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Abstract

This thesis discusses the integration of a log-management and request tracing
system into the JValue microservice application using industry standards and
open source solutions.
For the log-management, Fluent Bit and Data Prepper are used to collect and
aggregate the logs, while OpenSearch is storing them as well as providing the UI
for querying said logs. Through the use of pipelines, the logs are enriched and
then separated by the kind of application they were generated from.
The request tracing is reusing Data Prepper and OpenSearch for aggregation,
storage and UI, but uses OpenTelemetry for trace generation and collection.
OpenTelemetry is injected into the JValue microservices using its zero-code in-
strumentation approach in order to avoid any code modification.
All of these services are deployed to a pre-existing Kubernetes cluster using Helm.
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1 Introduction

In the microservice landscape one big challenge is the lack of observability caused
by the missing debugger. A first step towards improving said observability is the
implementation of a log-management system. A good log-management is neces-
sary in order to effectively discover, analyse and debug issues in a system.
Log-management means the collection and aggregation of logs of all the mi-
croservices and storing them in a centralized location where they can be analysed,
searched and filtered. It also includes a mechanism for log retention.

For the parsing and aggregation of the logs to work as smoothly as possible
without the need to adjust every time a new property is added to the logs,
structured logging is required. Structured logging refers to logs using a structured
format like JSON or XML.

Another big issue, particularly for microservices, is the missing context between
separate log entries, especially across different microservices. For example identi-
fying which logs of all the different microservices are part of the same REST call
triggered by a user. This can be solved by request tracing, which traces a request
by injecting a trace context into all requests.

This thesis will demonstrate a state-of-the-art solution for improving microservice-
based system’s observability by using current industry standards to implement
such a system into the JValue project1.

1.1 JValue

JValue is a project currently being developed by the Professorship of Open-Source
Software of the Friedrich-Alexander-University in Erlangen. The project’s goal
is the implementation of a platform allowing data scientists an easy way to col-
laborate on open data projects.

The system currently consists out of the JValue Hub and a domain-specific lan-
guage called Jayvee. The thesis will focus on the Hub, which consists out of

1https://jvalue.org/
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1. Introduction

the User Interface (UI) and the backend of the project. The Hub is made out
of four microservices, all of them implemented using NodeJS and the NestJS2

framework. The UI is implemented using React, with everything located inside
a monorepo managed using Nx3. All applications are deployed to a Kubernetes
cluster using Helm4.

1.2 Thesis structure

The thesis starts with the short introduction into the JValue project and intro-
duces log-management and request tracing. The second chapter lists all collected
requirements, separated into functional and non-functional. Based upon the re-
quirements, the next chapter contains the literature review done into the subject
matter, focusing onto the selected solutions. The next chapter is dedicated to
the design of the system, with the fifth chapter containing its implementation.
The chapter afterwards contains an evaluation performed with some JValue de-
velopers as well as highlight some issues encountered during the implementation.
The thesis closes with a conclusion containing some suggestions for future devel-
opment.

2https://nestjs.com/
3https://nx.dev/
4https://helm.sh/
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2 Requirements

This chapter lists the requirements for the system implemented over the course of
the thesis. The requirements were created based on a meeting with three JValue
developers. During this meeting the developers were asked nine questions which
were then discussed. Afterwards the requirements were defined. The chapter is
split into functional and non-functional requirements, starting with the functional
ones.

2.1 Functional requirements

In total there are three functional requirements that were extracted from the
meeting.

The first requirement is the implementation of a separate logging library. This
library should be usable by all microservices with minimal code changes and
contain most of the configuration in order to avoid duplicate code. The logs
generated by the logger of the library should contain at least some kind of applic-
ation version along with the standard timestamp, message, logging context and,
in case of error logs, stack trace. Additionally the logs should contain Kubernetes
metadata in case the application is running on a K8s cluster. This metadata has
to contain at least the K8s pod name, namespace, container name, container id,
container version and the K8s cluster node name the pod is running on.

The next requirement is that the system should collect logs not only from the
JValue microservices, but also from Kubernetes system component pods. Kuber-
netes system component pods are pods running system components of Kuber-
netes, for example the Kubernetes scheduler, controller manager and API server.

Lastly a request tracing system should be implemented that can trace requests
through the different JValue microservices. This request tracing should work
without any direct code modifications to the JValue applications and is only
required to trace the edge of the applications. This means that there is no need
to trace request inside the application, just whenever a request reaches or leaves
it. For example all HTTP(S) requests should be traced such that it is possible to

3



2. Requirements

match any incoming request to one microservice to the corresponding outgoing
request of the other microservice.

2.2 Non-Functional requirements

During the meeting three non-functional requirements were discovered alongside
the functional ones.

Starting with the requirement that any system implemented during the thesis
can be hosted on the Kubernetes cluster JValue Hub is running on. Additionally
it should also use Helm for its deployment, same as JValue Hub.

The second requirement is that any implemented system, log-management or
otherwise, has to be Open-Source. Additionally it was decided to avoid (A)GPLv3
where possible, due to uncertainty regarding the license the logs would fall under.

The last requirement is that the implemented system should be accessible via a
single UI. This means that there should be only one UI for both log-management
and request tracing.

4



3 Literature review

This chapter discusses literature relevant for the thesis. It starts with some
information about how logging in Kubernetes works, followed by an overview of
different log-management and request tracing solutions. The main focus however
is on the selected log-management and request tracing solutions.

3.1 Kubernetes Logging

As described in T. K. Authors (2024) Kubernetes differentiates between two types
of logging architectures, node-level logging and cluster-level logging.

The first architecture is built into K8s and describes how each node in a Kuber-
netes cluster manages the logs generated by their pods. In this architecture the
node redirects the stdout and stderr of its pods to a local log file. However that
of course requires that the container of the pods uses the widely adopted log-
ging standard of containerized applications to write to the standard output and
standard error streams (T. K. Authors, 2024). Afterwards the kubelet rotates
the log file and exposes it using the kubectl logs command. Noteworthy is that
the kubelet retains the logs of one previously terminated container, in case its
pod restarts for example. However if a pod gets evicted, all its containers and
logs are evicted as well. This architecture also applies to the Kubernetes system
components that run inside a container. Examples are the Kubernetes scheduler,
controller manager and API server.

