
Jayvee Data Wrangler
MASTER’S THESIS

Elias Pfann

Submitted on 3 June 2024

Friedrich-Alexander-Universität Erlangen-Nürnberg
Faculty of Engineering, Department Computer Science

Professorship for Open Source Software

Supervisor:
Georg Schwarz M. Sc.

Prof. Dr. Dirk Riehle, M.B.A.

Declaration of Originality

I confirm that the submitted thesis is original work and was written by me without
further assistance. Appropriate credit has been given where reference has been
made to the work of others. The thesis was not examined before, nor has it been
published. The submitted electronic version of the thesis matches the printed
version.

Erlangen, 3 June 2024

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 3 June 2024

i

https://creativecommons.org/licenses/by/4.0/

ii

Abstract

This thesis aims to explore and explain the creation of an open source software
(Jayvee Data Wrangler) that ought to perform data wrangling tasks to help users
with importing their data (CSV) into a database, as well as its exploration and
editing in a semi-automated way. The software is based on the DSL Jayvee. The
Jayvee Data Wrangler is designed to be an easy-to-use software that also aims
to simplify the process of generating data pipelines and make the features of
ETL pipelines accessible to non-programmers. The software guides users through
the process of importing and modifying data, automatically recognizing essential
metadata and providing filtering and modification options for the imported data.
It generates valid Jayvee code to allow further modification by more experienced
users. This thesis also includes an evaluation of the Jayvee Data Wrangler, a com-
parison with other data wrangling tools, and suggestions for extending the Jayvee
Data Wrangler. The source code of the Jayvee Data Wrangler is available at the
following URL: https://github.com/kreisligaspieler/Jayvee-Data-Wrangler.

iii

https://github.com/kreisligaspieler/Jayvee-Data-Wrangler

iv

Contents

1 Introduction 1

2 Related Work 3
2.1 Data Wrangling and ETL-Pipelines 3
2.2 Related Tools . 4

2.2.1 Python Pandas . 4
2.2.2 Microsoft Data Wrangler Extension for Visual Studio Code 4
2.2.3 Apache Spark . 5
2.2.4 Amazon Sagemaker Data Wrangler 5
2.2.5 Alteryx Analytics Cloud Platform 6
2.2.6 OpenRefine . 6

3 Fundamentals 9
3.1 Context: Jayvee . 9
3.2 CSV . 11

4 Requirements 13
4.1 Requirements Engineering . 13
4.2 Functional Requirements . 14
4.3 Non-functional Requirements . 16

5 Architecture and Design 19
5.1 Architecture of Different Components 19

5.1.1 User Interface . 19
5.1.2 Backend . 25

5.2 Interaction Between Components 26

6 Details of the Implementation 31
6.1 Components and Structure of the Project 31
6.2 Importing CSV files . 35

6.2.1 Generating and Modifying the UI 35
6.2.2 Analyzing CSV files . 37

v

6.3 Modifying data . 43
6.4 License Considerations . 47

7 Evaluation 49
7.1 Requirements Evaluation . 49
7.2 Examples of Testing . 50
7.3 Software Classification . 51

8 Conclusion and Outlook 55

Appendices 57
A Screenshots of the Software . 59
B Interaction Between Components 64
C Components and Algorithms of the Jayvee Data Wrangler 72

References 77

vi

List of Figures

1.1 An illustration of a data pipeline oriented to Jayvee. 2

2.1 Interface of Microsoft Data Wrangler. 5
2.2 The interface of OpenRefine. 7

3.1 Example of a CSV file. 12

5.1 User notification if an error occurs during the import of a CVS file. 21
5.2 The UI when the user views the data of a project. The user can

now execute multiple commands. 21
5.3 Example of statistics available for a column with integer value type. 24
5.4 Interaction between the user and software, and between different

parts of the software. 28
5.5 Interaction between the user and software, and between different

parts of the software when the user displays the database. 29
5.6 Interaction between user and software when creating a new value

type. 30

6.1 Communication between components of the frontend and backend. 32
6.2 The consistent construction of the Jayvee Data Wrangler. 36
6.3 Steps during the process of importing a CSV into a database. . . 38

A.1 The entry page of the Jayvee Data Wrangler 59
A.2 Screenshot of the Jayvee Data Wrangler showing a displayed warning 60
A.3 Screenshot of the Jayvee Data Wrangler showing a successful im-

port of a CSV into a database. 60
A.4 Screenshot of the Jayvee Data Wrangler showing the creation of a

constraint. 61
A.5 Screenshot of the Jayvee Data Wrangler showing the creation of a

value type. 61
A.6 Screenshot of the Jayvee Data Wrangler showing the deletion of

multiple rows . 62

vii

A.7 Screenshot of the Jayvee Data Wrangler showing the applying of
a custom value type . 63

A.8 Screenshot of the Jayvee Data Wrangler showing the listing of all
created constraints and value types within a project. 63

A.9 Screenshot of the Jayvee Data Wrangler showing an example of a
list of created projects. 64

B.1 Interaction between the user and Jayvee Data Wrangler while edit-
ing a column name. 64

B.2 Interaction between the user and Jayvee Data Wrangler while
changing a value type. 65

B.3 Interaction between the user and Jayvee Data Wrangler while cre-
ating a new constraint. 66

B.4 Interaction between the user and Jayvee Data Wrangler while de-
leting a row. 67

B.5 Interaction between the user and Jayvee Data Wrangler while de-
leting a column. 67

B.6 Interaction between user and Jayvee Data Wrangler while display-
ing a folder . 68

B.7 Interaction between user and Jayvee Data Wrangler while undoing
the last action . 69

B.8 Interaction between user and Jayvee Data Wrangler while redoing
the last action . 70

B.9 Interaction between user and Jayvee Data Wrangler to save changes 71

viii

List of Tables

5.1 Requested user input before the data is imported into a SQLite
database . 20

5.2 Table showing the age and salary of employees. 22
5.3 This table shows the changes that would happen to table 5.2 if the

value type of the age column would be changed to integer. 22
5.4 Constraints that are supported by Jayvee (The JValue Project,

2024). 23

6.1 Example showing the change of the value type of two columns. . . 45

7.1 Summary of requirement fulfillment 50
7.2 Features of the Jayvee Data Wrangler in comparison to other soft-

ware. 53

ix

x

Listings

3.1 Example of a Jayvee pipeline. 10
6.1 Inter-process communication (IPC) 34
6.2 Creating the window of the application and loading the startpage. 35
6.3 Function to create editable paragraphs used in the Jayvee Data

Wrangler . 36
6.4 Starting the process of importing a CSV into a database using IPC. 37
6.5 Function to listen on an IPC channel to receive data from other files. 38
6.6 Identify the CSV Delimiter . 40
6.7 Function to create the Jayvee Script 42
6.8 Dynamical loading of data into the datatable. 44
6.9 Example of validating values against constraints. 45
6.10 Excerpt from the algorithm that modifies the display of values. . . 46
C.1 Content of the preload file used to expose functions securely priv-

ileged into the renderer process. 72
C.2 Pipeline object to store data that will be inserted into the Jayvee

file. 72
C.3 Creation of the project folder within the workspace in the user

directory. 73
C.4 Function that loads viewDatabase.html into the main window and

hands over the database path and table name. 73
C.5 Creating a datatable to view the database 74
C.6 Adding data to the data table . 75

xi

xii

Acronyms

AWS Amazon Web Services

CSV Comma-Separated Value

DSL Domain Specific Language

ETL Extract, Transform, Load

FR Functional Requirements

IPC Inter-Process Communication

NFR Nonfunctional Requirements

OS Operating System

UI User Interface

xiii

xiv

1 Introduction

In today’s technologically advanced world, an enormous amount of data is col-
lected from various different sources. Not only smart devices, but also scientific
measuring stations (for example) gain data. Structuring and analyzing large
amounts of data, like for training an AI or building an application, has become
a big industry. Finding and recognizing connections and correlations in datasets
can be very profitable, not only for companies, but also for scientific research.
In order to establish correlations between the data, data engineers must first take
on the task of processing this data from different sources, which have different
data formats and varying levels of quality. This processing often involves trans-
forming the data into formats that are easily understood by humans, as well as
converting it into machine-readable formats, often using programming languages
such as Python. This entire process is commonly referred to as data pipeline. It
requires either programming experience or a significant amount of manual work.
Although automated tools can speed up this process and generate evaluations
of the data, scientists still struggle with the complexity and high manual effort
involved in this process.
Therefore, this thesis analyzes the possibility of assisting users in transform-
ing, structuring, cleaning and exploring collected data in a semi-automated way
using specialized software, which not only simplifies the process of creating a
data pipeline, but also makes automated data evaluation accessible to non-
programmers. For this purpose, the Jayvee Data Wrangler was developed. With
this software users can generate data pipelines without any programming being
required. The software uses the open-source Domain Specific Language (DSL)
Jayvee to define Extract, Transform, Load (ETL) pipelines (refer to figure 1.1)
that import data from sources to sinks to obtain the data in a valuable format
for further processing. With an unpretentious interface, users are automatic-
ally guided through the process of importing data into a database. During this
process, the essential metadata (e.g. encoding) is as far as possible automatic-
ally detected to eliminate or reduce any effort. Once imported, the data can be
filtered and modified to suit the user’s needs. To support this process and to get
an overview over the data, users are also provided with several descriptive stat-
istics. Under the hood, the Jayvee Data Wrangler uses Typescript to generate a

1

1. Introduction

valid Jayvee file that loads the contents of a Comma-Separated Value (CSV) file
into a suitable sink type (e.g., a SQLite file). Users with programming experience
can modify and customize the pipeline by editing the Jayvee file.

Figure 1.1: An illustration of a data pipeline oriented to Jayvee.

This thesis is organized as follows: A brief overview of the related work and
software is given in chapter 2. Fundamentals such as Jayvee and CSV are in-
troduced in chapter 3. Chapter 4 presents the necessary requirements for the
successful implementation of the tool. Chapter 5 shows the implemented soft-
ware architecture, while chapter 6 discusses and illustrates the implementation
in detail. Furthermore, in chapter 7 the software is evaluated by testing it with
example workflows and comparing it to other tools. Finally, chapter 8 provides
a conclusion and an outlook on possible future work.

2

2 Related Work

There is no data wrangling tool based on Jayvee yet. Therefore, this chapter
provides an overview of similar software/libraries and related tools, while Jayvee
itself will be introduced in chapter 3. Not only for a better understanding of this
chapter, but also in order to gain a better comprehension of the Jayvee Data
Wrangler’s features, specific concepts and technical terms like ETL and data
pipelines are explained at the beginning.

2.1 Data Wrangling and ETL-Pipelines

Data wrangling involves identifying, extracting, cleaning and integrating the data
needed for an application. It is sometimes described as converting data from a
raw format into a more convenient format for analysis with other tools (Furche
et al., 2016). It helps to maintain accuracy by cleaning the data, which is crucial
for making accurate conclusions and decisions based on the data. It can also
ensure consistency among different data sources by standardizing the format and
structure of the data. It furthermore ensures completeness by addressing missing
values through data cleaning. Data wrangling also produces higher quality data.
At the same time, it can increase efficiency by saving time in dealing with data
issues during later stages of the project (Endel and Piringer, 2015).

While data wrangling is a broader concept that encompasses all the activities
involved in preparing data for analysis, ETL refers to the process of extracting
data from different sources, transforming it into a format that is suitable for
analysis and loading it into a target database or data warehouse (Furche et al.,
2016).
According to Voleti, 2020 there are some obstacles surrounding data wrangling:

• Time consumption

• Ensuring data compatibility and consistency across various sources

• Lack of direct data access

• Complexity in data mapping

3

2. Related Work

• Need for technical expertise

• Data quality and reproducibility

These obstacles can be addressed by various data wrangling tools. All of these
tools improve workflow, save time and reduce complexity while deriving valuable
insights from a data source.

2.2 Related Tools

There are many data wrangling tools that perform (semi)automated data import.
Several widely-used data wrangling tools that support the import of at least CSV
files are reviewed to determine the features they offer. All tools also have in
common that they clean and prepare data, and support data exploration.

2.2.1 Python Pandas

Pandas1 is a popular open-source data manipulation library for Python. It
provides data structures and functions for efficiently cleaning, transforming and
analyzing data. Programmers cannot only use it to import and filter data, but
also to visualize it (NumFOCUS, Inc., 2024). When used with other Python
libraries, it can be used to perform many conceivable of data-based tasks.

2.2.2 Microsoft Data Wrangler Extension for Visual Studio
Code

Microsoft Data Wrangler is a Visual Studio Code extension. It works with
either CSV files, Parquet files2 or Pandas DataFrames3. Programmers can
also get statistics through its visualization capabilities, which automatically
generate a preview of the data called quick insights (refer to figure 2.1). It
automatically loads files and has various operations for filtering the data like
applying mathematical formulas or dropping specific values. To outline a few
aspects of it: Users can change the column type, rename the header and export
data to a CSV file, Parquet or a Jupyter Notebook4. The extension automatically
generates Python Pandas code that can also be viewed and exported (Mew, 2023).

1https://pandas.pydata.org/
2https://parquet.apache.org/
3https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
4https://jupyter.org/

4

https://pandas.pydata.org/
https://parquet.apache.org/
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://jupyter.org/

2. Related Work

Figure 2.1: Interface of Microsoft Data Wrangler.

2.2.3 Apache Spark

Apache Spark5 is an open-source data processing engine that supports data
wrangling tasks for big data workloads. It supports batch/streaming data, SQL
analytics, Exploratory Data Analysis on large quantities of data and training of
machine learning algorithms. Spark provides support of programming languages
like Scala, Python, Java, and R (Apache Software Foundation, 2024). The soft-
ware is designed to run on servers (on top of Apache Hadoop) and clusters of
servers. It provides and achieves faster performance by utilizing in-memory cach-
ing, as well as optimized execution. With its API and special libraries, such
as Spark SQL or a machine learning library, multiple tasks can be performed
(Murthy, 2017). While Spark SQL is easy to understand, programming experi-
ence is required to take full advantage of Apache Spark.

