Brain Team. (n.d.-b). Tf.keras.layers.textvectorization [Accessed: 2024-
04-11]. https://www.tensorflow.org/api_docs/python/tf/keras/layers/
TextVectorization

61

https://github.com/angular/angular/blob/22b96b9/CONTRIBUTING.md#-commit-message-guidelines
https://github.com/angular/angular/blob/22b96b9/CONTRIBUTING.md#-commit-message-guidelines
https://github.com/angular/angular/blob/22b96b9/CONTRIBUTING.md#-commit-message-guidelines
https://doi.org/10.1145/3092703.3098230
https://www.conventionalcommits.org/en/v1.0.0/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://hackernoon.com/githubs-top-100-most-valuable-repositories-out-of-96-million-bb48caa9eb0b
https://hackernoon.com/githubs-top-100-most-valuable-repositories-out-of-96-million-bb48caa9eb0b
https://github.com/github/docs/blob/d8df1ab88f1f61cbb90d55715be2ad43b5892cbd/data/reusables/repositories/rulesets-commit-regex.md
https://github.com/github/docs/blob/d8df1ab88f1f61cbb90d55715be2ad43b5892cbd/data/reusables/repositories/rulesets-commit-regex.md
https://github.com/github/docs/blob/d8df1ab88f1f61cbb90d55715be2ad43b5892cbd/data/reusables/repositories/rulesets-commit-regex.md
https://www.tensorflow.org/learn
https://www.tensorflow.org/api_docs/python/tf/keras/layers/TextVectorization
https://www.tensorflow.org/api_docs/python/tf/keras/layers/TextVectorization

References

Hattori, L. P., & Lanza, M. (2008). On the nature of commits. 2008 23rd IEEE/ACM
International Conference on Automated Software Engineering - Work-
shops, 63–71. https://doi.org/10.1109/ASEW.2008.4686322

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in
information systems research. MIS Q., 28 (1), 75–105.

Hindle, A., German, D. M., Godfrey, M. W., & Holt, R. C. (2009). Automatic
classication of large changes into maintenance categories. 2009 IEEE 17th
International Conference on Program Comprehension, 30–39. https://doi.
org/10.1109/ICPC.2009.5090025

Hoang, T., Lawall, J., Tian, Y., Oentaryo, R. J., & Lo, D. (2021). Patchnet:
Hierarchical deep learning-based stable patch identification for the linux
kernel. IEEE Transactions on Software Engineering, 47 (11), 2471–2486.
https://doi.org/10.1109/tse.2019.2952614

iot-salzburg. (n.d.). Gpu-jupyter [Accessed: 2024-04-15]. https://github.com/iot-
salzburg/gpu-jupyter

Jupyter Team. (n.d.). Jupyter notebook documentation [Accessed: 2024-04-14].
https://jupyter-notebook.readthedocs.io/en/latest/

Leifer, C. (n.d.). Peewee [Accessed: 2024-04-15]. https://docs.peewee-orm.com/
en/latest/

Levin, S., & Yehudai, A. (2017). Boosting automatic commit classification into
maintenance activities by utilizing source code changes, 97–106. https :
//doi.org/10.1145/3127005.3127016

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Mi-
chael Isard, Jia, Y., Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur,
. . . Xiaoqiang Zheng. (2015). TensorFlow: Large-scale machine learning
on heterogeneous systems [Software available from tensorflow.org]. https:
//www.tensorflow.org/

Meng, N., Jiang, Z., & Zhong, H. (2021). Classifying code commits with convo-
lutional neural networks. 2021 International Joint Conference on Neural
Networks (IJCNN), 1–8. https ://doi .org/10.1109/IJCNN52387.2021.
9533534

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design
science research methodology for information systems research. Journal
of Management Information Systems, 24 (3), 45–77. https://doi.org/10.
2753/MIS0742-1222240302

Radford, A., & Narasimhan, K. (2018). Improving language understanding by
generative pre-training. https : / / api . semanticscholar . org / CorpusID :
49313245

Sarwar, M. U., Zafar, S., Mkaouer, M. W., Walia, G. S., & Malik, M. Z. (2020).
Multi-label classification of commit messages using transfer learning. 2020
IEEE International Symposium on Software Reliability Engineering Work-

62

https://doi.org/10.1109/ASEW.2008.4686322
https://doi.org/10.1109/ICPC.2009.5090025
https://doi.org/10.1109/ICPC.2009.5090025
https://doi.org/10.1109/tse.2019.2952614
https://github.com/iot-salzburg/gpu-jupyter
https://github.com/iot-salzburg/gpu-jupyter
https://jupyter-notebook.readthedocs.io/en/latest/
https://docs.peewee-orm.com/en/latest/
https://docs.peewee-orm.com/en/latest/
https://doi.org/10.1145/3127005.3127016
https://doi.org/10.1145/3127005.3127016
https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.1109/IJCNN52387.2021.9533534
https://doi.org/10.1109/IJCNN52387.2021.9533534
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.2753/MIS0742-1222240302
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245

References

shops (ISSREW), 37–42. https://doi.org/10.1109/ISSREW51248.2020.
00034

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-k., & Woo, W.-c. (2015).
Convolutional lstm network: A machine learning approach for precipita-
tion nowcasting.

Swanson, E. B. (1976). The dimensions of maintenance. Proceedings of the 2nd
international conference on Software engineering, 492–497.

T., T. (2023). 15 most popular github repositories every developer should know
[Accessed: 2024-04-30]. https : / / www . hostinger . com / tutorials /most -
popular-github-repos

Tong, J., Wang, Z., & Rui, X. (2023, August). Boosting commit classification with
contrastive learning. https://doi.org/10.2139/ssrn.4740998

Westlake, R. (2017). Write categorized git commit messages [Accessed: 20124-04-
03]. https://medium.com/@rcwestlake/write- categorized- git- commit-
messages-c9f953ea6040

Ziegelmayer, F. (n.d.). Git commit msg [Accessed: 2024-04-04]. https://karma-
runner.github.io/0.10/dev/git-commit-msg.html

63

https://doi.org/10.1109/ISSREW51248.2020.00034
https://doi.org/10.1109/ISSREW51248.2020.00034
https://www.hostinger.com/tutorials/most-popular-github-repos
https://www.hostinger.com/tutorials/most-popular-github-repos
https://doi.org/10.2139/ssrn.4740998
https://medium.com/@rcwestlake/write-categorized-git-commit-messages-c9f953ea6040
https://medium.com/@rcwestlake/write-categorized-git-commit-messages-c9f953ea6040
https://karma-runner.github.io/0.10/dev/git-commit-msg.html
https://karma-runner.github.io/0.10/dev/git-commit-msg.html

	Introduction
	Problem Identification
	Background
	Machine Learning
	Categorizing Commits

	Objective Definition
	Solution Design
	Classifications
	Classifications in Research
	Classifications in Practice
	Our Classifications

	Software Tool
	Extractor
	Classifier

	Implementation
	Used Tools
	Docker
	Jupyter Notebook/JupyterLab
	peewee
	Google Colab
	Pygments
	TensorFlow

	Used Datasets
	Code Snippets
	Extracting Classification from Commit Message
	Split Patch String
	Integration of peewee
	Label Encoding and One-Hot Encoding
	Tokenize with Lexer
	Train-Test-Split
	Subclassed ML Model
	Train and Evaluate the Model

	Demonstration
	Data Sources
	Configuration
	Results
	Functionality
	Interpretation of Outputs

	Evaluation
	Conclusions
	Problems and Fixes
	Outlook and Future Research
	Summary

	Appendices
	Tokens in preprocessor 2

	References