The second architecture is not provided by Kubernetes and it involves transmit-
ting the logs to a separate storage in order to allow analysis and querying of long
term logs. However the Kubernetes documentation does suggest four different
possible cluster-level architectures.
The first one uses a node logging agent, which is a separate pod that tails the
log files of the node it is deployed to and transmits them to the logging backend.
Because each agent pod can only read the log files of its own node, it is typically
deployed as a DeamonSet in order to run on all nodes. There are a few advant-
ages to this solution, with the first one being that it only creates one additional
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3. Literature review

pod per node. The second one is that the application pods do not require any
changes for this solution to work and the last one is that the agent works with
all pods whose containers write their logs to the standard output streams.
The second architecture is almost identical to the first one, the only difference is
that the application pod has a second (sidecar) container responsible for stream-
ing the application container logs to stdout/stderr. This allows adding support
for parts of your application that do not write to the output streams, but for
example an internal file. Because this solution is more or less an add-on to the
first one, it shares the same advantages with only a slight drop in performance
caused by the sidecar. Additionally it has the advantage of being able to support
previously mentioned internal log files and similar internal log destinations.
The third architecture uses the sidecar approach of the second architecture to
deploy a logging agent as a sidecar instead of as a DeamonSet. The agent then
reads the logs of the application container and transmits them to the logging
backend. This has the advantage that the agent can be tailored towards the con-
tainer of the pod it is attached to, meaning it can contain custom parsing and
transformation logic. However this approach consumes a lot more resources due
to potentially deploying multiple agents per node. In addition to that, because
the logs only leave the pod via the agent, they are no longer controlled by the
kubelet and thus not readable using kubectl logs.
The last architecture does not use any agents or sidecars, but rather opts for
the application container to transmit its logs directly to the backend. This in-
creases the complexity of the application container and requires changes as well
as restarts if the backend changes. Also because of the increased complexity the
container might require more resources, though this approach does save on pods
and containers.

3.2 Log-management

As detailed in Schmidt et al. (2012), there are advantages and disadvantages to
both buying and building a log-management system. In the case of JValue it was
decided to build our own system using free open-source software solutions. This
section will detail a few of these solutions and select one of them for this project.

3.2.1 Solutions

There are a lot of different log-management solutions available, both proprietary
and open-source. The following will give a rough overview over some of the most
well known ones.

The first and probably most well known one is ELK-Stack1. It is developed
1https://www.elastic.co/elastic-stack/
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3. Literature review

by the company Elastic and was open-source until 2021 (Banon, 2021). ELK
refers to ElasticSearch in combination with Logstash, Beats and Kibana. In
this stack the logs are collected, aggregated and enriched by Logstash and Beats,
while ElasticSearch is responsible for storage and management and Kibana can
be used to explore and query the collected data (B.V., 2024b). ElasticSearch
is built upon Apache Lucene, storing the logs inside Lucene indices for faster
querying (B.V., 2024a).

The second solution is OpenSearch2, which is an open-source (Apache-2.0) fork
of ElasticSearch created by Amazon Web Services (AWS). For log collection and
aggregation as well as UI, there are a few option that can be used. Typically
used, including in the documentation, are Fluent Bit, Data Prepper and
OpenSearch Dashboards. The first two are for collection, aggregation and
enriching while OpenSearch Dashboards is an open-source fork of Kibana.

Grafana Loki3 is a newer log management solution developed by Grafana and
is open-source under AGPLv3. Loki is typically used with Promtail, a custom
log collector developed specifically for Loki, and Grafana as its UI. As described
in Labs (2024b), unlike the previous two solutions, Loki does not index its logs,
but groups them into streams which are indexed with labels.

The third solution is proprietary and provided by the company Sumo Logic4.
Due to its closed source nature, not much is known about its technical details,
but it provides detailed log monitoring and analysis for cloud based applications
supporting a wide variety of collectors.

The last solution is Graylog Open5 which is also a proprietary product. It
contains a UI and collector sidecars in addition to the main backend, as well as
a few more "Content packs" that provide additional optional functionalities.

From the solutions, OpenSearch was selected due to the requirements, mainly
that it is the only one with a non (A)GPLv3 open-source license. The following
section contains some literature review about OpenSearch and its architecture.

3.2.2 OpenSearch

Starting with OpenSearch, the most important information concerning its log-
ging architecture is how it stores its logs.
Generally speaking, when installing OpenSearch an OpenSearch cluster is cre-
ated. As described in contributors (2024d), cluster consists out of at last one

2https://opensearch.org/
3https://grafana.com/oss/loki/
4https://www.sumologic.com/solutions/log-management/
5https://graylog.org/products/source-available/
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OpenSearch node in its single-node configuration and multiple in its standard
configuration. OpenSearch stores the logs inside OpenSearch indices, which
are split over a configurable number of shards upon their creation. Each of these
shards holds a subset of the documents of the OpenSearch index. This results
into a basic architecture as shown in the following figure.

Figure 3.1: OpenSearch basic index architecture

Nodes
Concerning nodes, each node can be configured with one or more types that
describes what kind of tasks that node will handle. Possible node types, as listed
in contributors (2024a), are:

• cluster-manager: Manages cluster and its state. This includes creation
of new indices, tracking the nodes of the cluster and their health as well as
allocating shards to nodes.

• cluster-manager-eligible: Marks node as possible cluster manager, elec-
ted through voting process.

• data: Worker nodes storing and searching data. They handle all data
related operations like indexing, searching and aggregating on their local
shards. Due to this they require more disk space.

• ingest: Node that pre-processes data before ingestion into cluster by run-
ning the data through a pipeline.

8



3. Literature review

• coordinating: Responsible for delegating client requests to the data nodes
as well as aggregating the results into a combined response for the client.

• dynamic: Node assigned for specific custom work like Machine Learning
(ML) in order to avoid taking resources from the data nodes.

• search: Responsible for providing access to searchable snapshots. Search-
able snapshots are snapshots stored remotely (for example in AWS S36)
that can be queried despite the data not being stored in cluster storage.

By default each node is assigned to be cluster-manager-eligible, data, ingest and
coordinating.

Shards
The first thing to note about shards is that, despite being part of an OpenSearch
index, each shard is a fully functional Apache Lucene index on its own. Addition-
ally shards can be categorized as either a primary or replica shard. The former
one are the main shards storing the logs and other data. Replica shards contain
the same data as their primary counterpart and are used to also improve the
speed of search request but mainly for backups in case of node failure. Because
of this replica shards are located to a different node than their primary shard.
They can also be configured separately with the default being one replica for
each primary shard. If, for example, an index is created with 3 shards and 1
replica shard for each primary it will result into 6 shards in total. Concerning
how many shards an index should be split into, it has to be noted that more is
not necessarily better in this case. This is due to, as mentioned, each shard being
an Apache Lucene index which consumes CPU and memory and thus straining
the cluster. A good measure is to split the index based on the estimated size
with the suggestion of trying to get each shard to store 10-50GB (contributors,
2024d).

Features
As listed in contributors (2024c), OpenSearch offers a variety of features, some
part of the core installation and some via optional plugins. One core feature is the
ability to create Index- and Component-Templates. With these it is possible
to configure indices even before their creation. Index templates, for example,
allow the configuration of the number of primary and replica shards, as well as
describing the properties, and their types, of the expected log data. Component
templates can be used to share configurations between multiple index templates.
Another core feature is the possibility to create so-called Tenants which are more
or less like user groups. They restrict what indices and other data a user can see
and access.
The third core feature are the Index State Management (ISM) Policies.

6https://aws.amazon.com/s3/
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This feature allows the description of the life cycle of indices, which can involve
increasing or decreasing the number of replicas up to deleting them outright.

Feature provided via plugins are, for example, an ML powered search as well as
anomaly detection and most importantly support for request tracing.