2.2.4 Amazon Sagemaker Data Wrangler

This software6 is integrated in the Amazon Web Services (AWS) ecosystem with
little to no coding required (Amazon Web Services Inc., 2024a). With over 300
built-in data transformations, it enables easy and fast data preparation. Data
cannot only be imported and cleaned, but also visualized. Workflows can even
be automated using autopilots. Users can leverage its integration with other
AWS services to explore and analyze data (Amazon Web Services Inc., 2024b).

5https://spark.apache.org/
6https://aws.amazon.com/de/sagemaker/data-wrangler/

5

https://spark.apache.org/
https://aws.amazon.com/de/sagemaker/data-wrangler/

2. Related Work

It is also available as Python library and works with Python Pandas DataFrames
(AWS Professional Service, 2024).

2.2.5 Alteryx Analytics Cloud Platform

This software7 runs on the Alteryx cloud environment and also supports ma-
chine learning, as well as automated and repeatable data pipelines. Using ETL
pipelines, users can generate automated analytics without programming required.
The platform also supports the creation of statistics and reports, and supports a
variety of data sources such as AWS or Google Cloud, basic file formats like CSV,
JSON and even raw HTML pages (Alteryx, Inc., 2024b and Alteryx, Inc., 2024c).
Generative AI allows users to automatically generate insights and recommended
analytics based on the user’s business (Alteryx, Inc., 2024a).

2.2.6 OpenRefine

OpenRefine8 was initially released by Google in 2010 and is regularly maintained.
It is published under the open source BSD license and can be downloaded for
Windows, macOS and Linux. The only requirements are having the supported
Java version and a supported browser installed. In addition to standard data
wrangling operations, it also supports clustering to find inconsistencies, reconcili-
ation to match a dataset against another, infinite undo and redo, — and because
it runs local — it protects the privacy of the data. OpenRefine is very easy to
install and use without writing a single line of code. Users have the option to
filter, explore and apply modifications to the data. The software is very good
at recognizing different file formats. Transforming and editing data as well as
exporting it (e.g. to CSV or SQL) is straight forward (OpenRefine, 2024 and
OpenRefine developers, 2024). The interface of OpenRefine is shown in figure 2.2
below.

7https://www.alteryx.com/products/alteryx-platform
8https://openrefine.org/

6

https://www.alteryx.com/products/alteryx-platform
https://openrefine.org/

2. Related Work

Figure 2.2: The interface of OpenRefine.

7

2. Related Work

8

3 Fundamentals

This section elucidates the two key concepts/parts of software that are needed
to be understood in order to comprehend the development and functionality of
the Jayvee Data Wrangler. First, the Jayvee DSL language is illustrated to
understand the creation and use of Jayvee files for the process of importing CSV
files into a database. It is followed by the exposition of the structure of CSV files
to understand the complexity of properly importing the contents of any CSV file.

3.1 Context: Jayvee

As described in the introduction, the Jayvee Data wrangler builds upon the
open-source DSL Jayvee which describes ETL pipelines from sources to sinks
to obtain the data in a suitable format for further processing. The interpreter
allows executing such data pipelines on a local machine. Jayvee can be used to
prepare, filter and clean data for applications such as machine learning or data
analysis. Because it is open source, users (even non-programmers) are invited to
collaborate so that the developers can improve and extend the software.

Jayvee is structured around four basic principles that are easy to understand:

• Pipelines: Sequences of different computing steps (blocks).

• Blocks: A processing step within a pipeline that can have standard input
and standard output.

• Value type: Determine the data type of the processed data. There are
built-in value types and primitive value types (user-defined value types).

• Transforms: Transformations are used to convert data from one value type
to another value type. (The JValue Project, 2024)

In order to facilitate a deeper understanding of the Jayvee pipelines created by the
Jayvee Data Wranger, an example is provided to explain fundamental underlying
concepts:

9

3. Fundamentals

1 /∗ The pipeline consists of different blocks chained through pipes ("−>") ,
2 while the output of one pipeline i s used as input for another . It usually
3 starts with a definition of the order of the blocks leading to an overview
4 of the pipeline . ∗/
5 pipeline Tra in s t op sP ipe l i n e {
6 Tra ins topsExtractor −> Tra in s t op sTex tF i l e I n t e rp r e t e r
7 −>TrainstopsCSVInterpreter−>Tra in s top sTab l e In t e rp r e t e r
8 −>TrainstopsLoader ;
9

10 /∗ Through the use of the oftype keyword, blocks are able to generate
11 instances of a particular blocktype . The HttpExtractor block spec i f ies
12 a URL where the f i l e shal l be downloaded from. It produces a binary
13 f i l e as output , which i s passed to a TextFileInterpreter . ∗/
14 block Tra ins topsExtractor oftype HttpExtractor {
15 u r l :"https ://download−data . deutschebahn .com/stat ic/datasets/

haltestel len/D_Bahnhof_2020_alle.CSV" ;
16 }
17
18 // This block defines how to interpret the f i l e .
19 block Tra in s t op sTex tF i l e I n t e rp r e t e r oftype Tex tF i l e I n t e rp r e t e r {
20 encoding="utf−8" ;
21 }
22
23 /∗ With the CSVInterpreter block , the f i l e wi l l be interpreteted as a
24 CSV f i l e with a specif ied enclosing and delimiter . ∗/
25 block TrainstopsCSVInterpreter oftype CSVInterpreter {
26 en c l o s i n g : ’" ’ ;
27 d e l im i t e r : " ;" ;
28 }
29
30 // With TableInterpreter the datatype for each column is defined .
31 block Tra in s top sTab l e In t e rp r e t e r oftype Tab l e In t e rp r e t e r {
32 header : true ;
33 columns : ["EVA_NR" oftype i n t ege r ,
34 "DS100" oftype text ,"IFOPT" oftype text ,
35 "NAME" oftype text ,"Verkehr" oftype text ,
36 "Laenge" oftype text ,"Breite" oftype text ,
37 "Betreiber_Name" oftype text ,
38 "Betreiber_Nr" oftype i n t ege r ,
39 "Status" oftype t ex t] ;
40 }
41
42 /∗ Finally , the table i s loaded into a sink , in this case a SQLite

database , using the previously defined structural information . ∗/
43 TrainstopsLoader Loader oftype SQLiteLoader {
44 tab l e : "trainstops" ;
45 f i l e : "./ trainstops . sq l i te" ;
46 }
47 }

Listing 3.1: Example of a Jayvee pipeline.

The example in listing 3.1 describes a simple Jayvee pipeline from a CSV file
on the web to a SQLite file sink. The code is an example of an ETL pipeline
(explained in figure 1.1) and has been annotated with comments for easier under-
standing. There are many other options available including deleting rows, filtering
data, renaming column names or defining custom value types. Users are able to
even work with zip files or import data from XLSX files (The JValue Project,
2024). Due to the lucid syntax, other concepts are also relatively straightforward
to read and understand. More information about them can be found in the of-

10

3. Fundamentals

ficial docs1, which also provide further precisely annotated examples. Following
the instructions, Jayvee can easily be installed and updated with this document-
ation. From a developer’s point of view, even error messages are precise and easy
to understand, making development uncomplicated. Of course, they are many
alternatives on the market like Python Pandas, to name just one. Instead, Jayvee
was chosen for the development of the data wrangler because of its simple and
clean structure, including all the presented features. As it is under active devel-
opment, additional useful features are continuously being added, which can be
incorporated into the Jayvee Data Wrangler.

3.2 CSV

The Jayvee Data Wrangler is designed to import CSV files into databases. CSV
files can be compared to spreadsheets and tables (e.g. Excel spreadsheets) where
the entries are organized in rows and columns, but they also have some other
properties. According to Shafranovich, 2005 there is no formal specification for
CSV files in existence, only a format that most CSV files follow. Looking at the
RFC 4180 standard (as defined by Shafranovich) helps to identify the obstacles
that may arise when developing the Jayvee Data Wrangler.
In his work, Shafranovich, 2005 identifies several common traits of CSV files
(pages 1-2). They are annotated with comments to identify challenges and present
solutions to any problems that may arise during the import process:

1. A line break delimits each record located on a separate line. Therefore, to
analyze the file, it can be read line by line.

2. The last record in the file may or may not have an ending line break
(newline), which is not a problem, because even if the entire file is read
for analysis, the last record will be recognized by the end of the file.

3. The first line may contain an optional header line having the same format
as normal record lines. The header functions as a column name and should
contain the same number of fields as the records in the files. If there is no
header, the Jayvee Data Wrangler assigns a custom header based on the
number of entries in each row.

4. The header and the records are separated by commas. The number of fields
in two separate lines should not differ. The last field in a record might
not have a comma. Unlike Shafranovich, the Jayvee Data Wrangler also
recognizes semicolons as delimiters, because they are also used to separate
fields within the records.

5. Each field may be enclosed in double quotation marks. If the enclosing of a
1https://jvalue.github.io/jayvee/docs/user/intro/

11

https://jvalue.github.io/jayvee/docs/user/intro/

3. Fundamentals

field is double quotes, then double quotes may not appear within the fields.
Sometimes fields are also enclosed with single quotes, so the Jayvee Data
Wrangler covers that.

6. Fields are usually enclosed in double quotation marks if they contain line
breaks, double quotation marks or commas. If they are not enclosed in
either single or double quotes, commas may be recognized as the entry
delimiters.

7. Any double-quotes within an entry must be escaped with a preceding double
quote if the enclosing is double-quoted.

Observations and tests during the development of the Jayvee Data Wrangler
showed that multiple lines containing comments or empty lines may appear before
the header. These comments are usually preceded by a special character or a
sequence of characters (e.g. # or //) to identify them. In addition, the entries
of a CSV file can be delimited not only by commas, but also by other characters
like semicolons, spaces, or tabulators. During the testing and research, it was
also observed that some CSV files do not have the file extension .csv, but are
rather saved as .txt files. This allows users to view the file in a web browser. As
long as these files follow the previously presented rules by Shafranovich (with the
annotations), the Jayvee Data Wrangler will also support their import. In order
to demonstrate the previously mentioned terms, an example of how a typical
CSV could look like is given in figure 3.1. The illustration showcases the terms
enclosing, header, delimiter and content by utilizing a sample record.

Figure 3.1: Example of a CSV file.

12

4 Requirements

This chapter describes the necessary requirements for implementing the Jayvee
Data Wrangler. The requirements are categorized into Functional Require-
ments (FR), listed in section 4.2, and Nonfunctional Requirements (NFR), lis-
ted in section 4.3 associated with necessary sub-requirements. The syntax of
the requirements is based on the requirement templates by Rupp and SOPHIST-
Gesellschaft für Innovatives Software-Engineering (Rupp and SOPHISTen, 2020).
Before talking about those requirements, some thoughts and conclusions for the
implementation based on other previously presented data wrangling software/-
programming libraries are explained and some primarily considerations based on
potential groups of users are made (section 4.1) to determine all the necessary
aspects the Jayvee Data Wrangler should have. It is also important to note
that Jayvee Data Wrangler is a research prototype and not a commercial soft-
ware. Therefore, its development focuses on certain basic concepts that a data
wrangler should have.

4.1 Requirements Engineering

To define the necessary requirements for the Jayvee Data Wrangler, other tools
should be considered as well as potential users identified.
The research in the previous chapter concluded that the Jayvee Data Wrangler
must have basic data wrangling capabilities like identifying, extracting, cleaning
and integrating data. Because it is built on top of the Jayvee ETL language, it
automates tasks that a user — building an ETL pipeline with Jayvee — would
perform. These tasks are deciding how the data that is imported is formatted,
if it has a header, and how it will be stored in a database. In case of importing
CSVs (that are best supported by Jayveee) it would include extracting encoding,
delimiter and enclosing. It also shall detect and remove comments. Since it
is a prototype and not an enterprise software, the Jayvee Data Wrangler does
not need to be able to create complex evaluations and statistics, but be able to
import, structure and filter the data that will be stored for further analysis.

As the software should have a wide range of applications, there are at least

13

4. Requirements

two potential groups of users: Users with no programming experience and users
with programming knowledge. Non-programmers, such as university researchers,
should be able to use the Jayvee Data Wrangler without any knowledge of Jayvee
and without having to write a single line of code. They may use the software,
extract data from a CSV file into a database for further processing and may also
want to filter the data to remove unwanted entries. To avoid obstacles, they
need an application that’s easy to understand and also provides them with clean
documentation that explains when and why they have to insert some data or
parameters.

Users with some programming knowledge may be interested in modifying more
than only a few basic parameters. They should be able not only to import a CSV
file, but also to view and modify the underlying Jayvee-script. By saving the
script permanently, they could modify it after importing the data, extend it with
further functionality or even use it for automated importing if the data source
changes.

With both groups of users in mind, the Jayvee Data Wrangler will be, as
mentioned in the introduction of this thesis, a software that on the one hand,
given a direct URL to a CSV file can import its content into a local database
and on the other hand, a tool that automatically generates modifiable Jayvee
scripts. Based on these considerations, the requirements of this concrete software
are specified.

4.2 Functional Requirements

Functional requirements contain a description of the functionality that the sys-
tem is intended to provide or a feature that the system should have. They
are presented based on the FunctionalMASTeR template created by Rupp and
SOPHIST-Gesellschaft für Innovatives Software-Engineering (Rupp and SOPH-
ISTen, 2020). This template is a detailed and structured approach to capturing
functional requirements in software development projects in a structured and nat-
ural language. It identifies the object of consideration, which in this case is the
system that is to be constructed. By using the terms "shall" (legally binding),
"should" (strongly recommended) and "will" (used in future) the importance of
the described functionality concerning the object is determined. Using logical
and temporal conditions, FRs are divided into 3 categories using logical expres-
sions ("If"), conditions based on events ("As soon as"), and conditions based on
time periods ("As long as").

14

4. Requirements

FR-1 The Jayvee Data Wrangler shall provide to the user the ability to import
CSV Files from the internet via a direct file URL (semi) automatically into
a database.

FR-1.1 The user shall be prompted to insert a URL which directly leads
to a CSV file.

FR-1.2 In order to process the file, it shall be checked if the file is a valid
CSV file.

FR-1.3 As far as possible, metadata shall be recognized automatically.

FR-1.4 If some metadata needed to start the import of the CSV file is not
recognized automatically, the user shall be asked to provide it.

FR-1.5 The user shall be able to edit the metadata encoding, delimiter
and enclosing before importing the CSV into a database.

FR-1.6 The file shall only be processed if all necessary metadata was re-
cognized atomically or given by the user.

FR-1.7 The database shall be stored permanently.

FR-2 The user shall be able to modify and filter the data after importing it.

FR-2.1 The user shall be able to delete rows and columns.

FR-2.2 The user shall be able to rename column descriptions.

FR-2.3 The user shall be able to modify the datatype of a column.

FR-2.4 The user shall be able to generate custom data types.

FR-2.5 Modifying the database shall follow the concepts of Jayvee. 1

FR-2.6 If the content of a database was modified inside the Jayvee Data
Wrangler, the user shall be able to save the modified database.

FR-3 The Jayvee Data Wrangler shall generate valid Jayvee-Scripts.

FR-3.1 The Jayvee Data Wrangler shall generate a single Jayvee-Script
for every CSV file.

FR-3.2 As soon as the script was generated successfully, it shall be ex-
ecuted to generate a database and import the data from the CSV into
the database.

FR-3.3 If a database generated by the Jayvee Data Wrangler was updated
using the Jayvee Data Wrangler, the Jayvee-Script shall be updated.

1https://jvalue.github.io/jayvee/

15

https://jvalue.github.io/jayvee/

4. Requirements

FR-3.4 The Jayvee-Scripts shall be editable and executable without the
Jayvee Data Wrangler.

FR-4 The Jayvee Data Wrangler shall be designed in a way that it’s easy to use.

FR-4.1 The Jayvee Data Wrangler shall be designed in a way that it
provides a clear User Interface (UI).

FR-4.2 The Jayvee Data Wrangler shall have a short manual which is
accessible from inside the software.

FR-5 The application should provide statistics about the data.

FR-5.1 The Jayvee Data Wrangler should include statistics about the data
within each column.

FR-5.2 The statistics should adapt if the user changes the content of the
database inside the Jayvee Data Wrangler.

FR-6 The Jayvee Data Wrangler shall deal with invalid input.

FR-6.1 The software shall only accept a limited set of characters for every
input.

FR-6.2 If a character is invalid, the software should notify the user that
invalid characters were inserted and not proceed.

4.3 Non-functional Requirements

Non-functional requirements are requirements that are not just focusing on the
functionality of the system, but also on aspects related to its development or de-
livery. If they describe properties of the new feature, they are formulated based
on the PropertyMASTeR template; if they are demanded by the operating en-
vironment, they are formulated based on the EnvironmentMASTeR template.
Both templates are designed by Rupp and SOPHIST-Gesellschaft für Innovat-
ives Software-Engineering (Rupp and SOPHISTen, 2020). They both use the
same terms as the FunctionalMASTeR to describe the properties of respectively
environmental influence to the system.

NFR-1 The Jayvee Data Wrangler should be a standalone application.

NFR-1.1 As long as the user installs all dependencies, the Jayvee Data
Wrangler shall be executable using the source code.

NFR-1.2 The Jayvee Data Wrangler should be an Electron.js application
which can be executed on Windows, Linux and macOS.

16

4. Requirements

NFR-2 The Jayvee Data Wrangler should be designed in a way that it provides
compatibility for possible feature extensions in the future.

NFR-2.1 The source code shall not depend on proprietary libraries or
software.

NFR-2.2 The Jayvee Data Wrangler will be published under a license that
allows others reusing and extending the software.

NFR-4 The user should have the option to report bugs, suggest features and
contribute to the Jayvee Data Wrangler.

NFR-4.1 The Jayvee Data Wrangler will be published on GitHub so that
users can report bugs and features there.

NFR-4.2 The Jayvee Data Wrangler will be open source so that other
developers can use the software and contribute to the project.

NFR-4.3 The source code should be documented extensively so that other
developers can contribute to the development.

17

4. Requirements

18

5 Architecture and Design

This chapter provides a detailed description of the architecture of the Jayvee Data
Wrangler and how the requirements are implemented (including screenshots of the
software). Additional screenshots are included in the section A of the appendix.
First the function and behavior of each component is explained, starting with the
frontend/user interface (section 5.1.1) and then moving on to the backend (section
5.1.2), while the detailed implementation including source code is explained in
chapter 6. Finally, the interaction between the user and the software, as well
as the interaction between the individual components of the software, are shown
(section 5.2). It’s important to note that any mention of Jayvee in this chapter
and the following chapters refers specifically to Jayvee version 0.4.0.

5.1 Architecture of Different Components

The Jayvee Data Wrangler is split into two main components: UI/frontend and
backend.

5.1.1 User Interface

The frontend requests user input and displays the results of any data processing
(e.g. determine delimiter). The UI also pre-validates the input by restricting
each input to a limited set of characters — and if necessary — also a limited
number of characters. If characters are not validated in the UI, the backend
verifies them. For example, the software sends the URL to the backend without
any character restrictions, because the backend code checks if a URL is valid.
The restrictions in the frontend are necessary, so that the user cannot carry out
unwanted actions, such as overwriting or creating a folder outside the workspace,
or inserting characters that the software may not be able to display. Valid input
is sent to the backend for further validation and processing. In the UI the data
shown in table 5.1 is requested before importing the contents of a CSV into a
SQLite database. Encoding, delimiter and enclosing have to be inserted/selected
if they are not automatically recognized by the backend, but can also be edited

19

5. Architecture and Design

if they were detected. The encoding is limited to the encodings supported by
Jayvee (at the time of delivery of the thesis): utf8, ibm866, latin2, latin3, latin4,
cyrillic, arabic, greek, hebrew, logical, latin6, utf-16. To help the user in deciding
which values to select, a preview of the first line of data is displayed.

Data Purpose Restriction Mandatory?

Folder name

Create a unique folder
within the workspace
for storing the CSV,
database and Jayvee
script

A-Za-z0-9_()
and length:
255 (max
folder length
in windows)

✓

CSV URL URL that points to
the CSV file

✓

Encoding Encoding of the CSV
file

Only encodings
that are suppor-
ted by Jayvee

Only if not recog-
nized automatically

Delimiter Delimiter that separ-
ates the CSV entries

1 character Only if not recog-
nized automatically

Enclosing Character that en-
closes the entries

1 character Only if not recog-
nized automatically

Table 5.1: Requested user input before the data is imported into a SQLite
database

After the data is successfully imported, some metadata — like the value type of
a column — is stored in an additional database (metadata database) for loading
it when the project is reopened. The user can now click a button to view the
contents of the database. If an error occurs, e.g. the encoding is not specified,
the user gets notified and has to change values as it is shown in figure 5.1. The
first line of data in the file, which helps to identify errors in the metadata, is also
shown there.

20

5. Architecture and Design

Figure 5.1: User notification if an error occurs during the import of a CVS file.

While viewing the data, users can modify the header names, delete columns
or rows and also edit the value type of a column. The UI can be observed in
figure 5.2, with detailed screenshots of possible editing actions provided in the
appendix A. The Jayvee Data Wrangler even allows the creation of a custom
value type with constraints. This custom value type can then be applied to one
or more columns. Again, each time the user has to insert a character, there are
restrictions to the characters (only A-Z, a-z and 0-9 are allowed) which are, of
course, also communicated to the user. Until the user saves the changes, they
are reversible via undo and redo buttons. Because this software uses Jayvee to
import the contents of a CSV into a database, all inputs and all changes made
by the user to the data will follow the specifications of Jayvee 1.

Figure 5.2: The UI when the user views the data of a project. The user can
now execute multiple commands.

1https://jvalue.github.io/jayvee/docs/user/intro/

21

https://jvalue.github.io/jayvee/docs/user/intro/

5. Architecture and Design

Deleting rows and columns modifies them visually by crossing out each cell and
sending the changes to the backend. Changing the value type needs a little
more explanation. There are four built-in value types in Jayvee: text, integer,
decimal and boolean. To meet Jayvee’s specifications, each entry is checked to
see if it meets the requirements of the new value type. For example, changing a
column from double to integer requires checking each entry to see if the value is
an integer (which only applies for a subset of decimals). Changing from text to
integer would delete all entries in that column that are not integers, even empty
entries. Jayvee only allows empty entries in rows that have the value type text.
So if a column’s value type is changed to other than text, removing every invalid
entry results in the corresponding row being deleted. This is illustrated in the
following example:

name age income
ValueType text text integer
1. Thomas 39 50000
2. James 40 48000
3. Sarah 35 55000
4. Lisa 1000000
5. Carl 42 69000

Table 5.2: Table showing the age and salary of employees.

name age income
ValueType text integer integer
1. Thomas 39 50000
2. James 40 48000
3. Sarah 35 55000
4. Lisa 1000000
5. Carl 42 69000

Table 5.3: This table shows the changes that would happen to table 5.2 if the
value type of the age column would be changed to integer.

By changing the value type of the column age from text to integer, the fourth
row of data is removed, as demonstrated in this example.

Another feature of the Jayvee language (and also of the Jayvee Data Wrangler)
is the creation of custom value types. They consist of built-in value types and
one or more constraints. These constraints limit the contents of entries to a set of
specified values. Hence, creating custom value types requires creating a suitable

22

5. Architecture and Design

constraint first. The user can choose out of five different types of constraints
listed in table 5.4 which are compatible only with certain value types.

Constraint Base value type Description

AllowlistConstraint text
Limits the values to a defined set of al-
lowed values. Only values in the list are
valid.

DenylistConstraint text Defines a set of forbidden values. All
values in the list are considered invalid.

LengthConstraint text

Limits the length of a string with an
upper and/or lower boundary.
Only values with a length within the
given range are valid.

RangeConstraint decimal, integer

Limits the range of a number value with
an upper and/or lower
boundary, which can be inclusive or ex-
clusive. Only values within the
given range are considered valid.

RegexConstraint text

Limits the values complying with a
regex.
Only values that comply with the regex
are considered valid.

Table 5.4: Constraints that are supported by Jayvee (The JValue Project, 2024).

The Jayvee Data Wrangler also guides the user through the process of creating
a value type. After naming the value type and selecting the base value type,
the user is presented with a choice of matching constraints (i.e. if they choose
to create a constraint based on decimal or integer, a user can only choose to
create a RangeConstraint). In the last step, the user has to enter the constraint
boundaries, e.g. upper and lower bound or allowed values. It is always ensured
that no one can insert invalid values (e.g. text into the upper bound) or override
an existing constraint. As soon as a constraint has been established, a value type
can be created by naming and choosing its built-in value type and its constraints.
It is guaranteed that the user cannot match mismatching built-in value type and
constraints.

Besides editing the data, a user can view informative statistics about the data
in a column to get a better understanding of the content of the database. Those
statistics depend on the value type, respectively built-in value type and they

23

5. Architecture and Design

change automatically when the value type is changed. A demonstration is shown
in figure 5.3. The following statistics are always available:

• Number of entries

• Number of unique entries

• Frequency distribution

If the value type of a column is integer or decimal, more statistics can be com-
puted:

• Sum

• Mean

• Median

• Data range

• Variance

• Standard deviation

These statistics are just a small selection of all possible statistics that could be
integrated into this software.

Figure 5.3: Example of statistics available for a column with integer value type.

24

5. Architecture and Design

In addition to modifying the data, it’s also possible to filter the values using the
search bar. This results in every row being searched for the requested value. The
row is then temporarily hidden if the value is not contained by any of its cells.
By clicking on the folder button, the user can view the project folder using the
file explorer of the Operating System (OS). A project can easily be deleted by
removing the folder from the workspace folder using the OS.

5.1.2 Backend

The backend processes all user requests forwarded by the UI. There are multiple
checks and automations to ensure that a valid Jayvee script is generated:

• Check if folder exists: During the process of creating a folder inside the
workspace, the software checks if the folder already exists to ensure that
other projects will not be overwritten.

• Check URL: Examines if the URL points to a valid CSV file.

• Determine the encoding, delimiter and enclosing.

• Some CSVs have comments or empty lines at the beginning. The software
tries to find and remove them.

• Extract column header: After detecting metadata like encoding, delimiter
and enclosing, the Jayvee Data Wrangler extracts the column names. If
the header could not be detected, it automatically assigns custom header
names (column1, column2 and so on).

• Determine column value types: The software could use some heuristics, but
to make sure nothing is missed, the software scans all entries of each column
to detect the columns value types. This is also necessary because Jayvee
does not support empty cells inside of columns with a value type other than
text. Using a heuristic and not scanning the whole file could cause some
rows to be skipped.

If at any point a check fails, the backend notifies the frontend component, which
tells the user to change parameters or restart the modification. After validation,
the changes are written into a Jayvee script, which is executed every time a
user starts an import process or saves changes made to the database via the UI.
While saving, the metadata database is also updated. If an error occurs, detailed
instructions are sent to the frontend to inform the user about further steps to fix
the problem. The user can also abort the changes by navigating back to the main
page. There they can also open created projects to view and edit their database
and Jayvee script. Of course, if the user opens a previously created project, the
same editing options mentioned above are also available.