3.2.3 Data Prepper

Data Prepper is a server-side data collector capable of filtering, enriching, trans-
forming, normalizing, and aggregating data for downstream analytics and visu-
alization(contributors, 2024b). It is commonly used for trace and log analytics
and operates using pipelines. Each Data Prepper instance can run one or more
pipelines simultaneously.

As detailed in contributors (2024b), a pipeline consists out of two required and
two optional components, as well as an optional conditional routing, all chained
as displayed in 3.2. The first component is the Source, which is the input of
a pipeline with each pipeline having exactly one. There are multiple different
kind of sources supported, like a more generic one consuming HTTP(S) requests,
as well as sources for Kafka event queues, AWS S3 or OpenTelemetry (OTEL).
Each of these source types has its own configuration as required by the underlying
application providing the input event.
The second component is an optional one, called Buffer. It buffers the event
received by the source until it is piped into the sink. There are two supported
types of buffers, in-memory or disk based. If no buffer is specified, Data Prepper
uses the default in-memory bounded_blocking buffer.
The next component is the optional Processor responsible for filtering, trans-
forming and enriching the event. In case no processor is defined, the event will
simply be passed to the sink unmodified. However it is also possible to define
more than one processor, in which case the processors are executed in the order
they are defined in the pipeline configuration, allowing for advanced processor
chaining. Common processors are, for example, parse_json for parsing JSON in-
side the event, rename_keys for renaming keys inside the event, add_entries for
enriching the data or drop_events which allows dropping events if a certain ex-
pression of the built-in expression syntax evaluates to true.
The last component is the Sink which defines the output where Data Prepper
should send the event that ran through this pipeline. Similar to the source there
are different kind of sinks, for example to write to OpenSearch, AWS S3 or even
another Data Prepper pipeline. A pipeline can have more than one sink to send
the event to. This is where the conditional routing comes into play. It allows se-
lecting one or more sinks based on the current event content using the expression
syntax. It also allows specifying a default route to which the event will be sent
in case no route could be determined.

10
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Figure 3.2: Data Prepper pipeline definition

3.2.4 Fluent Bit

Fluent Bit7 is an open-source Telemetry Agent for logs, metrics and traces made
with a focus on lightweight and fast performance. It is capable of collecting data
from all major operating systems like Windows, Linux and macOS, as well as
complex cloud infrastructure like Kubernetes. Because of this it is supported by
a wide variety of telemetry ecosystems such as, for example, Prometheus8. Like
3.2.3, Fluent Bit also works using pipelines which are composed of the following
components, allowing to parse and filter incoming events (In the concept of Fluent
Bit, filtering means alter, enrich or dropping events). A typical Fluent Bit pipeline
is structured as described in the following paragraph as well as F. B. Authors
(2024a) and visualized in 3.3.

The first component is the Input component which is responsible for gather-
ing the data from the corresponding source. Unlike the Data Prepper, a Fluent
Bit pipeline can have multiple inputs. Examples of available inputs are tail
which is used to tail a (log) file, systemd which collects data from Linux systemd,
kubernetes_events collecting Kubernetes (K8s) events or kafka listening to a Kafka
event queue.
The second component is the Parser, which is optional. This component is used
to convert the incoming events from unstructured to structured data. Available
parsers are, for example, json which parses the incoming JSON and regex which
allows the parsing of the incoming data using a regular expression (regex).
After this comes the most important component, the Filter. It is responsible for
altering the event data before sending them to the output. Similar to the Data
Prepper Processor, it is possible to specify multiple filters which are then ex-
ecuted in the order of definition inside the pipeline configuration. Possible filters
are, for example, kubernetes which enriches the event with K8s metadata from
the configured cluster, modify which allows the modification of certain properties
of an event and nest allowing flattening and nesting of properties. Another note-

7https://fluentbit.io/
8https://prometheus.io/
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worthy filter is the lua filter which allows the developer to specify a custom Lua
script that is used to alter the event.
The next component is the Buffer component which offers in-memory or disk
based buffering like the Data Prepper Buffer. It has to be noted that in case
of Fluent Bit, the events are not stored in plain text during the buffering, but
rather Fluent Bit’s internal binary representation (F. B. Authors, 2024b).
Last comes the Output describing the destination where Fluent Bit is supposed
to send the final event. Similar to Data Prepper, Fluent Bit also offers to de-
scribe multiple outputs, as well as a routing. The difference is that the Fluent
Bit routing is a lot simpler, operating on tags which are assigned by the Input
component and a corresponding match on the output. These matches only sup-
ports regex and wildcards for the tags. Fluent Bit offers a vast number of possible
outputs, amongst them are cloudwatch_logs (AWS CloudWatch), s3 (AWS S3), es
(ElasticSearch), loki, opensearch as well as more generic ones like http and kafka.

Figure 3.3: Fluent Bit pipeline definition

3.3 Request tracing

There are various different kinds of request tracing, also called observability,
solutions. They could be split into two broad categories: Application based
and Network based. The first category uses a language specific SDK to create
code that generates traces. This is often paired with offering implementations
for popular packages and using code injection to enable them. Solutions of this
category sometimes require code changes or at least some kind of instrumentation
code that enables the offered implementations. However because of this they have
the advantage of being able to trace application internal requests. A solution
belonging to this category is, for example, OTEL.
The other category does not modify an application’s code and is often installed
by a system administrator rather than a developer. Solutions of this category can
only trace external requests by injecting a requestId into the requests and listening
to the traffic entering and leaving all applications. This has the advantage that
they are independent of the applications and their programming languages, but
can not trace what happens inside these applications as well as can only trace
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the type of request transportation they were designed to handle (for example
HTTP). An example for this kind of request tracing would be the HTTP request
tracing offered by Istio (T. I. Authors, 2024).

3.3.1 Solutions

As mentioned there are a lot of providers offering different kinds of request tracing
solutions, however in the scope of this thesis the focus will be on the application
based ones.

One of the most well known request tracing solutions is OTEL9, which was
briefly mentioned above. It is an open-source observability framework and toolkit
designed to create and manage telemetry data such as traces, metrics, and logs (O.
Authors, 2024d). This means that it focuses on trace generation using its SDKs
and does not offer any storage or visualization options. However it can be used
with a wide variety of observability backends due to its widely supported open-
source OpenTelemetry Protocol (OTLP). Additionally the OTEL SDKs provide
implementations for most of the popular packages of each language that handle,
for example, HTTP(S) requests. It sometimes even provides implementations
for popular frameworks like NestJS for its Javascript SDK. The OTEL SDKs
are even capable of collecting environment specific metadata and adding them to
their traces, for example enriching them with Docker container metadata in case
the application is dockerized.

Another solution is Zipkin10, licensed under the open-source Apache-2.0 license.
Unlike OTEL, Zipkin provides not only a trace generation SDK, but also an
observability backend and UI (Z. Authors, 2024a). Like the first solution, Zipkins
protocol is supported by a wide variety of other observability backends meaning
that using its own is not required. That is not the only similarity, Zipkin also
offers SDKs for a number of programming languages with support for various
transport modes like HTTP and Kafka, as well as many frameworks. However
unlike OTEL, it currently does not support NestJS, only cujoJS, express and
restify(Z. Authors, 2024b).

The third solution is the Apache-2.0 open-source Jaeger11, with its document-
ation distributed under CC-BY-4.0. As detailed in T. J. Authors (2024), Jae-
ger is a distributed tracing platform offering an observability backend and UI.
Its SDKs however are currently being deprecated in favour of using the OTEL
provided ones. Before that it also had SDKs for the most popular programming
languages, but that is now outdated due to the deprecation.

9https://opentelemetry.io/
10https://zipkin.io/
11https://www.jaegertracing.io/
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Lastly, for completion’s sake, there is also Grafana Tempo12, which uses the
same AGPLv3 license as the other Grafana products mentioned in this thesis.
However this solution does not provide any trace generator but rather functions
purely as a tracing backend. This means that it requires one of the above-
mentioned solutions to provide the traces (Labs, 2024c) as well as a UI. In
addition to that it is also recommended to use an external object storage like
AWS S3, although it does support local storage (Labs, 2024a). However it has
excellent integration with the other Grafana products.

For this thesis OTEL was selected due to its focus on trace generation and its
well documented integration into the OpenSearch log-management system. This
enables fulfilling the requirement of only one UI for both log-management and
request tracing. Additionally it offers SDKs for most popular programming lan-
guages and was chosen over Zipkin due to it supporting a larger number of Javas-
cript packages including NestJS. Aside from that OTEL has become the go-to
solution to the point that it is supported by most request tracing systems and
Jaeger even having deprecated its own SDKs in favour of OTEL.

3.3.2 OpenTelemetry

OpenTelemetry consists out of several major components as described in O. Au-
thors (2024b), with the Instrumentation and the Collector being the com-
ponents that have to be installed.
The instrumentation is used to instrument the code such that it generates traces.
In case of OTEL there are a few different approaches available. The first one is
to instrument your application manually using the SDK. This is also called code-
based instrumentation (O. Authors, 2024c). In this case the developers directly
write code that creates and sends traces, offering a lot of control over the trace
generation.
The second approach is the so called zero-code instrumentation (also called auto-
instrumentation and automatic instrumentation). Using this approach an official
instrumentation script is injected using language specific code injection, which
instruments the application using the provided instrumentations of supported
libraries. In case of NodeJS the require flag is used, which preloads the instru-
mentation script before the application and thus modifies the libraries with their
instrumented implementations (N. Contributers, 2024a). However when using
this approach only the edges of the application are instrumented, due to the auto-
matic instrumentation not being able to know where to generate traces inside the
application specific code. Nevertheless this makes the second approach perfect for
starting with instrumentation or in case it is not possible, or wanted, to modify
the application with explicit trace generation. Additionally it is also possible to
write a custom instrumentation script and use this for the auto-instrumentation,

12https://grafana.com/oss/tempo/
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allowing some customisation. However a lot can also be configured using environ-
ment variables, though that depends on the auto-instrumentation library of the
corresponding language, with for example NodeJS only supporting trace but not
log and metrics configuration.
In both of these approaches it is possible configure the provided library instru-
mentations, as well as various other things, like the resource detectors. These
are used to detect resources from the environment the application is running in.
This includes environment variables, Docker metadata but also special resources
in case the application is running in a cloud like AWS. Aside from that it is also
possible to chose between using HTTP(S) or gRPC as the underlying transport
protocol for OTLP(O. Authors, 2024c).

The other component, the collector as described in O. Authors (2024a), is used
to collect the traces of the application and send them to the configured observab-
ility backend. Strictly speaking it is not necessary to use a collector, due to the
instrumentations being able to send the data directly to most types of backends.
However, as mentioned in O. Authors (2024a), it is recommended to use a col-
lector in order to offload the data as quickly as possible from the application.
The collector will then take care of handling retries, encryption and other such
tasks.
If a collector is used, it can be deployed in two different ways. The first option
is to deploy it as an agent, meaning that the collector will run on the same host
as an application, or another collector instance, which transmits the traces to
the collector. This pattern is very easy to configure and assigns a collector to
each trace generating application. However that also makes it very hard to scale,
should the host have too many trace generating applications that overwhelm the
collector.
The other pattern is to deploy the collector as a gateway. In this case all ap-
plications would send their telemetry data to a load balancer which balances the
load upon a set of collectors responsible for sending the data to the backend.
This option has the advantages of separating the collector from the applications
host and having a centralized location where all collectors are running (rather
than one collector per application host). However this separation does introduce
latency and causes a higher resource cost.
The structure of the collector configuration is similar to the previously shown
Fluent Bit or Data Prepper configurations. It too uses a pipeline consisting out
of three parts, albeit the parts are a bit simpler. The first part is the Receiver
which configures where the telemetry data is coming from. Typically this is the
OTLP protocol using HTTP and/or gRPC. However there are also other receiv-
ers like jaeger, kafka and zipkin.
The next part is the Processor which can transform the telemetry data. This
part is optional, although, as described in O. Contributers (2024b), some are
recommended, like the batch processor for batching.
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The third part is the Exporter which configures the endpoint to where the
collector should send the telemetry data. Supported are, for example, file for
writing to a file, otlp/jaeger for sending to a Jaeger backend, zipkin for Zipkin
backend or otlp for sending to a specified endpoint via OTLP.
Lastly it is also possible to chain pipelines via Connectors which are specified
as the exporter of one pipeline and the receiver of another pipeline. These con-
nectors can be used to summarize, replicate or route telemetry data.
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This chapter details the design of the structured logging implementation, as well
as the deployment of the OpenSearch log-management system and OpenTele-
metry request tracing. As mentioned previously, both OpenSearch and Open-
Telemetry are to be deployed to a Kubernetes cluster using Helm.

4.1 Structured logging

The structured logging is implemented in a separate library inside the existing
JValue Hub monorepo. This library contains a single function to create a new
logger with a basic configuration. Using the configuration, the logger’s log level
can be configured with info, warn, error and debug as the possible log levels.
Additionally it is also possible to en- or disable structured logging with the con-
figuration. If the option is enabled, the logger will write all logs as JSONs instead
of raw strings. The other possible configuration options most logger libraries of-
fer, like configuring the output type and location of the logs as well as their
properties and its format, are hardcoded. In this case the logger writes all logs
to the console meaning stdout and stderr depending on the log level. The library
also contains a log formatter that includes a timestamp, log level, log context,
as well as the message and, in case of errors, the stack. However due to JValue
using an Nx monorepo, the application version could not be used. This is because
Nx can not support different versions for each project in the monorepo, only one
global version, as discussed in N. Contributers (2024b). Because of that, and the
commitment to always deploy the different microservices with an explicit version,
it was determined that the Docker image version would suffice as an alternative.
The Docker image version is injected by the Fluent Bit kubernetes filter.
The logger of this library is then integrated into the JValue NestJS applications
using either the NestJS logger configuration property of NestFactory.create or
the app.useLogger function.
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4.2 Log-management

The basic architecture of the log management system is displayed in 4.1. In the
following additional design choices for each component of the log-management
system are described.