25

5. Architecture and Design

5.2 Interaction Between Components

This section visualizes how different components of the Jayvee Data Wrangler
work together, while also describing how the user interacts with the software.
Having in mind that the software should be easy to interact with and also
provide features for experienced users, a typical interaction with the Jayvee
Data Wrangler is shown in figure 5.4. The internal process of importing a CSV
file into a database is illustrated in the sequence diagram. There are three main
components, each of which has a different functionality. In the implementation,
the parts are not so strictly separated and also consist of more components, but
the diagram is kept simple for easy understanding.
The user interacts with the software’s UI, while the UI communicates with the
backend software that creates and executes the Jayvee script to import the data
into a database. During this process the user is required to provide necessary
data, such as the folder name that will also be used to name the database, the
URL pointing to the CSV or any missing metadata. Every time the UI sends
data to the backend, it is validated. If the data is invalid, the user needs to enter
corrected data for the process to work. When the user starts the import process,
the Jayvee script is populated with the previous user input and executed via
the Jayvee interpreter. After importing the data, the user has the option of
navigating to the folder to view and edit the Jayvee file, or simply viewing
and editing the data in the software, as shown in the figure 5.5. It should be
noted that in all the figures in this chapter minor details have been omitted to
avoid confusing the reader. The demonstration illustrates the user action of
requesting the user interface to display the data, which triggers the backend to
retrieve the data from the database. The user can then perform a number of tasks:

• Edit the column name

• Change the value type

• Create a constraint

• Create a custom value type

• Display all created constraints and value types

• Delete rows

• Delete columns

• Navigate through the data

• Show the containing folder in the file explorer

• Undo changes

26

5. Architecture and Design

• Redo actions

• Save the modifications into the database

• Navigate back to the home page

• Navigate to the help page

When a user loads a previously created project, the interaction works in the same
way as just shown, except that a list of projects is generated before from which
the user chooses one to view and edit. It is noticeable that each time the backend
is called upon to save, insert or update values, it executes an internal function to
prepare the data for insertion into the Jayvee script when the user clicks the save
changes button. To give an example, figure 5.6 shows the process of creating a
new value type assuming that a matching constraint was previously created.
If a user requests to create the value type, the UI displays some input fields and
prompts the user to enter the necessary data, including the option to add more
than one constraint (this process has already been described in section 5.1.1).
After filling all required fields, the data is sent to the backend, which stores the
created value type internally. All the other non-trivial interactions are described
in detail in section B within the appendix of this thesis. Some actions can be
quite complex. For example, undoing an action (figure B.7 within the appendix)
requires that the UI keeps track of all actions done and to execute different
procedures depending on the last action.
If a row was deleted, the UI must undo all the visual modifications as well as to
initiate the backend to update its record of deleted rows. The same applies if
the last action was deleting a row. If a value type has been changed, there are
two cases to consider. In the first case, the new value type allows more values;
in the second case, the value type limits the number of valid values. The last
action that can be undone is changing the name of a column, which loads the old
column name which was saved when the user applied the new name. As always,
the changes are also saved in the backend.

27

5. Architecture and Design

Figure 5.4: Interaction between the user and software, and between different
parts of the software.

28

5. Architecture and Design

Figure 5.5: Interaction between the user and software, and between different
parts of the software when the user displays the database.

29

5. Architecture and Design

Figure 5.6: Interaction between user and software when creating a new value
type.

30

6 Details of the Implementation

The Jayvee Data Wrangler is a cross-platform software developed in TypeScript
using the framework Electron.js (hereafter referred to as Electron1). The soft-
ware consists of two main parts: frontend and backend. Both run within the
Electron.js framework, while during the early stages of development a prototype
of the background process — which works independently of Electron using com-
mand line input — was programmed. This prototype can be found in the thesis’
GitHub repository. The frontend of the Jayvee Data Wrangler consists of several
files controlling the UI and handle user input. All frontend files communicate
with the background process which contains the algorithms that, among other
things, create folders, extract metadata and save the Jayvee file.
In order to explain all the important components in detail, this chapter is divided
into three parts. First, in section (6.1) the components and structure of the pro-
ject, including the essential components that are within an Electron application,
are introduced. Section 6.2 focuses on the import of CSV files into a SQLite
database — including the detection of metadata and execution of Jayvee files —,
while in section (6.3) the algorithms that enable and execute the modifications
on the data are explicated. In the last section (6.4) some considerations about
the license of the Jayvee Data Wrangler are made, as well as an outlook is given
on how to create the executable application of the Jayvee Data Wrangler.

6.1 Components and Structure of the Project

The Jayvee Data Wrangler consists — besides from the framework — mainly of
the files shown in figure 6.1. They are classified into frontend and backend to
categorize the files which primarily control the UI, and those that have got to do
with the main logic of creating, updating, executing and storing Jayvee files and
databases. All frontend files consist of an HTML file and one or more JavaScript
files which are not directly programmed, but compiled from TypeScript files. All
backend files are developed in typescript and compiled to JavaScript. Figure 6.1
gives a better understanding of which files belong to each component and how

1https://www.Electronjs.org/

31

6. Details of the Implementation

they depend on and interact with each other.
The components do not communicate with each other directly. Instead, they util-
ize an inter-process communication mechanism by using the index.ts file, which
is intentionally omitted from the diagram to avoid unnecessary complexity. Both
the backend and the frontend use their own specific helper functions to establish
communication with each other and with the index file.

Figure 6.1: Communication between components of the frontend and backend.

The frontend consists of five main components and three helper files. The helper
files contain the code that controls the UI. This will be described in detail in
section 6.2. The backend also has helper files which are to create and modify
files and folders (e.g. insert text into the Jayvee script or create the metadata
database), and to analyze the CSV file. In addition to the files in the diagram,
there is also an app.css file which defines the overall styling of the entire software
and an index.ts file that handles the initialization of the Electron application,
as well as some communication between the files. A preload script selectively
enables features from libraries. Both features are explained later on. To avoid
making the diagram more complicated, these three files are not illustrated.
As mentioned above, the Jayvee Data Wrangler uses the open source Elec-
tron framework to run as an independent software. According to their web-
site (OpenJS Foundation, 2023a), Electron allows programmers to build cross-
platform desktop applications using web technologies such as JavaScript, HTML
and CSS. Each Electron application can be packed into different installers to run
on Windows, Linux or macOS. Shipped with its own instance of Chromium and

32

6. Details of the Implementation

having the cross-platform JavaScript runtime environment Node.js2 (hereafter
referred to as Node) included, it allows users to maintain a JavaScript codebase
without requiring native development experience (OpenJS Foundation, 2023b).
Due to the fact that Jayvee is also available via Node, it does not need to be
integrated manually and Jayvee Scrips are easy to run. In an Electron project,
users can integrate their favorite libraries and frameworks from the front-end eco-
system like Angular or React, or just develop their bespoke HTML code. Electron
is widely used (many popular apps like Discord or Signal use it) since it is main-
tained and frequently updated (OpenJS Foundation, 2023a). Because of all these
advantages and features, the Jayvee Data Wrangler is developed using Electron.
No additional framework is used in order to maintain simplicity and clearness.
Therefore, the software is written in TypeScript, HTML and CSS. Thanks to a
config file, all TypeScript code is automatically compiled to JavaScript during
development every time the application is launched or every time an installer
is generated. Using TypeScript instead of programming directly in JavaScript
makes the code not only easier to develop, but also easier to understand.

Electron behaves similarly to modern web browsers because it inherits its multi-
process architecture from Chromium. More about that can be read in the doc-
umentation3. Briefly summarized, it has three processes: Main, render and pre-
load. Details about electron explained below are taken from the official docu-
mentation (OpenJS Foundation, 2023b).
A single main process is responsible for interacting with the user. By generating
web pages, it has the capability to present a graphical user interface. It also
executes system-level operations and generates renderer processes.
Renderer processes display web pages within the application. Each page runs in
its own render process. Typically, web pages in internet browsers operate within
a restricted environment known as a sandbox. This setup restricts their access
to native resources. Developers of Electron applications have the possibility to
utilize Node.js APIs within their web pages, enabling them to perform lower level
interactions with the operating system.
For security reasons, context isolation is used. This means that Node.js and Elec-
tron APIs are only available if they are preloaded by the preload script, which is
run before the render process. The Jayvee Data Wrangler also has a fourth cat-
egory of processes: the background processes. These processes execute Node.js
scripts inside child processes in the background, completely separated from the
main and renderer processes. For example. csv_imports and its helper functions
run in a background process to interact with the file system.
Every Electron application has a main file which is loaded at the start. It is
specified along with the packages used in a package.json file, which in case of the
Jayvee Data Wrangler can be found in the GitHub project of this thesis. This

2https://nodejs.org/en
3https://www.electronjs.org/docs/latest/

33

https://nodejs.org/en
https://www.electronjs.org/docs/latest/

6. Details of the Implementation

file is active as long as the application is running. The index.ts file acts as the
main process and creates render processes to load HTML files by default (when
starting the application, see listing 6.2) or after receiving Inter-Process Commu-
nication (IPC) messages. In the provided code snippet (listing 6.1), an example
of IPC is presented. Using IPC is an efficient and secure way to call APIs, such
as the Electron or Node.js API, from the UI. The Jayvee Data Wrangler uses
IPC not only to load files, but also to exchange data between the render process
and files running in the backend.
The inter process communication works uni- and bi-directional. Following fea-
tures of Electrons IPC are used within the Jayvee Data Wrangler:

• send: Send messages

• on: Listen for messages

• invoke: Send a message and wait for an answer

• handle: Receive a message and send an answer

While the main process has direct access to Electron and Node, the render pro-
cesses require those functions to be called via ipcMain or being preloaded via a
preload script (the script used in the Jayvee Data Wrangler is in the appendix sec-
tion C). This script exposes some functions to the main window, which can then
be accessed by a variable that all render processes can use to call the functions.
Further details about IPC and preload scripts can be found in the documenta-
tion4.

1 // Routing to open new pages .
2 ipcMain . on ("newProject" , () => {
3 mainWindow ? . loadURL(
4 ‘ f i l e : //${path . join (__dirname, "src " , "newProject" , "newProject .html")} ‘
5) ;
6 }) ;

Listing 6.1: Within the software Inter-process communication (IPC) is used to
receive messages to e.g. swap the html file of the main process.

4https://www.electronjs.org/docs/latest/tutorial/ipc

34

https://www.electronjs.org/docs/latest/tutorial/ipc

6. Details of the Implementation

1 let mainWindow : BrowserWindow | null ;
2 let db : s q l i t e 3 . Database ;
3 function createWindow () {
4 // Get the primary display size .
5 const { width , he ight } = sc r e en . getPrimaryDisplay () . workAreaSize ;
6
7 // Create the browser window.
8 mainWindow = new BrowserWindow({
9 width : width ,

10 he ight : height ,
11 autoHideMenuBar : true ,
12 webPreferences : {
13 pre load : path . j o i n (__dirname , "preload . j s") ,
14 node Integ ra t i on : true ,
15 } ,
16 }) ;
17
18 // Load the startpage of the app.
19 mainWindow . l o adF i l e (path . j o i n (__dirname , "src" , "app.html")) ;
20
21 // Emitted when the window is closed .
22 mainWindow . on ("closed" , function () {
23 // Dereference the window object .
24 mainWindow = null ;
25 }) ;
26 }
27
28 // This method wil l be called when Electron has finished
29 // in i t ia l i zat ion and i s ready to create browser windows.
30 app . on ("ready" , createWindow) ;

Listing 6.2: Creating the window of the application and loading the startpage.

6.2 Importing CSV files

6.2.1 Generating and Modifying the UI

The UI always has the same structure (figure 6.2). Each page has the same
header and footer. The header contains the Jayvee Data Wranglers logo and a
main menu that allows the user to navigate to the help section and also back to
the main page. The IPC is used to navigate to other pages. The header.ts sends a
message to the IPC channel. Inside index.ts a listener waits for the message and
loads the home file into the main process. The footer contains information about
the author and the license. In between these components the UI is dynamically
generated using functions from createHTMLElements.ts.
Within createHTMLElements.ts there are functions for creating HTMLElements
like paragraphs, editable paragraphs, drop-down elements, buttons, dialogs or
bar charts for statistics. The styling of the UI-elements is wihtin a single file
(app.css). To give an example, one of the functions will be explained below. All
functions can be found well documented on GitHub.
The createEditableParagraph function creates a paragraph element with buttons
that becomes editable on click by displaying an input element. The user can

35

6. Details of the Implementation

modify or replace the current value and save it, cancel changes or restore the initial
value. The steps which the function has to execute when called are annotated in
listing 6.3, while the code has been expanded for sake of clarity.

Figure 6.2: The consistent construction of the Jayvee Data Wrangler.

1 /∗∗
2 ∗ @param {string} id − The id of the paragraph element or nulls .
3 ∗ @param {string} text − The in i t i a l text content .
4 ∗ @param {RegExp} allowedChars − The allowed characters for the input .
5 ∗ @param {number} maxChars − The number of characters allowed in the input .
6 ∗ @param {function} saveChanges − Function to ca l l when save i s clicked .
7 ∗ @returns {HTMLDivElement} − The created paragraph element container .
8 ∗/
9 export function createEdi tab leParagraph (id : string , t ex t : string ,

a l lowedChars : RegExp , maxChars : number , saveChanges : () => void) :
HTMLDivElement {

10 // Create container element which holds the paragraph , input f i e ld and
buttons .

11 // Create paragraph element , input element , edit , restore , save and
cancel button .

12 // Function that shows the input when edit i s clicked .
13 // Function to save the input i f i t does not contain restricted

characters and to display a warning otherwise .
14 // Function to restore the original value .
15 // Function to abort the changes and restore the original value .
16 // Functions to handle enter and escape key press .
17 // Functions to show and hide UI elements and to add l isteners for enter

and escape key .
18 // Return the container .
19 }

Listing 6.3: The function createEditableParagraph creates a paragraph element
which can be edited. To avoid confusion, only the descriptions are shown and
some similar or trivial code sections are omitted.

36

6. Details of the Implementation

These functions are mainly used within the files newProject.ts, viewDatabase.ts to
dynamically create and update the UI. At the start of a newProject the process
of importing a CSV is automatically initiated by calling the function createNew-
Project within the file csv_import.ts using IPC after loading newProjcet.html
(listing 6.4).

1 newProject . t s :
2 // Ensure DOM content i s loaded before accessing elements .
3 document . addEventListener (’DOMContentLoaded’ , (event) => {
4 //Start the creation of a new project .
5 window . e l e c t r on . send (’ createNewProject ’ , null) ;
6 }) ;
7
8 index . t s :
9 import { createNewProject , c leanup } from "./ src/dataWrangler/csv_import" ;

10 // Start the process of creating a new project .
11 ipcMain . on (’ createNewProject ’ , async (event) => {
12 try {
13 // The UI has to be cleaned up,
14 // e .g . remove HTML Elements from previous imports or reset variables .
15 await c leanup () ;
16 await createNewProject () ;
17 } catch (e r r o r) {
18 // Send error back to the renderer process .
19 throw new Error ((e r r o r as Error) . message) ;
20 }
21 }) ;

Listing 6.4: Starting the process of importing a CSV into a database using IPC.