Figure 4.1: Log-management basic architecture

4.2.1 OpenSearch

The OpenSearch cluster is deployed in its single-node configuration. This was
chosen due to the JValue project being fairly small with resources being a larger
issue at the time than the potential performance issues caused by having only a
single node.
The cluster is preconfigured with a custom admin and a data-prepper user, with
the latter being used by the Data Prepper for log transmission. Additionally the
cluster is configured to use SSL for communicating with both the Data Prepper
and its UI. Lastly the UI does not have any Ingress1 configured and thus can
only be accessed using port-forwarding. This was chosen in order to prevent leak-
ing any log data due to the data now only being reachable from the university
network.
Concerning the index architecture it was decided to split the logs into four in-
dices. The first one is the jvalue-application index. This index is the main index
that contains the logs of all the JValue microservices.
The next index is the postgres-operator which is the destination for all logs cre-
ated by the different postgres databases running on the K8s cluster that were
created by the Postgres Operator2. This index is for easily debugging the data-
bases and is separated from the first index due to the databases being viewed as
a service that is used by the JValue application rather than an application of it.
The third index is the longhorn index, storing the logs of all the different Long-
horn3 services running in the cluster. This index was created due to Longhorn

1https://kubernetes.io/docs/concepts/services-networking/ingress/
2https://github.com/zalando/postgres-operator
3https://longhorn.io/
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being a large source of potential issues and, similar to the databases, being viewed
as an external infrastructure related service.
The last index is the default index called kubernetes_cluster. This index contains
all the collected logs that do not belong into any of the previously mentioned in-
dices, including, for example, Ingress or Kubernetes system logs.

4.2.2 Data Prepper

The Data Prepper is deployed with only a single instance, receiving the data from
all Fluent Bit instances. This was chosen to simplify the deployment. Addition-
ally in case a single instance does no longer suffice in the future, it is possible to
simply deploy more instances with a LoadBalancer configured between them and
Fluent Bit.
The pipeline configuration of the Data Prepper consists out of five pipelines. The
first pipeline is the entry-pipeline which receives all the logs via HTTP and then
uses routing to forward each log to one of the other four pipelines, depending on
where the log originated from as described in 4.2. The main pipeline, for parsing
the logs of the different JValue applications, receives the data from the entry
pipeline and then processes them using the parse_json processor. This processor
is used due to the structured logging that the microservices use, as described in
4.1. After the processing is done, the pipeline sends the data to the corresponding
OpenSearch index (4.3).

Figure 4.2: Data Prepper log entry pipeline

Figure 4.3: Data Prepper JValue log pipeline
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The other pipelines also simply parse the logs using a corresponding processor
and send their data to the corresponding OpenSearch index. Diagrams for them
can be found in the appendix A.

4.2.3 Fluent Bit

Fluent Bit collects the logs with a pipeline consisting out of two inputs (4.4). The
first input is the tail input that tails a log file, with the second collecting its data
from Linux systemd. The reason for the systemd input is that the containers are
running inside a Linux environment and thus certain system logs are written to
systemd. Afterwards the collected logs are enriched with Kubernetes metadata
using the correspondingly named filter. At the end the logs are sent to the Data
Prepper using the http output. Fluent Bit is not configured to encrypt its data to
the Data Prepper in order to quickly offload its logs. The encryption will happen
between Data Prepper and OpenSearch.

Figure 4.4: Fluent Bit log pipeline

4.3 Request tracing

For the request tracing the basic architecture as described in 4.5 was chosen.
The following subsections describe in more detail the design decisions for each
component.
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Figure 4.5: Request tracing basic architecture

4.3.1 OpenTelemetry

The OTEL collector is deployed using the agent pattern, which was chosen due
the four JValue applications being the only ones where tracing is wanted and this
approach allows the fast offloading of traces.

For the instrumentation itself, the zero-code instrumentation approach was chosen,
mainly due to the trace generation of the auto-instrumentation library sufficing
for the scope of this thesis.

4.3.2 Data Prepper

In the scope of request tracing the Data Prepper configuration is extended by
three additional pipelines. The first pipeline is the otel-trace-pipeline which con-
tains the otel_trace_source listening to OTEL traces (4.6). This pipeline then
sends the data to the other two pipelines.
One of these pipelines is the raw-pipeline which uses the otel_trace_raw and
otel_trace_group processors to parse the traces and enrich them with additional
data from the metadata already stored in OpenSearch(4.7). After the enrichment
the pipeline sends the traces to the OpenSearch index for raw trace data that is
created by the observability plugin.
The other pipeline is the service-map-pipeline which is responsible for extracting
the necessary data from the traces to create OpenSearch’s service map visualiza-
tion (4.8). This is done using the service_map_stateful processor and transmitting
the data to the corresponding index created by the observability plugin.
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Figure 4.6: Data Prepper OTEL entry pipeline

Figure 4.7: Data Prepper OTEL raw pipeline

Figure 4.8: Data Prepper OTEL service pipeline
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This chapter details the implementation and deployment of the log-management
and request tracing systems. It has to be noted that during the implementa-
tion some issues were encountered that forced some changes to the architecture
described in the previous chapter.

5.1 Structured logging

The structured logging library was implemented using the Winston1 library.
This library was chosen due to their large feature set and support of Javascript
and Typescript in general but also NestJS specifically.

The library was created in the libs subdirectory and called nestjs-shared due to
the intention of later including other functionality that all NestJS applications
require that are not JValue domain specific.
The exported main function has an optional LoggerOptions input that defines
whether debug logging and/or structured logging as JSON should be enabled.
The default value is false for both due to structured logging mainly being used
when running in K8s. The function then returns a Winston Logger instance
configured with a log level based on the debug flag and a format constructed
using the provided format.timestamp(), format.errors() and either format.json()
or format.colorize() in combination with a custom formatter, depending on

whether structured logging is enabled or not. The custom formatter has the
following simple structure.

1 let formattedMessage = ‘${timestamp} [${context }] ${level}: ${
message}‘;

2 if (stack !== undefined) {
3 formattedMessage += ‘ - ${stack.toString ()}‘;
4 }

1https://www.npmjs.com/package/winston

23



5. Implementation

The main function is then used during the NestJS initialization of each JValue
application. The created Winston logger is then wrapped using the Winston-
Module2 and passed to the logger configuration property of NestFactory.create.
The configuration of whether structured logging should be enabled is done via
an environment variable called LOG_AS_JSON.

5.2 Log-management

For the log-management, OpenSearch Kubernetes Operator 3 is used to deploy
OpenSearch. However this operator does not support deployment of a single-node
cluster and thus the standard multi-node configuration is used. The following
diagram shows the basic Kubernetes pod architecture of the log management
system.

Figure 5.1: Log-management K8s pod architecture

5.2.1 OpenSearch

As mentioned above, the OpenSearch cluster is installed using the OpenSearch
Kubernetes Operator. The operator itself is installed via its Helm Chart4 without
any changes to the default configuration.
The OpenSearch cluster is then installed using the OpenSearchCluster Custom
Resource Definition (CRD) of the operator. As mentioned this CRD does not

2https://www.npmjs.com/package/nest-winston
3https://github.com/opensearch-project/opensearch-k8s-operator
4https://github.com/opensearch-project/opensearch-k8s-operator/tree/main/charts/opensearch-

operator
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support the single-node deployment and requires at least three cluster_manager
nodes to run. All of these OpenSearch nodes have both the cluster_manager as
well as the data role. Additionally they are configured to use the already present
Longhorn StorageClass using a configurable disk size. Lastly the operator installs
all available plugins, for both the cluster and the Dashboards, by default. This
includes the opensearch-observability and dashboards-observability which are re-
quired for request tracing.
For the creation of the two initial users a few concessions had to be made. The
operator offers two different approaches on how to create users. The first one is
to define them inside the securityConfigSecret where it is also possible to define
roles, tenants and basic configuration. While this allows for some more flexibility,
it does however require the security config to contain the password hash of each
user.
The other approach is to use the OpensearchUser CRD. In this approach the pass-
word is retrieved from the specified K8s secret. Unfortunately these approaches
cannot be used at the same time and creating a custom admin user is only sup-
ported by using the security config, which is also why this approach was chosen.
The issue with the password hashes was solved by adding a values.secret.yaml
Helm values file. This values file contains the hashes and is specified inside the
.gitignore to prevent accidental publishing. Another, albeit smaller issue, with
this approach is that the security config requires a certain minimal configuration
for each of the configurations during the initial deployment. At the same time
some of these configurations, like tenants, can be edited via the UI and would be
override by the minimal config in case the chart gets updated. Because of this
a separate step is necessary during deployment that redeploys the chart without
the minimal config to allow the editing via the UI. For both the admin and
data prepper user there is also a secret containing the username and password.
These secrets are used by the OpenSearch Dashboards and the Data Prepper re-
spectively to access the cluster. Aside from specifying this secret, the only other
configuration made to the UI is enabling TLS with auto generated certificates.

Other CRDs provided by the operator are OpensearchIndexTemplate and Opensearch-
ComponentTemplate. With these it is possible to create Index- and Component-
Templates as they are described in 3.2.2. However shortly after starting the im-
plementation of these templates using the CRDs, they were no longer available.
The reason for that was that the company originally developing the operator,
Opster, was bought by Elastic in late November 2023(Elastic, 2024). The oper-
ator was forked into a repository under the opensearch-project group, however in
the process a few things broke, amongst them these two CRDs.
Due to this the index and component templates were refactored into JSON files
that are manually deployed after the cluster creation using a custom bash script.
This bash script collects all the index and component templates from their re-
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spective directories and deploys them by using curl5 to execute a REST API
call to the clusters index template API. This request uses the JSON file con-
tent as the request body and the name of the file as the name of the tem-
plate. This results into the following command for a file called example-index-
template.json: curl -s -k -u "$user"-H "Content-Type: application/json"-X PUT
https://localhost:$port/_index_template/example-index-template -d "$template_json
". The $user and $port are required inputs of the script and $template_json is the
content of the JSON file. The inputs are passed to the script using the -u and -p
flags resulting into the following command for executing the script opensearch-
templates.sh -p <LOCAL_PORT> -u "<OPENSEARCH_ADMIN_USER>:<OPENSEARCH_ADMIN_PASSWORD
>". The reason for using localhost as the endpoint of the cluster is that the cluster
can only be reached using port-forwarding. This means that a port-forwarding
has to be started prior to executing this script, although it does not matter which
OpenSearch cluster node is being used. The complete code of the bash script can
be found in B with the directory structure being detailed in C.
Currently there are four index templates, one for each index mentioned in the
previous chapter, and four component templates. The first component template
contains a default shard and replica count configuration and the second one com-
mon properties expected by all logs, namely logLevel and timestamp. The other
two templates are for Fluent Bit properties with the first one containing common
properties of Fluent Bit, like date, time, log and stream. The second one describes
some of the properties the kubernetes filter injects, for example container_name,
container_image, namespace_name, pod_name and labels.
The index template for the jvalue-application index uses all of these four compon-
ent templates and adds the message, context, traceId, spanId as well as traceFlags
properties.
The second index template, for the longhorn index, also uses the four component
templates and specifies message, backup, controller, error and node as properties.
The template for the postgres-operator index only uses all of the component tem-
plates, without any additional properties being specified.
The last index template is for the default index and because of that it does not
use the component template specifying common properties due to the unknown
structure and content of the logs in this index.
All of the above index templates also specify a corresponding index pattern which
defines to which index this template is to be applied to. Additionally they also
contain an alias for their index, which is a virtual index than can point to another
index. This is useful in case the logs are spread over multiple indices, for example
one index for each month. Using an alias allows querying the alias instead of the
index and thus only requiring to move the alias to the newest month instead of
adjusting the query.

5https://curl.se/
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5.2.2 Data Prepper

The Data Prepper is deployed using a custom Helm chart that uses the
opensearchproject/data-prepper:latest Docker image. Originally it was planned
to add support for deploying the Data Prepper to the OpenSearch Operator,
however due to the aforementioned repository migration it is unknown where
that is still planned or when it is implemented. In this Helm chart the image
is deployed as a Deployment with Services for the pipeline inputs. The pipeline
configuration is done via a ConfigMap that contains the pipeline definitions. This
ConfigMap, along with the certificate for connecting to OpenSearch, are mounted
via volume mounts.
The log pipelines are implemented as described in the previous chapter. However
two adjustments have been made, one to the default pipeline and one to the
jvalue-application pipeline. For the default pipeline the drop_events processor
was added which simply drops all log events of this pipeline. This was added to
conserve storage space due to the limited amount of disk space available to the
Kubernetes cluster.

Figure 5.2: Data Prepper default log pipeline (adjusted)

In case of the jvalue-application pipeline a second processor of type rename_keys
was added. This processor renames the properties level, trace_id, span_id and
trace_flags to logLevel, traceId, spanId and traceFlags. The rename of level is
purely for consistency as all the other services call the property logLevel. The
other renames are necessary due to the OTEL instrumentation of Winston, which
injects the trace properties into the logs, using snake case, while OpenSearch
expects them in camel case.

Figure 5.3: Data Prepper JValue log pipeline (adjusted)

Lastly for all of the four pipelines sending data to OpenSearch, the index used
is suffixed with the current year and month. Because the opensearch sink auto-
matically creates indices if they do not yet exist, the logs for each month are
separated from each other. This was chosen to simplify the deletion of older logs
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and to prevent indices from growing too large. The time period of one month was
decided due to the lack of time to experiment how much data is being generated
in what time frame and is thus only an initial suggestion.