The UI is now controlled by the code inside the background process
csv_imports.ts. Every time a user saves or restores data, clicks a button to start
the import process or to view the database, newProject.ts sends the values or
instructions to the background process which in return, sends messages to create
HTML elements, which then are created within newProject.ts using createHTM-
LElements.ts and attaching them to the newProject.html. The diagram in the
previous chapter (figure 5.4) allows retracing the aforementioned information. In
this diagram, the background process is represented as the backend, while the
rendering process is represented as the UI.

6.2.2 Analyzing CSV files

Creating a new project involves initializing the project folder, detecting metadata
like encoding, delimiter and enclosing, as well as creating and running the Jayvee
file. Recalling the diagram from figure 5.4 into memory a working folder has to
be created before analyzing the CSV file. All project folders are created within a
folder called workspace which is located inside an application folder (jayvee-data-
wrangler) in the users app-data directory. This would typically be, for example,
∼ /.config/jayvee− data− wrangler/ on Linux.

37

6. Details of the Implementation

To receive various inputs like the folder name, an asynchronous function (listing
6.5) was developed which listens once on the IPC channel sendDataToCSVImports
and returning a promise which resolves with the message (user input). Asyn-
chronous functions are used in Typescript/JavaScript to wait for a return value
of a function before continuing (Mozilla Foundation, 2024).

1 /∗∗
2 ∗ Function to await data which i s needed to continue the workflow .
3 ∗ @returns {Promise<string>} A promise that resolves with the element to
4 ∗ which the data belongs , along with the data .
5 ∗/
6 async function waitForData () {
7 return new Promise ((r e s o l v e) => {
8 // Define the IPC event handler .
9 const handler = (event : any , [input , data] : [string , any]) => {

10 // Process data or perform actions here .
11 conso l e . l og (’Received data : ’ , data) ;
12 // Remove the l istener to prevent memory leaks .
13 ipcMain . o f f (’sendDataToCSVImports ’ , handler) ;
14 // Resolve the promise with the received data .
15 p i p e l i n e [input] = data ;
16 r e s o l v e ([input , data]) ;
17 } ;
18 ipcMain . on (’sendDataToCSVImports ’ , handler) ;
19 }) ;
20 }

Listing 6.5: Function to listen on an IPC channel to receive data from other
files.

All received data will be stored within a pipeline object (see appendix C, section
C.2). Because there is a certain sequence of events, it is always known where the
data belongs to and therefore, exactly where it must be stored. The data from
this object will be stored in the Jayvee script if the user clicks the import csv
button or saves changes made to the database.

Figure 6.3: Steps during the process of importing a CSV into a database.

The code for creating a directory, modifying files or creating databases can be

38

6. Details of the Implementation

found inside generate_and_update_files_and_folders.ts. Algorithms that ana-
lyze the CSV file or modify parameters before saving them in the Jayvee file are
inside helpers.ts. Before the contents of the CSV can be viewed, a project folder
must be created, the URL has to be checked for validity and the CSV file must
be downloaded and analyzed to determine the metadata.
To create a directory, the Node modules path and fs are used to determine the
user’s path and to create the project folder (listing C.3 of appendix C). At each
step, if the algorithms detect something unsuitable, e.g. if the folder name already
exists, an IPC message is send to newProject.ts. Thereafter, the user has to cor-
rect their input.
To analyze the CSV file, it is downloaded and thereby checked for validity. Among
other things, the Node library Axios is used to make HTTP-requests. Each URL
is validated by checking the file header.Because CSV files may be saved in a
format other than CSV, the file is also checked for other schemas, as well as the
file extension. This pre-validation prevents that URLs arer pointing to non-CSV
files (e.g. PDF). It is important to note that there is a timeout of one minute in
order to prevent any issues.
After the file is downloaded, it is interpreted. This includes the following in the
order listed:

1. Identify the encoding

2. Detect comments

3. Extract preview data

4. Identify the delimiter

5. Identify the enclosing

6. Extract the header

7. Rename duplicates within the header

8. Create header-letter mapping

9. Determine value types of the columns

The encoding is identified using the Node library chardet and checked to see if it
is supported by Jayvee. If it is not detected or supported, the user has to choose
a different encoding.
Comments could most likely occur at the beginning of a CSV file. They are
detected scanning the file line by line and comparing if the line starts with one of
the common comment indicators (’#’, ’//’, ’;’, ’–’, ’/*’, ’ !’, ’%’, ’[’) until a line has
no comment indicators. Empty lines between comment lines are also recognized.
Not only is the number of comment lines saved for the Jayvee pipeline, but the
comment lines are also stored in a text file in the project folder so that the user
can view them.

39

6. Details of the Implementation

To identify encoding, delimiter and enclosing manually, a preview of the data is
generated. For that, the first row of the CSV is read by skipping the comment
lines, empty lines and header. If the CSV has no header, the second line is read.
Identifying the delimiter takes advantage of the fact that a character occurs
frequently in a row if it is the delimiter, but not very often if it is part of an
entry. By reading the first line of the file (after skipping comments and empty
lines) and checking which potential delimiter (’,’, ’;’, ’\t’, ’|’, ’:’, ’ ’) occurs the
most (listing 6.6), the delimiter can usually be identified.

1 const po t en t i a lDe l im i t e r = [’ , ’ , ’ ; ’ , ’\t ’ , ’ | ’ , ’ : ’ , ’ ’] ;
2 let be s tDe l im i t e r : string | null = null ;
3 let maxDelimiterCount = 0 ;
4
5 // Count the occurrences of each delimiter in the sample l ines .
6 for (const d e l im i t e r o f p o t en t i a lDe l im i t e r) {
7 i f (sampleLine) {
8 const de l imiterCount = sampleLine . s p l i t (d e l im i t e r) . l ength − 1 ;
9 // Update the best delimiter i f the count i s higher .

10 i f (de l imiterCount > maxDelimiterCount) {
11 maxDelimiterCount = de l imiterCount ;
12 be s tDe l im i t e r = de l im i t e r ;
13 }
14 }
15 }

Listing 6.6: Excerpt from the function identifyCSVDelimiter. It shows the
procedure of finding out the delimiter by checking the frequency of potential
delimiters.

The enclosing character is determined using the same frequency check procedure
with two potential enclosing characters: " and ’. Later, knowing the enclosing,
it will be stored in the Jayvee file using the respective other character to identify
it as a character (e.g. " will be stored as ’"’).
It is often challenging to definitively determine whether the first row of a CSV file
serves as the header or as the first row of data. Nevertheless, there are scenarios
where the initial line can be disregarded. Given that the header descriptions
usually do not contain numeric values and numeric header values are also not
supported within Jayvee The JValue Project, 2024, a row containing a numeric
value cannot be the header. The code within the respective function (getHeader)
therefore,checks every entry of the first line (skipping comments and empty lines)
if it is not a number. The entries are identified by separation through the de-
limiter. This is also the main reason why the order of the interpretation step is
essential. If a header contains duplicates, they are renamed by adding an under-
score and a current number. If no header is detected, one is generated by naming
the columns like this: col1, col2, ...
Having identified the header, a header-letter mapping is crated. This mapping
from column headers to Excel-style column letters is used later on to identify

40

6. Details of the Implementation

columns within the Jayvee file. For example, deleting a row in Jayvee requires
inserting the letter of the deleted row (The JValue Project, 2024).

The last step before executing the Jayvee file is the most complicated. The value
types of a column must be determined. Detecting the wrong value type, as well
as making any other mistakes before, would most likely lead to the crash of the
execution of the Jayvee pipeline. That is why in the worst case the function for
identifying the value type has to scan the whole CSV file.
The function (determineColumnValueTypes) reads the file line by line, skipping
comments and empty lines. If a column was already assigned with the value type
text, then it logically cannot be assigned with any other value type, so those
columns are skipped. If a value type is not determined yet, it is tested in various
ways. The order of the tests is essential, because e.g. testing for a text before
testing for an integer would cause all integer values (as they are also text values)
to be text. The following conditions are listed in the order they are used to check
a value type. If a value fullfills the first condition its value type is text, if not the
second condition is checked (and so on):

• if value == ” → text, because no other value type is capable taking entries
with empty cells.

• if value.toLowerCase() == "true" || value.toLowerCase() == "false"
→ boolean

• const numberRegex = /^[+-]?([0-9]*[,.])?[0-9]+([eE][+-]?\d+)?$/;
if numberRegex.test(value) → integer

• const decimal = Number.parseFloat(value.replace(’,’, ’.’)); const integer =
Math.trunc(decimal); if decimal == integer && columnValueTypes[index]
!= "decimal" → If the column not already contains decimal values it can
be oftype integer, else its value type is decimal.

• If it is not determined yet, the value type is text.

If all columns are assigned with the value type text, the algorithm stops, because
once a column’s value type is detected as text, no other value type can be as-
signed. As soon as the value types are detected, newPage.ts receives a message
to create a button to run the Jayvee pipeline. When it is clicked, the previously
saved data is written into the Jayvee script. During this process, clicking on
the UI is disabled. Because the function shown in listing 6.7 is also used when
modifying the database, it can insert constraints and value types, and delete rows
and columns. The function also stores the metadata which cannot be restored
from the Jayvee script or database in a separate SQLite database and executes
the script to import the CSV into a SQLite database using the Node module
child_process that allows the scripts to be executed.

41

6. Details of the Implementation

1 ipcMain . on (’ pipelineStart ’ , async () => {
2 // Create the Jayvee f i l e .
3 await f i l e H e l p e r s . wr i t eToFi l e (p i p e l i n e . d i r e c to ry , "pipeline . jv" ,
4 ‘ p i p e l i n e Tes tP ipe l i n e { Extractor −> TextF i l e In t e rp r e t e r −>RangeSe lector
5 −>CSVInterpreter−>ColumnDeleter−>RowDeleter−>Tab le In te rpre t e r −>Loader ;
6 b lock Extractor o f type HttpExtractor { u r l : "${pipeline . url}" ; } ‘) ;
7 // Create the pipeline .
8 await f i l e H e l p e r s . appendToFile (p i p e l i n e . d i r e c to ry , "pipeline . jv" ,
9 ‘ b lock Tex tF i l e I n t e r p r e t e r o f type Tex tF i l e I n t e rp r e t e r {

10 encoding : "${pipeline . encoding}" ; } ‘) ;
11 // Remove comments at the beginning of a f i l e .
12 await f i l e H e l p e r s . appendToFile (p i p e l i n e . d i r e c to ry , "pipeline . jv" ,
13 ‘ b lock RangeSe lector o f type TextRangeSelector {
14 lineFrom : ${ p i p e l i n e . commentLines + 1} ; } ‘) ;
15 // Enclosing and delimiter .
16 [. . .]
17 // Remove cols and rows .
18 [. . .]
19 // Create the table interpreter .
20 await f i l e H e l p e r s . appendToFile (p i p e l i n e . d i r e c to ry , "pipeline . jv" ,
21 ‘ b lock Tab l e In t e rp r e t e r o f type Tab l e In t e rp r e t e r {
22 header : fa l se ;
23 columns : [‘) ;
24 for (let i = 0 ; i < p i p e l i n e . header . l ength ; i++) {
25 i f (i == p i p e l i n e . header . l ength − 1) {
26 await f i l e H e l p e r s . appendToFile (p i p e l i n e . d i r e c to ry ,"pipeline . jv" ,
27 ‘"${pipeline . header [i]}" o f type ${ p i p e l i n e . va lue types [i] }] ; } ‘) ;
28 } else {
29 await f i l e H e l p e r s . appendToFile (p i p e l i n e . d i r e c to ry ,"pipeline . jv" ,
30 ‘"${pipeline . header [i]}" o f type ${ p i p e l i n e . va lue types [i] } , ‘) ;
31 }
32 // Store metadata in the database for e . g . loading the project .
33 [. . .]
34 // Store the database connection .
35 await f i l e H e l p e r s . appendToFile (p i p e l i n e . d i r e c to ry , "pipeline . jv" ,
36 ‘ b lock Loader o f type SQLiteLoader { tab l e : "${pipeline . table}" ;
37 f i l e : "${pipeline . databasePath}/${pipeline . database}. sq l i te" ; } ‘)
38 // Close the pipeline .
39 await f i l e H e l p e r s . appendToFile (p i p e l i n e . d i r e c to ry , "pipeline . jv" , ‘ } ‘) ;
40 // Create value types .
41 for (let value type o f p i p e l i n e . c r ea t edva lue types) {
42 await f i l e H e l p e r s . appendToFile (p i p e l i n e . d i r e c to ry , "pipeline . jv" ,
43 ‘ va lue type ${ value type [0] } o f type ${ value type [1] }
44 { c on s t r a i n t s : [${ value type [2] . j o i n (’ , ’) }] ; } ‘) ;
45 // Store metadata in the database for e . g . loading the project .
46 [. . .]
47 }
48 [. . .]
49 // Create constraints .
50 [. . .]
51 // Execute the pipeline .
52 const f i l ePa t h = (path . j o i n (p i p e l i n e . d i r e c to ry , "pipeline . jv")) ;
53 exec (‘ jv ${ f i l ePa t h } ‘ , (e r r o r) => {
54 i f (e r r o r) {
55 conso l e . l og (‘ e r r o r : ${ e r r o r . message } ‘) ;
56 mainWindow ? . webContents . send (’ pipelineFinished ’ , true ,
57 [null , null , null]) ;
58 } else {
59 mainWindow ? . webContents . send (’ pipelineFinished ’ , false ,
60 [p i p e l i n e . d i r e c to ry , p i p e l i n e . database , p i p e l i n e . t ab l e]) ;
61 }
62 }) ;
63 }) ;

Listing 6.7: Function to create the Jayvee Script. To keep it clear and concise,
onyly some parts are shown serving as an example.