5.2.3 Fluent Bit

For the installation of the Fluent Bit collector the official Helm chart6 is used.
This chart already has the two inputs of the previous chapter preconfigured, as
well as the Kubernetes filter. However this filter was overwritten in order to
disable including annotations. The reason for that is an issue encountered for the
labels that also applies to the annotations. This issue had to be fixed manually
and fixing it for annotations was not deemed worth the effort. The issue is that
OpenSearch interprets a dot inside a property name as a nested object, meaning,
for example, the label app.kubernetes.io is interpreted as the object app containing
the object kubernetes with the property io. That in itself is not an issue, however
the JValue deployments also have the label app. Because of this OpenSearch
cannot determine the type of app due to finding both an object and a string with
this name.
This resulted into the fix shown in 5.4. Summarized the fix uses five additional
filters which first un-nest the labels object, then replaces the dot in some known
and wanted labels with an underscore, deleting the rest, and lastly nests the
renamed properties again. This un-nesting and nesting is necessary due to Fluent
Bit being unable to directly rename nested keys. At the end the HTTP output is
added which is configured to send the data to the Data Prepper Service for the
logs mentioned in previous subsection.

Figure 5.4: Fluent Bit log pipeline (adjusted)

5.3 Request tracing

There also were a few adjustments that had to be made to the request tracing
part of the architecture. These were also caused due to the usage of an oper-
ator, namely the OpenTelemetry Operator 7, and are highlighted in the following
subsections with the diagram displaying the adjusted architecture being located
below.

6https://github.com/fluent/helm-charts/tree/main/charts/fluent-bit
7https://github.com/open-telemetry/opentelemetry-collector

28



5. Implementation

Figure 5.5: Request tracing K8s pod architecture (Operator revised)

5.3.1 OpenTelemetry

OpenTelemetry offers an operator for deploying the collector as well as the in-
strumentations. This operator also has a Helm chart8 for its deployment.
The OTEL collector is deployed using the operators OpenTelemetryCollector
CRD. It is configured to use the Sidecar deployment type to fit the design dis-
cussed prior. This approach also requires less configuration due to the collector
being reachable using localhost which is the default endpoint of the instrument-
ations.

The operator also offers a CRD for instrumentations. Using this instrumentation
the operator injects the pod with an init container that contains the instrumenta-
tion, as well as whatever else is needed to activate it. In the case of JValue, which
uses the NodeJS instrumentations, this entails an init container that copies and
mounts the instrumentation script to the application container. It also adds the
NODE_ENV environment variable that activates the instrumentation as explained in
3.3.2.
The images for the init containers are provided by the operator, but can be
overwritten with custom containers. This is also necessary for JValue, due to
the official images having two issues. The first and minor issue is that, at the
time of implementation, the official image does not allow disabling certain in-
strumentations and for the NodeJS instrumentation it is recommended to disable
@opentelemetry/instrumentation-fs as discussed in O. Contributers (2024a). The
second issue is that the official image uses the new NodeSDK to initialize the instru-

8https://github.com/open-telemetry/opentelemetry-helm-charts/tree/main/charts/opentelemetry-
operator
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mentation and there seems to be some issue with NestJS, because only a fraction
of the expected traces are generated. Because of these issues a custom image has
been created, and specified in the operators deployment configuration, that dis-
ables the mentioned instrumentation and uses the old registerInstrumentations
implementation with an issue being created in the GitHub repository9. The im-
age also allows en-/disabling of OTELs debug mode via an environment variable
which was added while debugging the instrumentation issue. The code for this
image is located inside the otel-autoinstrumentation-node project which in turn
is located inside the monorepo’s Kubernetes infrastructure directory, which also
contains the Helm charts. However this project is a standalone project and not
part of the JValue Nx monorepo and should be deprecated as soon as the men-
tioned issues of the official image are fixed.

Both the collector and instrumentation CRD are enabled by annotating the pod
with the corresponding annotations. This prompts the operator to inject the
instrumentation and sidecar. For example the following annotation injects the
NodeJS instrumentation with the name nodejs-instrumentation that was created
in the monitoring namespace: instrumentation.opentelemetry.io/inject-nodejs:
’monitoring/nodejs-instrumentation’. In comparison sidecar.opentelemetry.io

/inject: ’monitoring/opentelemetry-collector-sidecar-agent’ injects the sidecar
named opentelemetry-collector-sidecar-agent from the monitoring namespace.

5.3.2 Data Prepper

For the request tracing, the Data Prepper deployment was extended with an
additional Service for receiving the traces from the OTEL collectors, as well as
the pipelines described in the previous chapter. This time no adjustments had
to be made to the pipelines.

9https://github.com/open-telemetry/opentelemetry-operator/issues/2510
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This chapter discusses the evaluation conducted and highlights the identified
remaining issues.
The evaluation was conducted with three JValue developers using the Thinking-
aloud method.

Thinking-aloud refers to a method that involves asking participants to solve a set
of questions while saying out loud what they are thinking. The method is used
both for psychological and educational research, as well as to build knowledge-
based computer systems (M.W. van Someren, 1994). In computer science this
method has been in use for usability testing for a long time (McDonald et al.,
2020).

This evaluation method was chosen, due to various reasons. The main reason is
that this method exposes the individual’s thought process and the results should
therefore relate mainly to the working memory (McDonald et al., 2020).
The second reason is that thinking-aloud evaluations are fairly fast and easy to
setup and conduct. This is due to them only requiring a list of tasks and one
examiner that logs the thoughts of the evaluation participants.

In the process of this evaluation each participant got five tasks in total to fulfill.
The tasks were split into two before and three after tasks. It has to be noted
that due to time constraints the before and after tasks had to be done in the
same meeting. Additionally before and after had two tasks in common for better
results comparison.

The evaluation was started with the two before tasks in which the participants
were asked to fulfill them the way they used to. In our case that meant using
the Lens application for all participants. During the after tasks, the participants
used the deployed log-management and request tracing solutions.

The first task was to find a log entry explaining an error received by a user of
the JValue application who tried to initiate a pipeline run (see appendix ). The
reason for this task was to test how fast the participants could find specific errors
in the logs.
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6. Evaluation

The second task was to query the logs of all longhorn-manager instances for any
errors that have occurred the last 12 hours. This task was chosen to evaluate how
easy it is to query logs of deployments that have multiple running instances. The
third and fourth tasks were identical to the first two, just for the after evaluation.
The last task was to use the request tracing solution to find a trace that represents
the successful creation of a JValue pipeline run. This was chosen to demonstrate
the request tracing.

6.1 Evaluation results

At the end the participants were asked to score from 1 (very negative) to 5
(very positive) how satisfied they were with the new log-management and request
tracing solution. The results are visualized in the following graphic.

Figure 6.1: Evaluation score

Additionally some positive and negative feedback was given.
For the negatives the most prevalent one was that the UI was too overwhelming
without any sort of prior introduction. The only other one, that most participants
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wished for, was that a dashboard would have been already configured for a fast
information overview.
Concerning the positives, one was that the UI allowed for advanced queries using
keywords and time filters as well as the configuration of said dashboards. The
most important thing was that the traces were unanimously mentioned as highly
valuable for debugging.

6.2 Remaining issues

Next the remaining issues are highlighted, split into their corresponding subsec-
tion log-management and request tracing.