42

6. Details of the Implementation

If an error occurs during the import, the user is prompted to modify the metadata.
To find out what could have gone wrong, they can open the project directory in
the default file explorer and have a look at the CSV or the Jayvee pipeline.
Opening the folder is delegated to the main process using IPC. The folder is
opened using Electrons shell module.
After a successful import, the user can view the data by clicking on the newly
generated button. The database view is generated within viewDatabase. To know
the location of the database and know which table to display, these parameters
are passed encoded in the URL (appendix C.4). This is possible because Electron
uses a browser environment.

6.3 Modifying data

After the user finishes the import of the database and proceeds to view the
database, viewData.html is displayed. Within its TypeScript file, UI elements
are also loaded via the helper functions from createHTMLElements.ts except
from creating the view of the database. This view is created using the jQuery
JavaScript library datatables5. Supporting pagination, search and other features,
this highly flexible tool facilitates the display of the data.

To use datatables, the data has to be loaded from the database first. This is done
using the SQLite3 function each(). This function executes an SQL statement and
returns the results line by line (Lockyer, 2022). The database is loaded in chunks
and only 100 lines are loaded. This increases performance and enables the user
not having to wait untill everything is loaded and enables the user to interact
with the datatable. This is very efficient on large databases. If the user clicks
on the next button within the datatable, another 100 rows are loaded (see listing
6.8. Loading all rows at once would block the user interface and could cause
unexpected wait times.
All database calls are, invoked via IPC, made within the main process. Bootstrap6

is used to determine when the page has finished loading. Immediately after that,
the UI is generated including populating the datatable (appendix C.5 and C.6)
and creating a toolbar with buttons for saving the content, performing undo and
redo, creating new constraints and value types, as well as displaying them.
To get the header of the table, another database call is invoked. The functions
within viewDatabase.ts are also used to display the data when a previous project
is loaded. Therefore, also metadata in the background process (csv_import.ts)
has to be restored, as it might not be present. Value types are then loaded from
csv_import.ts using IPC communication and added into its own row below the
header names. Below that buttons for deleting columns, viewing statistics and

5https://datatables.net/
6https://www.npmjs.com/package/bootstrap

43

https://datatables.net/
https://www.npmjs.com/package/bootstrap

6. Details of the Implementation

switching the value type are added, as well as a column is added to contain
buttons for deleting rows.

1 // Load the data from the database . The data i s loaded in chunks of 100 rows
2 // to improve performance .
3 let pageS ize = 10 ;
4 let o f f s e t = 0 ;
5 setTimeout (async () => {
6 await dbEach (‘SELECT rowid ,
7 ∗ FROM "${tableName}" LIMIT ${ pageS ize ∗10} OFFSET ${ o f f s e t } ‘) ;
8 o f f s e t += pageSize ∗10 ;
9 } , 1) ;

10
11 // I f the user c l icks on the next button , nerxt 100 rows are loaded .
12 dataTable . on (’page ’ , async function () {
13 await dbEach (‘SELECT rowid ,
14 ∗ FROM "${tableName}" LIMIT ${ pageS ize ∗10} OFFSET ${ o f f s e t } ‘) ;
15 o f f s e t+=pageS ize ∗10 ;
16 }) ;

Listing 6.8: Dynamical loading of data into the datatable.

Creating a constraint or value type is straightforward and involves creating UI
elements and validating the data using regular expressions. When the user finishes
the creation process, the constraint or value type is saved in an array and — as
every created or modified value — send to the background process to be stored
into the Jayvee script on saving the database. A new value type can immediately
be used within the datatable. Editing the header name and displaying statistics
(they are computed based on the value type or Built-in Value Type if the value
type is a custom generated one) is as well straightforward.
As it can be seen in the appendix C.5 (lines 45 and 46), every time the value
type is changed, two functions are called: checkValueType and modifyDisplay.
They are also called during undo and redo actions, and if the user navigates to
another page. Both functions iterate through the displayed values row by row
and are called again if the user navigates to another page of the datatable which
makes them quite performant. modifyDisplay is also called whan a row is deleted.
Both functions are used to modify the display of the data. The data is directly
modified within the data table to recreate the process that Jayvee performs when
the modified script is executed and to visually indicate changes by crossing out
values.

The software does not keep track of the deleted values, but of the deleted rows, as
deleting a value in Jayvee leads to deleting the entire row. It also keeps track of
which columns lead to the deletion of a row, so that all values are checked again
if that specific rows value type is changed. To illustrate that, an example is given
in figure 6.1. The function checkValueType examines if the value matches the
value type of the column (or if the built-in value type fits). If it does not match,
its row is marked as crossed out by saving it to a map containing all crossed out

44

6. Details of the Implementation

rows. This map is also used to store crossed-out rows if the user deletes a row.
If the user switched to a custom value type and its built-in value type fits, the
constraints are checked. In listing 6.9, there is a demonstration of how a value is
validated against a constraint. In this example, after changing the value type of
two columns, the crossedOutRows map would contain {3 => [’2’, ’3’]}. Changing
e.g. column 3 back to decimal would therefore not lead to a visual change for the
last row, as row 2 would still be in the map ({3 => [’2’]}).

Name Age Income Raise
value type text integer decimal decimal

1. Lisa 18 25000 5
2. Robert 49 96000 2.9
3. Tom 37 5135,50 3.8

Name Age Income Raise
value type text integer integer integer

1. Lisa 18 25000 5
2. Robert 49 96000 2.9
3. Tom 37s 5135,50 3.8

Table 6.1: Example showing the change of the value type of two columns.

1 i f (constra intType ? . i n c l ud e s (’Denylist ’)) {
2 const deniedValues = const ra intData ? . [3] ;
3 i f (deniedValues) {
4 const deniedValuesArray = deniedValues . s p l i t (’ , ’) ;
5 i f (deniedValuesArray ? . i n c l ud e s (c e l l)) {
6 i f (! crossedOutBy . i n c l ud e s (dropdown . id))
7 crossedOutBy . push (dropdown . id) ;
8 } else { // Cell value f i t s the type of the column.
9 crossedOutBy = crossedOutBy . f i l t e r ((va lue)

10 => value !== dropdown . id) ;
11 crossedOutRows . set (rowid , crossedOutBy) ;
12 }
13 }
14 } else i f (constra intType ? . i n c l ud e s (’Length ’)) {
15 const min = Number(const ra intData ? . [3]) ;
16 const max = Number(const ra intData ? . [4]) ;
17 i f (c e l l . l ength < min | | c e l l . l ength > max) {
18 i f (! crossedOutBy . i n c l ud e s (dropdown . id))
19 crossedOutBy . push (dropdown . id) ;
20 } else { // Cell value f i t s the type of the column.
21 crossedOutBy = crossedOutBy . f i l t e r ((va lue)
22 => value !== dropdown . id) ;
23 crossedOutRows . set (rowid , crossedOutBy) ;
24 }
25 }

Listing 6.9: Example of validating values against constraints.

45

6. Details of the Implementation

Modifying the style of the values follows the same process. The style of a column
is reset if the function is called within the undo function and a deletion of a
column is undone. In other cases, the algorithm checks if the value was only
crossed out by this column and now is no longer crossed out. Then its style
is resetted. In all other cases, if the value does not match the value type, the
function modifies its style. A particularity is that columns that are deleted and
already crossed out are skipped. This can be observed in the example shown in
listing 6.10.
If at any time modifications are made, the toolbar buttons are also enabled/
disabled. For example, changing a value type enables the save and undo buttons,
but disables the redo button as the state from which a redo could be performed
has been overridden.

1 allRows . forEach ((row) => {
2 // Get the cel l , +1 because of the index column.
3 const c e l l = (row as HTMLTableRowElement) . c e l l s [index + 1] ;
4 // Reset the row style only i f i t i s not crossedOut by another column.
5 const rowid = (row as HTMLTableRowElement) . c e l l s [0] . innerText ;
6 let crossedOutBy = crossedOutRows . get (Number(rowid)) ;
7 i f (crossedOutBy && crossedOutBy . l ength < 1) {
8 // Dropdown is the only one crossing out this row −> reset style
9 for (let i = 1 ; i < (row as HTMLTableRowElement) . c e l l s . l ength ; i++){

10 // Skip the current column,
11 // i f i t was deleted or i f the row was deleted .
12 i f (deletedColumns . i n c l ud e s (i) | |
13 deletedRows . i n c l ud e s (Number(rowid))) continue ;
14 (row as HTMLTableRowElement) . c e l l s [i] . s t y l e . t extDecorat ion =
15 ’unset ’ ;
16 (row as HTMLTableRowElement) . c e l l s [i] . s t y l e . c o l o r =
17 ’#000000 ’ ;
18 }
19 }
20 // I f the ce l l value does not match the selected type , cross i t out .
21 i f (baseva lue types . i n c l ud e s (dropdown . va lue) | |
22 dropdown . va lue === ’boolean ’) {
23 // Remove empty entries i f the value type i s not text .
24 i f ((dropdown . va lue != ’ text ’ && c e l l . innerText == ’ ’) | |
25 ! matchesType (c e l l . innerText , dropdown . va lue)) {
26 // Cell of collumn is empty.
27 for (let i = 1 ; i <(row as HTMLTableRowElement) . c e l l s . l ength ; i++){
28 // Skip the current column, i f i t was deleted .
29 i f (i == index + 1 && deletedColumns . i n c l ud e s (i)) continue ;
30 (row as HTMLTableRowElement) . c e l l s [i] . s t y l e . t extDecorat ion =
31 ’ l ine−through ’ ;
32 (row as HTMLTableRowElement) . c e l l s [i] . s t y l e . c o l o r =
33 ’#cccccc ’ ;
34 }
35 }
36 }

Listing 6.10: Excerpt from the algorithm that modifies the display of values.

Another approach to modifying the database would be to apply changes directly
to the Jayvee file and execute it. This would make the algorithms much shorter
at first glance, but would result in longer run times and delays, because not only

46

6. Details of the Implementation

the pipeline needs to be executed, but all data has to be reloaded every time a
change has been made. Also, changes would be applied to all data, not just the
data that is currently displayed on the screen, which is quite inefficient. If, as
it is implemented in the Jayvee Data Wrangler, the changes made to the data
should be visible and restoring to a certain point possible, the algorithms would
also become quite complex.
When the user clicks undo, the button listener is invoked and restores the previous
state. The algorithm distinguishes between the actions performed.

• Column removed: Undo the cross out of the column and remove the row
from the deleted columns record.

• Row removed: Undo the cross-out of the row and remove the row from the
deleted rows record.

• Header name changed: Restore the previous header name.

• Value type changed: Change the value of the corresponding dropdown,
check the value type for this row and modify the display of values.

After that, the action which was undone is saved in an array, so that the user
can redo it and the changes are also sent to csv_imports.ts. Redo works similar
to undo, except that it must — of course — do the opposite of each action.
The code for the procedure described can be found in the GitHub repository
associated with this thesis.

Finally, when the user clicks on save, the backend is invoked via IPC and saves
the modifications into the Jayvee file and executes it. The user will be notified
within the UI if saving was successful or an error occurred. The user can then do
further modifications or navigate back to the main menu, where they can create
a new project or view existing projects. If an error occurs, they can change the
metadata to avoid the error or cancel the changes by navigating back to the home
page (and start again). Existing projects can be deleted by removing the folder
via the file explorer. If a user edits the database using other tools, they must be
aware that the metadata database may also need to be edited if metadata has
been edited (e.g. value type changed) or columns have been deleted. Otherwise,
the project may not load using the Jayvee Data Wrangler. The Jayvee script can
be edited by other tools because it is not used to load values, but is overwritten
when the Jayvee Data Wrangler is used to edit the database.

6.4 License Considerations

On one hand, the Jayvee Data Wrangler should be accessible to everyone and
extensible, and its code is reusable for everyone. Nevertheless, no guaranties are
made to users out of precaution matters. Therefore, its code is published as open

47

6. Details of the Implementation

source project under the MIT license 7, which grants the rights of modification and
redistribution without any charge, but does not give any warranties. When using
the executable application version of the Jayvee Data Wrangler, the software is
easy to use without programming experience (as already described in the previous
sections and chapters). If the Jayvee Data Wrangler were available for download
as a ready-to-use application — including all the libraries it uses (and therefore
the libraries used within them) — it would have to be checked for the correct
license(s), which requires advanced legal expertise (GitHub, Inc., 2024). Thus,
the instructions for building this application are provided in the README of the
GitHub repository, but the application is not available as executable, because it
would contain 3rd party code.

7https://opensource.org/license/mit

48

https://opensource.org/license/mit

7 Evaluation

In this chapter, the Jayvee Data Wrangler’s evaluation is presented. First, the
fulfillment of the requirements is checked in section 7.1. Then, some tests demon-
strate the functionalities of this software (section 7.2). In the final section 7.3
of this chapter, the software is classified and compared to other software already
shown in chapter 2.

7.1 Requirements Evaluation

The Jayvee Data Wrangler is evaluated in terms of fulfilling the requirements
stated in chapter 4. First, the functional requirements are evaluated. Table 7.1
indicates which prerequisites were met.

The functional requirements 1-5 are fulfilled. Necessary explanations are provided
below.
FR-1: All sub-requirements are fulfilled up to the point to which the user inserts
invalid data. The software contains algorithms that analyze the URL in order
to ensure that a valid CSV will be imported into a database. Other algorithms
recognize all the metadata required to create and execute the underlying Jayvee
script. In case the metadata can not be recognized, the user has to insert it.
Otherwise, the software will not continue. Of course, there is a minor chance
that the software recognizes some metadata incorrectly, which could lead to the
import of wrong data. Also, — in case the user inserts incorrect metadata — the
software may not work as the underlying Jayvee script may not execute properly.

FR-2: The user can edit all the parameters stated in FR-2.1-2.4. As updates of
the database (when changes are saved by the user) are done via an execution of
a modified Jayvee script, all concepts of Jayvee are complied.

FR-3: Each CSV file is imported separately and a separate script is generated
for each of them as soon as the user clicks on the import button. Updating
the database presupposes the update of the Jayvee script, since the database is
updated by executing an updated Jayvee script. All Jayvee scripts are editable
as they are stored in separate files on the users device.