6.2.1 Log-management

The largest outstanding issues are caused by the aforementioned migration of
the OpenSearch Operator from the Opster to the official OpenSearch-Project
repository.
The first one is the, at the time of implementation, missing support for creating
Index- and Component-Templates via CRDs, which required the deployment of
those using a script. The second one is that also missing are CRDs for ISM
policies. Because of that and time constraints, there is currently no automatic
index deletion. This causes the indicies to gradually consume more and more
storage until none is left. This is also the reason why, at the moment, the logs
that would be written to the kubernetes_cluster index are being dropped instead
of stored.

Another issue concerns the SSL certificates. As of time of development, the
operator did not offer any automatic certificate renewal for auto-generated SSL
certificates. One possible solution for this would be to replace the auto-generated
certificates with manual ones, however this was not done due to time constraints.
On the subject of SSL, there is also an undiagnosed issue with the SSL connection
from the UI to the backend after a few minutes of use, that causes all connections
to fail until the port-forwarding has been restarted. This issue only arouse after
the development was finished and could not be resolved thus far.

The last and least important issue is the Data Prepper throwing JSON parse
errors, even though the data is sent to OpenSearch. From the research conducted
this seems to be an underlying Data Prepper issue where recursive parsing errors
are falsely logged.
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6.2.2 Request tracing

Concerning the request tracing implementation there have been three issues iden-
tified.

The most important issue is that, as mentioned in 5.3.1, there is currently an un-
resolved issue with the official OTEL NodeJS auto-instrumentation image. The
image does not correctly initialize and generates only a very small amount of
(mostly) unimportant traces. The reason why most of these traces are not im-
portant is, that they were created by the fs instrumentation which, as previously
mentioned, should be disabled. An issue has been created in the OpenTelemetry
Operator GitHub repository.

The second issue is that the OTEL collector sidecar requires a manual pod restart
in case the sidecars gets updated. The reason for that is that the operator
currently does not remember where it injected which sidecar. This means that
the only way to update a running sidecar is by restarting the pod and thus forcing
the pod to get the new sidecar version injected by the operator.

The last issue is that the instrumentations vastly increase the application startup
time. This is due to OTEL instrumentations patching the corresponding NodeJS
packages and patching NestJS takes especially long. As a rough estimate, the
hub-backend took up to two minutes longer during its start-up.
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7 Conclusions

This thesis discussed and detailed the deployment of the OpenSearch log-management
system to a Kubernetes cluster using Helm. In addition to that it also detailed
the deployment of OpenTelemetry as a request tracing system to said Kubernetes
cluster and its configuration for NestJS. It also detailed how said request tracing
system can be integrated into OpenSearch to allow managing both logs and traces
via a single UI. Lastly the thesis included the implementation of a logging library
supporting structured logging for NestJS using Winston, although the applica-
tion version had to be substituted with the docker image version as mentioned.
However the thesis also highlighted some outstanding issues and in the following
a few suggestions for the future will be given.
The first improvement suggestion is to do some more experimentation concerning
how long the logs should be stored and create an ISM policy for automatic log
retention.
The second one, which is a result of the evaluation, is the introduction of a
small "cookbook" to introduce the developers into the log-management UI which
should prevent overwhelming them.
The last and most important improvement suggestion is to create a separate
Kubernetes cluster just for running OpenSearch. This would reduce the resource
consumption of the current cluster and, more importantly, allows the usage of a
single OpenSearch cluster for all deployment environments of JValue. These could
be separated using the currently untouched Tenants provided by OpenSearch. In
fact using them it would even be possible to use this OpenSearch cluster for
multiple projects of the department chair, although that would probably require
somebody responsible for the cluster.
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Appendix A: Design: Additional Data Prepper pipelines

A Design: Additional Data Prepper pipelines

Figure 1: Data Prepper default log pipeline

Figure 2: Data Prepper Postgres Operator log pipeline

Figure 3: Data Prepper Longhorn log pipeline

B Implementation: Index Template deployment
script

1 #! /bin/bash
2
3 while getopts p:u: flag
4 do
5 case "${flag}" in
6 p) port=${OPTARG };;
7 u) user=${OPTARG };;
8 esac
9 done

10
11 usage="[USAGE] opensearch -templates.sh -p [OPENSEARCH_API_PORT] -

u [CURL_USER]"
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Appendix B: Implementation: Index Template deployment script

12
13 script_dir=$( cd -- "$( dirname -- "${BASH_SOURCE [0]}" )" &> /dev

/null && pwd )
14 component_templates_dir="$script_dir/opensearch -templates/

component"
15 index_templates_dir="$script_dir/opensearch -templates/index"
16
17 opensearch_endpoint="https :// localhost:$port"
18 opensearch_index_template_path="_index_template"
19 opensearch_component_template_path="_component_template"
20 curl_basic_flags =(-s -k -u "$user" -H "Content -Type: application/

json")
21
22 if [ -z "$port" ] || [ -z "$user" ]
23 then
24 echo "$usage"
25 exit -1
26 fi
27
28 function create_index_template () {
29 template_name=$1
30 template_json=$2
31 echo "Creating component template $template_name"
32 curl=$(curl "${curl_basic_flags[@]}" -X PUT

$opensearch_endpoint/$opensearch_index_template_path/
$template_name -d "$template_json")

33 echo $curl
34 }
35 function create_component_template () {
36 template_name=$1
37 template_json=$2
38 echo "Creating index template $template_name"
39 curl=$(curl "${curl_basic_flags[@]}" -X PUT

$opensearch_endpoint/$opensearch_component_template_path/
$template_name -d "$template_json")

40 echo $curl
41 }
42
43 for json_file in $(find $component_templates_dir -type f -name "

*.json") ;
44 do
45 template_name=$(basename $json_file .json)
46 template_json=$(cat $json_file | tr ’[: space:]’ ’ ’)
47 create_component_template "$template_name" "$template_json"
48 done;
49 for json_file in $(find $index_templates_dir -type f -name "*.

json") ;
50 do
51 template_name=$(basename $json_file .json)
52 template_json=$(cat $json_file | tr ’[: space:]’ ’ ’)
53 create_index_template "$template_name" "$template_json"
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Appendix C: Implementation: Index Template deployment directory structure

54 done;

C Implementation: Index Template deployment
directory structure

Figure 4: Index Template deployment directory structure

D Evaluation JValue failed request .har snippet
1 {
2 "request": {
3 "method": "POST",
4 "url": "https ://dev.jvalue.com/hub -backend/runs",
5 "httpVersion": "http /2.0",
6 "bodySize": 53,
7 "postData": {
8 "mimeType": "application/json",
9 "text": "{\" instanceId \":\" c3b491e9 -d030 -434b-8668 -7

d3296dd8f83 \"}"
10 }
11 },
12 "response": {
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13 "status": 500,
14 "statusText": "",
15 "httpVersion": "http /2.0",
16 "content": {
17 "size": 52,
18 "mimeType": "application/json",
19 "text": "{\" statusCode \":500 ,\" message \":\" Internal server

error \"}"
20 }
21 },
22 "startedDateTime": "2024 -01 -28 T17 :36:06.480Z",
23 "time": 955.9730000037234
24 }
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