49

7. Evaluation

FR-4: The UI is kept minimalistic. The user will be guided step by step through
the import of a CSV file. All actions a user can perform are also explained within
the help section of the software.

FR-5: The user can generate and display statistics via one simple click of a button.
These statistics also vary when changing a column’s value type. Statistics for
deleted columns are disabled.

FR-6 is fulfilled up to a certain point, because all input fields are either restricted
to a set of characters that the operating system or Jayvee accepts, or are checked
for invalid inputs before proceeding (with a warning being displayed). When the
user enters wrong metadata, it could be considered as invalid input, which would
violate this requirement. Unfortunately, it is out of the programmer’s reach to
avoid human (users) mistakes.

The non-functional requirements are mostly fulfilled: NFT-1 is by using only
publicly available libraries from Electron and Node.

NFR-2 is also fulfilled as it does not depend on proprietary libraries and is pub-
lished under the MIT license.

NFR-4 is partially fulfilled. While NFR-4.1 and 4.2 are fulfilled, NFR 4.3 is
so only partially, as most of the important components are annotated with
comments, but not all. There is also external documentation in the GitHub
README.

ID Fulfilled ID Fulfilled
FR-1 yes NFR-1 yes
FR-2 yes NFR-2 yes
FR-3 yes NFR-3 yes
FR-4 yes NFR-4 partially
FR-5 yes
FR-6 yes

Table 7.1: Summary of requirement fulfillment

7.2 Examples of Testing

To evaluate the functionality of the Jayvee Data Wrangler not only the code
was analyzed, but also tests were performed. Testing the development workflow,
automated tests are performed using GitHub workflows to verify that all required
node libraries and dependencies can be installed, and code can be compiled. To
test the functionality of Jayvee Data Wrangler, several CSV files were imported
using Jayvee Data Wrangler. It was checked if the metadata was recognized
correctly and if the Jayvee script ran as expected (and therefore the data was

50

7. Evaluation

imported correctly). Of course, further testing was done to see if the data could
be modified after import, including creating custom data types. To provide a
simplified overview of these tests, several examples are presented.

• Importing a .csv file without comments1: The CSV used to test the Jayvee
Data Wrangler had also the CSV-extension. The metadata was recognized
correctly and the import worked within a few seconds. Therefore, — as it
was executed to import the data into the database — also the Jayvee file
has been created correctly (also in all further tests).

• Import of a .txt file with comments2: This file contained the CSV, but
also comments at the beginning. The comments were also detected and
extracted to a separate file. Everything worked as expected.

• Importing of a large CSV file with comments 3: This file’s encoding was not
detected automatically. But after setting it manually to UTF-8, importing
worked. The test took a few seconds longer as the previously tested files,
because the file had more than 100,000 entries.

Other functionality of the software (such as displaying previously created projects
or displaying the help section) was also tested and worked as expected.

7.3 Software Classification

The Jayvee Data Wrangler (because it is an open source software) is mainly ori-
ented towards the free data wrangling tools. If performs the basic data wrangling
tasks stated in chapter 2. Additionally to this, it can be used without program-
ming experience or presupposed knowledge about Jayvee or other ETL languages.
Being the first tool for data wrangling based on the Jayvee ETL language, ob-
viously makes it a prototype. Thus, it might present some issues a user would
possibly encounter while using Jayvee (e.g. execution stuck on big CSV files).
Compared to other software, the Jayvee Data Wrangler stands out due to the
fact that it can be used by non-programmers and is at the same time a tool
to simplify the creation of ETL pipelines. Not only the processed data is ex-
ported, but also the created ETL pipeline. Table 7.2 provides a comparative
overview of the features offered by the Jayvee Data Wrangler in contrast to other
software. It can be observed that certain software applications necessitate prior
programming knowledge. This is especially true for Python Pandas (as it is a

1https://geo.sv.rostock.de/download/opendata/museen/museen.csv
2https://data.bsh.de/OpenData/DOD/MO_H_CHLA/MO_H_CHLA_2019.txt
3https://www.stats.govt.nz/assets/Uploads/International-trade/

International-trade-June-2023-quarter/Download-data/
overseas-trade-indexes-june-2023-quarter-provisional.csv

51

https://geo.sv.rostock.de/download/opendata/museen/museen.csv
https://data.bsh.de/OpenData/DOD/MO_H_CHLA/MO_H_CHLA_2019.txt
https://www.stats.govt.nz/assets/Uploads/International-trade/International-trade-June-2023-quarter/Download-data/overseas-trade-indexes-june-2023-quarter-provisional.csv
https://www.stats.govt.nz/assets/Uploads/International-trade/International-trade-June-2023-quarter/Download-data/overseas-trade-indexes-june-2023-quarter-provisional.csv
https://www.stats.govt.nz/assets/Uploads/International-trade/International-trade-June-2023-quarter/Download-data/overseas-trade-indexes-june-2023-quarter-provisional.csv

7. Evaluation

programming language library), but also to a certain degree for Apache Spark
and MS Data Wrangler. Apache Spark has an easy-to-understand SQL language
that allows it to be used without any programming knowledge, nevertheless, to
use its whole potential programming is indeed required. MS Data Wrangler can
be used without any programming experience, but it runs within a code editor/
development environment, so it presents a certain barrier to pass first. Since it
generates Python Pandas code, it can also be expanded to create complex evalu-
ations, as well as automations. The Jayvee Data Wrangler, as it is a prototype,
currently only supports CSV files. The software has been developed to load, filter
and prepare data for other applications (for example complex evaluations). As
this tool generates ETL pipelines using the Jayvee language, the user can also
update the data and create automations by running the Jayvee script (in certain
time periods).

52

7.
E

valuation

Software/Library Programming
required

Supports other
files than CSV

Generate
statistics

Generate
Evaluation

Create ETL pipelines
or automations

Python Pandas yes yes yes yes yes
Microsoft Data Wrangler partially yes yes partially partially
Apache Spark partially yes yes yes yes
Amazon Sagemaker
Data Wrangler no yes yes yes yes

Alteryx Analytics
Cloud Platform no yes yes yes yes

OpenRefine no yes yes no no
Jayvee Data Wrangler no no yes no yes

Table 7.2: Features of the Jayvee Data Wrangler in comparison to other software.

53

7. Evaluation

54

8 Conclusion and Outlook

The objective of this thesis was to develop a data wrangling software based on
the DSL Jayvee. The language components were analyzed and explained. Other
software was presented and its features were taken into consideration for the
requirements of the Jayvee Data Wrangler, as well as potential users of the soft-
ware. At first, the software was developed as a command-line prototype and then
converted to an executable Electron application. The software recreates a Jayvee
ETL pipeline by guiding the user though that process. Most of the necessary
data is recognized automatically by analyzing the CSV file provided by the user
via a URL. Most of the required data is automatically detected by parsing the
CSV file provided by the user via a URL (and if not recognized automatically
encoding, delimiter and enclosing). The editing also works within the graphical
user interface. The processes of deleting rows and columns, the change of value
types, the creation of constraints and value types follow the rules of Jayvee which
are recreated in order to visualize changes before being inserted into the Jayvee
code files, which is used to permanently change the database.

Compared to other software, the Jayvee Data Wrangler presents some advantages
and disadvantages that have already been shown in chapter 7. On the one hand,
it stands out because it does not require any programming knowledge to use, and
it also creates an ETL pipeline. On the other hand, it currently only supports
CSV files passed through a URL and it cannot create evaluations yet.

The Jayvee Data Wrangler does not utilize Jayvee during the modification of the
data until the user decides to permanently save the database, because of the in
chapter 6 already clarified time-consuming disadvantages. If Jayvee adds incre-
mental execution and caching in a future release, the algorithms that represent
changes to the data could be rewritten, as they would likely be shorter. In future
versions of the Jayvee Data Wrangler, importing other files from the internet like
XLSX or importing files from the file system could be implemented. If more file
types are supported in future releases of Jayvee, they could also be integrated into
Jayvee by extending the functions that detect the metadata. Therefore, within
the corresponding files on GitHub, annotations are made that explain adding
further features.

55

8. Conclusion and Outlook

Another example of extending the Jayvee Data Wrangler is the possibility of
adding support for other database systems, like PostgreSQL. The feature of gen-
erating statistics can also be extended. As generating statistics is not yet part
of Jayvee, only some basic statistics were developed. More complex statistics —
which could be generated not only column by column, but over many columns
— may be implemented in the future. Even a feature to automatically detect
abnormalities in the dataset and generate evaluations could be developed. In the
current version of the Jayvee Data Wrangler (0.1), the data inside the database
can be modified by editing the database using other software. In future versions,
this feature should be integrated into the software. Aside from that, editing
parameters like the maximal execution time of Jayvee files or the project folders’
location should be editable within the Jayvee Data Wrangler in a future version.
Also, as Jayvee is updated regularly, its feature extensions can find their way
into the Jayvee Data Wrangler. Hopefully, other programmers will contribute
and suggest further features, or develop their own software based on this project,
because that is why the Jayvee Datta Wrangler is published open source.

Overall, this thesis has created an open source software that can
(semi)automatically perform data wrangling tasks via a user interface. The soft-
ware also brings Jayvee to a larger audience as it cuts the need of understanding
Jayvee, as well as it speeds-up the creation of Jayvee scrips.

56

Appendices

57

Appendix A: Screenshots of the Software

A Screenshots of the Software

Figure A.1: The entry page of the Jayvee Data Wrangler. Users can create a
new project, load previously created projects, or display help/instructions.

59

Appendix A: Screenshots of the Software

Figure A.2: Screenshot of the Jayvee Data Wrangler showing a displayed warn-
ing caused by in this case an invalid URL.

Figure A.3: Screenshot of the Jayvee Data Wrangler showing a successful im-
port of a CSV into a database.

60

Appendix A: Screenshots of the Software

Figure A.4: Screenshot of the Jayvee Data Wrangler showing the creation of a
constraint.

Figure A.5: Screenshot of the Jayvee Data Wrangler showing the creation of a
value type.

61

Appendix A: Screenshots of the Software

Figure A.6: Screenshot of the Jayvee Data Wrangler showing the deletion of
multiple rows. This leads to cutting them out visually before storing the changes
in the database via a click on the save button by the user.

62

Appendix A: Screenshots of the Software

Figure A.7: Screenshot of the Jayvee Data Wrangler showing the applying
of a custom value type. In this example, a value type with Base-value text and
constraint Denylist was chosen to remove all entries with "mit Fernverkehr". This
results in the entire row being deleted.

Figure A.8: Screenshot of the Jayvee Data Wrangler showing the listing of all
created constraints and value types within a project.

63

Appendix B: Interaction Between Components

Figure A.9: Screenshot of the Jayvee Data Wrangler showing an example of a
list of created projects. By clicking on a name, the user can open the project and
if they want to navigate back, by clicking on the home button in the menu.

B Interaction Between Components

Figure B.1: Interaction between the user and Jayvee Data Wrangler while
editing a column name.

64

Appendix B: Interaction Between Components

Figure B.2: Interaction between the user and Jayvee Data Wrangler while
changing a value type.

65

Appendix B: Interaction Between Components

Figure B.3: Interaction between the user and Jayvee Data Wrangler while
creating a new constraint.

66

Appendix B: Interaction Between Components

Figure B.4: Interaction between the user and Jayvee Data Wrangler while
deleting a row.

Figure B.5: Interaction between the user and Jayvee Data Wrangler while
deleting a column.

67

Appendix B: Interaction Between Components

Figure B.6: Interaction between the user and Jayvee Data Wrangler while
displaying the folder that contains the database, Jayvee Script and CSV file.

68

Appendix B: Interaction Between Components

Figure B.7: Interaction between the user and Jayvee Data Wrangler while
undoing the last action. Exclusively the renaming of columns, deleting rows or
columns and changing the value type can be undone.

69

Appendix B: Interaction Between Components

Figure B.8: Interaction between the user and Jayvee Data Wrangler while
redoing the last action. Exclusively the renaming of columns, deleting rows or
columns and changing the value type can be redone.

70

Appendix B: Interaction Between Components

Figure B.9: Interaction between the user and Jayvee Data Wrangler to save
changes. Updating of the database by executing it is also shown.

71

Appendix C: Components and Algorithms of the Jayvee Data Wrangler

C Components and Algorithms of the Jayvee
Data Wrangler

1 import { contextBridge , ipcRenderer } from ’ electron ’ ;
2 import ∗ as createHTMLElements from ’ ./ src/helpers/createHTMLElements. j s ’ ;
3
4 contextBr idge . exposeInMainWorld (’ electron ’ , {
5 getPath : (name : string) => ipcRenderer . invoke (’getPath ’ , name) ,
6 getDirname : () => __dirname ,
7 c r e a t eD i r e c t o ry : (dirName : string)
8 => ipcRenderer . invoke (’ createDirectory ’ , dirName) ,
9 send : (channel : string , data : any) => ipcRenderer . send (channel , data) ,

10 invoke : (channel : string , . . . a rgs : any [])
11 => ipcRenderer . invoke (channel , . . . a rgs) ,
12 on : (channel : string , func : (. . . a rgs : any []) => void) =>
13 ipcRenderer . on (channel , (event , . . . a rgs) => func (. . . a rgs)) ,
14 once : (channel : string , func : (. . . a rgs : any []) => void) =>
15 ipcRenderer . once (channel , (event , . . . a rgs) => func (. . . a rgs)) ,
16 removeListener : (channel : string , func : (. . . a rgs : any []) => void) =>
17 ipcRenderer . removeListener (channel , func) ,
18 sendSync : (channel : string , data : any)
19 => ipcRenderer . sendSync (channel , data) ,
20 showErrorDialog : (message : string)
21 => ipcRenderer . send (’show−error−dialog ’ , message) ,
22 createHTMLElements : createHTMLElements ,
23 }) ;

Listing C.1: Content of the preload file used to expose functions securely
privileged into the renderer process.

1 let p i p e l i n e : { [key : string] : any } = {
2 d i r e c t o r y : "" ,
3 f i leName : "" ,
4 u r l : "" ,
5 commentLines : 0 ,
6 encoding : "" ,
7 d e l im i t e r : "" ,
8 en c l o s i n g : "" ,
9 rowsToDelete : "" ,

10 co l sToDele te : "" ,
11 header : [] as string [] ,
12 valueTypes : [] as string [] ,
13 databaseType : "" ,
14 database : "" ,
15 t ab l e : "" ,
16 databasePath : "" ,
17 createdValueTypes : [] as Array <[any []] > ,
18 c r ea t edCons t ra in t s : [] as Array <[any []] > ,
19 } ;

Listing C.2: Pipeline object to store data that will be inserted into the Jayvee
file.

72

Appendix C: Components and Algorithms of the Jayvee Data Wrangler

1 /∗∗
2 ∗ Creates a folder inside the workspace directory .
3 ∗ I f the folder already exists , i t thrwos an error .
4 ∗ @param {string} dirName − The name of the folder to be created .
5 ∗/
6 export async function c r e a t eD i r e c t o ry (dirName : string) : Promise<string> {
7 const userDataPath = app . getPath ("userData") ;
8 const newFolderPath = path . j o i n (userDataPath , "workspace" , dirName) ;
9 conso l e . l og ("Creating directory : " + newFolderPath) ;

10 i f (! f s . ex i s t sSync (newFolderPath)) {
11 f s . mkdirSync (newFolderPath , { r e c u r s i v e : true }) ;
12 conso l e . l og ("Directory created successfully") ;
13 return newFolderPath ;
14 } else {
15 throw new Error ("Directory already exists . ") ;
16 }
17 }

Listing C.3: Creation of the project folder within the workspace in the user
directory.

1 // Routing to view database
2 ipcMain . on ("viewDatabase" , (event , [databasePath , tableName]) => {
3 mainWindow ? . loadURL(
4 ‘ f i l e : //${path . join (__dirname, "src " , "viewDatabase" , "viewDatabase .html

")}?databasePath=${encodeURIComponent(databasePath)}&tableName=${
encodeURIComponent(tableName)} ‘

5) ;
6 }) ;

Listing C.4: Function that loads viewDatabase.html into the main window and
hands over the database path and table name.

73

Appendix C: Components and Algorithms of the Jayvee Data Wrangler

1 let dataTable = $ (’#database ’) . DataTable ({
2 dom: ’ f<"toolbar">rtip ’ , // Add a "toolbar" class to the dom
3 // Add the columns using the header loaded from the database and add
4 // a column for the delete buttons
5 columns : [’ ’ , . . . columns , { t i t l e : ’ ’ ,
6 de fau l tContent : deleteRowButton . outerHTML }] ,
7 width : ’100%’ ,
8 s c r o l l C o l l a p s e : true ,
9 f ixedHeader : true ,

10 paging : true ,
11 s ea r ch ing : true ,
12 columnDefs : [{
13 t a r g e t s : ’_all ’ ,
14 o rde rab l e : false ,
15 }] ,
16 order : [] ,
17 // This function handles the display of entries
18 // i f the user navigates to another page
19 drawCallback : function () {
20 [. . .]
21 }) ;
22 // Add a row below the header with the ValueTypes
23 va luetypes = await window . e l e c t r on . invoke (’ getValuetypes ’) ;
24 // Create a new row for the valuetypes
25 let valueTypeRow = document . createElement (’ tr ’) ;
26 valueTypeRow . innerHTML = ’<td>Valuetypes</td>’ ;
27
28 columns . forEach ((c o l : any , index : number) => {
29 const uniqueID = ‘dropdown−${ index } ‘ ;
30 const dropdown = htmlHelpers . createDropdown (uniqueID , al lowedValuetypes ,
31 va luetypes [index] , false , false , null , null) ;
32 const td = document . createElement (’ td ’) ;
33 td . appendChild (dropdown) ;
34 valueTypeRow . appendChild (td) ;
35 }) ;
36 // Append the row to the table header
37 document . que rySe l e c t o r (’#database thead ’) ? . appendChild (valueTypeRow) ;
38 columns . forEach ((c o l : any , index : number) => {
39 const dropdown =
40 document . getElementById (‘ dropdown−${ index } ‘) as HTMLSelectElement ;
41 i f (dropdown) {
42 // Handle dropdown value switch
43 dropdown . addEventListener (’change ’ , () => {
44 const uniqueID = ‘dropdown−${ index } ‘ ;
45 saveDropdown (uniqueID , ’saveValueType ’)
46 // Activate the save button when the dropdown value changes
47 saveInputButton . c l a s s L i s t . remove (’ disabled ’) ;
48 undoButton . c l a s s L i s t . remove (’ disabled ’) ;
49 // Update the rows i f the value doesn ’ t f i t the type anymore
50 checkValueType (dropdown , index) ;
51 modifyDisplay (dropdown , index) ;
52 }) ;
53 }
54 }) ;

Listing C.5: Creating a datatable to view the database. This involves loading
the header and ValueTypes. Afterwards the data is added.

74

1 // Add the rows to the datatable
2 window . e l e c t r on . on (’dbEachRow’ , (row) => {
3 const rowData = Object . va lue s (row) ;
4 // Add the row data to the DataTable
5 const rowNode = dataTable . row . add (rowData) . draw (fa l se) . node () ;
6 // Store the row ID as a data attribute on the row
7 $ (rowNode) . a t t r (’data−row−id ’ , row . rowid) ;
8 rowCount++;
9 // Draw the DataTable after every N rows

10 i f (rowCount % drawAfterRows === 0) {
11 dataTable . draw (fa l se) ;
12 }
13 }) ;

Listing C.6: Adding data to the data table

75

76

References

Alteryx, Inc. (2024a). The alteryx approach to generative ai for analytics [Avail-
able at https : / / www . alteryx . com / wp - content / uploads / media /
whitepaper/alteryx-approach-to-generative-ai-for-analytics-whitepaper-
en.pdf, last visited on 2024-05-22]. Alteryx, Inc.

Alteryx, Inc. (2024b). Alteryx platform [Available at https://www.alteryx.com/
products/alteryx-platform, last visited on 2024-05-22]. Alteryx, Inc.

Alteryx, Inc. (2024c). Data sources [Available at https : / /help . alteryx . com/
current/en/designer/data-sources.html#idm44990421136480, last visited
on 2024-05-22]. Alteryx, Inc.

Amazon Web Services Inc. (2024a). Data wrangling tool - amazon SageMaker data
wrangler - AWS [Available at https://aws.amazon.com/sagemaker/data-
wrangler/, last visited on 2024-05-22]. Amazon Web Services, Inc.

Amazon Web Services Inc. (2024b). Prepare ML data with amazon SageMaker
data wrangler - amazon SageMaker [Available at https : / / docs . aws .
amazon.com/sagemaker/latest/dg/data-wrangler .htm, last visited on
2024-05-22]. Amazon Web Services, Inc.

Apache Software Foundation. (2024). Apache spark™ - unified engine for large-
scale data analytics [Available at https://spark.apache.org/, last visited
on 2024-05-22]. Apache Software Foundation.

AWS Professional Service. (2024). Awswrangler: Pandas on AWS. (Version 3.7.3)
[Available at https://pypi.org/project/awswrangler/, last visited on 2024-
05-22].

Endel, F., & Piringer, H. (2015). Data wrangling: Making data useful again
[Available at https : / / www . sciencedirect . com / science / article / pii /
S2405896315001986, last visited on 2024-05-20]. IFAC-PapersOnLine,
48 (1), 111–112.

Furche, T., Gottlob, G., Libkin, L., Orsi, G., & Paton, N. (2016). Data
wrangling for big data: Challenges and opportunities [Available at https:
//openproceedings.org/2016/conf/edbt/paper- 94.pdf, last visited on
2024-05-20].

77

https://www.alteryx.com/wp-content/uploads/media/whitepaper/alteryx-approach-to-generative-ai-for-analytics-whitepaper-en.pdf
https://www.alteryx.com/wp-content/uploads/media/whitepaper/alteryx-approach-to-generative-ai-for-analytics-whitepaper-en.pdf
https://www.alteryx.com/wp-content/uploads/media/whitepaper/alteryx-approach-to-generative-ai-for-analytics-whitepaper-en.pdf
https://www.alteryx.com/products/alteryx-platform
https://www.alteryx.com/products/alteryx-platform
https://help.alteryx.com/current/en/designer/data-sources.html#idm44990421136480
https://help.alteryx.com/current/en/designer/data-sources.html#idm44990421136480
https://aws.amazon.com/sagemaker/data-wrangler/
https://aws.amazon.com/sagemaker/data-wrangler/
https://docs.aws.amazon.com/sagemaker/latest/dg/data-wrangler.htm
https://docs.aws.amazon.com/sagemaker/latest/dg/data-wrangler.htm
https://spark.apache.org/
https://pypi.org/project/awswrangler/
https://www.sciencedirect.com/science/article/pii/S2405896315001986
https://www.sciencedirect.com/science/article/pii/S2405896315001986
https://openproceedings.org/2016/conf/edbt/paper-94.pdf
https://openproceedings.org/2016/conf/edbt/paper-94.pdf

References

GitHub, Inc. (2024). The legal side of open source [Open source guides] [Available
at https://opensource.guide/legal/, last visited on 2024-05-27]. GitHub,
Inc.

Lockyer, D. (2022). Node SQLite3 API [Available at https : / / github . com /
TryGhost/node-sqlite3/wiki/API, last visited on 2024-05-20].

Mew, J. (2023). Introducing the data wrangler extension for visual studio code
[Available at https ://devblogs .microsoft . com/python/data-wrangler -
release/, last visited on 2024-05-21]. Microsoft Corporation.

Mozilla Foundation. (2024, January 12). Async function - JavaScript | MDN
[Available at https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Statements/async_function, last visited on 2024-05-19]. Moz-
illa Foundation.

Murthy, A. K. (2017). Big data analysis using hadoop and spark [Available at
https : / / digitalcommons .memphis . edu / cgi / viewcontent . cgi ? article=
2808&context=etd, last visited on 2024-05-22].

NumFOCUS, Inc. (2024). Pandas documentation — pandas 2.2.2 documentation
[Available at https://pandas.pydata.org/docs/, last visited on 2024-05-21].
NumFOCUS, Inc.

OpenJS Foundation. (2023a). Build cross-platform desktop apps with JavaScript,
HTML, and CSS | electron [Available at https : / / electronjs . org/, last
visited on 2024-18-05]. OpenJS Foundation and Electron contributors.

OpenJS Foundation. (2023b). Introduction | electron [Available at https : / /
electronjs.org/docs/latest/, last visited on 2024-05-18]. OpenJS Founda-
tion and Electron contributors.

OpenRefine. (2024). OpenRefine [Available at https://openrefine.org/, last visited
on 2024-05-22]. OpenRefine.

OpenRefine developers. (2024). OpenRefine user manual [Available at https://
openrefine.org/docs, last visited on 2024-05-29]. OpenRefine.

Rupp, C., & SOPHISTen, d. (2020). Requirements-engineering und -management
(7., aktualisierte und erweiterte Auflage). Carl Hanser Verlag GmbH & Co.
KG.

Shafranovich, Y. (2005). Common format and MIME type for comma-separated
values (CSV) files (Request for Comments RFC 4180) [Available at https:
//datatracker.ietf.org/doc/rfc4180, last visited on 2024-05-06]. Internet
Engineering Task Force.

The JValue Project. (2024). User docs [Available at https://jvalue.github.io/
jayvee/docs/user/ intro/, last visited on 2024-17-03]. Professorship for
Open-Source Software.

78

https://opensource.guide/legal/
https://github.com/TryGhost/node-sqlite3/wiki/API
https://github.com/TryGhost/node-sqlite3/wiki/API
https://devblogs.microsoft.com/python/data-wrangler-release/
https://devblogs.microsoft.com/python/data-wrangler-release/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://digitalcommons.memphis.edu/cgi/viewcontent.cgi?article=2808&context=etd
https://digitalcommons.memphis.edu/cgi/viewcontent.cgi?article=2808&context=etd
https://pandas.pydata.org/docs/
https://electronjs.org/
https://electronjs.org/docs/latest/
https://electronjs.org/docs/latest/
https://openrefine.org/
https://openrefine.org/docs
https://openrefine.org/docs
https://datatracker.ietf.org/doc/rfc4180
https://datatracker.ietf.org/doc/rfc4180
https://jvalue.github.io/jayvee/docs/user/intro/
https://jvalue.github.io/jayvee/docs/user/intro/

References

Voleti, R. (2020). Data wrangling- a goliath of data industry [Available at https:
//www.ijert.org/research/data-wrangling-a-goliath-of-data- industry-
IJERTV9IS080122.pdf, last visited on 2024-05-20]. International Journal
of Engineering Research and, V9 (8), 273–276.

79

https://www.ijert.org/research/data-wrangling-a-goliath-of-data-industry-IJERTV9IS080122.pdf
https://www.ijert.org/research/data-wrangling-a-goliath-of-data-industry-IJERTV9IS080122.pdf
https://www.ijert.org/research/data-wrangling-a-goliath-of-data-industry-IJERTV9IS080122.pdf

	Introduction
	Related Work
	Data Wrangling and ETL-Pipelines
	Related Tools
	Python Pandas
	Microsoft Data Wrangler Extension for Visual Studio Code
	Apache Spark
	Amazon Sagemaker Data Wrangler
	Alteryx Analytics Cloud Platform
	OpenRefine

	Fundamentals
	Context: Jayvee
	CSV

	Requirements
	Requirements Engineering
	Functional Requirements
	Non-functional Requirements

	Architecture and Design
	Architecture of Different Components
	User Interface
	Backend

	Interaction Between Components

	Details of the Implementation
	Components and Structure of the Project
	Importing CSV files
	Generating and Modifying the UI
	Analyzing CSV files

	Modifying data
	License Considerations

	Evaluation
	Requirements Evaluation
	Examples of Testing
	Software Classification

	Conclusion and Outlook
	Appendices
	Screenshots of the Software
	Interaction Between Components
	Components and Algorithms of the Jayvee Data Wrangler

	References

